WO2017148422A1 - Injection mold temperature control method and device based on positive and negative input predictive control - Google Patents

Injection mold temperature control method and device based on positive and negative input predictive control Download PDF

Info

Publication number
WO2017148422A1
WO2017148422A1 PCT/CN2017/075473 CN2017075473W WO2017148422A1 WO 2017148422 A1 WO2017148422 A1 WO 2017148422A1 CN 2017075473 W CN2017075473 W CN 2017075473W WO 2017148422 A1 WO2017148422 A1 WO 2017148422A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
input
control module
injection mold
positive
Prior art date
Application number
PCT/CN2017/075473
Other languages
French (fr)
Chinese (zh)
Inventor
姜芝君
莫胜勇
杨毅
汪智勇
高福荣
Original Assignee
群达模具(深圳)有限公司
深圳市福达智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群达模具(深圳)有限公司, 深圳市福达智能系统有限公司 filed Critical 群达模具(深圳)有限公司
Publication of WO2017148422A1 publication Critical patent/WO2017148422A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76732Mould

Definitions

  • the invention relates to an injection mold temperature control device, in particular to an injection mold temperature control method and device for positive and negative input predictive control.
  • the mold temperature is controlled mainly by a mold temperature machine, thereby controlling the molding process of the injection molding product.
  • the main functions of the mold temperature machine are: 1. Improve the molding efficiency of the product; 2. Reduce the product defect rate; 3. Improve the appearance of the product and reduce product defects; 4. Accelerate the production schedule, reduce energy consumption and save energy.
  • the requirements for controlling the mold temperature are: making the mold temperature reach the working temperature and keeping the mold temperature constant at the working temperature, thereby optimizing the injection molding cycle, ensuring the stability of the injection molding process and the quality of the injection molded product. Mold temperature affects product surface quality, melt flow, body shrinkage, and product injection cycle and product deformation.
  • higher mold temperatures generally improve plastic melt flow and product surface quality, but extend cooling time and injection cycle times.
  • Lower mold temperatures reduce the shrinkage of the plastic in the mold and increase the shrinkage of the molded part after demolding.
  • the temperature control of the mold temperature machine is not accurate.
  • Some temperature control systems of the injection mold temperature machine also take into account the control of the cooling system, but the control results are not ideal, heating and cooling will continue to switch, wasting energy.
  • Positive and negative input systems are widely used in industrial control.
  • the positive input signal causes the output to produce a positive effect
  • the negative input signal causes the output to have a negative effect.
  • it is limited to consider the positive input variable and the negative input variable separately, and even if the positive input variable and the negative input variable are put together as a whole, the characteristics of different input variables are not considered.
  • the other type is a split-range control system, such as a PID-type split-range control system.
  • the positive input variable and the negative input variable are grouped into one manipulated variable, and then controlled by a PID controller to assign a control positive input variable or a reverse input variable according to which interval the output result is in.
  • a PID controller to assign a control positive input variable or a reverse input variable according to which interval the output result is in.
  • the PID type split control system since there is only one input at each moment, energy can be saved, but since the positive input variable and the negative input variable are not considered, the response characteristics of the output result are different, especially when the manipulated variable is at zero. When switching nearby, the control effect will deteriorate, resulting in low control accuracy; and the low-precision control effect will damage the quality of the product.
  • the invention aims at the problem that the injection molding die temperature control device method of the existing positive and negative input predictive control has waste energy and low control precision when controlling the mold temperature, and proposes a positive and negative input predictive control injection mold temperature control method and device. .
  • the invention provides an injection mold temperature control method for adjusting a mold temperature by using an injection mold temperature control device, and the injection mold temperature control device comprises a temperature positive input control module for inputting a positive temperature input quantity to increase the mold temperature, and A temperature inverse input control module that inputs a temperature inverse input amount to reduce the mold temperature; and includes the following steps:
  • Step S1 acquiring a temperature positive input parameter of the temperature positive input control module, a temperature inverse input parameter of the temperature inverse input control module, and a temperature single input parameter of the injection mold temperature control device; and acquiring the temperature at the current t time every sampling time ⁇ t Positive input positive input of the control module, actual temperature reverse input of the temperature reverse input control module, and actual temperature total input of the injection mold temperature control device;
  • the temperature positive input parameters include the positive input time lag ⁇ h of the temperature positive input control module, the positive input gain K h of the temperature positive input control module, the positive input time constant ⁇ h of the temperature positive input control module;
  • the temperature inverse input parameters include The inverse input time lag ⁇ c of the temperature inverse input control module, the inverse input gain K c of the temperature inverse input control module, and the inverse input time constant ⁇ c of the temperature inverse input control module;
  • the temperature single input parameter of the injection mold temperature control device includes the temperature Single input time lag ⁇ , temperature single input gain K and temperature single input time constant ⁇ ;
  • Step S2 establishing a temperature transfer function model of the injection mold temperature control device, wherein:
  • s is the Laplace transform operator
  • y(s) is the output of the injection mold temperature control device in the temperature transfer function model
  • u h (s) is the temperature positive input control module in the temperature transfer function model Positive input quantity
  • u c (s) is the inverse input quantity of the temperature inverse input control module in the temperature transfer function model
  • u(s) is the temperature single input quantity of the injection mold temperature control device in the temperature transfer function model
  • the temperature transfer function model is discretized into a z function model, which is:
  • z is a z-transform operator
  • y(t) is the output of the injection mold temperature control device at the current t time;
  • u h (td h ) is the positive temperature input of the temperature positive input control module at time td h ;
  • u c (td c ) is At time td c , the temperature is inversely input to the temperature input input of the control module;
  • u(td) is the total temperature input of the temperature control device of the injection mold at time td;
  • U(t) is obtained by using GPC algorithm; wherein u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
  • u(t+d h -d c ) is the total temperature input of the temperature control equipment of the injection mold at t+d h -d c ;
  • u h (t-1) is the positive input control at time t-1 The positive temperature input of the module;
  • u c (t+d h -d c -1) is the temperature inverse input of the temperature reverse input control module at t+d h -d c -1;
  • u h (td h +d c ) is the temperature positive input of the control module at the time td h +d c ;
  • u c (t-1) is the temperature of the temperature reverse input control module at time t-1 Inverse input
  • u(t+d c -d h ) is the total temperature input of the temperature control equipment of the injection mold at t+d c -d h ;
  • u c (t-1) is the temperature anti-input control at time t-1 The temperature inverse input quantity of the module;
  • u h (t+d c -d d -1) is the temperature positive input value of the positive input control module at time t+d c -d d -1;
  • u c (td c +d h ) is the temperature inverse input of the temperature inverse input control module at td c +d h ;
  • u h (t-1) is the temperature of the positive input control module at time t-1 Positive input
  • Step S3 At the current time t, the temperature positive input control module inputs the temperature positive input amount according to the temperature expected positive input quantity u h (t), and the temperature inverse input control module inputs the temperature inverse input according to the temperature expected reverse input quantity u c (t) the amount.
  • the process of obtaining u(t) by using the GPC algorithm includes the following steps:
  • Step S21 the acquired free response f, control matrix ⁇ , prediction steps N, control step N u, and the predicted output step response coefficients w
  • Step S22 calculating u(t) by the following formula
  • the invention also proposes an injection mold temperature control device, which adopts the injection mold temperature control method as described above to adjust the mold temperature, and further comprises a Linux control system; the Linux control system is used for obtaining the actual temperature positive input amount and the actual temperature reverse input. the amount.
  • the above-mentioned injection mold temperature control device of the present invention further comprises a capture card connected to the Linux control system, and the Linux control system is further configured to store the obtained actual temperature positive input amount and the actual temperature reverse input amount in the acquisition card; the injection mold
  • the temperature control device also includes a temperature sensor for monitoring the temperature of the injection mold in real time to obtain the actual total temperature input and to send the actual total temperature input to the Linux control system.
  • the temperature positive input control module includes a mold temperature machine heating unit for increasing the mold temperature; and the temperature reverse input control module includes a mold temperature machine cooling unit for reducing the mold temperature.
  • the injection mold temperature control method of the present invention was compared with the conventional double SISO GPC algorithm:
  • the invention provides a method and a device for controlling the temperature of an injection mold for predictive control of positive and negative input.
  • the algorithm stops the temperature output of the cooling unit of the mold temperature during the heating process of the mold, and heats the mold temperature during the cooling process of the mold.
  • the unit stops the temperature output, which reduces energy consumption and stabilizes temperature control results while reducing costs.
  • FIG. 1 is a schematic view of an injection mold temperature control apparatus of the present invention
  • FIG. 2 is a schematic diagram of an injection mold temperature control apparatus of the present invention
  • FIG. 3 is a diagram showing the results of energy consumption control of the injection mold temperature control method of the present invention.
  • Figure 4 is a graph of energy consumption control results based on a conventional dual SISO GPC algorithm
  • Fig. 5 is a graph showing the results of temperature control using the injection mold temperature control method of the present invention.
  • the invention provides an injection mold temperature control method for adjusting a mold temperature by using an injection mold temperature control device, and the injection mold temperature control device comprises a temperature positive input control module for inputting a positive temperature input quantity to increase the mold temperature, and a temperature inverse input control module for inputting a temperature inverse input amount to reduce a mold temperature;
  • Fig. 1 shows a schematic view of an injection mold temperature control apparatus of the present invention.
  • the injection mold temperature control device also includes a Linux control system for obtaining the actual temperature positive input amount and the actual temperature reverse input amount.
  • the temperature positive input control module includes a mold temperature heating unit for increasing the mold temperature; and the temperature reverse input control module includes a mold temperature cooling unit for reducing the mold temperature.
  • the injection mold temperature control device further includes a capture card connected to the Linux control system, and the Linux control system is further configured to store the obtained actual temperature positive input amount and the actual temperature reverse input amount in the capture card; the capture card adopts DO, The ADC and other methods perform data acquisition.
  • the Linux control system acquires digital signals and analog signals of the mold temperature heating unit and the mold temperature cooling unit through its analog signal system processing and digital signal system processing, and stores the data in the collection.
  • the injection mold temperature control equipment also includes a temperature sensor for real-time monitoring of the injection mold temperature to obtain the actual total temperature input, and to send the actual total temperature input to the Linux control system.
  • the injection mold temperature control method includes the following steps:
  • Step S1 acquiring a temperature positive input parameter of the temperature positive input control module, a temperature inverse input parameter of the temperature inverse input control module, and a temperature single input parameter of the injection mold temperature control device; and acquiring the temperature at the current t time every sampling time ⁇ t Positive input positive input of the control module, actual temperature reverse input of the temperature reverse input control module, and actual temperature total input of the injection mold temperature control device;
  • the temperature positive input parameters include the positive input time lag ⁇ h of the temperature positive input control module, the positive input gain K h of the temperature positive input control module, the positive input time constant ⁇ h of the temperature positive input control module;
  • the temperature inverse input parameters include The inverse input time lag ⁇ c of the temperature inverse input control module, the inverse input gain K c of the temperature inverse input control module, and the inverse input time constant ⁇ c of the temperature inverse input control module;
  • the temperature single input parameter of the injection mold temperature control device includes the temperature Single input time lag ⁇ , temperature single input gain K and temperature single input time constant ⁇ ;
  • Step S2 establishing a temperature transfer function model of the injection mold temperature control device, wherein:
  • s is the Laplace transform operator
  • y(s) is the output of the injection mold temperature control device in the temperature transfer function model
  • u h (s) is the temperature positive input control module in the temperature transfer function model Positive input quantity
  • u c (s) is the inverse input quantity of the temperature inverse input control module in the temperature transfer function model
  • u(s) is the temperature single input quantity of the injection mold temperature control device in the temperature transfer function model
  • the temperature transfer function model is discretized into a z function model, which is:
  • z is a z-transform operator
  • y(t) is the output of the injection mold temperature control device at the current t time;
  • u h (td h ) is the positive temperature input of the temperature positive input control module at time td h ;
  • u c (td c ) is At time td c , the temperature is inversely input to the temperature input input of the control module;
  • u(td) is the total temperature input of the temperature control device of the injection mold at time td;
  • the process of calculating u h (t) and u c (t) uses the generalized predictive control algorithm (GPC) and the law of conservation of energy; specifically, the sum of the temperature outputs produced by the positive temperature input and the temperature inverse input. Equal to the temperature output produced by the temperature single input of the simulation process.
  • G h represents a transfer function between the temperature positive input amount u h and the total temperature output y
  • G c represents a transfer function between the temperature negative input amount u c and the total temperature output y.
  • the present application uses a generalized predictive control (GPC) algorithm to obtain u(t); wherein u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
  • GPS generalized predictive control
  • f stands for freedom response
  • control of the [lambda] is the matrix
  • N is the prediction steps
  • N U is the control step size
  • w is the predicted output
  • the value of the variable on the right side of the equation (7) is known.
  • the right side of the expression (7) can be represented as a constant C, so that:
  • Trs_a ⁇ u(t) trs_bh ⁇ u h (td h +d c )+trs_bc ⁇ u c (t)
  • Trs_a ⁇ u(t+1) trs_bh ⁇ u h (td h +d c +1)+trs_bc ⁇ u c (t+1)
  • Trs_a ⁇ u(t+d h -d c ) trs_bh ⁇ u h (t)+trs_bc ⁇ u c (t+d h -d c )
  • u(t) is the total temperature input of the temperature control equipment of the injection mold at the current time t;
  • u h (td h +d c ) is the temperature of the positive input control module at the time td h +d c Positive input quantity;
  • u c (t-1) is the temperature inverse input quantity of the temperature inverse input control module at time t-1;
  • u(t+d h -d c ) is the total temperature input of the temperature control device of the injection mold at t+d h -d c ;
  • u h (t-1) is at t At time -1, the temperature is positively input to the temperature positive input of the control module;
  • u c (t+d h -d c -1) is the temperature inverse input of the temperature inverse input control module at t+d h -d c -1 the amount;
  • u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
  • u c (td c +d h ) is the temperature inverse input of the temperature inverse input control module at time td c +d h ;
  • u h (t-1) is the temperature positive input of the control module at time t-1;
  • u(t+d c -d h ) is the total temperature input of the temperature control equipment of the injection mold at t+d c -d h ;
  • u c (t-1) is the temperature anti-input control at time t-1 The temperature inverse input quantity of the module;
  • u h (t+d c -d d -1) is the temperature positive input value of the positive input control module at time t+d c -d d -1;
  • Step S3 At the current time t, the temperature positive input control module inputs the temperature positive input amount according to the temperature expected positive input quantity u h (t), and the temperature inverse input control module inputs the temperature inverse input according to the temperature expected reverse input quantity u c (t) the amount.
  • the injection mold temperature control method of the present invention was compared with the conventional double SISO GPC algorithm:
  • FIG. 3 is a graph showing energy consumption control results of the injection mold temperature control method of the present invention.
  • FIG. 4 is a graph showing energy consumption control results based on the conventional double SISO GPC algorithm.
  • both control methods can track the set value and suppress interference. Comparing FIG. 3 and FIG. 4, it can be found that in the injection mold temperature control method of the present invention, when the mold is raised At a warm temperature, the cooling rate is 0, and when the mold is cooled, the heating rate is zero.
  • the injection mold temperature control method of the present invention is particularly prominent in energy saving. According to the Applicant's calculation, the energy efficiency consumption is reduced by at least 90% by using the injection mold temperature control method of the present invention.
  • the quality of the mold temperature directly affects the quality of the injection molded product.
  • an inverse step is given to 50 °C.
  • the control method using the present invention can be derived from the control result, not only the heating and cooling are not performed at the same time, but also the control result is good.
  • the invention integrates the control system of the original mold temperature machine into the control system of the injection molding machine, and only uses the mold temperature heating unit and the mold temperature machine cooling unit to accurately control the temperature of the injection mold, thereby reducing the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

An injection mold temperature control method and device based on positive and negative input predictive control. In the injection mold temperature control method, by means of an algorithm, a cooling unit of a mold temperature controller stops a temperature output during the temperature rise process of a mold; and a heating unit of the mold temperature controller stops a temperature output during the cooling process of the mold; accordingly, energy consumption is reduced, the temperature control result is stable, and costs are also reduced.

Description

一种正反输入预测控制的注塑模具温度控制方法及设备Injection mould temperature control method and device for positive and negative input predictive control 技术领域Technical field
本发明涉及注塑模具温度控制设备,尤其涉及一种正反输入预测控制的注塑模具温度控制方法及设备。The invention relates to an injection mold temperature control device, in particular to an injection mold temperature control method and device for positive and negative input predictive control.
背景技术Background technique
在注塑产品的成型过程中,主要通过模温机来控制模具温度,从而控制注塑产品的成型过程。模温机的主要作用是:1、提高产品的成型效率;2、降低产品不良率;3、改善产品的外观,减少产品缺陷;4、加快生产进度,降低能耗,节约能源。控制模具温度的要求有:使模具温度达到工作温度,并保持模具温度恒定在工作温度,从而优化注塑成型周期,保证注塑成型过程的稳定和注塑产品的质量。模具温度会影响产品表面质量、熔体流动性、坯体收缩率、以及产品注塑周期和产品变形等方面。对热塑性塑料而言,模具温度高一点通常会改善塑料熔体流动性和产品表面质量,但会延长冷却时间和注塑周期。模具温度低一点会降低塑料在模具内的收缩,并会增加脱模后注塑件的收缩率。目前模温机的温度控制不精确,有一些注塑模具模温机的温度控制系统还考虑到采用冷却系统的控制,但是控制结果不理想,加温和冷却会不断切换,浪费能源。In the molding process of injection molding products, the mold temperature is controlled mainly by a mold temperature machine, thereby controlling the molding process of the injection molding product. The main functions of the mold temperature machine are: 1. Improve the molding efficiency of the product; 2. Reduce the product defect rate; 3. Improve the appearance of the product and reduce product defects; 4. Accelerate the production schedule, reduce energy consumption and save energy. The requirements for controlling the mold temperature are: making the mold temperature reach the working temperature and keeping the mold temperature constant at the working temperature, thereby optimizing the injection molding cycle, ensuring the stability of the injection molding process and the quality of the injection molded product. Mold temperature affects product surface quality, melt flow, body shrinkage, and product injection cycle and product deformation. For thermoplastics, higher mold temperatures generally improve plastic melt flow and product surface quality, but extend cooling time and injection cycle times. Lower mold temperatures reduce the shrinkage of the plastic in the mold and increase the shrinkage of the molded part after demolding. At present, the temperature control of the mold temperature machine is not accurate. Some temperature control systems of the injection mold temperature machine also take into account the control of the cooling system, but the control results are not ideal, heating and cooling will continue to switch, wasting energy.
正反输入系统广泛存在于工业控制中,是指在一个控制系统中,有两个相悖的输入信号,正输入信号使输出产生正效应,负输入信号使输出产生负效应。目前,在大部分控制系统中,局限于将正输入变量和负输入变量分开考虑,而即使将正输入变量和负输入变量放一起整体考虑,也没有考虑到不同的输入变量的特性。针对正反输入变量的控制系统主要有两类:其一类具有两个控制器,分别用来控制正输入变量和负输入变量,典型的有双PID控制器。对于双PID控制器,在一定的条件下,能获取较好的控制效果。但是,在这种控制系统中, 两个PID控制器会同时启动,从而浪费能源。另一类是分程控制系统,比如PID型分程控制系统。在该控制系统中,正输入变量和负输入变量被归纳为一个操纵变量,然后通过一种PID控制器来控制,根据输出结果处于哪个区间来分配控制正输入变量还是反输入变量。对于PID型分程控制系统,由于每个时刻只有一个输入,能节约能源,但由于没有考虑到正输入变量和负输入变量对输出结果的响应特性是不一样的,特别是在操纵变量在零附近切换的时候,控制效果会恶化,造成控制精度不高;而低精度控制效果是会损害到产品的质量。Positive and negative input systems are widely used in industrial control. In a control system, there are two opposite input signals. The positive input signal causes the output to produce a positive effect, and the negative input signal causes the output to have a negative effect. At present, in most control systems, it is limited to consider the positive input variable and the negative input variable separately, and even if the positive input variable and the negative input variable are put together as a whole, the characteristics of different input variables are not considered. There are two main types of control systems for positive and negative input variables: one has two controllers that control the positive input variable and the negative input variable, respectively, typically with a dual PID controller. For the dual PID controller, under certain conditions, better control results can be obtained. However, in this control system, Both PID controllers start up at the same time, wasting energy. The other type is a split-range control system, such as a PID-type split-range control system. In the control system, the positive input variable and the negative input variable are grouped into one manipulated variable, and then controlled by a PID controller to assign a control positive input variable or a reverse input variable according to which interval the output result is in. For the PID type split control system, since there is only one input at each moment, energy can be saved, but since the positive input variable and the negative input variable are not considered, the response characteristics of the output result are different, especially when the manipulated variable is at zero. When switching nearby, the control effect will deteriorate, resulting in low control accuracy; and the low-precision control effect will damage the quality of the product.
发明内容Summary of the invention
本发明针对现有正反输入预测控制的注塑模具温度控制设备方法在控制模具温度时,存在浪费能源,控制精度不高等问题,提出了一种正反输入预测控制的注塑模具温度控制方法及设备。The invention aims at the problem that the injection molding die temperature control device method of the existing positive and negative input predictive control has waste energy and low control precision when controlling the mold temperature, and proposes a positive and negative input predictive control injection mold temperature control method and device. .
本发明就上述技术目的而提出的技术方案如下:The technical solution proposed by the present invention for the above technical purpose is as follows:
本发明提出了一种注塑模具温度控制方法,用于采用注塑模具温度控制设备调整模具温度,该注塑模具温度控制设备包括用于输入温度正输入量来提高模具温度的温度正输入控制模块和用于输入温度反输入量来降低模具温度的温度反输入控制模块;包括以下步骤:The invention provides an injection mold temperature control method for adjusting a mold temperature by using an injection mold temperature control device, and the injection mold temperature control device comprises a temperature positive input control module for inputting a positive temperature input quantity to increase the mold temperature, and A temperature inverse input control module that inputs a temperature inverse input amount to reduce the mold temperature; and includes the following steps:
步骤S1、获取温度正输入控制模块的温度正输入参数、温度反输入控制模块的温度反输入参数、注塑模具温度控制设备的温度单输入参数;并且,每隔采样时间Δt获取当前t时刻的温度正输入控制模块的实际温度正输入量、温度反输入控制模块的实际温度反输入量以及注塑模具温度控制设备的实际温度总输入量;Step S1: acquiring a temperature positive input parameter of the temperature positive input control module, a temperature inverse input parameter of the temperature inverse input control module, and a temperature single input parameter of the injection mold temperature control device; and acquiring the temperature at the current t time every sampling time Δt Positive input positive input of the control module, actual temperature reverse input of the temperature reverse input control module, and actual temperature total input of the injection mold temperature control device;
这里,温度正输入参数包括温度正输入控制模块的正输入时滞θh、温度正输入控制模块的正输入增益Kh、温度正输入控制模块的正输入时间常数τh;温度反输入参数包括温度反输入控制模块的反输入时滞θc、温度反输入控制模块的反输入增益Kc和温度反输入控制模块的反输入时间常数τc;注塑模具温度控制设备的温度单输入参数包括温度单输入时滞θ、温度单输入增益K和温 度单输入时间常数τ;Here, the temperature positive input parameters include the positive input time lag θ h of the temperature positive input control module, the positive input gain K h of the temperature positive input control module, the positive input time constant τ h of the temperature positive input control module; the temperature inverse input parameters include The inverse input time lag θ c of the temperature inverse input control module, the inverse input gain K c of the temperature inverse input control module, and the inverse input time constant τ c of the temperature inverse input control module; the temperature single input parameter of the injection mold temperature control device includes the temperature Single input time lag θ, temperature single input gain K and temperature single input time constant τ;
步骤S2、建立注塑模具温度控制设备的温度传递函数模型,有:Step S2: establishing a temperature transfer function model of the injection mold temperature control device, wherein:
Figure PCTCN2017075473-appb-000001
Figure PCTCN2017075473-appb-000001
Figure PCTCN2017075473-appb-000002
Figure PCTCN2017075473-appb-000002
Figure PCTCN2017075473-appb-000003
Figure PCTCN2017075473-appb-000003
s为拉普拉斯变换算子;y(s)为在温度传递函数模型中,注塑模具温度控制设备的输出量;uh(s)为在温度传递函数模型中,温度正输入控制模块的正输入量;uc(s)为在温度传递函数模型中,温度反输入控制模块的反输入量;u(s)为在温度传递函数模型中,注塑模具温度控制设备的温度单输入量;s is the Laplace transform operator; y(s) is the output of the injection mold temperature control device in the temperature transfer function model; u h (s) is the temperature positive input control module in the temperature transfer function model Positive input quantity; u c (s) is the inverse input quantity of the temperature inverse input control module in the temperature transfer function model; u(s) is the temperature single input quantity of the injection mold temperature control device in the temperature transfer function model;
将温度传递函数模型离散化为z函数模型,该z函数模型为:The temperature transfer function model is discretized into a z function model, which is:
Figure PCTCN2017075473-appb-000004
Figure PCTCN2017075473-appb-000004
Figure PCTCN2017075473-appb-000005
Figure PCTCN2017075473-appb-000005
其中,
Figure PCTCN2017075473-appb-000006
among them,
Figure PCTCN2017075473-appb-000006
Figure PCTCN2017075473-appb-000007
z为z变换算子;
Figure PCTCN2017075473-appb-000007
z is a z-transform operator;
Figure PCTCN2017075473-appb-000008
Figure PCTCN2017075473-appb-000008
y(t)为在当前t时刻,注塑模具温度控制设备的输出量;uh(t-dh)为在t-dh时刻,温度正输入控制模块的温度正输入量;uc(t-dc)为在t-dc时刻,温度反输入控制模块的温度反输入量;u(t-d)为在t-d时刻,注塑模具温度控制设备的温度总输入量;y(t) is the output of the injection mold temperature control device at the current t time; u h (td h ) is the positive temperature input of the temperature positive input control module at time td h ; u c (td c ) is At time td c , the temperature is inversely input to the temperature input input of the control module; u(td) is the total temperature input of the temperature control device of the injection mold at time td;
利用GPC算法求取u(t);其中,u(t)为当前t时刻,注塑模具温度控制设备的温度总输入量;U(t) is obtained by using GPC algorithm; wherein u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
在令温度预期正输入量uh(t)=0或温度预期反输入量uc(t)=0的情况下,根 据z函数模型计算得到温度预期正输入量uh(t)和温度预期反输入量uc(t);其中,Under the condition that the temperature expected positive input u h (t)=0 or the temperature expected back input u c (t)=0, the temperature expected positive input u h (t) and the temperature expectation are calculated according to the z-function model. Inverse input u c (t); where
当dh=dc=d时,When d h =d c =d,
Figure PCTCN2017075473-appb-000009
Figure PCTCN2017075473-appb-000009
C=b0(1+ah1z-1)(1+ac1z-1)u(t)C=b 0 (1+a h1 z -1 )(1+a c1 z -1 )u(t)
-bh0(a1z-1+ac1z-1+a1ac1z-2)uh(t);-b h0 (a 1 z -1 +a c1 z -1 +a 1 a c1 z -2 )u h (t);
-bc0(a1z-1+ah1z-1+a1ah1z-2)uc(t)-b c0 (a 1 z -1 +a h1 z -1 +a 1 a h1 z -2 )u c (t)
Figure PCTCN2017075473-appb-000010
时,
when
Figure PCTCN2017075473-appb-000010
Time,
Figure PCTCN2017075473-appb-000011
Figure PCTCN2017075473-appb-000011
Figure PCTCN2017075473-appb-000012
Figure PCTCN2017075473-appb-000012
其中,among them,
b0(1+ah1z-1)(1+ac1z-1)=trs_a;b 0 (1+a h1 z -1 )(1+a c1 z -1 )=trs_a;
bh0(1+a1z-1)(1+ac1z-1)=trs_bh;b h0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh;
C1=b0(1+ah1z-1)(1+ac1z-1)u(t+dh-dc)C 1 =b 0 (1+a h1 z -1 )(1+a c1 z -1 )u(t+d h -d c )
-bh0(a1+ac1+a1ac1z-1)uh(t-1);-b h0 (a 1 + a c1 + a 1 a c1 z -1 )u h (t-1);
-bc0(a1+ah1+a1ah1z-1)uc(t+dh-dc-1)-b c0 (a 1 +a h1 +a 1 a h1 z -1 )u c (t+d h -d c -1)
u(t+dh-dc)为在t+dh-dc时刻,注塑模具温度控制设备的温度总输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;uc(t+dh-dc-1)为在t+dh-dc-1时刻,温度反输入控制模块的温度反输入量;u(t+d h -d c ) is the total temperature input of the temperature control equipment of the injection mold at t+d h -d c ; u h (t-1) is the positive input control at time t-1 The positive temperature input of the module; u c (t+d h -d c -1) is the temperature inverse input of the temperature reverse input control module at t+d h -d c -1;
uh(t-dh+dc)为在t-dh+dc时刻,温度正输入控制模块的温度正输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;u h (td h +d c ) is the temperature positive input of the control module at the time td h +d c ; u c (t-1) is the temperature of the temperature reverse input control module at time t-1 Inverse input
Figure PCTCN2017075473-appb-000013
时,
when
Figure PCTCN2017075473-appb-000013
Time,
Figure PCTCN2017075473-appb-000014
Figure PCTCN2017075473-appb-000014
Figure PCTCN2017075473-appb-000015
Figure PCTCN2017075473-appb-000015
其中,among them,
b0(1+ac1z-1)(1+ah1z-1)=trs_ab 0 (1+a c1 z -1 )(1+a h1 z -1 )=trs_a
bc0(1+a1z-1)(1+ac1z-1)=trs_bhb c0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh
C2=b0(1+ac1z-1)(1+ah1z-1)×u(t+dc-dh)-bc0(a1+ah1+a1ah1z-1)×uc(t-1)-bh0(a1+ac1+a1ac1z-1)×uh(t+dc-dh-1);C 2 =b 0 (1+a c1 z -1 )(1+a h1 z -1 )×u(t+d c -d h )-b c0 (a 1 +a h1 +a 1 a h1 z - 1 ) × u c (t-1) - b h0 (a 1 + a c1 + a 1 a c1 z -1 ) × u h (t + d c - d h -1);
u(t+dc-dh)为在t+dc-dh时刻,注塑模具温度控制设备的温度总输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;uh(t+dc-dd-1)为在t+dc-dd-1时刻,温度正输入控制模块的温度正输入量;u(t+d c -d h ) is the total temperature input of the temperature control equipment of the injection mold at t+d c -d h ; u c (t-1) is the temperature anti-input control at time t-1 The temperature inverse input quantity of the module; u h (t+d c -d d -1) is the temperature positive input value of the positive input control module at time t+d c -d d -1;
uc(t-dc+dh)为在t-dc+dh时刻,温度反输入控制模块的温度反输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;u c (td c +d h ) is the temperature inverse input of the temperature inverse input control module at td c +d h ; u h (t-1) is the temperature of the positive input control module at time t-1 Positive input
步骤S3、在当前t时刻,温度正输入控制模块根据温度预期正输入量uh(t)输入温度正输入量,温度反输入控制模块根据温度预期反输入量uc(t)输入温度反输入量。Step S3: At the current time t, the temperature positive input control module inputs the temperature positive input amount according to the temperature expected positive input quantity u h (t), and the temperature inverse input control module inputs the temperature inverse input according to the temperature expected reverse input quantity u c (t) the amount.
本发明上述的注塑模具温度控制方法中,利用GPC算法求取u(t)的过程包括以下步骤:In the above injection mold temperature control method of the present invention, the process of obtaining u(t) by using the GPC algorithm includes the following steps:
步骤S21、获取自由响应f、控制权矩阵λ、预测步长N、控制步长Nu、预测输出w以及阶跃响应系数
Figure PCTCN2017075473-appb-000016
Step S21, the acquired free response f, control matrix λ, prediction steps N, control step N u, and the predicted output step response coefficients w
Figure PCTCN2017075473-appb-000016
步骤S22、通过以下公式计算得到u(t); Step S22, calculating u(t) by the following formula;
ΔU=(GTG+λI)-1G(w-f)ΔU=(G T G+λI) -1 G(wf)
Figure PCTCN2017075473-appb-000017
Figure PCTCN2017075473-appb-000017
Figure PCTCN2017075473-appb-000018
Figure PCTCN2017075473-appb-000018
本发明还提出了一种注塑模具温度控制设备,采用如上所述的注塑模具温度控制方法调整模具温度,还包括Linux控制系统;该Linux控制系统用于获取实际温度正输入量和实际温度反输入量。The invention also proposes an injection mold temperature control device, which adopts the injection mold temperature control method as described above to adjust the mold temperature, and further comprises a Linux control system; the Linux control system is used for obtaining the actual temperature positive input amount and the actual temperature reverse input. the amount.
本发明上述的注塑模具温度控制设备中,还包括与Linux控制系统连接的采集卡,Linux控制系统还用于将获取的实际温度正输入量和实际温度反输入量存储在采集卡中;注塑模具温度控制设备还包括用于实时监测注塑模具温度以获取实际温度总输入量,并将实际温度总输入量发送给Linux控制系统的温度传感器。The above-mentioned injection mold temperature control device of the present invention further comprises a capture card connected to the Linux control system, and the Linux control system is further configured to store the obtained actual temperature positive input amount and the actual temperature reverse input amount in the acquisition card; the injection mold The temperature control device also includes a temperature sensor for monitoring the temperature of the injection mold in real time to obtain the actual total temperature input and to send the actual total temperature input to the Linux control system.
本发明上述的注塑模具温度控制设备中,温度正输入控制模块包括用于提高模具温度的模温机加热单元;温度反输入控制模块包括用于降低模具温度的模温机冷却单元。In the above injection mold temperature control apparatus of the present invention, the temperature positive input control module includes a mold temperature machine heating unit for increasing the mold temperature; and the temperature reverse input control module includes a mold temperature machine cooling unit for reducing the mold temperature.
为了检验本发明的注塑模具温度控制方法的有效性,将本发明的注塑模具温度控制方法与传统的双SISO GPC算法做了仿真比较:In order to verify the effectiveness of the injection mold temperature control method of the present invention, the injection mold temperature control method of the present invention was compared with the conventional double SISO GPC algorithm:
本发明提出了一种正反输入预测控制的注塑模具温度控制方法及设备,通过算法在模具升温过程中,使模温机冷却单元停止温度输出;并在模具冷却过程中,使模温机加热单元停止温度输出,从而减少了能耗,并使温度控制结果稳定,同时也降低了成本。The invention provides a method and a device for controlling the temperature of an injection mold for predictive control of positive and negative input. The algorithm stops the temperature output of the cooling unit of the mold temperature during the heating process of the mold, and heats the mold temperature during the cooling process of the mold. The unit stops the temperature output, which reduces energy consumption and stabilizes temperature control results while reducing costs.
附图说明DRAWINGS
下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图1为本发明的一种注塑模具温度控制设备的示意图; 1 is a schematic view of an injection mold temperature control apparatus of the present invention;
图2为本发明的注塑模具温度控制设备的原理图;2 is a schematic diagram of an injection mold temperature control apparatus of the present invention;
图3为本发明的注塑模具温度控制方法的能耗控制结果图;3 is a diagram showing the results of energy consumption control of the injection mold temperature control method of the present invention;
图4为基于传统的双SISO GPC算法的能耗控制结果图;Figure 4 is a graph of energy consumption control results based on a conventional dual SISO GPC algorithm;
图5为采用本发明的注塑模具温度控制方法的温度控制结果图。Fig. 5 is a graph showing the results of temperature control using the injection mold temperature control method of the present invention.
具体实施方式detailed description
本发明提出了一种注塑模具温度控制方法,用于采用注塑模具温度控制设备调整模具温度,该注塑模具温度控制设备包括用于输入温度正输入量来提高模具温度的温度正输入控制模块和用于输入温度反输入量来降低模具温度的温度反输入控制模块;The invention provides an injection mold temperature control method for adjusting a mold temperature by using an injection mold temperature control device, and the injection mold temperature control device comprises a temperature positive input control module for inputting a positive temperature input quantity to increase the mold temperature, and a temperature inverse input control module for inputting a temperature inverse input amount to reduce a mold temperature;
如图1所示,图1示出了本发明的一种注塑模具温度控制设备的示意图。As shown in Fig. 1, Fig. 1 shows a schematic view of an injection mold temperature control apparatus of the present invention.
注塑模具温度控制设备还包括Linux控制系统;该Linux控制系统用于获取实际温度正输入量和实际温度反输入量。这里,温度正输入控制模块包括用于提高模具温度的模温机加热单元;温度反输入控制模块包括用于降低模具温度的模温机冷却单元。The injection mold temperature control device also includes a Linux control system for obtaining the actual temperature positive input amount and the actual temperature reverse input amount. Here, the temperature positive input control module includes a mold temperature heating unit for increasing the mold temperature; and the temperature reverse input control module includes a mold temperature cooling unit for reducing the mold temperature.
进一步地,注塑模具温度控制设备还包括与Linux控制系统连接的采集卡,Linux控制系统还用于将获取的实际温度正输入量和实际温度反输入量存储在采集卡中;采集卡采用DO、ADC等方式进行数据采集,一般地,Linux控制系统通过其模拟信号系统处理和数字信号系统处理获取模温机加热单元和模温机冷却单元的数字信号和模拟信号,并将这些数据存储于采集卡中。同时,注塑模具温度控制设备还包括用于实时监测注塑模具温度以获取实际温度总输入量,并将实际温度总输入量发送给Linux控制系统的温度传感器。Further, the injection mold temperature control device further includes a capture card connected to the Linux control system, and the Linux control system is further configured to store the obtained actual temperature positive input amount and the actual temperature reverse input amount in the capture card; the capture card adopts DO, The ADC and other methods perform data acquisition. Generally, the Linux control system acquires digital signals and analog signals of the mold temperature heating unit and the mold temperature cooling unit through its analog signal system processing and digital signal system processing, and stores the data in the collection. In the card. At the same time, the injection mold temperature control equipment also includes a temperature sensor for real-time monitoring of the injection mold temperature to obtain the actual total temperature input, and to send the actual total temperature input to the Linux control system.
具体地,注塑模具温度控制方法包括以下步骤:Specifically, the injection mold temperature control method includes the following steps:
步骤S1、获取温度正输入控制模块的温度正输入参数、温度反输入控制模块的温度反输入参数、注塑模具温度控制设备的温度单输入参数;并且,每隔采样时间Δt获取当前t时刻的温度正输入控制模块的实际温度正输入量、温度反输入控制模块的实际温度反输入量以及注塑模具温度控制设备的实际温度总输入量; Step S1: acquiring a temperature positive input parameter of the temperature positive input control module, a temperature inverse input parameter of the temperature inverse input control module, and a temperature single input parameter of the injection mold temperature control device; and acquiring the temperature at the current t time every sampling time Δt Positive input positive input of the control module, actual temperature reverse input of the temperature reverse input control module, and actual temperature total input of the injection mold temperature control device;
这里,温度正输入参数包括温度正输入控制模块的正输入时滞θh、温度正输入控制模块的正输入增益Kh、温度正输入控制模块的正输入时间常数τh;温度反输入参数包括温度反输入控制模块的反输入时滞θc、温度反输入控制模块的反输入增益Kc和温度反输入控制模块的反输入时间常数τc;注塑模具温度控制设备的温度单输入参数包括温度单输入时滞θ、温度单输入增益K和温度单输入时间常数τ;Here, the temperature positive input parameters include the positive input time lag θ h of the temperature positive input control module, the positive input gain K h of the temperature positive input control module, the positive input time constant τ h of the temperature positive input control module; the temperature inverse input parameters include The inverse input time lag θ c of the temperature inverse input control module, the inverse input gain K c of the temperature inverse input control module, and the inverse input time constant τ c of the temperature inverse input control module; the temperature single input parameter of the injection mold temperature control device includes the temperature Single input time lag θ, temperature single input gain K and temperature single input time constant τ;
步骤S2、建立注塑模具温度控制设备的温度传递函数模型,有:Step S2: establishing a temperature transfer function model of the injection mold temperature control device, wherein:
Figure PCTCN2017075473-appb-000019
Figure PCTCN2017075473-appb-000019
Figure PCTCN2017075473-appb-000020
Figure PCTCN2017075473-appb-000020
Figure PCTCN2017075473-appb-000021
Figure PCTCN2017075473-appb-000021
s为拉普拉斯变换算子;y(s)为在温度传递函数模型中,注塑模具温度控制设备的输出量;uh(s)为在温度传递函数模型中,温度正输入控制模块的正输入量;uc(s)为在温度传递函数模型中,温度反输入控制模块的反输入量;u(s)为在温度传递函数模型中,注塑模具温度控制设备的温度单输入量;s is the Laplace transform operator; y(s) is the output of the injection mold temperature control device in the temperature transfer function model; u h (s) is the temperature positive input control module in the temperature transfer function model Positive input quantity; u c (s) is the inverse input quantity of the temperature inverse input control module in the temperature transfer function model; u(s) is the temperature single input quantity of the injection mold temperature control device in the temperature transfer function model;
将温度传递函数模型离散化为z函数模型,该z函数模型为:The temperature transfer function model is discretized into a z function model, which is:
Figure PCTCN2017075473-appb-000022
Figure PCTCN2017075473-appb-000022
Figure PCTCN2017075473-appb-000023
Figure PCTCN2017075473-appb-000023
其中,
Figure PCTCN2017075473-appb-000024
among them,
Figure PCTCN2017075473-appb-000024
Figure PCTCN2017075473-appb-000025
z为z变换算子;
Figure PCTCN2017075473-appb-000025
z is a z-transform operator;
Figure PCTCN2017075473-appb-000026
Figure PCTCN2017075473-appb-000026
y(t)为在当前t时刻,注塑模具温度控制设备的输出量;uh(t-dh)为在t-dh时刻,温度正输入控制模块的温度正输入量;uc(t-dc)为在t-dc时刻,温度反 输入控制模块的温度反输入量;u(t-d)为在t-d时刻,注塑模具温度控制设备的温度总输入量;y(t) is the output of the injection mold temperature control device at the current t time; u h (td h ) is the positive temperature input of the temperature positive input control module at time td h ; u c (td c ) is At time td c , the temperature is inversely input to the temperature input input of the control module; u(td) is the total temperature input of the temperature control device of the injection mold at time td;
在令温度预期正输入量uh(t)=0或温度预期反输入量uc(t)=0的情况下,根据z函数模型计算得到温度预期正输入量uh(t)和温度预期反输入量uc(t);In the case where the temperature expected positive input u h (t) = 0 or the temperature expected inverse input u c (t) = 0, the temperature expected positive input u h (t) and the temperature expectation are calculated according to the z-function model. Inverse input u c (t);
该计算uh(t)和uc(t)的过程采用了广义预测控制算法(GPC)和能量守恒定律;具体来说,由温度正输入量和温度反输入量产生的温度输出量之和等于由模拟过程的温度单输入量产生的温度输出量。如图2所示,Gh代表温度正输入量uh和温度总输出量y之间的传递函数;Gc代表温度负输入量uc和温度总输出量y之间的传递函数。The process of calculating u h (t) and u c (t) uses the generalized predictive control algorithm (GPC) and the law of conservation of energy; specifically, the sum of the temperature outputs produced by the positive temperature input and the temperature inverse input. Equal to the temperature output produced by the temperature single input of the simulation process. As shown in Fig. 2, G h represents a transfer function between the temperature positive input amount u h and the total temperature output y; G c represents a transfer function between the temperature negative input amount u c and the total temperature output y.
这样,由式子(3)和式子(4)可以得到:Thus, from equation (3) and equation (4), we can get:
Figure PCTCN2017075473-appb-000027
Figure PCTCN2017075473-appb-000027
同时,本申请采用广义预测控制(GPC)算法求取u(t);其中,u(t)为当前t时刻,注塑模具温度控制设备的温度总输入量;Meanwhile, the present application uses a generalized predictive control (GPC) algorithm to obtain u(t); wherein u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
ΔU=(GTG+λI)-1G(w-f)ΔU=(G T G+λI) -1 G(wf)
Figure PCTCN2017075473-appb-000028
Figure PCTCN2017075473-appb-000028
其中,f代表自由响应,λ是控制权矩阵,N是预测步长,Nu是控制步长,w是预测输出,
Figure PCTCN2017075473-appb-000029
为阶跃响应系数;为了使当前t时刻的输出y(t)尽可能平稳地达到设定值,选用如下一阶滤波方程:
Wherein, f stands for freedom response, control of the [lambda] is the matrix, N is the prediction steps, N U is the control step size, w is the predicted output,
Figure PCTCN2017075473-appb-000029
For the step response coefficient; in order to make the output y(t) at the current t time reach the set value as smoothly as possible, the following first order filter equation is used:
w(t)=y(t)w(t)=y(t)
w(t+k)=αw(t+k-1)+(1-α)r(t+k),k=1......N2 w(t+k)=αw(t+k-1)+(1-α)r(t+k),k=1...N 2
其中0≤α<1Where 0≤α<1
所以输出可以表示为:So the output can be expressed as:
Figure PCTCN2017075473-appb-000030
Figure PCTCN2017075473-appb-000030
进一步地,考虑dh和dc,当dh=dc=d时,Further, consider d h and d c , when d h =d c =d,
将式子(5)的两边乘以zd(1+a1z-1)(1+ah1z-1)(1+ac1z-1),可得到:Multiplying both sides of the equation (5) by z d (1+a 1 z -1 )(1+a h1 z -1 )(1+a c1 z -1 ), we can get:
Figure PCTCN2017075473-appb-000031
Figure PCTCN2017075473-appb-000031
该式子(7)右边的变量的值都是已知的,可以将式子(7)右边表示为常量C,于是有:The value of the variable on the right side of the equation (7) is known. The right side of the expression (7) can be represented as a constant C, so that:
bh0uh(t)+bc0uc(t)=C;b h0 u h (t)+b c0 u c (t)=C;
在令温度预期正输入量uh(t)=0或温度预期反输入量uc(t)=0的情况下,有:In the case where the temperature is expected to be a positive input u h (t) = 0 or the temperature is expected to be a negative input u c (t) = 0, there are:
Figure PCTCN2017075473-appb-000032
Figure PCTCN2017075473-appb-000032
C=b0(1+ah1z-1)(1+ac1z-1)u(t)C=b 0 (1+a h1 z -1 )(1+a c1 z -1 )u(t)
-bh0(a1z-1+ac1z-1+a1ac1z-2)uh(t);-b h0 (a 1 z -1 +a c1 z -1 +a 1 a c1 z -2 )u h (t);
-bc0(a1z-1+ah1z-1+a1ah1z-2)uc(t)-b c0 (a 1 z -1 +a h1 z -1 +a 1 a h1 z -2 )u c (t)
这里,bh0>0,bc0>0,uh(t)∈[0,100],uc(t)∈[-100,0]。且当C>0时,可认为是由注塑模具温度控制设备加热产生的效果,因此uc(t)=0;同样的C<0时,可认为是由注塑模具温度控制设备冷却产生的效果,因此,uh(t)=0。Here, b h0 >0, b c0 >0, u h (t) ∈ [0, 100], u c (t) ∈ [-100, 0]. And when C>0, it can be considered as the effect produced by the heating of the injection mold temperature control equipment, so u c (t)=0; the same C<0, it can be considered as the effect of cooling by the injection mold temperature control equipment. Therefore, u h (t) = 0.
Figure PCTCN2017075473-appb-000033
时,
when
Figure PCTCN2017075473-appb-000033
Time,
将式子(5)两边都乘以zj(1+a1z-1)(1+ah1z-1)(1+ac1z-1),j=dc,dc+1,...,dh,并且,Multiply both sides of the equation (5) by z j (1+a 1 z -1 )(1+a h1 z -1 )(1+a c1 z -1 ), j=d c , d c +1, ...,d h and,,
b0(1+ah1z-1)(1+ac1z-1)=trs_ab 0 (1+a h1 z -1 )(1+a c1 z -1 )=trs_a
令bh0(1+a1z-1)(1+ac1z-1)=trs_bh,则有:Let b h0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh, then:
bc0(1+a1z-1)(1+ah1z-1)=trs_bcb c0 (1+a 1 z -1 )(1+a h1 z -1 )=trs_bc
trs_a×u(t)=trs_bh×uh(t-dh+dc)+trs_bc×uc(t)Trs_a×u(t)=trs_bh×u h (td h +d c )+trs_bc×u c (t)
trs_a×u(t+1)=trs_bh×uh(t-dh+dc+1)+trs_bc×uc(t+1)Trs_a×u(t+1)=trs_bh×u h (td h +d c +1)+trs_bc×u c (t+1)
                                                  ,,
............
trs_a×u(t+dh-dc)=trs_bh×uh(t)+trs_bc×uc(t+dh-dc)Trs_a×u(t+d h -d c )=trs_bh×u h (t)+trs_bc×u c (t+d h -d c )
将式子(3)两边都乘以zj,j=dc,dc+1,...,dh,有: Multiply both sides of equation (3) by z j , j=d c , d c +1,...,d h , with:
Figure PCTCN2017075473-appb-000034
Figure PCTCN2017075473-appb-000034
由式子(8)可以看到y(t+dc)由uh(t-dh+dc)和uc(t)决定;在令温度预期正输入量uh(t)=0或温度预期反输入量uc(t)=0的情况下,有:It can be seen from equation (8) that y(t+d c ) is determined by u h (td h +d c ) and u c (t); the temperature is expected to be positive input u h (t) = 0 or temperature In the case where the expected input quantity u c (t) = 0, there are:
Figure PCTCN2017075473-appb-000035
Figure PCTCN2017075473-appb-000035
在上式中,u(t)为当前t时刻,注塑模具温度控制设备的温度总输入量;uh(t-dh+dc)为在t-dh+dc时刻,温度正输入控制模块的温度正输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;In the above formula, u(t) is the total temperature input of the temperature control equipment of the injection mold at the current time t; u h (td h +d c ) is the temperature of the positive input control module at the time td h +d c Positive input quantity; u c (t-1) is the temperature inverse input quantity of the temperature inverse input control module at time t-1;
然后,令uc(t)∈[-100,0],可以获得uc(t+1),uc(t+2),...,uc(t+dh-dc-1)。uh(t)可由式子(8)的最后一个等式得到,再根据式子(6)可以得到:Then, let u c (t)∈[-100,0], get u c (t+1), u c (t+2),...,u c (t+d h -d c -1 ). u h (t) can be obtained from the last equation of equation (8), and then according to equation (6):
Figure PCTCN2017075473-appb-000036
Figure PCTCN2017075473-appb-000036
在式子(9)中,u(t+dh-dc)为在t+dh-dc时刻,注塑模具温度控制设备的温度总输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;uc(t+dh-dc-1)为在t+dh-dc-1时刻,温度反输入控制模块的温度反输入量;In equation (9), u(t+d h -d c ) is the total temperature input of the temperature control device of the injection mold at t+d h -d c ; u h (t-1) is at t At time -1, the temperature is positively input to the temperature positive input of the control module; u c (t+d h -d c -1) is the temperature inverse input of the temperature inverse input control module at t+d h -d c -1 the amount;
式子(9)右边可表示为常量C1,则有:The right side of the formula (9) can be expressed as a constant C 1 , then there are:
bh0uh(t)+bc0uc(t+dh-dc)=C1,于是得到:b h0 u h (t)+b c0 u c (t+d h -d c )=C 1 , then get:
Figure PCTCN2017075473-appb-000037
Figure PCTCN2017075473-appb-000037
Figure PCTCN2017075473-appb-000038
时,与
Figure PCTCN2017075473-appb-000039
的情况类似地,可以计算得到:
when
Figure PCTCN2017075473-appb-000038
Time, and
Figure PCTCN2017075473-appb-000039
The situation is similar, you can calculate:
Figure PCTCN2017075473-appb-000040
Figure PCTCN2017075473-appb-000040
Figure PCTCN2017075473-appb-000041
Figure PCTCN2017075473-appb-000041
其中,u(t)为当前t时刻,注塑模具温度控制设备的温度总输入量;uc(t-dc+dh)为在t-dc+dh时刻,温度反输入控制模块的温度反输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;Where u(t) is the total temperature input of the temperature control device of the injection mold at the current time t; u c (td c +d h ) is the temperature inverse input of the temperature inverse input control module at time td c +d h ;u h (t-1) is the temperature positive input of the control module at time t-1;
b0(1+ac1z-1)(1+ah1z-1)=trs_ab 0 (1+a c1 z -1 )(1+a h1 z -1 )=trs_a
bc0(1+a1z-1)(1+ac1z-1)=trs_bhb c0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh
C2=b0(1+ac1z-1)(1+ah1z-1)×u(t+dc-dh)-bc0(a1+ah1+a1ah1z-1)×uc(t-1)-bh0(a1+ac1+a1ac1z-1)×uh(t+dc-dh-1);C 2 =b 0 (1+a c1 z -1 )(1+a h1 z -1 )×u(t+d c -d h )-b c0 (a 1 +a h1 +a 1 a h1 z - 1 ) × u c (t-1) - b h0 (a 1 + a c1 + a 1 a c1 z -1 ) × u h (t + d c - d h -1);
u(t+dc-dh)为在t+dc-dh时刻,注塑模具温度控制设备的温度总输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;uh(t+dc-dd-1)为在t+dc-dd-1时刻,温度正输入控制模块的温度正输入量;u(t+d c -d h ) is the total temperature input of the temperature control equipment of the injection mold at t+d c -d h ; u c (t-1) is the temperature anti-input control at time t-1 The temperature inverse input quantity of the module; u h (t+d c -d d -1) is the temperature positive input value of the positive input control module at time t+d c -d d -1;
步骤S3、在当前t时刻,温度正输入控制模块根据温度预期正输入量uh(t)输入温度正输入量,温度反输入控制模块根据温度预期反输入量uc(t)输入温度反输入量。Step S3: At the current time t, the temperature positive input control module inputs the temperature positive input amount according to the temperature expected positive input quantity u h (t), and the temperature inverse input control module inputs the temperature inverse input according to the temperature expected reverse input quantity u c (t) the amount.
为了检验本发明的注塑模具温度控制方法的有效性,将本发明的注塑模具温度控制方法与传统的双SISO GPC算法做了仿真比较:In order to verify the effectiveness of the injection mold temperature control method of the present invention, the injection mold temperature control method of the present invention was compared with the conventional double SISO GPC algorithm:
(1)能量消耗比较:(1) Comparison of energy consumption:
图3示出了本发明的注塑模具温度控制方法的能耗控制结果图;图4示出了基于传统的双SISO GPC算法的能耗控制结果图。3 is a graph showing energy consumption control results of the injection mold temperature control method of the present invention; and FIG. 4 is a graph showing energy consumption control results based on the conventional double SISO GPC algorithm.
由图3和图4可以得出,两个控制方法都能跟踪设定值并且能抑制干扰。对比图3和图4可以发现,在本发明的注塑模具温度控制方法中,当对模具升 温时,冷却速率为0,当对模具冷却时,升温速率为0。本发明的注塑模具温度控制方法在节能上尤其突出。根据申请人的测算,通过采用本发明的注塑模具温度控制方法,能效消耗减少了至少90%。It can be seen from Fig. 3 and Fig. 4 that both control methods can track the set value and suppress interference. Comparing FIG. 3 and FIG. 4, it can be found that in the injection mold temperature control method of the present invention, when the mold is raised At a warm temperature, the cooling rate is 0, and when the mold is cooled, the heating rate is zero. The injection mold temperature control method of the present invention is particularly prominent in energy saving. According to the Applicant's calculation, the energy efficiency consumption is reduced by at least 90% by using the injection mold temperature control method of the present invention.
(2)控制结果比较:(2) Comparison of control results:
模具温度控制的好坏直接影响到注塑产品的质量。将温度设定值为90℃,当温度进入稳态的时候,给一个正阶跃到110℃。同样地,等温度进入新的稳态后,给一个反阶跃到50℃。参照图5,从控制结果上可以得出运用本发明的控制方法,不仅加温和冷却不会同时进行,而且控制结果很好。The quality of the mold temperature directly affects the quality of the injection molded product. Set the temperature to 90 ° C and give a positive step to 110 ° C when the temperature enters steady state. Similarly, after the isothermal temperature enters the new steady state, an inverse step is given to 50 °C. Referring to Fig. 5, the control method using the present invention can be derived from the control result, not only the heating and cooling are not performed at the same time, but also the control result is good.
(3)本发明将原有的模温机的控制系统集成到注塑机控制系统中,仅利用模温机加热单元和模温机冷却单元实现注塑模模具温度的精确控制,从而降低了成本。(3) The invention integrates the control system of the original mold temperature machine into the control system of the injection molding machine, and only uses the mold temperature heating unit and the mold temperature machine cooling unit to accurately control the temperature of the injection mold, thereby reducing the cost.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。 It is to be understood that those skilled in the art will be able to make modifications and changes in accordance with the above description, and all such modifications and variations are intended to be included within the scope of the appended claims.

Claims (5)

  1. 一种注塑模具温度控制方法,用于采用注塑模具温度控制设备调整模具温度,该注塑模具温度控制设备包括用于输入温度正输入量来提高模具温度的温度正输入控制模块和用于输入温度反输入量来降低模具温度的温度反输入控制模块;其特征在于,包括以下步骤:An injection mold temperature control method for adjusting a mold temperature by using an injection mold temperature control device including a temperature positive input control module for inputting a positive temperature input amount to increase a mold temperature and for inputting a temperature inverse A temperature inverse input control module that inputs a quantity to reduce the mold temperature; characterized in that it comprises the following steps:
    步骤S1、获取温度正输入控制模块的温度正输入参数、温度反输入控制模块的温度反输入参数、注塑模具温度控制设备的温度单输入参数;并且,每隔采样时间Δt获取当前t时刻的温度正输入控制模块的实际温度正输入量、温度反输入控制模块的实际温度反输入量以及注塑模具温度控制设备的实际温度总输入量;Step S1: acquiring a temperature positive input parameter of the temperature positive input control module, a temperature inverse input parameter of the temperature inverse input control module, and a temperature single input parameter of the injection mold temperature control device; and acquiring the temperature at the current t time every sampling time Δt Positive input positive input of the control module, actual temperature reverse input of the temperature reverse input control module, and actual temperature total input of the injection mold temperature control device;
    这里,温度正输入参数包括温度正输入控制模块的正输入时滞θh、温度正输入控制模块的正输入增益Kh、温度正输入控制模块的正输入时间常数τh;温度反输入参数包括温度反输入控制模块的反输入时滞θc、温度反输入控制模块的反输入增益Kc和温度反输入控制模块的反输入时间常数τc;注塑模具温度控制设备的温度单输入参数包括温度单输入时滞θ、温度单输入增益K和温度单输入时间常数τ;Here, the temperature positive input parameters include the positive input time lag θ h of the temperature positive input control module, the positive input gain K h of the temperature positive input control module, the positive input time constant τ h of the temperature positive input control module; the temperature inverse input parameters include The inverse input time lag θ c of the temperature inverse input control module, the inverse input gain K c of the temperature inverse input control module, and the inverse input time constant τ c of the temperature inverse input control module; the temperature single input parameter of the injection mold temperature control device includes the temperature Single input time lag θ, temperature single input gain K and temperature single input time constant τ;
    步骤S2、建立注塑模具温度控制设备的温度传递函数模型,有:Step S2: establishing a temperature transfer function model of the injection mold temperature control device, wherein:
    Figure PCTCN2017075473-appb-100001
    Figure PCTCN2017075473-appb-100001
    Figure PCTCN2017075473-appb-100002
    Figure PCTCN2017075473-appb-100002
    Figure PCTCN2017075473-appb-100003
    Figure PCTCN2017075473-appb-100003
    s为拉普拉斯变换算子;y(s)为在温度传递函数模型中,注塑模具温度控制设备的输出量;uh(s)为在温度传递函数模型中,温度正输入控制模块的正输入量;uc(s)为在温度传递函数模型中,温度反输入控制模块的反输入量;u(s)为在温度传递函数模型中,注塑模具温度控制设备的温度单输入量;s is the Laplace transform operator; y(s) is the output of the injection mold temperature control device in the temperature transfer function model; u h (s) is the temperature positive input control module in the temperature transfer function model Positive input quantity; u c (s) is the inverse input quantity of the temperature inverse input control module in the temperature transfer function model; u(s) is the temperature single input quantity of the injection mold temperature control device in the temperature transfer function model;
    将温度传递函数模型离散化为z函数模型,该z函数模型为: The temperature transfer function model is discretized into a z function model, which is:
    Figure PCTCN2017075473-appb-100004
    Figure PCTCN2017075473-appb-100004
    Figure PCTCN2017075473-appb-100005
    Figure PCTCN2017075473-appb-100005
    其中,
    Figure PCTCN2017075473-appb-100006
    among them,
    Figure PCTCN2017075473-appb-100006
    Figure PCTCN2017075473-appb-100007
    z为z变换算子;
    Figure PCTCN2017075473-appb-100007
    z is a z-transform operator;
    Figure PCTCN2017075473-appb-100008
    Figure PCTCN2017075473-appb-100008
    y(t)为在当前t时刻,注塑模具温度控制设备的输出量;uh(t-dh)为在t-dh时刻,温度正输入控制模块的温度正输入量;uc(t-dc)为在t-dc时刻,温度反输入控制模块的温度反输入量;u(t-d)为在t-d时刻,注塑模具温度控制设备的温度总输入量;y(t) is the output of the injection mold temperature control device at the current t time; u h (td h ) is the positive temperature input of the temperature positive input control module at time td h ; u c (td c ) is At time td c , the temperature is inversely input to the temperature input input of the control module; u(td) is the total temperature input of the temperature control device of the injection mold at time td;
    利用GPC算法求取u(t);其中,u(t)为当前t时刻,注塑模具温度控制设备的温度总输入量;U(t) is obtained by using GPC algorithm; wherein u(t) is the total temperature input of the temperature control device of the injection mold at the current time t;
    在令温度预期正输入量uh(t)=0或温度预期反输入量uc(t)=0的情况下,根据z函数模型计算得到温度预期正输入量uh(t)和温度预期反输入量uc(t);其中,In the case where the temperature expected positive input u h (t) = 0 or the temperature expected inverse input u c (t) = 0, the temperature expected positive input u h (t) and the temperature expectation are calculated according to the z-function model. Inverse input u c (t); where
    当dh=dc=d时,When d h =d c =d,
    Figure PCTCN2017075473-appb-100009
    Figure PCTCN2017075473-appb-100009
    C=b0(1+ah1z-1)(1+ac1z-1)u(t)C=b 0 (1+a h1 z -1 )(1+a c1 z -1 )u(t)
    -bh0(a1z-1+ac1z-1+a1ac1z-2)uh(t);-b h0 (a 1 z -1 +a c1 z -1 +a 1 a c1 z -2 )u h (t);
    -bc0(a1z-1+ah1z-1+a1ah1z-2)uc(t)-b c0 (a 1 z -1 +a h1 z -1 +a 1 a h1 z -2 )u c (t)
    Figure PCTCN2017075473-appb-100010
    时,
    when
    Figure PCTCN2017075473-appb-100010
    Time,
    Figure PCTCN2017075473-appb-100011
    Figure PCTCN2017075473-appb-100011
    Figure PCTCN2017075473-appb-100012
    Figure PCTCN2017075473-appb-100012
    其中,among them,
    b0(1+ah1z-1)(1+ac1z-1)=trs_ab 0 (1+a h1 z -1 )(1+a c1 z -1 )=trs_a
    bh0(1+a1z-1)(1+ac1z-1)=trs_bh;b h0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh;
    C1=b0(1+ah1z-1)(1+ac1z-1)u(t+dh-dc)C 1 =b 0 (1+a h1 z -1 )(1+a c1 z -1 )u(t+d h -d c )
    -bh0(a1+ac1+a1ac1z-1)uh(t-1);-b h0 (a 1 + a c1 + a 1 a c1 z -1 )u h (t-1);
    -bc0(a1+ah1+a1ah1z-1)uc(t+dh-dc-1)-b c0 (a 1 +a h1 +a 1 a h1 z -1 )u c (t+d h -d c -1)
    u(t+dh-dc)为在t+dh-dc时刻,注塑模具温度控制设备的温度总输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;uc(t+dh-dc-1)为在t+dh-dc-1时刻,温度反输入控制模块的温度反输入量;u(t+d h -d c ) is the total temperature input of the temperature control equipment of the injection mold at t+d h -d c ; u h (t-1) is the positive input control at time t-1 The positive temperature input of the module; u c (t+d h -d c -1) is the temperature inverse input of the temperature reverse input control module at t+d h -d c -1;
    uh(t-dh+dc)为在t-dh+dc时刻,温度正输入控制模块的温度正输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;u h (td h +d c ) is the temperature positive input of the control module at the time td h +d c ; u c (t-1) is the temperature of the temperature reverse input control module at time t-1 Inverse input
    Figure PCTCN2017075473-appb-100013
    时,
    when
    Figure PCTCN2017075473-appb-100013
    Time,
    Figure PCTCN2017075473-appb-100014
    Figure PCTCN2017075473-appb-100014
    Figure PCTCN2017075473-appb-100015
    Figure PCTCN2017075473-appb-100015
    其中,among them,
    b0(1+ac1z-1)(1+ah1z-1)=trs_ab 0 (1+a c1 z -1 )(1+a h1 z -1 )=trs_a
    bc0(1+a1z-1)(1+ac1z-1)=trs_bh b c0 (1+a 1 z -1 )(1+a c1 z -1 )=trs_bh
    C2=b0(1+ac1z-1)(1+ah1z-1)′u(t+dc-dh)-bc0(a1+ah1+a1ah1z-1)′uc(t-1)C 2 =b 0 (1+a c1 z -1 )(1+a h1 z -1 )'u(t+d c -d h )-b c0 (a 1 +a h1 +a 1 a h1 z - 1 ) 'u c (t-1)
    -bh0(a1+ac1+a1ac1z-1)′uh(t+dc-dh-1);-b h0 (a 1 + a c1 + a 1 a c1 z -1 )'u h (t+d c -d h -1);
    u(t+dc-dh)为在t+dc-dh时刻,注塑模具温度控制设备的温度总输入量;uc(t-1)为在t-1时刻,温度反输入控制模块的温度反输入量;uh(t+dc-dd-1)为在t+dc-dd-1时刻,温度正输入控制模块的温度正输入量;u(t+d c -d h ) is the total temperature input of the temperature control equipment of the injection mold at t+d c -d h ; u c (t-1) is the temperature anti-input control at time t-1 The temperature inverse input quantity of the module; u h (t+d c -d d -1) is the temperature positive input value of the positive input control module at time t+d c -d d -1;
    uc(t-dc+dh)为在t-dc+dh时刻,温度反输入控制模块的温度反输入量;uh(t-1)为在t-1时刻,温度正输入控制模块的温度正输入量;u c (td c +d h ) is the temperature inverse input of the temperature inverse input control module at td c +d h ; u h (t-1) is the temperature of the positive input control module at time t-1 Positive input
    步骤S3、在当前t时刻,温度正输入控制模块根据温度预期正输入量uh(t)输入温度正输入量,温度反输入控制模块根据温度预期反输入量uc(t)输入温度反输入量。Step S3: At the current time t, the temperature positive input control module inputs the temperature positive input amount according to the temperature expected positive input quantity u h (t), and the temperature inverse input control module inputs the temperature inverse input according to the temperature expected reverse input quantity u c (t) the amount.
  2. 根据权利要求1所述的注塑模具温度控制方法,其特征在于,利用GPC算法求取u(t)的过程包括以下步骤:The injection mold temperature control method according to claim 1, wherein the process of obtaining u(t) by using the GPC algorithm comprises the following steps:
    步骤S21、获取自由响应f、控制权矩阵λ、预测步长N、控制步长Nu、预测输出w以及阶跃响应系数
    Figure PCTCN2017075473-appb-100016
    Step S21, the acquired free response f, control matrix λ, prediction steps N, control step N u, and the predicted output step response coefficients w
    Figure PCTCN2017075473-appb-100016
    步骤S22、通过以下公式计算得到u(t);Step S22, calculating u(t) by the following formula;
    ΔU=(GTG+λI)-1G(w-f)ΔU=(G T G+λI) -1 G(wf)
    Figure PCTCN2017075473-appb-100017
    Figure PCTCN2017075473-appb-100017
    Figure PCTCN2017075473-appb-100018
    Figure PCTCN2017075473-appb-100018
  3. 一种注塑模具温度控制设备,其特征在于,采用如权利要求1所述的注塑模具温度控制方法调整模具温度,还包括Linux控制系统;该Linux控制系统用于获取实际温度正输入量和实际温度反输入量。An injection mold temperature control apparatus characterized by using the injection mold temperature control method according to claim 1 to adjust a mold temperature, and further comprising a Linux control system; the Linux control system is configured to obtain an actual temperature positive input amount and an actual temperature Inverse input.
  4. 根据权利要求3所述的注塑模具温度控制设备,其特征在于,还包括与Linux控制系统连接的采集卡,Linux控制系统还用于将获取的实际温度正 输入量和实际温度反输入量存储在采集卡中;注塑模具温度控制设备还包括用于实时监测注塑模具温度以获取实际温度总输入量,并将实际温度总输入量发送给Linux控制系统的温度传感器。The injection mold temperature control apparatus according to claim 3, further comprising a capture card connected to the Linux control system, wherein the Linux control system is further configured to obtain the actual temperature being positive The input amount and the actual temperature inverse input amount are stored in the acquisition card; the injection mold temperature control device further includes a temperature for real-time monitoring of the injection mold temperature to obtain the actual temperature total input amount, and the actual temperature total input amount is sent to the Linux control system. sensor.
  5. 根据权利要求3所述的注塑模具温度控制设备,其特征在于,温度正输入控制模块包括用于提高模具温度的模温机加热单元;温度反输入控制模块包括用于降低模具温度的模温机冷却单元。 The injection mold temperature control apparatus according to claim 3, wherein the temperature positive input control module comprises a mold temperature heating unit for increasing the mold temperature; and the temperature reverse input control module comprises a mold temperature machine for reducing the mold temperature. Cooling unit.
PCT/CN2017/075473 2016-03-02 2017-03-02 Injection mold temperature control method and device based on positive and negative input predictive control WO2017148422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610117388.2 2016-03-02
CN201610117388.2A CN107150432A (en) 2016-03-02 2016-03-02 The injection mold temprature control method and equipment of a kind of positive and negative input prediction control

Publications (1)

Publication Number Publication Date
WO2017148422A1 true WO2017148422A1 (en) 2017-09-08

Family

ID=59742539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075473 WO2017148422A1 (en) 2016-03-02 2017-03-02 Injection mold temperature control method and device based on positive and negative input predictive control

Country Status (2)

Country Link
CN (1) CN107150432A (en)
WO (1) WO2017148422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116252448B (en) * 2023-02-28 2023-09-08 温州科工精密模具有限公司 Control system for injection mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052391A (en) * 1998-08-10 2000-02-22 Japan Steel Works Ltd:The Method for controlling temperature for injection molding machine
CN103600477A (en) * 2013-10-25 2014-02-26 安徽工贸职业技术学院 Mold temperature control system
CN104175513A (en) * 2014-07-07 2014-12-03 东莞市旭通达模具塑胶有限公司 Temperature control method and system of injection mold
CN104890205A (en) * 2015-05-20 2015-09-09 华中科技大学 Barrel temperature control method of injection molding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181300A1 (en) * 2003-03-11 2004-09-16 Clark Robert L. Methods, apparatus and computer program products for adaptively controlling a system by combining recursive system identification with generalized predictive control
CN203077576U (en) * 2013-01-30 2013-07-24 松下信息仪器(上海)有限公司 Mold temperature regulating system
CN103760770B (en) * 2014-01-09 2016-08-17 广州市香港科大霍英东研究院 Distribution type generalized forecast control method based on positive and negative input system
CN205238498U (en) * 2015-11-06 2016-05-18 宁波市百鸽智能科技有限公司 Mould temperature control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052391A (en) * 1998-08-10 2000-02-22 Japan Steel Works Ltd:The Method for controlling temperature for injection molding machine
CN103600477A (en) * 2013-10-25 2014-02-26 安徽工贸职业技术学院 Mold temperature control system
CN104175513A (en) * 2014-07-07 2014-12-03 东莞市旭通达模具塑胶有限公司 Temperature control method and system of injection mold
CN104890205A (en) * 2015-05-20 2015-09-09 华中科技大学 Barrel temperature control method of injection molding machine

Also Published As

Publication number Publication date
CN107150432A (en) 2017-09-12

Similar Documents

Publication Publication Date Title
CN111107972B (en) System and method for PID control of auto-tuning injection molding machine
CN104932263A (en) Minimum operation time control method of multistage intermittent process
CN102101353B (en) Temperature control method for reaching set temperature at equal time intervals at preheating stage of plastic machinery
Zhang et al. State space model predictive fault-tolerant control for batch processes with partial actuator failure
CN113799369A (en) Extruder barrel temperature control method and device, electronic equipment and storage medium
WO2017148422A1 (en) Injection mold temperature control method and device based on positive and negative input predictive control
CN101491935A (en) Charging-basket temperature synchronous control system and method of injection-molding device machine
CN109541940A (en) Mix fault tolerant control method based on 2D model multistage batch process constrained predictive
CN111086551A (en) Steering wheel heating control method based on temperature closed-loop adjustment
CN114707903A (en) Intelligent management system for injection mold
CN103869694B (en) Actuator and operational ton output intent
JPS6010893B2 (en) Mold temperature control method and device
JPH10225973A (en) Method for control of heat displacing type automatic t-die
CN106313464A (en) Intelligent temperature control device for injection molding machine
CN104567405A (en) Method and device for controlling opening of auxiliary doors of bin
CN101456045A (en) Sheet forming method and device using material thermal expansivity performance
CN202975876U (en) Device applied to PLC (programmable logic controller) full-automatic control on temperature of storage battery cast-welding die
JP2019016233A (en) Temperature control device and heating control method
JP2004240815A (en) Process control method
CN117698079B (en) Injection molding process control system for PET plastic packaging box
CN219522869U (en) Direct cooling type injection mold
Xu et al. Research of multi-point temperature control method in the heating system of 3D glass hot bending machine
CN103760770B (en) Distribution type generalized forecast control method based on positive and negative input system
CN107791476A (en) A kind of injection mold temperature intelligent networked control systems based on reference point
JPH06195105A (en) Self-tuning controller

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759273

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17759273

Country of ref document: EP

Kind code of ref document: A1