WO2017149632A1 - Mass spectrometry device and mass spectrometry method - Google Patents

Mass spectrometry device and mass spectrometry method Download PDF

Info

Publication number
WO2017149632A1
WO2017149632A1 PCT/JP2016/056166 JP2016056166W WO2017149632A1 WO 2017149632 A1 WO2017149632 A1 WO 2017149632A1 JP 2016056166 W JP2016056166 W JP 2016056166W WO 2017149632 A1 WO2017149632 A1 WO 2017149632A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
mass spectrum
target component
unit
comparison
Prior art date
Application number
PCT/JP2016/056166
Other languages
French (fr)
Japanese (ja)
Inventor
雄太郎 山村
渡邉 淳
見悟 前田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/056166 priority Critical patent/WO2017149632A1/en
Publication of WO2017149632A1 publication Critical patent/WO2017149632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the present invention relates to a mass spectrometer and a mass spectrometry method for performing mass spectrometry by directly ionizing a sample.
  • a method for performing mass analysis of a sample for example, a method for performing mass analysis by directly ionizing a sample in a solid or liquid state is known, such as DART (Direct Analysis in Real Time). It is often not easy for an inexperienced analyst to identify the peak of the target component from the mass spectrum obtained by this type of mass spectrometry. Therefore, there is a demand for a mass spectrometer and a mass spectrometry method that enable even an inexperienced analyst to easily and accurately identify a target component in a sample.
  • DART Direct Analysis in Real Time
  • An example of a method for identifying a target component in a sample by mass spectrometry is to compare the peak pattern included in the mass spectrum obtained by mass spectrometry with the peak pattern registered in the spectrum library in advance.
  • a method of identifying a target component in a sample based on the degree is known (for example, see Patent Document 1 below). According to such a method, although the target component in the sample can be easily identified, direct ionization is not sufficiently reliable because separation by chromatography is not performed. There is a possibility that it cannot be identified.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mass spectrometer and a mass spectrometry method that enable an unskilled analyst to easily and accurately identify a target component in a sample. To do.
  • a mass spectrometer includes a mass analysis unit, a mass spectrum generation unit, an absolute intensity comparison unit, a peak pattern comparison unit, and a target component determination unit.
  • the mass spectrometric unit performs mass spectrometry by directly ionizing a sample.
  • the mass spectrum generation unit generates a mass spectrum based on mass analysis by the mass analysis unit.
  • the absolute intensity comparison unit compares the absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold value.
  • the peak pattern comparison unit compares the mass spectrum generated by the mass spectrum generation unit with a predetermined peak pattern.
  • the target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit and the comparison result by the peak pattern comparison unit.
  • the presence / absence of the target component in the sample can be determined based on a quantitative standard based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry. Further, by comparing the mass spectrum obtained by mass spectrometry with a predetermined peak pattern, the presence or absence of the target component in the sample can be determined based on a qualitative reference. As described above, since the presence or absence of the target component in the sample is determined based on the quantitative and qualitative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample.
  • the mass spectrometer may further include an intensity ratio comparison unit.
  • the intensity ratio comparison unit compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold value.
  • the target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit, the comparison result by the peak pattern comparison unit, and the comparison result by the intensity ratio comparison unit. You may judge.
  • the presence / absence of the target component in the sample can be determined based on a relative reference based on the intensity ratio of two peaks included in the mass spectrum obtained by mass spectrometry.
  • the presence / absence of the target component in the sample is determined based on the absolute and relative criteria in addition to the quantitative and qualitative criteria, so that the target component in the sample can be identified more accurately.
  • Another mass spectrometer includes a mass analyzer, a mass spectrum generator, an absolute intensity comparison unit, an intensity ratio comparison unit, and a target component determination unit.
  • the mass spectrometric unit performs mass spectrometry by directly ionizing a sample.
  • the mass spectrum generation unit generates a mass spectrum based on mass analysis by the mass analysis unit.
  • the absolute intensity comparison unit compares the absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold value.
  • the intensity ratio comparison unit compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold value.
  • the target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit and the comparison result by the intensity ratio comparison unit.
  • the presence or absence of the target component in the sample can be determined based on an absolute reference based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry. Further, based on the intensity ratio of two peaks included in the mass spectrum obtained by mass spectrometry, the presence or absence of the target component in the sample can be determined based on a relative standard. Thus, since the presence or absence of the target component in the sample is determined based on the absolute and relative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample.
  • the target component may be an aromatic amine.
  • aromatic amines in a sample can be easily and accurately identified. Since aromatic amines have carcinogenicity, the reliability of analysis can be improved by accurately identifying such aromatic amines. Moreover, since aromatic amines in a sample can be easily identified, the analysis time can be shortened, and as a result, more samples can be analyzed in a short time.
  • the sample may contain an azo dye.
  • aromatic amines produced from azo dyes can be easily and accurately identified.
  • azo dyes can be directly ionized and subjected to mass spectrometry, it is possible to efficiently analyze azo dyes that produce carcinogenic aromatic amines in a short time.
  • the mass spectrometry method includes a mass analysis step, a mass spectrum generation step, an absolute intensity comparison step, a peak pattern comparison step, and a target component determination step.
  • mass analysis step mass analysis is performed by directly ionizing the sample.
  • mass spectrum generation step a mass spectrum is generated based on the mass analysis in the mass analysis step.
  • absolute intensity comparison step the absolute intensity of the peak included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value.
  • the peak pattern comparison step the mass spectrum generated in the mass spectrum generation step is compared with a predetermined peak pattern.
  • the target component determination step the presence or absence of the target component in the sample is determined based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step.
  • the mass spectrometry method may further include an intensity ratio comparison step.
  • the intensity ratio comparison step the intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value.
  • the target component in the sample is based on the comparison result in the absolute intensity comparison step, the comparison result in the peak pattern comparison step, and the comparison result in the intensity ratio comparison step. You may determine the presence or absence of.
  • Another mass spectrometry method includes a mass analysis step, a mass spectrum generation step, an absolute intensity comparison step, an intensity ratio comparison step, and a target component determination step.
  • mass analysis step mass analysis is performed by directly ionizing the sample.
  • mass spectrum generation step a mass spectrum is generated based on the mass analysis in the mass analysis step.
  • absolute intensity comparison step the absolute intensity of the peak included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value.
  • the intensity ratio comparison step the intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value.
  • the target component determination step the presence or absence of the target component in the sample is determined based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step.
  • the presence / absence of the target component in the sample is determined based on the quantitative and qualitative criteria, or the absolute and relative criteria. Can be easily and accurately identified.
  • FIG. 1 is a schematic view showing a configuration example of a mass spectrometer 1 according to a first embodiment of the present invention.
  • This mass spectrometer 1 is an apparatus for performing direct mass analysis by directly ionizing the sample S in a solid or liquid state, and mass analysis using DART (Direct Analysis in Real Time) as an example of the direct ionization method. I do.
  • DART Direct Analysis in Real Time
  • the mass spectrometer 1 includes a mass analyzer 2, a control unit 3, a display unit 4, an operation unit 5, a storage unit 6, and the like.
  • an ionization chamber 21, a first vacuum chamber 22, a second vacuum chamber 23, and an analysis chamber 24 are formed in the mass spectrometer 2.
  • the ionization chamber 21, the first vacuum chamber 22, the second vacuum chamber 23, and the analysis chamber 24 are formed in a line in this order, and adjacent chambers communicate with each other.
  • the sample S is placed in the ionization chamber 21, and the components in the sample S are directly ionized in that state, that is, without separating the components from the sample S using chromatography or the like.
  • the ionization chamber 21 communicates with the first vacuum chamber 22 via an ion introduction tube 211 extending in a straight line.
  • the mass analyzer 2 is provided with an ionization unit 25 that ionizes the sample S in the ionization chamber 21.
  • the ionization unit 25 is provided on an extension line of the ion introduction tube 211 and faces the inlet 212 of the ion introduction tube 211 with the sample S interposed therebetween.
  • the sample S may be manually installed at a measurement position between the inlet 212 of the ion introduction tube 211 and the ionization unit 25, or may be automatically transferred by an automatic transfer device (not shown).
  • a discharge chamber 251, a reaction chamber 252, and a heating chamber 253 are formed in the ionization unit 25, a discharge chamber 251, a reaction chamber 252, and a heating chamber 253 are formed.
  • the discharge chamber 251, the reaction chamber 252, and the heating chamber 253 are formed in a line in this order, and adjacent chambers communicate with each other.
  • a needle electrode 254 is provided in the discharge chamber 251.
  • a grid electrode 255 is provided between the heating chamber 253 and the sample S.
  • Helium gas which is an example of an inert gas, is introduced into the discharge chamber 251, and a high voltage is applied to the needle electrode 254 while the discharge chamber 251 is filled with helium gas.
  • a discharge is generated in the discharge chamber 251, and the base singlet molecular helium gas (1 1 S) becomes helium ions, electrons, and excited excited triplet molecular helium (2 3 S).
  • the charged helium ions and electrons are blocked in the reaction chamber 252, and only excited triplet molecular helium that is electrically neutral is introduced into the heating chamber 253.
  • the excited triplet molecular helium introduced into the heating chamber 253 is heated to a high temperature in the heating chamber 253 and then ejected into the ionization chamber 21 through the grid electrode 255.
  • the heated excited triplet molecular helium penning ionizes water molecules in the atmosphere present in the ionization chamber 21.
  • the generated water molecular ions are in an excited state.
  • the gas containing excited triplet molecular helium is at a high temperature, the components in the sample S are vaporized when this gas is blown onto the sample S. And when the water molecule ion of an excited state acts on the component in the sample S vaporized, the said component is ionized.
  • the ions generated by directly ionizing the sample S in this way are sucked into the ion introduction tube 211 due to the pressure difference between the ionization chamber 21 and the first vacuum chamber 22, and are passed through the ion introduction tube 211. It is guided into the first vacuum chamber 22.
  • An ion guide 221 is provided in the first vacuum chamber 22, and ions flowing into the first vacuum chamber 22 are converged by the ion guide 221 and guided into the second vacuum chamber 23.
  • An ion guide 231 is provided in the second vacuum chamber 23, and ions flowing into the second vacuum chamber 23 are converged by the ion guide 231 and guided into the analysis chamber 24.
  • a quadrupole mass filter 241 is provided in the analysis chamber 24, a quadrupole mass filter 241 is provided. That is, the mass spectrometer 1 in the present embodiment is a quadrupole mass spectrometer. A predetermined voltage is applied to the four rod electrodes constituting the quadrupole mass filter 241, and only ions having a mass-to-charge ratio corresponding to the voltage pass through the quadrupole mass filter 241. The ions that have passed through the quadrupole mass filter 241 are detected by a detector 242 provided in the analysis chamber 24, and the detector 242 outputs a detection signal corresponding to the detected amount of ions.
  • the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 241 is scanned. It becomes.
  • the control unit 3 includes a CPU (Central Processing Unit), for example, and controls the operation of the mass analysis unit 2 and processes data input from the mass analysis unit 2.
  • the display unit 4 is configured by a liquid crystal display, for example, and displays various information such as analysis results under the control of the control unit 3.
  • the operation unit 5 is configured by a keyboard and a mouse, for example, and the analyst can input various information such as analysis conditions to the control unit 3 by operating the operation unit 5.
  • the storage unit 6 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), and a hard disk, and stores data used for processing by the control unit 3, data generated by processing by the control unit 3, and the like. Is done.
  • a sample S containing an azo dye is analyzed by the mass spectrometer 2 as an analysis target.
  • An azo dye is known to produce an aromatic amine having carcinogenicity when an azo group contained therein is reductively decomposed.
  • analysis using the mass spectrometer 1 is performed using at least one of aromatic amines as exemplified below as a target component.
  • FIG. 2 is a block diagram illustrating a configuration example of the control unit 3.
  • the control unit 3 includes a mass spectrum generation unit 31, an absolute intensity comparison unit 32, an intensity ratio comparison unit 33, a peak pattern comparison unit 34, a target component determination unit 35, a display control unit 36, and the like. Function.
  • the mass spectrum generation unit 31 generates a mass spectrum representing the relationship between the mass to charge ratio and the signal intensity based on the detection signal input from the detector 242 of the mass analysis unit 2. In the present embodiment, whether or not a specific target component is contained in the sample S is analyzed using the mass spectrometer 1. Since the mass-to-charge ratio at which the peak of the target component appears is known in advance, a mass spectrum may be generated within the range of the mass-to-charge ratio that includes the peak of the target component. The target component may be set by operating the operation unit 5 by the analyst.
  • the range of the mass-to-charge ratio corresponding to the target component stored in the storage unit 6 (the range of the mass-to-charge ratio that includes the peak of the target component) is read.
  • the mass spectrum may be generated in the range.
  • the absolute intensity comparison unit 32 compares the absolute intensity of the peak included in the mass spectrum generated by the mass spectrum generation unit 31 with a threshold value. Specifically, for a mass-to-charge ratio predetermined as a mass-to-charge ratio corresponding to the target component, is the peak height (absolute intensity) appearing on the mass spectrum at that mass-to-charge ratio equal to or greater than a predetermined threshold? It is determined whether or not. When the target component is set, the mass-to-charge ratio corresponding to the set target component is read from the storage unit 6, and the peak height appearing on the mass spectrum at the mass-to-charge ratio is set to a predetermined threshold value. May be compared.
  • FIG. 3 is a diagram for explaining a mode of comparison by the absolute intensity comparison unit 32, and simply shows an example of a mass spectrum.
  • the absolute intensity comparison unit 32 compares the height P of the peak appearing on the mass spectrum with the mass-to-charge ratio A, which is predetermined as the mass-to-charge ratio corresponding to the target component, with a predetermined threshold V . Based on the comparison result by the absolute intensity comparison unit 32, for example, when the peak height P is greater than or equal to the threshold value V, the peak is not the peak of the target component. It can be determined that it is not.
  • the absolute intensity comparison unit 32 is not limited to the configuration in which the peak height P is compared with the constant threshold value V, but may be configured to compare the peak height P with a predetermined threshold range. Good. That is, the “threshold range” in the present invention includes a “threshold range”. In this case, for example, if the peak height P is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
  • the mass-to-charge ratio A corresponding to the target component is not limited to one, but may be plural.
  • the height of the peak which appears on a mass spectrum in each mass to charge ratio may be compared with a predetermined threshold value, respectively. In this case, it may be determined that the peak of the target component is not included in the mass spectrum when the heights of all the peaks are equal to or higher than the threshold value, or when the height of at least one peak is equal to or higher than the threshold value, It may be determined that the peak of the target component is not included in the mass spectrum.
  • the intensity ratio comparison unit 33 compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit 31 with a threshold value. Specifically, the height of the peak appearing on the mass spectrum at a mass-to-charge ratio predetermined as the mass-to-charge ratio corresponding to the target component, and the peak appearing on the mass spectrum at a mass-to-charge ratio different from this mass-to-charge ratio. It is determined whether the height ratio is greater than or equal to a predetermined threshold.
  • the mass-to-charge ratio corresponding to the set target component is read from the storage unit 6, the peak height appearing on the mass spectrum at the mass-to-charge ratio, and the mass-charge A ratio of peak heights appearing on the mass spectrum at a mass to charge ratio different from the ratio may be compared with a predetermined threshold.
  • FIG. 4 is a diagram for explaining a mode of comparison by the intensity ratio comparison unit 33, and simply shows an example of a mass spectrum.
  • the intensity ratio comparison unit 33 for the mass-to-charge ratio A predetermined as the mass-to-charge ratio corresponding to the target component, the peak height P1 appearing on the mass spectrum at the mass-to-charge ratio A, and the mass-to-charge ratio A Compares the height ratio (P1 / P2) of the peak P2 appearing on the mass spectrum with a different mass-to-charge ratio B with a predetermined threshold.
  • the intensity ratio comparison unit 33 Based on the comparison result by the intensity ratio comparison unit 33, for example, when the ratio (peak ratio) between the peak P1 and the peak P2 is less than the threshold value, the peak in the mass-to-charge ratio A is not the peak of the target component. It can be determined that the peak of the target component is not included in the mass spectrum.
  • the mass-to-charge ratio B may be a value obtained by adding or subtracting a certain mass-to-charge ratio to the mass-to-charge ratio A, for example, or may be a predetermined mass-to-charge ratio.
  • a predetermined mass-to-charge ratio is used as the mass-to-charge ratio B
  • a mass-to-charge ratio at which a peak of a component other than the target component contained in the sample S appears may be used as the mass-to-charge ratio B. .
  • the intensity ratio comparison unit 33 is not limited to the configuration in which the peak ratio between the peak P1 and the peak P2 is compared with a certain threshold value, and may be configured to compare the peak ratio with a predetermined threshold range. . In this case, for example, if the peak ratio is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
  • the mass-to-charge ratio A corresponding to the target component is not limited to one, but may be plural.
  • the ratio of the peak height appearing on the mass spectrum at each mass to charge ratio and the peak height appearing on the mass spectrum at a mass to charge ratio different from each mass to charge ratio (peak ratio) is a predetermined threshold value, respectively. May be compared. In this case, when all peak ratios are less than the threshold value, it may be determined that the peak of the target component is not included in the mass spectrum, and when at least one peak ratio is less than the threshold value, It may be determined that a component peak is not included.
  • the peak pattern comparison unit 34 compares the mass spectrum generated by the mass spectrum generation unit 31 with a predetermined peak pattern. Specifically, a plurality of peak patterns (peak patterns) included in the mass spectrum obtained by measuring the target component in advance are stored in the storage unit 6, and the peaks stored in the storage unit 6 are stored. The pattern and the pattern of a plurality of peaks included in the mass spectrum obtained by measuring the sample S are compared. At this time, the storage unit 6 functions as a spectrum library that stores peak patterns.
  • the peak pattern comparison unit 34 compares the mass spectrum generated by the mass spectrum generation unit 31 with the peak pattern stored in the storage unit 6 and calculates their similarity. Since the algorithm for calculating the similarity is well known, its description is omitted. Based on the comparison result, for example, when the calculated similarity is less than a predetermined threshold, it can be determined that the peak of the target component is not included in the mass spectrum.
  • the peak pattern comparison unit 34 is not limited to a configuration in which the similarity is compared with a certain threshold value, and may be configured to compare the similarity with a predetermined threshold range. In this case, for example, if the similarity is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
  • the target component determination unit 35 determines the presence or absence of the target component in the sample S based on the comparison result by the absolute intensity comparison unit 32, the comparison result by the intensity ratio comparison unit 33, and the comparison result by the peak pattern comparison unit 34. . Specifically, the target component determination unit only when it is determined in any of the absolute intensity comparison unit 32, the intensity ratio comparison unit 33, and the peak pattern comparison unit 34 that the peak of the target component is not included in the mass spectrum. 35 determines that the target component is not contained in the sample S.
  • the target component determination unit 35 determines that the target component is contained in the sample S.
  • the display control unit 36 controls display on the display unit 4. Specifically, the display control unit 36 causes the display unit 4 to display the mass spectrum generated by the mass spectrum generation unit 31. Thereby, the analyst can confirm the mass spectrum obtained by the mass analysis of the sample S. Further, the display control unit 36 causes the display unit 4 to display the determination result by the target component determination unit 35. In this case, the determination result may be displayed on the mass spectrum displayed on the display unit 4, or the determination result may be displayed on another screen such as a pop-up screen.
  • FIG. 5 is a flowchart showing an example of processing by the control unit 3.
  • the sample S is set in the mass analyzer 2, and the sample S is directly ionized.
  • Mass spectrometry is performed (step S101: mass spectrometry step).
  • a mass spectrum is generated by the mass spectrum generation unit 31 (step S102: mass spectrum generation step).
  • the absolute intensity comparison unit 32 compares the absolute intensity of the peak included in the mass spectrum with a threshold (step S103: absolute intensity comparison step), and the intensity ratio comparison unit 33 calculates the mass spectrum. (Step S104: intensity ratio comparison step), and the peak pattern comparison unit 34 compares the mass spectrum with a predetermined peak pattern (step S105). : Peak pattern comparison step).
  • the target component determination unit 35 automatically determines that the target component is not included in the sample S (step S106). : Target component determination step).
  • the target component determination unit 35 automatically determines that the target component is included in the sample S (step S105).
  • the display control unit 36 causes the display unit 4 to display the determination result by the target component determination unit 35 (step S107: determination result display step).
  • the target component is an aromatic amine having carcinogenicity as in the present embodiment
  • the target component determination unit 35 determines that the target component is included in the sample S (step S108)
  • this is indicated.
  • the analyst can easily confirm the risk of the sample S.
  • the target component determination unit 35 determines that the target component is not included in the sample S (step S106)
  • the fact is displayed on the display unit 4 so that the analyst can analyze the sample S. Can be easily confirmed.
  • the absolute intensity comparing unit 32 and the target component determining unit 35 in the sample S on a quantitative and absolute basis.
  • the presence or absence of the target component can be determined.
  • the intensity ratio comparison unit 33 and the target component determination unit 35 perform the target component in the sample S on a quantitative and relative basis.
  • the presence or absence of can be determined.
  • the peak pattern comparison unit 34 can determine the presence or absence of the target component in the sample S on a qualitative basis. In this manner, since the presence or absence of the target component in the sample S is determined based on the quantitative and qualitative criteria, and also on the absolute and relative criteria, even a non-experienced analyst can analyze the target component in the sample S. Can be easily and accurately identified.
  • the aromatic amines in the sample S can be easily and accurately identified. Since aromatic amines have carcinogenicity, the reliability of analysis can be improved by accurately identifying such aromatic amines. Moreover, since the aromatic amines in the sample S can be easily identified, the analysis time can be shortened, and as a result, more samples S can be analyzed in a short time.
  • aromatic amines produced from azo dyes can be easily and accurately identified.
  • azo dyes can be directly ionized and subjected to mass spectrometry, it is possible to efficiently analyze azo dyes that produce carcinogenic aromatic amines in a short time.
  • FIG. 6 is a block diagram illustrating a configuration example of the control unit 3 in the mass spectrometer 1 according to the second embodiment.
  • the configuration is the same as the configuration of the first embodiment except that the control unit 3 does not include the intensity ratio comparison unit 33. The detailed explanation is omitted.
  • the target component determination unit 35 determines the presence or absence of the target component in the sample S based only on the comparison result by the absolute intensity comparison unit 32 and the comparison result by the peak pattern comparison unit 34. That is, the process by the control unit 3 is a process excluding step S104 (intensity ratio comparison step) in FIG.
  • the absolute intensity comparison unit 32 and the target component determination unit 35 can determine whether the sample S contains the sample S on a quantitative basis. The presence or absence of the target component can be determined. Moreover, the presence or absence of the target component in the sample S can be determined based on a qualitative reference by comparing the mass spectrum obtained by mass spectrometry with the peak pattern comparing unit 34 with a predetermined peak pattern. Thus, since the presence or absence of the target component in the sample S is determined based on the quantitative and qualitative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample S. .
  • FIG. 7 is a block diagram illustrating a configuration example of a control unit 3 in a mass spectrometer 1 according to a third embodiment.
  • the configuration is the same as that of the first embodiment except that the control unit 3 is not provided with the peak pattern comparison unit 34. The detailed explanation is omitted.
  • the target component determination unit 35 determines the presence or absence of the target component in the sample S. That is, the process by the control unit 3 is a process excluding step S105 (peak pattern comparison step) in FIG.
  • the absolute intensity comparison unit 32 and the target component determination unit 35 can provide The presence or absence of the target component can be determined. Further, based on the intensity ratio of the two peaks included in the mass spectrum obtained by mass spectrometry, the intensity ratio comparison unit 33 and the target component determination unit 35 determine the presence or absence of the target component in the sample S on a relative basis. Can be determined. Thus, since the presence or absence of the target component in the sample S is determined based on the absolute and relative criteria, even an unexperienced analyst can easily and accurately identify the target component in the sample S. .
  • the mass spectrometer 1 is not limited to a quadrupole mass spectrometer. That is, the present invention can be applied to various mass spectrometers that can directly ionize the sample S, such as a mass spectrometer equipped with a MALDI ion source.
  • Sample S is, for example, a sample containing fibers, and examples thereof include clothing, place mats, sheets, and leather products.
  • the sample S is not limited to one containing an azo dye.
  • the target component is not limited to aromatic amines and may be other components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

This mass spectrometry device is equipped with a mass spectrometer 2, a mass spectrum generation unit 31, an absolute intensity comparison unit 32, a peak pattern comparison unit 34, and a target component determination unit 35. The mass spectrometer 2 subjects a specimen to mass spectrometry by direct ionization. The mass spectrum generation unit 31 generates a mass spectrum on the basis of the mass spectrometry from the mass spectrometer 2. The absolute intensity comparison unit 32 compares a threshold with the absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit 31. The peak pattern comparison unit 34 compares a pre-set peak pattern and the mass spectrum generated by the mass spectrum generation unit 31 with one another. The target component determination unit 35 determines whether a target component is present in the specimen or not, on the basis of the comparison results from the absolute intensity comparison unit 32 and the comparison results from the peak pattern comparison unit 34.

Description

質量分析装置及び質量分析方法Mass spectrometer and mass spectrometry method
 本発明は、試料を直接イオン化して質量分析を行う質量分析装置及び質量分析方法に関するものである。 The present invention relates to a mass spectrometer and a mass spectrometry method for performing mass spectrometry by directly ionizing a sample.
 試料の質量分析を行う方法として、例えばDART(Direct Analysis in Real Time)などのように、試料を固体状又は液体状のまま直接イオン化して質量分析を行う方法が知られている。この種の質量分析により得られるマススペクトルから、目的成分のピークを特定することは、経験豊富でない分析者にとって容易でない場合が多い。そのため、経験豊富でない分析者でも試料中の目的成分を容易かつ正確に同定することができるような質量分析装置及び質量分析方法が望まれている。 As a method for performing mass analysis of a sample, for example, a method for performing mass analysis by directly ionizing a sample in a solid or liquid state is known, such as DART (Direct Analysis in Real Time). It is often not easy for an inexperienced analyst to identify the peak of the target component from the mass spectrum obtained by this type of mass spectrometry. Therefore, there is a demand for a mass spectrometer and a mass spectrometry method that enable even an inexperienced analyst to easily and accurately identify a target component in a sample.
 質量分析により試料中の目的成分を同定する方法の一例としては、質量分析により得られるマススペクトルに含まれるピークパターンと、スペクトルライブラリに予め登録されているピークパターンとを比較することにより、その類似度に基づいて試料中の目的成分を特定する方法が知られている(例えば、下記特許文献1参照)。このような方法によれば、試料中の目的成分を容易に同定することはできるものの、直接イオン化は、クロマトグラフィーによる分離が行われないため信頼性が十分とは言えず、目的成分を正確に同定することができないおそれがある。 An example of a method for identifying a target component in a sample by mass spectrometry is to compare the peak pattern included in the mass spectrum obtained by mass spectrometry with the peak pattern registered in the spectrum library in advance. A method of identifying a target component in a sample based on the degree is known (for example, see Patent Document 1 below). According to such a method, although the target component in the sample can be easily identified, direct ionization is not sufficiently reliable because separation by chromatography is not performed. There is a possibility that it cannot be identified.
特開2013-002967号公報JP 2013-002967 A
 本発明は、上記実情に鑑みてなされたものであり、経験豊富でない分析者でも試料中の目的成分を容易かつ正確に同定することができる質量分析装置及び質量分析方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mass spectrometer and a mass spectrometry method that enable an unskilled analyst to easily and accurately identify a target component in a sample. To do.
(1)本発明に係る質量分析装置は、質量分析部と、マススペクトル生成部と、絶対強度比較部と、ピークパターン比較部と、目的成分判定部とを備える。前記質量分析部は、試料を直接イオン化して質量分析を行う。前記マススペクトル生成部は、前記質量分析部による質量分析に基づいてマススペクトルを生成する。前記絶対強度比較部は、前記マススペクトル生成部により生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する。前記ピークパターン比較部は、前記マススペクトル生成部により生成されたマススペクトルを予め定められたピークパターンと比較する。前記目的成分判定部は、前記絶対強度比較部による比較結果、及び、前記ピークパターン比較部による比較結果に基づいて、試料中の目的成分の有無を判定する。 (1) A mass spectrometer according to the present invention includes a mass analysis unit, a mass spectrum generation unit, an absolute intensity comparison unit, a peak pattern comparison unit, and a target component determination unit. The mass spectrometric unit performs mass spectrometry by directly ionizing a sample. The mass spectrum generation unit generates a mass spectrum based on mass analysis by the mass analysis unit. The absolute intensity comparison unit compares the absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold value. The peak pattern comparison unit compares the mass spectrum generated by the mass spectrum generation unit with a predetermined peak pattern. The target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit and the comparison result by the peak pattern comparison unit.
 このような構成によれば、質量分析により得られたマススペクトルに含まれるピークの絶対強度に基づいて、定量的な基準で試料中の目的成分の有無を判定することができる。また、質量分析により得られたマススペクトルを予め定められたピークパターンと比較することにより、定性的な基準で試料中の目的成分の有無を判定することができる。このように、定量的及び定性的な基準に基づいて試料中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料中の目的成分を容易かつ正確に同定することができる。 According to such a configuration, the presence / absence of the target component in the sample can be determined based on a quantitative standard based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry. Further, by comparing the mass spectrum obtained by mass spectrometry with a predetermined peak pattern, the presence or absence of the target component in the sample can be determined based on a qualitative reference. As described above, since the presence or absence of the target component in the sample is determined based on the quantitative and qualitative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample.
(2)前記質量分析装置は、強度比比較部をさらに備えていてもよい。前記強度比比較部は、前記マススペクトル生成部により生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する。この場合、前記目的成分判定部は、前記絶対強度比較部による比較結果、前記ピークパターン比較部による比較結果、及び、前記強度比比較部による比較結果に基づいて、試料中の目的成分の有無を判定してもよい。 (2) The mass spectrometer may further include an intensity ratio comparison unit. The intensity ratio comparison unit compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold value. In this case, the target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit, the comparison result by the peak pattern comparison unit, and the comparison result by the intensity ratio comparison unit. You may judge.
 このような構成によれば、質量分析により得られたマススペクトルに含まれる2つのピークの強度比に基づいて、相対的な基準で試料中の目的成分の有無を判定することができる。これにより、定量的及び定性的な基準に加え、絶対的及び相対的な基準に基づいて試料中の目的成分の有無が判定されるため、試料中の目的成分をより正確に同定することができる。 According to such a configuration, the presence / absence of the target component in the sample can be determined based on a relative reference based on the intensity ratio of two peaks included in the mass spectrum obtained by mass spectrometry. As a result, the presence / absence of the target component in the sample is determined based on the absolute and relative criteria in addition to the quantitative and qualitative criteria, so that the target component in the sample can be identified more accurately. .
(3)本発明に係る別の質量分析装置は、質量分析部と、マススペクトル生成部と、絶対強度比較部と、強度比比較部と、目的成分判定部とを備える。前記質量分析部は、試料を直接イオン化して質量分析を行う。前記マススペクトル生成部は、前記質量分析部による質量分析に基づいてマススペクトルを生成する。前記絶対強度比較部は、前記マススペクトル生成部により生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する。前記強度比比較部は、前記マススペクトル生成部により生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する。前記目的成分判定部は、前記絶対強度比較部による比較結果、及び、前記強度比比較部による比較結果に基づいて、試料中の目的成分の有無を判定する。 (3) Another mass spectrometer according to the present invention includes a mass analyzer, a mass spectrum generator, an absolute intensity comparison unit, an intensity ratio comparison unit, and a target component determination unit. The mass spectrometric unit performs mass spectrometry by directly ionizing a sample. The mass spectrum generation unit generates a mass spectrum based on mass analysis by the mass analysis unit. The absolute intensity comparison unit compares the absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold value. The intensity ratio comparison unit compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold value. The target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit and the comparison result by the intensity ratio comparison unit.
 このような構成によれば、質量分析により得られたマススペクトルに含まれるピークの絶対強度に基づいて、絶対的な基準で試料中の目的成分の有無を判定することができる。また、質量分析により得られたマススペクトルに含まれる2つのピークの強度比に基づいて、相対的な基準で試料中の目的成分の有無を判定することができる。このように、絶対的及び相対的な基準に基づいて試料中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料中の目的成分を容易かつ正確に同定することができる。 According to such a configuration, the presence or absence of the target component in the sample can be determined based on an absolute reference based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry. Further, based on the intensity ratio of two peaks included in the mass spectrum obtained by mass spectrometry, the presence or absence of the target component in the sample can be determined based on a relative standard. Thus, since the presence or absence of the target component in the sample is determined based on the absolute and relative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample.
(4)前記目的成分は、芳香族アミン類であってもよい。 (4) The target component may be an aromatic amine.
 このような構成によれば、試料中の芳香族アミン類を容易かつ正確に同定することができる。芳香族アミン類は発がん性を有しているため、そのような芳香族アミン類を正確に同定することにより、分析の信頼性を向上することができる。また、試料中の芳香族アミン類を容易に同定することができるため、分析時間を短縮することができ、その結果、より多くの試料を短時間で分析することができる。 According to such a configuration, aromatic amines in a sample can be easily and accurately identified. Since aromatic amines have carcinogenicity, the reliability of analysis can be improved by accurately identifying such aromatic amines. Moreover, since aromatic amines in a sample can be easily identified, the analysis time can be shortened, and as a result, more samples can be analyzed in a short time.
(5)前記試料は、アゾ染料を含んでいてもよい。 (5) The sample may contain an azo dye.
 このような構成によれば、アゾ染料から生成される芳香族アミン類を容易かつ正確に同定することができる。特に、アゾ染料を直接イオン化して質量分析を行うことができるため、発がん性を有する芳香族アミン類が生成されるアゾ染料を短時間で効率よく分析することが可能である。 According to such a configuration, aromatic amines produced from azo dyes can be easily and accurately identified. In particular, since azo dyes can be directly ionized and subjected to mass spectrometry, it is possible to efficiently analyze azo dyes that produce carcinogenic aromatic amines in a short time.
(6)本発明に係る質量分析方法は、質量分析ステップと、マススペクトル生成ステップと、絶対強度比較ステップと、ピークパターン比較ステップと、目的成分判定ステップとを備える。前記質量分析ステップでは、試料を直接イオン化して質量分析を行う。前記マススペクトル生成ステップでは、前記質量分析ステップでの質量分析に基づいてマススペクトルを生成する。前記絶対強度比較ステップでは、前記マススペクトル生成ステップで生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する。前記ピークパターン比較ステップでは、前記マススペクトル生成ステップで生成されたマススペクトルを予め定められたピークパターンと比較する。前記目的成分判定ステップでは、前記絶対強度比較ステップでの比較結果、及び、前記ピークパターン比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定する。 (6) The mass spectrometry method according to the present invention includes a mass analysis step, a mass spectrum generation step, an absolute intensity comparison step, a peak pattern comparison step, and a target component determination step. In the mass analysis step, mass analysis is performed by directly ionizing the sample. In the mass spectrum generation step, a mass spectrum is generated based on the mass analysis in the mass analysis step. In the absolute intensity comparison step, the absolute intensity of the peak included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value. In the peak pattern comparison step, the mass spectrum generated in the mass spectrum generation step is compared with a predetermined peak pattern. In the target component determination step, the presence or absence of the target component in the sample is determined based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step.
(7)前記質量分析方法は、強度比比較ステップをさらに備えていてもよい。前記強度比比較ステップでは、前記マススペクトル生成ステップで生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する。この場合、前記目的成分判定ステップでは、前記絶対強度比較ステップでの比較結果、前記ピークパターン比較ステップでの比較結果、及び、前記強度比比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定してもよい。 (7) The mass spectrometry method may further include an intensity ratio comparison step. In the intensity ratio comparison step, the intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value. In this case, in the target component determination step, the target component in the sample is based on the comparison result in the absolute intensity comparison step, the comparison result in the peak pattern comparison step, and the comparison result in the intensity ratio comparison step. You may determine the presence or absence of.
(8)本発明に係る別の質量分析方法は、質量分析ステップと、マススペクトル生成ステップと、絶対強度比較ステップと、強度比比較ステップと、目的成分判定ステップとを備える。前記質量分析ステップでは、試料を直接イオン化して質量分析を行う。前記マススペクトル生成ステップでは、前記質量分析ステップでの質量分析に基づいてマススペクトルを生成する。前記絶対強度比較ステップでは、前記マススペクトル生成ステップで生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する。前記強度比比較ステップでは、前記マススペクトル生成ステップで生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する。前記目的成分判定ステップでは、前記絶対強度比較ステップでの比較結果、及び、前記ピークパターン比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定する。 (8) Another mass spectrometry method according to the present invention includes a mass analysis step, a mass spectrum generation step, an absolute intensity comparison step, an intensity ratio comparison step, and a target component determination step. In the mass analysis step, mass analysis is performed by directly ionizing the sample. In the mass spectrum generation step, a mass spectrum is generated based on the mass analysis in the mass analysis step. In the absolute intensity comparison step, the absolute intensity of the peak included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value. In the intensity ratio comparison step, the intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step is compared with a threshold value. In the target component determination step, the presence or absence of the target component in the sample is determined based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step.
 本発明によれば、定量的及び定性的な基準、あるいは、絶対的及び相対的な基準に基づいて試料中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料中の目的成分を容易かつ正確に同定することができる。 According to the present invention, the presence / absence of the target component in the sample is determined based on the quantitative and qualitative criteria, or the absolute and relative criteria. Can be easily and accurately identified.
本発明の第1実施形態に係る質量分析装置の構成例を示した概略図である。It is the schematic which showed the structural example of the mass spectrometer which concerns on 1st Embodiment of this invention. 制御部の構成例を示したブロック図である。It is the block diagram which showed the structural example of the control part. 絶対強度比較部による比較の態様について説明するための図であり、マススペクトルの一例を簡略的に示している。It is a figure for demonstrating the aspect of the comparison by an absolute intensity comparison part, and shows an example of a mass spectrum simply. 強度比比較部による比較の態様について説明するための図であり、マススペクトルの一例を簡略的に示している。It is a figure for demonstrating the aspect of the comparison by an intensity ratio comparison part, and shows an example of a mass spectrum simply. 制御部による処理の一例を示したフローチャートである。It is the flowchart which showed an example of the process by a control part. 第2実施形態に係る質量分析装置における制御部の構成例を示したブロック図である。It is the block diagram which showed the structural example of the control part in the mass spectrometer which concerns on 2nd Embodiment. 第3実施形態に係る質量分析装置における制御部の構成例を示したブロック図である。It is the block diagram which showed the structural example of the control part in the mass spectrometer which concerns on 3rd Embodiment.
1.第1実施形態
 図1は、本発明の第1実施形態に係る質量分析装置1の構成例を示した概略図である。この質量分析装置1は、試料Sを固体状又は液体状のまま直接イオン化して質量分析を行うための装置であり、直接イオン化法の一例としてDART(Direct Analysis in Real Time)を用いて質量分析を行う。
1. First Embodiment FIG. 1 is a schematic view showing a configuration example of a mass spectrometer 1 according to a first embodiment of the present invention. This mass spectrometer 1 is an apparatus for performing direct mass analysis by directly ionizing the sample S in a solid or liquid state, and mass analysis using DART (Direct Analysis in Real Time) as an example of the direct ionization method. I do.
 質量分析装置1は、質量分析部2、制御部3、表示部4、操作部5及び記憶部6などを備えている。質量分析部2内には、イオン化室21、第1真空室22、第2真空室23及び分析室24が形成されている。イオン化室21、第1真空室22、第2真空室23及び分析室24の各室は、この順序で一列に並べて形成されており、隣接する室同士が互いに連通している。 The mass spectrometer 1 includes a mass analyzer 2, a control unit 3, a display unit 4, an operation unit 5, a storage unit 6, and the like. In the mass spectrometer 2, an ionization chamber 21, a first vacuum chamber 22, a second vacuum chamber 23, and an analysis chamber 24 are formed. The ionization chamber 21, the first vacuum chamber 22, the second vacuum chamber 23, and the analysis chamber 24 are formed in a line in this order, and adjacent chambers communicate with each other.
 試料Sは、イオン化室21に配置され、その状態のまま、すなわち試料Sからクロマトグラフィーなどを用いて成分を分離させることなく、試料S中の成分が直接イオン化される。イオン化室21は、一直線上に延びるイオン導入管211を介して第1真空室22に連通している。 The sample S is placed in the ionization chamber 21, and the components in the sample S are directly ionized in that state, that is, without separating the components from the sample S using chromatography or the like. The ionization chamber 21 communicates with the first vacuum chamber 22 via an ion introduction tube 211 extending in a straight line.
 質量分析部2には、イオン化室21内の試料Sをイオン化させるイオン化ユニット25が設けられている。イオン化ユニット25は、イオン導入管211の延長線上に設けられており、イオン導入管211の入口212に対して試料Sを挟んで対向している。試料Sは、イオン導入管211の入口212とイオン化ユニット25との間の測定位置に、手動で設置されてもよいし、自動搬送装置(図示せず)により自動で搬送されてもよい。 The mass analyzer 2 is provided with an ionization unit 25 that ionizes the sample S in the ionization chamber 21. The ionization unit 25 is provided on an extension line of the ion introduction tube 211 and faces the inlet 212 of the ion introduction tube 211 with the sample S interposed therebetween. The sample S may be manually installed at a measurement position between the inlet 212 of the ion introduction tube 211 and the ionization unit 25, or may be automatically transferred by an automatic transfer device (not shown).
 イオン化ユニット25内には、放電室251、反応室252及び加熱室253が形成されている。放電室251、反応室252及び加熱室253の各室は、この順序で一列に並べて形成されており、隣接する室同士が互いに連通している。放電室251内には、針電極254が設けられている。また、加熱室253と試料Sとの間には、グリッド電極255が設けられている。 In the ionization unit 25, a discharge chamber 251, a reaction chamber 252, and a heating chamber 253 are formed. The discharge chamber 251, the reaction chamber 252, and the heating chamber 253 are formed in a line in this order, and adjacent chambers communicate with each other. A needle electrode 254 is provided in the discharge chamber 251. A grid electrode 255 is provided between the heating chamber 253 and the sample S.
 放電室251内には、不活性ガスの一例であるヘリウムガスが導入され、放電室251内にヘリウムガスが充満した状態で針電極254に高電圧が印加される。これにより、放電室251内で放電が生じ、基底一重項分子ヘリウムガス(1S)が、ヘリウムイオン、電子及び励起された励起三重項分子ヘリウム(2S)となる。そして、電荷を有するヘリウムイオン及び電子は、反応室252内で遮断され、電気的に中性である励起三重項分子ヘリウムのみが加熱室253内に導かれる。 Helium gas, which is an example of an inert gas, is introduced into the discharge chamber 251, and a high voltage is applied to the needle electrode 254 while the discharge chamber 251 is filled with helium gas. As a result, a discharge is generated in the discharge chamber 251, and the base singlet molecular helium gas (1 1 S) becomes helium ions, electrons, and excited excited triplet molecular helium (2 3 S). The charged helium ions and electrons are blocked in the reaction chamber 252, and only excited triplet molecular helium that is electrically neutral is introduced into the heating chamber 253.
 加熱室253内に導かれた励起三重項分子ヘリウムは、加熱室253内で高温に加熱された後、グリッド電極255を介してイオン化室21内に噴出する。このとき、加熱された励起三重項分子ヘリウムは、イオン化室21内に存在する大気中の水分子をペニングイオン化する。これにより、生成された水分子イオンは励起状態となる。また、励起三重項分子ヘリウムを含むガスは高温であるため、このガスが試料Sに吹き付けられることにより試料S中の成分が気化する。そして、気化した試料S中の成分に励起状態の水分子イオンが作用することにより、当該成分がイオン化される。 The excited triplet molecular helium introduced into the heating chamber 253 is heated to a high temperature in the heating chamber 253 and then ejected into the ionization chamber 21 through the grid electrode 255. At this time, the heated excited triplet molecular helium penning ionizes water molecules in the atmosphere present in the ionization chamber 21. Thereby, the generated water molecular ions are in an excited state. Further, since the gas containing excited triplet molecular helium is at a high temperature, the components in the sample S are vaporized when this gas is blown onto the sample S. And when the water molecule ion of an excited state acts on the component in the sample S vaporized, the said component is ionized.
 このようにして試料Sを直接イオン化することにより生成されたイオンは、イオン化室21と第1真空室22との圧力差によって、イオン導入管211内に吸い込まれ、当該イオン導入管211を介して第1真空室22内に導かれる。第1真空室22内には、イオンガイド221が設けられており、第1真空室22内に流入したイオンはイオンガイド221によって収束され、第2真空室23内に導かれる。第2真空室23内には、イオンガイド231が設けられており、第2真空室23内に流入したイオンはイオンガイド231により収束され、分析室24内に導かれる。 The ions generated by directly ionizing the sample S in this way are sucked into the ion introduction tube 211 due to the pressure difference between the ionization chamber 21 and the first vacuum chamber 22, and are passed through the ion introduction tube 211. It is guided into the first vacuum chamber 22. An ion guide 221 is provided in the first vacuum chamber 22, and ions flowing into the first vacuum chamber 22 are converged by the ion guide 221 and guided into the second vacuum chamber 23. An ion guide 231 is provided in the second vacuum chamber 23, and ions flowing into the second vacuum chamber 23 are converged by the ion guide 231 and guided into the analysis chamber 24.
 分析室24内には、四重極マスフィルタ241が設けられている。すなわち、本実施形態における質量分析装置1は、四重極型の質量分析装置である。四重極マスフィルタ241を構成する4本のロッド電極には所定の電圧が印加され、その電圧に対応する質量電荷比を有するイオンのみが四重極マスフィルタ241を通過する。四重極マスフィルタ241を通過したイオンは、分析室24内に設けられた検出器242により検出され、検出器242は、検出したイオンの量に応じた検出信号を出力する。したがって、例えば四重極マスフィルタ241を構成する4本のロッド電極に印加する電圧を所定範囲内で走査すれば、四重極マスフィルタ241を通過可能なイオンの質量電荷比が走査されることとなる。 In the analysis chamber 24, a quadrupole mass filter 241 is provided. That is, the mass spectrometer 1 in the present embodiment is a quadrupole mass spectrometer. A predetermined voltage is applied to the four rod electrodes constituting the quadrupole mass filter 241, and only ions having a mass-to-charge ratio corresponding to the voltage pass through the quadrupole mass filter 241. The ions that have passed through the quadrupole mass filter 241 are detected by a detector 242 provided in the analysis chamber 24, and the detector 242 outputs a detection signal corresponding to the detected amount of ions. Therefore, for example, if the voltage applied to the four rod electrodes constituting the quadrupole mass filter 241 is scanned within a predetermined range, the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 241 is scanned. It becomes.
 制御部3は、例えばCPU(Central Processing Unit)を含む構成であり、質量分析部2の動作を制御するとともに、質量分析部2から入力されるデータを処理する。表示部4は、例えば液晶表示器などにより構成され、制御部3の制御により分析結果などの各種情報が表示される。操作部5は、例えばキーボード及びマウスなどにより構成され、分析者は操作部5を操作することにより分析条件などの各種情報を制御部3に入力することができる。記憶部6は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)及びハードディスクなどにより構成され、制御部3の処理に用いられるデータや、制御部3の処理により生成されたデータなどが記憶される。 The control unit 3 includes a CPU (Central Processing Unit), for example, and controls the operation of the mass analysis unit 2 and processes data input from the mass analysis unit 2. The display unit 4 is configured by a liquid crystal display, for example, and displays various information such as analysis results under the control of the control unit 3. The operation unit 5 is configured by a keyboard and a mouse, for example, and the analyst can input various information such as analysis conditions to the control unit 3 by operating the operation unit 5. The storage unit 6 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), and a hard disk, and stores data used for processing by the control unit 3, data generated by processing by the control unit 3, and the like. Is done.
 本実施形態では、例えばアゾ染料を含む試料Sが、分析対象として質量分析部2により分析される。アゾ染料は、その中に含まれるアゾ基が還元分解されたときなどに、発がん性を有する芳香族アミン類を生成することが知られている。本実施形態では、下記に例示されるような芳香族アミン類の少なくとも1つを目的成分として、質量分析装置1を用いた分析が行われる。
(1)4-アミノビフェニル;ビフェニル-4-イルアミン
(2)ベンジジン
(3)4-クロロ-ο-トルイジン
(4)2-ナフチルアミン
(5)ο-アミノアゾトルエン
(6)2-アミノ-4-ニトロトルエン;5-ニトロ-ο-トルイジン
(7)p-クロロアニリン;4-クロロアニリン
(8)2,4-ジアミノアニソール;4-メトキシ-m-フェニレンジアミン
(9)4,4'-ジアミノジフェニルメタン
(10)3,3'-ジクロロベンジジン
(11)3,3'-ジメトキシベンジジン
(12)3,3'-ジメチルベンジジン
(13)3,3'-ジメチル-4,4'-ジアミノビフェニルメタン 4,4'-メチレンジ-ο-トルイジン
(14)p-クレシジン;6-メトキシ-m-トルイジン
(15)4,4'-メチレン-ビス-(2-クロロアニリン)
(16)4,4'-オキシジアニリン 
(17)4,4'-チオジアニリン 
(18)ο-トルイジン 
(19)2,4-トルイレンジアミン;4-メチル-m-フェニレンジアミン 
(20)2,4,5-トリメチルアニリン 
(21)ο-アニシジン 
(22)4-アミノアゾベンゼン 
(23)2,4-キシリジン 
(24)2,6-キシリジン
In the present embodiment, for example, a sample S containing an azo dye is analyzed by the mass spectrometer 2 as an analysis target. An azo dye is known to produce an aromatic amine having carcinogenicity when an azo group contained therein is reductively decomposed. In the present embodiment, analysis using the mass spectrometer 1 is performed using at least one of aromatic amines as exemplified below as a target component.
(1) 4-aminobiphenyl; biphenyl-4-ylamine (2) benzidine (3) 4-chloro-o-toluidine (4) 2-naphthylamine (5) o-aminoazotoluene (6) 2-amino-4- Nitrotoluene; 5-nitro-ο-toluidine (7) p-chloroaniline; 4-chloroaniline (8) 2,4-diaminoanisole; 4-methoxy-m-phenylenediamine (9) 4,4'-diaminodiphenylmethane ( 10) 3,3'-dichlorobenzidine (11) 3,3'-dimethoxybenzidine (12) 3,3'-dimethylbenzidine (13) 3,3'-dimethyl-4,4'-diaminobiphenylmethane 4,4 '-Methylenedi-ο-toluidine (14) p-cresidine; 6-methoxy-m-toluidine (15) 4,4'-methylene-bis- (2-chloroaniline)
(16) 4,4'-oxydianiline
(17) 4,4'-thiodianiline
(18) ο-Toluidine
(19) 2,4-Toluylenediamine; 4-methyl-m-phenylenediamine
(20) 2,4,5-trimethylaniline
(21) ο-anisidine
(22) 4-Aminoazobenzene
(23) 2,4-Xylidine
(24) 2,6-Xylidine
2.制御部の構成
 図2は、制御部3の構成例を示したブロック図である。制御部3は、CPUがプログラムを実行することにより、マススペクトル生成部31、絶対強度比較部32、強度比比較部33、ピークパターン比較部34、目的成分判定部35及び表示制御部36などとして機能する。
2. Configuration of Control Unit FIG. 2 is a block diagram illustrating a configuration example of the control unit 3. When the CPU executes the program, the control unit 3 includes a mass spectrum generation unit 31, an absolute intensity comparison unit 32, an intensity ratio comparison unit 33, a peak pattern comparison unit 34, a target component determination unit 35, a display control unit 36, and the like. Function.
 マススペクトル生成部31は、質量分析部2の検出器242から入力される検出信号に基づいて、質量電荷比と信号強度との関係を表すマススペクトルを生成する。本実施形態では、質量分析装置1を用いて、試料S中に特定の目的成分が含まれているか否かが分析される。目的成分のピークが現れる質量電荷比は、予め分かっているため、目的成分のピークが含まれるような質量電荷比の範囲でマススペクトルを生成すればよい。目的成分の設定は、分析者が操作部5を操作することにより行われてもよい。目的成分の設定が行われた場合、例えば記憶部6に記憶されている当該目的成分に対応する質量電荷比の範囲(当該目的成分のピークが含まれるような質量電荷比の範囲)が読み出され、その範囲でマススペクトルが生成されてもよい。 The mass spectrum generation unit 31 generates a mass spectrum representing the relationship between the mass to charge ratio and the signal intensity based on the detection signal input from the detector 242 of the mass analysis unit 2. In the present embodiment, whether or not a specific target component is contained in the sample S is analyzed using the mass spectrometer 1. Since the mass-to-charge ratio at which the peak of the target component appears is known in advance, a mass spectrum may be generated within the range of the mass-to-charge ratio that includes the peak of the target component. The target component may be set by operating the operation unit 5 by the analyst. When the target component is set, for example, the range of the mass-to-charge ratio corresponding to the target component stored in the storage unit 6 (the range of the mass-to-charge ratio that includes the peak of the target component) is read. The mass spectrum may be generated in the range.
 絶対強度比較部32は、マススペクトル生成部31により生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する。具体的には、目的成分に対応する質量電荷比として予め定められた質量電荷比について、その質量電荷比でマススペクトル上に現れるピークの高さ(絶対強度)が、所定の閾値以上であるか否かが判定される。目的成分の設定が行われた場合には、設定された目的成分に対応する質量電荷比が記憶部6から読み出され、その質量電荷比でマススペクトル上に現れるピークの高さが所定の閾値と比較されてもよい。 The absolute intensity comparison unit 32 compares the absolute intensity of the peak included in the mass spectrum generated by the mass spectrum generation unit 31 with a threshold value. Specifically, for a mass-to-charge ratio predetermined as a mass-to-charge ratio corresponding to the target component, is the peak height (absolute intensity) appearing on the mass spectrum at that mass-to-charge ratio equal to or greater than a predetermined threshold? It is determined whether or not. When the target component is set, the mass-to-charge ratio corresponding to the set target component is read from the storage unit 6, and the peak height appearing on the mass spectrum at the mass-to-charge ratio is set to a predetermined threshold value. May be compared.
 図3は、絶対強度比較部32による比較の態様について説明するための図であり、マススペクトルの一例を簡略的に示している。絶対強度比較部32は、目的成分に対応する質量電荷比として予め定められた質量電荷比Aについて、その質量電荷比Aでマススペクトル上に現れるピークの高さPを所定の閾値Vと比較する。このような絶対強度比較部32による比較結果に基づいて、例えばピークの高さPが閾値V以上の場合には、当該ピークは目的成分のピークではない、すなわちマススペクトルに目的成分のピークは含まれていないと判定することができる。 FIG. 3 is a diagram for explaining a mode of comparison by the absolute intensity comparison unit 32, and simply shows an example of a mass spectrum. The absolute intensity comparison unit 32 compares the height P of the peak appearing on the mass spectrum with the mass-to-charge ratio A, which is predetermined as the mass-to-charge ratio corresponding to the target component, with a predetermined threshold V . Based on the comparison result by the absolute intensity comparison unit 32, for example, when the peak height P is greater than or equal to the threshold value V, the peak is not the peak of the target component. It can be determined that it is not.
 ただし、絶対強度比較部32は、ピークの高さPを一定の閾値Vと比較するような構成に限らず、ピークの高さPを所定の閾値の範囲と比較するような構成であってもよい。すなわち、本発明における「閾値」には「閾値の範囲」も含まれる。この場合、例えばピークの高さPが所定の閾値の範囲になければ、マススペクトルに目的成分のピークは含まれていないと判定することができる。 However, the absolute intensity comparison unit 32 is not limited to the configuration in which the peak height P is compared with the constant threshold value V, but may be configured to compare the peak height P with a predetermined threshold range. Good. That is, the “threshold range” in the present invention includes a “threshold range”. In this case, for example, if the peak height P is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
 また、目的成分に対応する質量電荷比Aは、1つでなく、複数でもよい。そして、各質量電荷比においてマススペクトル上に現れるピークの高さが、それぞれ所定の閾値と比較されてもよい。この場合、全てのピークの高さが閾値以上の場合に、マススペクトルに目的成分のピークは含まれていないと判定されてもよいし、少なくとも1つのピークの高さが閾値以上の場合に、マススペクトルに目的成分のピークは含まれていないと判定されてもよい。 Also, the mass-to-charge ratio A corresponding to the target component is not limited to one, but may be plural. And the height of the peak which appears on a mass spectrum in each mass to charge ratio may be compared with a predetermined threshold value, respectively. In this case, it may be determined that the peak of the target component is not included in the mass spectrum when the heights of all the peaks are equal to or higher than the threshold value, or when the height of at least one peak is equal to or higher than the threshold value, It may be determined that the peak of the target component is not included in the mass spectrum.
 再び図2を参照すると、強度比比較部33は、マススペクトル生成部31により生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する。具体的には、目的成分に対応する質量電荷比として予め定められた質量電荷比でマススペクトル上に現れるピークの高さと、この質量電荷比とは異なる質量電荷比でマススペクトル上に現れるピークの高さの比が、所定の閾値以上であるか否かが判定される。目的成分の設定が行われた場合には、設定された目的成分に対応する質量電荷比が記憶部6から読み出され、その質量電荷比でマススペクトル上に現れるピークの高さと、この質量電荷比とは異なる質量電荷比でマススペクトル上に現れるピークの高さの比が所定の閾値と比較されてもよい。 Referring to FIG. 2 again, the intensity ratio comparison unit 33 compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit 31 with a threshold value. Specifically, the height of the peak appearing on the mass spectrum at a mass-to-charge ratio predetermined as the mass-to-charge ratio corresponding to the target component, and the peak appearing on the mass spectrum at a mass-to-charge ratio different from this mass-to-charge ratio. It is determined whether the height ratio is greater than or equal to a predetermined threshold. When the target component is set, the mass-to-charge ratio corresponding to the set target component is read from the storage unit 6, the peak height appearing on the mass spectrum at the mass-to-charge ratio, and the mass-charge A ratio of peak heights appearing on the mass spectrum at a mass to charge ratio different from the ratio may be compared with a predetermined threshold.
 図4は、強度比比較部33による比較の態様について説明するための図であり、マススペクトルの一例を簡略的に示している。強度比比較部33は、目的成分に対応する質量電荷比として予め定められた質量電荷比Aについて、その質量電荷比Aでマススペクトル上に現れるピークの高さP1と、この質量電荷比Aとは異なる質量電荷比Bでマススペクトル上に現れるピークP2の高さの比(P1/P2)を所定の閾値と比較する。このような強度比比較部33による比較結果に基づいて、例えばピークP1とピークP2の比(ピーク比)が閾値未満の場合には、質量電荷比Aにおけるピークは目的成分のピークではない、すなわちマススペクトルに目的成分のピークは含まれていないと判定することができる。 FIG. 4 is a diagram for explaining a mode of comparison by the intensity ratio comparison unit 33, and simply shows an example of a mass spectrum. The intensity ratio comparison unit 33, for the mass-to-charge ratio A predetermined as the mass-to-charge ratio corresponding to the target component, the peak height P1 appearing on the mass spectrum at the mass-to-charge ratio A, and the mass-to-charge ratio A Compares the height ratio (P1 / P2) of the peak P2 appearing on the mass spectrum with a different mass-to-charge ratio B with a predetermined threshold. Based on the comparison result by the intensity ratio comparison unit 33, for example, when the ratio (peak ratio) between the peak P1 and the peak P2 is less than the threshold value, the peak in the mass-to-charge ratio A is not the peak of the target component. It can be determined that the peak of the target component is not included in the mass spectrum.
 上記質量電荷比Bは、例えば質量電荷比Aに対して一定の質量電荷比を加算又は減算した値であってもよいし、予め定められた質量電荷比であってもよい。質量電荷比Bとして予め定められた質量電荷比を用いる場合には、試料Sに含まれている目的成分以外の成分のピークが現れる質量電荷比が、上記質量電荷比Bとして用いられてもよい。 The mass-to-charge ratio B may be a value obtained by adding or subtracting a certain mass-to-charge ratio to the mass-to-charge ratio A, for example, or may be a predetermined mass-to-charge ratio. When a predetermined mass-to-charge ratio is used as the mass-to-charge ratio B, a mass-to-charge ratio at which a peak of a component other than the target component contained in the sample S appears may be used as the mass-to-charge ratio B. .
 ただし、強度比比較部33は、ピークP1とピークP2のピーク比を一定の閾値と比較するような構成に限らず、ピーク比を所定の閾値の範囲と比較するような構成であってもよい。この場合、例えばピーク比が所定の閾値の範囲になければ、マススペクトルに目的成分のピークは含まれていないと判定することができる。 However, the intensity ratio comparison unit 33 is not limited to the configuration in which the peak ratio between the peak P1 and the peak P2 is compared with a certain threshold value, and may be configured to compare the peak ratio with a predetermined threshold range. . In this case, for example, if the peak ratio is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
 また、目的成分に対応する質量電荷比Aは、1つでなく、複数でもよい。そして、各質量電荷比においてマススペクトル上に現れるピークの高さと、各質量電荷比とは異なる質量電荷比でマススペクトル上に現れるピークの高さの比(ピーク比)が、それぞれ所定の閾値と比較されてもよい。この場合、全てのピーク比が閾値未満の場合に、マススペクトルに目的成分のピークは含まれていないと判定されてもよいし、少なくとも1つのピーク比が閾値未満の場合に、マススペクトルに目的成分のピークは含まれていないと判定されてもよい。 Also, the mass-to-charge ratio A corresponding to the target component is not limited to one, but may be plural. The ratio of the peak height appearing on the mass spectrum at each mass to charge ratio and the peak height appearing on the mass spectrum at a mass to charge ratio different from each mass to charge ratio (peak ratio) is a predetermined threshold value, respectively. May be compared. In this case, when all peak ratios are less than the threshold value, it may be determined that the peak of the target component is not included in the mass spectrum, and when at least one peak ratio is less than the threshold value, It may be determined that a component peak is not included.
 再び図2を参照すると、ピークパターン比較部34は、マススペクトル生成部31により生成されたマススペクトルを予め定められたピークパターンと比較する。具体的には、目的成分を予め測定することにより得られたマススペクトルに含まれる複数のピークのパターン(ピークパターン)が記憶部6に記憶されており、この記憶部6に記憶されているピークパターンと、試料Sを測定することにより得られたマススペクトルに含まれる複数のピークのパターンとが比較される。このとき、記憶部6は、ピークパターンを記憶するスペクトルライブラリとして機能している。 Referring to FIG. 2 again, the peak pattern comparison unit 34 compares the mass spectrum generated by the mass spectrum generation unit 31 with a predetermined peak pattern. Specifically, a plurality of peak patterns (peak patterns) included in the mass spectrum obtained by measuring the target component in advance are stored in the storage unit 6, and the peaks stored in the storage unit 6 are stored. The pattern and the pattern of a plurality of peaks included in the mass spectrum obtained by measuring the sample S are compared. At this time, the storage unit 6 functions as a spectrum library that stores peak patterns.
 ピークパターン比較部34は、マススペクトル生成部31により生成されたマススペクトルと、記憶部6に記憶されているピークパターンとを比較して、それらの類似度を算出する。上記類似度を算出するためのアルゴリズムは周知であるため、その説明を省略する。このような比較結果に基づいて、例えば算出された類似度が所定の閾値未満の場合には、マススペクトルに目的成分のピークは含まれていないと判定することができる。 The peak pattern comparison unit 34 compares the mass spectrum generated by the mass spectrum generation unit 31 with the peak pattern stored in the storage unit 6 and calculates their similarity. Since the algorithm for calculating the similarity is well known, its description is omitted. Based on the comparison result, for example, when the calculated similarity is less than a predetermined threshold, it can be determined that the peak of the target component is not included in the mass spectrum.
 ただし、ピークパターン比較部34は、類似度を一定の閾値と比較するような構成に限らず、類似度を所定の閾値の範囲と比較するような構成であってもよい。この場合、例えば類似度が所定の閾値の範囲になければ、マススペクトルに目的成分のピークは含まれていないと判定することができる。 However, the peak pattern comparison unit 34 is not limited to a configuration in which the similarity is compared with a certain threshold value, and may be configured to compare the similarity with a predetermined threshold range. In this case, for example, if the similarity is not within a predetermined threshold range, it can be determined that the peak of the target component is not included in the mass spectrum.
 目的成分判定部35は、絶対強度比較部32による比較結果、強度比比較部33による比較結果、及び、ピークパターン比較部34による比較結果に基づいて、試料S中の目的成分の有無を判定する。具体的には、絶対強度比較部32、強度比比較部33及びピークパターン比較部34のいずれにおいてもマススペクトルに目的成分のピークは含まれていないと判定された場合にのみ、目的成分判定部35は、試料S中に目的成分が含まれていないと判定する。一方、絶対強度比較部32、強度比比較部33及びピークパターン比較部34の少なくとも1つにおいて、マススペクトルに目的成分のピークが含まれると判定された場合には、目的成分判定部35は、試料S中に目的成分が含まれていると判定する。 The target component determination unit 35 determines the presence or absence of the target component in the sample S based on the comparison result by the absolute intensity comparison unit 32, the comparison result by the intensity ratio comparison unit 33, and the comparison result by the peak pattern comparison unit 34. . Specifically, the target component determination unit only when it is determined in any of the absolute intensity comparison unit 32, the intensity ratio comparison unit 33, and the peak pattern comparison unit 34 that the peak of the target component is not included in the mass spectrum. 35 determines that the target component is not contained in the sample S. On the other hand, when at least one of the absolute intensity comparison unit 32, the intensity ratio comparison unit 33, and the peak pattern comparison unit 34 determines that the peak of the target component is included in the mass spectrum, the target component determination unit 35 It is determined that the target component is contained in the sample S.
 表示制御部36は、表示部4に対する表示を制御する。具体的には、表示制御部36は、マススペクトル生成部31により生成されたマススペクトルを表示部4に表示させる。これにより、分析者は、試料Sの質量分析により得られたマススペクトルを確認することができる。また、表示制御部36は、目的成分判定部35による判定結果を表示部4に表示させる。この場合、表示部4に表示されているマススペクトル上に判定結果が表示されてもよいし、ポップアップ画面などの他の画面で判定結果が表示されてもよい。 The display control unit 36 controls display on the display unit 4. Specifically, the display control unit 36 causes the display unit 4 to display the mass spectrum generated by the mass spectrum generation unit 31. Thereby, the analyst can confirm the mass spectrum obtained by the mass analysis of the sample S. Further, the display control unit 36 causes the display unit 4 to display the determination result by the target component determination unit 35. In this case, the determination result may be displayed on the mass spectrum displayed on the display unit 4, or the determination result may be displayed on another screen such as a pop-up screen.
3.制御部の動作
 図5は、制御部3による処理の一例を示したフローチャートである。質量分析装置1を用いて試料S中に目的成分が含まれているか否かを判定する場合には、まず、試料Sが質量分析部2にセットされ、当該試料Sが直接イオン化されることにより質量分析が行われる(ステップS101:質量分析ステップ)。そして、質量分析により検出器242から出力される検出信号に基づいて、マススペクトル生成部31によりマススペクトルが生成される(ステップS102:マススペクトル生成ステップ)。
3. Operation of Control Unit FIG. 5 is a flowchart showing an example of processing by the control unit 3. When determining whether or not the target component is contained in the sample S using the mass spectrometer 1, first, the sample S is set in the mass analyzer 2, and the sample S is directly ionized. Mass spectrometry is performed (step S101: mass spectrometry step). Then, based on the detection signal output from the detector 242 by mass spectrometry, a mass spectrum is generated by the mass spectrum generation unit 31 (step S102: mass spectrum generation step).
 その後、生成されたマススペクトルについて、絶対強度比較部32が当該マススペクトルに含まれるピークの絶対強度を閾値と比較する処理(ステップS103:絶対強度比較ステップ)、強度比比較部33が当該マススペクトルに含まれる2つのピークの強度比を閾値と比較する処理(ステップS104:強度比比較ステップ)、及び、ピークパターン比較部34が当該マススペクトルを予め定められたピークパターンと比較する処理(ステップS105:ピークパターン比較ステップ)が行われる。 Thereafter, with respect to the generated mass spectrum, the absolute intensity comparison unit 32 compares the absolute intensity of the peak included in the mass spectrum with a threshold (step S103: absolute intensity comparison step), and the intensity ratio comparison unit 33 calculates the mass spectrum. (Step S104: intensity ratio comparison step), and the peak pattern comparison unit 34 compares the mass spectrum with a predetermined peak pattern (step S105). : Peak pattern comparison step).
 その結果、マススペクトルに含まれるピークの絶対強度が閾値以上であり(ステップS103でNo)、マススペクトルに含まれる2つのピークの強度比が閾値未満であり(ステップS104でNo)、かつ、マススペクトルとピークパターンとの類似度が閾値未満である場合には(ステップS105でNo)、目的成分判定部35が、試料S中に目的成分が含まれていないと自動的に判定する(ステップS106:目的成分判定ステップ)。 As a result, the absolute intensity of the peak included in the mass spectrum is greater than or equal to the threshold (No in step S103), the intensity ratio of the two peaks included in the mass spectrum is less than the threshold (No in step S104), and the mass When the similarity between the spectrum and the peak pattern is less than the threshold value (No in step S105), the target component determination unit 35 automatically determines that the target component is not included in the sample S (step S106). : Target component determination step).
 一方、マススペクトルに含まれるピークの絶対強度が閾値未満である場合(ステップS103でYes)、マススペクトルに含まれる2つのピークの強度比が閾値以上である場合(ステップS104でYes)、又は、マススペクトルとピークパターンとの類似度が閾値以上である場合には(ステップS105でYes)、目的成分判定部35が、試料S中に目的成分が含まれていると自動的に判定する(ステップS108:目的成分判定ステップ)。 On the other hand, when the absolute intensity of the peak included in the mass spectrum is less than the threshold (Yes in step S103), the intensity ratio of the two peaks included in the mass spectrum is equal to or greater than the threshold (Yes in step S104), or If the similarity between the mass spectrum and the peak pattern is equal to or greater than the threshold (Yes in step S105), the target component determination unit 35 automatically determines that the target component is included in the sample S (step S105). S108: target component determination step).
 その後、表示制御部36が、目的成分判定部35による判定結果を表示部4に表示させる(ステップS107:判定結果表示ステップ)。本実施形態のように、目的成分が発がん性を有する芳香族アミン類である場合、目的成分判定部35により試料S中に目的成分が含まれると判定されたときには(ステップS108)、その旨が表示部4に表示されることにより、分析者は試料Sの危険性を容易に確認することができる。これに対して、目的成分判定部35により試料S中に目的成分が含まれていないと判定されたときには(ステップS106)、その旨が表示部4に表示されることにより、分析者は試料Sの安全性を容易に確認することができる。 Thereafter, the display control unit 36 causes the display unit 4 to display the determination result by the target component determination unit 35 (step S107: determination result display step). When the target component is an aromatic amine having carcinogenicity as in the present embodiment, when the target component determination unit 35 determines that the target component is included in the sample S (step S108), this is indicated. By displaying on the display unit 4, the analyst can easily confirm the risk of the sample S. On the other hand, when the target component determination unit 35 determines that the target component is not included in the sample S (step S106), the fact is displayed on the display unit 4 so that the analyst can analyze the sample S. Can be easily confirmed.
4.作用効果
 本実施形態では、質量分析により得られたマススペクトルに含まれるピークの絶対強度に基づいて、絶対強度比較部32及び目的成分判定部35により、定量的かつ絶対的な基準で試料S中の目的成分の有無を判定することができる。また、質量分析により得られたマススペクトルに含まれる2つのピークの強度比に基づいて、強度比比較部33及び目的成分判定部35により、定量的かつ相対的な基準で試料S中の目的成分の有無を判定することができる。さらに、ピークパターン比較部34が質量分析により得られたマススペクトルを予め定められたピークパターンと比較することにより、定性的な基準で試料S中の目的成分の有無を判定することができる。このように、定量的及び定性的な基準、さらには絶対的及び相対的な基準に基づいて試料S中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料S中の目的成分を容易かつ正確に同定することができる。
4). In this embodiment, based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry, the absolute intensity comparing unit 32 and the target component determining unit 35 in the sample S on a quantitative and absolute basis. The presence or absence of the target component can be determined. Moreover, based on the intensity ratio of two peaks included in the mass spectrum obtained by mass spectrometry, the intensity ratio comparison unit 33 and the target component determination unit 35 perform the target component in the sample S on a quantitative and relative basis. The presence or absence of can be determined. Furthermore, by comparing the mass spectrum obtained by mass spectrometry with a predetermined peak pattern, the peak pattern comparison unit 34 can determine the presence or absence of the target component in the sample S on a qualitative basis. In this manner, since the presence or absence of the target component in the sample S is determined based on the quantitative and qualitative criteria, and also on the absolute and relative criteria, even a non-experienced analyst can analyze the target component in the sample S. Can be easily and accurately identified.
 また、本実施形態では、試料S中の芳香族アミン類を容易かつ正確に同定することができる。芳香族アミン類は発がん性を有しているため、そのような芳香族アミン類を正確に同定することにより、分析の信頼性を向上することができる。また、試料S中の芳香族アミン類を容易に同定することができるため、分析時間を短縮することができ、その結果、より多くの試料Sを短時間で分析することができる。 In this embodiment, the aromatic amines in the sample S can be easily and accurately identified. Since aromatic amines have carcinogenicity, the reliability of analysis can be improved by accurately identifying such aromatic amines. Moreover, since the aromatic amines in the sample S can be easily identified, the analysis time can be shortened, and as a result, more samples S can be analyzed in a short time.
 さらに、本実施形態では、アゾ染料から生成される芳香族アミン類を容易かつ正確に同定することができる。特に、アゾ染料を直接イオン化して質量分析を行うことができるため、発がん性を有する芳香族アミン類が生成されるアゾ染料を短時間で効率よく分析することが可能である。 Furthermore, in this embodiment, aromatic amines produced from azo dyes can be easily and accurately identified. In particular, since azo dyes can be directly ionized and subjected to mass spectrometry, it is possible to efficiently analyze azo dyes that produce carcinogenic aromatic amines in a short time.
5.第2実施形態
 図6は、第2実施形態に係る質量分析装置1における制御部3の構成例を示したブロック図である。本実施形態では、制御部3に強度比比較部33が備えられていない点を除けば、第1実施形態の構成と同様であるため、同様の構成については図に同一符号を付して詳細な説明を省略する。
5. Second Embodiment FIG. 6 is a block diagram illustrating a configuration example of the control unit 3 in the mass spectrometer 1 according to the second embodiment. In the present embodiment, the configuration is the same as the configuration of the first embodiment except that the control unit 3 does not include the intensity ratio comparison unit 33. The detailed explanation is omitted.
 本実施形態では、絶対強度比較部32による比較結果、及び、ピークパターン比較部34による比較結果のみに基づいて、目的成分判定部35により試料S中の目的成分の有無が判定される。すなわち、制御部3による処理は、図5においてステップS104(強度比比較ステップ)を除いた処理となる。 In this embodiment, the target component determination unit 35 determines the presence or absence of the target component in the sample S based only on the comparison result by the absolute intensity comparison unit 32 and the comparison result by the peak pattern comparison unit 34. That is, the process by the control unit 3 is a process excluding step S104 (intensity ratio comparison step) in FIG.
 このような構成であっても、質量分析により得られたマススペクトルに含まれるピークの絶対強度に基づいて、絶対強度比較部32及び目的成分判定部35により、定量的な基準で試料S中の目的成分の有無を判定することができる。また、ピークパターン比較部34が質量分析により得られたマススペクトルを予め定められたピークパターンと比較することにより、定性的な基準で試料S中の目的成分の有無を判定することができる。このように、定量的及び定性的な基準に基づいて試料S中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料S中の目的成分を容易かつ正確に同定することができる。 Even in such a configuration, based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry, the absolute intensity comparison unit 32 and the target component determination unit 35 can determine whether the sample S contains the sample S on a quantitative basis. The presence or absence of the target component can be determined. Moreover, the presence or absence of the target component in the sample S can be determined based on a qualitative reference by comparing the mass spectrum obtained by mass spectrometry with the peak pattern comparing unit 34 with a predetermined peak pattern. Thus, since the presence or absence of the target component in the sample S is determined based on the quantitative and qualitative criteria, even an unskilled analyst can easily and accurately identify the target component in the sample S. .
6.第3実施形態
 図7は、第3実施形態に係る質量分析装置1における制御部3の構成例を示したブロック図である。本実施形態では、制御部3にピークパターン比較部34が備えられていない点を除けば、第1実施形態の構成と同様であるため、同様の構成については図に同一符号を付して詳細な説明を省略する。
6). Third Embodiment FIG. 7 is a block diagram illustrating a configuration example of a control unit 3 in a mass spectrometer 1 according to a third embodiment. In the present embodiment, the configuration is the same as that of the first embodiment except that the control unit 3 is not provided with the peak pattern comparison unit 34. The detailed explanation is omitted.
 本実施形態では、絶対強度比較部32による比較結果、及び、強度比比較部33による比較結果のみに基づいて、目的成分判定部35により試料S中の目的成分の有無が判定される。すなわち、制御部3による処理は、図5においてステップS105(ピークパターン比較ステップ)を除いた処理となる。 In the present embodiment, based on only the comparison result by the absolute intensity comparison unit 32 and the comparison result by the intensity ratio comparison unit 33, the target component determination unit 35 determines the presence or absence of the target component in the sample S. That is, the process by the control unit 3 is a process excluding step S105 (peak pattern comparison step) in FIG.
 このような構成であっても、質量分析により得られたマススペクトルに含まれるピークの絶対強度に基づいて、絶対強度比較部32及び目的成分判定部35により、絶対的な基準で試料S中の目的成分の有無を判定することができる。また、質量分析により得られたマススペクトルに含まれる2つのピークの強度比に基づいて、強度比比較部33及び目的成分判定部35により、相対的な基準で試料S中の目的成分の有無を判定することができる。このように、絶対的及び相対的な基準に基づいて試料S中の目的成分の有無が判定されるため、経験豊富でない分析者でも試料S中の目的成分を容易かつ正確に同定することができる。 Even in such a configuration, based on the absolute intensity of the peak included in the mass spectrum obtained by mass spectrometry, the absolute intensity comparison unit 32 and the target component determination unit 35 can provide The presence or absence of the target component can be determined. Further, based on the intensity ratio of the two peaks included in the mass spectrum obtained by mass spectrometry, the intensity ratio comparison unit 33 and the target component determination unit 35 determine the presence or absence of the target component in the sample S on a relative basis. Can be determined. Thus, since the presence or absence of the target component in the sample S is determined based on the absolute and relative criteria, even an unexperienced analyst can easily and accurately identify the target component in the sample S. .
7.変形例
 以上の実施形態では、試料Sを直接イオン化する方法の一例として、DARTを用いて質量分析を行う場合について説明した。しかし、このような構成に限らず、例えばDESI(Desorption Electrospray Ionization)、ELDI(Electrospray-assisted Laser Desorption/Ionization)、DI(Desorption Ionization)又はASAP(Atmospheric Pressure Solids Analysis Probe)などの他の直接イオン化法を用いて質量分析を行うような構成であってもよい。
7). Modified Example In the above embodiment, the case where mass analysis is performed using DART is described as an example of a method for directly ionizing the sample S. However, the present invention is not limited to this configuration, and other direct ionization methods such as DESI (Desorption Electrospray Ionization), ELDI (Electrospray-assisted Laser Desorption / Ionization), DI (Desorption Ionization), or ASAP (Atmospheric Pressure Solids Analysis Probe). It is also possible to adopt a configuration in which mass spectrometry is performed using
 また、質量分析装置1は、四重極型の質量分析装置に限られるものではない。すなわち、本発明は、例えばMALDIイオン源を搭載した質量分析装置など、試料Sを直接イオン化できるような各種質量分析装置に適用可能である。 Further, the mass spectrometer 1 is not limited to a quadrupole mass spectrometer. That is, the present invention can be applied to various mass spectrometers that can directly ionize the sample S, such as a mass spectrometer equipped with a MALDI ion source.
 試料Sは、例えば繊維を含む試料であり、衣類、ランチョンマット、シーツ、革製品などを例示することができる。試料Sは、アゾ染料を含むものに限られるものではない。この場合、目的成分は芳香族アミン類に限らず、他の成分であってもよい。 Sample S is, for example, a sample containing fibers, and examples thereof include clothing, place mats, sheets, and leather products. The sample S is not limited to one containing an azo dye. In this case, the target component is not limited to aromatic amines and may be other components.
1  質量分析装置
2  質量分析部
3  制御部
4  表示部
5  操作部
6  記憶部
21 イオン化室
22 第1真空室
23 第2真空室
24 分析室
25 イオン化ユニット
31 マススペクトル生成部
32 絶対強度比較部
33 強度比比較部
34 ピークパターン比較部
35 目的成分判定部
36 表示制御部
DESCRIPTION OF SYMBOLS 1 Mass spectrometer 2 Mass spectrometer 3 Control part 4 Display part 5 Operation part 6 Memory | storage part 21 Ionization chamber 22 1st vacuum chamber 23 2nd vacuum chamber 24 Analysis room 25 Ionization unit 31 Mass spectrum production | generation part 32 Absolute intensity comparison part 33 Intensity ratio comparison unit 34 Peak pattern comparison unit 35 Target component determination unit 36 Display control unit

Claims (10)

  1.  試料を直接イオン化して質量分析を行う質量分析部と、
     前記質量分析部による質量分析に基づいてマススペクトルを生成するマススペクトル生成部と、
     前記マススペクトル生成部により生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する絶対強度比較部と、
     前記マススペクトル生成部により生成されたマススペクトルを予め定められたピークパターンと比較するピークパターン比較部と、
     前記絶対強度比較部による比較結果、及び、前記ピークパターン比較部による比較結果に基づいて、試料中の目的成分の有無を判定する目的成分判定部とを備えることを特徴とする質量分析装置。
    A mass spectrometer for directly ionizing a sample and performing mass spectrometry;
    A mass spectrum generation unit that generates a mass spectrum based on mass spectrometry by the mass analysis unit;
    An absolute intensity comparison unit that compares an absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold;
    A peak pattern comparison unit that compares the mass spectrum generated by the mass spectrum generation unit with a predetermined peak pattern;
    A mass spectrometer comprising: a target component determination unit that determines the presence or absence of a target component in a sample based on a comparison result by the absolute intensity comparison unit and a comparison result by the peak pattern comparison unit.
  2.  前記マススペクトル生成部により生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する強度比比較部をさらに備え、
     前記目的成分判定部は、前記絶対強度比較部による比較結果、前記ピークパターン比較部による比較結果、及び、前記強度比比較部による比較結果に基づいて、試料中の目的成分の有無を判定することを特徴とする請求項1に記載の質量分析装置。
    An intensity ratio comparison unit that compares the intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold;
    The target component determination unit determines the presence or absence of the target component in the sample based on the comparison result by the absolute intensity comparison unit, the comparison result by the peak pattern comparison unit, and the comparison result by the intensity ratio comparison unit. The mass spectrometer according to claim 1.
  3.  試料を直接イオン化して質量分析を行う質量分析部と、
     前記質量分析部による質量分析に基づいてマススペクトルを生成するマススペクトル生成部と、
     前記マススペクトル生成部により生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する絶対強度比較部と、
     前記マススペクトル生成部により生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する強度比比較部と、
     前記絶対強度比較部による比較結果、及び、前記強度比比較部による比較結果に基づいて、試料中の目的成分の有無を判定する目的成分判定部とを備えることを特徴とする質量分析装置。
    A mass spectrometer for directly ionizing a sample and performing mass spectrometry;
    A mass spectrum generation unit that generates a mass spectrum based on mass spectrometry by the mass analysis unit;
    An absolute intensity comparison unit that compares an absolute intensity of a peak included in the mass spectrum generated by the mass spectrum generation unit with a threshold;
    An intensity ratio comparison unit that compares an intensity ratio of two peaks included in the mass spectrum generated by the mass spectrum generation unit with a threshold;
    A mass spectrometer comprising: a target component determination unit that determines the presence or absence of a target component in a sample based on a comparison result by the absolute intensity comparison unit and a comparison result by the intensity ratio comparison unit.
  4.  前記目的成分は、芳香族アミン類であることを特徴とする請求項1~3のいずれか一項に記載の質量分析装置。 The mass spectrometer according to any one of claims 1 to 3, wherein the target component is an aromatic amine.
  5.  前記試料は、アゾ染料を含むことを特徴とする請求項4に記載の質量分析装置。 The mass spectrometer according to claim 4, wherein the sample includes an azo dye.
  6.  試料を直接イオン化して質量分析を行う質量分析ステップと、
     前記質量分析ステップでの質量分析に基づいてマススペクトルを生成するマススペクトル生成ステップと、
     前記マススペクトル生成ステップで生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する絶対強度比較ステップと、
     前記マススペクトル生成ステップで生成されたマススペクトルを予め定められたピークパターンと比較するピークパターン比較ステップと、
     前記絶対強度比較ステップでの比較結果、及び、前記ピークパターン比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定する目的成分判定ステップとを備えることを特徴とする質量分析方法。
    A mass spectrometry step for directly ionizing a sample and performing mass spectrometry;
    A mass spectrum generation step for generating a mass spectrum based on the mass analysis in the mass analysis step;
    An absolute intensity comparison step of comparing an absolute intensity of a peak included in the mass spectrum generated in the mass spectrum generation step with a threshold;
    A peak pattern comparison step for comparing the mass spectrum generated in the mass spectrum generation step with a predetermined peak pattern;
    A mass spectrometry method comprising: a target component determination step for determining the presence or absence of a target component in a sample based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step .
  7.  前記マススペクトル生成ステップで生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する強度比比較ステップをさらに備え、
     前記目的成分判定ステップでは、前記絶対強度比較ステップでの比較結果、前記ピークパターン比較ステップでの比較結果、及び、前記強度比比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定することを特徴とする請求項6に記載の質量分析方法。
    An intensity ratio comparison step of comparing an intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step with a threshold;
    In the target component determination step, based on the comparison result in the absolute intensity comparison step, the comparison result in the peak pattern comparison step, and the comparison result in the intensity ratio comparison step, the presence or absence of the target component in the sample is determined. The mass spectrometry method according to claim 6, wherein the determination is performed.
  8.  試料を直接イオン化して質量分析を行う質量分析ステップと、
     前記質量分析ステップでの質量分析に基づいてマススペクトルを生成するマススペクトル生成ステップと、
     前記マススペクトル生成ステップで生成されたマススペクトルに含まれるピークの絶対強度を閾値と比較する絶対強度比較ステップと、
     前記マススペクトル生成ステップで生成されたマススペクトルに含まれる2つのピークの強度比を閾値と比較する強度比比較ステップと、
     前記絶対強度比較ステップでの比較結果、及び、前記ピークパターン比較ステップでの比較結果に基づいて、試料中の目的成分の有無を判定する目的成分判定ステップとを備えることを特徴とする質量分析方法。
    A mass spectrometry step for directly ionizing a sample and performing mass spectrometry;
    A mass spectrum generation step for generating a mass spectrum based on the mass analysis in the mass analysis step;
    An absolute intensity comparison step of comparing an absolute intensity of a peak included in the mass spectrum generated in the mass spectrum generation step with a threshold;
    An intensity ratio comparison step of comparing an intensity ratio of two peaks included in the mass spectrum generated in the mass spectrum generation step with a threshold;
    A mass spectrometry method comprising: a target component determination step for determining the presence or absence of a target component in a sample based on the comparison result in the absolute intensity comparison step and the comparison result in the peak pattern comparison step .
  9.  前記目的成分は、芳香族アミン類であることを特徴とする請求項6~8のいずれか一項に記載の質量分析方法。 The mass spectrometric method according to any one of claims 6 to 8, wherein the target component is an aromatic amine.
  10.  前記試料は、アゾ染料を含むことを特徴とする請求項9に記載の質量分析方法。 The mass spectrometric method according to claim 9, wherein the sample contains an azo dye.
PCT/JP2016/056166 2016-03-01 2016-03-01 Mass spectrometry device and mass spectrometry method WO2017149632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056166 WO2017149632A1 (en) 2016-03-01 2016-03-01 Mass spectrometry device and mass spectrometry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056166 WO2017149632A1 (en) 2016-03-01 2016-03-01 Mass spectrometry device and mass spectrometry method

Publications (1)

Publication Number Publication Date
WO2017149632A1 true WO2017149632A1 (en) 2017-09-08

Family

ID=59742631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056166 WO2017149632A1 (en) 2016-03-01 2016-03-01 Mass spectrometry device and mass spectrometry method

Country Status (1)

Country Link
WO (1) WO2017149632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110864A1 (en) * 2018-11-26 2020-06-04 株式会社島津製作所 Analysis method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209062A (en) * 2010-03-29 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Secondary analysis method of mass spectrum data, and secondary analysis system of the same
JP2013064730A (en) * 2011-09-02 2013-04-11 Shiseido Co Ltd Analyzer, analysis method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209062A (en) * 2010-03-29 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Secondary analysis method of mass spectrum data, and secondary analysis system of the same
JP2013064730A (en) * 2011-09-02 2013-04-11 Shiseido Co Ltd Analyzer, analysis method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUYOSHI KAWAKAMI ET AL.: "Characterization of cases contravening of regulations regarding primary aromatic amines originating from azo dyes in commercial textile products and leather products in European Union", NATIONAL INSTITUTE OF HEALTH SCIENCES HOKOKU, vol. 131, 20 November 2013 (2013-11-20), pages 66 - 74, XP055414480, ISSN: 1343-4292 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110864A1 (en) * 2018-11-26 2020-06-04 株式会社島津製作所 Analysis method and program
JPWO2020110864A1 (en) * 2018-11-26 2021-10-07 株式会社島津製作所 Analytical methods and programs

Similar Documents

Publication Publication Date Title
US10381207B2 (en) Data processing system for chromatographic mass spectrometry
US20080272292A1 (en) System and Method for Grouping Precursor and Fragment Ions Using Selected Ion Chromatograms
JP3509470B2 (en) Mass spectrometry method and mass spectrometer
JP6460252B2 (en) Mass spectrometry data processor for qualitative analysis
US9691594B2 (en) Method for analysis of sample and apparatus therefor
JP2013015485A (en) Ms/ms mass spectroscope and program for the same
JPWO2008035419A1 (en) Mass spectrometry method
JP2009129868A (en) Mass spectroscope and its method for adjustment
US7989761B2 (en) Gas analyzing method and gas analyzing apparatus
JP6737396B2 (en) Mass spectrometer and chromatograph mass spectrometer
JP6702501B2 (en) Tandem mass spectrometer and program for the same
US20180108522A1 (en) Imr-ms device
WO2017149632A1 (en) Mass spectrometry device and mass spectrometry method
JP6303896B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
CN107706081B (en) The application method of mass spectrometer system, chromatography-mass spectroscopy system and the two
WO2016125271A1 (en) Mass spectrometry method, chromatograph mass spectrometer, and program for mass spectrometry
JP2016031323A5 (en)
JP7070692B2 (en) Mass spectrometer and mass spectrometry method
JP5282059B2 (en) Ion molecule reaction ionization mass spectrometer and analysis method
JP5372623B2 (en) Mass spectrometer and mass spectrometry method
JP2021018100A (en) Gas analyzer
JP6521041B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
US12031943B2 (en) Ion analyzer
US20220093378A1 (en) Using real time search results to dynamically exclude product ions that may be present in the master scan
JP2009080010A (en) Mass analyzing system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892477

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP