WO2017149906A1 - Switching power supply circuit - Google Patents

Switching power supply circuit Download PDF

Info

Publication number
WO2017149906A1
WO2017149906A1 PCT/JP2016/088016 JP2016088016W WO2017149906A1 WO 2017149906 A1 WO2017149906 A1 WO 2017149906A1 JP 2016088016 W JP2016088016 W JP 2016088016W WO 2017149906 A1 WO2017149906 A1 WO 2017149906A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
power supply
circuit
transformer
supply circuit
Prior art date
Application number
PCT/JP2016/088016
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 悟
小林 伸一
博俊 江澤
モハメッド ジャハンギ アラム
衛 柴崎
Original Assignee
株式会社電菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電菱 filed Critical 株式会社電菱
Publication of WO2017149906A1 publication Critical patent/WO2017149906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a switching power supply circuit having a DC / DC converter or the like, and more particularly to a switching power supply circuit that can reduce power loss and can be miniaturized.
  • FIG. 5A is a block diagram showing a configuration of a conventional switching power supply circuit
  • FIG. 5B is a circuit diagram showing a configuration of a conventional switching power supply circuit.
  • the switching power supply circuit 50 includes a switching circuit 52 that switches the DC power supply 40 and outputs a current to the primary winding of the transformer 60, and a primary winding and a secondary winding. , A transformer 60 that performs power conversion by magnetic coupling, and a diode bridge 65 that rectifies alternating current from the secondary winding of the transformer 60 into direct current.
  • the switching circuit 52 of the switching power supply circuit 50 is composed of switching elements such as MOSFETs, and two sets of switching elements connected in series are connected to the output terminal of the DC power supply 40. ing.
  • connection point of the two switching elements 53 and 54 connected in series is connected to one end of the primary winding 61 of the transformer 60, and the connection point of the other two switching elements 55 and 56 connected in series is the transformer.
  • 60 is connected to the other end of the primary winding 61.
  • the current input to the primary winding 61 of the transformer 60 is converted into AC power and output from the secondary winding 62 of the transformer 60.
  • the control circuit 75 controls the switching of the switching circuit 52 so that the switching elements 53 and 56 and the switching elements 54 and 55 are alternately turned on. Thereby, currents in different directions alternately flow in the primary winding 61 of the transformer 60.
  • FIG. 6A is a timing chart showing the switching operation of the switching circuit by the control circuit. 6A represents ON / OFF timings of the switching elements 53 and 56 by the control circuit, and Sb illustrated in FIG. 6A represents ON / OFF timings of the switching elements 54 and 55. As shown in FIG. 6A, the switching cycle at this time is T, and the switching frequency is f.
  • the secondary winding 62 of the transformer 60 is connected to the input terminal of a diode bridge 65 composed of diodes 66, 67, 68, 69 and is rectified by the diode bridge 65.
  • a current is output from the output end to the load 48 and the like.
  • the output terminal of the diode bridge 65 is connected to an electrolytic capacitor or the like as the smoothing circuit 80 that suppresses the ripple current. Further, an inductor is also connected to the smoothing circuit 80 as necessary.
  • FIG. 6B is a diagram showing a change in current output from the diode bridge.
  • the current waveform output from the diode bridge 65 includes a pulsating current having a period T synchronized with the switching frequency of the switching circuit 52.
  • a surge voltage may be generated on the output side due to the reactance of the transformer.
  • Patent Document 1 discloses a low-loss converter that can suppress a surge voltage generated on the output side of a rectifier circuit and increase the power conversion efficiency of the DC-DC converter.
  • semiconductor switching elements Q1 to Q4 are disposed between a DC power source and a transformer, and a rectifier circuit and an output smoothing circuit are disposed between the transformer and a load.
  • An RCD snubber circuit that absorbs a surge voltage is provided between the rectifier circuit and the output smoothing circuit.
  • the surge voltage included in the output side voltage of the rectifier circuit is absorbed by the snubber capacitor via the snubber diode, and the charge of the snubber capacitor is discharged via the snubber resistor and supplied as power to the load.
  • a transformer that performs power conversion from the primary side to the secondary side is used.
  • power conversion is usually performed using one transformer.
  • AC power output from the transformer is rectified by a diode bridge, but a pulsating current is generated in the rectified current in synchronization with the switching frequency of the switching circuit.
  • a current is supplied to the load, a voltage fluctuation occurs due to the pulsating current.
  • the switching frequency of the switching circuit that supplies AC power to the primary winding of the transformer is increased to suppress fluctuations in the output current.
  • increasing the switching frequency increases the loss generated in the switching element of the switching circuit.
  • an electrolytic capacitor which is a smoothing circuit, is provided between a diode bridge that converts alternating current output from the transformer into direct current and a load.
  • the ripple current value changes according to the magnitude of the DC power to be switched and the switching frequency.
  • flowing a non-standard ripple current through the electrolytic capacitor affects the life of the electrolytic capacitor.
  • an electrolytic capacitor having a large (rated) allowable ripple current value when the power required for the switching power supply is large and the switching frequency is low, it is required to use an electrolytic capacitor having a large (rated) allowable ripple current value.
  • an electrolytic capacitor having a large ripple current value has a large shape, which may make it difficult to reduce the size of the device.
  • a counter electromotive voltage is generated in a switching element (transistor, FET, IGBT, etc.) connected to the transformer when the switching period changes from ON to OFF during the switching period.
  • This counter electromotive voltage is proportional to the magnitude of the current flowing when the switching period is on.
  • a snubber circuit disclosed in Patent Document 1 can be provided on the output side.
  • the provision of a snubber circuit or the like increases the number of parts and may make it difficult to reduce the size.
  • switching power supply circuits are required to reduce the fluctuation value of the pulsating current generated in the output current, to reduce the size of electrolytic capacitors used in the smoothing circuit, and to reduce the size of the transformer.
  • switching power supply circuits used for portable devices are required to be small and light, but are also required to be thin.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to provide a switching power supply circuit that can reduce or eliminate a rectifier device such as a capacitor without increasing switching loss. To do.
  • the switching power supply circuit of the present invention is provided on the primary side of the transformer and the transformer.
  • the DC power supply is switched to alternately supply currents of different directions to the primary side winding of the transformer.
  • N power supply circuit units provided with a switching circuit that flows and a bridge circuit that is provided on the secondary side of the transformer and converts the voltage output from the winding on the secondary side of the transformer into a direct current and rectifies it ( n is an integer of 2 or more), the input of the switching circuit of the n power supply circuit units is connected in parallel with the DC power supply, and the output terminals of the n bridge circuits are connected in series, and the switching The switching frequency in the circuit has n different phases, and the switching of the switching circuit is controlled so that the switching timing is different for each power supply circuit unit. And said that there was Unishi.
  • the switching power supply circuit of the present invention controls the switching of the switching circuit by shifting the phase of the switching frequency in the switching circuit by 180 / n degrees for each of the power supply circuit units.
  • the switching circuit is switched by 180 / n degrees from the other switching circuits, and the switching timing is different for each transformer.
  • the bridge circuit in the switching power supply circuit of the present invention is a diode bridge made of a diode.
  • the switching power supply circuit of the present invention has a switching phase control unit that controls the phase of the switching frequency of the switching circuit of each power supply circuit unit, and the switching phase control unit sets half of the cycle of the switching frequency to n.
  • the signal is generated by dividing the phase of the switching frequency by 180 / n degrees for each of the power supply circuit units based on the period divided into n.
  • the switching power supply circuit according to the present invention is characterized in that the output terminals of the n bridge circuits are connected in parallel instead of being connected in series.
  • the power supply circuit unit is formed by modularizing the switching circuit, the transformer, and the bridge circuit, and includes n power supply circuit units that are modularized. It is characterized by being.
  • the switching power supply circuit of the present invention is composed of n power supply circuit units that are modularized, and can increase or decrease n.
  • one transformer is used for the switching power supply, and the shape of the transformer used increases in proportion to the power handled.
  • desired power is divided into n transformers, and switching is performed for each transformer. For this reason, the power handled per transformer is 1 / n.
  • the apparatus can be miniaturized. Further, by reducing the size of the transformer, it is possible to reduce the size and weight of the transformer, and it is also possible to make the device thinner.
  • the switching power supply circuit of the present invention controls power conversion, which has conventionally been performed by one transformer, to n transformers and performs switching for each transformer.
  • the phase of the frequency at which the switching elements are switched is shifted by 180 / n degrees so that switching is performed at different timing for each transformer.
  • the frequency included in the output power can be increased by n times without increasing the frequency of each switching element.
  • the frequency of the ripple current is increased, and the fluctuation range of the ripple current can be reduced.
  • the switching elements transistors, FETs, IGBTs, etc.
  • a switching element can be selected.
  • the ripple current flowing through the electrolytic capacitor of the switching element can be reduced.
  • the input electrolytic capacitor between the power supply and the switching element flows through a ripple current corresponding to the power of the DC power supply to be switched and its switching frequency.
  • This ripple current affects the life of the electrolytic capacitor.
  • Electrolytic capacitors with a large rated ripple current are large in shape, have little market distribution, are expensive, and take a long time to deliver.
  • the frequency of the ripple current is increased by n times.
  • the ripple current of the electrolytic capacitor decreases as the frequency increases, the ripple current is reduced by increasing the frequency n times. For this reason, since a small electrolytic capacitor can also be used, the freedom degree of selection increases.
  • the smoothing circuit can be eliminated or the smoothing element in the smoothing circuit can be downsized.
  • the switching waveform voltage-converted by the transformer is rectified by the rectifier element, and the pulsating current component is smoothed by the smoothing circuit.
  • the desired power is divided into n transformers and different timings for each transformer. By controlling so as to perform switching at, the ripple voltage is reduced and the ripple current value is reduced. For this reason, the freedom degree of selection of smoothing elements (a choke coil, an electrolytic capacitor, etc.) increases, and this enables miniaturization.
  • FIG. 1 It is a block diagram which shows the structure of the switching power supply circuit by this invention. It is a figure which shows the circuit structure of the power supply circuit part in the switching power supply circuit by this invention. It is a figure which shows the timing of the control signal input into n switching circuits.
  • B is a figure which shows the change of the output current of the switching power supply circuit controlled by (a). It is a block diagram which shows the structure which connected the output terminal of the diode bridge in parallel with the switching power supply circuit which consists of n power supply circuits.
  • A) is a block diagram which shows the structure of the conventional switching power supply circuit
  • (b) is a circuit diagram which shows the structure of the conventional switching power supply circuit.
  • (A) is a timing diagram showing the switching operation of the switching circuit by the control circuit
  • (b) is a diagram showing the change of the current output from the diode bridge.
  • the switching power supply circuit can be composed of n power supply circuit portions that are modularized, it is possible to reduce the size.
  • FIG. 1 is a block diagram showing a configuration of a switching power supply circuit of a switching power supply device according to the present invention
  • FIG. 2 is a diagram showing a circuit configuration of a power supply circuit section in the switching power supply circuit according to the present invention.
  • the switching power supply circuit 1 switches the DC power input from the DC power supply 40, converts it to DC power having a predetermined voltage, and supplies it to the load 48 or the like n (n is
  • the power supply circuit unit 3 includes an integer of 2 or more and a phase control circuit 30 that controls each power supply circuit unit 3.
  • the power supply circuit unit 3 of the switching power supply circuit 1 switches the DC power input from the DC power supply 40 and converts it into AC power, and the AC power from the switching circuit 7.
  • the switching power supply circuit 1 has n power supply circuit units 3, and includes a switching circuit 7 and a rectifier circuit 20 connected to correspond to the transformer 16 of each power supply circuit unit 3. Have. In addition, n rectifier circuits 20 that are output units of the power supply circuit unit 3 are connected in series. Power is supplied to the load 48 and the like from both ends of the output where the rectifier circuit 20 is connected in series.
  • FIG. 2 is a diagram showing a circuit configuration of a power supply circuit section in the switching power supply circuit.
  • the switching circuit 7 includes switching elements 11, 12, 13, and 14 made of MOSFETs.
  • the switching element 11 and the switching element 12 are connected in series to the DC power supply 40, and switching is performed.
  • the element 13 and the switching element 14 are connected in series.
  • the diode connected to the MOSFET indicates a parasitic diode.
  • connection point between the switching element 11 and the switching element 12 is connected to one end of the primary winding 17 of the transformer 16, and a connection point between the switching element 13 and the switching element 14 is the other end of the primary winding 17 of the transformer 16. It is connected to the.
  • the switching element 11 and the switching element 14 are turned on, and the switching element 13 and the switching element 12 are turned off, whereby a current flows in the direction indicated by ia in the transformer 16, and the switching element 13 and the switching element 12 are By turning on and turning off the switching element 11 and the switching element 14, a current flows through the transformer 16 in the direction indicated by ib.
  • the switching element is not limited to a MOSFET, and may be any electronic component that can turn on and off a circuit current with a control signal.
  • the switching element may be a transistor or an IGBT.
  • the three switching circuits are referred to as a first switching circuit, a second switching circuit, and a third switching circuit.
  • the phase control circuit 30 shown in FIGS. 1 and 2 applies a control signal (voltage) to the input of the switching element, for example, the gate of the MOSFET, and controls ON (conducting) and OFF (non-conducting) of the switching element. .
  • the phase control circuit 30 shown in FIG. 2 turns on the switching element 11 and the switching element 14 and controls the switching element 13 and the switching element 12 to be turned off at this time, while the switching element 13 and the switching element 12 are turned on. When the switch is turned on, the switching element 11 and the switching element 14 are controlled to be turned off.
  • the period from the start of the control signal ON to the end of the control signal is defined as a period T.
  • the switching frequency f is 1 / T.
  • the phase control circuit 30 inputs a control signal having a switching frequency having a period T for each switching circuit 7, and the switching circuit 7 repeats ON and OFF of the switching element according to the control signal.
  • phase control circuit 30 controls ON / OFF of the switching element with a phase difference of 180 / n degrees with respect to n (n is an integer of 2 or more) switching circuits 7.
  • FIG. 3A is a diagram illustrating timings of control signals input to the n switching circuits
  • FIG. 3B illustrates a change in output current of the switching power supply circuit controlled in FIG. 3A.
  • the control signal input to the switching circuit 7 is generated by the phase control circuit 30. As shown in FIG. 3A, the control signal input to the first switching circuit 7 has a switching cycle of T and a switching frequency of f. Similarly, the control signal input to the second switching circuit has a switching period T and a switching frequency f.
  • the control signal input to the nth switching circuit 7 has a switching cycle of T and a switching frequency of f.
  • the phase of the switching frequency input to the n-th switching circuit 7 is shifted by (n ⁇ 1) ⁇ 180 / n degrees with respect to the first switching circuit 7.
  • the phase control circuit 30 generates the phase difference between the control signals of the first switching circuit 7 and the second switching circuit 7 to be 180 / n degrees.
  • the switching frequency is generated so that the phase difference between the control signals of the (n ⁇ 1) th switching circuit 7 and the nth switching circuit 7 is 180 / n degrees.
  • the half of the period of the switching frequency is divided into n, and the switching frequency of each switching circuit 7 is controlled corresponding to the divided period.
  • the phase control circuit 30 divides the frequency by n by the frequency dividing circuit based on the frequency n times the switching frequency f, and the phase is 180 /
  • a control signal having a switching frequency f that differs n times may be generated for each switching circuit 7 and output.
  • the control signal generated by the phase control circuit 30 has a switching frequency of period T, and a frequency with a phase difference of 180 / n degrees is input to each switching circuit.
  • the transformers 16 do not switch at the same time, and a current including a ripple having a frequency n times the switching frequency f is output as shown in FIG. Also, the current fluctuation is reduced to 1 / n compared to the conventional case where only one transformer is used.
  • the n switching circuits 7 are controlled by the phase control circuit 30 at the same switching frequency. Further, the phase control circuit 30 is configured such that the phase of the switching frequency of each switching circuit 7 is different so that there is no switching circuit 7 that is turned ON / OFF at the same timing. Thereby, each transformer 16 is switched at a frequency with a different phase.
  • the switching frequency f is 100 kHz
  • the period is 10 microseconds (hereinafter referred to as ⁇ s)
  • the time corresponding to the phase of 180 degrees is 5 ⁇ s.
  • the total number n of the switching circuits 7 is 3, the phase is 60 degrees, and the time corresponding to the phase difference of 60 degrees is 5/3 ⁇ s.
  • the phase control circuit 30 shown in FIGS. 1 and 2 outputs a control signal having a frequency of 100 kHz to the first switching circuit 7, and a control signal of 100 KHz after 5/3 ⁇ s corresponding to a phase of 60 degrees. Is output to the second switching circuit 7. Further, after the switching circuit 72 is turned ON, a control signal of 100 kHz is output to the third switching circuit 7 after 5/3 ⁇ s.
  • the phase of the switching frequency if the total number n of the switching circuits 7 is 3, the phase is 180 / n degrees to 60 degrees.
  • the present invention is not limited to one numerical value of only 180 / n degrees.
  • the range is, for example, 55 degrees to 65 degrees with 60 degrees as the center.
  • an allowable range may be set for the phase of the switching frequency.
  • the switching circuit 7 switches the DC power supply according to the control signal from the phase control circuit 30 and converts it into AC power, and inputs the converted AC power to the primary winding 17 of the transformer 16.
  • the transformer 16 transmits AC power to the secondary winding 18 by magnetic coupling.
  • the AC power output from the secondary winding 18 of the transformer 16 is input to a rectifier circuit (diode bridge) 20 that converts AC power into DC power.
  • the rectifier circuit 20 includes a diode bridge, and a DC voltage is output from the output end of the diode bridge.
  • the diode bridge as the rectifier circuit 20 includes diodes 21, 22, 23, and 24, and the output terminal of the secondary winding 18 of the transformer 16 to the input terminals g and h of the diode bridge. Is supplied with power, and a rectified DC voltage is output from the output ends j and k of the diode bridge.
  • the DC voltage output from the diode bridge includes a ripple synchronized with the switching frequency f.
  • DC power is supplied to a load or the like from the output end of the diode bridge.
  • the switching circuit 7, the transformer 16 and the diode bridge 20 are modularized.
  • the switching circuit 7, the transformer 16 and the diode bridge 20 are formed on the substrate. It has been incorporated.
  • the modularized power supply circuit unit 3 includes power input terminals a and b for inputting a DC power supply 40, output terminals e and f for outputting rectified (smoothed) DC power, and control signals from the phase control unit 30. Input terminals c and d.
  • the modularized power supply circuit unit 3 is composed of the same circuit, the same parts, and the same size substrates. For this reason, the switching power supply device 1 can be configured by using a plurality of modularized power supply circuit units 3. Each power supply circuit unit 3 is controlled by the phase control unit 30.
  • the switching power supply circuit 1 has n output ends of the diode bridge 20 that is a rectifier circuit, and can supply DC power to a load or the like by connecting the output ends in series or in parallel.
  • the output voltage of one power supply circuit unit 3 includes one transformer 16. 1 / n of the switching power supply circuit 1 having the same capacity.
  • the capacity of the transformer 16 is small, and the transformer 16 and the module substrate can be miniaturized. Moreover, since the rated voltage and current of semiconductor elements such as MOSFETs and power diodes used in switching circuits and diode bridges can be reduced, it is easy to obtain.
  • the switching power supply circuit 1 has been described as using a plurality of modularized substrates, for example, the switching power supply circuit 1 may be composed of a substrate on which a plurality of circuits can be mounted.
  • the switching power supply circuit 1 is composed of n power supply circuit units 3 that are modularized. However, since n can be increased or decreased, the switching power supply circuit 1 can be adapted to the power capacity, size, etc. of the switching power supply circuit 1. N can be determined.
  • FIG. 1 is a block diagram showing a configuration in which the output terminals of a diode bridge are connected in series in a switching power supply circuit 1 composed of n power supply circuits.
  • the switching power supply circuit 1 has n output terminals of a diode bridge, and supplies DC power to a load or the like by connecting the output terminals in series. With respect to the voltage at the output terminal of each diode bridge at this time, a voltage n times as large is obtained as an output by connecting in series.
  • FIG. 4 is a block diagram showing a configuration in which the output terminals of the diode bridge are connected in parallel in a switching power supply circuit composed of n power supply circuit units.
  • the diode bridge has n output terminals, and the output terminals are connected in parallel to supply DC power to a load or the like.
  • the output current of the diode bridge of the power supply circuit section of one module is the same capacity switching power supply consisting of one transformer. 1 / n of the circuit 50 (shown in FIG. 5).
  • the output voltage has a switching frequency that is n times the switching frequency of each power supply circuit unit, and the ripple voltage and ripple current are also reduced. For this reason, since heat generation due to the ripple current of the smoothing capacitor can be suppressed, the size of the capacitor can be reduced.
  • the switching power supply circuit of the present invention has n power supply circuit sections 3 (n is an integer of 2 or more) including a switching circuit, a transformer, and a diode bridge,
  • the phase of the frequency is shifted by 180 / n degrees for each of the power supply circuits to control the switching of the switching circuit, thereby switching the n transformers at different phases.
  • the transformer can be miniaturized. Conventionally, one transformer is used for the switching power supply, and the shape of the transformer used increases in proportion to the power to be handled. In the present invention, desired power is divided into n transformers, and switching is performed for each transformer.
  • the power handled per transformer is 1 / n. Therefore, since a small transformer can be used, the apparatus can be miniaturized. Further, by reducing the size of the transformer, it is possible to reduce the size and weight of the transformer, and it is also possible to make the device thinner.
  • the ripple current flowing in the electrolytic capacitor can be reduced.
  • a DC power supply is switched using one transformer as in a conventional switching power supply circuit, a sudden voltage fluctuation may occur in the DC power supply due to switching.
  • stabilization is achieved by connecting an electrolytic capacitor for stabilizing the power supply between the DC power supply and the switching element.
  • a ripple current flows through the electrolytic capacitor in accordance with the power of the power source to be switched and its switching frequency.
  • This ripple current affects the life of the electrolytic capacitor.
  • An electrolytic capacitor having a large rated ripple current has a large shape, a small market distribution, high cost, and a long delivery time. Therefore, it is required to reduce the ripple current flowing through the electrolytic capacitor.
  • the frequency of the ripple current is increased by a factor of n by dividing the power conversion, which has conventionally been performed by one transformer, into n transformers and shifting the phase of switching the transformer.
  • the allowable ripple current value of an electrolytic capacitor tends to increase as the ripple frequency increases.
  • the ripple current value decreases as the switching frequency is increased by n times, so the degree of freedom in selecting an electrolytic capacitor can be increased. it can.
  • the smoothing element in the smoothing circuit can be deleted or downsized.
  • the switching waveform on the output side that is voltage-converted by the transformer is rectified by the rectifier circuit, and the pulsating current component is reduced by a smoothing circuit including an electrolytic capacitor or the like.
  • the present invention divides the power conversion conventionally performed by one transformer into n transformers and shifts the phase of switching the transformer, thereby increasing the ripple current frequency by a factor of n and reducing the ripple current value. .
  • a switching element such as a MOSFET connected to a transformer constituting a switching power supply
  • a counter electromotive voltage is generated by reactance of the transformer when the current is turned off during the switching period.
  • the counter electromotive voltage is proportional to the current that flows when the switching period is on.
  • the back electromotive voltage is also generated by a sudden current change due to high-speed switching.
  • the counter electromotive voltage greatly affects the absolute maximum rated voltage of the switching element. For this reason, it is necessary to use a switching element having a large absolute maximum rated voltage or to reduce the current flowing through the transformer.
  • the current flowing through each transformer becomes 1 / n.
  • the counter electromotive voltage applied to the switching element decreases in proportion to the decrease in current.
  • the market distribution is less, the cost is higher, and the delivery time is longer. Therefore, by dividing the desired power into n transformers, the optimal general-purpose products that are distributed in the market It is possible to select a suitable switching element.
  • switching loss of the switching element can be reduced. Since the switching element in the switching power supply circuit takes time to switch due to a delay in the turn-on operation and the turn-off operation with respect to the input ON and OFF control signals, a loss occurs at the time of switching.
  • the switching loss Psw is also increased by m times as shown in the equation (1).
  • the capacity of the transformer is small, and the transformer and the module substrate can be miniaturized.
  • the MOSFET used for the diode bridge, and the semiconductor element of the power diode can be lowered, the semiconductor element can be easily obtained.
  • Japanese Patent Laid-Open No. 2008-79403 discloses a low-loss converter that can suppress a surge voltage generated on the output side of a rectifier circuit and increase the power conversion efficiency of the DC-DC converter.
  • semiconductor switching elements Q1 to Q4 are disposed between a DC power source and a transformer, and a rectifier circuit and an output smoothing circuit are disposed between the transformer and a load.
  • An RCD snubber circuit that absorbs a surge voltage is provided between the rectifier circuit and the output smoothing circuit. The surge voltage included in the output side voltage of the rectifier circuit is absorbed by the snubber capacitor via the snubber diode, the electric charge of the snubber capacitor is discharged via the snubber resistor, and supplied to the load as electric power.
  • the current flowing through each transformer becomes 1 / n.
  • the counter electromotive voltage applied to the switching element decreases in proportion to the decrease in current.
  • the market distribution is less, the cost is higher, and the delivery time is longer. Therefore, by dividing the desired power into n transformers, the optimal general-purpose products that are distributed in the market It is possible to select a suitable switching element.
  • the smoothing circuit can be eliminated, or the smoothing element (electrolytic capacitor, choke coil, etc.) in the smoothing circuit can be reduced in size and the degree of freedom in selection can be increased. Also, it is possible to avoid providing a smoothing circuit by increasing n, which is the number of transformers to be used.
  • the present invention does not require an RCD snubber circuit that absorbs a surge voltage, and has a feature that is not found in the prior art documents.
  • Switching power supply circuit 3 Power supply circuit part 7, 52 Switching circuit 11, 12, 13, 14, 53, 54, 55, 56 Switching element (MOSFET) 16, 60 Transformer 17, 61 Primary winding 18, 62 Secondary winding 20, 65 Rectifier circuit (diode bridge) 21, 22, 23, 24, 66, 67, 68, 69 Diode 30 Phase control circuit 40 DC power supply 48 Load 80 Smoothing circuit (smoothing capacitor)

Abstract

[Problem] To provide a switching power supply circuit that makes it possible to reduce the size of or eliminate a smoothing circuit such as a capacitor without increasing switching loss. [Solution] A switching power supply circuit comprising n (n is an integer of 2 or more) power supply circuit units 3 provided with: a transformer 16; a switching circuit 7 that causes current to flow in an alternating manner in different directions through a primary winding of the transformer 16; and a bridge circuit that is provided to the secondary side of the transformer 16 and that converts voltage output from the transformer 16 into direct current and rectifies the result. A desired amount of power is split between the n transformers 16, switching is performed in each transformer 16, the output terminals of the n bridge circuits are connected in series, and the phases of the frequency of switching in the switching circuits 7 are shifted by 180/n degrees in each of the power supply circuit units 3 in order to control switching of the switching circuits 7.

Description

スイッチング電源回路Switching power supply circuit
 本発明は、DC/DCコンバータ等を有するスイッチング電源回路に関し、特に、電力損失を低減し、小型化が可能なスイッチング電源回路に関する。 The present invention relates to a switching power supply circuit having a DC / DC converter or the like, and more particularly to a switching power supply circuit that can reduce power loss and can be miniaturized.
 従来、直流電源からDC/DCコンバータによって交流電源に変換し、変換した交流電源を整流回路によって整流して、直流電力に変換するスイッチング電源回路が知られている。 2. Description of the Related Art Conventionally, a switching power supply circuit that converts a DC power supply to an AC power supply by a DC / DC converter, rectifies the converted AC power supply by a rectifier circuit, and converts it into DC power is known.
 図5(a)は、従来のスイッチング電源回路の構成を示すブロック図、図5(b)は、従来のスイッチング電源回路の構成を示す回路図である。 FIG. 5A is a block diagram showing a configuration of a conventional switching power supply circuit, and FIG. 5B is a circuit diagram showing a configuration of a conventional switching power supply circuit.
 図5(a)に示すように、スイッチング電源回路50は、直流電源40をスイッチングしてトランス60の一次巻線に電流を出力するスイッチング回路52と、一次巻線と二次巻線を有し、磁気的結合により電力変換を行うトランス60と、トランス60の二次巻線からの交流を直流に整流するダイオードブリッジ65とを有している。 As shown in FIG. 5A, the switching power supply circuit 50 includes a switching circuit 52 that switches the DC power supply 40 and outputs a current to the primary winding of the transformer 60, and a primary winding and a secondary winding. , A transformer 60 that performs power conversion by magnetic coupling, and a diode bridge 65 that rectifies alternating current from the secondary winding of the transformer 60 into direct current.
 図5(b)に示すように、スイッチング電源回路50のスイッチング回路52は、MOSFET等のスイッチング素子から成り、直列に接続された2個のスイッチング素子が直流電源40の出力端に2組接続されている。 As shown in FIG. 5B, the switching circuit 52 of the switching power supply circuit 50 is composed of switching elements such as MOSFETs, and two sets of switching elements connected in series are connected to the output terminal of the DC power supply 40. ing.
 直列に接続された2個のスイッチング素子53、54の接続点はトランス60の一次巻線61の一端と接続され、他の直列に接続された2個のスイッチング素子55、56の接続点はトランス60の一次巻線61の他端と接続されている。トランス60の一次巻線61に入力された電流は、交流電力に変換されて、トランス60の二次巻線62から出力される。 The connection point of the two switching elements 53 and 54 connected in series is connected to one end of the primary winding 61 of the transformer 60, and the connection point of the other two switching elements 55 and 56 connected in series is the transformer. 60 is connected to the other end of the primary winding 61. The current input to the primary winding 61 of the transformer 60 is converted into AC power and output from the secondary winding 62 of the transformer 60.
 制御回路75は、スイッチング回路52のスイッチングを制御し、スイッチング素子53、56とスイッチング素子54、55とを交互にONするようにする。これにより、トランス60の一次巻線61には、方向の異なる電流が交互に流れる。 The control circuit 75 controls the switching of the switching circuit 52 so that the switching elements 53 and 56 and the switching elements 54 and 55 are alternately turned on. Thereby, currents in different directions alternately flow in the primary winding 61 of the transformer 60.
 図6(a)は、制御回路によるスイッチング回路のスイッチング動作を示すタイミング図である。図6(a)に示すSaは、制御回路によるスイッチング素子53、56のON、OFFタイミングであり、図6(a)に示すSbは、スイッチング素子54、55のON、OFFタイミングを示す。図6(a)に示すように、このときのスイッチングの周期はTであり、スイッチングの周波数はfである。 FIG. 6A is a timing chart showing the switching operation of the switching circuit by the control circuit. 6A represents ON / OFF timings of the switching elements 53 and 56 by the control circuit, and Sb illustrated in FIG. 6A represents ON / OFF timings of the switching elements 54 and 55. As shown in FIG. 6A, the switching cycle at this time is T, and the switching frequency is f.
 図5(b)に示すように、トランス60の二次巻線62は、ダイオード66、67、68、69で構成されたダイオードブリッジ65の入力端と接続されており、ダイオードブリッジ65により整流されて出力端から負荷48等に電流が出力される。また、ダイオードブリッジ65の出力端には、リプル電流を抑制する平滑回路80としての電解コンデンサ等が接続されている。また、平滑回路80には必要によりインダクタも接続する。 As shown in FIG. 5 (b), the secondary winding 62 of the transformer 60 is connected to the input terminal of a diode bridge 65 composed of diodes 66, 67, 68, 69 and is rectified by the diode bridge 65. Thus, a current is output from the output end to the load 48 and the like. The output terminal of the diode bridge 65 is connected to an electrolytic capacitor or the like as the smoothing circuit 80 that suppresses the ripple current. Further, an inductor is also connected to the smoothing circuit 80 as necessary.
 図6(b)は、ダイオードブリッジから出力される電流の変化を示す図である。図6(b)に示すように、ダイオードブリッジ65から出力される電流波形は、スイッチング回路52のスイッチングの周波数と同期した周期Tの脈流を含んでいる。 FIG. 6B is a diagram showing a change in current output from the diode bridge. As shown in FIG. 6B, the current waveform output from the diode bridge 65 includes a pulsating current having a period T synchronized with the switching frequency of the switching circuit 52.
 また、スイッチング回路によってトランスに流す電流を変化させた場合、トランスのリアクタンスの影響により、出力側にサージ電圧が発生することがある。 Also, when the current flowing through the transformer is changed by the switching circuit, a surge voltage may be generated on the output side due to the reactance of the transformer.
 特許文献1には、整流回路の出力側に発生するサージ電圧を抑え、DC-DCコンバータの電力変換効率を高めることが可能な低損失コンバータが開示されている。 Patent Document 1 discloses a low-loss converter that can suppress a surge voltage generated on the output side of a rectifier circuit and increase the power conversion efficiency of the DC-DC converter.
 特許文献1によれば直流電源とトランスとの間に半導体スイッチング素子Q1~Q4を配設し、トランスと負荷との間に整流回路と出力平滑回路とを設ける。整流回路と出力平滑回路との間にサージ電圧を吸収するRCDスナバ回路を設けられている。 According to Patent Document 1, semiconductor switching elements Q1 to Q4 are disposed between a DC power source and a transformer, and a rectifier circuit and an output smoothing circuit are disposed between the transformer and a load. An RCD snubber circuit that absorbs a surge voltage is provided between the rectifier circuit and the output smoothing circuit.
 整流回路の出力側電圧に含まれるサージ電圧をスナバダイオードを介してスナバコンデンサにより吸収し、スナバコンデンサの電荷をスナバ抵抗を介して放電し、負荷に電力として供給するようにしたものである。 The surge voltage included in the output side voltage of the rectifier circuit is absorbed by the snubber capacitor via the snubber diode, and the charge of the snubber capacitor is discharged via the snubber resistor and supplied as power to the load.
特開2008-79403号公報JP 2008-79403 A
 DC/DCコンバータ等を有し、所望の電力を扱うスイッチング電源回路では、一次側から二次側に電力変換を行うトランスが用いられている。スイッチング電源回路では、通常1個のトランスを使用して、電力変換が行われる。 In a switching power supply circuit that has a DC / DC converter or the like and handles desired power, a transformer that performs power conversion from the primary side to the secondary side is used. In the switching power supply circuit, power conversion is usually performed using one transformer.
 トランスから出力される交流電力は、ダイオードブリッジで整流されるが、整流された電流にはスイッチング回路のスイッチング周波数に同期した脈流が発生する。負荷に電流を供給したときには、電流の脈流による電圧変動が発生する。 AC power output from the transformer is rectified by a diode bridge, but a pulsating current is generated in the rectified current in synchronization with the switching frequency of the switching circuit. When a current is supplied to the load, a voltage fluctuation occurs due to the pulsating current.
 このため、トランスの一次巻線に交流電力を供給するスイッチング回路のスイッチング周波数を高くして、出力電流の変動を抑えることが行われている。しかしながら、スイッチング周波数を高くすることにより、スイッチング回路のスイッチング素子に発生する損失が増加してしまう。 For this reason, the switching frequency of the switching circuit that supplies AC power to the primary winding of the transformer is increased to suppress fluctuations in the output current. However, increasing the switching frequency increases the loss generated in the switching element of the switching circuit.
 また、スイッチング電源回路において、トランスを1個のみ使用した場合には、その電力に応じた電流がトランスのコイルに流れる。コイルに流れる電流I(A)とコイルが持つ抵抗R[Ω]によりトランスに損失P(W)が生じる。このため、損失による発熱対策やトランス容量の大きなものを選択する必要がある。 Also, when only one transformer is used in the switching power supply circuit, a current corresponding to the power flows through the transformer coil. Loss P (W) occurs in the transformer due to the current I (A) flowing through the coil and the resistance R [Ω] of the coil. Therefore, it is necessary to select a countermeasure against heat generation due to loss and a large transformer capacity.
 また、トランスから出力された交流を直流に変換するダイオードブリッジと負荷との間には、平滑回路である電解コンデンサが設けられている。平滑回路の電解コンデンサには、直流電源をスイッチングしてトランスを介して発生する電圧変動によるリプル電流が流れる。 Also, an electrolytic capacitor, which is a smoothing circuit, is provided between a diode bridge that converts alternating current output from the transformer into direct current and a load. A ripple current due to voltage fluctuations generated through a transformer by switching a DC power supply flows through the electrolytic capacitor of the smoothing circuit.
 リプル電流値は、スイッチングする直流電力の大きさとそのスイッチング周波数とに応じて変化する。また、電解コンデンサに規格外のリプル電流を流すことは、電解コンデンサの寿命に影響を与える。 The ripple current value changes according to the magnitude of the DC power to be switched and the switching frequency. In addition, flowing a non-standard ripple current through the electrolytic capacitor affects the life of the electrolytic capacitor.
 このため、スイッチング電源の所用の電力が大きく、スイッチング周波数が低い場合には、(定格)許容されるリプル電流値が大きい電解コンデンサを使用することが求められる。しかしながらリプル電流値が大きい電解コンデンサは、形状が大きくなり、装置の小型化が困難となることがある。 For this reason, when the power required for the switching power supply is large and the switching frequency is low, it is required to use an electrolytic capacitor having a large (rated) allowable ripple current value. However, an electrolytic capacitor having a large ripple current value has a large shape, which may make it difficult to reduce the size of the device.
 また、トランスを1個のみ使用したスイッチング電源では、スイッチング期間のONからOFFに変化する時に、トランスに接続されたスイッチング素子(トランジスタ、FET、IGBT等)に、逆起電圧が発生する。この逆起電圧は、スイッチング期間のオン時に流れていた電流の大きさに比例する。 Also, in a switching power supply that uses only one transformer, a counter electromotive voltage is generated in a switching element (transistor, FET, IGBT, etc.) connected to the transformer when the switching period changes from ON to OFF during the switching period. This counter electromotive voltage is proportional to the magnitude of the current flowing when the switching period is on.
 これにより、逆起電圧(サージ電圧)に応じて、絶対最大定格電圧が大きいスイッチング素子を使用する必要がある。 Therefore, it is necessary to use a switching element with a large absolute maximum rated voltage according to the back electromotive voltage (surge voltage).
 サージ電圧を減らすために、特許文献1に開示されたスナバ回路等を出力側に設けることも可能である。しかしながら、スナバ回路等を設けることにより、部品数が増大し、また、小型化が難しくなることもある。 In order to reduce the surge voltage, a snubber circuit disclosed in Patent Document 1 can be provided on the output side. However, the provision of a snubber circuit or the like increases the number of parts and may make it difficult to reduce the size.
 このため、スイッチング電源回路においては、出力電流に発生する脈流の変動値の減少、平滑回路に使用する電解コンデンサ等の小型化、トランスの小型化が求められている。特に、携帯機器に使用するスイッチング電源回路では、小型化、軽量化が要求されるが、薄型にすることも求められている。 For this reason, switching power supply circuits are required to reduce the fluctuation value of the pulsating current generated in the output current, to reduce the size of electrolytic capacitors used in the smoothing circuit, and to reduce the size of the transformer. In particular, switching power supply circuits used for portable devices are required to be small and light, but are also required to be thin.
 本発明は、上記の課題を解決するためになされたものであり、スイッチング損失を増加することなくコンデンサ等の整流デバイスを小型化または削除することが可能なスイッチング電源回路を提供することを目的とする。 The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a switching power supply circuit that can reduce or eliminate a rectifier device such as a capacitor without increasing switching loss. To do.
 上記目標達成のため、本発明のスイッチング電源回路は、トランスと、当該トランスの1次側に設けられ、直流電源をスイッチングして前記トランスの1次側の巻線に方向の異なる電流を交互に流すスイッチング回路と、前記トランスの2次側に設けられ、前記トランスの2次側の巻線から出力される電圧を直流に変換して整流するブリッジ回路と、を備える電源回路部をn個(nは、2以上の整数)有し、n個の前記電源回路部のスイッチング回路の入力を前記直流電源と並列に接続し、n個の前記ブリッジ回路の出力端を直列に接続し、前記スイッチング回路におけるスイッチングの周波数は、n個の異なる位相を有し、前記電源回路部毎にスイッチングのタイミングが異なるように、前記スイッチング回路のスイッチングを制御するようにしたことを特徴とする。 In order to achieve the above goal, the switching power supply circuit of the present invention is provided on the primary side of the transformer and the transformer. The DC power supply is switched to alternately supply currents of different directions to the primary side winding of the transformer. N power supply circuit units provided with a switching circuit that flows and a bridge circuit that is provided on the secondary side of the transformer and converts the voltage output from the winding on the secondary side of the transformer into a direct current and rectifies it ( n is an integer of 2 or more), the input of the switching circuit of the n power supply circuit units is connected in parallel with the DC power supply, and the output terminals of the n bridge circuits are connected in series, and the switching The switching frequency in the circuit has n different phases, and the switching of the switching circuit is controlled so that the switching timing is different for each power supply circuit unit. And said that there was Unishi.
 また、本発明のスイッチング電源回路は、前記スイッチング回路におけるスイッチングの周波数の位相を前記電源回路部毎に180/n度ずつずらして前記スイッチング回路のスイッチングを制御し、前記電源回路部の前記トランスは、前記スイッチング回路により他の前記スイッチング回路と180/n度ずつずらしてスイッチングされ、前記トランス毎にスイッチングのタイミングを異なるようにしたことを特徴とする。 The switching power supply circuit of the present invention controls the switching of the switching circuit by shifting the phase of the switching frequency in the switching circuit by 180 / n degrees for each of the power supply circuit units. The switching circuit is switched by 180 / n degrees from the other switching circuits, and the switching timing is different for each transformer.
 また、本発明のスイッチング電源回路における前記ブリッジ回路は、ダイオードからなるダイオードブリッジであることを特徴とする。 Further, the bridge circuit in the switching power supply circuit of the present invention is a diode bridge made of a diode.
 また、本発明のスイッチング電源回路は、各電源回路部のスイッチング回路のスイッチングの周波数の位相を制御するスイッチング位相制御部を有し、前記スイッチング位相制御部は、スイッチングの周波数の周期の半分をn分割して、n分割した期間を基に、スイッチングの周波数の位相を前記電源回路部毎に180/n度ずつずらした信号を生成するようにしたことを特徴とする。 In addition, the switching power supply circuit of the present invention has a switching phase control unit that controls the phase of the switching frequency of the switching circuit of each power supply circuit unit, and the switching phase control unit sets half of the cycle of the switching frequency to n. The signal is generated by dividing the phase of the switching frequency by 180 / n degrees for each of the power supply circuit units based on the period divided into n.
 また、本発明のスイッチング電源回路は、n個の前記ブリッジ回路の出力端を直列の接続に代えて、並列に接続することを特徴とする。 The switching power supply circuit according to the present invention is characterized in that the output terminals of the n bridge circuits are connected in parallel instead of being connected in series.
 また、本発明のスイッチング電源回路における前記電源回路部は、前記スイッチング回路、前記トランス及び前記ブリッジ回路とがモジュール化されており、モジュール化された前記電源回路部をn個使用して構成されていることを特徴とする。 In the switching power supply circuit of the present invention, the power supply circuit unit is formed by modularizing the switching circuit, the transformer, and the bridge circuit, and includes n power supply circuit units that are modularized. It is characterized by being.
 また、本発明の前記スイッチング電源回路は、モジュール化されたn個の前記電源回路部で構成され、nを増加又は減少することができるようにしたことを特徴とする。 Further, the switching power supply circuit of the present invention is composed of n power supply circuit units that are modularized, and can increase or decrease n.
 従来は、スイッチング電源に1個のトランスを使用しており、使用するトランスの形状は、扱う電力に比例して大きくなる。本発明は、所望の電力をn個のトランスに分割して、トランスごとにスイッチングを行うようにする。このため、トランス1個当たりの扱う電力が1/nとなる。これにより、小型のトランスを使用することができるため、装置の小型化が可能となる。また、トランスが小型化することにより、小型化・軽量化が可能であり、更に、装置を薄くすることもできる。 Conventionally, one transformer is used for the switching power supply, and the shape of the transformer used increases in proportion to the power handled. In the present invention, desired power is divided into n transformers, and switching is performed for each transformer. For this reason, the power handled per transformer is 1 / n. Thereby, since a small transformer can be used, the apparatus can be miniaturized. Further, by reducing the size of the transformer, it is possible to reduce the size and weight of the transformer, and it is also possible to make the device thinner.
 また、本発明のスイッチング電源回路は、従来1個のトランスで行っていた電力変換をn個のトランスに配分して、トランス毎にスイッチングを行うように制御する。その際、各スイッチング素子のスイッチングを行う周波数の位相を180/n度毎ずらすようにして、トランス毎に異なるタイミングでスイッチングを行うように制御する。これにより、各スイッチング素子の周波数を上げることなく、出力電力に含まれる周波数をn倍にすることが可能となる。これにより、リプル電流の周波数が高くなり、また、リプル電流の変動幅を小さくすることができる。 In addition, the switching power supply circuit of the present invention controls power conversion, which has conventionally been performed by one transformer, to n transformers and performs switching for each transformer. At this time, the phase of the frequency at which the switching elements are switched is shifted by 180 / n degrees so that switching is performed at different timing for each transformer. As a result, the frequency included in the output power can be increased by n times without increasing the frequency of each switching element. As a result, the frequency of the ripple current is increased, and the fluctuation range of the ripple current can be reduced.
 また、所望の電力をn個のトランスに分割することにより、1個当たりのトランスに流れる電流が1/nとなる。これにより、スイッチング素子にかかる逆起電圧は、電流の減少に伴って低下する。このため、トランスに接続されるスイッチング素子(トランジスタ、FET、IGBT等)は、絶対最大定格電圧値が大きいスイッチング素子を使用する必要がないため、市場で流通している最適な(汎用性がある)スイッチング素子を選択することが可能となる。 Also, by dividing the desired power into n transformers, the current flowing through each transformer becomes 1 / n. As a result, the back electromotive force applied to the switching element decreases as the current decreases. For this reason, the switching elements (transistors, FETs, IGBTs, etc.) connected to the transformer do not need to use switching elements having a large absolute maximum rated voltage value. ) A switching element can be selected.
 また、所望の電力をn個のトランスに並列に分割することにより、トランス個々に流れる電流Iは1/nとなり、個々のトランスのコイルで損失する電力は、(I/n**2)×R(**は2乗を表す)に低減する。全体でトランスをn個使用するので、全体のコイルによる抵抗損失P’は(1/n)×Rに低減する。 Further, by dividing desired power into n transformers in parallel, the current I flowing through each transformer becomes 1 / n, and the power lost in the coil of each transformer is (I / n ** 2) × Reduce to R (** represents square). Since n transformers are used in total, the resistance loss P ′ due to the entire coil is reduced to (1 / n) × R.
 また、本発明によれば、スイッチング素子の電解コンデンサに流れるリプル電流を低減できる。電源とスイッチング素子の間にある入力電解コンデンサには、スイッチングする直流電源の電力とそのスイッチング周波数に応じたリプル電流に流れる。このリプル電流は、電解コンデンサの寿命に影響を与える。定格リプル電流が大きい電解コンデンサは、形状が大きくなり、市場流通が少なくコスト高で納期にも時間がかかる。所望の電力をn個のトランスに分割して、トランス毎に異なるタイミングでスイッチングを行うように制御することにより、リプル電流の周波数がn倍となる。これにより、電解コンデンサは、周波数が高いほどリプル電流が低下するため周波数がn倍となることでリプル電流も軽減される。このため、小型の電解コンデンサも使用できるため、選択の自由度が高まる。 Moreover, according to the present invention, the ripple current flowing through the electrolytic capacitor of the switching element can be reduced. The input electrolytic capacitor between the power supply and the switching element flows through a ripple current corresponding to the power of the DC power supply to be switched and its switching frequency. This ripple current affects the life of the electrolytic capacitor. Electrolytic capacitors with a large rated ripple current are large in shape, have little market distribution, are expensive, and take a long time to deliver. By dividing desired power into n transformers and performing control so that switching is performed at different timings for each transformer, the frequency of the ripple current is increased by n times. Thereby, since the ripple current of the electrolytic capacitor decreases as the frequency increases, the ripple current is reduced by increasing the frequency n times. For this reason, since a small electrolytic capacitor can also be used, the freedom degree of selection increases.
 また、本発明によれば、平滑回路の削除または平滑回路における平滑化素子を小型化が可能となる。トランスにて、電圧変換されたスイッチング波形は、整流素子で整流され,脈流成分が平滑回路にて平滑化されるが、所望の電力をn個のトランスに分割して、トランス毎に異なるタイミングでスイッチングを行うように制御することにより、リプル電圧が小さくなり、リプル電流値が減少する。このため、平滑化素子(チョークコイル、電解コンデンサ等)の選択の自由度が高まり、これにより小型化が可能となる。 Further, according to the present invention, the smoothing circuit can be eliminated or the smoothing element in the smoothing circuit can be downsized. The switching waveform voltage-converted by the transformer is rectified by the rectifier element, and the pulsating current component is smoothed by the smoothing circuit. However, the desired power is divided into n transformers and different timings for each transformer. By controlling so as to perform switching at, the ripple voltage is reduced and the ripple current value is reduced. For this reason, the freedom degree of selection of smoothing elements (a choke coil, an electrolytic capacitor, etc.) increases, and this enables miniaturization.
本発明によるスイッチング電源回路の構成を示すブロック図である。It is a block diagram which shows the structure of the switching power supply circuit by this invention. 本発明によるスイッチング電源回路における電源回路部の回路構成を示す図である。It is a figure which shows the circuit structure of the power supply circuit part in the switching power supply circuit by this invention. n個のスイッチング回路に入力される制御信号のタイミングを示す図である。(b)は、(a)で制御されたスイッチング電源回路の出力電流の変化を示す図である。It is a figure which shows the timing of the control signal input into n switching circuits. (B) is a figure which shows the change of the output current of the switching power supply circuit controlled by (a). n個の電源回路からなるスイッチング電源回路で、ダイオードブリッジの出力端を並列接続した構成を示すブロック図である。It is a block diagram which shows the structure which connected the output terminal of the diode bridge in parallel with the switching power supply circuit which consists of n power supply circuits. (a)は、従来のスイッチング電源回路の構成を示すブロック図、(b)は、従来のスイッチング電源回路の構成を示す回路図である。(A) is a block diagram which shows the structure of the conventional switching power supply circuit, (b) is a circuit diagram which shows the structure of the conventional switching power supply circuit. (a)は、制御回路によるスイッチング回路のスイッチング動作を示すタイミング図、(b)は、ダイオードブリッジから出力される電流の変化を示す図である。(A) is a timing diagram showing the switching operation of the switching circuit by the control circuit, (b) is a diagram showing the change of the current output from the diode bridge.
 以下、図面を参照して、本発明によるスイッチング電源回路を実施するための形態について説明する。尚、本発明は、従来1個のトランスで行っていた電力変換をn個のトランスにして配分して、トランス毎にスイッチングを行う。その際、スイッチング素子の位相を180/n度毎ずらすようにして、トランス毎に位相の異なる周波数でスイッチングを行うように制御するものである。 Hereinafter, an embodiment for implementing a switching power supply circuit according to the present invention will be described with reference to the drawings. In the present invention, power conversion, which has conventionally been performed by one transformer, is distributed to n transformers, and switching is performed for each transformer. At that time, the phase of the switching element is shifted by 180 / n degrees so that switching is performed at a frequency having a different phase for each transformer.
 これにより、各スイッチング素子の周波数を上げることなく出力周波数をn倍にすることができるため、スイッチング素子の損失を増加することなく、スイッチング電源回路の電力損失を低減し、整流デバイスを小型化または削除することが可能となる。また、スイッチング電源回路は、モジュール化されたn個の電源回路部で構成することができるため、小型化を図ることも可能である。 As a result, since the output frequency can be increased by n times without increasing the frequency of each switching element, the power loss of the switching power supply circuit can be reduced without increasing the loss of the switching element, and the rectifier device can be downsized or reduced. It can be deleted. Further, since the switching power supply circuit can be composed of n power supply circuit portions that are modularized, it is possible to reduce the size.
 図1は、本発明によるスイッチング電源装置のスイッチング電源回路の構成を示すブロック図、図2は、本発明によるスイッチング電源回路における電源回路部の回路構成を示す図である。 FIG. 1 is a block diagram showing a configuration of a switching power supply circuit of a switching power supply device according to the present invention, and FIG. 2 is a diagram showing a circuit configuration of a power supply circuit section in the switching power supply circuit according to the present invention.
 図1に示すように、スイッチング電源回路1は、直流電源40からの入力される直流電力をスイッチングして、所定の電圧を有する直流電力に変換して負荷48等に供給するn(nは、2以上の整数)個からなる電源回路部3と各電源回路部3を制御する位相制御回路30とを有している。 As shown in FIG. 1, the switching power supply circuit 1 switches the DC power input from the DC power supply 40, converts it to DC power having a predetermined voltage, and supplies it to the load 48 or the like n (n is The power supply circuit unit 3 includes an integer of 2 or more and a phase control circuit 30 that controls each power supply circuit unit 3.
 図1に示すように、スイッチング電源回路1の電源回路部3は、直流電源40からの入力される直流電力をスイッチングして、交流電力に変換するスイッチング回路7と、スイッチング回路7からの交流電力を一次巻線17に入力し、磁気結合により二次巻線18に電力を伝達するトランス16と、トランス16からの交流電力を直流電力に変換する整流回路(ダイオードブリッジ)20と、を有している。 As shown in FIG. 1, the power supply circuit unit 3 of the switching power supply circuit 1 switches the DC power input from the DC power supply 40 and converts it into AC power, and the AC power from the switching circuit 7. Is input to the primary winding 17 and has a transformer 16 that transmits power to the secondary winding 18 by magnetic coupling, and a rectifier circuit (diode bridge) 20 that converts AC power from the transformer 16 into DC power. ing.
 図1に示すように、スイッチング電源回路1はn個の電源回路部3を有しており、それぞれの電源回路部3のトランス16に対応して接続されたスイッチング回路7及び整流回路20とを有している。また、電源回路部3の出力部であるn個の整流回路20は、直列に接続されている。整流回路20が直列に接続された出力の両端から、負荷48等に電力が供給される。 As shown in FIG. 1, the switching power supply circuit 1 has n power supply circuit units 3, and includes a switching circuit 7 and a rectifier circuit 20 connected to correspond to the transformer 16 of each power supply circuit unit 3. Have. In addition, n rectifier circuits 20 that are output units of the power supply circuit unit 3 are connected in series. Power is supplied to the load 48 and the like from both ends of the output where the rectifier circuit 20 is connected in series.
 図2は、スイッチング電源回路における電源回路部の回路構成を示す図である。図2に示すように、スイッチング回路7は、MOSFETからなるスイッチング素子11、12、13、14を有しており、直流電源40に対しスイッチング素子11とスイッチング素子12とが直列に接続され、スイッチング素子13とスイッチング素子14とが直列に接続されている。尚、MOSFETに接続されているダイオードは、寄生ダイオードを示す。 FIG. 2 is a diagram showing a circuit configuration of a power supply circuit section in the switching power supply circuit. As shown in FIG. 2, the switching circuit 7 includes switching elements 11, 12, 13, and 14 made of MOSFETs. The switching element 11 and the switching element 12 are connected in series to the DC power supply 40, and switching is performed. The element 13 and the switching element 14 are connected in series. The diode connected to the MOSFET indicates a parasitic diode.
 スイッチング素子11とスイッチング素子12との接続点がトランス16の一次巻線17の一方の端に接続され、スイッチング素子13とスイッチング素子14との接続点がトランス16の一次巻線17の他方の端に接続されている。 A connection point between the switching element 11 and the switching element 12 is connected to one end of the primary winding 17 of the transformer 16, and a connection point between the switching element 13 and the switching element 14 is the other end of the primary winding 17 of the transformer 16. It is connected to the.
 これにより、スイッチング素子11とスイッチング素子14とをONし、スイッチング素子13とスイッチング素子12とがOFFすることにより、トランス16にiaで示す方向に電流が流れ、スイッチング素子13とスイッチング素子12とがONし、スイッチング素子11とスイッチング素子14とをOFFすることにより、トランス16にibで示す方向に電流が流れる。 As a result, the switching element 11 and the switching element 14 are turned on, and the switching element 13 and the switching element 12 are turned off, whereby a current flows in the direction indicated by ia in the transformer 16, and the switching element 13 and the switching element 12 are By turning on and turning off the switching element 11 and the switching element 14, a current flows through the transformer 16 in the direction indicated by ib.
 尚、スイッチング素子は、MOSFETに限らず、制御信号で回路電流をON、OFFすることができる電子部品であればよく、例えば、トランジスタ、IGBTであってもよい。 The switching element is not limited to a MOSFET, and may be any electronic component that can turn on and off a circuit current with a control signal. For example, the switching element may be a transistor or an IGBT.
 以後の説明で、電源回路部3の個数nを3としたときに、3個のスイッチング回路を第1のスイッチング回路、第2のスイッチング回路、第3のスイッチング回路と記す。 In the following description, when the number n of the power supply circuit units 3 is 3, the three switching circuits are referred to as a first switching circuit, a second switching circuit, and a third switching circuit.
 図1及び図2に示す位相制御回路30は、スイッチング素子の入力、例えば、MOSFETのゲートに制御信号(電圧)を印加して、スイッチング素子のON(導通)、OFF(非導通)を制御する。図2に示す位相制御回路30は、スイッチング素子11とスイッチング素子14とをONし、このときスイッチング素子13とスイッチング素子12とがOFFとなるように制御する、一方、スイッチング素子13とスイッチング素子12とをONしたときには、スイッチング素子11とスイッチング素子14とがOFFとなるように制御する。 The phase control circuit 30 shown in FIGS. 1 and 2 applies a control signal (voltage) to the input of the switching element, for example, the gate of the MOSFET, and controls ON (conducting) and OFF (non-conducting) of the switching element. . The phase control circuit 30 shown in FIG. 2 turns on the switching element 11 and the switching element 14 and controls the switching element 13 and the switching element 12 to be turned off at this time, while the switching element 13 and the switching element 12 are turned on. When the switch is turned on, the switching element 11 and the switching element 14 are controlled to be turned off.
 このときの、制御信号のONの開始からOFFの終了までの時間を周期Tとする。また、スイッチング周波数fは、1/Tとなる。 At this time, the period from the start of the control signal ON to the end of the control signal is defined as a period T. The switching frequency f is 1 / T.
 位相制御回路30は、スイッチング回路7毎に周期Tを有するスイッチング周波数の制御信号を入力し、スイッチング回路7は、制御信号によってスイッチング素子のON、OFFを繰り返す。 The phase control circuit 30 inputs a control signal having a switching frequency having a period T for each switching circuit 7, and the switching circuit 7 repeats ON and OFF of the switching element according to the control signal.
 また、位相制御回路30は、n(nは、2以上の整数である)個のスイッチング回路7に対して、180/n度の位相差で、スイッチング素子のON、OFFを制御する。 Further, the phase control circuit 30 controls ON / OFF of the switching element with a phase difference of 180 / n degrees with respect to n (n is an integer of 2 or more) switching circuits 7.
 図3(a)は、n個のスイッチング回路に入力される制御信号のタイミングを示す図、図3(b)は、図3(a)で制御されたスイッチング電源回路の出力電流の変化を示す図である。 3A is a diagram illustrating timings of control signals input to the n switching circuits, and FIG. 3B illustrates a change in output current of the switching power supply circuit controlled in FIG. 3A. FIG.
 スイッチング回路7に入力される制御信号は、位相制御回路30により生成される。図3(a)に示すように、第1のスイッチング回路7に入力される制御信号は、スイッチングの周期がTであり、スイッチング周波数はfである。同様に、第2のスイッチング回路に入力される制御信号は、スイッチングの周期がTであり、スイッチング周波数はfである。 The control signal input to the switching circuit 7 is generated by the phase control circuit 30. As shown in FIG. 3A, the control signal input to the first switching circuit 7 has a switching cycle of T and a switching frequency of f. Similarly, the control signal input to the second switching circuit has a switching period T and a switching frequency f.
 このとき、第2のスイッチング回路7に入力されるスイッチング周波数の位相は、第1のスイッチング回路7に対して180/n度ずれている。また、第nのスイッチング回路7に入力される制御信号は、スイッチングの周期がTであり、スイッチング周波数はfである。 At this time, the phase of the switching frequency input to the second switching circuit 7 is shifted by 180 / n degrees with respect to the first switching circuit 7. The control signal input to the nth switching circuit 7 has a switching cycle of T and a switching frequency of f.
 このとき、第nのスイッチング回路7に入力されるスイッチング周波数の位相は、第1のスイッチング回路7に対して(n-1)×180/n度ずれている。 At this time, the phase of the switching frequency input to the n-th switching circuit 7 is shifted by (n−1) × 180 / n degrees with respect to the first switching circuit 7.
 このように、位相制御回路30は、第1のスイッチング回路7と第2のスイッチング回路7との制御信号の位相差が、180/n度となるように生成する。同様に、第(n-1)のスイッチング回路7と第nのスイッチング回路7との制御信号の位相差が、180/n度となるようにスイッチング周波数を生成する。 Thus, the phase control circuit 30 generates the phase difference between the control signals of the first switching circuit 7 and the second switching circuit 7 to be 180 / n degrees. Similarly, the switching frequency is generated so that the phase difference between the control signals of the (n−1) th switching circuit 7 and the nth switching circuit 7 is 180 / n degrees.
 位相制御回路30によるスイッチング周波数の位相生成は、スイッチング周波数の周期の半分の期間をn分割して、分割した期間に対応させて各スイッチング回路7のスイッチング周波数を制御するようにする。 In the phase generation of the switching frequency by the phase control circuit 30, the half of the period of the switching frequency is divided into n, and the switching frequency of each switching circuit 7 is controlled corresponding to the divided period.
 また、スイッチング回路7の総数をnとすると、位相制御回路30は、スイッチング周波数fのn倍の周波数を基に、分周回路によりn分周にして、分周した信号により、位相が180/n度異なる、スイッチング周波数fの制御信号をスイッチング回路7毎に生成して、出力するようにしてもよい。 Further, assuming that the total number of switching circuits 7 is n, the phase control circuit 30 divides the frequency by n by the frequency dividing circuit based on the frequency n times the switching frequency f, and the phase is 180 / A control signal having a switching frequency f that differs n times may be generated for each switching circuit 7 and output.
 位相制御回路30により生成される制御信号は、周期Tのスイッチング周波数がfであり、各スイッチング回路には位相が180/n度ずれた周波数が入力される。これにより、各トランス16は、同時にスイッチングすることがなく、図3(b)に示すように、スイッチング周波数fのn倍の周波数を有するリップルを含む電流が出力される。また、従来、1個のトランスのみを使用した場合と比較して、電流の変動は1/nに軽減される。 The control signal generated by the phase control circuit 30 has a switching frequency of period T, and a frequency with a phase difference of 180 / n degrees is input to each switching circuit. As a result, the transformers 16 do not switch at the same time, and a current including a ripple having a frequency n times the switching frequency f is output as shown in FIG. Also, the current fluctuation is reduced to 1 / n compared to the conventional case where only one transformer is used.
 以上述べたように、n個のスイッチング回路7は、位相制御回路30によって、同一のスイッチング周波数で制御される。更に、位相制御回路30は、各スイッチング回路7のスイッチング周波数の位相が異なるようにして、同時のタイミングでON、OFFするスイッチング回路7がないようにしている。これにより、各トランス16は位相の異なる周波数でスイッチングが行われる。 As described above, the n switching circuits 7 are controlled by the phase control circuit 30 at the same switching frequency. Further, the phase control circuit 30 is configured such that the phase of the switching frequency of each switching circuit 7 is different so that there is no switching circuit 7 that is turned ON / OFF at the same timing. Thereby, each transformer 16 is switched at a frequency with a different phase.
 例えば、スイッチング周波数fを、100kHzとすると、周期は、10マイクロ秒(以下μsと記す)で有り、位相180度に相当する時間は5μsとなる。例えば、スイッチング回路7の総数nを3とすると、位相は60度となり、位相差60度に相当する時間は、5/3μsとなる。 For example, if the switching frequency f is 100 kHz, the period is 10 microseconds (hereinafter referred to as μs), and the time corresponding to the phase of 180 degrees is 5 μs. For example, if the total number n of the switching circuits 7 is 3, the phase is 60 degrees, and the time corresponding to the phase difference of 60 degrees is 5/3 μs.
 このように、図1及び図2に示す位相制御回路30は、100kHzの周波数を有する制御信号を、第1のスイッチング回路7に出力し、位相60度に相当する5/3μs後に100KHzの制御信号を、第2のスイッチング回路7に出力する。また、スイッチング回路72をONした後、5/3μs後に100kHzの制御信号を、第3のスイッチング回路7に出力する。 As described above, the phase control circuit 30 shown in FIGS. 1 and 2 outputs a control signal having a frequency of 100 kHz to the first switching circuit 7, and a control signal of 100 KHz after 5/3 μs corresponding to a phase of 60 degrees. Is output to the second switching circuit 7. Further, after the switching circuit 72 is turned ON, a control signal of 100 kHz is output to the third switching circuit 7 after 5/3 μs.
 尚、スイッチング周波数の位相に関して、スイッチング回路7の総数nを3とすると、位相は、180/n度から60度となる。本発明は、180/n度のみの1つの数値に限定するものではなく、例えば、180/n度が60度のときには、60度を中心として、例えば、55度から65度の範囲であってもよく、スイッチング周波数の位相に、許容範囲を設定してもよい。 In addition, regarding the phase of the switching frequency, if the total number n of the switching circuits 7 is 3, the phase is 180 / n degrees to 60 degrees. The present invention is not limited to one numerical value of only 180 / n degrees. For example, when 180 / n degrees is 60 degrees, the range is, for example, 55 degrees to 65 degrees with 60 degrees as the center. Alternatively, an allowable range may be set for the phase of the switching frequency.
 スイッチング回路7は、位相制御回路30からの制御信号によって直流電源をスイッチングして、交流電力に変換して、変換された交流電力をトランス16の一次巻線17に入力する。トランス16は、磁気結合により二次巻線18に交流電力を伝達する。トランス16の二次巻線18から出力される交流電力は、交流電力を直流電力に変換する整流回路(ダイオードブリッジ)20に入力される。 The switching circuit 7 switches the DC power supply according to the control signal from the phase control circuit 30 and converts it into AC power, and inputs the converted AC power to the primary winding 17 of the transformer 16. The transformer 16 transmits AC power to the secondary winding 18 by magnetic coupling. The AC power output from the secondary winding 18 of the transformer 16 is input to a rectifier circuit (diode bridge) 20 that converts AC power into DC power.
 整流回路20は、ダイオードブリッジから成り、ダイオードブリッジの出力端から直流電圧が出力される。 The rectifier circuit 20 includes a diode bridge, and a DC voltage is output from the output end of the diode bridge.
 図2に示すように、整流回路20としてのダイオードブリッジは、ダイオード21、22、23、24を有しており、トランス16の二次巻線18の出力端からダイオードブリッジの入力端g、hに電力が供給されて、ダイオードブリッジの出力端j、kから整流された直流電圧が出力される。ダイオードブリッジから出力される直流電圧は、スイッチング周波数fに同期したリプルを含んでいる。通常、ダイオードブリッジの出力端から直流電力は、負荷等に供給される。 As shown in FIG. 2, the diode bridge as the rectifier circuit 20 includes diodes 21, 22, 23, and 24, and the output terminal of the secondary winding 18 of the transformer 16 to the input terminals g and h of the diode bridge. Is supplied with power, and a rectified DC voltage is output from the output ends j and k of the diode bridge. The DC voltage output from the diode bridge includes a ripple synchronized with the switching frequency f. Usually, DC power is supplied to a load or the like from the output end of the diode bridge.
 図2に示すスイッチング電源回路1における電源回路部3は、スイッチング回路7、トランス16及びダイオードブリッジ20がモジュール化されており、例えば、基板上に、スイッチング回路7、トランス16及びダイオードブリッジ20とが組み込まれている。また、モジュール化した電源回路部3には、直流電源40を入力する電源入力端a、b、整流(平滑化)した直流電力を出力する出力端e、f及び位相制御部30からの制御信号を入力する入力端c、dとを有している。 In the power supply circuit section 3 in the switching power supply circuit 1 shown in FIG. 2, the switching circuit 7, the transformer 16 and the diode bridge 20 are modularized. For example, the switching circuit 7, the transformer 16 and the diode bridge 20 are formed on the substrate. It has been incorporated. The modularized power supply circuit unit 3 includes power input terminals a and b for inputting a DC power supply 40, output terminals e and f for outputting rectified (smoothed) DC power, and control signals from the phase control unit 30. Input terminals c and d.
 モジュール化した電源回路部3は、同一回路、同一部品、同一サイズの基板で構成されている。このため、モジュール化した電源回路部3を複数使用して、スイッチング電源装置1を構成することができる。尚、各電源回路部3は位相制御部30により制御される。 The modularized power supply circuit unit 3 is composed of the same circuit, the same parts, and the same size substrates. For this reason, the switching power supply device 1 can be configured by using a plurality of modularized power supply circuit units 3. Each power supply circuit unit 3 is controlled by the phase control unit 30.
 スイッチング電源回路1は、整流回路であるダイオードブリッジ20の出力端をn個を有しており、出力端を直列接続、又は並列接続にして負荷等に直流電力を供給することができる。 The switching power supply circuit 1 has n output ends of the diode bridge 20 that is a rectifier circuit, and can supply DC power to a load or the like by connecting the output ends in series or in parallel.
 例えば、モジュール化した電源回路部3をn個使用して、ダイオードブリッジ20の出力端e、fを直列接続した場合における1台の電源回路部3の出力電圧は、トランス16が1個からなる同容量のスイッチング電源回路1の1/nとなる。 For example, when n modularized power supply circuit units 3 are used and the output terminals e and f of the diode bridge 20 are connected in series, the output voltage of one power supply circuit unit 3 includes one transformer 16. 1 / n of the switching power supply circuit 1 having the same capacity.
 このため、トランス16の容量が少なくて済み、トランス16、モジュール基板を小型化することができる。また、スイッチング回路、ダイオードブリッジに使用するMOSFET、パワー用ダイオード等の半導体素子の定格電圧、電流を低くすることができるため、入手が容易となる。 For this reason, the capacity of the transformer 16 is small, and the transformer 16 and the module substrate can be miniaturized. Moreover, since the rated voltage and current of semiconductor elements such as MOSFETs and power diodes used in switching circuits and diode bridges can be reduced, it is easy to obtain.
 尚、スイッチング電源回路1は、複数のモジュール化した基板を用いた形態を述べたが、例えば、複数の回路を実装可能な基板等でスイッチング電源回路1を構成するようにしてもよい。 Although the switching power supply circuit 1 has been described as using a plurality of modularized substrates, for example, the switching power supply circuit 1 may be composed of a substrate on which a plurality of circuits can be mounted.
 また、スイッチング電源回路1は、モジュール化されたn個の電源回路部3で構成されるが、nを増加又は減少することが可能であるため、スイッチング電源回路1の電力容量、サイズ等に合わせて、nを決めることができる。 The switching power supply circuit 1 is composed of n power supply circuit units 3 that are modularized. However, since n can be increased or decreased, the switching power supply circuit 1 can be adapted to the power capacity, size, etc. of the switching power supply circuit 1. N can be determined.
 図1は、n個の電源回路からなるスイッチング電源回路1で、ダイオードブリッジの出力端を直列接続した構成を示すブロック図である。図1に示すように、スイッチング電源回路1は、ダイオードブリッジの出力端をn個有しており、出力端を直列に接続にして負荷等に直流電力を供給する。このときの各ダイオードブリッジの出力端の電圧に対し、直列に接続することによりn倍の電圧が出力として得られる。 FIG. 1 is a block diagram showing a configuration in which the output terminals of a diode bridge are connected in series in a switching power supply circuit 1 composed of n power supply circuits. As shown in FIG. 1, the switching power supply circuit 1 has n output terminals of a diode bridge, and supplies DC power to a load or the like by connecting the output terminals in series. With respect to the voltage at the output terminal of each diode bridge at this time, a voltage n times as large is obtained as an output by connecting in series.
 図4は、n個の電源回路部からなるスイッチング電源回路で、ダイオードブリッジの出力端を並列接続した構成を示すブロック図である。 FIG. 4 is a block diagram showing a configuration in which the output terminals of the diode bridge are connected in parallel in a switching power supply circuit composed of n power supply circuit units.
 図4に示すように、ダイオードブリッジの出力端をn個有しており、出力端を並列に接続にして負荷等に直流電力を供給する。スイッチング電源回路1の出力端を並列接続にして負荷等に直流電力を供給した場合には、1個のモジュールの電源回路部のダイオードブリッジの出力電流は、トランス1個からなる同容量のスイッチング電源回路50(図5に示す)の1/nとなる。 As shown in FIG. 4, the diode bridge has n output terminals, and the output terminals are connected in parallel to supply DC power to a load or the like. When DC power is supplied to a load or the like by connecting the output terminals of the switching power supply circuit 1 in parallel, the output current of the diode bridge of the power supply circuit section of one module is the same capacity switching power supply consisting of one transformer. 1 / n of the circuit 50 (shown in FIG. 5).
 また、出力電圧は、各電源回路部のスイッチング周波数のn倍のスイッチング周波数となり、リプル電圧、リプル電流も軽減される。このため、平滑用のコンデンサのリプル電流による発熱を押さえることができるため、コンデンサの小型化が可能となる。 Also, the output voltage has a switching frequency that is n times the switching frequency of each power supply circuit unit, and the ripple voltage and ripple current are also reduced. For this reason, since heat generation due to the ripple current of the smoothing capacitor can be suppressed, the size of the capacitor can be reduced.
 以上述べたように、本発明のスイッチング電源回路は、スイッチング回路と、トランスと、ダイオードブリッジとを備える電源回路部3をn個(nは、2以上の整数)有し、スイッチング回路におけるスイッチングの周波数の位相を前記電源回路毎に180/n度ずつずらしスイッチング回路のスイッチングを制御して、n個のトランスをそれぞれ異なる位相でスイッチングするものである。 As described above, the switching power supply circuit of the present invention has n power supply circuit sections 3 (n is an integer of 2 or more) including a switching circuit, a transformer, and a diode bridge, The phase of the frequency is shifted by 180 / n degrees for each of the power supply circuits to control the switching of the switching circuit, thereby switching the n transformers at different phases.
 このため、従来のスイッチング電源回路のように、トランスを1個使用して直流電源をスイッチングする場合と比較して、以下に記す特徴を有している。 For this reason, as compared with the case where a single transformer is used to switch a DC power supply as in a conventional switching power supply circuit, it has the following characteristics.
 第1に、トランスの小型化が可能となる。従来は、スイッチング電源に1個のトランスを使用しており、使用するトランスの形状は、扱う電力に比例して大きくなる。本発明は、所望の電力をn個のトランスに分割して、トランスごとにスイッチングを行うようにする。 First, the transformer can be miniaturized. Conventionally, one transformer is used for the switching power supply, and the shape of the transformer used increases in proportion to the power to be handled. In the present invention, desired power is divided into n transformers, and switching is performed for each transformer.
 このため、トランス1個当たりの扱う電力が1/nとなる。これにより、小型のトランスを使用することができるため、装置の小型化が可能となる。また、トランスが小型化することにより、小型化・軽量化が可能であり、更に、装置を薄くすることもできる。 Therefore, the power handled per transformer is 1 / n. Thereby, since a small transformer can be used, the apparatus can be miniaturized. Further, by reducing the size of the transformer, it is possible to reduce the size and weight of the transformer, and it is also possible to make the device thinner.
 第2に、電解コンデンサに流れるリプル電流を軽減できる。従来のスイッチング電源回路のように、トランスを1個使用して直流電源をスイッチングする場合には、スイッチングにより直流電源に急激な電圧変動が発生することがある。 Second, the ripple current flowing in the electrolytic capacitor can be reduced. When a DC power supply is switched using one transformer as in a conventional switching power supply circuit, a sudden voltage fluctuation may occur in the DC power supply due to switching.
 このため、直流電源とスイッチング素子の間に電源安定化用の電解コンデンサを接続して安定化を図っている。これにより、スイッチングする電源の電力とそのスイッチング周波数に応じて電解コンデンサにリプル電流に流れる。 Therefore, stabilization is achieved by connecting an electrolytic capacitor for stabilizing the power supply between the DC power supply and the switching element. As a result, a ripple current flows through the electrolytic capacitor in accordance with the power of the power source to be switched and its switching frequency.
 このリプル電流は、電解コンデンサの寿命に影響を与える。定格リプル電流が大きい電解コンデンサは、形状が大きくなり、市場流通が少なくコスト高で納期も時間がかかるため、電解コンデンサに流れるリプル電流を小さくすることが求められる。 This ripple current affects the life of the electrolytic capacitor. An electrolytic capacitor having a large rated ripple current has a large shape, a small market distribution, high cost, and a long delivery time. Therefore, it is required to reduce the ripple current flowing through the electrolytic capacitor.
 本発明は、従来1個のトランスで行っていた電力変換をn個のトランスに分割して、トランスをスイッチングする位相をずらすことにより、リプル電流の周波数がn倍となる。電解コンデンサの許容リプル電流値はリプルの周波数が高いほど大きくなる傾向にあり、加えてスイッチング周波数がn倍となることでリプル電流値が減少するため、電解コンデンサを選択する自由度を高めることができる。 In the present invention, the frequency of the ripple current is increased by a factor of n by dividing the power conversion, which has conventionally been performed by one transformer, into n transformers and shifting the phase of switching the transformer. The allowable ripple current value of an electrolytic capacitor tends to increase as the ripple frequency increases. In addition, the ripple current value decreases as the switching frequency is increased by n times, so the degree of freedom in selecting an electrolytic capacitor can be increased. it can.
 第3に、平滑回路における平滑化素子の削除又は小型化ができる。スイッチング電源回路は、トランスで電圧変換された出力側のスイッチング波形が、整流回路で整流され、脈流成分が電解コンデンサ等からなる平滑回路にて低減される。 Third, the smoothing element in the smoothing circuit can be deleted or downsized. In the switching power supply circuit, the switching waveform on the output side that is voltage-converted by the transformer is rectified by the rectifier circuit, and the pulsating current component is reduced by a smoothing circuit including an electrolytic capacitor or the like.
 本発明は、従来1個のトランスで行っていた電力変換をn個のトランスに分割して、トランスをスイッチングする位相をずらすことにより、リプル電流の周波数がn倍となり、リプル電流値が減少する。 The present invention divides the power conversion conventionally performed by one transformer into n transformers and shifts the phase of switching the transformer, thereby increasing the ripple current frequency by a factor of n and reducing the ripple current value. .
 これにより、平滑回路の削除または平滑回路における平滑化素子(電解コンデンサ、チョークコイル等)の小型化、選択の自由度を高めることができる。また、使用するトランス数であるnを大きくすることにより、平滑回路を設けないようにすることも可能となる。 This makes it possible to eliminate the smoothing circuit or reduce the size of the smoothing element (electrolytic capacitor, choke coil, etc.) in the smoothing circuit and increase the degree of freedom of selection. Also, it is possible to avoid providing a smoothing circuit by increasing n, which is the number of transformers to be used.
 第4に、市場で流通している最適な汎用性があるスイッチング素子の選択することができる。スイッチング電源を構成するトランスに接続されるMOSFET等のスイッチング素子には、スイッチング期間で、電流のオフ時にトランスのリアクタンスにより逆起電圧が発生する。 Fourth, it is possible to select an optimal versatile switching element that is distributed in the market. In a switching element such as a MOSFET connected to a transformer constituting a switching power supply, a counter electromotive voltage is generated by reactance of the transformer when the current is turned off during the switching period.
 逆起電圧は、スイッチング期間のオン時に流れていた電流に比例する。また、逆起電圧は、高速スイッチングによる急激な電流変化によっても発生する。逆起電圧は、スイッチング素子の絶対最大定格電圧に大きな影響を与える。このため、絶対最大定格電圧の大きいスイッチング素子を使用したり、トランスに流す電流を少なくする必要がある。 The counter electromotive voltage is proportional to the current that flows when the switching period is on. The back electromotive voltage is also generated by a sudden current change due to high-speed switching. The counter electromotive voltage greatly affects the absolute maximum rated voltage of the switching element. For this reason, it is necessary to use a switching element having a large absolute maximum rated voltage or to reduce the current flowing through the transformer.
 本発明は、従来1個のトランスで行っていた電力変換をn個のトランスに分割することにより、1個当たりのトランスに流れる電流が1/nとなる。これにより、スイッチング素子にかかる逆起電圧は、電流の減少に比例して低下する。一般にスイッチング素子の絶対最大定格電圧が高くなるにつれ、市場流通が少なくコスト高で納期も時間がかかるため、所望の電力をn個のトランスに分割することにより、市場で流通している最適な汎用性があるスイッチング素子の選択が可能となる。 In the present invention, by dividing the power conversion conventionally performed by one transformer into n transformers, the current flowing through each transformer becomes 1 / n. Thereby, the counter electromotive voltage applied to the switching element decreases in proportion to the decrease in current. Generally, as the absolute maximum rated voltage of the switching element increases, the market distribution is less, the cost is higher, and the delivery time is longer. Therefore, by dividing the desired power into n transformers, the optimal general-purpose products that are distributed in the market It is possible to select a suitable switching element.
 第5に、スイッチング素子のスイッチング損失を低減することができる。スイッチング電源回路におけるスイッチング素子は、入力されるON、OFFの制御信号に対してターンオン動作、ターンオフ動作に遅延が生じてスイッチングするのに時間を要するため、スイッチング時に損失を生じる。 Fifth, switching loss of the switching element can be reduced. Since the switching element in the switching power supply circuit takes time to switch due to a delay in the turn-on operation and the turn-off operation with respect to the input ON and OFF control signals, a loss occurs at the time of switching.
 一般的にオフ時の電圧V(V)、オン時の電流I(A)、ターンオン時間Ton(s)、ターンオフ時間Toff(s)、スイッチング周波数f(Hz)とすると、スイッチング損失Psw(W)は以下の式で求められる。
Psw=(1/6)×V×I×(Ton+Toff)×f ・・・ (1)
In general, when the voltage V (V) at the off time, the current I (A) at the on time, the turn-on time Ton (s), the turn-off time Toff (s), and the switching frequency f (Hz), the switching loss Psw (W) Is obtained by the following equation.
Psw = (1/6) × V × I × (Ton + Toff) × f (1)
 従来のスイッチング電源回路のように出力のリプルを小さくするため、例えば、スイッチング周波数fをm倍にすると、(1)式に示すように、スイッチング損失Pswもm倍となる。 In order to reduce the output ripple as in the conventional switching power supply circuit, for example, when the switching frequency f is increased by m times, the switching loss Psw is also increased by m times as shown in the equation (1).
 本発明によるスイッチング電源回路は、各モジュールの電流は1/nであり、スイッチング素子の個数は、従来のトランス1個のn倍であるため、損失Psw’は以下の式となる。
Psw’=(1/6)×V×(I/n)×(Ton+Toff)×f×n=(1/6)×V×I×(Ton+Toff)×f=Psw ・・・ (2)
(2)式に示すように、スイッチング損失を増加することなく、出力側のリプル周波数をn倍にすることができる。
In the switching power supply circuit according to the present invention, the current of each module is 1 / n, and the number of switching elements is n times that of one conventional transformer. Therefore, the loss Psw ′ is expressed by the following equation.
Psw ′ = (1/6) × V × (I / n) × (Ton + Toff) × f × n = (1/6) × V × I × (Ton + Toff) × f = Psw (2)
As shown in the equation (2), the ripple frequency on the output side can be increased n times without increasing the switching loss.
 例えばV=20(V)、I=20(A)、Ton=Toff=100(ns)、f=50(kHz)とすると、Psw=0.7(W)となる。従来方式では周波数を10倍の500(kHz)にするとPswは7(W)となる。本発明によるスイッチング回路ではn=10とすることで、出力電力に含まれる周波数は10倍となるため、Psw’は0.7(W)のままである。 For example, when V = 20 (V), I = 20 (A), Ton = Toff = 100 (ns), and f = 50 (kHz), Psw = 0.7 (W). In the conventional method, when the frequency is increased to 10 times 500 (kHz), Psw becomes 7 (W). In the switching circuit according to the present invention, by setting n = 10, the frequency included in the output power becomes 10 times, so that Psw ′ remains 0.7 (W).
 このため、スイッチング周波数の高周波化による損失を減らすことができ、電力の損失による発熱を押さえることができる。 For this reason, it is possible to reduce loss due to higher switching frequency, and to suppress heat generation due to power loss.
 また、トランスの容量が少なくて済み、トランス、モジュール基板を小型化することができる。また、スイッチング回路7、ダイオードブリッジに使用するMOSFET、パワー用ダイオードの半導体素子の定格電圧、電流を低くすることができるため、半導体素子の入手が容易となる。 Also, the capacity of the transformer is small, and the transformer and the module substrate can be miniaturized. In addition, since the rated voltage and current of the switching circuit 7, the MOSFET used for the diode bridge, and the semiconductor element of the power diode can be lowered, the semiconductor element can be easily obtained.
 以下に、出願人による先行技術調査において発見された先行技術文献と本発明との対比を説明する。特許文献1(特開2008-79403号公報)は、整流回路の出力側に発生するサージ電圧を抑え、DC-DCコンバータの電力変換効率を高めることが可能な低損失コンバータが開示されている。 Hereinafter, the comparison between the prior art documents discovered in the prior art search by the applicant and the present invention will be described. Japanese Patent Laid-Open No. 2008-79403 discloses a low-loss converter that can suppress a surge voltage generated on the output side of a rectifier circuit and increase the power conversion efficiency of the DC-DC converter.
 特許文献1によれば直流電源とトランスとの間に半導体スイッチング素子Q1~Q4を配設し、トランスと負荷との間に整流回路と出力平滑回路とを設ける。整流回路と出力平滑回路との間にサージ電圧を吸収するRCDスナバ回路が設けられている。整流回路の出力側電圧に含まれるサージ電圧をスナバダイオードを介してスナバコンデンサにより吸収し、スナバコンデンサの電荷をスナバ抵抗を介して放電し、負荷に電力として供給するようにしたものである。 According to Patent Document 1, semiconductor switching elements Q1 to Q4 are disposed between a DC power source and a transformer, and a rectifier circuit and an output smoothing circuit are disposed between the transformer and a load. An RCD snubber circuit that absorbs a surge voltage is provided between the rectifier circuit and the output smoothing circuit. The surge voltage included in the output side voltage of the rectifier circuit is absorbed by the snubber capacitor via the snubber diode, the electric charge of the snubber capacitor is discharged via the snubber resistor, and supplied to the load as electric power.
 本発明は、従来1個のトランスで行っていた電力変換をn個のトランスに分割することにより、1個当たりのトランスに流れる電流が1/nとなる。これにより、スイッチング素子にかかる逆起電圧は、電流の減少に比例して低下する。一般にスイッチング素子の絶対最大定格電圧が高くなるにつれ、市場流通が少なくコスト高で納期も時間がかかるため、所望の電力をn個のトランスに分割することにより、市場で流通している最適な汎用性があるスイッチング素子の選択が可能となる。 In the present invention, by dividing the power conversion conventionally performed by one transformer into n transformers, the current flowing through each transformer becomes 1 / n. Thereby, the counter electromotive voltage applied to the switching element decreases in proportion to the decrease in current. Generally, as the absolute maximum rated voltage of the switching element increases, the market distribution is less, the cost is higher, and the delivery time is longer. Therefore, by dividing the desired power into n transformers, the optimal general-purpose products that are distributed in the market It is possible to select a suitable switching element.
 また、本発明は、従来1個のトランスで行っていた電力変換をn個のトランスに分割して、トランスをスイッチングする位相をずらすことにより、リプル電流の周波数がn倍となり、リプル電流値が減少する。これにより、平滑回路の削除または平滑回路における平滑化素子(電解コンデンサ、チョークコイル等)の小型化、選択の自由度を高めることができる。また、使用するトランス数であるnを大きくすることにより、平滑回路を設けないようにすることも可能となる。 Further, according to the present invention, by dividing power conversion, which has been conventionally performed by one transformer, into n transformers and shifting the phase of switching the transformer, the frequency of the ripple current becomes n times, and the ripple current value is Decrease. As a result, the smoothing circuit can be eliminated, or the smoothing element (electrolytic capacitor, choke coil, etc.) in the smoothing circuit can be reduced in size and the degree of freedom in selection can be increased. Also, it is possible to avoid providing a smoothing circuit by increasing n, which is the number of transformers to be used.
 このように、本願発明は、サージ電圧を吸収するRCDスナバ回路を設ける必要はなく、先行技術文献にはない特徴を有している。 Thus, the present invention does not require an RCD snubber circuit that absorbs a surge voltage, and has a feature that is not found in the prior art documents.
 この発明は、その本質的特性から逸脱することなく数多くの形式のものとして具体化することができる。よって、上述した実施形態は専ら説明上のものであり、本発明を制限するものではないことは言うまでもない。 This invention can be embodied in many forms without departing from its essential characteristics. Therefore, it is needless to say that the above-described embodiment is exclusively for description and does not limit the present invention.
1、50   スイッチング電源回路
3      電源回路部
7、52   スイッチング回路
11、12、13、14、53,54、55、56 スイッチング素子(MOSFET)
16、60   トランス
17、61   一次巻線
18、62   二次巻線
20、65   整流回路(ダイオードブリッジ)
21、22、23、24、66、67、68、69   ダイオード
30   位相制御回路
40   直流電源
48   負荷
80   平滑回路(平滑化コンデンサ)
DESCRIPTION OF SYMBOLS 1, 50 Switching power supply circuit 3 Power supply circuit part 7, 52 Switching circuit 11, 12, 13, 14, 53, 54, 55, 56 Switching element (MOSFET)
16, 60 Transformer 17, 61 Primary winding 18, 62 Secondary winding 20, 65 Rectifier circuit (diode bridge)
21, 22, 23, 24, 66, 67, 68, 69 Diode 30 Phase control circuit 40 DC power supply 48 Load 80 Smoothing circuit (smoothing capacitor)

Claims (7)

  1.  トランスと、
    当該トランスの1次側に設けられ、直流電源をスイッチングして前記トランスの1次側の巻線に方向の異なる電流を交互に流すスイッチング回路と、
    前記トランスの2次側に設けられ、前記トランスの2次側の巻線から出力される電圧を直流に変換して整流するブリッジ回路と、
    を備える電源回路部をn個(nは、2以上の整数)有し、
     n個の前記電源回路部のスイッチング回路の入力を前記直流電源と並列に接続し、n個の前記ブリッジ回路の出力端を直列に接続し、
     前記スイッチング回路におけるスイッチングの周波数は、n個の異なる位相を有し、前記電源回路部毎にスイッチングのタイミングが異なるように、前記スイッチング回路のスイッチングを制御するようにしたことを特徴とするスイッチング電源回路。
    With a transformer,
    A switching circuit that is provided on the primary side of the transformer, switches a DC power supply, and alternately causes currents in different directions to flow through the winding on the primary side of the transformer;
    A bridge circuit that is provided on the secondary side of the transformer and converts the voltage output from the secondary winding of the transformer into a direct current to be rectified;
    N power supply circuit units (where n is an integer of 2 or more),
    connecting the input of the switching circuit of the n power supply circuit units in parallel with the DC power supply, connecting the output terminals of the n bridge circuits in series,
    The switching power supply is characterized in that the switching frequency in the switching circuit has n different phases, and the switching of the switching circuit is controlled so that the switching timing is different for each power supply circuit section. circuit.
  2.  前記スイッチング回路におけるスイッチングの周波数の位相を前記電源回路部毎に180/n度ずつずらして前記スイッチング回路のスイッチングを制御し、
    前記電源回路部の前記トランスは、前記スイッチング回路により他の前記スイッチング回路と180/n度ずつずらしてスイッチングされ、前記トランス毎にスイッチングのタイミングを異なるようにしたことを特徴とする請求項1に記載のスイッチング電源回路。
    The switching of the switching circuit is controlled by shifting the phase of the switching frequency in the switching circuit by 180 / n degrees for each power supply circuit unit,
    The transformer of the power supply circuit section is switched by the switching circuit by shifting by 180 / n degrees from the other switching circuits, and the switching timing is different for each transformer. The switching power supply circuit described.
  3.  前記ブリッジ回路は、ダイオードからなるダイオードブリッジであることを特徴とする請求項1に記載のスイッチング電源回路。 The switching power supply circuit according to claim 1, wherein the bridge circuit is a diode bridge made of a diode.
  4.  前記スイッチング電源回路は、各電源回路部のスイッチング回路のスイッチングの周波数の位相を制御するスイッチング位相制御部を有し、前記スイッチング位相制御部は、スイッチングの周波数の周期の半分をn分割して、n分割した期間を基に、スイッチングの周波数の位相を前記電源回路部毎に180/n度ずつずらした信号を生成するようにしたことを特徴とする請求項1に記載のスイッチング電源回路。 The switching power supply circuit has a switching phase control unit that controls a phase of a switching frequency of the switching circuit of each power supply circuit unit, and the switching phase control unit divides a half of a cycle of the switching frequency by n, 2. The switching power supply circuit according to claim 1, wherein a signal in which a phase of a switching frequency is shifted by 180 / n degrees for each of the power supply circuit units is generated based on a period divided into n.
  5.  n個の前記ブリッジ回路の出力端を直列の接続に代えて、並列に接続することを特徴とする請求項1に記載のスイッチング電源回路。 The switching power supply circuit according to claim 1, wherein the output terminals of the n bridge circuits are connected in parallel instead of being connected in series.
  6.  前記電源回路部は、前記スイッチング回路、前記トランス及び前記ブリッジ回路とがモジュール化されており、モジュール化された前記電源回路部をn個使用して構成されていることを特徴とする請求項1に記載のスイッチング電源回路。 2. The power supply circuit unit, wherein the switching circuit, the transformer, and the bridge circuit are modularized, and is configured by using n modularized power supply circuit units. The switching power supply circuit according to 1.
  7.  前記スイッチング電源回路は、モジュール化されたn個の前記電源回路部で構成され、nを増加又は減少することができるようにしたことを特徴とする請求項6に記載のスイッチング電源回路。 7. The switching power supply circuit according to claim 6, wherein the switching power supply circuit is configured by n power supply circuit units that are modularized, and n can be increased or decreased.
PCT/JP2016/088016 2016-03-02 2016-12-21 Switching power supply circuit WO2017149906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039485 2016-03-02
JP2016039485A JP2017158305A (en) 2016-03-02 2016-03-02 Switching power supply circuit

Publications (1)

Publication Number Publication Date
WO2017149906A1 true WO2017149906A1 (en) 2017-09-08

Family

ID=59743667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088016 WO2017149906A1 (en) 2016-03-02 2016-12-21 Switching power supply circuit

Country Status (2)

Country Link
JP (1) JP2017158305A (en)
WO (1) WO2017149906A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020231B1 (en) * 2017-03-08 2019-09-10 (주)에너캠프 Energy level conversion circuit for portable energy storage apparatus
KR20210034765A (en) 2019-09-21 2021-03-31 이민호 Senior Prevention of Depression
JP2022087676A (en) * 2020-12-01 2022-06-13 オムロン株式会社 Device and method for predicting remaining life

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179161A (en) * 1982-04-14 1983-10-20 Fuji Elelctrochem Co Ltd Operating method for switching regulator and circuit thereof
JPS62203555A (en) * 1986-02-28 1987-09-08 Yokogawa Medical Syst Ltd Dc power circuit
JPS63268464A (en) * 1987-04-23 1988-11-07 Nissin Electric Co Ltd High-tension dc power source device
JP2004088814A (en) * 2002-08-22 2004-03-18 Nissin Electric Co Ltd Dc-dc converter
WO2006027744A2 (en) * 2004-09-08 2006-03-16 Eaton Corporation Primary paralleled three-phase full-bridge dc-dc converter
JP2006238695A (en) * 2005-02-24 2006-09-07 En Technology Inc Power supply for generating plasma
JP2011142723A (en) * 2010-01-06 2011-07-21 Nissin Electric Co Ltd Dc-dc converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179161A (en) * 1982-04-14 1983-10-20 Fuji Elelctrochem Co Ltd Operating method for switching regulator and circuit thereof
JPS62203555A (en) * 1986-02-28 1987-09-08 Yokogawa Medical Syst Ltd Dc power circuit
JPS63268464A (en) * 1987-04-23 1988-11-07 Nissin Electric Co Ltd High-tension dc power source device
JP2004088814A (en) * 2002-08-22 2004-03-18 Nissin Electric Co Ltd Dc-dc converter
WO2006027744A2 (en) * 2004-09-08 2006-03-16 Eaton Corporation Primary paralleled three-phase full-bridge dc-dc converter
JP2006238695A (en) * 2005-02-24 2006-09-07 En Technology Inc Power supply for generating plasma
JP2011142723A (en) * 2010-01-06 2011-07-21 Nissin Electric Co Ltd Dc-dc converter

Also Published As

Publication number Publication date
JP2017158305A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US9318967B2 (en) DC to DC converter and DC to DC conversion system
JP6722353B2 (en) DC/DC converter
WO2015004989A1 (en) Bidirectional dc-to-dc converter
US20110069514A1 (en) Dc conversion apparatus
JP6220980B2 (en) Power factor improving converter and power supply device including power factor improving converter
US8068355B1 (en) Apparatus for isolated switching power supply with coupled output inductors
CN111193400B (en) Power supply device
US20150188437A1 (en) Power supply apparatus, power supply system with the power supply apparatus, and method of controlling the same
US9160238B2 (en) Power converter with current feedback loop
JP2007097319A (en) Ac/dc conversion circuit
JP2004088814A (en) Dc-dc converter
JP2020010594A (en) Dc/dc converter
CN113949271A (en) Switching power supply device and power supply system
JP2005518775A (en) N-phase integrated buck converter
WO2017149906A1 (en) Switching power supply circuit
JP4446473B2 (en) DC-DC converter
US11451161B2 (en) Power switcher, power rectifier, and power converter including cascode-connected transistors
US11356029B2 (en) Rectifying circuit and switched-mode power supply incorporating rectifying circuit
JP2003079144A (en) Electrical circuit device for generating low-power rectified low voltage from ac voltage
JP2006180599A (en) Power unit
WO2015011972A1 (en) Power conversion device
WO2015079569A1 (en) Inverter
CN109217674B (en) Switching power supply device and switching control circuit
JP2021100363A (en) Switching power supply device
JP6680059B2 (en) Switching power supply device and switching control circuit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892740

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892740

Country of ref document: EP

Kind code of ref document: A1