WO2017149588A1 - Ship propulsion device and ship propulsion method - Google Patents

Ship propulsion device and ship propulsion method Download PDF

Info

Publication number
WO2017149588A1
WO2017149588A1 PCT/JP2016/056007 JP2016056007W WO2017149588A1 WO 2017149588 A1 WO2017149588 A1 WO 2017149588A1 JP 2016056007 W JP2016056007 W JP 2016056007W WO 2017149588 A1 WO2017149588 A1 WO 2017149588A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
motor
torque command
command value
deviation
Prior art date
Application number
PCT/JP2016/056007
Other languages
French (fr)
Japanese (ja)
Inventor
正識 古寺
浩二 竹居
信治 田代
浩一 白石
拓郎 畑本
Original Assignee
新潟原動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟原動機株式会社 filed Critical 新潟原動機株式会社
Priority to JP2018502864A priority Critical patent/JP6640324B2/en
Priority to PCT/JP2016/056007 priority patent/WO2017149588A1/en
Publication of WO2017149588A1 publication Critical patent/WO2017149588A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor

Definitions

  • the present invention relates to a marine vessel propulsion apparatus in which an inverter torque-controls a motor by electric power of an engine generator, and in particular, by realizing an inverter response speed that matches the response speed of the engine generator, the engine generator performs hunting.
  • the present invention relates to a marine vessel propulsion device that can prevent the occurrence of the fluctuation and suppress the fluctuation amount of the electric power supplied from the inverter to the motor to a fluctuation amount that the engine generator can respond to, thereby stabilizing the rotation speed of the engine generator.
  • An electric propulsion ship system stabilization system described in Patent Document 1 includes an electric motor that drives a load facility such as a propeller provided in an electric propulsion ship, and electric power supplied from the generator to the system at a desired voltage. And an inverter that controls the motor by converting to a frequency, a wave detector that detects the height and period of a wave generated in the vicinity of the electric propulsion ship, and a wave height and a wave period detected by the wave detector.
  • the system stabilization device imposes a limit on the upper operation speed limit for the inverter when the occurrence of an abnormal environment is predicted. The load current is reduced.
  • the grid stabilization system further includes an AVR control unit that controls the excitation voltage of the generator and a governor control unit that controls a governor provided corresponding to the drive device for the generator.
  • the system stabilization device calculates the voltage adjustment rate for the generator and the governor adjustment rate for the drive unit based on the change rates of the output current and frequency of the inverter. The calculation result is output to the AVR control unit and the governor control unit to stabilize the system voltage and frequency.
  • the vehicle drive control device is a vehicle drive control device including a generator and an AC motor that is supplied with electric power from the generator via an inverter to drive drive wheels.
  • Field control means for controlling the field of the generator based on required motor power
  • torque command value calculating means for calculating a torque command value of the AC motor based on required motor power required by the AC motor
  • Motor control means for controlling the AC motor based on the torque command value calculated by the torque command value calculation means and the output state of the generator.
  • the motor control means is configured to output the torque command based on a torque corresponding to an operating point at which a voltage value is a voltage upper limit value on a generator output characteristic line including an operating point determined from the output voltage and output current of the generator.
  • a lower limit is set on the value
  • an upper limit is set on the torque command value by the torque corresponding to the operating point at which the output power is maximum on the generator output characteristic line including the operating point determined from the output voltage and output current of the generator.
  • Torque command value limiting means is provided, and the AC motor is controlled based on the torque command value limited by the torque command value limiting means. That is, the same document 2 describes that when a torque command value to an inverter that performs torque control of an AC motor is output, an upper limit and a lower limit are provided for the torque command value according to the situation of the generator.
  • JP 2010-89550 A Japanese Patent No. 4466542
  • a system stabilization device that stabilizes the generator rotation speed, the system voltage and frequency, and a wave detector that detects information for the system stabilization device to predict the occurrence of an abnormal environment are required.
  • the structure is complicated.
  • Adjustment is required for both the governor for controlling the engine rotational speed of the engine generator and the AVR for controlling the excitation voltage of the generator, and there are many parameters to be adjusted and the control is complicated.
  • motor propulsion ship propulsion devices including hybrid propulsion
  • an inverter controls the rotational speed of a motor by electric power supplied from an engine generator
  • the rotational speed of the generator tends to fluctuate easily due to the following factors.
  • the inverter controls the rotation speed of the motor according to the speed command value from the controller
  • the inverter performs high gain feedback control with excellent instantaneous response to fluctuations in the motor rotation speed
  • the momentary fluctuation of the motor output in this way is stressful for the engine generator that supplies power to the motor, so the capacity of the engine generator is set to about three times the capacity of the motor, for example. It is necessary to secure a margin for motor load fluctuations.
  • the control device for the engine generator controls the rotation speed of the engine with a high gain in order to make the rotation speed follow the rapid fluctuation of the load of the engine generator.
  • the engine of the engine generator is a diesel engine and the generator and the motor have the same capacity, the feedback control of the governor due to the response delay of the engine generator against the high speed fluctuation of the motor output. Therefore, in the high gain feedback control as described above, the number of rotations of the generator hunts and the frequency and voltage fluctuate and the control system tends to become unstable.
  • hunting is a phenomenon in which the frequency and voltage become unstable in an electric device such as a generator, causing trouble in the operation of the electric device.
  • the frequency or voltage of an electrical device becomes unstable, for example, the limit value or range that the electrical device can operate without any problem, the voltage is + 6% and -10% in the steady state and in the transitional period. If there is, the frequency is ⁇ 20% (within 1.5 seconds), and the frequency is ⁇ 5% in the steady state and ⁇ 10% (within 5 seconds) in the transient period.
  • the limit value or range in which such an electric device can operate without hindrance may vary depending on the type and application (application field) of the electric device. As described above, in this specification, a phenomenon in which the frequency and voltage are destabilized beyond the range in which various electric devices can operate without problems within the intended range is called hunting.
  • An object of the present invention is to solve the above-described problems.
  • a marine vessel propulsion apparatus in which an inverter torque-controls a motor by electric power of an engine generator, the engine power generation is performed without depending on control based on information on the generator side.
  • the engine generator By realizing the inverter response speed that matches the machine response speed, the engine generator is prevented from hunting, and the fluctuation amount of power supplied from the inverter to the motor is changed to the fluctuation quantity that the engine generator can respond to. It aims at providing the ship propulsion apparatus which can suppress and stabilize the rotational speed of an engine generator.
  • the marine vessel propulsion device described in claim 1 is: An engine generator that generates electric power by driving a generator with an engine; A motor for propelling the ship; An inverter for torque controlling the motor using electric power supplied from the engine generator; In the mechanism for outputting a torque command value to the inverter based on the deviation between the current rotation speed of the motor and the target rotation speed, the amount of change per unit time of the torque command value output to the inverter is A torque command value limiting unit for limiting the engine generator so that the response speed of the inverter does not cause hunting; It is characterized by comprising.
  • the ship propulsion device described in claim 2 is the ship propulsion device according to claim 1,
  • the torque command value limiting unit is a PID regulator that PID-calculates a torque command value and outputs the torque command value to the inverter, and the engine generator does not cause hunting for a change amount per unit time of the torque command value.
  • the PID regulator is set with a PID parameter that limits the response speed of the inverter.
  • the ship propulsion device described in claim 3 is the ship propulsion device according to claim 1,
  • the torque command value limiting unit is a deviation limiter that limits a deviation between a current rotation speed of the motor and a target rotation speed within a predetermined value range.
  • the ship propulsion device described in claim 4 is the ship propulsion device according to claim 1,
  • the torque command value limiter is A deviation limiter for limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range;
  • a PID regulator that performs a PID calculation of a torque command value so as to reduce a deviation output from the deviation limiter, and outputs the torque command value to the inverter, wherein the engine generator determines the amount of change per unit time of the torque command value.
  • a PID regulator in which a PID parameter to be limited is set so that the response speed of the inverter does not cause hunting; It is characterized by consisting of.
  • the marine vessel propulsion device according to claim 5 is the marine vessel propulsion device according to any one of claims 1 to 4, It has a lower limiter that provides a lower limit to the torque command value calculated by the PID regulator.
  • the ship propulsion apparatus is the ship propulsion apparatus according to any one of claims 1 to 5,
  • a speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor. It is a feature.
  • the ship propulsion method described in claim 7 is: A ship propulsion method for propelling a ship by supplying electric power generated by driving the engine of an engine generator that drives the generator with an engine via an inverter that torque-controls the motor. , The amount of change per unit time of the torque command value output to the inverter is limited to the response speed of the inverter at which the engine generator does not cause hunting.
  • the ship propulsion method described in claim 8 is the ship propulsion method according to claim 7,
  • a PID parameter is set to limit the amount of change per unit time of the torque command value output by performing PID calculation to the inverter to the response speed of the inverter where the engine generator does not cause hunting. Is output to the inverter.
  • the ship propulsion method according to claim 9 is the ship propulsion method according to claim 7,
  • the deviation between the current rotation speed of the motor and the target rotation speed is limited within a predetermined value range, and the torque command value is calculated so that the limited deviation becomes small, and then output to the inverter.
  • the amount of change per unit time of the torque command value to be limited is limited to the response speed of the inverter at which the engine generator does not cause hunting.
  • the ship propulsion method according to claim 10 is the ship propulsion method according to claim 7, Limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range; Setting a PID parameter that limits the amount of change in the torque command value to be output per unit time so that the response speed of the inverter does not cause hunting by the engine generator, A torque command value calculated by PID so as to reduce the limited deviation is output to the inverter.
  • the ship propulsion method according to claim 11 is the ship propulsion method according to any one of claims 7 to 10, A lower limit is provided for the calculated torque command value.
  • the ship propulsion method according to claim 12 is the ship propulsion method according to any one of claims 7 to 11, A speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor.
  • the marine vessel propulsion apparatus including an engine generator, a propulsion motor, and an inverter that controls torque of the motor.
  • the amount of change in power output from the inverter to the motor is limited by limiting the amount of change per unit time in the torque command value output to the inverter to the response speed of the inverter where the engine generator does not cause hunting. Is the amount of fluctuation that the engine generator can respond to. That is, by restricting the amount of change per unit time of the torque command value, the response of the inverter is “dulled” so that the engine generator does not hunt in accordance with the response of the engine generator. It is. Conventionally, there has been a need to secure a margin for motor load fluctuation by setting the capacity of the engine generator to about three times the motor capacity, but the present invention addresses the necessity of this engine generator margin. The capacity of the engine generator can be made smaller than before.
  • Limiting the amount of change per unit time in the torque command value output to the inverter can be achieved by the ship propulsion device described in claim 2 and the ship propulsion method described in claim 8. That is, the amount of change per unit time of the torque command value is limited by the PID parameter value of the PID regulator so that the responsiveness of the electric power output to the motor matches the response speed (response delay) of the engine generator.
  • the response of the inverter is “dulled” so that the engine generator does not hunt according to the response of the engine generator.
  • the responsiveness of the motor in the marine vessel propulsion apparatus that performs electric propulsion is comparable to that in the case of driving a propeller in a marine vessel propulsion apparatus that uses a diesel engine as a main engine.
  • the engine generator since the fluctuation amount of the generator load, that is, the fluctuation amount of the electric power output from the inverter to the motor is suppressed within the fluctuation amount range that the engine generator can respond to, the engine generator only by governor control.
  • the rotation speed and frequency of the engine generator can be stabilized, and adjustment of the governor and AVR in the engine generator is unnecessary. In this control, data from the engine generator is not required, nor is it intended to control the engine generator itself.
  • the deviation between the current rotational speed of the motor and the target rotational speed is within a predetermined value range by a deviation limiter.
  • the amount of change per unit time in the torque command value output to the inverter can be limited by the ship propulsion device described in claim 4 and the ship propulsion method described in claim 10. That is, the amount of change per unit time of the torque command value output to the inverter is also achieved by the ship propulsion device that combines claim 2 and claim 3 and the ship propulsion method that combines claim 8 and claim 9. Can be limited.
  • the deviation between the rotational speed of the motor and the target rotational speed is limited to be a predetermined value or less
  • a PID parameter is set to limit the engine generator to a response speed of the inverter that does not cause hunting, and a torque command value calculated by PID is output to the inverter so that the limited deviation becomes small. Since it did in this way, the variation
  • the adjustment of the PID parameter value for preventing the engine generator from hunting does not need to be set to “strictly dull” the response of the inverter as compared with the case where the deviation is not limited. May be. That is, the effect required to stabilize the rotational speed and frequency of the engine generator can be obtained without bringing the response speed of the inverter close to the response speed of the engine generator as in the case where the deviation is not limited.
  • the inverter response speed is brought close to the engine generator response speed, and a certain effect of preventing hunting of the engine generator is obtained. If the control is performed, it is possible to avoid an extreme change in the power output to the motor by the inverter, which is expected when the deviation is large, and to further synergize the rotation speed and frequency of the engine generator Is obtained.
  • the lower limit can be set to 0 or more to reduce the regenerative electric energy of the motor, and the lower limit It is also possible to set the limit to less than 0 so that the regenerative electric energy of the motor is present.
  • the speed limiter command calculated by adding a set constant to the target rotational speed of the motor is output to the inverter. Over-rotation can be prevented.
  • This marine vessel propulsion device is a device that propels a vessel by controlling the torque of the motor by the inverter using electric power generated by the engine generator under the control of the controller, and the motor rotates the propeller.
  • the marine vessel propulsion apparatus 1 includes an engine generator 4 that generates electric power by driving a generator 3 with an engine 2.
  • the engine 2 is controlled by a governor 5 having a function of autonomously adjusting the rotational speed of the engine 2.
  • the generator 3 has an excitation voltage controlled by an AVR (Automatic Voltage Regulator) 6.
  • the generator control device 7 can detect the current and voltage frequency of electricity generated by the generator 3, and can control the governor 5 and AVR 6 based on this.
  • the electric power from the engine generator 4 is given to the motor 9 through the inverter 8, and the motor 9 is driven to rotate the propeller 10.
  • the inverter 8 is controlled by the controller 11.
  • the controller 11 has a configuration described below for rotational speed stabilization control of the engine generator 4.
  • the controller 11 has a speed calculation unit 13.
  • a speed control handle 12 installed at the operating position of the ship is connected to the speed calculation unit 13.
  • the speed control handle 12 outputs a signal corresponding to the position operated and set by the operator.
  • the speed calculation unit 13 receives a signal from the speed control handle 12 and calculates a motor target rotation speed based on this signal.
  • a speed limiter 14 is connected to the speed calculation unit 13.
  • the speed limiter 14 calculates a speed limiter command by adding a set constant ⁇ to the motor target rotation speed calculated by the speed calculation unit 13 and gives it to the inverter 8.
  • the setting constant ⁇ is set so as to be less than the maximum allowable rotation speed of the motor 9 even when the setting constant ⁇ is added to the maximum motor target rotation speed when the speed control handle 12 is maximized. That is, (Allowable maximum motor speed-maximum motor target speed)> Setting constant ⁇ Are in a relationship. As a result, the inverter 8 cannot drive the motor 9 beyond the speed limiter command, and over-rotation of the motor 9 is prevented.
  • a deviation calculator 15 is connected to the speed calculator 13.
  • the motor target rotation speed is input from the speed calculation unit 13 to the deviation calculation unit 15.
  • This deviation calculation unit 15 is also connected to the inverter 8, and the current motor rotation speed is input from the inverter 8.
  • the deviation calculation unit 15 calculates a deviation between the motor target rotation speed and the motor rotation speed.
  • a deviation limiter 16 is connected to the deviation calculation unit 15.
  • the deviation is input from the deviation calculator 15 to the deviation limiter 16.
  • the deviation limiter 16 limits the deviation to be within the range of each deviation limiter value on the + side and ⁇ side according to the following (Equation 1) so that the instantaneous fluctuation amount of the motor output does not increase, and outputs it. .
  • the deviation that is limited and output by (Equation 1) is expressed in particular as deviation E (n).
  • the horizontal axis indicates the deviation that is the difference between the motor target rotational speed and the actual motor rotational speed
  • the vertical axis indicates the deviation E (n) that is actually output from the deviation limiter 16. Yes. If the deviation on the horizontal axis is relatively narrow before and after 0, it is output as the deviation E (n) on the vertical axis as it is, but if it exceeds a range of ⁇ , the lower limit deviation limiter value that is the limit value shown on the vertical axis And output as a deviation E (n), limited to the upper limit deviation limiter value.
  • a PID regulator 17 is connected to the deviation limiter 16.
  • the PID regulator 17 is set with a PID parameter value that realizes the response speed of the inverter 8 so that the engine generator 4 does not hunt, that is, a parameter value that matches the response speed of the engine generator 4, and the deviation E ( Calculate and output the torque command value so that n) becomes smaller.
  • the response speed (solid line) of the inverter 8 that drives the motor 9 is larger than the response speed (broken line) of the engine generator 4. That is, when compared with the response characteristics, the rise of the output with respect to time is faster and steeper in the inverter 8 than in the engine generator 4. Therefore, the PID regulator 17 adjusts the PID parameter in the PID control of the torque command for the inverter 8, thereby reducing the response speed of the inverter 8 to be equal to or lower than the response speed of the engine generator 4 (one-dot chain line) and Is matched with the response speed of the engine generator 4.
  • the amount of change per unit time of the torque command value is changed by the PID regulator 17 that has adjusted the PID parameter based on the deviation E (n) between the current rotational speed of the motor and the target rotational speed.
  • the torque command value that is a value that does not cause the hunting of 4 is output to the inverter 8.
  • the amount of change per unit time of the torque command value is limited, and the responsiveness of the inverter apparently becomes “dull”, and the engine generator is hunted according to the responsiveness of the engine generator. Will not do.
  • the responsiveness of the motor 9 in the marine vessel propulsion apparatus 1 that performs electric propulsion becomes approximately the same as the responsiveness when the propeller is driven in the marine vessel propulsion apparatus that uses a diesel engine as a main engine.
  • the torque command value is calculated according to the following (Expression 2) or (Expression 3). This is a typical example of a PID arithmetic expression in software digital arithmetic processing.
  • Torque command calculation value Kp x ⁇ (E (n) -E (n-1)) + ⁇ t / Tl x E (n) + Td / ⁇ t (E (n) -2E (n-1) + E (n-2))
  • Torque command value (n) Torque command value (n-1) + Torque command calculation value ... (Formula 2)
  • Torque command calculation value Kp x ⁇ (E (n) + ⁇ t / Tl x ⁇ Ei + Td / ⁇ t (E (n) -E (n-1)) (Formula 3)
  • the calculation cycle ⁇ t corresponds to the “unit time” in the “amount of change per unit time of the torque command value output to the inverter 8” described above. Usually, this calculation cycle is 1 msec to several seconds, preferably 10 to 500 msec.
  • the “change amount” is incorporated into the PID parameters proportional gain (P) Kp, integral time (I) Tl, and derivative time (D) Td, and the change per unit time of the torque command value Is output from the PID regulator to a value that does not cause hunting of the engine generator 4.
  • the PID regulator 17 adjusts the PID parameters in advance so that the rotation speed of the engine generator does not hunt when a load is applied to the motor 9.
  • the value of this PID parameter is determined in accordance with the characteristics of the engine generator 4 and the characteristics of the inverter 8. This adjustment is performed at the beginning of the operation of the ship propulsion apparatus 1, such as a trial operation, and once set, no further adjustment is necessary.
  • the adjustment of the PID parameter will be described for each component.
  • I-minute parameter adjustment When the load fluctuation of the motor 9 is small and the rotational speed of the engine generator 4 is hunting, the I-minute parameter is adjusted to a value smaller than the current value. Since the I minute parameter adjustment affects the P minute D minute parameter adjustment, if the I minute parameter is adjusted, the P minute and D minute parameters are readjusted as necessary.
  • D component parameter adjustment When the rotational speed of the engine generator 4 temporarily overshoots or undershoots when the load of the motor 9 changes suddenly, the D component parameter is adjusted to a value smaller than the current value. Since the D minute parameter adjustment affects the P minute I minute parameter adjustment, if the D minute parameter is adjusted, the P minute and I minute parameters are readjusted as necessary.
  • the speed control handle 12 After adjusting the parameters of P, I and D for a while, the speed control handle 12 is moved to increase the rotational speed of the motor 9 (propeller 10), thereby increasing the load on the generator 3. Along with this, the state in which the governor 5 automatically adjusts to increase the output of the engine 2 is observed, and it is confirmed whether the engine generator 4 has caused hunting. If hunting is to occur, readjust the parameters for P, I, and D according to the above guidelines, and if it is confirmed that hunting has not occurred, adjustment of parameters for P, I, and D is complete. It is. Normally, those skilled in the art can complete the parameter adjustment for P minutes, I minutes, and D minutes in 3 to 6 hours.
  • a lower limiter 18 is connected to the PID regulator 17.
  • the torque command calculated by the PID regulator 17 is input to the lower limiter 18.
  • the lower limiter 18 limits the torque command calculated by the PID regulator 17 and outputs it to the inverter 8 according to the following (Equation 4) so that the instantaneous fluctuation amount of the motor output does not increase.
  • the motor regenerative electric energy can be arbitrarily limited by changing the setting of the lower limiter value.
  • FIG. 4A shows changes in the rotational speed and the operating state of the motor 9 when the lower limiter value is less than zero.
  • the motor regenerative electric energy can be set to “present”.
  • a thin line ellipse attached to the motor output dashed line
  • the motor regenerative power is generated and the energy is recovered, so the motor rotation speed (broken line) is compared with FIG. falling.
  • FIG. 4B shows changes in the rotational speed and the operating state of the motor 9 when the lower limiter value is 0 or more. If the lower limiter value is 0 or more, the motor regenerative electric energy can be set to none. Since the motor output (one-dot chain line) is power running or 0, the marine vessel is not braked, and the motor rotation speed (broken line) falls slower than that shown in FIG. 4A.
  • the lower limiter 18 is connected to the inverter 8, and a torque command to which the lower limiter is given by the lower limiter 18 is given to the inverter 8.
  • Y means YES and N means NO.
  • the speed calculation unit 13 outputs the motor target rotation speed to the speed limiter 14.
  • the speed limiter 14 adds a set constant ⁇ to this to calculate a speed limiter command (S2), and outputs it to the inverter 8.
  • S2 speed limiter command
  • the speed calculation unit 13 outputs the motor target rotation speed to the deviation calculation unit 15.
  • the inverter 8 outputs a motor rotation speed signal to the deviation calculator 15.
  • the deviation calculator 15 calculates a deviation between the motor target rotation speed and the motor rotation speed (S3).
  • the deviation calculation unit 15 outputs the deviation to the deviation limiter 16.
  • the deviation limiter 16 limits the deviation to be less than the deviation limiter values on the + side and ⁇ side according to the above (Equation 1) so that the instantaneous fluctuation amount of the motor output does not exceed a predetermined range. (S4).
  • the deviation limiter 16 outputs the deviation E (n) calculated as described above to the PID regulator 17. Based on the deviation E (n) calculated by the deviation limiter 16, the PID regulator 17 calculates a torque command calculation value according to the (Expression 2) or (Expression 3) (S9).
  • a parameter value matched with the response speed of the engine generator 4 is set in the PID regulator 17, and the amount of change per unit time of the torque command value output to the inverter 8 is limited.
  • the motor can be controlled with the response speed close to the response speed of the engine generator 4, more specifically with the response speed of the inverter 8 slightly lower than the response speed of the engine generator 4.
  • 9 can calculate and output a torque command calculation value that matches the responsiveness of the power output to 9 with the response speed of the engine generator 4. Therefore, the electric power output from the inverter 8 to the motor 9 does not fluctuate extremely, and the rotational speed and frequency of the engine generator 4 are stabilized.
  • the PID parameter of the PID regulator 17 is appropriately set to limit the amount of change per unit time of the torque command value output to the inverter 8 to prevent hunting of the engine generator 4. Further, as described above, the deviation is set within a predetermined range by the deviation limiter 16, so that an extreme change in motor power expected when the deviation is large can be avoided. A synergistic effect that further stabilizes the rotational speed and frequency of the machine 4 is obtained.
  • an ordinary converter for example, a proportional device
  • the PID regulator 17 in which the specific PID parameter value is set.
  • the deviation limiter 16 and the PID regulator 17 may be performed independently to limit the amount of change per unit time in the torque command value output to the inverter 8, but as described above, the deviation limiter 16 and the PID It is preferable to use the regulator 17 together.
  • the adjustment of the PID parameter value for preventing the engine generator 4 from hunting does not need to be set to “strictly dull” the response of the inverter 8 as compared with the case where the deviation limiter 16 is not provided, and is looser. May be. That is, as in the case where there is no deviation limiter 16, the effect necessary to stabilize the rotational speed and frequency of the engine generator 4 can be obtained without bringing the response speed of the inverter 8 close to the response speed of the engine generator 4. .
  • the PID regulator 17 outputs the torque command calculation value to the lower limiter 18.
  • the lower limiter 18 calculates a torque command value according to the above (Equation 4) based on the torque command calculation value calculated by the PID regulator 17 (S10).
  • the torque command calculation value is set as the torque command value (S11).
  • the torque command calculation value is less than the lower limit value (S10, N)
  • the lower limit value is set as the torque command value (S12).
  • the lower limiter 18 outputs the calculated torque command value to the inverter 8, and the control operation ends (END).
  • the value of the PID parameter varies depending on the output and characteristics of each device.
  • the specifications of each device are set as follows. Capacity of motor 9: 295KW Capacity of inverter 8: 315KW Engine generator 4 capacity: 400KW
  • the motor target rotational speed is determined by the point-to-point linear interpolation table shown in FIG.
  • the setting constant ⁇ required for the speed limiter 14 to calculate and output a speed limiter command is set to +150 min-1. That is, a speed limiter command is obtained by adding 150 min-1 to the motor target rotational speed.
  • the PID parameter (speed type) is as follows.
  • the P component is 4.000
  • the I component is 1.350
  • the D component is 0.055.
  • P minutes are 2.000 I minutes and 0.900 D minutes are 0.000.
  • This marine vessel propulsion apparatus 1 a is a hybrid type marine vessel propulsion apparatus, and has a motor 9 and a main engine (diesel engine) 20 as drive sources for the propeller 10.
  • the motor 9 is connected to the propeller 10 via a deceleration turning mechanism 22, and the main engine 20 is connected to the propeller 10 via a clutch 21 and a deceleration turning mechanism 22.
  • Other configurations are the same as those of the first embodiment.
  • the present invention can be widely applied to a ship propulsion apparatus having a structure for propelling a ship with an inverter-driven motor.
  • the fluctuation amount of the electric power output from the inverter 8 to the motor 9 is a fluctuation amount that the generator 3 can respond to. That is, the parameter of the controller 11 that controls the inverter 8 is adjusted so that the response of the inverter 8 that outputs electric power to the motor 9 matches the response speed of the engine generator 4.
  • the responsivity is comparable to that when the main engine diesel engine 2 drives the propeller 10. Therefore, the controller 11 does not need to perform control based on information from the engine generator 4 side, and the engine generator 4 can stabilize the rotation speed only by governor control, and the engine generator 4 causes hunting. This is definitely prevented.
  • the deviation limiter 16 performs control so that the deviation between the motor target rotation speed and the motor rotation speed is not more than a predetermined value. An extreme change in the electric power of the motor 9 can be avoided, and a further synergistic effect of stabilizing the rotational speed and frequency of the engine generator 4 can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

[Problem] To stabilize the rotational speed of an engine generator in a ship propulsion device that is capable of electric propulsion. [Solution] A ship propulsion device 1 that has: an engine generator 4; a propulsion motor 9; an inverter 8 that performs torque control on the motor; a deviation limiter 16 that controls the deviation between the actual value and a target value for motor rotational speed to a prescribed value or less; and a PID regulator that computes a torque command value such that the deviation decreases and that outputs the torque command value to the inverter. Parameters for the PID regulator are set as appropriate, and the response speed of the inverter is matched to the response speed of the engine generator. Variation in the power supplied to the motor is kept to an amount to which the engine generator can respond, the engine generator is prevented from hunting, and the rotational speed of the engine generator is stabilized.

Description

船舶推進装置及び船舶推進方法Ship propulsion device and ship propulsion method
 本発明は、エンジン発電機の電力によってインバータがモータをトルク制御する船舶推進装置に係り、特に、エンジン発電機の応答速度に適合したインバータの応答速度を実現することにより、エンジン発電機がハンチングを起こすことを防ぎ、インバータからモータに供給される電力の変動量をエンジン発電機が応答可能な変動量に抑えてエンジン発電機の回転速度を安定化させることができる船舶推進装置に関するものである。 The present invention relates to a marine vessel propulsion apparatus in which an inverter torque-controls a motor by electric power of an engine generator, and in particular, by realizing an inverter response speed that matches the response speed of the engine generator, the engine generator performs hunting. The present invention relates to a marine vessel propulsion device that can prevent the occurrence of the fluctuation and suppress the fluctuation amount of the electric power supplied from the inverter to the motor to a fluctuation amount that the engine generator can respond to, thereby stabilizing the rotation speed of the engine generator.
 特許文献1に記載された電気推進船の系統安定化システムは、電気推進船に設けられたプロペラ等の負荷設備を駆動する電動機と、発電機から系統に対して供給された電力を所望の電圧及び周波数に変換して電動機を制御するインバータと、電気推進船の近傍に発生している波の高さ及び周期を検出する波検出器と、波検出器によって検出された波高及び波周期に基づいて異常環境を予測する系統安定化装置とを備えており、特に、系統安定化装置は、異常環境の発生を予測した場合に、インバータに対して運転上限速度の制限を課し、電動機の最大負荷電流を低減させるようにしたものである。さらに具体的には、この系統安定化システムには、発電機の励磁電圧を制御するAVR制御ユニットと、発電機用の駆動装置に対応して設けられたガバナを制御するガバナ制御ユニットがさらに設けられており、系統安定化装置は、異常環境の発生を予測した場合に、インバータの出力電流及び周波数の各変化率に基づいて、発電機に対する電圧調整率と駆動装置に対するガバナ調整率を演算し、その演算結果をAVR制御ユニットとガバナ制御ユニットに出力し、系統の電圧と周波数とを安定化させるようにしている。 An electric propulsion ship system stabilization system described in Patent Document 1 includes an electric motor that drives a load facility such as a propeller provided in an electric propulsion ship, and electric power supplied from the generator to the system at a desired voltage. And an inverter that controls the motor by converting to a frequency, a wave detector that detects the height and period of a wave generated in the vicinity of the electric propulsion ship, and a wave height and a wave period detected by the wave detector In particular, the system stabilization device imposes a limit on the upper operation speed limit for the inverter when the occurrence of an abnormal environment is predicted. The load current is reduced. More specifically, the grid stabilization system further includes an AVR control unit that controls the excitation voltage of the generator and a governor control unit that controls a governor provided corresponding to the drive device for the generator. When the occurrence of an abnormal environment is predicted, the system stabilization device calculates the voltage adjustment rate for the generator and the governor adjustment rate for the drive unit based on the change rates of the output current and frequency of the inverter. The calculation result is output to the AVR control unit and the governor control unit to stabilize the system voltage and frequency.
 また、特許文献2に記載された発明は、電気推進船に係るものではなく、車両用駆動制御装置に関するものである。この車両用駆動制御装置の発明は、発電機と、当該発電機の電力がインバータを介して供給されて駆動輪を駆動する交流モータとを備える車両用駆動制御装置において、前記交流モータが必要とするモータ必要電力に基づいて前記発電機の界磁を制御する界磁制御手段と、前記交流モータが必要とするモータ必要電力に基づいて、前記交流モータのトルク指令値を演算するトルク指令値演算手段と、前記トルク指令値演算手段で演算したトルク指令値及び前記発電機の出力状態に基づいて、前記交流モータを制御するモータ制御手段とを備えている。そして、このモータ制御手段は、前記発電機の出力電圧及び出力電流から決定する動作点を含む発電機出力特性線上で、電圧値が電圧上限値となる動作点に相当するトルクによって、前記トルク指令値に下限を設けると共に、前記発電機の出力電圧及び出力電流から決定する動作点を含む発電機出力特性線上で、出力電力が最大となる動作点に相当するトルクによって、前記トルク指令値に上限を設けるトルク指令値制限手段を有し、該トルク指令値制限手段で制限されたトルク指令値に基づいて前記交流モータを制御する。すなわち、同文献2には、交流モータをトルク制御するインバータへのトルク指令値を出す際に、前記発電機の状況に応じて当該トルク指令値に上限と下限を設ける点が記載されている。 Further, the invention described in Patent Document 2 is not related to an electric propulsion ship but relates to a vehicle drive control device. The vehicle drive control device according to the present invention is a vehicle drive control device including a generator and an AC motor that is supplied with electric power from the generator via an inverter to drive drive wheels. Field control means for controlling the field of the generator based on required motor power, torque command value calculating means for calculating a torque command value of the AC motor based on required motor power required by the AC motor, and Motor control means for controlling the AC motor based on the torque command value calculated by the torque command value calculation means and the output state of the generator. The motor control means is configured to output the torque command based on a torque corresponding to an operating point at which a voltage value is a voltage upper limit value on a generator output characteristic line including an operating point determined from the output voltage and output current of the generator. A lower limit is set on the value, and an upper limit is set on the torque command value by the torque corresponding to the operating point at which the output power is maximum on the generator output characteristic line including the operating point determined from the output voltage and output current of the generator. Torque command value limiting means is provided, and the AC motor is controlled based on the torque command value limited by the torque command value limiting means. That is, the same document 2 describes that when a torque command value to an inverter that performs torque control of an AC motor is output, an upper limit and a lower limit are provided for the torque command value according to the situation of the generator.
特開2010-89550号公報JP 2010-89550 A 特許第4466542号公報Japanese Patent No. 4466542
 上記特許文献1に記載された電気推進船の系統安定化システムの発明によれば、次のような問題があった。
 1)発電機回転速度と、系統の電圧及び周波数を安定化させる系統安定化装置と、系統安定化装置が異常環境の発生を予測するための情報を検出する波検出器とが必要になるため、構造が複雑である。
 2)エンジン発電機のエンジンの回転速度を制御するガバナと、発電機の励磁電圧を制御するAVRの両方について調整が必要であり、調整するパラメータが多く、制御が複雑である。
According to the invention of the system for stabilizing a system of an electric propulsion ship described in the above-mentioned Patent Document 1, there are the following problems.
1) A system stabilization device that stabilizes the generator rotation speed, the system voltage and frequency, and a wave detector that detects information for the system stabilization device to predict the occurrence of an abnormal environment are required. The structure is complicated.
2) Adjustment is required for both the governor for controlling the engine rotational speed of the engine generator and the AVR for controlling the excitation voltage of the generator, and there are many parameters to be adjusted and the control is complicated.
 また、上記特許文献2に記載された車両用駆動制御装置の発明によれば、インバータへのトルク指令値を出す際に、当該トルク指令値に上限と下限を設けるためには、前記発電機の情報が必要となり、種々のセンサー類を備えなければならず、コントローラが複雑になり、その調整が煩雑であるという問題があった。 Further, according to the vehicle drive control device described in Patent Document 2, when the torque command value to the inverter is output, in order to provide an upper limit and a lower limit for the torque command value, There is a problem that information is required, various sensors must be provided, the controller is complicated, and the adjustment is complicated.
 さらに、エンジン発電機が供給する電力によってインバータがモータの回転速度を制御するモータ推進の船舶推進装置(ハイブリッド推進も含む)が知られているが、この種の船舶推進装置では、特にエンジン発電機とモータが概ね同程度の容量である場合には、下記の要因により発電機の回転速度が変動しやすくなる傾向が顕著であることに気がついた。 Furthermore, motor propulsion ship propulsion devices (including hybrid propulsion) in which an inverter controls the rotational speed of a motor by electric power supplied from an engine generator are known. When the motors have approximately the same capacity, it has been noticed that the rotational speed of the generator tends to fluctuate easily due to the following factors.
 (1)コントローラからの速度指令値に応じてインバータがモータを回転速度制御する場合、インバータは、モータ回転速度の変動に対して瞬時応答性に優れた高ゲインのフィードバック制御を行い、モータ回転速度をコントローラからの速度指令値に合わせて制御し、モータ出力の調整を高速で行うようにしている。従って、モータ出力は瞬間的に大きく変動する傾向がある。ところが、このようにモータ出力が瞬間的に大きく変動することは、モータに電力を供給しているエンジン発電機にとってはストレスとなるため、エンジン発電機の容量をモータの容量の例えば3倍程度としてモータの負荷変動に対する余裕度を確保する必要がある。 (1) When the inverter controls the rotation speed of the motor according to the speed command value from the controller, the inverter performs high gain feedback control with excellent instantaneous response to fluctuations in the motor rotation speed, and the motor rotation speed Is adjusted according to the speed command value from the controller, and the motor output is adjusted at high speed. Therefore, the motor output tends to fluctuate greatly instantaneously. However, the momentary fluctuation of the motor output in this way is stressful for the engine generator that supplies power to the motor, so the capacity of the engine generator is set to about three times the capacity of the motor, for example. It is necessary to secure a margin for motor load fluctuations.
 (2)このように、モータ出力が高速で変動すれば、エンジン発電機の負荷も高速で変動することになる。そのため、エンジン発電機の制御装置は、エンジン発電機の負荷の急激な変動に対して回転速度を追従させるためにエンジンの回転速度を高ゲインで制御する。しかしながら、エンジン発電機のエンジンがディーゼル機関であり、発電機とモータが同程度の容量である場合には、モータ出力の高速な変動に対し、エンジン発電機の応答遅れのためにガバナのフィードバック制御が位相遅れになるため、前述したような高ゲインのフィードバック制御では発電機の回転数がハンチングし、周波数や電圧が振れて制御系が不安定になる傾向がある。 (2) Thus, if the motor output fluctuates at high speed, the load of the engine generator will fluctuate at high speed. Therefore, the control device for the engine generator controls the rotation speed of the engine with a high gain in order to make the rotation speed follow the rapid fluctuation of the load of the engine generator. However, when the engine of the engine generator is a diesel engine and the generator and the motor have the same capacity, the feedback control of the governor due to the response delay of the engine generator against the high speed fluctuation of the motor output. Therefore, in the high gain feedback control as described above, the number of rotations of the generator hunts and the frequency and voltage fluctuate and the control system tends to become unstable.
 なお、ハンチングとは、発電機等の電気機器において周波数や電圧が不安定化し、電気機器の動作に支障が生じる現象である。電気機器において周波数や電圧が不安定化した場合、電気機器が支障なく動作できる限界の値乃至範囲を一例として挙げれば、電圧については、定常時であれば+6%及び-10%、過渡期であれば±20%(1.5秒以内)であり、周波数については、定常時であれば±5%、過渡期であれば±10%(5秒以内)である。なお、このような電気機器が支障なく動作できる限界の値乃至範囲は、電機機器の種類や用途(適用分野)等によって異なる場合がある。このように、本明細書では、種々の電気機器が、その目的の範囲内で支障なく動作できる範囲を越えて周波数や電圧が不安定化する現象をハンチングと呼ぶこととする。 Note that hunting is a phenomenon in which the frequency and voltage become unstable in an electric device such as a generator, causing trouble in the operation of the electric device. If the frequency or voltage of an electrical device becomes unstable, for example, the limit value or range that the electrical device can operate without any problem, the voltage is + 6% and -10% in the steady state and in the transitional period. If there is, the frequency is ± 20% (within 1.5 seconds), and the frequency is ± 5% in the steady state and ± 10% (within 5 seconds) in the transient period. Note that the limit value or range in which such an electric device can operate without hindrance may vary depending on the type and application (application field) of the electric device. As described above, in this specification, a phenomenon in which the frequency and voltage are destabilized beyond the range in which various electric devices can operate without problems within the intended range is called hunting.
 上述したエンジン発電機の応答遅れの要因としては、次の2つを挙げることができる。 1)インジェクタから噴射された燃料が燃焼し、運動エネルギーになるまでに時間がかかる点(燃焼遅れ)。
 2)負荷変動に対してエンジン発電機の過給機が応答するまでにタイムラグがある点(物理的な遅れ)。
The following two factors can be cited as the cause of the response delay of the engine generator described above. 1) A point where it takes time for the fuel injected from the injector to burn and become kinetic energy (combustion delay).
2) There is a time lag (physical delay) before the turbocharger of the engine generator responds to load fluctuations.
 以上説明したように、ハイブリッド推進も含めたモータ推進が可能な船舶推進装置において、発電機とモータが同程度の容量である場合には、発電機回転速度が変動しやすいという問題が顕著である。 As described above, in the ship propulsion device capable of motor propulsion including hybrid propulsion, when the generator and the motor have the same capacity, the problem that the generator rotational speed is likely to fluctuate is significant. .
 本発明は、上述した問題点を解決することを目的としており、エンジン発電機の電力によってインバータがモータをトルク制御する船舶推進装置において、発電機側の情報に基づく制御に頼ることなく、エンジン発電機の応答速度に適合したインバータの応答速度を実現することにより、エンジン発電機がハンチングを起こすことを防ぎ、インバータからモータに供給される電力の変動量をエンジン発電機が応答可能な変動量に抑えてエンジン発電機の回転速度を安定化させることができる船舶推進装置を提供することを目的としている。 An object of the present invention is to solve the above-described problems. In a marine vessel propulsion apparatus in which an inverter torque-controls a motor by electric power of an engine generator, the engine power generation is performed without depending on control based on information on the generator side. By realizing the inverter response speed that matches the machine response speed, the engine generator is prevented from hunting, and the fluctuation amount of power supplied from the inverter to the motor is changed to the fluctuation quantity that the engine generator can respond to. It aims at providing the ship propulsion apparatus which can suppress and stabilize the rotational speed of an engine generator.
 請求項1に記載された船舶推進装置は、
 エンジンにより発電機を駆動して電力を発生するエンジン発電機と、
 船舶を推進するためのモータと、
 前記エンジン発電機から供給される電力を用いて前記モータをトルク制御するインバータと、
 現在の前記モータの回転速度と目標とする回転速度との偏差に基づいて、前記インバータにトルク指令値を出力する機構において、前記インバータに出力するトルク指令値の単位時間あたりの変化量が、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度になるように、制限するトルク指令値制限部と、
 を具備することを特徴としている。
The marine vessel propulsion device described in claim 1 is:
An engine generator that generates electric power by driving a generator with an engine;
A motor for propelling the ship;
An inverter for torque controlling the motor using electric power supplied from the engine generator;
In the mechanism for outputting a torque command value to the inverter based on the deviation between the current rotation speed of the motor and the target rotation speed, the amount of change per unit time of the torque command value output to the inverter is A torque command value limiting unit for limiting the engine generator so that the response speed of the inverter does not cause hunting;
It is characterized by comprising.
 請求項2に記載された船舶推進装置は、請求項1に記載の船舶推進装置において、
 前記トルク指令値制限部が、トルク指令値をPID演算して前記インバータに出力するPIDレギュレータであって、該トルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に制限するPIDパラメータが設定されたPIDレギュレータであることを特徴としている。
The ship propulsion device described in claim 2 is the ship propulsion device according to claim 1,
The torque command value limiting unit is a PID regulator that PID-calculates a torque command value and outputs the torque command value to the inverter, and the engine generator does not cause hunting for a change amount per unit time of the torque command value. The PID regulator is set with a PID parameter that limits the response speed of the inverter.
 請求項3に記載された船舶推進装置は、請求項1に記載の船舶推進装置において、
 前記トルク指令値制限部が、現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限する偏差リミッタであることを特徴としている。
The ship propulsion device described in claim 3 is the ship propulsion device according to claim 1,
The torque command value limiting unit is a deviation limiter that limits a deviation between a current rotation speed of the motor and a target rotation speed within a predetermined value range.
 請求項4に記載された船舶推進装置は、請求項1に記載の船舶推進装置において、
 前記トルク指令値制限部が、
現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限する偏差リミッタと、
 当該偏差リミッタから出力された偏差が小さくなるようにトルク指令値をPID演算して前記インバータに出力するPIDレギュレータであって、該トルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度となるように、制限するPIDパラメータが設定されたPIDレギュレータと、
 からなることを特徴としている。
The ship propulsion device described in claim 4 is the ship propulsion device according to claim 1,
The torque command value limiter is
A deviation limiter for limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range;
A PID regulator that performs a PID calculation of a torque command value so as to reduce a deviation output from the deviation limiter, and outputs the torque command value to the inverter, wherein the engine generator determines the amount of change per unit time of the torque command value. A PID regulator in which a PID parameter to be limited is set so that the response speed of the inverter does not cause hunting;
It is characterized by consisting of.
 請求項5に記載された船舶推進装置は、請求項1乃至4のいずれか一つに記載の船舶推進装置において、
前記PIDレギュレータが算出した前記トルク指令値に下限リミットを設ける下限リミッタを有することを特徴としている。
The marine vessel propulsion device according to claim 5 is the marine vessel propulsion device according to any one of claims 1 to 4,
It has a lower limiter that provides a lower limit to the torque command value calculated by the PID regulator.
 請求項6に記載された船舶推進装置は、請求項1乃至5のいずれか一つに記載の船舶推進装置において、
 前記モータの目標とする回転速度に、予め設定した設定定数を加えて速度リミッタ指令を算出し、該速度リミッタ指令を前記インバータに出力して前記モータの過回転を防止する速度リミッタを有することを特徴としている。
The ship propulsion apparatus according to claim 6 is the ship propulsion apparatus according to any one of claims 1 to 5,
A speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor. It is a feature.
 請求項7に記載された船舶推進方法は、
 エンジンで発電機を駆動するエンジン発電機の前記エンジンを駆動して発生させた電力を、前記モータをトルク制御するインバータを介して前記モータに供給することにより船舶を推進する船舶推進方法であって、
 前記インバータに出力するトルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限することを特徴としている。
The ship propulsion method described in claim 7 is:
A ship propulsion method for propelling a ship by supplying electric power generated by driving the engine of an engine generator that drives the generator with an engine via an inverter that torque-controls the motor. ,
The amount of change per unit time of the torque command value output to the inverter is limited to the response speed of the inverter at which the engine generator does not cause hunting.
 請求項8に記載された船舶推進方法は、請求項7に記載の船舶推進方法において、
 前記インバータにPID演算して出力するトルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限するPIDパラメータを設定して、該トルク指令値を前記インバータに出力することを特徴とする請求項7に記載の船舶推進方法。
The ship propulsion method described in claim 8 is the ship propulsion method according to claim 7,
A PID parameter is set to limit the amount of change per unit time of the torque command value output by performing PID calculation to the inverter to the response speed of the inverter where the engine generator does not cause hunting. Is output to the inverter. The ship propulsion method according to claim 7.
 請求項9に記載された船舶推進方法は、請求項7に記載の船舶推進方法において、
 現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限し、当該制限された偏差が小さくなるようにトルク指令値を演算することによって、前記インバータに出力するトルク指令値の単位時間あたりの変化量が、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限することを特徴としている。
The ship propulsion method according to claim 9 is the ship propulsion method according to claim 7,
The deviation between the current rotation speed of the motor and the target rotation speed is limited within a predetermined value range, and the torque command value is calculated so that the limited deviation becomes small, and then output to the inverter. The amount of change per unit time of the torque command value to be limited is limited to the response speed of the inverter at which the engine generator does not cause hunting.
 請求項10に記載された船舶推進方法は、請求項7に記載の船舶推進方法において、
現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限すると共に、
 出力するトルク指令値の単位時間あたりの変化量を前記エンジン発電機がハンチングを起こさない前記インバータの応答速度になるように制限するPIDパラメータを設定して、
 前記制限された偏差が小さくなるようにPID演算したトルク指令値を前記インバータに出力することを特徴としている。
The ship propulsion method according to claim 10 is the ship propulsion method according to claim 7,
Limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range;
Setting a PID parameter that limits the amount of change in the torque command value to be output per unit time so that the response speed of the inverter does not cause hunting by the engine generator,
A torque command value calculated by PID so as to reduce the limited deviation is output to the inverter.
 請求項11に記載された船舶推進方法は、請求項7乃至10のいずれか一つに記載の船舶推進方法において、
 算出された前記トルク指令値に下限リミットを設けることを特徴としている。
The ship propulsion method according to claim 11 is the ship propulsion method according to any one of claims 7 to 10,
A lower limit is provided for the calculated torque command value.
 請求項12に記載された船舶推進方法は、請求項7乃至11のいずれか一つに記載の船舶推進方法において、
 前記モータの目標とする回転速度に、予め設定した設定定数を加えて速度リミッタ指令を算出し、該速度リミッタ指令を前記インバータに出力して前記モータの過回転を防止することを特徴としている。
The ship propulsion method according to claim 12 is the ship propulsion method according to any one of claims 7 to 11,
A speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor.
 請求項1に記載された船舶推進装置及び請求項7に記載された船舶推進方法によれば、エンジン発電機と、推進用のモータと、モータをトルク制御するインバータと、を備えた船舶推進装置において、前記インバータに出力するトルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限することにより、インバータがモータに出力する電力の変動量はエンジン発電機が応答可能な変動量になる。
 すなわち、トルク指令値の単位時間あたりの変化量を制限することにより、前記インバータの応答性を“鈍くして”、前記エンジン発電機の応答性に合わせ、エンジン発電機がハンチングしないようにする訳である。
 従来においては、エンジン発電機の容量をモータ容量の例えば3倍程度としてモータの負荷変動に対する余裕度を確保する必要性があったが、本発明は、このエンジン発電機の余裕度の必要性を低減することが出来、エンジン発電機の容量を従来より小さいものにすることが出来る。
According to the marine vessel propulsion apparatus described in claim 1 and the marine vessel propulsion method described in claim 7, the marine vessel propulsion apparatus including an engine generator, a propulsion motor, and an inverter that controls torque of the motor. The amount of change in power output from the inverter to the motor is limited by limiting the amount of change per unit time in the torque command value output to the inverter to the response speed of the inverter where the engine generator does not cause hunting. Is the amount of fluctuation that the engine generator can respond to.
That is, by restricting the amount of change per unit time of the torque command value, the response of the inverter is “dulled” so that the engine generator does not hunt in accordance with the response of the engine generator. It is.
Conventionally, there has been a need to secure a margin for motor load fluctuation by setting the capacity of the engine generator to about three times the motor capacity, but the present invention addresses the necessity of this engine generator margin. The capacity of the engine generator can be made smaller than before.
 前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限するには、請求項2に記載された船舶推進装置及び請求項8に記載された船舶推進方法により達成できる。
 すなわち、モータに出力する電力の応答性がエンジン発電機の応答速度(応答遅れ)にマッチングするようにPIDレギュレータのPIDパラメータ値によってトルク指令値の単位時間あたりの変化量が制限されている為、前記インバータの応答性を“鈍くして”、前記エンジン発電機の応答性に合わせ、エンジン発電機がハンチングしないようになされる。言い換えると、電機推進を行う船舶推進装置におけるモータの応答性が、ディーゼルエンジンを主機関とする船舶推進装置におけるプロペラを駆動する場合の応答性と同程度となる。
Limiting the amount of change per unit time in the torque command value output to the inverter can be achieved by the ship propulsion device described in claim 2 and the ship propulsion method described in claim 8.
That is, the amount of change per unit time of the torque command value is limited by the PID parameter value of the PID regulator so that the responsiveness of the electric power output to the motor matches the response speed (response delay) of the engine generator. The response of the inverter is “dulled” so that the engine generator does not hunt according to the response of the engine generator. In other words, the responsiveness of the motor in the marine vessel propulsion apparatus that performs electric propulsion is comparable to that in the case of driving a propeller in a marine vessel propulsion apparatus that uses a diesel engine as a main engine.
 このように、発電機負荷の変動量、すなわちインバータがモータに出力する電力の変動量は、エンジン発電機が応答可能な変動量の範囲内に抑えられているため、ガバナ制御だけでエンジン発電機の回転速度及び周波数を安定化させることができ、エンジン発電機におけるガバナ及びAVRの調整などは不要である。この制御においては、エンジン発電機からのデータは必要ないし、またエンジン発電機そのものを制御するものでもない。 Thus, since the fluctuation amount of the generator load, that is, the fluctuation amount of the electric power output from the inverter to the motor is suppressed within the fluctuation amount range that the engine generator can respond to, the engine generator only by governor control. The rotation speed and frequency of the engine generator can be stabilized, and adjustment of the governor and AVR in the engine generator is unnecessary. In this control, data from the engine generator is not required, nor is it intended to control the engine generator itself.
 また、前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限するには、請求項3に記載された船舶推進装置及び請求項9に記載された船舶推進方法によっても達成できる。
 請求項3に記載された船舶推進装置及び請求項9に記載された船舶推進方法によれば、現在の前記モータの回転速度と目標とする回転速度との偏差を偏差リミッタで所定の値の範囲内に制限することにより、上述の特定のPIDパラメータ値が設定されたPIDレギュレータに代えて、通常の変換器(例えば、比例器)で当該制限された偏差に基づきトルク指令値を演算しても、その入力値が十分に制限されているので、前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限することができる。
 これにより、上述の作用効果を同様に奏することが出来る。
Moreover, in order to restrict | limit the variation | change_quantity per unit time of the torque command value output to the said inverter, it can also achieve by the ship propulsion apparatus described in Claim 3, and the ship propulsion method described in Claim 9.
According to the marine vessel propulsion device described in claim 3 and the marine vessel propulsion method described in claim 9, the deviation between the current rotational speed of the motor and the target rotational speed is within a predetermined value range by a deviation limiter. Even if the torque command value is calculated based on the limited deviation by a normal converter (for example, a proportional device) instead of the PID regulator in which the specific PID parameter value is set as described above, Since the input value is sufficiently limited, the amount of change per unit time of the torque command value output to the inverter can be limited.
Thereby, the above-mentioned effect can be produced similarly.
 さらに、前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限するには、請求項4に記載された船舶推進装置及び請求項10に記載された船舶推進方法によっても達成できる。
 すなわち、請求項2と請求項3とを組み合わせた船舶推進装置及び請求項8と請求項9とを組み合わせた船舶推進方法によっても、前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限することができる。
 請求項4に記載された船舶推進装置及び請求項10に記載された船舶推進方法によれば、モータの回転速度と目標とする回転速度との偏差が所定の値以下となるように制限し、さらに前記エンジン発電機がハンチングを起こさない前記インバータの応答速度になるように制限するPIDパラメータを設定して、前記制限された偏差が小さくなるようにPID演算したトルク指令値を前記インバータに出力するようにしたので、これによっても、前記インバータに出力するトルク指令値の単位時間あたりの変化量を制限することができる。
Furthermore, the amount of change per unit time in the torque command value output to the inverter can be limited by the ship propulsion device described in claim 4 and the ship propulsion method described in claim 10.
That is, the amount of change per unit time of the torque command value output to the inverter is also achieved by the ship propulsion device that combines claim 2 and claim 3 and the ship propulsion method that combines claim 8 and claim 9. Can be limited.
According to the ship propulsion device described in claim 4 and the ship propulsion method described in claim 10, the deviation between the rotational speed of the motor and the target rotational speed is limited to be a predetermined value or less, Further, a PID parameter is set to limit the engine generator to a response speed of the inverter that does not cause hunting, and a torque command value calculated by PID is output to the inverter so that the limited deviation becomes small. Since it did in this way, the variation | change_quantity per unit time of the torque command value output to the said inverter can also be restrict | limited by this.
 この場合、エンジン発電機をハンチングさせないためのPIDパラメータ値の調整は、前記偏差の制限がない場合に比べれば、前記インバータの応答性を“厳密に鈍くする”設定にする必要はなく、より緩くてもよい。すなわち前記偏差の制限がない場合のように、インバータの応答速度をエンジン発電機の応答速度に近づけなくとも、エンジン発電機の回転速度及び周波数を安定化させるのに必要な効果は得られる。 In this case, the adjustment of the PID parameter value for preventing the engine generator from hunting does not need to be set to “strictly dull” the response of the inverter as compared with the case where the deviation is not limited. May be. That is, the effect required to stabilize the rotational speed and frequency of the engine generator can be obtained without bringing the response speed of the inverter close to the response speed of the engine generator as in the case where the deviation is not limited.
 また、PIDパラメータを適宜に設定することによりインバータの応答速度をエンジン発電機の応答速度に近づけ、エンジン発電機のハンチングを防ぐ一定の効果を得ている場合において、さらに前記偏差を所定の値以下となるような制御を行えば、前記偏差が大きい場合に予想されるインバータがモータに出力する電力の極端な変化を避けることができ、エンジン発電機の回転速度及び周波数を安定化させるさらなる相乗効果が得られる。 Further, when the PID parameter is set appropriately, the inverter response speed is brought close to the engine generator response speed, and a certain effect of preventing hunting of the engine generator is obtained. If the control is performed, it is possible to avoid an extreme change in the power output to the motor by the inverter, which is expected when the deviation is large, and to further synergize the rotation speed and frequency of the engine generator Is obtained.
 請求項5に記載された船舶推進装置及び請求項11に記載された船舶推進方法によれば、例えば下限リミットを0以上に設定してモータの回生電力量をなしにすることもできるし、下限リミットを0未満に設定してモータの回生電力量をありとすることもできる。 According to the marine vessel propulsion apparatus described in claim 5 and the marine vessel propulsion method described in claim 11, for example, the lower limit can be set to 0 or more to reduce the regenerative electric energy of the motor, and the lower limit It is also possible to set the limit to less than 0 so that the regenerative electric energy of the motor is present.
 請求項6に記載された船舶推進装置及び請求項12に記載された船舶推進方法によれば、モータの目標回転速度に設定定数を加えて算出した速度リミッタ指令をインバータに出力するので、モータの過回転を防止することができる。 According to the ship propulsion device described in claim 6 and the ship propulsion method described in claim 12, the speed limiter command calculated by adding a set constant to the target rotational speed of the motor is output to the inverter. Over-rotation can be prevented.
第1実施形態の船舶推進装置の制御ブロック図である。It is a control block diagram of the ship propulsion apparatus of a 1st embodiment. 第1実施形態の船舶推進装置における偏差リミッタの作用又は機能を示すグラフである。It is a graph which shows the effect | action or function of the deviation limiter in the ship propulsion apparatus of 1st Embodiment. 第1実施形態の船舶推進装置においてインバータの応答速度をエンジン発電機の応答速度に近くなるように調整するPIDレギュレータの作用又は機能を説明するグラフである。It is a graph explaining the effect | action or function of a PID regulator which adjusts the response speed of an inverter so that it may become close to the response speed of an engine generator in the ship propulsion apparatus of 1st Embodiment. 第1実施形態の船舶推進装置におけるモータ回転速度の下限リミッタによる制御を示すグラフであり、分図(a)は下限リミットを0未満に設定した場合を示し、同分図(b)は下限リミットを0以上に設定した場合を示す。It is a graph which shows the control by the lower limiter of the motor rotational speed in the ship propulsion apparatus of 1st Embodiment, and the fractional diagram (a) shows the case where a minimum limit is set to less than 0, and the same fractional diagram (b) is a minimum limit. Is set to 0 or more. 第1実施形態の船舶推進装置の制御フロー図である。It is a control flow figure of a vessel propulsion device of a 1st embodiment. 第1実施形態の船舶推進装置における速度制御ハンドルのハンドル位置と、モータ目標回転速度の対応関係を示す表である。It is a table | surface which shows the correspondence of the handle position of the speed control handle in the ship propulsion apparatus of 1st Embodiment, and a motor target rotational speed. 第2実施形態の船舶推進装置の制御ブロック図である。It is a control block diagram of the ship propulsion device of a 2nd embodiment.
 第1実施形態の船舶推進装置を図1~図6を参照して説明する。この船舶推進装置は、コントローラの制御により、エンジン発電機が発生する電力でインバータがモータをトルク制御し、モータがプロペラを回転させて船舶を推進させる装置である。 The ship propulsion apparatus of the first embodiment will be described with reference to FIGS. This marine vessel propulsion device is a device that propels a vessel by controlling the torque of the motor by the inverter using electric power generated by the engine generator under the control of the controller, and the motor rotates the propeller.
 図1~図4を参照して船舶推進装置1の構成を説明する。
 図1に示すように、この船舶推進装置1は、エンジン2により発電機3を駆動して電力を発生するエンジン発電機4を備えている。エンジン2は、エンジン2の回転速度を自律的に調整する機能を備えたガバナ5によって制御される。発電機3は、AVR(Automatic Voltage Regulator )6によって励磁電圧を制御される。発電機制御装置7は、発電機3が発電する電気の電流と電圧周波数を検出し、これに基づいてガバナ5とAVR6を制御することができる。
The configuration of the marine vessel propulsion apparatus 1 will be described with reference to FIGS.
As shown in FIG. 1, the marine vessel propulsion apparatus 1 includes an engine generator 4 that generates electric power by driving a generator 3 with an engine 2. The engine 2 is controlled by a governor 5 having a function of autonomously adjusting the rotational speed of the engine 2. The generator 3 has an excitation voltage controlled by an AVR (Automatic Voltage Regulator) 6. The generator control device 7 can detect the current and voltage frequency of electricity generated by the generator 3, and can control the governor 5 and AVR 6 based on this.
 図1に示すように、エンジン発電機4からの電力はインバータ8を介してモータ9に与えられ、モータ9が駆動されてプロペラ10を回転させる。インバータ8は、コントローラ11によって制御される。コントローラ11は、エンジン発電機4の回転速度安定化制御のため、以下に説明する構成を備えている。 As shown in FIG. 1, the electric power from the engine generator 4 is given to the motor 9 through the inverter 8, and the motor 9 is driven to rotate the propeller 10. The inverter 8 is controlled by the controller 11. The controller 11 has a configuration described below for rotational speed stabilization control of the engine generator 4.
 図1に示すように、コントローラ11は速度算出部13を有している。速度算出部13には、船舶の運転位置に設置された速度制御ハンドル12が接続されている。速度制御ハンドル12は、操縦者によって操作・設定された位置に対応した信号を出力する。速度算出部13は、速度制御ハンドル12からの信号を受け、この信号に基づいてモータ目標回転速度を算出する。 As shown in FIG. 1, the controller 11 has a speed calculation unit 13. A speed control handle 12 installed at the operating position of the ship is connected to the speed calculation unit 13. The speed control handle 12 outputs a signal corresponding to the position operated and set by the operator. The speed calculation unit 13 receives a signal from the speed control handle 12 and calculates a motor target rotation speed based on this signal.
 図1に示すように、速度算出部13には、速度リミッタ14が接続されている。速度リミッタ14は、速度算出部13が算出したモータ目標回転速度に設定定数αを加えて速度リミッタ指令を算出し、インバータ8に与える。この設定定数αは、速度制御ハンドル12を最大にした場合の最大モータ目標回転速度に当該設定定数αを加えても、モータ9の許容最高回転速度未満になるように設定される。すなわち、
 (モータ9の許容最高回転速度-最大モータ目標回転速度)>設定定数α
の関係にある。これにより、インバータ8は、速度リミッタ指令を越えてモータ9を駆動することができなくなり、モータ9の過回転が防止される。
As shown in FIG. 1, a speed limiter 14 is connected to the speed calculation unit 13. The speed limiter 14 calculates a speed limiter command by adding a set constant α to the motor target rotation speed calculated by the speed calculation unit 13 and gives it to the inverter 8. The setting constant α is set so as to be less than the maximum allowable rotation speed of the motor 9 even when the setting constant α is added to the maximum motor target rotation speed when the speed control handle 12 is maximized. That is,
(Allowable maximum motor speed-maximum motor target speed)> Setting constant α
Are in a relationship. As a result, the inverter 8 cannot drive the motor 9 beyond the speed limiter command, and over-rotation of the motor 9 is prevented.
 図1に示すように、速度算出部13には偏差計算部15が接続されている。偏差計算部15には、速度算出部13からモータ目標回転速度が入力される。この偏差計算部15はインバータ8とも接続されており、インバータ8からは現在のモータ回転速度が入力される。偏差計算部15は、モータ目標回転速度とモータ回転速度の偏差を算出する。 As shown in FIG. 1, a deviation calculator 15 is connected to the speed calculator 13. The motor target rotation speed is input from the speed calculation unit 13 to the deviation calculation unit 15. This deviation calculation unit 15 is also connected to the inverter 8, and the current motor rotation speed is input from the inverter 8. The deviation calculation unit 15 calculates a deviation between the motor target rotation speed and the motor rotation speed.
 図1に示すように、偏差計算部15には、偏差リミッタ16が接続されている。偏差リミッタ16には、偏差計算部15から前記偏差が入力される。偏差リミッタ16は、モータ出力の瞬間的な変動量が大きくならないように、下記(式1)に従い、前記偏差が+側及び-側の各偏差リミッタ値の範囲内になるよう制限して出力する。(式1)によって制限されて出力される偏差を特に偏差E(n)で表す。 As shown in FIG. 1, a deviation limiter 16 is connected to the deviation calculation unit 15. The deviation is input from the deviation calculator 15 to the deviation limiter 16. The deviation limiter 16 limits the deviation to be within the range of each deviation limiter value on the + side and − side according to the following (Equation 1) so that the instantaneous fluctuation amount of the motor output does not increase, and outputs it. . The deviation that is limited and output by (Equation 1) is expressed in particular as deviation E (n).
 下限偏差リミッタ値≦E(n)(偏差)≦上限偏差リミッタ値 …(式1) Lower limit deviation limiter value ≤ E (n) (deviation) ≤ upper limit deviation limiter value (Equation 1)
 すなわち、図2において、横軸はモータ目標回転速度と現実のモータ回転速度の差である前記偏差を示しており、縦軸は実際に偏差リミッタ16から出力される偏差E(n)を示している。横軸の前記偏差が0の前後における比較的狭い範囲ではそのまま縦軸の偏差E(n)として出力されるが、±のある範囲を越えると、縦軸に示す制限値である下限偏差リミッタ値と上限偏差リミッタ値に制限されて偏差E(n)として出力される。 That is, in FIG. 2, the horizontal axis indicates the deviation that is the difference between the motor target rotational speed and the actual motor rotational speed, and the vertical axis indicates the deviation E (n) that is actually output from the deviation limiter 16. Yes. If the deviation on the horizontal axis is relatively narrow before and after 0, it is output as the deviation E (n) on the vertical axis as it is, but if it exceeds a range of ±, the lower limit deviation limiter value that is the limit value shown on the vertical axis And output as a deviation E (n), limited to the upper limit deviation limiter value.
 図1に示すように、偏差リミッタ16には、PIDレギュレータ17が接続されている。PIDレギュレータ17は、エンジン発電機4がハンチングしないようなインバータ8の応答速度を実現するPIDパラメータ値、すなわちエンジン発電機4の応答速度にマッチングしたパラメータ値が設定され、制限された前記偏差E(n)がより小さくなるようにトルク指令値を算出して出力する。 As shown in FIG. 1, a PID regulator 17 is connected to the deviation limiter 16. The PID regulator 17 is set with a PID parameter value that realizes the response speed of the inverter 8 so that the engine generator 4 does not hunt, that is, a parameter value that matches the response speed of the engine generator 4, and the deviation E ( Calculate and output the torque command value so that n) becomes smaller.
 図3に示すように、モータ9を駆動するインバータ8の応答速度(実線)は、エンジン発電機4の応答速度(破線)よりも大きい。すなわち、応答特性で比較すると、時間に対する出力の立ち上がりは、インバータ8の方がエンジン発電機4よりも早く、急峻である。そこで、PIDレギュレータ17は、インバータ8に対するトルク指令のPID制御においてPIDパラメータを調整することにより、インバータ8の応答速度をエンジン発電機4の応答速度以下とし(一点鎖線)、モータ9に出力する電力の応答性をエンジン発電機4の応答速度にマッチングさせる。すなわち、現在の前記モータの回転速度と目標とする回転速度との偏差E(n)に基づいて、PIDパラメータを調整したPIDレギュレータ17によって、トルク指令値の単位時間あたりの変化量がエンジン発電機4のハンチングを起こさせない値となったトルク指令値が、インバータ8に出力される。
 その結果、トルク指令値の単位時間あたりの変化量が制限されることにより、前記インバータの応答性が見掛け上“鈍くなり”、前記エンジン発電機の応答性に合わせられて、エンジン発電機がハンチングしないようになる。これによって、電機推進を行う船舶推進装置1におけるモータ9の応答性が、ディーゼルエンジンを主機関とする船舶推進装置においてプロペラを駆動する場合の応答性と同程度となる。
As shown in FIG. 3, the response speed (solid line) of the inverter 8 that drives the motor 9 is larger than the response speed (broken line) of the engine generator 4. That is, when compared with the response characteristics, the rise of the output with respect to time is faster and steeper in the inverter 8 than in the engine generator 4. Therefore, the PID regulator 17 adjusts the PID parameter in the PID control of the torque command for the inverter 8, thereby reducing the response speed of the inverter 8 to be equal to or lower than the response speed of the engine generator 4 (one-dot chain line) and Is matched with the response speed of the engine generator 4. That is, the amount of change per unit time of the torque command value is changed by the PID regulator 17 that has adjusted the PID parameter based on the deviation E (n) between the current rotational speed of the motor and the target rotational speed. The torque command value that is a value that does not cause the hunting of 4 is output to the inverter 8.
As a result, the amount of change per unit time of the torque command value is limited, and the responsiveness of the inverter apparently becomes “dull”, and the engine generator is hunted according to the responsiveness of the engine generator. Will not do. Thereby, the responsiveness of the motor 9 in the marine vessel propulsion apparatus 1 that performs electric propulsion becomes approximately the same as the responsiveness when the propeller is driven in the marine vessel propulsion apparatus that uses a diesel engine as a main engine.
 より具体的には、偏差リミッタ16で算出され制限された前記偏差E(n)を基に、下記(式2)又は(式3)に従い、トルク指令値を算出する。これは、ソフトウエアデジタル演算処理におけるPID演算式の代表例である。 More specifically, based on the deviation E (n) calculated and limited by the deviation limiter 16, the torque command value is calculated according to the following (Expression 2) or (Expression 3). This is a typical example of a PID arithmetic expression in software digital arithmetic processing.
 速度型PID演算式の場合
 トルク指令演算値=Kp×{(E(n)-E(n -1) )+Δt /Tl×E(n)
          +Td/Δt (E(n)-2E(n-1)+E(n -2))
 トルク指令値(n) =トルク指令値(n-1) +トルク指令演算値  …(式2)
Speed type PID calculation formula Torque command calculation value = Kp x {(E (n) -E (n-1)) + Δt / Tl x E (n)
+ Td / Δt (E (n) -2E (n-1) + E (n-2))
Torque command value (n) = Torque command value (n-1) + Torque command calculation value ... (Formula 2)
 位置型PID演算式の場合
 トルク指令演算値=Kp×{(E(n)+Δt /Tl×ΣEi
          +Td/Δt (E(n)-E(n -1))       …(式3)
For position type PID calculation formula Torque command calculation value = Kp x {(E (n) + Δt / Tl x ΣEi
+ Td / Δt (E (n) -E (n-1)) (Formula 3)
 上記各式において、
 Kp:比例分ゲイン(P 分) Tl:積分時間(I 分) Td:微分時間(D 分) Δt:演算周期
 E(n):(式1)から算出さ制限された値(偏差)
In each of the above formulas,
Kp: Proportional gain (P minutes) Tl: Integration time (I minutes) Td: Derivative time (D minutes) Δt: Calculation period E (n): Limited value calculated from (Equation 1) (deviation)
 前記演算周期Δtは、前述の「インバータ8に出力するトルク指令値の単位時間あたりの変化量」における“単位時間”に当たる。通常この演算周期は、1msec~数秒、好ましくは10~500msecである。前記“変化量”は、PIDパラメータである比例分ゲイン(P 分)Kp、積分時間(I 分)Tl、微分時間(D 分)Tdに織り込まれおり、トルク指令値の単位時間あたりの変化量がエンジン発電機4のハンチングを起こさせない値となったトルク指令値がPIDレギュレータから出力される。 The calculation cycle Δt corresponds to the “unit time” in the “amount of change per unit time of the torque command value output to the inverter 8” described above. Usually, this calculation cycle is 1 msec to several seconds, preferably 10 to 500 msec. The “change amount” is incorporated into the PID parameters proportional gain (P) Kp, integral time (I) Tl, and derivative time (D) Td, and the change per unit time of the torque command value Is output from the PID regulator to a value that does not cause hunting of the engine generator 4.
 すなわち、PIDレギュレータ17においては、モータ9に負荷がかかった時、エンジン発電機の回転速度がハンチングしないように、事前にPIDパラメータを調整する。このPIDパラメータの値はエンジン発電機4の特性とインバータ8の特性に合わせて決める。この調整は、本船舶推進装置1の試運転等の運転当初に行い、一度設定すれば以後の調整は不要である。
 以下、PIDパラメータの調整について、各成分ごとに説明する。
In other words, the PID regulator 17 adjusts the PID parameters in advance so that the rotation speed of the engine generator does not hunt when a load is applied to the motor 9. The value of this PID parameter is determined in accordance with the characteristics of the engine generator 4 and the characteristics of the inverter 8. This adjustment is performed at the beginning of the operation of the ship propulsion apparatus 1, such as a trial operation, and once set, no further adjustment is necessary.
Hereinafter, the adjustment of the PID parameter will be described for each component.
 P分パラメータ調整
 モータ9の負荷が急激に増加した時にエンジン発電機4の回転速度が瞬間的に大きく低下した場合、又はモータ9の負荷が急激に低下した時にエンジン発電機4の回転速度が瞬間的に大きく変化した場合にはP分パラメータを現状値より小さい値に調整する。尚、P分パラメータ調整は、I分、D分パラメータ調整に影響を与えるので、P分パラメータを調整した場合は、必要によりI分、D分パラメータの再調整を行なう。
P component parameter adjustment When the rotation speed of the engine generator 4 is greatly reduced momentarily when the load of the motor 9 is suddenly increased, or when the load of the motor 9 is suddenly reduced, the rotation speed of the engine generator 4 is instantaneous. If the change greatly changes, the P minute parameter is adjusted to a value smaller than the current value. The P minute parameter adjustment affects the I minute and D minute parameter adjustments. Therefore, when the P minute parameter is adjusted, the I minute and D minute parameters are readjusted as necessary.
 I分パラメータ調整
 モータ9の負荷変動が小さい時、エンジン発電機4の回転速度がハンチングする時は、I分パラメータを現状値より小さい値に調整する。尚、I分パラメータ調整は、P分D分パラメータ調整に影響を与えるので、I分パラメータを調整した場合は、必要によりP分、D分パラメータ再調整を行なう。
I-minute parameter adjustment When the load fluctuation of the motor 9 is small and the rotational speed of the engine generator 4 is hunting, the I-minute parameter is adjusted to a value smaller than the current value. Since the I minute parameter adjustment affects the P minute D minute parameter adjustment, if the I minute parameter is adjusted, the P minute and D minute parameters are readjusted as necessary.
 D分パラメータ調整
 モータ9の負荷が急激に変化した時にエンジン発電機4の回転速度が一時的オーバシュート、又はアンダーシュートする場合は、D分パラメータを現状値より小さい値に調整する。尚、D分パラメータ調整は、P分I分パラメータ調整に影響を与えるので、D分パラメータを調整した場合は、必要によりP分、I分パラメータ再調整を行なう。
D component parameter adjustment When the rotational speed of the engine generator 4 temporarily overshoots or undershoots when the load of the motor 9 changes suddenly, the D component parameter is adjusted to a value smaller than the current value. Since the D minute parameter adjustment affects the P minute I minute parameter adjustment, if the D minute parameter is adjusted, the P minute and I minute parameters are readjusted as necessary.
 一応のP分、I分、D分のパラメータ調整後、速度制御ハンドル12を動かしてモータ9(プロペラ10)の回転速度を上げることによって、発電機3の負荷をあげる。それに伴って、エンジン2の出力を上げるようガバナ5が自動調節する様子を観察し、エンジン発電機4がハンチングを起こしていないかを確認する。ハンチングを起こすようであれば、前記指針に従ってP分、I分、D分のパラメータを再調整し、ハンチングを起こしていないのが確認できれば、P分、I分、D分のパラメータの調整は終了である。通常、当業者であれば3~6時間でP分、I分、D分のパラメータの調整を終了することが出来る。 After adjusting the parameters of P, I and D for a while, the speed control handle 12 is moved to increase the rotational speed of the motor 9 (propeller 10), thereby increasing the load on the generator 3. Along with this, the state in which the governor 5 automatically adjusts to increase the output of the engine 2 is observed, and it is confirmed whether the engine generator 4 has caused hunting. If hunting is to occur, readjust the parameters for P, I, and D according to the above guidelines, and if it is confirmed that hunting has not occurred, adjustment of parameters for P, I, and D is complete. It is. Normally, those skilled in the art can complete the parameter adjustment for P minutes, I minutes, and D minutes in 3 to 6 hours.
 図1に示すように、PIDレギュレータ17には、下限リミッタ18が接続されている。下限リミッタ18には、PIDレギュレータ17で算出された前記トルク指令が入力される。下限リミッタ18は、モータ出力の瞬間的な変動量が大きくならないように、下記(式4)に従い、PIDレギュレータ17で算出された前記トルク指令を制限してインバータ8に出力する。 As shown in FIG. 1, a lower limiter 18 is connected to the PID regulator 17. The torque command calculated by the PID regulator 17 is input to the lower limiter 18. The lower limiter 18 limits the torque command calculated by the PID regulator 17 and outputs it to the inverter 8 according to the following (Equation 4) so that the instantaneous fluctuation amount of the motor output does not increase.
 下限リミッタ値≦トルク指令値 …(式4) Lower limit value ≤ Torque command value (Equation 4)
 図4に示すように、下限リミッタ値の設定を変えることでモータ回生電力量を任意に制限する事ができる。
 図4Aは下限リミッタ値を0未満とした場合の回転速度とモータ9の作動状態の変化を示す。下限リミッタ値を0未満とすると、モータ回生電力量を有りに設定できる。モータ出力(一点鎖線)に細線楕円を付して示したように、モータ回生電力が発生してエネルギを回収しているため、その分だけモータ回転速度(破線)は後述する図4Bに比べて落ちている。
As shown in FIG. 4, the motor regenerative electric energy can be arbitrarily limited by changing the setting of the lower limiter value.
FIG. 4A shows changes in the rotational speed and the operating state of the motor 9 when the lower limiter value is less than zero. When the lower limiter value is less than 0, the motor regenerative electric energy can be set to “present”. As indicated by a thin line ellipse attached to the motor output (dashed line), the motor regenerative power is generated and the energy is recovered, so the motor rotation speed (broken line) is compared with FIG. falling.
 図4Bは下限リミッタ値を0以上とした場合の回転速度とモータ9の作動状態の変化を示す。下限リミッタ値を0以上とすると、モータ回生電力量を無しに設定できる。モータ出力(一点鎖線)は力行又は0であるため、船舶の進行にはブレーキがかからず、その分だけモータ回転速度(破線)は前述した図4Aに比べて落ち方が遅い。 FIG. 4B shows changes in the rotational speed and the operating state of the motor 9 when the lower limiter value is 0 or more. If the lower limiter value is 0 or more, the motor regenerative electric energy can be set to none. Since the motor output (one-dot chain line) is power running or 0, the marine vessel is not braked, and the motor rotation speed (broken line) falls slower than that shown in FIG. 4A.
 図1に示すように、下限リミッタ18はインバータ8に接続されており、下限リミッタ18で下限リミッタが与えられたトルク指令がインバータ8に与えられる。 As shown in FIG. 1, the lower limiter 18 is connected to the inverter 8, and a torque command to which the lower limiter is given by the lower limiter 18 is given to the inverter 8.
 次に、図5を参照して船舶推進装置1における制御手順を説明する。同図中、YはYES、NはNOの意味である。
 制御動作の開始後(START)、船舶の乗組員等が速度制御ハンドル12を操作してある位置に設定すると、当該位置に対応する信号がコントローラ11の速度算出部13に送られ、速度算出部13は、この信号から対応するモータ目標回転速度を算出する(S1)。
Next, the control procedure in the ship propulsion apparatus 1 will be described with reference to FIG. In the figure, Y means YES and N means NO.
After the start of the control operation (START), when a crew member of the ship sets the position where the speed control handle 12 is operated, a signal corresponding to the position is sent to the speed calculation unit 13 of the controller 11, and the speed calculation unit 13 calculates the corresponding motor target rotational speed from this signal (S1).
 速度算出部13は、モータ目標回転速度を速度リミッタ14に出力する。速度リミッタ14は、これに設定定数αを加えて速度リミッタ指令を算出し(S2)、インバータ8に出力する。これにより、インバータ8は、速度リミッタ指令を越えてモータ9を駆動することができなくなり、モータ9の過回転が防止される。 The speed calculation unit 13 outputs the motor target rotation speed to the speed limiter 14. The speed limiter 14 adds a set constant α to this to calculate a speed limiter command (S2), and outputs it to the inverter 8. As a result, the inverter 8 cannot drive the motor 9 beyond the speed limiter command, and over-rotation of the motor 9 is prevented.
 速度算出部13は、モータ目標回転速度を偏差計算部15に出力する。一方、インバータ8は、モータ回転速度の信号を偏差計算部15に出力する。偏差計算部15は、モータ目標回転速度とモータ回転速度の偏差を算出する(S3)。 The speed calculation unit 13 outputs the motor target rotation speed to the deviation calculation unit 15. On the other hand, the inverter 8 outputs a motor rotation speed signal to the deviation calculator 15. The deviation calculator 15 calculates a deviation between the motor target rotation speed and the motor rotation speed (S3).
 偏差計算部15は、前記偏差を偏差リミッタ16に出力する。偏差リミッタ16は、モータ出力の瞬間的な変動量が所定の範囲を越えて大きくならないように、前記(式1)に従い、前記偏差が+側及び-側の各偏差リミッタ値以下になるよう制限する(S4)。 The deviation calculation unit 15 outputs the deviation to the deviation limiter 16. The deviation limiter 16 limits the deviation to be less than the deviation limiter values on the + side and − side according to the above (Equation 1) so that the instantaneous fluctuation amount of the motor output does not exceed a predetermined range. (S4).
 すなわち、偏差が下限偏差リミッタ値と上限偏差リミッタ値の間の値である場合(S4、Y)には、モータ目標回転速度とモータ回転速度の実際の偏差を算出された偏差E(n)として出力する(S5)。 That is, when the deviation is a value between the lower limit deviation limiter value and the upper limit deviation limiter value (S4, Y), the actual deviation between the motor target rotation speed and the motor rotation speed is calculated as the calculated deviation E (n). Output (S5).
 偏差が下限偏差リミッタ値と上限偏差リミッタ値の間の値でなく(S4、N)、偏差が0を越える場合(S6、Y)には、上限偏差リミッタ値を算出された偏差E(n)として出力する(S7)。 If the deviation is not a value between the lower limit deviation limiter value and the upper limit deviation limiter value (S4, N), and the deviation exceeds 0 (S6, Y), the calculated deviation E (n) (S7).
 偏差が下限偏差リミッタ値と上限偏差リミッタ値の間の値でなく(S4、N)、偏差が0を越えない場合(S6、N)には、下限偏差リミッタ値を算出された偏差E(n)として出力する(S8)。 When the deviation is not a value between the lower limit deviation limiter value and the upper limit deviation limiter value (S4, N), and the deviation does not exceed 0 (S6, N), the calculated deviation E (n ) Is output (S8).
 偏差リミッタ16は、以上のようにして算出した偏差E(n)をPIDレギュレータ17に出力する。PIDレギュレータ17は、偏差リミッタ16で算出された前記偏差E(n)を基に、前記(式2)又は(式3)に従い、トルク指令演算値を算出する(S9)。 The deviation limiter 16 outputs the deviation E (n) calculated as described above to the PID regulator 17. Based on the deviation E (n) calculated by the deviation limiter 16, the PID regulator 17 calculates a torque command calculation value according to the (Expression 2) or (Expression 3) (S9).
 ここで、PIDレギュレータ17には、エンジン発電機4の応答速度にマッチングしたパラメータ値が設定されており、インバータ8に出力するトルク指令値の単位時間あたりの変化量を制限して、インバータ8の応答速度をエンジン発電機4の応答速度に近接させた状態、より具体的にはインバータ8の応答速度をエンジン発電機4の応答速度よりも若干小さくした状態で制御できるようになっており、モータ9に出力する電力の応答性をエンジン発電機4の応答速度にマッチングさせるようなトルク指令演算値を算出・出力することができる。従って、インバータ8がモータ9に出力する電力が極端に変動することがなく、エンジン発電機4の回転速度及び周波数が安定化する。 Here, a parameter value matched with the response speed of the engine generator 4 is set in the PID regulator 17, and the amount of change per unit time of the torque command value output to the inverter 8 is limited. The motor can be controlled with the response speed close to the response speed of the engine generator 4, more specifically with the response speed of the inverter 8 slightly lower than the response speed of the engine generator 4. 9 can calculate and output a torque command calculation value that matches the responsiveness of the power output to 9 with the response speed of the engine generator 4. Therefore, the electric power output from the inverter 8 to the motor 9 does not fluctuate extremely, and the rotational speed and frequency of the engine generator 4 are stabilized.
 また、本実施形態では、PIDレギュレータ17のPIDパラメータを適宜に設定してインバータ8に出力するトルク指令値の単位時間あたりの変化量を制限して、エンジン発電機4のハンチングを防ぐ一定の効果を得ているとともに、さらに前述した通り偏差を偏差リミッタ16で所定の範囲となるようにしているため、前記偏差が大きい場合に予想されるモータ電力の極端な変化を避けることができ、エンジン発電機4の回転速度及び周波数をさらに安定化させる相乗効果が得られている。 Further, in the present embodiment, the PID parameter of the PID regulator 17 is appropriately set to limit the amount of change per unit time of the torque command value output to the inverter 8 to prevent hunting of the engine generator 4. Further, as described above, the deviation is set within a predetermined range by the deviation limiter 16, so that an extreme change in motor power expected when the deviation is large can be avoided. A synergistic effect that further stabilizes the rotational speed and frequency of the machine 4 is obtained.
 また、前記偏差リミッタ16で偏差を所定の値の範囲内に制限することにより、前述の特定のPIDパラメータ値が設定されたPIDレギュレータ17に代えて、通常の変換器(例えば、比例器)で当該制限された偏差に基づきトルク指令値を演算しても、その入力値が十分に制限されているので、インバータ8に出力するトルク指令値の単位時間あたりの変化量を制限することができる。 Further, by limiting the deviation within a predetermined value range by the deviation limiter 16, an ordinary converter (for example, a proportional device) is used instead of the PID regulator 17 in which the specific PID parameter value is set. Even if the torque command value is calculated based on the limited deviation, since the input value is sufficiently limited, the amount of change per unit time of the torque command value output to the inverter 8 can be limited.
 従って、インバータ8に出力するトルク指令値の単位時間あたりの変化量を制限するものとして、偏差リミッタ16とPIDレギュレータ17とをそれぞれ単独で行ってもよいが、前述の如く、偏差リミッタ16とPIDレギュレータ17とを併用するのが好ましい。
 この場合、エンジン発電機4をハンチングさせないためのPIDパラメータ値の調整は、偏差リミッタ16がない場合に比べれば、インバータ8の応答性を“厳密に鈍くする”設定にする必要はなく、より緩くてもよい。すなわち偏差リミッタ16がない場合のように、インバータ8の応答速度をエンジン発電機4の応答速度に近づけなくとも、エンジン発電機4の回転速度及び周波数を安定化させるのに必要な効果は得られる。
Therefore, the deviation limiter 16 and the PID regulator 17 may be performed independently to limit the amount of change per unit time in the torque command value output to the inverter 8, but as described above, the deviation limiter 16 and the PID It is preferable to use the regulator 17 together.
In this case, the adjustment of the PID parameter value for preventing the engine generator 4 from hunting does not need to be set to “strictly dull” the response of the inverter 8 as compared with the case where the deviation limiter 16 is not provided, and is looser. May be. That is, as in the case where there is no deviation limiter 16, the effect necessary to stabilize the rotational speed and frequency of the engine generator 4 can be obtained without bringing the response speed of the inverter 8 close to the response speed of the engine generator 4. .
 PIDレギュレータ17は、トルク指令演算値を下限リミッタ18に出力する。下限リミッタ18は、PIDレギュレータ17で算出されたトルク指令演算値を基に、前記(式4)に従い、トルク指令値を算出する(S10)。 The PID regulator 17 outputs the torque command calculation value to the lower limiter 18. The lower limiter 18 calculates a torque command value according to the above (Equation 4) based on the torque command calculation value calculated by the PID regulator 17 (S10).
 すなわち、トルク指令演算値が下限リミッタ値以上である場合(S10、Y)には、トルク指令演算値をトルク指令値とする(S11)。また、トルク指令演算値が下限リミッタ値未満である場合(S10、N)には、下限リミッタ値をトルク指令値とする(S12)。(式4)の下限リミッタ値の設定を変えることでモータ回生電力量を任意に制限する事ができる。 That is, when the torque command calculation value is equal to or greater than the lower limit value (S10, Y), the torque command calculation value is set as the torque command value (S11). When the torque command calculation value is less than the lower limit value (S10, N), the lower limit value is set as the torque command value (S12). By changing the setting of the lower limiter value of (Equation 4), the motor regenerative electric energy can be arbitrarily limited.
 下限リミッタ18は、算出したトルク指令値をインバータ8に出力し、制御動作は終了する(END)。 The lower limiter 18 outputs the calculated torque command value to the inverter 8, and the control operation ends (END).
 次に、以上説明した第1実施形態におけるPIDパラメータの調整について、さらに詳しい具体例を挙げて説明する。
 PIDパラメータの値は各機器の出力、特性等によって変動する。この例では、各機器の仕様を以下のように設定する。
 モータ9の容量:295KW
 インバータ8の容量:315KW
 エンジン発電機4の容量:400KW
Next, the adjustment of the PID parameter in the first embodiment described above will be described with a more specific example.
The value of the PID parameter varies depending on the output and characteristics of each device. In this example, the specifications of each device are set as follows.
Capacity of motor 9: 295KW
Capacity of inverter 8: 315KW
Engine generator 4 capacity: 400KW
 また、モータ目標回転速度は、図6に示す2点間直線補間テーブルにより決定される。 速度リミッタ14が速度リミッタ指令を算出、出力するために必要な設定定数αは+150min-1とする。すなわち、モータ目標回転速度に150min-1を加えて速度リミッタ指令とする。 Also, the motor target rotational speed is determined by the point-to-point linear interpolation table shown in FIG. The setting constant α required for the speed limiter 14 to calculate and output a speed limiter command is set to +150 min-1. That is, a speed limiter command is obtained by adding 150 min-1 to the motor target rotational speed.
 以上の設定によれば、PIDパラメータ(速度型)は以下の通りとなる。
 偏差リミッタ16における下限リミッタ値と上限リミッタ値の範囲が100min-1に調整されている時は、
 P分は4.000、I分は1.350、D分は0.055となる。
 偏差リミッタ16における下限リミッタ値と上限リミッタ値の範囲が750min-1に調整されている時は、
 P分は2.000 I分は0.900 D分は0.000となる。
According to the above setting, the PID parameter (speed type) is as follows.
When the range between the lower limit value and the upper limit value in the deviation limiter 16 is adjusted to 100 min−1,
The P component is 4.000, the I component is 1.350, and the D component is 0.055.
When the range of the lower limiter value and the upper limiter value in the deviation limiter 16 is adjusted to 750 min−1,
P minutes are 2.000 I minutes and 0.900 D minutes are 0.000.
 次に、第2実施形態の船舶推進装置1aを図7を参照して説明する。
 この船舶推進装置1aはハイブリッド型の船舶推進装置であり、プロペラ10の駆動源として、モータ9と主機関(ディーゼルエンジン)20を有している。モータ9は減速変向機構22を介してプロペラ10に接続され、主機関20は、クラッチ21と減速変向機構22を介してプロペラ10に接続されている。その他の構成は第1実施形態と同様である。
Next, a marine vessel propulsion apparatus 1a according to the second embodiment will be described with reference to FIG.
This marine vessel propulsion apparatus 1 a is a hybrid type marine vessel propulsion apparatus, and has a motor 9 and a main engine (diesel engine) 20 as drive sources for the propeller 10. The motor 9 is connected to the propeller 10 via a deceleration turning mechanism 22, and the main engine 20 is connected to the propeller 10 via a clutch 21 and a deceleration turning mechanism 22. Other configurations are the same as those of the first embodiment.
 以上説明した各実施形態の説明から理解されるように、本発明は、インバータ駆動のモータで船舶を推進させる構造を備えた船舶推進装置に広く適用が可能である。 As can be understood from the description of each embodiment described above, the present invention can be widely applied to a ship propulsion apparatus having a structure for propelling a ship with an inverter-driven motor.
 以上説明したように、本発明の実施形態によれば、インバータ8がモータ9に出力する電力の変動量は、発電機3が応答可能な変動量になっている。つまり、モータ9に電力を出力するインバータ8の応答性がエンジン発電機4の応答速度にマッチングするように、インバータ8を制御するコントローラ11のパラメータが調整されており、推進用のモータ9の応答性が、主機関ディーゼルエンジン2がプロペラ10を駆動する時の応答性と同程度となっている。このため、コントローラ11はエンジン発電機4の側からの情報に基づく制御を行う必要がなく、エンジン発電機4はガバナ制御のみで回転速度を安定させることが出来、エンジン発電機4がハンチングを起こすことは確実に防止される。 As described above, according to the embodiment of the present invention, the fluctuation amount of the electric power output from the inverter 8 to the motor 9 is a fluctuation amount that the generator 3 can respond to. That is, the parameter of the controller 11 that controls the inverter 8 is adjusted so that the response of the inverter 8 that outputs electric power to the motor 9 matches the response speed of the engine generator 4. The responsivity is comparable to that when the main engine diesel engine 2 drives the propeller 10. Therefore, the controller 11 does not need to perform control based on information from the engine generator 4 side, and the engine generator 4 can stabilize the rotation speed only by governor control, and the engine generator 4 causes hunting. This is definitely prevented.
 さらに、PIDレギュレータ17における上記制御に先立ち、偏差リミッタ16では、モータ目標回転速度とモータ回転速度の前記偏差が所定の値以下となるように制御を行っているため、前記偏差が大きい場合に予想されるモータ9の電力の極端な変化を避けることができ、エンジン発電機4の回転速度及び周波数を安定化させるさらなる相乗効果も得られる。 Further, prior to the above control in the PID regulator 17, the deviation limiter 16 performs control so that the deviation between the motor target rotation speed and the motor rotation speed is not more than a predetermined value. An extreme change in the electric power of the motor 9 can be avoided, and a further synergistic effect of stabilizing the rotational speed and frequency of the engine generator 4 can be obtained.
 1,1a…船舶推進装置
 2…エンジン
 3…発電機
 4…エンジン発電機
 8…インバータ
 9…モータ
 11…コントローラ
 14…速度リミッタ
 16…偏差リミッタ
 17…PIDレギュレータ
 18…下限リミッタ
DESCRIPTION OF SYMBOLS 1, 1a ... Ship propulsion apparatus 2 ... Engine 3 ... Generator 4 ... Engine generator 8 ... Inverter 9 ... Motor 11 ... Controller 14 ... Speed limiter 16 ... Deviation limiter 17 ... PID regulator 18 ... Lower limit limiter

Claims (12)

  1.  エンジンにより発電機を駆動して電力を発生するエンジン発電機と、
     船舶を推進するためのモータと、
     前記エンジン発電機から供給される電力を用いて前記モータをトルク制御するインバータと、
     現在の前記モータの回転速度と目標とする回転速度との偏差に基づいて、前記インバータにトルク指令値を出力する機構において、前記インバータに出力するトルク指令値の単位時間あたりの変化量が、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度になるように、制限するトルク指令値制限部と、
     を具備することを特徴とする船舶推進装置。
    An engine generator that generates electric power by driving a generator with an engine;
    A motor for propelling the ship;
    An inverter for torque controlling the motor using electric power supplied from the engine generator;
    In the mechanism for outputting a torque command value to the inverter based on the deviation between the current rotation speed of the motor and the target rotation speed, the amount of change per unit time of the torque command value output to the inverter is A torque command value limiting unit for limiting the engine generator so that the response speed of the inverter does not cause hunting;
    A marine vessel propulsion device comprising:
  2.  前記トルク指令値制限部が、トルク指令値をPID演算して前記インバータに出力するPIDレギュレータであって、該トルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に制限するPIDパラメータが設定されたPIDレギュレータであることを特徴とする請求項1記載の船舶推進装置。 The torque command value limiting unit is a PID regulator that PID-calculates a torque command value and outputs the torque command value to the inverter, and the engine generator does not cause hunting for a change amount per unit time of the torque command value. The marine vessel propulsion apparatus according to claim 1, wherein the marine vessel propulsion apparatus is a PID regulator in which a PID parameter for limiting the response speed of the inverter is set.
  3.  前記トルク指令値制限部が、現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限する偏差リミッタであることを特徴とする請求項1記載の船舶推進装置。 2. The ship propulsion according to claim 1, wherein the torque command value limiting unit is a deviation limiter that limits a deviation between a current rotation speed of the motor and a target rotation speed within a predetermined value range. apparatus.
  4.  前記トルク指令値制限部が、
    現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限する偏差リミッタと、
     当該偏差リミッタから出力された偏差が小さくなるようにトルク指令値をPID演算して前記インバータに出力するPIDレギュレータであって、該トルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度となるように、制限するPIDパラメータが設定されたPIDレギュレータと、
     からなることを特徴とする請求項1記載の船舶推進装置。
    The torque command value limiter is
    A deviation limiter for limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range;
    A PID regulator that performs a PID calculation of a torque command value so as to reduce a deviation output from the deviation limiter, and outputs the torque command value to the inverter, wherein the engine generator determines the amount of change per unit time of the torque command value. A PID regulator in which a PID parameter to be limited is set so that the response speed of the inverter does not cause hunting;
    The ship propulsion apparatus according to claim 1, comprising:
  5.  前記PIDレギュレータが算出した前記トルク指令値に下限リミットを設ける下限リミッタを有することを特徴とする請求項1乃至4のいずれか一つに記載の船舶推進装置。 The ship propulsion device according to any one of claims 1 to 4, further comprising a lower limiter that provides a lower limit to the torque command value calculated by the PID regulator.
  6.  前記モータの目標とする回転速度に、予め設定した設定定数を加えて速度リミッタ指令を算出し、該速度リミッタ指令を前記インバータに出力して前記モータの過回転を防止する速度リミッタを有することを特徴とする請求項1乃至5のいずれか一つに記載の船舶推進装置。 A speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor. The ship propulsion device according to any one of claims 1 to 5, wherein
  7.  エンジンで発電機を駆動するエンジン発電機の前記エンジンを駆動して発生させた電力を、前記モータをトルク制御するインバータを介して前記モータに供給することにより船舶を推進する船舶推進方法であって、
     前記インバータに出力するトルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限することを特徴とする船舶推進方法。
    A ship propulsion method for propelling a ship by supplying electric power generated by driving the engine of an engine generator that drives the generator with an engine via an inverter that torque-controls the motor. ,
    A ship propulsion method, wherein a change amount per unit time of a torque command value output to the inverter is limited to a response speed of the inverter at which the engine generator does not cause hunting.
  8.  前記インバータにPID演算して出力するトルク指令値の単位時間あたりの変化量を、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限するPIDパラメータを設定して、該トルク指令値を前記インバータに出力することを特徴とする請求項7に記載の船舶推進方法。 A PID parameter is set to limit the amount of change per unit time of the torque command value output by performing PID calculation to the inverter to the response speed of the inverter where the engine generator does not cause hunting. Is output to the inverter. The ship propulsion method according to claim 7.
  9.  現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限し、当該制限された偏差が小さくなるようにトルク指令値を演算することによって、前記インバータに出力するトルク指令値の単位時間あたりの変化量が、前記エンジン発電機がハンチングを起こさない前記インバータの応答速度に、制限することを特徴とする請求項7に記載の船舶推進方法。 The deviation between the current rotation speed of the motor and the target rotation speed is limited within a predetermined value range, and the torque command value is calculated so that the limited deviation becomes small, and then output to the inverter. The ship propulsion method according to claim 7, wherein a change amount per unit time of the torque command value to be limited is limited to a response speed of the inverter at which the engine generator does not cause hunting.
  10.  現在の前記モータの回転速度と目標とする回転速度との偏差を所定の値の範囲内に制限すると共に、
     出力するトルク指令値の単位時間あたりの変化量を前記エンジン発電機がハンチングを起こさない前記インバータの応答速度になるように制限するPIDパラメータを設定して、
     前記制限された偏差が小さくなるようにPID演算したトルク指令値を前記インバータに出力することを特徴とする請求項7に記載の船舶推進方法。
    Limiting the deviation between the current rotational speed of the motor and the target rotational speed within a predetermined value range;
    Setting a PID parameter that limits the amount of change in the torque command value to be output per unit time so that the response speed of the inverter does not cause hunting by the engine generator,
    The ship propulsion method according to claim 7, wherein a torque command value obtained by performing PID calculation so that the limited deviation is reduced is output to the inverter.
  11.  算出された前記トルク指令値に下限リミットを設けることを特徴とする請求項7乃至10のいずれか一つに記載の船舶推進方法。 The ship propulsion method according to any one of claims 7 to 10, wherein a lower limit is provided for the calculated torque command value.
  12.  前記モータの目標とする回転速度に、予め設定した設定定数を加えて速度リミッタ指令を算出し、該速度リミッタ指令を前記インバータに出力して前記モータの過回転を防止することを特徴とする請求項7乃至11のいずれか一つに記載の船舶推進方法。 A speed limiter command is calculated by adding a preset constant to the target rotational speed of the motor, and the speed limiter command is output to the inverter to prevent over-rotation of the motor. The ship propulsion method according to any one of Items 7 to 11.
PCT/JP2016/056007 2016-02-29 2016-02-29 Ship propulsion device and ship propulsion method WO2017149588A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018502864A JP6640324B2 (en) 2016-02-29 2016-02-29 Ship propulsion device and ship propulsion method
PCT/JP2016/056007 WO2017149588A1 (en) 2016-02-29 2016-02-29 Ship propulsion device and ship propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056007 WO2017149588A1 (en) 2016-02-29 2016-02-29 Ship propulsion device and ship propulsion method

Publications (1)

Publication Number Publication Date
WO2017149588A1 true WO2017149588A1 (en) 2017-09-08

Family

ID=59742587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056007 WO2017149588A1 (en) 2016-02-29 2016-02-29 Ship propulsion device and ship propulsion method

Country Status (2)

Country Link
JP (1) JP6640324B2 (en)
WO (1) WO2017149588A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543261C2 (en) * 2019-07-03 2020-11-03 Lean Marine Sweden Ab Method and System for Controlling Propulsive Power Output of Ship

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069775A (en) * 1998-08-20 2000-03-03 Fuji Electric Co Ltd Controlling method for electric propulsion device
JP2015227109A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Movable body hybrid propulsion system and control method of same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126017A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Vehicle drive control unit
JP4356684B2 (en) * 2005-11-09 2009-11-04 西芝電機株式会社 Electric propulsion device for ships
JP4733515B2 (en) * 2005-12-21 2011-07-27 東芝三菱電機産業システム株式会社 Marine electric propulsion system
JP5353184B2 (en) * 2008-10-29 2013-11-27 コベルコ建機株式会社 Swing control device for work machine
JP5332782B2 (en) * 2009-03-19 2013-11-06 株式会社Ihi Die cushion device
JP5084788B2 (en) * 2009-06-12 2012-11-28 日本郵船株式会社 Marine fuel regulator
JP5463463B2 (en) * 2009-11-30 2014-04-09 株式会社 神崎高級工機製作所 Ride type ground work vehicle
JP5787212B2 (en) * 2011-05-27 2015-09-30 西芝電機株式会社 Marine hybrid propulsion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069775A (en) * 1998-08-20 2000-03-03 Fuji Electric Co Ltd Controlling method for electric propulsion device
JP2015227109A (en) * 2014-05-30 2015-12-17 川崎重工業株式会社 Movable body hybrid propulsion system and control method of same

Also Published As

Publication number Publication date
JP6640324B2 (en) 2020-02-05
JPWO2017149588A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US6380639B1 (en) System, method and apparatus for power regulation
US20030124919A1 (en) Ship propulsion system comprising a control that is adapted with regard to dynamics
US4694189A (en) Control system for variable speed hydraulic turbine generator apparatus
JP6446569B2 (en) Variable speed pumped storage power generator
EP2043257B1 (en) Overload control of an electric power generation system
JP6214075B1 (en) Ship propulsion method and ship propulsion device
WO2017149590A1 (en) Motor control method and control device
WO2014125594A1 (en) Power-conversion device and method for controlling same
JP3144451B2 (en) Variable speed pumped storage generator
JP2007318947A (en) Controller of stepping motor
JP4685715B2 (en) Power system stabilization method and power system stabilization system using the method
JP5099876B2 (en) Series hybrid electric vehicle
WO2017149588A1 (en) Ship propulsion device and ship propulsion method
KR100700242B1 (en) Ship propulsion system comprising a control that is adapted with regard to dynamics
JP4533690B2 (en) Governor for hydroelectric power generation, speed control device for hydroelectric power generation including the governor, and hydroelectric power plant
JP3675186B2 (en) Control method of electric propulsion device
JP5476327B2 (en) Diesel vehicle drive system control system
JPS63310001A (en) Control equipment
JP2000069775A (en) Controlling method for electric propulsion device
US10669991B2 (en) Wind turbine and method for operating a wind turbine
JP2650956B2 (en) Variable speed generator motor frequency control device
JP3915085B2 (en) Variable speed pumped storage power generation controller
JPS6122807B2 (en)
JP4387676B2 (en) Power converter for wind power generation
JPS5986493A (en) Speed controller for dc motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892433

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892433

Country of ref document: EP

Kind code of ref document: A1