WO2017149957A1 - Signal output circuit - Google Patents

Signal output circuit Download PDF

Info

Publication number
WO2017149957A1
WO2017149957A1 PCT/JP2017/001216 JP2017001216W WO2017149957A1 WO 2017149957 A1 WO2017149957 A1 WO 2017149957A1 JP 2017001216 W JP2017001216 W JP 2017001216W WO 2017149957 A1 WO2017149957 A1 WO 2017149957A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
slope
signal
output circuit
Prior art date
Application number
PCT/JP2017/001216
Other languages
French (fr)
Japanese (ja)
Inventor
典正 岡
博史 川合
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017149957A1 publication Critical patent/WO2017149957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/94Generating pulses having essentially a finite slope or stepped portions having trapezoidal shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements

Definitions

  • This disclosure relates to a signal output circuit that outputs a signal corresponding to the level of a control signal.
  • slope control is performed to control the rising and falling slopes (hereinafter referred to as slope) of an output signal for the purpose of suppressing radiation noise.
  • the slope control is generally performed by charging / discharging a capacitor and obtaining a desired slope waveform using the terminal voltage of the capacitor.
  • the capacitor is connected between the drain and gate of the output transistor whose drain is connected to the signal output terminal, the apparent capacitance when viewed from the input side (hereinafter simply referred to as capacitance) due to the Miller effect. Also called). Therefore, a desired slope waveform can be obtained using a capacitor having a relatively small capacity. However, in this configuration, when noise is superimposed on the output terminal, the noise propagates to the internal circuit through the capacitor and may cause malfunction.
  • Patent Document 1 discloses a technique for preventing the above-described malfunction.
  • the internal node voltage and the internal node where the slope-controlled signal is generated and the output terminal for outputting the signal are connected without adding the current mirror circuit or the like. Make the output terminal voltage equal. With such a configuration, the occurrence of malfunction when noise is superimposed on the output terminal can be prevented while realizing slope control of the output signal.
  • the minimum operating voltage is increased by the threshold voltage Vt of the transistors configuring the current mirror circuit.
  • a communication driver for in-vehicle communication such as LIN (Local Interconnect Network)
  • LIN Local Interconnect Network
  • An object of the present disclosure is to provide a signal output circuit that can prevent malfunction due to noise superimposed on an output terminal while suppressing an increase in circuit scale and an increase in minimum operating voltage.
  • the signal output circuit controls the level of the control signal from the output terminal connected to one main terminal of the output transistor by controlling the driving of the output transistor based on the control signal input from the outside.
  • the output signal of the level according to is output.
  • the signal output circuit includes an output transistor and outputs an output signal, a pseudo output circuit whose configuration is at least partially similar to the output circuit, and an input node and an output node of the pseudo output circuit And a slope control circuit for controlling the slope of the output signal.
  • the pseudo output circuit includes a pseudo output transistor having a conduction control terminal connected to the input node and one main terminal connected to the output node.
  • the slope control circuit indirectly controls the slope of the output signal using the pseudo output circuit as follows. That is, the slope control circuit charges and discharges the feedback capacitor according to the level of the control signal. As a result, the output of the pseudo output circuit is slope-controlled.
  • the slope control circuit drives the output transistor using the voltage of the input node of the pseudo output circuit in which the output slope control is performed. Therefore, the signal of the output terminal connected to one main terminal of the output transistor, that is, the slope of the output signal is also controlled.
  • the output circuit and the pseudo output circuit are at least partially similar in configuration. Therefore, according to the above configuration, it is possible to obtain a slope waveform close to a slope waveform obtained by conventional control for charging / discharging the feedback capacitor provided between the input and output of the output circuit.
  • the pseudo output circuit since the pseudo output circuit is not connected to the output terminal, it can be composed of elements that operate with the same power supply as other internal circuits. Therefore, according to the above configuration, it is not necessary to use a high breakdown voltage element even when the output side voltage is higher than the operating voltage of the internal circuit. Furthermore, since the feedback capacitor is connected between the input / output nodes of the pseudo output circuit, a desired slope waveform can be obtained using a relatively small feedback capacitor due to the mirror effect. For this reason, according to the above configuration, an increase in circuit scale can be suppressed. Further, the above configuration does not require a current mirror circuit for determining the voltage of the output terminal, so that there is no restriction that the minimum operating voltage becomes high.
  • the pseudo output circuit has the same circuit format as the output circuit, and thus is substantially equivalent to a slope waveform obtained by conventional control for charging / discharging a feedback capacitor provided between the input and output of the output circuit. Slope waveform can be obtained.
  • FIG. 1 is a diagram showing a schematic configuration of a signal output circuit according to the first embodiment.
  • FIG. 2 is a diagram showing operation waveforms of each part of the signal output circuit
  • FIG. 3 is a diagram illustrating a schematic configuration of the signal output circuit according to the second embodiment.
  • FIG. 4 is a diagram illustrating a specific configuration example of the output monitor circuit.
  • FIG. 5 is a diagram illustrating a specific first configuration example of the slope adjusting unit
  • FIG. 6 is a diagram illustrating a specific second configuration example of the slope adjustment unit
  • FIG. 7 is a diagram illustrating a specific third configuration example of the slope adjustment unit
  • FIG. 1 is a diagram showing a schematic configuration of a signal output circuit according to the first embodiment.
  • FIG. 2 is a diagram showing operation waveforms of each part of the signal output circuit
  • FIG. 3 is a diagram illustrating a schematic configuration of the signal output circuit according to the second embodiment.
  • FIG. 4 is a diagram illustrating a specific configuration example of the output
  • FIG. 8 is a diagram showing a schematic configuration of a signal output circuit according to the third embodiment.
  • FIG. 9 is a diagram illustrating a schematic configuration of the signal output circuit according to the fourth embodiment.
  • FIG. 10 is a diagram showing the relationship between the input voltage Vc and the output voltage Vd of the pseudo output circuit.
  • FIG. 11 is a diagram illustrating a modification of the specific configuration of the output monitor circuit.
  • FIG. 12 is a diagram schematically showing the configuration of a signal output circuit in which the configuration of the output stage is changed
  • FIG. 13 is a diagram schematically showing the configuration of a signal output circuit without a buffer.
  • the signal output circuit 1 controls the drive of the N-channel type MOS transistor 3 based on the control signal IN inputted from the outside through the input terminal 2, thereby controlling the control signal IN from the output terminal 4.
  • the output signal OUT of a level corresponding to the level of is output.
  • the control signal IN and the output signal OUT are both digital signals that represent a binary value at two voltage levels: a high level (hereinafter referred to as H level) and a low level (hereinafter referred to as L level). Therefore, the level described above corresponds to a voltage level.
  • the transistor 3 corresponds to an output transistor, and its source is connected to the ground GND as a reference potential of the circuit, and its drain is connected to the output terminal 4 and to the power source VB via the resistor 5. .
  • the transistor 3 and the resistor 5 constitute an output circuit 6 having a circuit format of a common source amplifier circuit.
  • the power source VB is supplied from, for example, a battery (not shown), and the steady value of the voltage is about + 12V.
  • the driving of the transistor 3 is controlled by a slope control circuit 7. Therefore, the gate of the transistor 3 is connected via the buffer 8 to the node N1 to which the output of the slope control circuit 7 is given.
  • the drain of the transistor 3 corresponds to one main terminal, and the gate corresponds to a conduction control terminal.
  • the pseudo output circuit 9 is a common source amplifier circuit including a resistor 10 and an N channel type MOS transistor 11 connected in series between a power supply VDD and a ground GND. That is, the pseudo output circuit 9 has the same circuit format as the output circuit 6.
  • the power supply VDD is a power supply for operation of the signal output circuit 1, and the steady value of the voltage is about + 5V.
  • the transistor 11 corresponds to a pseudo output transistor, and has a gate connected to a node N1 that is an input node of the pseudo output circuit 9, and a drain connected to a node N2 that is an output node of the pseudo output circuit 9. .
  • the drain of the transistor 11 corresponds to one main terminal, and the gate corresponds to a conduction control terminal.
  • a capacitor 12 corresponding to a feedback capacitor is connected between the input and output of the pseudo output circuit 9, that is, between the nodes N1 and N2.
  • the signal output circuit 1 is configured as an integrated circuit.
  • the following measures are taken so that the pairing between corresponding elements is good. Has been made. That is, the resistors 5 and 10 and the transistors 3 and 11 are made of the same material and have the same structure, and are arranged close to each other.
  • the resistors 5 and 10 and the transistors 3 and 11 have substantially the same characteristics such as temperature characteristics. Further, the resistance values of the resistors 5 and 10 and the sizes of the transistors 3 and 11 are set so as to obtain a desired gradient with respect to the output signal OUT and the voltage Vd, as will be described later.
  • each element constituting the output circuit 6 and the structure and characteristics of each element constituting the pseudo output circuit 9 corresponding to each element are approximated. It should be noted that the output circuit 6 and the pseudo output circuit 9 only need to have the same circuit format in the main portion, and the structure, characteristics, circuit constants, and the like of each element constituting them may not necessarily be approximated.
  • the slope control circuit 7 includes a current source 13, a P-channel type MOS transistor 14, an N-channel type MOS transistor 15 and a current source 16 connected in series between the power supply VDD and the ground GND.
  • the drains of the transistors 14 and 15 are connected to the node N 1, and the gates are connected to the input terminal 2.
  • the input terminal 2 is supplied with a control signal IN from a control circuit (not shown) that controls the operation of the signal output circuit 1.
  • the slope control circuit 7 charges the capacitor 12 when the control signal IN is at the L level, and discharges the capacitor 12 when the control signal IN is at the H level.
  • the voltage Vd at the node N2 that is the output of the pseudo output circuit 9 is slope-controlled.
  • the slope control circuit 7 drives the transistor 3 using the voltage Vc of the node N1, which is an input node of the pseudo output circuit 9 in which the output slope control is performed. Therefore, the signal of the output terminal 4 connected to the drain of the transistor 3, that is, the slope of the output signal OUT is also controlled.
  • the slope waveform obtained by the conventional control for charging / discharging the feedback capacitor provided between the input and output of the output circuit 6 is substantially the same.
  • a slope waveform can be obtained.
  • the values of the currents I1 and I2 output from the current sources 13 and 16 are appropriately set according to a desired slope control amount, that is, a desired slope of the output signal OUT.
  • the output signal OUT becomes constant at the minimum value after the time t4 when the output signal OUT decreases and reaches the minimum value.
  • the voltage Vd becomes constant at the minimum value. Note that the minimum value of the output signal OUT and the minimum value of the voltage Vd are both approximately the GND potential. Since the voltage Vd becomes constant at the minimum value after the time point t5, the slope of the increase in the voltage Vc is as steep as the slope from the time point t1 to the time point t2.
  • the size of the transistors 3 and 11 and the resistance values of the resistors 5 and 10 are set so that the falling period Tb of the output signal OUT falls within this period Ta. Circuit constants have been determined. Specifically, since it is necessary to make the slope of the voltage Vd gentler than the slope of the output signal OUT, the size of the transistor 11 is made relatively small, and the resistance value of the resistor 10 is set relatively large. Yes.
  • the output signal OUT becomes constant at the maximum value.
  • the voltage Vd becomes constant at the maximum value. Note that the maximum value of the output signal OUT is approximately the voltage VB, and the maximum value of the voltage Vd is approximately the voltage VDD. Further, since the voltage Vd becomes constant at the maximum value after the time point t10, the slope of the voltage Vc becomes as steep as the slope from the time t6 to the time t7.
  • the signal output circuit 1 of the present embodiment described above the following effects can be obtained.
  • no intentionally provided element such as a capacitor 12 is connected between the output terminal 4 and the slope control circuit 7. Therefore, according to the present embodiment, even if noise is superimposed on the output terminal 4, there is no main path through which the noise is transmitted to the slope control circuit 7, so that noise affects the operation of the slope control circuit 7. A malfunction that the output signal OUT becomes an unintended level does not occur.
  • the pseudo output circuit 9 is not connected to the output terminal 4, the pseudo output circuit 9 is composed of a low withstand voltage element that operates with the same power supply VDD as the other circuits constituting the signal output circuit 1. Further, since the capacitor 12 is not connected to the output terminal 4, a capacitor having a lower withstand voltage can be used as compared with a conventional configuration in which a feedback capacitor is connected to the output terminal. Therefore, according to the signal output circuit 1, even when the output side voltage is higher than the operation voltage of the circuit as in this embodiment, it is not necessary to use a high breakdown voltage element. Furthermore, since the capacitor 12 is connected between the input and output of the pseudo output circuit 9, a desired slope waveform can be obtained by using the capacitor 12 having a relatively small capacity due to the mirror effect.
  • the configuration of the output stage is the same as the conventional basic configuration, and it is not necessary to add a current mirror circuit for determining the voltage of the output terminal 4, so that the minimum operating voltage is increased. There is no restriction such as.
  • the integrated circuit is designed so that the structure and characteristics of each element constituting the output circuit 6 and the structure and characteristics of each element constituting the pseudo output circuit 9 are approximated.
  • the pair property between the elements is good. For this reason, it is possible to reliably obtain the desired slope waveform of the output signal OUT despite the configuration in which the pseudo output circuit 9 is used to indirectly control the slope of the output signal OUT as in the present embodiment. It becomes possible.
  • the signal output circuit 1 has a configuration in which a buffer 8 is interposed between the node N1 and the gate of the transistor 3.
  • a buffer 8 is interposed between the node N1 and the gate of the transistor 3.
  • a parasitic capacitance exists between the drain and gate of the transistor 3. Since the transistor 3 is provided in the output stage, the transistor 3 has a large size for ensuring driving capability, and the parasitic capacitance is relatively large. Therefore, the noise superimposed on the output terminal 4 may propagate to an internal circuit such as the slope control circuit 7 through the parasitic capacitance.
  • the buffer 8 By providing the buffer 8 as described above, the noise propagation path through the parasitic capacitance is cut off, so that the transistor 3 malfunctions due to the noise and the output signal OUT becomes an unintended level. Can be prevented. In addition, by providing the buffer 8, the impedance of the gate node of the transistor 3 is lowered, and the noise amplitude can be suppressed.
  • the signal output circuit 21 includes an output monitor circuit 22 that detects the slope of the output signal OUT.
  • the output monitor circuit 22 can be configured by a comparison circuit 23 and a logic circuit 24, as shown in FIG.
  • the comparison circuit 23 composed of a comparator or the like compares the voltage value of the output signal OUT with a predetermined threshold value Vth, and outputs a comparison signal Sa indicating the comparison result.
  • the threshold value Vth is set to an intermediate voltage of the voltage VB, that is, VB / 2, for example.
  • the logic circuit 24 includes a counter circuit that operates according to the clock signal CLK. Using the counter circuit, the logic circuit 24 counts the time from when the control signal IN is inverted to when the comparison signal Sa is inverted. That is, the logic circuit 24 counts the time until the voltage value of the output signal OUT reaches the threshold value Vth from the minimum value or the maximum value. The logic circuit 24 detects the slope of the output signal OUT, that is, the slope from the counted time and the threshold value Vth, and outputs a detection signal Sb indicating the detection result.
  • the signal output circuit 21 includes a slope adjustment unit 26 that adjusts the slope of the output signal OUT to a desired value based on the slope detection result by the output monitor circuit 22.
  • a slope adjustment unit 26 that adjusts the slope of the output signal OUT to a desired value based on the slope detection result by the output monitor circuit 22.
  • a variable resistor 27 is connected between the source which is the other main terminal of the transistor 11 and GND.
  • the resistor 10, the transistor 11, and the variable resistor 27 constitute a pseudo output circuit 28 having a circuit format of a common source amplifier circuit.
  • the control unit 29 including a logic circuit adjusts the slope of the output signal OUT by changing the resistance value of the variable resistor 27.
  • the slope control circuit 30 includes variable current sources 31, 32 that output variable currents Ia, Ib instead of the current sources 13, 16 that output constant currents I1, I2. It has.
  • the control unit 33 composed of a logic circuit or the like adjusts the falling slope of the output signal OUT by changing the current value of the variable current Ia, and changes the rising value of the output signal OUT by changing the current value of the variable current Ib. Adjust the slope. When only one slope of the rising and falling edges of the output signal OUT needs to be adjusted, only one of the two current sources 13 and 16 that needs to be adjusted needs to be a variable current source.
  • a capacitor 34 which is a variable capacitor whose capacitance value is variable, is connected between the nodes N1 and N2.
  • the control unit 35 including a logic circuit adjusts the slope of the output signal OUT by changing the capacitance value of the capacitor 34.
  • the signal output circuit 21 of the present embodiment is configured so that the output monitor circuit 22 detects the slope of the output signal OUT, and the slope of the output signal OUT becomes a desired value based on the slope detection result by the output monitor circuit 22.
  • a slope adjusting unit 26 is provided for adjustment. That is, the signal output circuit 21 of the present embodiment has a function of feedback controlling the slope of the output signal OUT. Therefore, according to the present embodiment, it is possible to improve the accuracy of the slope control of the output signal OUT.
  • the output monitor circuit 22 is a simple circuit composed of a comparator, a counter circuit, etc., and does not have a complicated circuit configuration. Therefore, an increase in the circuit scale of the output monitor circuit 22 and consequently the circuit scale of the signal output circuit 21 can be suppressed.
  • the slope adjusting unit 26 it is possible to adjust the slope of the output signal OUT only by adding the variable resistor 27 to the source side of the transistor 11 of the pseudo output circuit 28. That is, according to the first configuration example, the slope adjustment function can be added while suppressing an increase in the circuit scale of the signal output circuit 21 to a low level.
  • the charge / discharge current for the capacitor 12 is variable, and the slope of the output signal OUT is adjusted by changing them, so that the accuracy of the slope adjustment can be improved. it can.
  • the charging current and discharging current for the capacitor 12 can be changed independently, so that the rising and falling slopes can be individually adjusted.
  • the configurations of the output circuit 6 and the pseudo output circuit 9 are the same as those in the first embodiment, are not changed, and have the same circuit configuration. Therefore, although the configuration is such that the pseudo output circuit 9 is used to indirectly control the slope of the output signal OUT, it is possible to reliably obtain the desired slope waveform of the output signal OUT.
  • the slope can be adjusted by making the capacitance of the capacitor 34 as the feedback capacitance variable. Therefore, the configurations of the output circuit 6 and the pseudo output circuit 9 are the same as those of the first embodiment, are not changed, and have the same circuit configuration. Therefore, according to the third configuration example, it is possible to reliably obtain the desired slope waveform of the output signal OUT, as in the second configuration example.
  • the signal output circuit 41 includes a pseudo output monitor circuit 42 that detects the slope of the voltage Vd at the node N ⁇ b> 2 that is the output node of the pseudo output circuit 9.
  • the pseudo output monitor circuit 42 can employ the same configuration as the output monitor circuit 22.
  • the threshold value Vth for comparison with the voltage value of the voltage Vd may be set to, for example, an intermediate voltage of the voltage VDD, that is, VDD / 2.
  • the signal output circuit 41 includes a slope adjusting unit 43 that adjusts the slope of the output signal OUT to a desired value based on the detection result of the slope by the output monitor circuit 22 and the pseudo output monitor circuit 42.
  • a specific configuration example for realizing the function as the slope adjustment unit 43 can employ the same configuration as the slope adjustment unit 26.
  • the slope of the output signal OUT becomes a desired value based on the detection result of the slope of the voltage Vd that is the output of the pseudo output circuit 9 in addition to the detection result of the slope of the output signal OUT. It comes to adjust. Therefore, according to the present embodiment, it is possible to adjust the slope so that the rising and falling periods of the output signal OUT are reliably within the period in which the voltage Vd changes, that is, the period in which the voltage Vc changes gradually. As a result, it is possible to obtain the advantages of the mirror effect more reliably.
  • the pseudo output monitor circuit 42 is a simple circuit composed of a comparator, a counter circuit, and the like, similar to the output monitor circuit 22, and does not have a complicated circuit configuration. Accordingly, it is possible to suppress an increase in the circuit scale of the pseudo output monitor circuit 42 and, consequently, the circuit scale of the signal output circuit 41.
  • the signal output circuit 51 illustrated in FIG. 9 corresponds to a configuration in which the slope adjustment unit 43 of the first configuration example is employed in the signal output circuit 41 of the third embodiment.
  • the signal output circuit 51 is used as an in-vehicle communication driver, for example, a LIN communication driver. Therefore, in this case, the input terminal 2 is a terminal to which transmission data TX corresponding to the control signal IN is given from the internal communication control circuit.
  • the output terminal 4 outputs a communication signal LIN corresponding to the output signal OUT, and is a terminal connected to a bus used for LIN communication.
  • bus-type communication such as LIN
  • the circuit connected to the bus and the length of the bus vary depending on the application. Therefore, when applied to the communication driver as in the signal output circuit 51, the magnitude of the load connected to the output terminal 4 is assumed to change to various values depending on the application. If the size of the load connected to the output terminal 4 changes, the slope of the output signal OUT may change accordingly as intended.
  • the relationship between the voltage Vd and the voltage Vc changes according to the resistance value Rv of the variable resistor 27. Specifically, as the resistance value Rv decreases, the slope of the voltage Vd becomes steeper and the timing at which the voltage Vd reaches the intermediate voltage is earlier. As the resistance value Rv increases, the slope of the voltage Vd becomes gentler and the timing at which the voltage Vd reaches the intermediate voltage is delayed.
  • the slope adjusting unit 43 changes the timing at which the voltage Vd reaches the intermediate voltage in consideration of such a relationship, so that the timing at which the voltage value of the output signal OUT reaches the intermediate voltage and the timing at which the voltage Vd reaches the intermediate voltage. Match.
  • the signal output circuit 51 of the present embodiment even when the output terminal 4, that is, the size of the load connected to the bus fluctuates, feedback control is performed so that the slope of the output signal OUT is desired. Is possible. Therefore, according to the signal output circuit 51 of the present embodiment, when applied to a communication driver for bus type communication such as LIN, regardless of the size of the load connected to the output terminal 4 or the length of the bus, It is possible to maintain a state where the slope of the output signal OUT satisfies a specified slope standard.
  • the output monitor circuit 22 is connected to the output terminal 4, and this portion may be a noise transmission path. Therefore, as a specific configuration of the output monitor circuit 22, the configuration shown in FIG. 11 may be adopted instead of the configuration shown in FIG.
  • the output monitor circuit 52 shown in FIG. 11 includes a low-pass filter circuit 53 (hereinafter referred to as an LPF circuit 53) interposed between the output terminal of the comparison circuit 23 and the logic circuit 24. Therefore, the noise superimposed on the output terminal 4 is attenuated by the LPF circuit 53. Therefore, when noise is superimposed on the output terminal 4, the noise does not reach the internal circuit such as the logic circuit 24 and the slope adjustment unit 43 at the level as it is, and the occurrence of malfunction due to the noise is prevented. Can do.
  • LPF circuit 53 low-pass filter circuit 53
  • the N-channel MOS transistor 3 is used as the output transistor and the drain thereof is pulled up by the resistor 5, that is, the signal output circuit having the low-side drive configuration.
  • the output circuit 64 is configured by the transistor 62 and the resistor 63.
  • the pseudo output circuit 65 may be configured to use a P-channel MOS transistor 66 as the pseudo output transistor and pull down its drain by a resistor 67 so as to have the same circuit format as the output circuit 64.
  • a configuration in which the buffer 8 is omitted may be employed as in the signal output circuit 71 shown in FIG.
  • the gate of the transistor 3 may be directly connected to the node N1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

This signal output circuit (1, 21, 41, 51, 61, 71) comprises an output circuit (6, 64), a pseudo-output circuit (9, 28, 65), a capacitor (12, 34) and a slope control circuit (7, 30). The output circuit is equipped with a transistor (3, 62), and outputs an output signal OUT. The pseudo-output circuit has a structure that is at least partially similar to the output circuit. The capacitor is connected between an input node (N1) and an output node (N2) of the pseudo-output circuit. The slope control circuit charges and discharges the capacitor according to the level of a control signal IN, and drives the transistor using the voltage Vc of the input node, thereby controlling the slope of the output signal OUT. The pseudo-output circuit is equipped with a transistor (11, 66) having a gate connected to the input node and a drain connected to the output node, and has the same circuit format as the output circuit.

Description

信号出力回路Signal output circuit 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年3月1日に出願された日本出願番号2016-038954号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-038954 filed on March 1, 2016, the contents of which are incorporated herein by reference.
 本開示は、制御信号のレベルに応じた信号を出力する信号出力回路に関する。 This disclosure relates to a signal output circuit that outputs a signal corresponding to the level of a control signal.
 例えば車載用通信に用いられる通信ドライバなどの信号出力回路では、放射ノイズの抑制を目的として、出力信号の立ち上がりおよび立ち下がりの傾き(以下、スロープと呼ぶ)を制御するスロープ制御が行われる。スロープ制御としては、キャパシタに対する充放電を行い、そのキャパシタの端子電圧を用いて所望のスロープ波形を得る、という手法が一般的である。 For example, in a signal output circuit such as a communication driver used for in-vehicle communication, slope control is performed to control the rising and falling slopes (hereinafter referred to as slope) of an output signal for the purpose of suppressing radiation noise. The slope control is generally performed by charging / discharging a capacitor and obtaining a desired slope waveform using the terminal voltage of the capacitor.
 この場合、ドレインが信号の出力端子に接続された出力トランジスタのドレイン・ゲート間に上記キャパシタを接続すれば、ミラー効果により、入力側から見たときの見かけ上の静電容量(以下、単に容量とも呼ぶ)が増加する。そのため、比較的小さい容量のキャパシタを用いて所望するスロープ波形を得ることが可能となる。しかし、この構成では、出力端子にノイズが重畳した場合、そのノイズがキャパシタを通じて内部の回路に伝搬し、誤動作を引き起こすおそれがある。 In this case, if the capacitor is connected between the drain and gate of the output transistor whose drain is connected to the signal output terminal, the apparent capacitance when viewed from the input side (hereinafter simply referred to as capacitance) due to the Miller effect. Also called). Therefore, a desired slope waveform can be obtained using a capacitor having a relatively small capacity. However, in this configuration, when noise is superimposed on the output terminal, the noise propagates to the internal circuit through the capacitor and may cause malfunction.
 特許文献1には、上述した誤動作の発生を防止する技術が開示されている。特許文献1記載の構成では、スロープ制御された信号が生成される内部ノードと、信号を出力するための出力端子とを接続することなく、カレントミラー回路などを付加することにより内部ノードの電圧および出力端子の電圧を等しくする。このような構成により、出力信号のスロープ制御を実現しつつ、出力端子にノイズが重畳した際の誤動作の発生が防止される。 Patent Document 1 discloses a technique for preventing the above-described malfunction. In the configuration described in Patent Document 1, the internal node voltage and the internal node where the slope-controlled signal is generated and the output terminal for outputting the signal are connected without adding the current mirror circuit or the like. Make the output terminal voltage equal. With such a configuration, the occurrence of malfunction when noise is superimposed on the output terminal can be prevented while realizing slope control of the output signal.
米国特許第8487663号明細書U.S. Pat. No. 8,487,663
 しかし、特許文献1記載の構成では、スロープ制御された信号を生成する回路、カレントミラー回路などを出力信号のハイレベルに相当する電圧(以下、出力側電圧と呼ぶ)と同じ電圧で動作させる必要がある。そのため、上記構成を出力側電圧が内部回路の動作電圧よりも高い用途に適用した場合には、高耐圧の素子を用いなければならず、その結果、回路面積の増大を招くおそれがある。 However, in the configuration described in Patent Document 1, it is necessary to operate a circuit that generates a slope-controlled signal, a current mirror circuit, and the like at the same voltage as a voltage corresponding to the high level of the output signal (hereinafter referred to as an output side voltage). There is. Therefore, when the above configuration is applied to an application where the output side voltage is higher than the operating voltage of the internal circuit, a high breakdown voltage element must be used. As a result, the circuit area may be increased.
 また、上記構成では、カレントミラー回路を用いて出力端子の電圧を定めているため、カレントミラー回路を構成するトランジスタの閾値電圧Vt分だけ最低動作電圧が高くなる。上記構成を例えばLIN(Local Interconnect Network)などの車載用通信の通信ドライバに適用した場合、大きく変動する可能性のある車載用バッテリの電圧が出力側電圧になると想定されるため、最低動作電圧が高くなることは大きなデメリットになる。 In the above configuration, since the voltage of the output terminal is determined using the current mirror circuit, the minimum operating voltage is increased by the threshold voltage Vt of the transistors configuring the current mirror circuit. When the above configuration is applied to a communication driver for in-vehicle communication such as LIN (Local Interconnect Network), it is assumed that the voltage of the in-vehicle battery that may fluctuate greatly becomes the output side voltage. Increasing the price is a major disadvantage.
 本開示の目的は、回路規模の増大および最低動作電圧が高くなることを抑制しつつ、出力端子に重畳するノイズによる誤動作を防止することができる信号出力回路を提供することにある。 An object of the present disclosure is to provide a signal output circuit that can prevent malfunction due to noise superimposed on an output terminal while suppressing an increase in circuit scale and an increase in minimum operating voltage.
 本開示の一態様において、信号出力回路は、外部より入力される制御信号に基づいて出力トランジスタの駆動を制御することにより、出力トランジスタの一方の主端子に接続された出力端子から制御信号のレベルに応じたレベルの出力信号を出力する。そして、その信号出力回路は、出力トランジスタを備えたものであり出力信号を出力する出力回路と、少なくとも一部の構成が出力回路と相似する疑似出力回路と、疑似出力回路の入力ノードおよび出力ノードの間に接続されたフィードバック容量と、出力信号のスロープを制御するスロープ制御回路を備える。疑似出力回路は、入力ノードに導通制御端子が接続されるとともに出力ノードに一方の主端子が接続される疑似出力トランジスタを備える。 In one embodiment of the present disclosure, the signal output circuit controls the level of the control signal from the output terminal connected to one main terminal of the output transistor by controlling the driving of the output transistor based on the control signal input from the outside. The output signal of the level according to is output. The signal output circuit includes an output transistor and outputs an output signal, a pseudo output circuit whose configuration is at least partially similar to the output circuit, and an input node and an output node of the pseudo output circuit And a slope control circuit for controlling the slope of the output signal. The pseudo output circuit includes a pseudo output transistor having a conduction control terminal connected to the input node and one main terminal connected to the output node.
 スロープ制御回路は、次のように、疑似出力回路を利用して、出力信号のスロープを間接的に制御する。すなわち、スロープ制御回路は、制御信号のレベルに応じてフィードバック容量の充電および放電を行う。これにより、疑似出力回路の出力は、スロープ制御されたものとなる。スロープ制御回路は、出力のスロープ制御が行われている疑似出力回路の入力ノードの電圧を用いて出力トランジスタを駆動する。そのため、出力トランジスタの一方の主端子に接続された出力端子の信号、つまり出力信号のスロープも制御される。この場合、出力回路と疑似出力回路とは少なくとも一部の構成が相似している。そのため、上記構成によれば、出力回路の入出力間に設けたフィードバック容量に対する充放電を行う従来の制御により得られるスロープ波形に近いスロープ波形を得ることができる。 The slope control circuit indirectly controls the slope of the output signal using the pseudo output circuit as follows. That is, the slope control circuit charges and discharges the feedback capacitor according to the level of the control signal. As a result, the output of the pseudo output circuit is slope-controlled. The slope control circuit drives the output transistor using the voltage of the input node of the pseudo output circuit in which the output slope control is performed. Therefore, the signal of the output terminal connected to one main terminal of the output transistor, that is, the slope of the output signal is also controlled. In this case, the output circuit and the pseudo output circuit are at least partially similar in configuration. Therefore, according to the above configuration, it is possible to obtain a slope waveform close to a slope waveform obtained by conventional control for charging / discharging the feedback capacitor provided between the input and output of the output circuit.
 上記構成において、出力端子とスロープ制御回路との間には、フィードバック容量などの意図的に設けられる素子が何も接続されていない。したがって、上記構成によれば、出力端子にノイズが重畳されたとしても、そのノイズがスロープ制御回路に伝わる主たる経路が無いため、ノイズがスロープ制御回路の動作に影響を及ぼすことで出力信号が意図しないレベルになる、といった誤動作が発生することがない。 In the above configuration, no intentionally provided element such as a feedback capacitor is connected between the output terminal and the slope control circuit. Therefore, according to the above configuration, even if noise is superimposed on the output terminal, there is no main path through which the noise is transmitted to the slope control circuit. Therefore, the noise affects the operation of the slope control circuit. There will be no malfunctions such as a level that does not occur.
 また、疑似出力回路は、出力端子に接続されないため、他の内部回路と同様の電源で動作する素子で構成することができる。そのため、上記構成によれば、出力側電圧が内部回路の動作電圧より高い場合でも、高耐圧の素子を用いる必要がない。さらに、フィードバック容量を疑似出力回路の入出力ノード間に接続しているため、ミラー効果により、比較的小さいフィードバック容量を用いて所望するスロープ波形を得ることが可能となる。このようなことから、上記構成によれば、回路規模の増大を抑制することができる。また、上記構成では、出力端子の電圧を定めるためのカレントミラー回路が不要であるため、最低動作電圧が高くなる、といった制約も生じない。 Also, since the pseudo output circuit is not connected to the output terminal, it can be composed of elements that operate with the same power supply as other internal circuits. Therefore, according to the above configuration, it is not necessary to use a high breakdown voltage element even when the output side voltage is higher than the operating voltage of the internal circuit. Furthermore, since the feedback capacitor is connected between the input / output nodes of the pseudo output circuit, a desired slope waveform can be obtained using a relatively small feedback capacitor due to the mirror effect. For this reason, according to the above configuration, an increase in circuit scale can be suppressed. Further, the above configuration does not require a current mirror circuit for determining the voltage of the output terminal, so that there is no restriction that the minimum operating voltage becomes high.
 また、本開示の一態様において、疑似出力回路は出力回路と同じ回路形式であるため、出力回路の入出力間に設けたフィードバック容量に対する充放電を行う従来の制御により得られるスロープ波形と略同等のスロープ波形を得ることができる。 Further, in one aspect of the present disclosure, the pseudo output circuit has the same circuit format as the output circuit, and thus is substantially equivalent to a slope waveform obtained by conventional control for charging / discharging a feedback capacitor provided between the input and output of the output circuit. Slope waveform can be obtained.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る信号出力回路の概略構成を示す図であり、 図2は、信号出力回路の各部の動作波形を示す図であり、 図3は、第2実施形態に係る信号出力回路の概略構成を示す図であり、 図4は、出力モニタ回路の具体的な構成例を示す図であり、 図5は、スロープ調整部の具体的な第1構成例を示す図であり、 図6は、スロープ調整部の具体的な第2構成例を示す図であり、 図7は、スロープ調整部の具体的な第3構成例を示す図であり、 図8は、第3実施形態に係る信号出力回路の概略構成を示す図であり、 図9は、第4実施形態に係る信号出力回路の概略構成を示す図であり、 図10は、疑似出力回路の入力電圧Vcおよび出力電圧Vdの関係を示す図であり、 図11は、出力モニタ回路の具体的な構成の変形例を示す図であり、 図12は、出力段の構成を変更した信号出力回路の構成を概略的に示す図であり、 図13は、バッファを省いた信号出力回路の構成を概略的に示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing a schematic configuration of a signal output circuit according to the first embodiment. FIG. 2 is a diagram showing operation waveforms of each part of the signal output circuit, FIG. 3 is a diagram illustrating a schematic configuration of the signal output circuit according to the second embodiment. FIG. 4 is a diagram illustrating a specific configuration example of the output monitor circuit. FIG. 5 is a diagram illustrating a specific first configuration example of the slope adjusting unit, FIG. 6 is a diagram illustrating a specific second configuration example of the slope adjustment unit, FIG. 7 is a diagram illustrating a specific third configuration example of the slope adjustment unit, FIG. 8 is a diagram showing a schematic configuration of a signal output circuit according to the third embodiment. FIG. 9 is a diagram illustrating a schematic configuration of the signal output circuit according to the fourth embodiment. FIG. 10 is a diagram showing the relationship between the input voltage Vc and the output voltage Vd of the pseudo output circuit. FIG. 11 is a diagram illustrating a modification of the specific configuration of the output monitor circuit. FIG. 12 is a diagram schematically showing the configuration of a signal output circuit in which the configuration of the output stage is changed, FIG. 13 is a diagram schematically showing the configuration of a signal output circuit without a buffer.
 以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
  (第1実施形態)
 以下、第1実施形態について図1および図2を参照して説明する。
Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
(First embodiment)
The first embodiment will be described below with reference to FIGS. 1 and 2.
 図1に示すように、信号出力回路1は、外部より入力端子2を通じて入力される制御信号INに基づいてNチャネル型のMOSトランジスタ3の駆動を制御することにより、出力端子4から制御信号INのレベルに応じたレベルの出力信号OUTを出力する。制御信号INおよび出力信号OUTは、いずれもハイレベル(以下、Hレベルと呼ぶ)およびローレベル(以下、Lレベルと呼ぶ)の2つの電圧レベルで2値を表すデジタル信号である。したがって、上述したレベルは、電圧レベルに相当する。 As shown in FIG. 1, the signal output circuit 1 controls the drive of the N-channel type MOS transistor 3 based on the control signal IN inputted from the outside through the input terminal 2, thereby controlling the control signal IN from the output terminal 4. The output signal OUT of a level corresponding to the level of is output. The control signal IN and the output signal OUT are both digital signals that represent a binary value at two voltage levels: a high level (hereinafter referred to as H level) and a low level (hereinafter referred to as L level). Therefore, the level described above corresponds to a voltage level.
 トランジスタ3は、出力トランジスタに相当するもので、そのソースは回路の基準電位となるグランドGNDに接続され、そのドレインは出力端子4に接続されるとともに抵抗5を介して電源VBに接続されている。このように、トランジスタ3および抵抗5によりソース接地増幅回路の回路形式を持つ出力回路6が構成されている。電源VBは、例えば図示しないバッテリから供給されるものであり、その電圧の定常値は+12V程度となっている。 The transistor 3 corresponds to an output transistor, and its source is connected to the ground GND as a reference potential of the circuit, and its drain is connected to the output terminal 4 and to the power source VB via the resistor 5. . As described above, the transistor 3 and the resistor 5 constitute an output circuit 6 having a circuit format of a common source amplifier circuit. The power source VB is supplied from, for example, a battery (not shown), and the steady value of the voltage is about + 12V.
 トランジスタ3の駆動は、スロープ制御回路7により制御される。したがって、トランジスタ3のゲートは、スロープ制御回路7の出力が与えられるノードN1に、バッファ8を介して接続されている。トランジスタ3のドレインは一方の主端子に相当し、ゲートは導通制御端子に相当する。 The driving of the transistor 3 is controlled by a slope control circuit 7. Therefore, the gate of the transistor 3 is connected via the buffer 8 to the node N1 to which the output of the slope control circuit 7 is given. The drain of the transistor 3 corresponds to one main terminal, and the gate corresponds to a conduction control terminal.
 疑似出力回路9は、電源VDDおよびグランドGNDの間に直列接続された抵抗10およびNチャネル型のMOSトランジスタ11からなるソース接地増幅回路である。つまり、疑似出力回路9は、出力回路6と同じ回路形式になっている。電源VDDは、信号出力回路1の動作用電源であり、その電圧の定常値は+5V程度となっている。 The pseudo output circuit 9 is a common source amplifier circuit including a resistor 10 and an N channel type MOS transistor 11 connected in series between a power supply VDD and a ground GND. That is, the pseudo output circuit 9 has the same circuit format as the output circuit 6. The power supply VDD is a power supply for operation of the signal output circuit 1, and the steady value of the voltage is about + 5V.
 トランジスタ11は、疑似出力トランジスタに相当するもので、そのゲートは疑似出力回路9の入力ノードであるノードN1に接続され、そのドレインは疑似出力回路9の出力ノードであるノードN2に接続されている。トランジスタ11のドレインは一方の主端子に相当し、ゲートは導通制御端子に相当する。疑似出力回路9の入出力間、つまりノードN1、N2間には、フィードバック容量に相当するキャパシタ12が接続されている。 The transistor 11 corresponds to a pseudo output transistor, and has a gate connected to a node N1 that is an input node of the pseudo output circuit 9, and a drain connected to a node N2 that is an output node of the pseudo output circuit 9. . The drain of the transistor 11 corresponds to one main terminal, and the gate corresponds to a conduction control terminal. A capacitor 12 corresponding to a feedback capacitor is connected between the input and output of the pseudo output circuit 9, that is, between the nodes N1 and N2.
 上述したように、出力回路6の構成と、疑似出力回路9の構成とは、相似している。信号出力回路1は集積回路として構成されており、その集積回路の設計では、出力回路6および疑似出力回路9において、対応する各素子間のペア性が良好になるように、次のような工夫がなされている。すなわち、抵抗5、10と、トランジスタ3、11とは、それぞれが同じ種類の材質で同じ構造になるように作成され、互いに近接配置されている。 As described above, the configuration of the output circuit 6 and the configuration of the pseudo output circuit 9 are similar. The signal output circuit 1 is configured as an integrated circuit. In designing the integrated circuit, in the output circuit 6 and the pseudo output circuit 9, the following measures are taken so that the pairing between corresponding elements is good. Has been made. That is, the resistors 5 and 10 and the transistors 3 and 11 are made of the same material and have the same structure, and are arranged close to each other.
 したがって、抵抗5、10と、トランジスタ3、11とは、例えば温度特性などの特性が概ね同一になっている。また、抵抗5、10の抵抗値、トランジスタ3、11のサイズなどは、後述するように、出力信号OUTおよび電圧Vdについて所望する傾きが得られるように設定されている。 Therefore, the resistors 5 and 10 and the transistors 3 and 11 have substantially the same characteristics such as temperature characteristics. Further, the resistance values of the resistors 5 and 10 and the sizes of the transistors 3 and 11 are set so as to obtain a desired gradient with respect to the output signal OUT and the voltage Vd, as will be described later.
 このように、本実施形態では、出力回路6を構成する各素子の構造および特性と、それら各素子に対応する疑似出力回路9を構成する各素子の構造および特性とが近似している。なお、出力回路6および疑似出力回路9は、主たる部分の回路形式が同じであればよく、それらを構成する各素子の構造、特性、回路定数などについては、必ずしも近似していなくともよい。 As described above, in this embodiment, the structure and characteristics of each element constituting the output circuit 6 and the structure and characteristics of each element constituting the pseudo output circuit 9 corresponding to each element are approximated. It should be noted that the output circuit 6 and the pseudo output circuit 9 only need to have the same circuit format in the main portion, and the structure, characteristics, circuit constants, and the like of each element constituting them may not necessarily be approximated.
 スロープ制御回路7は、電源VDDおよびグランドGNDの間に直列接続された電流源13、Pチャネル型のMOSトランジスタ14、Nチャネル型のMOSトランジスタ15および電流源16により構成されている。トランジスタ14、15の各ドレインは、ノードN1に接続され、各ゲートは入力端子2に接続されている。入力端子2には、信号出力回路1の動作を制御する図示しない制御回路などからの制御信号INが与えられる。 The slope control circuit 7 includes a current source 13, a P-channel type MOS transistor 14, an N-channel type MOS transistor 15 and a current source 16 connected in series between the power supply VDD and the ground GND. The drains of the transistors 14 and 15 are connected to the node N 1, and the gates are connected to the input terminal 2. The input terminal 2 is supplied with a control signal IN from a control circuit (not shown) that controls the operation of the signal output circuit 1.
 上記構成により、スロープ制御回路7は、制御信号INがLレベルのときにキャパシタ12の充電を行うとともに、制御信号INがHレベルのときにキャパシタ12の放電を行う。これにより、疑似出力回路9の出力であるノードN2の電圧Vdは、スロープ制御されたものとなる。スロープ制御回路7は、出力のスロープ制御が行われている疑似出力回路9の入力ノードであるノードN1の電圧Vcを用いてトランジスタ3を駆動する。そのため、トランジスタ3のドレインに接続された出力端子4の信号、つまり出力信号OUTのスロープも制御される。この場合、出力回路6と疑似出力回路9とは同一の回路形式であるため、出力回路6の入出力間に設けたフィードバック容量に対する充放電を行う従来の制御により得られるスロープ波形と略同等のスロープ波形を得ることができる。なお、電流源13、16が出力する電流I1、I2の値は、所望するスロープの制御量、つまり所望する出力信号OUTの傾きに応じて適宜設定される。 With the above configuration, the slope control circuit 7 charges the capacitor 12 when the control signal IN is at the L level, and discharges the capacitor 12 when the control signal IN is at the H level. As a result, the voltage Vd at the node N2 that is the output of the pseudo output circuit 9 is slope-controlled. The slope control circuit 7 drives the transistor 3 using the voltage Vc of the node N1, which is an input node of the pseudo output circuit 9 in which the output slope control is performed. Therefore, the signal of the output terminal 4 connected to the drain of the transistor 3, that is, the slope of the output signal OUT is also controlled. In this case, since the output circuit 6 and the pseudo output circuit 9 have the same circuit format, the slope waveform obtained by the conventional control for charging / discharging the feedback capacitor provided between the input and output of the output circuit 6 is substantially the same. A slope waveform can be obtained. The values of the currents I1 and I2 output from the current sources 13 and 16 are appropriately set according to a desired slope control amount, that is, a desired slope of the output signal OUT.
 次に、上記構成によるスロープ制御の詳細について、図2に基づいて説明する。
 「1」出力信号OUTの立ち下がり時
 制御信号INがHレベルからLレベルに転じた時点t1にて、キャパシタ12の充電が開始されて電圧Vcが上昇し始める。電圧Vcがトランジスタ11の閾値電圧Vtに達した時点t2にて、トランジスタ11がターンオンして電圧Vdが低下し始める。それに伴い、電圧Vcの上昇の傾きは、時点t1からt2までの期間の傾きよりも緩やかなものとなる。時点t2から若干の遅延時間だけ経過した後の時点t3にて、トランジスタ3がターンオンして出力信号OUTが低下し始める。このような遅延時間が生じるのは、バッファ8による遅延や、トランジスタ3、11のゲート・ソース間寄生容量の大きさが違うことなどに起因している。
Next, the detail of the slope control by the said structure is demonstrated based on FIG.
When the “1” output signal OUT falls At time t1 when the control signal IN changes from the H level to the L level, charging of the capacitor 12 is started and the voltage Vc starts to rise. At time t2 when the voltage Vc reaches the threshold voltage Vt of the transistor 11, the transistor 11 is turned on and the voltage Vd starts to decrease. Along with this, the slope of the increase in voltage Vc becomes gentler than the slope of the period from time t1 to t2. At a time t3 after a lapse of a slight delay time from the time t2, the transistor 3 is turned on and the output signal OUT starts to decrease. Such a delay time is caused by a delay caused by the buffer 8 or a difference in the parasitic capacitance between the gates and the sources of the transistors 3 and 11.
 出力信号OUTが低下して最小値に達した時点t4以降、出力信号OUTは最小値で一定となる。電圧Vdが低下して最小値に達した時点t5以降、電圧Vdは最小値で一定となる。なお、出力信号OUTの最小値および電圧Vdの最小値は、いずれも概ねGND電位である。また、時点t5以降には、電圧Vdが最小値で一定になるため、電圧Vcの上昇の傾きは、時点t1からt2までの傾きと同様に急峻なものとなる。 The output signal OUT becomes constant at the minimum value after the time t4 when the output signal OUT decreases and reaches the minimum value. After time t5 when the voltage Vd decreases and reaches the minimum value, the voltage Vd becomes constant at the minimum value. Note that the minimum value of the output signal OUT and the minimum value of the voltage Vd are both approximately the GND potential. Since the voltage Vd becomes constant at the minimum value after the time point t5, the slope of the increase in the voltage Vc is as steep as the slope from the time point t1 to the time point t2.
 この場合、時点t2からt5の期間Taでは、ミラー効果により電圧Vcが緩やかに変化する。本実施形態では、ミラー効果によるメリットを確実に得るため、この期間Ta内に、出力信号OUTの立ち下がり期間Tbが収まるように、トランジスタ3、11のサイズ、抵抗5、10の抵抗値などの回路定数が決定されている。具体的には、電圧Vdの傾きを出力信号OUTの傾きよりも緩やかにする必要があるため、トランジスタ11のサイズを相対的に小さくするとともに、抵抗10の抵抗値を相対的に大きく設定している。 In this case, in the period Ta from the time point t2 to the time point t5, the voltage Vc changes gently due to the mirror effect. In the present embodiment, in order to surely obtain the merit of the Miller effect, the size of the transistors 3 and 11 and the resistance values of the resistors 5 and 10 are set so that the falling period Tb of the output signal OUT falls within this period Ta. Circuit constants have been determined. Specifically, since it is necessary to make the slope of the voltage Vd gentler than the slope of the output signal OUT, the size of the transistor 11 is made relatively small, and the resistance value of the resistor 10 is set relatively large. Yes.
 「2」出力信号OUTの立ち上がり時
 制御信号INがLレベルからHレベルに転じた時点t6にて、キャパシタ12の放電が開始されて電圧Vcが低下し始める。電圧Vcが時点t5のときと同様の電圧に達した時点t7にて、トランジスタ11のオン抵抗が高くなり始めて電圧Vdが上昇し始める。それに伴い、電圧Vcの傾きは、時点t6からt7までの期間の傾きよりも緩やかなものとなる。時点t7から若干の遅延時間だけ経過した後の時点t8にて、トランジスタ3のオン抵抗が高くなり始めて出力信号OUTが上昇し始める。このような遅延時間が生じる理由は上述した通りである。
“2” When the output signal OUT rises At time t6 when the control signal IN changes from the L level to the H level, the discharge of the capacitor 12 is started and the voltage Vc starts to decrease. At the time t7 when the voltage Vc reaches the same voltage as at the time t5, the on-resistance of the transistor 11 starts to increase and the voltage Vd starts to rise. Accordingly, the slope of the voltage Vc becomes gentler than the slope of the period from time t6 to t7. At a time point t8 after a slight delay time has elapsed from the time point t7, the on-resistance of the transistor 3 starts to increase and the output signal OUT starts to rise. The reason why such a delay time occurs is as described above.
 トランジスタ3がオフ状態になった時点t9以降、出力信号OUTは最大値で一定となる。トランジスタ11がオフ状態になった時点t10以降、電圧Vdは最大値で一定となる。なお、出力信号OUTの最大値は概ね電圧VBであり、電圧Vdの最大値は概ね電圧VDDである。また、時点t10以降には、電圧Vdが最大値で一定になるため、電圧Vcの傾きは、時刻t6からt7までの傾きと同様に急峻なものとなる。 After the time point t9 when the transistor 3 is turned off, the output signal OUT becomes constant at the maximum value. After time t10 when the transistor 11 is turned off, the voltage Vd becomes constant at the maximum value. Note that the maximum value of the output signal OUT is approximately the voltage VB, and the maximum value of the voltage Vd is approximately the voltage VDD. Further, since the voltage Vd becomes constant at the maximum value after the time point t10, the slope of the voltage Vc becomes as steep as the slope from the time t6 to the time t7.
 この場合、時刻t7からt10の期間Tcでは、ミラー効果により電圧Vcが緩やかに変化する。本実施形態では、ミラー効果によるメリットを確実に得るため、この期間Tc内に、出力信号OUTの立ち上がり期間Tdが収まるように、トランジスタ3、11のサイズ、抵抗5、10の抵抗値などの回路定数が決定されている。 In this case, in the period Tc from time t7 to t10, the voltage Vc changes gently due to the mirror effect. In the present embodiment, in order to surely obtain the merit due to the mirror effect, circuits such as the sizes of the transistors 3 and 11 and the resistance values of the resistors 5 and 10 are set so that the rising period Td of the output signal OUT falls within this period Tc. A constant has been determined.
 以上説明した本実施形態の信号出力回路1によれば、次のような効果が得られる。
 信号出力回路1において、出力端子4とスロープ制御回路7との間には、キャパシタ12などの意図的に設けられる素子が何も接続されていない。したがって、本実施形態によれば、出力端子4にノイズが重畳されたとしても、そのノイズがスロープ制御回路7に伝わる主たる経路が無いため、ノイズがスロープ制御回路7の動作に影響を及ぼすことで出力信号OUTが意図しないレベルになる、といった誤動作が発生することがない。
According to the signal output circuit 1 of the present embodiment described above, the following effects can be obtained.
In the signal output circuit 1, no intentionally provided element such as a capacitor 12 is connected between the output terminal 4 and the slope control circuit 7. Therefore, according to the present embodiment, even if noise is superimposed on the output terminal 4, there is no main path through which the noise is transmitted to the slope control circuit 7, so that noise affects the operation of the slope control circuit 7. A malfunction that the output signal OUT becomes an unintended level does not occur.
 疑似出力回路9は、出力端子4に接続されないため、信号出力回路1を構成する他の回路と同様の電源VDDで動作する低耐圧の素子で構成されている。また、キャパシタ12も、出力端子4に接続されないため、出力端子にフィードバック容量が接続される従来の構成に比べ、耐圧の低いものを用いることができる。そのため、信号出力回路1によれば、本実施形態のように出力側電圧が回路の動作電圧より高い場合でも、高耐圧の素子を用いる必要がない。さらに、キャパシタ12を疑似出力回路9の入出力間に接続しているため、ミラー効果により、比較的小さい容量のキャパシタ12を用いて所望するスロープ波形を得ることが可能となる。このようなことから、本実施形態によれば、回路規模の増大を抑制することができる。また、信号出力回路1では、出力段の構成は従来の基本的な構成と同様であり、出力端子4の電圧を定めるためのカレントミラー回路を追加する必要がないため、最低動作電圧が高くなる、といった制約も生じない。 Since the pseudo output circuit 9 is not connected to the output terminal 4, the pseudo output circuit 9 is composed of a low withstand voltage element that operates with the same power supply VDD as the other circuits constituting the signal output circuit 1. Further, since the capacitor 12 is not connected to the output terminal 4, a capacitor having a lower withstand voltage can be used as compared with a conventional configuration in which a feedback capacitor is connected to the output terminal. Therefore, according to the signal output circuit 1, even when the output side voltage is higher than the operation voltage of the circuit as in this embodiment, it is not necessary to use a high breakdown voltage element. Furthermore, since the capacitor 12 is connected between the input and output of the pseudo output circuit 9, a desired slope waveform can be obtained by using the capacitor 12 having a relatively small capacity due to the mirror effect. For this reason, according to the present embodiment, an increase in circuit scale can be suppressed. In the signal output circuit 1, the configuration of the output stage is the same as the conventional basic configuration, and it is not necessary to add a current mirror circuit for determining the voltage of the output terminal 4, so that the minimum operating voltage is increased. There is no restriction such as.
 本実施形態では、出力回路6を構成する各素子の構造および特性と、疑似出力回路9を構成する各素子の構造および特性とが近似するように集積回路が設計されており、出力回路6および疑似出力回路9において各素子間のペア性が良好になっている。そのため、本実施形態のように、疑似出力回路9を利用して出力信号OUTのスロープを間接的に制御する構成であるにもかかわらず、所望する出力信号OUTのスロープ波形を確実に得ることが可能となる。 In this embodiment, the integrated circuit is designed so that the structure and characteristics of each element constituting the output circuit 6 and the structure and characteristics of each element constituting the pseudo output circuit 9 are approximated. In the pseudo output circuit 9, the pair property between the elements is good. For this reason, it is possible to reliably obtain the desired slope waveform of the output signal OUT despite the configuration in which the pseudo output circuit 9 is used to indirectly control the slope of the output signal OUT as in the present embodiment. It becomes possible.
 信号出力回路1は、ノードN1とトランジスタ3のゲートとの間にバッファ8を介在させた構成となっている。本実施形態の信号出力回路1の場合、出力端子4にノイズが重畳した際、そのノイズが内部へと伝搬する主たる経路は存在しない。しかし、トランジスタ3のドレイン・ゲート間には図示しない寄生容量が存在する。そして、トランジスタ3は、出力段に設けられるものであるため、駆動能力確保のためにサイズが大きくなっており、上記寄生容量も比較的大きいものとなっている。したがって、出力端子4に重畳したノイズは、上記寄生容量を介してスロープ制御回路7などの内部回路に伝搬する可能性もある。上述したようにバッファ8を設けることで、上記寄生容量を介したノイズの伝搬経路が遮断されるため、そのノイズの影響でトランジスタ3が誤動作して出力信号OUTが意図しないレベルになる、といった誤動作の発生を防止することができる。また、バッファ8を設けることにより、トランジスタ3のゲートノードのインピーダンスが低くなり、ノイズの振幅が抑制される、という効果も得られる。 The signal output circuit 1 has a configuration in which a buffer 8 is interposed between the node N1 and the gate of the transistor 3. In the case of the signal output circuit 1 of the present embodiment, when noise is superimposed on the output terminal 4, there is no main path through which the noise propagates. However, a parasitic capacitance (not shown) exists between the drain and gate of the transistor 3. Since the transistor 3 is provided in the output stage, the transistor 3 has a large size for ensuring driving capability, and the parasitic capacitance is relatively large. Therefore, the noise superimposed on the output terminal 4 may propagate to an internal circuit such as the slope control circuit 7 through the parasitic capacitance. By providing the buffer 8 as described above, the noise propagation path through the parasitic capacitance is cut off, so that the transistor 3 malfunctions due to the noise and the output signal OUT becomes an unintended level. Can be prevented. In addition, by providing the buffer 8, the impedance of the gate node of the transistor 3 is lowered, and the noise amplitude can be suppressed.
  (第2実施形態)
 以下、第2実施形態について、図3~図7を参照して説明する。
 図3に示すように、信号出力回路21は、出力信号OUTのスロープを検出する出力モニタ回路22を備えている。出力モニタ回路22は、具体的には、図4に示すように、比較回路23およびロジック回路24により構成することができる。コンパレータなどからなる比較回路23は、出力信号OUTの電圧値と所定の閾値Vthとを比較し、その比較結果を示す比較信号Saを出力する。この場合、閾値Vthは、例えば電圧VBの中間電圧、つまりVB/2に設定されている。
(Second Embodiment)
Hereinafter, a second embodiment will be described with reference to FIGS.
As shown in FIG. 3, the signal output circuit 21 includes an output monitor circuit 22 that detects the slope of the output signal OUT. Specifically, the output monitor circuit 22 can be configured by a comparison circuit 23 and a logic circuit 24, as shown in FIG. The comparison circuit 23 composed of a comparator or the like compares the voltage value of the output signal OUT with a predetermined threshold value Vth, and outputs a comparison signal Sa indicating the comparison result. In this case, the threshold value Vth is set to an intermediate voltage of the voltage VB, that is, VB / 2, for example.
 ロジック回路24は、クロック信号CLKにより動作するカウンタ回路を備えている。ロジック回路24は、上記カウンタ回路を用いて、制御信号INが反転する時点から比較信号Saが反転する時点までの時間をカウントする。すなわち、ロジック回路24は、出力信号OUTの電圧値が、最小値または最大値から閾値Vthに達するまでの時間をカウントする。ロジック回路24は、そのカウントされた時間および閾値Vthから出力信号OUTの傾き、つまりスロープを検出し、その検出結果を示す検出信号Sbを出力する。 The logic circuit 24 includes a counter circuit that operates according to the clock signal CLK. Using the counter circuit, the logic circuit 24 counts the time from when the control signal IN is inverted to when the comparison signal Sa is inverted. That is, the logic circuit 24 counts the time until the voltage value of the output signal OUT reaches the threshold value Vth from the minimum value or the maximum value. The logic circuit 24 detects the slope of the output signal OUT, that is, the slope from the counted time and the threshold value Vth, and outputs a detection signal Sb indicating the detection result.
 図3に示すように、信号出力回路21は、出力モニタ回路22によるスロープの検出結果に基づいて出力信号OUTのスロープが所望する値となるように調整するスロープ調整部26を備えている。このスロープ調整部26としての機能を実現するための具体的な構成例としては、図5~図7に示すような第1~第3構成例のいずれかを採用することができる。 As shown in FIG. 3, the signal output circuit 21 includes a slope adjustment unit 26 that adjusts the slope of the output signal OUT to a desired value based on the slope detection result by the output monitor circuit 22. As a specific configuration example for realizing the function as the slope adjustment unit 26, any one of the first to third configuration examples shown in FIGS. 5 to 7 can be adopted.
 <第1構成例>
 図5に示すように、第1構成例では、トランジスタ11の他方の主端子であるソースとGNDとの間に可変抵抗27が接続されている。この場合、抵抗10、トランジスタ11および可変抵抗27により、ソース接地増幅回路の回路形式を持つ疑似出力回路28が構成されている。ロジック回路などからなる制御部29は、可変抵抗27の抵抗値を変更することで出力信号OUTのスロープを調整する。
<First configuration example>
As shown in FIG. 5, in the first configuration example, a variable resistor 27 is connected between the source which is the other main terminal of the transistor 11 and GND. In this case, the resistor 10, the transistor 11, and the variable resistor 27 constitute a pseudo output circuit 28 having a circuit format of a common source amplifier circuit. The control unit 29 including a logic circuit adjusts the slope of the output signal OUT by changing the resistance value of the variable resistor 27.
 <第2構成例>
 図6に示すように、第2構成例では、スロープ制御回路30は、定電流I1、I2を出力する電流源13、16に代えて、可変電流Ia、Ibを出力する可変電流源31、32を備えている。ロジック回路などからなる制御部33は、可変電流Iaの電流値を変更することで出力信号OUTの立ち下がりのスロープを調整し、可変電流Ibの電流値を変更することで出力信号OUTの立ち上がりのスロープを調整する。なお、出力信号OUTの立ち上がりおよび立ち下がりのうち一方のスロープだけを調整すればよい場合、2つの電流源13、16のうち調整が必要な一方だけを可変電流源にすればよい。
<Second configuration example>
As shown in FIG. 6, in the second configuration example, the slope control circuit 30 includes variable current sources 31, 32 that output variable currents Ia, Ib instead of the current sources 13, 16 that output constant currents I1, I2. It has. The control unit 33 composed of a logic circuit or the like adjusts the falling slope of the output signal OUT by changing the current value of the variable current Ia, and changes the rising value of the output signal OUT by changing the current value of the variable current Ib. Adjust the slope. When only one slope of the rising and falling edges of the output signal OUT needs to be adjusted, only one of the two current sources 13 and 16 that needs to be adjusted needs to be a variable current source.
 <第3構成例>
 図7に示すように、第3構成例では、ノードN1、N2間に、その容量値を可変とする可変容量であるキャパシタ34が接続されている。ロジック回路などからなる制御部35は、キャパシタ34の容量値を変更することで出力信号OUTのスロープを調整する。
<Third configuration example>
As shown in FIG. 7, in the third configuration example, a capacitor 34, which is a variable capacitor whose capacitance value is variable, is connected between the nodes N1 and N2. The control unit 35 including a logic circuit adjusts the slope of the output signal OUT by changing the capacitance value of the capacitor 34.
 以上説明した本実施形態によっても、第1実施形態と同様の効果が得られる。
 さらに、本実施形態の信号出力回路21は、出力信号OUTのスロープを検出する出力モニタ回路22と、出力モニタ回路22によるスロープの検出結果に基づいて出力信号OUTのスロープが所望する値となるように調整するスロープ調整部26を備えている。つまり、本実施形態の信号出力回路21は、出力信号OUTのスロープをフィードバック制御する機能を有している。したがって、本実施形態によれば、出力信号OUTのスロープ制御の精度を高めることができる。
Also by this embodiment described above, the same effect as the first embodiment can be obtained.
Furthermore, the signal output circuit 21 of the present embodiment is configured so that the output monitor circuit 22 detects the slope of the output signal OUT, and the slope of the output signal OUT becomes a desired value based on the slope detection result by the output monitor circuit 22. A slope adjusting unit 26 is provided for adjustment. That is, the signal output circuit 21 of the present embodiment has a function of feedback controlling the slope of the output signal OUT. Therefore, according to the present embodiment, it is possible to improve the accuracy of the slope control of the output signal OUT.
 出力モニタ回路22は、コンパレータ、カウンタ回路などから構成されたシンプルなものであり、複雑な回路構成ではない。したがって、出力モニタ回路22の回路規模、ひいては信号出力回路21の回路規模の増大を抑制することができる。 The output monitor circuit 22 is a simple circuit composed of a comparator, a counter circuit, etc., and does not have a complicated circuit configuration. Therefore, an increase in the circuit scale of the output monitor circuit 22 and consequently the circuit scale of the signal output circuit 21 can be suppressed.
 スロープ調整部26の第1構成例によれば、疑似出力回路28のトランジスタ11のソース側に可変抵抗27を追加するだけで出力信号OUTのスロープの調整を可能としている。つまり、第1構成例によれば、信号出力回路21における回路規模の増加を低く抑えつつ、スロープの調整機能を付加することができる。 According to the first configuration example of the slope adjusting unit 26, it is possible to adjust the slope of the output signal OUT only by adding the variable resistor 27 to the source side of the transistor 11 of the pseudo output circuit 28. That is, according to the first configuration example, the slope adjustment function can be added while suppressing an increase in the circuit scale of the signal output circuit 21 to a low level.
 スロープ調整部26の第2構成例によれば、キャパシタ12に対する充放電電流を可変とし、それらを変更することで出力信号OUTのスロープを調整する構成であるため、スロープ調整の精度を高めることができる。また、第2構成例では、キャパシタ12に対する充電電流および放電電流を独立して変更することが可能となっているため、立ち上がりおよび立ち下がりの各スロープを個別に調整することができる。さらに、出力回路6および疑似出力回路9の構成は、第1実施形態と同様であり変更が加えられておらず、同一の回路構成になっている。そのため、疑似出力回路9を利用して出力信号OUTのスロープを間接的に制御する構成であるにもかかわらず、所望する出力信号OUTのスロープ波形を確実に得ることが可能となる。 According to the second configuration example of the slope adjustment unit 26, the charge / discharge current for the capacitor 12 is variable, and the slope of the output signal OUT is adjusted by changing them, so that the accuracy of the slope adjustment can be improved. it can. Further, in the second configuration example, the charging current and discharging current for the capacitor 12 can be changed independently, so that the rising and falling slopes can be individually adjusted. Furthermore, the configurations of the output circuit 6 and the pseudo output circuit 9 are the same as those in the first embodiment, are not changed, and have the same circuit configuration. Therefore, although the configuration is such that the pseudo output circuit 9 is used to indirectly control the slope of the output signal OUT, it is possible to reliably obtain the desired slope waveform of the output signal OUT.
 スロープ調整部26の第3構成例によれば、フィードバック容量であるキャパシタ34の容量を可変にすることでスロープの調整を可能としている。そのため、出力回路6および疑似出力回路9の構成は、第1実施形態と同様であり変更が加えられておらず、同一の回路構成になっている。そのため、第3構成例によれば、第2構成例と同様、所望する出力信号OUTのスロープ波形を確実に得ることが可能となる。 According to the third configuration example of the slope adjustment unit 26, the slope can be adjusted by making the capacitance of the capacitor 34 as the feedback capacitance variable. Therefore, the configurations of the output circuit 6 and the pseudo output circuit 9 are the same as those of the first embodiment, are not changed, and have the same circuit configuration. Therefore, according to the third configuration example, it is possible to reliably obtain the desired slope waveform of the output signal OUT, as in the second configuration example.
  (第3実施形態)
 以下、第3実施形態について、図8を参照して説明する。
 図8に示すように、信号出力回路41は、疑似出力回路9の出力ノードであるノードN2の電圧Vdのスロープを検出する疑似出力モニタ回路42を備えている。疑似出力モニタ回路42は、出力モニタ回路22と同様の構成を採用することができる。この場合、電圧Vdの電圧値と比較するための閾値Vthは、例えば電圧VDDの中間電圧、つまりVDD/2に設定すればよい。
(Third embodiment)
The third embodiment will be described below with reference to FIG.
As shown in FIG. 8, the signal output circuit 41 includes a pseudo output monitor circuit 42 that detects the slope of the voltage Vd at the node N <b> 2 that is the output node of the pseudo output circuit 9. The pseudo output monitor circuit 42 can employ the same configuration as the output monitor circuit 22. In this case, the threshold value Vth for comparison with the voltage value of the voltage Vd may be set to, for example, an intermediate voltage of the voltage VDD, that is, VDD / 2.
 信号出力回路41は、出力モニタ回路22および疑似出力モニタ回路42によるスロープの検出結果に基づいて出力信号OUTのスロープが所望する値となるように調整するスロープ調整部43を備えている。スロープ調整部43としての機能を実現するための具体的な構成例は、スロープ調整部26と同様の構成を採用することができる。 The signal output circuit 41 includes a slope adjusting unit 43 that adjusts the slope of the output signal OUT to a desired value based on the detection result of the slope by the output monitor circuit 22 and the pseudo output monitor circuit 42. A specific configuration example for realizing the function as the slope adjustment unit 43 can employ the same configuration as the slope adjustment unit 26.
 以上説明した本実施形態によっても、上記各実施形態と同様の効果が得られる。
 さらに、信号出力回路41では、出力信号OUTのスロープの検出結果に加え、疑似出力回路9の出力である電圧Vdのスロープの検出結果に基づいて出力信号OUTのスロープが所望する値となるように調整するようになっている。そのため、本実施形態によれば、電圧Vdが変化する期間、つまり電圧Vcが緩やかに変化する期間内に出力信号OUTの立ち上がりおよび立ち下がり期間が確実に収まるようにスロープを調整することができ、その結果、ミラー効果によるメリットを一層確実に得ることが可能となる。
According to the present embodiment described above, the same effects as those of the above-described embodiments can be obtained.
Further, in the signal output circuit 41, the slope of the output signal OUT becomes a desired value based on the detection result of the slope of the voltage Vd that is the output of the pseudo output circuit 9 in addition to the detection result of the slope of the output signal OUT. It comes to adjust. Therefore, according to the present embodiment, it is possible to adjust the slope so that the rising and falling periods of the output signal OUT are reliably within the period in which the voltage Vd changes, that is, the period in which the voltage Vc changes gradually. As a result, it is possible to obtain the advantages of the mirror effect more reliably.
 また、疑似出力モニタ回路42は、出力モニタ回路22と同様、コンパレータ、カウンタ回路などから構成されたシンプルなものであり、複雑な回路構成ではない。したがって、疑似出力モニタ回路42の回路規模、ひいては信号出力回路41の回路規模の増大を抑制することができる。 Moreover, the pseudo output monitor circuit 42 is a simple circuit composed of a comparator, a counter circuit, and the like, similar to the output monitor circuit 22, and does not have a complicated circuit configuration. Accordingly, it is possible to suppress an increase in the circuit scale of the pseudo output monitor circuit 42 and, consequently, the circuit scale of the signal output circuit 41.
  (第4実施形態)
 以下、第4実施形態について、図9~図11を参照して説明する。
 図9に示す信号出力回路51は、第3実施形態の信号出力回路41において第1構成例のスロープ調整部43を採用した構成に相当している。信号出力回路51は、車載用通信の通信ドライバ例えばLINの通信ドライバとして用いられる。そのため、この場合、入力端子2は、内部の通信制御回路から制御信号INに相当する送信データTXが与えられる端子である。また、出力端子4は、出力信号OUTに相当する通信信号LINを出力するものであり、LIN通信に用いられるバスに接続される端子である。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to FIGS.
The signal output circuit 51 illustrated in FIG. 9 corresponds to a configuration in which the slope adjustment unit 43 of the first configuration example is employed in the signal output circuit 41 of the third embodiment. The signal output circuit 51 is used as an in-vehicle communication driver, for example, a LIN communication driver. Therefore, in this case, the input terminal 2 is a terminal to which transmission data TX corresponding to the control signal IN is given from the internal communication control circuit. The output terminal 4 outputs a communication signal LIN corresponding to the output signal OUT, and is a terminal connected to a bus used for LIN communication.
 LINなどのバス型の通信では、バスに接続される回路やバスの長さは用途などにより異なる。そのため、信号出力回路51のように上記通信ドライバに適用される場合、出力端子4に接続される負荷の大きさは、その用途などに応じて様々な値に変化することが想定される。出力端子4に接続される負荷の大きさが変わると、それに応じて出力信号OUTのスロープが意図した通りにならずに変化するおそれがある。 In bus-type communication such as LIN, the circuit connected to the bus and the length of the bus vary depending on the application. Therefore, when applied to the communication driver as in the signal output circuit 51, the magnitude of the load connected to the output terminal 4 is assumed to change to various values depending on the application. If the size of the load connected to the output terminal 4 changes, the slope of the output signal OUT may change accordingly as intended.
 このようなケースでも規定のスロープ規格を満足することが求められる場合、スロープ調整部43による出力信号OUTのフィードバック制御機能が有用となる。本実施形態では、スロープ調整部43は、出力信号OUTの電圧値が中間電圧(=VB/2)に達するタイミングと電圧Vdが中間電圧(=VDD/2)に達するタイミングとが一致するように、可変抵抗27の抵抗値を調整する。 In such a case, when it is required to satisfy the specified slope standard, the feedback control function of the output signal OUT by the slope adjusting unit 43 is useful. In the present embodiment, the slope adjustment unit 43 adjusts the timing at which the voltage value of the output signal OUT reaches the intermediate voltage (= VB / 2) and the timing at which the voltage Vd reaches the intermediate voltage (= VDD / 2). Then, the resistance value of the variable resistor 27 is adjusted.
 図10に示すように、電圧Vdおよび電圧Vcの関係は、可変抵抗27の抵抗値Rvに応じて変化する。具体的には、抵抗値Rvが小さくなるほど、電圧Vdのスロープは急峻になって電圧Vdが中間電圧に達するタイミングが早くなる。そして、抵抗値Rvが大きくなるほど、電圧Vdのスロープは緩やかになって電圧Vdが中間電圧に達するタイミングが遅くなる。スロープ調整部43は、このような関係を考慮して電圧Vdが中間電圧に達するタイミングを変化させることにより、出力信号OUTの電圧値が中間電圧に達するタイミングと電圧Vdが中間電圧に達するタイミングとを一致させる。 As shown in FIG. 10, the relationship between the voltage Vd and the voltage Vc changes according to the resistance value Rv of the variable resistor 27. Specifically, as the resistance value Rv decreases, the slope of the voltage Vd becomes steeper and the timing at which the voltage Vd reaches the intermediate voltage is earlier. As the resistance value Rv increases, the slope of the voltage Vd becomes gentler and the timing at which the voltage Vd reaches the intermediate voltage is delayed. The slope adjusting unit 43 changes the timing at which the voltage Vd reaches the intermediate voltage in consideration of such a relationship, so that the timing at which the voltage value of the output signal OUT reaches the intermediate voltage and the timing at which the voltage Vd reaches the intermediate voltage. Match.
 以上説明したように、本実施形態の信号出力回路51によれば、出力端子4、つまりバスに接続される負荷の大きさが変動する場合でも、出力信号OUTのスロープを所望するものにフィードバック制御することが可能である。したがって、本実施形態の信号出力回路51によれば、LINなどのバス型通信の通信ドライバに適用した場合において、出力端子4に接続される負荷の大きさやバスの長さに関係なく、常に、出力信号OUTのスロープについて規定のスロープ規格を満足する状態を維持することが可能となる。 As described above, according to the signal output circuit 51 of the present embodiment, even when the output terminal 4, that is, the size of the load connected to the bus fluctuates, feedback control is performed so that the slope of the output signal OUT is desired. Is possible. Therefore, according to the signal output circuit 51 of the present embodiment, when applied to a communication driver for bus type communication such as LIN, regardless of the size of the load connected to the output terminal 4 or the length of the bus, It is possible to maintain a state where the slope of the output signal OUT satisfies a specified slope standard.
 信号出力回路51では、出力モニタ回路22が出力端子4に接続されており、この部分がノイズの伝達経路になる可能性がある。そこで、出力モニタ回路22の具体的構成として、図4に示した構成に代えて図11に示す構成を採用するとよい。図11に示す出力モニタ回路52は、比較回路23の出力端子およびロジック回路24の間に介在するローパスフィルタ回路53(以下、LPF回路53と呼ぶ)を備えている。そのため、出力端子4に重畳されたノイズは、LPF回路53により減衰されることになる。したがって、出力端子4にノイズが重畳された場合に、そのノイズがそのままのレベルでロジック回路24、スロープ調整部43などの内部回路に到達することはなく、そのノイズによる誤動作の発生を防止することができる。 In the signal output circuit 51, the output monitor circuit 22 is connected to the output terminal 4, and this portion may be a noise transmission path. Therefore, as a specific configuration of the output monitor circuit 22, the configuration shown in FIG. 11 may be adopted instead of the configuration shown in FIG. The output monitor circuit 52 shown in FIG. 11 includes a low-pass filter circuit 53 (hereinafter referred to as an LPF circuit 53) interposed between the output terminal of the comparison circuit 23 and the logic circuit 24. Therefore, the noise superimposed on the output terminal 4 is attenuated by the LPF circuit 53. Therefore, when noise is superimposed on the output terminal 4, the noise does not reach the internal circuit such as the logic circuit 24 and the slope adjustment unit 43 at the level as it is, and the occurrence of malfunction due to the noise is prevented. Can do.
  (その他の実施形態)
 なお、本開示は上記し且つ図面に記載した各実施形態に限定されるものではなく、次のような変形または拡張が可能である。
(Other embodiments)
The present disclosure is not limited to the embodiments described above and illustrated in the drawings, and the following modifications or expansions are possible.
 上記各実施形態では、出力トランジスタとしてNチャネル型のMOSトランジスタ3を用い、そのドレインを抵抗5によりプルアップした構成、つまりローサイド駆動構成の信号出力回路について説明したが、出力段の構成はこれに限らない。例えば、図12に示す信号出力回路61のように、出力トランジスタとしてPチャネル型のMOSトランジスタ62を用い、そのドレインを抵抗63によりプルダウンした構成、つまりハイサイド駆動構成でもよい。この場合、トランジスタ62および抵抗63により出力回路64が構成される。また、疑似出力回路65については、出力回路64と同じ回路形式となるように、疑似出力トランジスタとしてPチャネル型のMOSトランジスタ66を用い、そのドレインを抵抗67によりプルダウンした構成とすればよい。 In each of the above-described embodiments, the N-channel MOS transistor 3 is used as the output transistor and the drain thereof is pulled up by the resistor 5, that is, the signal output circuit having the low-side drive configuration. Not exclusively. For example, as in the signal output circuit 61 shown in FIG. 12, a configuration in which a P-channel type MOS transistor 62 is used as an output transistor and its drain is pulled down by a resistor 63, that is, a high-side drive configuration may be used. In this case, the output circuit 64 is configured by the transistor 62 and the resistor 63. The pseudo output circuit 65 may be configured to use a P-channel MOS transistor 66 as the pseudo output transistor and pull down its drain by a resistor 67 so as to have the same circuit format as the output circuit 64.
 出力トランジスタの寄生容量を介して内部回路に伝搬するノイズの影響を考慮しなくとも問題無い場合などには、例えば図13に示す信号出力回路71のように、バッファ8を省いた構成でもよい。この場合、トランジスタ3のゲートは直接ノードN1に接続すればよい。 When there is no problem even if the influence of noise propagating to the internal circuit through the parasitic capacitance of the output transistor is not taken into account, a configuration in which the buffer 8 is omitted may be employed as in the signal output circuit 71 shown in FIG. In this case, the gate of the transistor 3 may be directly connected to the node N1.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (13)

  1.  外部より入力される制御信号に基づいて出力トランジスタ(3、62)の駆動を制御することにより、前記出力トランジスタの一方の主端子に接続された出力端子(4)から前記制御信号のレベルに応じたレベルの出力信号を出力する信号出力回路(1、21、41、51、61、71)であって、
     前記出力トランジスタを備え、前記出力信号を出力する出力回路(6、64)と、
     少なくとも一部の構成が前記出力回路と相似する疑似出力回路(9、28、65)と、
     前記疑似出力回路の入力ノードおよび出力ノードの間に接続されたフィードバック容量(12、34)と、
     前記出力信号のスロープを制御するスロープ制御回路(7、30)と、
     を備え、
     前記疑似出力回路は、前記入力ノードに導通制御端子が接続されるとともに前記出力ノードに一方の主端子が接続される疑似出力トランジスタ(11、66)を備え、
     前記スロープ制御回路は、前記制御信号のレベルに応じて前記フィードバック容量の充電および放電を行い、前記入力ノードの電圧を用いて前記出力トランジスタを駆動することにより前記出力信号のスロープを制御する信号出力回路。
    By controlling the drive of the output transistor (3, 62) based on a control signal input from the outside, the level of the control signal is determined from the output terminal (4) connected to one main terminal of the output transistor. A signal output circuit (1, 21, 41, 51, 61, 71) for outputting an output signal of a predetermined level,
    An output circuit comprising the output transistor and outputting the output signal (6, 64);
    A pseudo output circuit (9, 28, 65) having at least a part of the configuration similar to the output circuit;
    A feedback capacitor (12, 34) connected between an input node and an output node of the pseudo output circuit;
    A slope control circuit (7, 30) for controlling the slope of the output signal;
    With
    The pseudo output circuit includes a pseudo output transistor (11, 66) having a conduction control terminal connected to the input node and one main terminal connected to the output node,
    The slope control circuit charges and discharges the feedback capacitor according to the level of the control signal, and controls the slope of the output signal by driving the output transistor using the voltage of the input node. circuit.
  2.  前記疑似出力回路は、前記出力回路と同じ回路形式である請求項1に記載の信号出力回路。 The signal output circuit according to claim 1, wherein the pseudo output circuit has the same circuit format as the output circuit.
  3.  前記疑似出力回路を構成する各素子の特性は、それら各素子に対応する前記出力回路を構成する素子の特性と近似している請求項1または2に記載の信号出力回路。 3. The signal output circuit according to claim 1, wherein characteristics of each element constituting the pseudo output circuit approximate to characteristics of an element constituting the output circuit corresponding to each element.
  4.  前記疑似出力回路を構成する各素子の構造は、それら各素子に対応する前記出力回路を構成する素子の構造と近似している請求項1から3のいずれか一項に記載の信号出力回路。 The signal output circuit according to any one of claims 1 to 3, wherein a structure of each element constituting the pseudo output circuit approximates a structure of an element constituting the output circuit corresponding to each element.
  5.  さらに、前記入力ノードと、前記出力トランジスタの導通制御端子との間に接続されたバッファ(8)を備えている請求項1から4のいずれか一項に記載の信号出力回路。 The signal output circuit according to any one of claims 1 to 4, further comprising a buffer (8) connected between the input node and a conduction control terminal of the output transistor.
  6.  さらに、前記出力信号のスロープを検出する出力モニタ回路(22、52)と、
     前記出力モニタ回路によるスロープの検出結果に基づいて前記出力信号のスロープが所望する値となるように調整するスロープ調整部(26、43)を備えている請求項1から5のいずれか一項に記載の信号出力回路。
    An output monitor circuit (22, 52) for detecting the slope of the output signal;
    The slope adjustment part (26, 43) which adjusts so that the slope of the said output signal may become a desired value based on the detection result of the slope by the said output monitor circuit is described in any one of Claim 1 to 5 The signal output circuit described.
  7.  前記出力モニタ回路は、前記出力信号の電圧値が所定の閾値に達するまでの時間をカウントし、そのカウントされた時間に基づいて前記出力信号のスロープを検出する請求項6に記載の信号出力回路。 The signal output circuit according to claim 6, wherein the output monitor circuit counts a time until the voltage value of the output signal reaches a predetermined threshold, and detects a slope of the output signal based on the counted time. .
  8.  さらに、前記出力ノードの信号のスロープを検出する疑似出力モニタ回路(42)を備え、
     前記スロープ調整部(43)は、前記出力モニタ回路によるスロープの検出結果に加え、前記疑似出力モニタ回路によるスロープの検出結果に基づいて前記出力信号のスロープが所望する値となるように調整する請求項6または7に記載の信号出力回路。
    And a pseudo output monitor circuit (42) for detecting a slope of the signal of the output node.
    The slope adjusting unit (43) adjusts the slope of the output signal to a desired value based on a slope detection result by the pseudo output monitor circuit in addition to a slope detection result by the output monitor circuit. Item 8. The signal output circuit according to Item 6 or 7.
  9.  前記疑似出力モニタ回路は、前記出力ノードの電圧値が所定の閾値に達するまでの時間をカウントし、そのカウントされた時間に基づいて前記出力ノードの信号のスロープを検出する請求項8に記載の信号出力回路。 9. The pseudo output monitor circuit according to claim 8, wherein the pseudo output monitor circuit counts a time until a voltage value of the output node reaches a predetermined threshold, and detects a slope of the signal of the output node based on the counted time. Signal output circuit.
  10.  前記疑似出力回路(28)は、前記疑似出力トランジスタの他方の主端子側に接続された可変抵抗(27)を備え、
     前記スロープ調整部は、前記可変抵抗の抵抗値を変更することで前記出力信号のスロープを調整する請求項6から9のいずれか一項に記載の信号出力回路。
    The pseudo output circuit (28) includes a variable resistor (27) connected to the other main terminal side of the pseudo output transistor,
    The signal output circuit according to claim 6, wherein the slope adjustment unit adjusts a slope of the output signal by changing a resistance value of the variable resistor.
  11.  前記スロープ制御回路(30)は、前記フィードバック容量に充電および放電を行うための電流のうち少なくとも一方を可変とする可変電流源(31、32)を備え、
     前記スロープ調整部は、前記可変電流源の電流値を変更することで前記出力信号のスロープを調整する請求項6から9のいずれか一項に記載の信号出力回路。
    The slope control circuit (30) includes a variable current source (31, 32) that makes at least one of currents for charging and discharging the feedback capacitor variable,
    The signal output circuit according to claim 6, wherein the slope adjustment unit adjusts a slope of the output signal by changing a current value of the variable current source.
  12.  前記フィードバック容量は、その容量値を可変とする可変容量(34)であり、
     前記スロープ調整部は、前記可変容量の容量値を変更することで前記出力信号のスロープを調整する請求項6から9のいずれか一項に記載の信号出力回路。
    The feedback capacity is a variable capacity (34) whose capacity value is variable,
    The signal output circuit according to claim 6, wherein the slope adjustment unit adjusts a slope of the output signal by changing a capacitance value of the variable capacitor.
  13.  前記出力信号は、バス型の通信に用いられる通信信号である請求項1から12のいずれか一項に記載の信号出力回路。 The signal output circuit according to any one of claims 1 to 12, wherein the output signal is a communication signal used for bus-type communication.
PCT/JP2017/001216 2016-03-01 2017-01-16 Signal output circuit WO2017149957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016038954A JP2017158011A (en) 2016-03-01 2016-03-01 Signal output circuit
JP2016-038954 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017149957A1 true WO2017149957A1 (en) 2017-09-08

Family

ID=59743727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001216 WO2017149957A1 (en) 2016-03-01 2017-01-16 Signal output circuit

Country Status (2)

Country Link
JP (1) JP2017158011A (en)
WO (1) WO2017149957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714040A (en) * 2018-12-21 2019-05-03 北京时代民芯科技有限公司 A kind of CMOS output driving circuit with feedback control
CN118112310A (en) * 2024-04-30 2024-05-31 江苏帝奥微电子股份有限公司 Voltage positive and negative slope detection circuit and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273631A (en) * 1994-03-29 1995-10-20 Oki Micro Design Miyazaki:Kk Semiconductor integrated circuit
JPH09186568A (en) * 1995-07-28 1997-07-15 Texas Instr Deutschland Gmbh Circuit structure to drive mos field effect transistor arranged to power supply circuit for electric load
JPH11346147A (en) * 1998-06-02 1999-12-14 Nec Corp Slew rate output circuit
JP2011091888A (en) * 2009-10-20 2011-05-06 Sharp Corp Switching control circuit and switching power supply device using the same
JP2012114793A (en) * 2010-11-26 2012-06-14 Denso Corp Communication driver circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006011735D1 (en) * 2006-08-08 2010-03-04 Semiconductor Components Ind driver circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273631A (en) * 1994-03-29 1995-10-20 Oki Micro Design Miyazaki:Kk Semiconductor integrated circuit
JPH09186568A (en) * 1995-07-28 1997-07-15 Texas Instr Deutschland Gmbh Circuit structure to drive mos field effect transistor arranged to power supply circuit for electric load
JPH11346147A (en) * 1998-06-02 1999-12-14 Nec Corp Slew rate output circuit
JP2011091888A (en) * 2009-10-20 2011-05-06 Sharp Corp Switching control circuit and switching power supply device using the same
JP2012114793A (en) * 2010-11-26 2012-06-14 Denso Corp Communication driver circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714040A (en) * 2018-12-21 2019-05-03 北京时代民芯科技有限公司 A kind of CMOS output driving circuit with feedback control
CN109714040B (en) * 2018-12-21 2023-04-18 北京时代民芯科技有限公司 CMOS output drive circuit with feedback control
CN118112310A (en) * 2024-04-30 2024-05-31 江苏帝奥微电子股份有限公司 Voltage positive and negative slope detection circuit and detection method thereof

Also Published As

Publication number Publication date
JP2017158011A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US6975135B1 (en) Universally programmable output buffer
US7227400B1 (en) High speed MOSFET output driver
US8253445B2 (en) Output circuit having pre-emphasis function
JP4769108B2 (en) Output buffer circuit
US6281730B1 (en) Controlled slew rate driver
CN109964460B (en) Voltage mode serializer and deserializer with self calibration
US6094086A (en) High drive CMOS output buffer with fast and slow speed controls
US9584125B2 (en) Interface circuit
US8405371B2 (en) Voltage regulator with ripple compensation
US8692577B2 (en) Driver circuit
US11387821B2 (en) Pulse signal sending circuit
US20240039519A1 (en) Deglitcher with integrated non-overlap function
US20070247192A1 (en) Open drain output circuit
US9685944B1 (en) Semiconductor integrated circuit and high frequency antenna switch
WO2017149957A1 (en) Signal output circuit
US7659748B2 (en) Electronic device and integrated circuit
US8736311B2 (en) Semiconductor integrated circuit
US8456211B2 (en) Slew rate control circuit and method thereof and slew rate control device
US9705490B2 (en) Driver circuit for single wire protocol slave unit
US11165425B2 (en) Power supply detection circuit
CN113810040A (en) Circuit and method for slew rate control
US8686763B2 (en) Receiver circuit
JP5598377B2 (en) Output circuit
US20060097760A1 (en) Differential signal generating circuit, differential signal transmitting circuit and differential signal transceiver system
JPH11163699A (en) Output buffer circuit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759429

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759429

Country of ref document: EP

Kind code of ref document: A1