WO2017148141A1 - 一种量子密钥分配方法及发送装置、接收装置 - Google Patents

一种量子密钥分配方法及发送装置、接收装置 Download PDF

Info

Publication number
WO2017148141A1
WO2017148141A1 PCT/CN2016/100182 CN2016100182W WO2017148141A1 WO 2017148141 A1 WO2017148141 A1 WO 2017148141A1 CN 2016100182 W CN2016100182 W CN 2016100182W WO 2017148141 A1 WO2017148141 A1 WO 2017148141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
signal
pulse
local oscillator
quantum
Prior art date
Application number
PCT/CN2016/100182
Other languages
English (en)
French (fr)
Inventor
蔡永旌
苏长征
邹扬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017148141A1 publication Critical patent/WO2017148141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication

Definitions

  • Fig. 1a exemplarily shows a schematic structural diagram of a system to which quantum key distribution is applied.
  • the transmitting device includes a main control unit 103, a quantum transmitter 104, a synchronous clock transmitter 105, a negotiation information transceiver 106, and a service information transmitter 107.
  • the main control unit 108, the quantum receiver 109, the synchronous clock receiver 110, the negotiation information transceiver 111, and the service information receiver 112 are included.
  • the transmitting device transmits the quantum optical signal carrying the original key to the quantum receiver of the receiving device through the quantum transmitter to make the receiving device from the quantum
  • the original quantum key is recovered from the optical signal.
  • the transmitting device transmits a synchronous clock signal to the synchronous clock receiver of the receiving device through the synchronous clock transmitter to enable the receiving device to synchronize the clock with the transmitting device.
  • the transmitting device transmits and receives the negotiation information between the negotiation information transceiver and the negotiation information transceiver of the receiving device, so that the transmitting device and the receiving device determine the final quantum key from the original quantum key according to the negotiation information.
  • the transmitting device transmits the service information to the receiving device amount information information receiver through the service information transmitter.
  • the quantum key distribution process specifically refers to the transmitting device carrying the original key in the quantum optical signal, and transmitting the quantum optical signal to the receiving device, and the receiving device recovers from the quantum optical signal after receiving the quantum optical signal.
  • the original key is extracted, and the final used key is further determined from the original key by negotiation between the transmitting device and the receiving device.
  • the transmitting device generates the local oscillator optical signal, and transmits the local oscillator optical signal and the quantum optical signal on the same optical fiber.
  • the local oscillator needs to be strictly guaranteed.
  • the optical signal and the quantum optical signal reach the input end time of the 2:2 coupler, that is, the receiving device needs to perform strict isometric control on the local oscillator signal and the path through which the quantum optical signal passes. It is very difficult to use in engineering.
  • Embodiments of the present invention provide a quantum key distribution method, a transmitting apparatus, and a receiving apparatus, which are used to more easily recover an original key in a quantum key distribution process.
  • An embodiment of the present invention provides a sending apparatus for quantum key distribution, including:
  • An optical signal generating unit configured to perform spectral processing on the generated optical signal to obtain a first optical signal and a second optical signal; and send the first optical signal to the first modulation unit, and send the second optical signal to the second modulation unit;
  • the coupling unit is configured to perform a combining process on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted including the reference optical signal and the quantum optical signal, and transmit the transmitted optical signal to the receiving device.
  • the receiving device measures the phase frequency information between the pulse of the reference optical signal and the local oscillator optical signal, and further according to the pulse between the reference optical signal and the local oscillator optical signal.
  • phase frequency information estimates the phase frequency information between the pulse of the quantum optical signal and the local oscillator optical signal
  • the error is reduced, and then the phase frequency information pair between the pulse of the quantum optical signal and the local oscillator optical signal that is reduced according to the error is used for
  • the adjustment of the coherently coupled local oscillator optical signal of the quantum optical signal is more accurate, and the original key recovered from the coherently coupled quantum optical signal is more accurate.
  • the coupling unit comprises a polarization rotation unit connected to the first modulation unit, and a polarization coupling unit connected to the polarization rotation unit and the second modulation unit at the same time;
  • a polarization rotation unit configured to rotate a polarization state of the received reference optical signal by a first angle, and transmit a reference optical signal whose polarization state is rotated by the first angle to the polarization coupling unit;
  • the coupling unit includes a polarization rotation unit coupled to the second modulation unit, and a polarization coupling unit coupled to the polarization rotation unit and the first modulation unit at the same time;
  • a polarization rotation unit configured to rotate a polarization state of the received quantum light signal by a second angle, and transmit a quantum light signal whose polarization state is rotated by a second angle to the polarization coupling unit;
  • a polarization coupling unit configured to perform polarization coupling processing on the received reference optical signal pulse and the quantum optical signal in which the polarization state is rotated by the second angle, to obtain a reference optical signal and a quantum optical signal polarization multiplexing and time division multiplexing.
  • the optical signal is transmitted and the transmitted optical signal is transmitted to the receiving device.
  • the first modulating unit is further configured to modulate the classic information on the first optical pulse signal, so that the reference optical signal includes classical information.
  • the utilization rate of the reference optical signal can be improved, thereby improving the transmission efficiency of information in the quantum key distribution process.
  • An embodiment of the present invention provides a receiving apparatus for quantum key distribution, including:
  • a coherent coupling unit configured to perform spectroscopic processing on the received transmitted optical signal including the reference optical signal and the quantum optical signal, and coherently couple the transmitted optical signal after the spectral processing according to the local oscillator optical signal to obtain a reference optical signal a first coherent coupled back optical signal and a second coherent coupled optical signal including the quantum optical signal; and transmitting the first coherent coupled optical signal to the reference optical balance detecting unit, and transmitting the second coherent coupled optical signal to the quantum An optical balance detecting unit, wherein a pulse appearance frequency of the reference optical signal included in the first coherent coupled optical signal is a first frequency, and a pulse appearance frequency of the quantum optical signal included in the second coherent coupled optical signal is a second frequency The first frequency is greater than the second frequency;
  • a reference optical balance detecting unit configured to perform photoelectric conversion on the first coherent coupled optical signal, perform differential processing and amplification, obtain a first electrical signal, and transmit the first electrical signal to the carrier recovery unit;
  • a quantum light balance detecting unit configured to perform photoelectric conversion on the second coherent coupled optical signal, perform differential processing and amplification, obtain a second electrical signal, and transmit the second electrical signal to the key recovery unit;
  • a carrier recovery unit configured to determine phase frequency information between the local oscillator optical signal and the reference optical signal from the first electrical signal
  • phase frequency information estimates the phase frequency information between the pulse of the quantum optical signal and the local oscillator optical signal
  • the error is reduced, and then the phase frequency information pair between the pulse of the quantum optical signal and the local oscillator optical signal that is reduced according to the error is used for
  • the adjustment of the coherently coupled local oscillator optical signal of the quantum optical signal is more accurate, and the original key recovered from the coherently coupled quantum optical signal is more accurate.
  • the bandwidth of the reference light balance detecting unit is higher than the bandwidth of the quantum light balance detecting unit; the gain of the reference light balance detecting unit is lower than the gain of the quantum light balance detecting unit.
  • the reference optical balance detecting unit can optimize the gain of the pulse of the reference optical signal, and does not affect the detection of the quantum optical signal by the quantum light balance detecting unit.
  • the reference optical signal and the quantum optical signal included in the transmitted optical signal are polarization multiplexed
  • the coherent coupling unit includes a polarization beam splitting unit, and a first sub-coherent coupling unit and a second sub-coherent coupling unit connected to the polarization beam splitting unit, the first sub-coherent coupling unit is connected to the reference light balance detecting unit, and the second sub-coherent coupling unit is connected to the quantum Light balance detection unit;
  • a polarization splitting unit configured to divide the transmitted optical signal into a first split-processed optical signal including a reference optical signal and a second split-processed optical signal including the quantum optical signal by polarization splitting processing
  • a first sub-coherent coupling unit configured to coherently couple the optical signal after the first splitting process using the first sub-local optical signal, and output the first coherent coupled optical signal
  • a second sub-coherent coupling unit for using the second sub-local oscillator signal to illuminate the second spectroscopic light
  • the signal is coherently coupled to output a second coherently coupled optical signal.
  • the local oscillator unit includes a local oscillator splitting unit, and a first local oscillator modulation unit and a second local oscillator modulation unit connected to the local oscillator splitting unit, wherein the first local oscillator modulation unit is connected to the first sub-coherent coupling unit; The second local oscillator modulation unit is connected to the second sub-coherent coupling unit;
  • a first local oscillator modulating unit is configured to chop the third sub-acoustic optical signal to obtain a first optical pulse local oscillator signal; and phase-modulate the first optical pulse local oscillator signal to obtain a first sub-local oscillator An optical signal; the frequency of the pulse included in the first optical pulse local oscillator signal is a first frequency;
  • the first local oscillator modulation unit is further configured to:
  • the second local oscillator modulation unit is further configured to:
  • the second local oscillation modulation unit is phase-modulated with respect to the second optical pulse local oscillation signal delayed in the time domain.
  • the reference optical balance detecting unit is further configured to perform in-phase orthogonal IQ detection on the first electrical signal, and transmit the first electrical signal that is subjected to the IQ detection to the carrier recovery unit;
  • the carrier recovery unit is further configured to demodulate the modulation in the first electrical signal from which the IQ detection is performed.
  • Classic information on the light signal In this way, the utilization rate of the reference optical signal can be improved, thereby improving the transmission efficiency of information in the quantum key distribution process.
  • Embodiments of the present invention provide a quantum key distribution method, including:
  • the transmitting device performs spectral processing on the generated optical signal to obtain a first optical signal and a second optical signal;
  • the transmitting device performs chopping processing on the first optical signal to obtain a first optical pulse signal; and attenuating and modulating the first optical pulse signal to obtain a reference optical signal;
  • the transmitting device performs chopping processing on the second optical signal to obtain a second optical pulse signal; and attenuating and modulating the second optical pulse signal to obtain a quantum optical signal; the frequency of the pulse included in the first optical pulse signal is greater than the second The frequency of the pulses included in the optical pulse signal;
  • the transmitting device performs a combination processing on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted including the reference optical signal and the quantum optical signal, and transmits the transmitted optical signal to the receiving device.
  • the transmitting device performs a combining process on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted, including the reference optical signal and the quantum optical signal, including:
  • Rotating the polarization state of the received quantum light signal by a second angle rotating the second angle to obtain a reference optical signal and a quantum light signal polarization complex
  • the transmitting device performs a combination processing on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted, including the reference optical signal and the quantum optical signal, and is further configured to:
  • Embodiments of the present invention provide a quantum key distribution method, including:
  • the receiving device generates a local oscillator optical signal, performs spectral processing on the received transmission optical signal including the reference optical signal and the quantum optical signal, and coherently couples the transmitted optical signal after the spectral processing according to the local oscillator optical signal, thereby obtaining a reference including a first coherent coupled optical signal of the optical signal and a second coherent coupled optical signal including the quantum optical signal; wherein, the first coherently coupled optical signal includes a reference optical signal having a frequency of the first frequency, and a second The frequency of occurrence of the pulse of the quantum light signal included in the optical signal after coherent coupling is the second frequency, and the first frequency is greater than the second frequency;
  • the receiving device photoelectrically converts the first coherent coupled optical signal and performs differential processing and amplification to obtain a first electrical signal; photoelectrically converting the second coherent coupled optical signal and performing differential processing and amplification to obtain a second electrical signal;
  • the receiving device measures the phase frequency information between the pulse of the reference optical signal and the local oscillator optical signal, and further according to the pulse between the reference optical signal and the local oscillator optical signal.
  • the receiving device generates a local oscillator optical signal, performs spectral processing on the received transmission optical signal including the reference optical signal and the quantum optical signal, and coherently couples the transmitted optical signal after the spectral processing according to the local oscillator optical signal, thereby obtaining a reference including a first coherent coupled optical signal of the optical signal and a second coherent coupled optical signal comprising the quantum optical signal, comprising:
  • the receiving device generates a local oscillator signal, and divides the local oscillator signal into a first sub-local oscillator signal and a second sub-local oscillator signal;
  • the receiving device divides the transmitted optical signal into a first split-processed optical signal including a reference optical signal and a second split-processed optical signal including the quantum optical signal by polarization splitting processing;
  • the receiving device generates the local oscillator signal, and divides the local oscillator signal into the first sub-local optical signal and the second sub-local optical signal, including:
  • the receiving device divides the generated local oscillator optical signal into a third sub-local oscillator optical signal and a fourth sub-local oscillator optical signal; the third sub-local oscillator optical signal and the first split-light processed optical signal have the same polarization state, and the fourth sub- The polarization states of the local light signal and the second light splitting processed light signal are consistent;
  • the receiving device performs chopping processing on the third sub-acoustic optical signal to obtain a first optical pulse local oscillator signal; and phase-modulating the first optical pulse local oscillator signal to obtain a first sub-local oscillator optical signal; the first optical pulse
  • the frequency of the pulse included in the local oscillator signal is the first frequency
  • the receiving device performs chopping processing on the third sub-acoustic optical signal to obtain a first optical pulse local oscillator signal, and before performing phase modulation on the first optical pulse local oscillator signal, the method further includes:
  • the receiving device performs chopping processing on the fourth sub-local optical signal to obtain a second optical pulse local oscillator signal, and before performing phase modulation on the second optical pulse local oscillator signal, the method further includes:
  • the second optical pulse local oscillation signal is delayed in the time domain such that the pulse in the second sub-local oscillation light signal corresponds to the pulse of the quantum optical signal included in the second spectrally processed optical signal in the time domain.
  • the receiving device performs photoelectric conversion on the first coherent coupled optical signal, performs differential processing and amplification, and after obtaining the first electrical signal, the method further includes:
  • the in-phase quadrature IQ detection is performed on the first electrical signal, and the classical information modulated on the reference optical signal is demodulated from the first electrical signal subjected to the IQ detection.
  • the generated optical signal is subjected to spectral processing, and the obtained first optical signal and second optical signal are respectively subjected to chopping processing to obtain a first optical pulse signal and a second optical pulse signal, and further to the first light.
  • the pulse signal and the second optical pulse signal are respectively attenuated and modulated to obtain a reference optical signal and a quantum optical signal; the frequency of the pulse included in the first optical pulse signal is greater than the frequency of the pulse included in the second optical pulse signal;
  • the signal and the quantum light signal are combined to obtain a transmitted optical signal to be transmitted including the reference optical signal and the quantum optical signal, and the transmitted optical signal is transmitted to the receiving device.
  • the receiving device measures the phase frequency information between the pulse of the reference light signal and the local oscillator light signal, and further according to the pulse of the reference light signal
  • the phase frequency information between the local light signal and the local oscillator signal is estimated, the error is reduced, and the pulse between the quantum light signal and the local oscillator signal is reduced according to the error.
  • the phase frequency information is more accurate for the adjustment of the local oscillator optical signal for coherent coupling of the quantum optical signal, and the original key recovered from the coherently coupled quantum optical signal is more accurate.
  • FIG. 1a is a schematic structural diagram of a system for applying quantum key distribution provided in the prior art
  • FIG. 1b is a schematic structural diagram of a system according to an embodiment of the present invention.
  • 1c is a schematic structural diagram of a system according to an embodiment of the present invention.
  • 2a is a schematic structural diagram of a transmitting apparatus for quantum key distribution according to an embodiment of the present invention
  • 2b is a schematic structural diagram of transmitting an optical signal according to an embodiment of the present invention.
  • 2c is a schematic structural diagram of a sending apparatus for quantum key distribution according to an embodiment of the present invention.
  • 2 e is a schematic structural diagram of a transmitting apparatus for quantum key distribution according to an embodiment of the present invention.
  • 2f is a schematic structural diagram of a sending apparatus for quantum key distribution according to an embodiment of the present invention.
  • 3b is a schematic structural diagram of a receiving apparatus for quantum key distribution according to an embodiment of the present invention.
  • 3c is a schematic structural diagram of a receiving apparatus for quantum key distribution according to an embodiment of the present invention.
  • 4a is a schematic flowchart of a quantum key distribution method according to an embodiment of the present invention.
  • FIG. 5a is a schematic flowchart diagram of another quantum key distribution method according to an embodiment of the present invention.
  • the receiving device is included in the receiving device for recovering the original key from the received quantum optical signal on the receiving device side by a simpler and more accurate method.
  • the receiving device includes, but is not limited to, a base station, a station controller, an Access Point (AP), or any other type of interface device capable of operating in a wireless environment.
  • AP Access Point
  • FIG. 1b exemplarily shows a system structure diagram applicable to an embodiment of the present invention
  • FIG. 1c exemplarily shows another system structure diagram applicable to an embodiment of the present invention.
  • the node A includes only the transmitting device 1101, and the node B includes only the receiving device 1102.
  • This system architecture is called a one-way system architecture.
  • the transmitting device 1101 at the node A carries the original key in the quantum optical signal and transmits it to the receiving device 1102.
  • the receiving device 1102 recovers the original key from the quantum optical signal, and the transmitting device 1101 and the receiving device 1102 are from the original.
  • the final quantum key is determined by negotiation in the key.
  • the transmitting device 1101 at the node A receives the input service information, and encrypts the service information using the final quantum key to obtain an encrypted signal, and transmits the encrypted signal to the receiving device 1102.
  • the receiving device 1102 performs the decryption process using the same final quantum key, decrypts and outputs the service information, and transmits the information to the transmitting device 1101 through the classical channel.
  • the transmitting device 1201 at the node A carries the original key in the quantum optical signal and transmits it to the receiving device 1202.
  • the receiving device 1202 recovers the original key from the quantum optical signal, and then sends the original key.
  • the setting 1201 and the receiving device 1202 determine the final quantum key by negotiation from the original key.
  • the transmitting device 1201 at the node A encrypts the received service information using the final quantum key, and further transmits the encrypted service information to the receiving device 1202 at the node B.
  • the receiving device 1202 decrypts using the same final quantum key and outputs the service information.
  • the receiving device 1202 transmits information to the transmitting device 1201 through the classical channel. Alternatively, the receiving device 1202 feeds back information to the transmitting device 1201 through the transmitting device 1204 and the receiving device 1203.
  • the embodiments of the present invention are applicable to the QKD technology.
  • the QKD technology includes Discrete Variable-Quantum Key Distribution (DV-QKD) and Continuous Variable-Quantum Key Distribution (CV-QKD).
  • DV-QKD Discrete Variable-Quantum Key Distribution
  • CV-QKD Continuous Variable-Quantum Key Distribution
  • DV-QKD Discrete Variable-Quantum Key Distribution
  • CV-QKD Continuous Variable-Quantum Key Distribution
  • CV-QKD is more widely used in engineering because it does not need to operate at low temperature single photon detectors, and thus embodiments of the present invention are preferably applicable to CV-QKD technology.
  • a self-referential continuous variable quantum key distribution system is taken as an example for introduction.
  • the coherent coupling, photoelectric conversion and amplification mentioned in the embodiments of the present invention are technical terms for coherent detection.
  • the working principle of the coherent detection is specifically: the transmitting device uses an external modulation method to modulate the signal onto the optical carrier for transmission.
  • the receiving device coherently couples the received transmitted optical signal with a local oscillator optical signal, and then is detected by the balanced detector, and can also be described as detecting using a balanced receiver.
  • Coherent optical communication can be divided into heterodyne detection and homodyne detection according to the frequency of the local oscillator signal and the frequency of the transmitted optical signal are not equal or equal.
  • a self-referential continuous variable quantum key distribution technique in which the receiving device generates a local oscillator signal and The local oscillator signal and the quantum optical signal sent by the transmitting device are balancedly detected.
  • the transmitting device needs to additionally transmit a reference optical signal for estimating the phase frequency information of the quantum optical signal, but this Estimating the presence of an error will have an impact on restoring the final key.
  • the transmitting device sends the transmitted optical signal to the receiving device, and the transmitted optical signal includes the time division multiplexed parameter Test light signal and quantum light signal.
  • the receiving device After the receiving device receives the transmitted optical signal, the receiving device locally generates a local oscillator optical signal, and uses the local oscillator optical signal to perform coherent detection on the received transmitted optical signal, and the process uses only one balanced receiver.
  • a strong optical intensity needs to be introduced between adjacent two quantum optical signals included in the transmitted optical signal. Reference optical signal.
  • the receiving device determines phase information between the reference optical signal and the local oscillator optical signal from the reference optical signal between the quantum optical signals, thereby enabling the receiving device to perform random selection of the measurement base according to the phase information, and further from the quantum optical signal
  • the original key information is recovered.
  • the Applicant has found that, in this solution, on the one hand, in order to recover a high-gain signal from the quantum optical signal transmitting the optical signal, thereby recovering a more accurate original key, the balance for detecting the quantum optical signal is used.
  • the receiver operates at a lower bandwidth. Since the balanced receiver also needs to detect the reference optical signal, at this time, in order to recover a high-gain signal from the quantum optical signal, it is necessary to transmit the optical signal.
  • the frequency of occurrence of the pulses of the transmitted optical signal is limited, that is, the frequency of occurrence of the pulses of the transmitted optical signal is not increased, such as typically on the order of 10 MHz.
  • the local oscillator signal and the transmitted optical signal generated by the receiving device are not generated by the same laser after all, there is still a frequency difference between the two, and the frequency difference will be a reference of the receiving device according to the transmitted optical signal.
  • the quantum light signal of the transmitted optical signal and the phase frequency information of the local oscillator optical signal estimated by the balanced detection result of the optical signal and the local oscillator optical signal have an influence, thereby obtaining inaccurate phase frequency information.
  • it is necessary to ensure that the frequency of occurrence of the pulse of the transmitted optical signal included in the transmitted optical signal is greater than a certain threshold, such as greater than 100 MHz.
  • embodiments of the present invention provide a quantum key distribution method, a transmitting apparatus, and a receiving apparatus.
  • the scheme does not require strict equal length control on the length difference between two optical fibers of the transmitting device and the receiving device, and reduces the technology. Difficulty, achieving a simpler purpose of recovering the original key in the quantum key distribution process.
  • the phase frequency information in the embodiment of the present invention may include a local oscillator optical signal and a reference optical signal.
  • Information such as the phase difference and frequency difference between the numbers.
  • FIG. 2 is a schematic structural diagram of a transmitting apparatus for quantum key distribution according to an embodiment of the present invention.
  • a transmitting apparatus for quantum key distribution provided by an embodiment of the present invention includes an optical signal generating unit 2101, and a first modulating unit connected to the optical signal generating unit 2101. 2102 and a second modulating unit 2103, and a coupling unit 2104 coupled to the first modulating unit 2102 and the second modulating unit 2103 at the same time, the coupling unit 2104 finally outputs a transmitted optical signal to the receiving device:
  • the optical signal generating unit 2101 is configured to perform spectral processing on the generated continuous optical signal to obtain a first optical signal and a second optical signal; and send the first optical signal to the first modulating unit 2102, and send the second optical signal to a second modulation unit 2103;
  • the first modulating unit 2102 is configured to perform chopping processing on the first optical signal to obtain a first optical pulse signal, and attenuate and modulate the first optical pulse signal to obtain a reference optical signal, and send the reference optical signal to the coupling unit. 2104;
  • the second modulating unit 2103 is configured to perform chopping processing on the second optical signal to obtain a second optical pulse signal, and attenuate and modulate the second optical pulse signal to obtain a quantum optical signal, and send the quantum optical signal to the coupling unit. 2104; a frequency of a pulse included in the first optical pulse signal is greater than a frequency of a pulse included in the second optical pulse signal;
  • the coupling unit 2104 is configured to perform a combining process on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted including the reference optical signal and the quantum optical signal, and transmit the transmitted optical signal to the receiving device.
  • the frequency of occurrence of the pulse of the reference optical signal in the transmitted optical signal is greater than the frequency of occurrence of the pulse of the quantum optical signal.
  • FIG. 2b is a schematic structural diagram of a transmission optical signal according to an embodiment of the present invention.
  • the abscissa is the time axis 2501
  • the ordinate is the light intensity 2502 in the X polarization state and the light intensity 2505 in the Y polarization state, respectively.
  • Transmitting the reference optical signal 2504 in the Y polarization state, in the Y bias The quantum light signal 2503 is transmitted in an oscillating state.
  • the frequency of the pulse of the reference optical signal 2504 is greater than the frequency of the pulse of the quantum optical signal 2503. Since the frequency is the reciprocal of the period, the period 2507 of the reference optical signal is less than the period 2506 of the quantum optical signal.
  • the quantum optical signal and the reference optical signal included in the transmitted optical signal are polarization multiplexed and time division multiplexed.
  • the coupling unit 2104 performs a combination processing on the reference optical signal and the quantum optical signal to obtain a transmission optical signal including a reference optical signal and a quantum optical signal polarization-multiplexed and time-division multiplexed, and transmits the transmitted optical signal to the receiving device. .
  • the frequency of occurrence of the pulse of the reference optical signal in the transmitted optical signal is greater than the frequency of occurrence of the pulse of the quantum optical signal.
  • the coupling unit 2104 may include multiple structural forms, and the following two optional implementations are provided in the embodiment of the present invention. the way.
  • the specific structural form of the coupling unit 2104 is as follows.
  • FIG. 2 is a schematic structural diagram of a transmitting apparatus for quantum key distribution according to an embodiment of the present invention.
  • the coupling unit 2104 includes a polarization rotating unit connected to the first modulating unit 2102. 2202, and a polarization coupling unit 2201 that is simultaneously connected to the polarization rotation unit 2202 and the second modulation unit 2103.
  • an optional structural form of the polarization rotation unit 2202 is that the polarization rotation unit 2202 includes a polarization beam splitter 2203 connected to the first modulation unit 2102, and the polarization beam splitter 2203 is coupled to the Faraday mirror 2204 and the polarization.
  • the polarization coupling unit may be a polarization combiner.
  • the local oscillator unit 3201 is configured to generate a local oscillator optical signal and send the local oscillator optical signal to the coherent coupling Unit 3101;
  • the phase modulation of the second optical pulse local oscillator signal delayed in the time domain is performed.
  • the carrier recovery unit 3104 includes a first ADC unit 3302 connected to the reference optical balance detecting unit 3102, and a first processing unit 3303 connected to the first ADC unit 3302.
  • the key recovery unit 3105 includes a second ADC unit 3304 connected to the quantum optical balance detecting unit 3103, and a second processing unit 3305 connected to the second ADC unit 3304.
  • the first ADC unit 3302 is configured to receive the first electrical signal, and perform sampling and quantization on the first electrical signal to obtain a reference signal sampling sequence, and send the reference signal sampling sequence to the first processing unit 3303; the first coherent coupled light
  • the reference optical signal included in the signal is within a first predetermined amplitude range of the first ADC unit 3302 in the corresponding first electrical signal;
  • the first processing unit 3303 determines phase frequency information between the local oscillator optical signal and the reference optical signal according to the received reference signal sampling sequence, and transmits the phase frequency information to the second local oscillation modulation unit 4503.
  • FIG. 3 is a schematic structural diagram of a receiving apparatus for quantum key distribution according to an embodiment of the present invention.
  • the local oscillator splitting unit 4501 includes a local oscillator laser 4201, and a local oscillator laser. 4201 connected polarization beam splitter 4401; polarization beam splitter 4401 is connected to third pulse modulator 4402 in first local oscillation modulation unit 4502 and fourth pulse modulator 4405 in second local oscillation modulation unit 4503, respectively.
  • the reference optical signal and the quantum optical signal are transmitted by polarization multiplexing
  • the reference optical signal is in the Y polarization state
  • the quantum optical signal is in the X polarization state.
  • an optional implementation is in the coherent coupling unit 3101.
  • the polarization splitting unit 5401 receives the optical signal output by the polarization control unit 3301 and divides it into a quantum optical signal transmitted on the X polarization state and a reference optical signal transmitted on the Y polarization state, that is, the first output of the polarization beam splitting unit 5401
  • the polarization states of the optical signal after the splitting process and the optical signal after the second splitting process are inconsistent.
  • the reference optical signal is in the Y polarization state
  • the quantum optical signal is in the X polarization state
  • the polarization beam splitting unit 5401 in the coherent coupling unit 3101 receives the polarization control unit 3301 output.
  • the optical signal is divided into a quantum optical signal transmitted on the X-polarized state, and the polarization state of the reference optical signal transmitted on the Y-polarized state is rotated, so that the first spectrally processed light output by the polarization splitting unit 5401 is output.
  • the signal and the second splitting process have the same polarization state of the optical signal, such as the X polarization state.
  • the reference optical balance detecting unit 3102 in the embodiment of the present invention is further configured to perform the in-phase orthogonal IQ detection on the first electrical signal, and The first electrical signal that is subjected to the IQ detection is transmitted to the carrier recovery unit 3104.
  • the carrier recovery unit 3104 is further configured to demodulate the classical information modulated on the reference optical signal from the first electrical signal that has been subjected to the IQ detection. In this way, the utilization of the reference optical signal can be improved.
  • the sub-multiplexing is transmitted to the receiving device as an example, and the polarization states of the reference optical signal and the quantum optical signal are orthogonal, the reference optical signal is transmitted through the Y-polarized state, and the quantum optical signal is transmitted through the X-polarized state.
  • the transmitting device transmits a transmission optical signal to the receiving device through the optical fiber, and the transmitted optical signal first enters the polarization control unit 3301, and the polarization state of the transmitted optical signal entering the polarization control unit 3301 changes in real time.
  • the polarization control unit 3301 can track and adjust the polarization state of the transmitted optical signal in real time such that the transmitted optical signal output to the coherent coupling unit 3101 has a determined polarization state.
  • the polarization control unit 3301 can be a dynamic polarization controller. With reference to a specific example, the polarization states of the reference light signal and the quantum light signal in the optical signal output by the polarization control unit 3301 are still orthogonal.
  • the third pulse modulator 4402 in the first local oscillation modulation unit 4502 performs chopping processing on the third sub-local optical signal to obtain a first optical pulse local oscillation signal;
  • the first delay device 4403 is opposite to the first optical pulse.
  • the local oscillator signal is delayed in the time domain such that the pulse in the first sub-local oscillator signal corresponds to the pulse of the reference optical signal included in the first spectroscopic processed optical signal in the time domain; the first local oscillator
  • the phase modulator 4404 phase-modulates the first optical pulse local oscillator signal delayed in the time domain to obtain a first sub-local oscillator optical signal; the frequency of the pulse included in the first optical pulse local oscillator signal is the first frequency.
  • the local oscillator signal output by the local oscillator unit 3201 and the local oscillator optical signal received by the coherent coupling unit 3101 are ideally in phase, but in the actually operating system, the local oscillator unit 3201 and the optical signal generating unit 2101 The points are in two places, and the output frequency is controlled separately. It is impossible to guarantee that the frequencies are exactly the same, and the phase is not guaranteed to be exactly the same. At the same time, the change of the temperature of the external environment is limited, which causes the length of the fiber to change, which in turn causes the system to be disturbed and a new phase difference is generated.
  • the signal generator 4408 In order to ensure the phase relationship between the local oscillation light signal received at the input end of the coherent coupling unit 3101 and the transmission optical signal input by the polarization control unit 3301, the signal generator 4408 needs to receive the synchronization output by the first processing unit 3303.
  • the clock parameter, and the phase frequency information, such as the phase difference compensation parameter and the frequency offset compensation parameter, the phase difference compensation parameter is the phase difference compensation parameter, and then the signal generator 4408 adjusts the input to the third pulse modulator 4402 and the fourth pulse modulator in real time.
  • the electric pulse signal of 4405, and the phase modulation signal input to the phase modulator thereby realizing the real-time adjustment of the measurement base signal input to the second local oscillator phase modulator 4407.
  • the first sub-coherent coupling unit 5502 and the reference optical balance detecting unit 3102 perform balanced zero-beat detection on the first sub-local optical signal and the first first optically-dissected optical signal, and the first sub-coherent coupling unit 5502 can be 2:2.
  • the coupler, reference light balance detection unit 3102 can be a balanced receiver.
  • Carrier The recovery unit 3104 determines the phase frequency information between the reference optical signal and the local oscillator optical signal by balancing the detection result.
  • the phase difference between the reference light signal and the local oscillator light signal can be determined by the above formula (1).
  • phase difference in the embodiment of the present invention needs to be deduced by careful theory. This is because the local oscillator light signal and the quantum light signal are light emitted by different light sources, and there is a certain frequency difference between them, which will be the local oscillator. The phase difference between the signal and the quantum light signal has an influence, and the phase difference between the local oscillation light signal and the quantum light signal cannot be directly replaced by the phase difference ⁇ between the local oscillation light signal and the reference light signal in the formula (1).
  • the phase of the local oscillator is modulated such that the phase of the local oscillator signal and the quantum optical signal is 0 or ⁇ /2, so that the formula (2) can be simplified to the formula (3) or Any of the formulas in equation (4), but this absolute simplification cannot be achieved because of the uncertainty of the frequency difference.
  • X s is a regular position parameter modulated on the quantum optical signal;
  • I s is a current value output by the quantum light balance detecting unit 3103;
  • I L0 is a second sub-input of the second sub-coherent coupling unit 5503 The intensity of the local oscillator signal;
  • is a proportional symbol.
  • the repetition frequency of the quantum light signal pulse is selected to be 100 MHz, and the repetition frequency of the reference pulse is 500 MHz.
  • the interval between the reference pulse and the signal pulse is 1 ns. From this, ⁇ t ⁇ 0.01 can be calculated, which is a very small amount, which can be neglected in numerical calculation.
  • the coherent detection result of the signal pulse can be approximated as the formula (5):
  • the second local oscillator modulation unit 4503 in the embodiment of the present invention can more accurately modulate the phase of the second sub-local oscillator optical signal according to the more accurate and accurate phase information of the quantum optical signal and the local oscillator optical signal, thereby The optical signal is used as a selective basis to recover a more accurate and accurate original key from the quantum optical signal.
  • FIG. 4 is a schematic flow chart of a quantum key distribution method according to an embodiment of the present invention.
  • Step 403 the transmitting device performs chopping processing on the second optical signal to obtain a second optical pulse signal, and attenuates and modulates the second optical pulse signal to obtain a quantum optical signal; a frequency of a pulse included in the first optical pulse signal Greater than a frequency of a pulse included in the second optical pulse signal;
  • the transmitting device performs a combining process on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted, including the reference optical signal and the quantum optical signal, including:
  • Rotating the polarization state of the received quantum light signal by a second angle rotating the second angle to obtain a reference optical signal and a quantum light signal polarization complex
  • the transmitting device performs a combination processing on the reference optical signal and the quantum optical signal to obtain a transmitted optical signal to be transmitted, including the reference optical signal and the quantum optical signal, and is further configured to:
  • the classic information is modulated onto the first optical pulse signal such that the reference optical signal includes classical information.
  • the receiving device measures the phase frequency information between the pulse of the reference optical signal and the local oscillator optical signal, and further according to the phase between the pulse of the reference optical signal and the local oscillator optical signal.
  • the frequency information estimates the phase frequency information between the pulse of the quantum light signal and the local oscillator signal
  • the error is reduced, and then the phase frequency information between the pulse of the quantum light signal and the local oscillator signal is reduced according to the error for the quantum
  • the modulation of the coherently coupled local oscillator optical signal of the optical signal is more accurate, and the original key recovered from the coherently coupled quantum optical signal is more accurate.
  • FIG. 5 is a schematic flowchart diagram of a quantum key distribution method according to an embodiment of the present invention.
  • Step 501 The receiving device generates a local oscillator optical signal, performs spectral processing on the received transmission optical signal including the reference optical signal and the quantum optical signal, and coherently couples the transmitted optical signal after the spectral processing according to the local oscillator optical signal.
  • Step 502 The receiving device performs photoelectric conversion on the first coherent coupled optical signal and performs differential processing. And amplifying, obtaining a first electrical signal; photoelectrically converting the second coherent coupled optical signal and performing differential processing and amplification to obtain a second electrical signal;
  • Step 503 The receiving device determines phase frequency information between the local oscillator signal and the reference optical signal from the first electrical signal, and recovers the original key from the second electrical signal according to the phase frequency information.
  • the original key is recovered from the second electrical signal, and the specific principle is:
  • the local oscillator signal is used to modulate the coherent light signal for coherent coupling of the quantum optical signal, and then the modulated local oscillator optical signal is coherently coupled with the quantum optical signal, and recovered from the coherently coupled quantum optical signal.
  • the original key is used to modulate the coherent light signal for coherent coupling of the quantum optical signal, and then the modulated local oscillator optical signal is coherently coupled with the quantum optical signal, and recovered from the coherently coupled quantum optical signal.
  • the receiving device generates a local oscillator optical signal, performs spectral processing on the received transmission optical signal including the reference optical signal and the quantum optical signal, and coherently couples the transmitted optical signal after the spectral processing according to the local oscillator optical signal, thereby obtaining a reference including a first coherent coupled optical signal of the optical signal and a second coherent coupled optical signal comprising the quantum optical signal, comprising:
  • the receiving device divides the transmitted optical signal into a first split-processed optical signal including a reference optical signal and a second split-processed optical signal including the quantum optical signal by polarization splitting processing;
  • the receiving device generates the local oscillator signal, and divides the local oscillator signal into the first sub-local optical signal and the second sub-local optical signal, including:
  • the receiving device divides the generated local oscillator optical signal into a third sub-local oscillator optical signal and a fourth sub-local oscillator optical signal; the third sub-local oscillator optical signal and the first split-light processed optical signal have the same polarization state, and the fourth sub- The polarization states of the local light signal and the second light splitting processed light signal are consistent;
  • the receiving device performs chopping processing on the third sub-local optical signal to obtain a first optical pulse local oscillator signal; and phase-modulates the first optical pulse local oscillator signal to obtain a first sub-local oscillator optical signal; the first optical pulse The frequency of the pulse included in the local oscillator signal is the first frequency;
  • the receiving device performs chopping processing on the fourth sub-local oscillator signal to obtain a second optical pulse local oscillator signal; and phase-modulating the second optical pulse local oscillator signal according to the phase frequency information to obtain a second sub-local oscillator optical signal;
  • the frequency of the pulse included in the second optical pulse local oscillator signal is the second frequency.
  • the receiving device performs chopping processing on the third sub-acoustic optical signal to obtain a first optical pulse local oscillator signal, and before performing phase modulation on the first optical pulse local oscillator signal, the method further includes:
  • the receiving device performs chopping processing on the fourth sub-local optical signal to obtain a second optical pulse local oscillator signal, and before performing phase modulation on the second optical pulse local oscillator signal, the method further includes:
  • the receiving device performs photoelectric conversion on the first coherent coupled optical signal, performs differential processing and amplification, and after obtaining the first electrical signal, the method further includes:
  • the in-phase quadrature IQ detection is performed on the first electrical signal, and the classical information modulated on the reference optical signal is demodulated from the first electrical signal subjected to the IQ detection.
  • the pulse of the quantum optical signal and the adjacent reference optical signal since the frequency of the pulse included in the first optical pulse signal is greater than the frequency of the pulse included in the second optical pulse signal, the pulse of the quantum optical signal and the adjacent reference optical signal The time interval between the pulses is small, and then the receiving device measures the phase frequency information between the pulse of the reference optical signal and the local oscillator optical signal, and further according to the phase frequency between the pulse of the reference optical signal and the local oscillator optical signal.
  • the phase frequency information between the pulse of the quantum optical signal and the local oscillator signal is reduced, and the phase frequency information between the pulse of the quantum optical signal and the local oscillator is reduced according to the error.
  • the modulation of the local oscillator optical signal with coherent coupling of the signal is more accurate, and the original key recovered from the coherently coupled quantum optical signal is more accurate.
  • embodiments of the present invention can be provided as a method, or a computer program product. Accordingly, the present invention may employ an entirely hardware embodiment, an entirely software embodiment, or a combination. A form of embodiment of the software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例涉及量子通信领域,尤其涉及一种量子密钥分配方法及发送装置、接收装置,用于更加准确的在量子密钥分配过程中恢复出原始密钥。本发明实施例中,第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,并估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从量子光信号中恢复出的原始密钥则会更加准确。

Description

一种量子密钥分配方法及发送装置、接收装置
本申请要求在2016年02月29日提交中国专利局、申请号为201610114455.5、发明名称为“一种量子密钥分配方法及发送装置、接收装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及量子通信领域,尤其涉及一种量子密钥分配方法及发送装置、接收装置。
背景技术
随着网络技术的快速发展,大量敏感信息需要通过网络传输,人们需要对敏感信息进行保护以免丢失或遭到攻击。加密是保障信息安全的重要手段之一,现有经典加密体系是建立在计算复杂度基础之上的,其存在被破译的可能。经典密码体制中,只有一次一密具有无条件安全性,而如何产生大量的随机数密钥一直是个难题,量子密钥分配(Quantum Key Distribution,简称QKD)技术的出现解决了这个难题。
QKD具体是以量子态作为信息单元,利用量子力学的一些原理来传输和保护信息,通常把通信双方以量子态为信息载体,利用量子力学原理,通过量子信道传输,在保密通信双方之间建立共享密钥。其安全性是由量子力学中的“海森堡测不准关系”及“单量子不可复制定理”或纠缠粒子的相干性和非局域性等量子特性来保证的。
图1a示例性示出了一种量子密钥分配适用的系统结构示意图。如图1a所示,包括发送装置101和接收装置102,发送装置中包括主控单元103、量子发送机104、同步时钟发送机105、协商信息收发机106、业务信息发送机107,接收装置中包括主控单元108、量子接收机109、同步时钟接收机110、协商信息收发机111、业务信息接收机112。发送装置通过量子发送机向接收装置的量子接收机发送携带有原始密钥的量子光信号,以使接收装置从量子 光信号中恢复出原始量子密钥。发送装置通过同步时钟发送机向接收装置的同步时钟接收机发送同步时钟信号,以使接收装置实现与发送装置的时钟同步。发送装置通过协商信息收发机与接收装置的协商信息收发机之间相互发送和接收协商信息,以使发送装置和接收装置根据协商信息从原始量子密钥中确定出最终量子密钥。发送装置通过业务信息发送机向接收装置额业务信息接收机发送业务信息。
量子密钥分配过程,具体是指发送装置将原始密钥携带于量子光信号中,并将该量子光信号发送给接收装置,接收装置接收到该量子光信号之后,从该量子光信号中恢复出原始密钥,进一步通过发送装置与接收装置的协商,从原始密钥中确定出最终所使用的密钥。
现有技术中,发送装置产生本振光信号,并将本振光信号和量子光信号在同一根光纤传送,此时,接收装置若要准确恢复出原始密钥,则需要严格保证该本振光信号和该量子光信号到达2:2耦合器的输入端时间,也就是说,接收装置需要对该本振光信号和该量子光信号所经过的路径做严格的等长控制,该技术方案在工程化使用中难度非常高。
综上,亟需一种量子密钥分配方法及发送装置、接收装置,用于更加简单的在量子密钥分配过程中恢复出原始密钥。
发明内容
本发明实施例提供一种量子密钥分配方法及发送装置、接收装置,用于更加简单的在量子密钥分配过程中恢复出原始密钥。
本发明实施例提供一种用于量子密钥分配的发送装置,包括:
光信号产生单元,用于对产生的光信号进行分光处理,得到第一光信号和第二光信号;并将第一光信号发送给第一调制单元,将第二光信号发送给第二调制单元;
第一调制单元,用于对第一光信号进行斩波处理,得到第一光脉冲信号;并对第一光脉冲信号进行衰减和调制,得到参考光信号,将参考光信号发送 给耦合单元;
第二调制单元,用于对第二光信号进行斩波处理,得到第二光脉冲信号;并对第二光脉冲信号进行衰减和调制,得到量子光信号,将量子光信号发送给耦合单元;第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;
耦合单元,用于对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,并将传输光信号传输给接收装置。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
可选地,耦合单元包括与第一调制单元连接的偏振旋转单元,以及同时与偏振旋转单元和第二调制单元连接的偏振耦合单元;
偏振旋转单元,用于将接收到的参考光信号的偏振态旋转第一角度,并将偏振态旋转第一角度的参考光信号发送给偏振耦合单元;
偏振耦合单元,用于对接收到的量子光信号脉冲,以及偏振态旋转第一角度的参考光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号,并将传输光信号传输给接收装置;
或者,
耦合单元包括与第二调制单元连接的偏振旋转单元,以及同时与偏振旋转单元和第一调制单元连接的偏振耦合单元;
偏振旋转单元,用于将接收到的量子光信号的偏振态旋转第二角度,并将偏振态旋转第二角度的量子光信号发送给偏振耦合单元;
偏振耦合单元,用于对接收到的参考光信号脉冲,以及偏振态旋转第二角度的量子光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待发送的传输光信号,并将传输光信号发送给接收装置。
如此,则实现了参考光信号和量子光信号的偏振复用和时分复用,进而进一步提高了量子光信号和参考光信号的隔离度,降低了量子光信号和参考光信号之间的干扰度。
可选地,第一调制单元,还用于将经典信息调制于第一光脉冲信号上,以使参考光信号中包括经典信息。如此,则可提高参考光信号的利用率,进而提高在量子密钥分配过程中信息的发送效率。
本发明实施例提供一种用于量子密钥分配的接收装置,包括:
相干耦合单元,用于对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号;并将第一相干耦合后光信号发送给参考光平衡探测单元,将第二相干耦合后光信号发送给量子光平衡探测单元;其中,第一相干耦合后光信号中包括的参考光信号的脉冲出现频率为第一频率,第二相干耦合后光信号中包括的量子光信号的脉冲出现频率为第二频率,第一频率大于第二频率;
本振单元,用于产生本振光信号,并将本振光信号发送给相干耦合单元;
参考光平衡探测单元,用于对第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号,并将第一电信号传输给载波恢复单元;
量子光平衡探测单元,用于对第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号,并将第二电信号传输给密钥恢复单元;
载波恢复单元,用于从第一电信号中确定出本振光信号和参考光信号之间的相位频率信息;
密钥恢复单元,用于根据接收到的相位频率信息,从第二电信号中恢复出原始密钥。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
可选地,参考光平衡探测单元的带宽,高于量子光平衡探测单元的带宽;参考光平衡探测单元的增益,低于量子光平衡探测单元的增益。如此,则可使得参考光平衡探测单元对参考光信号的脉冲的增益做到最优,且并不影响量子光平衡探测单元对量子光信号的探测。
可选地,传输光信号中包括的参考光信号和量子光信号偏振复用;
相干耦合单元包括偏振分光单元,以及与偏振分光单元连接的第一子相干耦合单元和第二子相干耦合单元,第一子相干耦合单元连接参考光平衡探测单元,第二子相干耦合单元连接量子光平衡探测单元;
本振单元,用于产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号;将第一子本振光信号发送给第一子相干耦合单元;将第二子本振光信号发送给第二子相干耦合单元;
偏振分光单元,用于通过偏振分光处理,将传输光信号分为包括参考光信号的第一分光处理后光信号和包括量子光信号的第二分光处理后光信号;
第一子相干耦合单元,用于使用第一子本振光信号对第一分光处理后光信号进行相干耦合,输出第一相干耦合后光信号;
第二子相干耦合单元,用于使用第二子本振光信号对第二分光处理后光 信号进行相干耦合,输出第二相干耦合后光信号。
可选地,本振单元包括本振分光单元,以及与本振分光单元连接的第一本振调制单元和第二本振调制单元,第一本振调制单元连接第一子相干耦合单元;第二本振调制单元连接第二子相干耦合单元;
本振分光单元,用于将产生的本振光信号分为第三子本振光信号和第四子本振光信号,并将第三子本振光信号发送给第一本振调制单元,将第四子本振光信号发送给第二本振调制单元;第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致;
第一本振调制单元,用于对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对第一光脉冲本振信号进行相位调制,得到第一子本振光信号;第一光脉冲本振信号中包括的脉冲的频率为第一频率;
第二本振调制单元,用于对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据相位频率信息对第二光脉冲本振信号进行相位调制,得到第二子本振光信号;第二光脉冲本振信号中包括的脉冲的频率为第二频率。
可选地,第一本振调制单元,还用于:
对第一光脉冲本振信号在时域上延迟,以使得到的第一子本振光信号中的脉冲与第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;以使第一本振调制单元对在时域上延迟的第一光脉冲本振信号进行相位调制;
第二本振调制单元,还用于:
对第二光脉冲本振信号在时域上延迟,以使得到的第二子本振光信号中的脉冲与第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应;以使第二本振调制单元对在时域上延迟的第二光脉冲本振信号进行相位调制。
可选地,参考光平衡探测单元,还用于对第一电信号进行同相正交IQ探测,并将进行了IQ探测的第一电信号传输给载波恢复单元;
载波恢复单元,还用于从进行了IQ探测的第一电信号中解调出调制在参 考光信号上的经典信息。如此,则可提高参考光信号的利用率,进而提高在量子密钥分配过程中信息的发送效率。
本发明实施例提供一种量子密钥分配方法,包括:
发送装置对产生的光信号进行分光处理,得到第一光信号和第二光信号;
发送装置对第一光信号进行斩波处理,得到第一光脉冲信号;并对第一光脉冲信号进行衰减和调制,得到参考光信号;
发送装置对第二光信号进行斩波处理,得到第二光脉冲信号;并对第二光脉冲信号进行衰减和调制,得到量子光信号;第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;
发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,并将传输光信号传输给接收装置。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
可选地,发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,包括:
将接收到的参考光信号的偏振态旋转第一角度;对接收到的量子光信号脉冲,以及偏振态旋转第一角度的参考光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号;
或者,
将接收到的量子光信号的偏振态旋转第二角度;对接收到的参考光信号脉冲,以及偏振态旋转第二角度的量子光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待发送的传输光信号。
可选地,发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号之前,还用于:
将经典信息调制于第一光脉冲信号上,以使参考光信号中包括经典信息。
本发明实施例提供一种量子密钥分配方法,包括:
接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号;其中,第一相干耦合后光信号中包括的参考光信号的脉冲出现频率为第一频率,第二相干耦合后光信号中包括的量子光信号的脉冲出现频率为第二频率,第一频率大于第二频率;
接收装置对第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号;对第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号;
接收装置从第一电信号中确定出本振光信号和参考光信号之间的相位频率信息;根据相位频率信息,从第二电信号中恢复出原始密钥。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
可选地,传输光信号中包括的参考光信号和量子光信号偏振复用;
接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号,包括:
接收装置产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号;
接收装置通过偏振分光处理,将传输光信号分为包括参考光信号的第一分光处理后光信号和包括量子光信号的第二分光处理后光信号;
接收装置使用第一子本振光信号对第一分光处理后光信号进行相干耦合,输出第一相干耦合后光信号;使用第二子本振光信号对第二分光处理后光信号进行相干耦合,输出第二相干耦合后光信号。
可选地,接收装置产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号,包括;
接收装置将产生的本振光信号分为第三子本振光信号和第四子本振光信号;第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致;
接收装置对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对第一光脉冲本振信号进行相位调制,得到第一子本振光信号;第一光脉冲本振信号中包括的脉冲的频率为第一频率;
接收装置对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据相位频率信息对第二光脉冲本振信号进行相位调制,得到第二子本振光信号;第二光脉冲本振信号中包括的脉冲的频率为第二频率。
可选地,接收装置对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号之后,对第一光脉冲本振信号进行相位调制之前,还包括:
对第一光脉冲本振信号在时域上延迟,以使得到的第一子本振光信号中的脉冲与第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;
接收装置对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号之后,对第二光脉冲本振信号进行相位调制之前,还包括:
对第二光脉冲本振信号在时域上延迟,以使得到的第二子本振光信号中的脉冲与第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应。
可选地,接收装置对第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号之后,还包括:
对第一电信号进行同相正交IQ探测,并从进行了IQ探测的第一电信号中解调出调制在参考光信号上的经典信息。
本发明实施例中,对产生的光信号进行分光处理,将得到的第一光信号和第二光信号分别进行斩波处理得到第一光脉冲信号和第二光脉冲信号,进而对第一光脉冲信号和第二光脉冲信号分别进行衰减和调制,得到参考光信号和量子光信号;第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,并将传输光信号传输给接收装置。可见,一方面,无需对发送装置和接收装置的两路光纤长度差进行严格的等长控制,降低了技术难度,实现了更加简单的在量子密钥分配过程中恢复出原始密钥的目的。
进一步,本发明实施例中,由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍。
图1a为现有技术中提供的一种量子密钥分配适用的系统结构示意图;
图1b为本发明实施例适用的一种系统结构示意图;
图1c为本发明实施例适用的一种系统结构示意图;
图2a为本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图;
图2b为本发明实施例提供的一种传输光信号的结构示意图;
图2c为本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图;
图2d为本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图;
图2e为本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图;
图2f为本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图;
图3a为本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图;
图3b为本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图;
图3c为本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图;
图4a为本发明实施例提供的一种量子密钥分配方法的流程示意图;
图5a为本发明实施例提供的另一种量子密钥分配方法的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例中,接收装置包括于接收装置中,用于在接收装置侧通过更加简单且准确的方法,从接收到的量子光信号中恢复出原始密钥。接收装置包括但不限于基站、站控制器、接入点(Access Point,简称AP)、或任何其它类型的能够在无线环境中工作的接口装置。
图1b示例性示出了本发明实施例适用的一种系统结构示意图,图1c示例性示出了本发明实施例适用的另一种系统结构示意图。
如图1b所示,本发明实施例适用的系统架构中节点A仅包括发送装置1101,节点B仅包括接收装置1102。此系统架构称为单向系统架构。节点A处的发送装置1101将原始密钥携带于量子光信号中,并发送给接收装置1102,接收装置1102从该量子光信号中恢复出原始密钥,进而发送装置1101和接收装置1102从原始密钥中通过协商确定出最终量子密钥。进一步,节点A处的发送装置1101接收输入的业务信息,使用最终量子密钥对业务信息进行加密过程,得到一个加密信号,向接收装置1102发送该加密信号。接收装置1102接收到该加密信号之后,使用相同的最终量子密钥进行解密过程,将该业务信息解密并输出,并通过经典信道向发送装置1101发送信息。
具体实施中,业务通常是双向的,比如语音、视频通话等业务。在双向进行的业务中,每个节点都需要加密和解密处理,相应地每个节点都需要一套QKD系统。如图1c所示,本发明实施例适用的系统架构中节点A包括发送装置1201和接收装置1203。节点B包括接收装置1202和发送装置1204。发送装置1201和接收装置1202是一对,发送装置1204和接收装置1203是一对。此系统架构称为双向系统架构。该系统架构下可实现多种信息传输方式,以发送装置1201和接收装置1202这一对为例进行介绍,比如:
节点A处的发送装置1201将原始密钥携带于量子光信号中,并发送给接收装置1202,接收装置1202从该量子光信号中恢复出原始密钥,进而发送装 置1201和接收装置1202从原始密钥中通过协商确定出最终量子密钥。
节点A处的发送装置1201使用最终量子密钥对接收到的业务信息进行加密,进而向节点B处的接收装置1202发送该加密后的业务信息。接收装置1202使用相同的最终量子密钥进行解密,并输出该业务信息。接收装置1202通过经典信道向发送装置1201发送信息。或者接收装置1202通过发送装置1204和接收装置1203向发送装置1201反馈信息。
本发明实施例适用于QKD技术。QKD技术包括离散变量量子密钥分配(Discrete Variable-Quantum Key Distribution,简称DV-QKD)和连续变量量子密钥分配(Continuous Variable-Quantum Key Distribution,简称CV-QKD)。CV-QKD由于其不需要工作于低温的单光子探测器,因而在工程中受到了更广泛的应用,因此本发明实施例优选地适用于CV-QKD技术。本发明实施例中以自参考连续变量量子密钥分配系统为例进行介绍。
本发明实施例中所提到的相干耦合、光电转换和放大都是相干探测的技术术语。本发明实施例中,相干探测的工作原理具体为:发送装置采用外调制方式将信号调制到光载波上进行传输。当发送装置的传输光信号传输至接收装置时,接收装置将接收到的传输光信号与一个本振光信号进行相干耦合,然后由平衡探测器进行探测,也可描述为使用平衡接收机进行探测。相干光通信根据本振光信号的频率与传输光信号的频率不等或相等,可分为外差检测和零差检测。
基于上述系统架构,以及现有技术中的量子密钥分配技术中出现的问题,发展出了一种自参考连续变量量子密钥分配技术,该技术中,接收装置产生本振光信号,并将本振光信号和发送装置发送过来的量子光信号做平衡探测,为了能够准确恢复出原始密钥,需要发送装置额外发送一种参考光信号用于估算量子光信号的相位频率信息,但是这种估算存在误差,会对恢复最终密钥产生影响。
具体来说,该解决方案为:
发送装置向接收装置发送传输光信号,传输光信号中包括时分复用的参 考光信号和量子光信号。接收装置接收到该传输光信号之后,接收装置本地产生一个本振光信号,并使用该本振光信号对接收到的传输光信号进行相干探测,该过程仅使用一个平衡接收机。为了保证接收装置产生的本振光信号和传输光信号的量子光信号之间仍然有稳定的干涉,则传输光信号中包括的相邻两个量子光信号之间需要引入一个光强较强的参考光信号。接收装置从量子光信号之间的参考光信号中确定出该参考光信号和本振光信号之间的相位信息,进而使接收装置根据相位信息实现测量基的随机选择,并进而从量子光信号中恢复出原始密钥信息。
上述方案中接收装置确定本振光信号和参考光信号之间的相位频率信息的基本原理为:参考光信号的脉冲和相邻的量子光信号的脉冲在时域上非常接近,且参考光信号的脉冲和量子光信号的脉冲都经过了同一段信道传输,因此可以近似地认为参考光信号的脉冲在传输过程中由于发生变化所产生的相位频率信息和相邻的量子光信号的脉冲由于发生变化所产生的相位频率信息一致,或者认为某个量子光信号的脉冲的前后两个参考光信号的脉冲在传输过程中由于发生变化所产生的相位频率信息的平均值与量子光信号的脉冲由于发生变化所产生的相位频率信息一致。因此,接收装置可根据探测出的本振光信号和参考光信号之间的相位频率信息,估算量子光信号和本振光信号之间的相位频率信息,进而根据量子光信号和本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的相位进行调整,进而使用调整后的本振光信号对量子光信号进行相干耦合,并从相干耦合后的量子光信号中恢复出原始密钥信息。
申请人发现,该解决方案中,一方面,为了从传输光信号的量子光信号中恢复出高增益的信号,进而恢复出更加准确的原始密钥,则用于对量子光信号进行探测的平衡接收机是工作在较低的带宽下,由于该平衡接收机还需要对参考光信号进行探测,因此,此时,为了能够从量子光信号中恢复出高增益的信号则需要对传输光信号中包括的传输光信号的脉冲的出现频率进行限制,即传输光信号的脉冲的出现频率不会调高,比如通常可为10MHz量级。
另一方面,又由于接受装置产生的本振光信号和传输光信号毕竟不是同一个激光器产生的,两者之间还是会存在一个频率差,该频率差会对接收装置根据传输光信号的参考光信号和本振光信号的平衡探测结果所估算出的传输光信号的量子光信号和本振光信号的相位频率信息造成影响,进而得到不够准确的相位频率信息。为了使得该频率差对相位频率信息的影响降低到可以忽略,此时需要保证传输光信号中包括的传输光信号的脉冲的出现频率大于某一个阈值,比如大于100MHz。
可见,上述解决方案中,为了从传输光信号的量子光信号中恢复出高增益的信号,进而恢复出更加准确的原始密钥,需要对传输光信号的脉冲的出现频率进行限制;而为了使得该频率差对相位频率信息的影响降低到可以忽略,此时需要保证传输光信号的出现频率大于某一个阈值。此种矛盾使得对参考光信号和量子光信号进行探测的平衡接收机的工作性能不是最佳,而且探测出的结果的准确度也随之降低。
针对上述问题,本发明实施例提供种量子密钥分配方法及发送装置、接收装置,一方面,该方案无需对发送装置和接收装置的两路光纤长度差进行严格的等长控制,降低了技术难度,实现了更加简单的在量子密钥分配过程中恢复出原始密钥的目的。进一步,本发明实施例中,由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;即由于参考光信号中包括的脉冲的频率较大,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调整则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
可选地,本发明实施例中的相位频率信息可包括本振光信号和参考光信 号之间的相位差和频率差等信息。
图2a示例性示出了本发明实施例提供的一种用于量子密钥分配的发送装置结构示意图。
基于上述系统架构以及相关论述,如图2a所示,本发明实施例提供的一种用于量子密钥分配的发送装置包括光信号产生单元2101,与光信号产生单元2101连接的第一调制单元2102和第二调制单元2103,以及同时与第一调制单元2102和第二调制单元2103连接的耦合单元2104,耦合单元2104最终向接收装置输出传输光信号:
光信号产生单元2101,用于对产生的连续光信号进行分光处理,得到第一光信号和第二光信号;并将第一光信号发送给第一调制单元2102,将第二光信号发送给第二调制单元2103;
第一调制单元2102,用于对第一光信号进行斩波处理,得到第一光脉冲信号;并对第一光脉冲信号进行衰减和调制,得到参考光信号,将参考光信号发送给耦合单元2104;
第二调制单元2103,用于对第二光信号进行斩波处理,得到第二光脉冲信号;并对第二光脉冲信号进行衰减和调制,得到量子光信号,将量子光信号发送给耦合单元2104;第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;
耦合单元2104,用于对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,并将传输光信号传输给接收装置。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此传输光信号中参考光信号的脉冲的出现频率大于量子光信号的脉冲的出现频率。
图2b示例性示出了本发明实施例提供的一种传输光信号的结构示意图。如图2b所示,横坐标为时间轴2501,纵坐标分别为X偏振态上的光强度2502和Y偏振态上的光强度2505。在Y偏振态上发送参考光信号2504,在Y偏 振态上发送量子光信号2503。参考光信号2504的脉冲的频率大于量子光信号2503的脉冲的频率,由于频率是周期的倒数,因此参考光信号的周期2507小于量子光信号的周期2506。在图2a中,传输光信号中包括的量子光信号和参考光信号偏振复用且时分复用。
耦合单元2104对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号偏振复用且时分复用的一路待传输的传输光信号,并将传输光信号传输给接收装置。传输光信号中参考光信号的脉冲的出现频率大于量子光信号的脉冲的出现频率。
可选地,当传输光信号中包括的参考光信号和量子光信号偏振复用且时分复用时,耦合单元2104可包括多种结构形式,本发明实施例中提供以下两种可选地实施方式。在不同的实施方式中,耦合单元2104的具体结构形式如下描述。
图2c示例性示出了本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图,如图2c所示,耦合单元2104包括包括与第一调制单元2102连接的偏振旋转单元2202,以及同时与偏振旋转单元2202和第二调制单元2103连接的偏振耦合单元2201。可选地,偏振旋转单元2202的一种可选地的结构形式为:偏振旋转单元2202包括与第一调制单元2102连接的偏振分束器2203,偏振分束器2203连接法拉第反射镜2204以及偏振耦合单元2201。可选地,偏振耦合单元可为偏振合束器。
如图2c所示,耦合单元2104包括与第一调制单元2102连接的偏振旋转单元2202,以及同时与偏振旋转单元2202和第二调制单元2103连接的偏振耦合单元2201;偏振旋转单元2202,用于将接收到的参考光信号的偏振态旋转第一角度,并将偏振态旋转第一角度的参考光信号发送给偏振耦合单元2201;偏振耦合单元2201,用于对接收到的量子光信号脉冲,以及偏振态旋转第一角度的参考光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号,并将传输光信号传输给接收装置。
图2d示例性示出了本发明实施例提供的一种用于量子密钥分配的发送装置的结构示意图,如图2d所示,耦合单元2104包括与第二调制单元2103连接的偏振旋转单元2202,以及同时与偏振旋转单元2202和第一调制单元2102连接的偏振耦合单元2201。可选地,偏振旋转单元2202的一种可选地的结构形式为:偏振旋转单元2202包括与第二调制单元2103连接的偏振分束器2203,偏振分束器2203连接法拉第反射镜2204以及偏振耦合单元2201。
如图2d所示,偏振旋转单元2202,用于将接收到的量子光信号的偏振态旋转第二角度,并将偏振态旋转第二角度的量子光信号发送给偏振耦合单元2201;偏振耦合单元2201,用于对接收到的参考光信号脉冲,以及偏振态旋转第二角度的量子光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待发送的传输光信号,并将传输光信号发送给接收装置。
为了更清楚的介绍本发明实施例,图2e示例性示出了本发明实施例中一种用于量子密钥分配的发送装置的结构示意图,如图2e所示,光信号产生单元2101包括激光器2301,以及与激光器2301连接的分束器2302;分束器2302连接第一调制单元2102的第一脉冲调制器2303,分束器2302还连接第二调制单元2103的第二脉冲调制器2307,第一脉冲调制器2303连接第一振幅调制器2304,第一振幅调制器2304连接第一相位调制器2305,第一相位调制器2305连接第一可调衰减器2306;第二脉冲调制器2307连接第二振幅调制器2308,第二振幅调制器2308连接第二相位调制器2309,第二相位调制器2309连接第二可调衰减器2310;基于上述图2c所示的一种耦合单元2104的结构形式,在图2e中,第一可调衰减器2306连接偏振旋转单元2202中的偏振分束器2203,偏振分束器2203同时连接法拉第反射镜2204和偏振耦合单元2201;第二可调衰减器2310连接偏振耦合单元2201。
结合图2e对发送装置的工作原理进行更加详细的介绍。
如图2e所示,激光器2301光源发出连续光,比如1550nm的连续光;激光器2301发出的连续光进入分束器2302被进行分光处理,得到第一光信号 和第二光信号,并将第一光信号发送给第一调制单元2102的第一脉冲调制器2303,将第二光信号发送给第二调制单元2103的第二脉冲调制器2307。
第一脉冲调制器2303对接收到到的第一光信号进行斩波处理,形成脉冲具有一定重复频率的第一光脉冲信号;并通过第一振幅调制器2304对第一光脉冲信号进行振幅调制,通过第一相位调制器2305对进行振幅调制后的第一光脉冲信号进行相位调制,在将进行过振幅和相位调制的第一光脉冲信号通过第一可调衰减器2306进行衰减,得到参考光信号,将参考光信号发送给耦合单元2104。可选地,第一脉冲调制器2303生成第一光脉冲信号之后,也可先通过第一可调衰减器2306对第一光脉冲信号进行衰减,之后再对其进行振幅和相位的调制,最终得到量子光信号。
第二脉冲调制器2307对接收到到的第二光信号进行斩波处理,形成脉冲具有一定重复频率的第二光脉冲信号;并通过第二振幅调制器2308对第二光脉冲信号进行振幅调制,通过第二相位调制器2309对进行振幅调制后的第二光脉冲信号进行相位调制,在将进行过振幅和相位调制的第二光脉冲信号通过第二可调衰减器2310进行衰减,得到量子光信号,将量子光信号发送给耦合单元2104。可选地,第二脉冲调制器2307生成第二光脉冲信号之后,也可先通过第二可调衰减器2310对第二光脉冲信号进行衰减,之后再对其进行振幅和相位的调制,最终得到参考光信号。
本发明实施例中,第一脉冲调制器2303和第二脉冲调制器2307中的参数可预先约定,以使第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率。
第一可调衰减器2306将参考光信号发送至偏振分束器2203,偏振分束器2203和法拉第反射镜2204组合使用,将接收到的参考光信号的偏振态旋转第一角度,第一角度可为90度,另一方面,由于此时第一可调衰减器2306输出的参考光信号相比于第二可调衰减器2310输出的量子光信号多走了一段路程,因此,参考光信号从偏振分束器2203进入到偏振耦合单元2201的参考光信号比直接从第二可调衰减器2310进入到偏振耦合单元2201的量子光信 号多了一段时延。偏振分束器2203将偏振态旋转第一角度的参考光信号发送给偏振耦合单元2201;
偏振耦合单元2201,用于对接收到的量子光信号脉冲,以及偏振态旋转第一角度的参考光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号,并将传输光信号传输给接收装置。
偏振耦合单元2201接收旋转了第一角度的参考光信号,以及未旋转的量子光信号,偏振耦合单元2201将旋转了第一角度的参考光信号偏振正交地和未旋转的量子光信号混合入一个光纤通道进行传输,从而实现了参考光信号和量子光信号的偏振复用和时分复用。可选地,还可控制参考光信号相比于量子光信号的时间延迟,比如通过第一可调衰减器2306与偏振耦合单元2201之间的光纤或者偏振旋转单元2202进行控制,以使参考光信号的脉冲与量子光信号的脉冲在时间上均匀错开,如此可尽量降低参考光信号和量子光信号在同一个光纤通道中进行传输时彼此之间的串扰。
可选地,本发明实施例中,参考光信号仅仅用于使接收装置确定出本振光信号和参考光信号之间的相位频率信息,为了提高量子密钥分配过程的信息传输效率,可选地,本发明实施例中第二调制单元2103,将经典信息调制于第一光脉冲信号上,以使参考光信号中包括经典信息。经典信息为量子密钥分配过程中的一些不需要保密的信息,如此,则提高了信息传输效率。
图2f示例性示出了本发明实施例中一种用于量子密钥分配的发送装置的结构示意图,如图2f所示,第一调制单元2102中包括与分束器连接的第一脉冲调制器2303,以及与第一脉冲调制器2303连接的同相正交调制器,与同相正交调制器连接的第一可调衰减器2306,第一可调衰减器2306与耦合单元2104连接。
如图2f所示,第一脉冲调制器2303输出的第一光脉冲信号进入同相正交(In-phase Quadrature,简称IQ)调制器,同相正交调制器采用传统正交相移键控(Quadrature Phase Shift Keyin,简称QPSK)的调制方式对第一可调衰减器 2306进行四相调制,将需要编码的经典信息调制到参考光信号上。
从上述内容可看出,本发明实施例中,由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
图3a示例性示出了本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图。
基于上述系统架构以及相同构思,如图3a所示,本发明实施例提供的一种接收装置,包括相干耦合单元3101,以及与相干耦合单元3101连接的参考光平衡探测单元3102和量子光平衡探测单元3103,与参考光平衡探测单元3102连接的载波恢复单元3104,与量子光平衡探测单元3103连接的密钥恢复单元3105,相干耦合单元还连接本振单元3201,本振单元3201与载波恢复单元3104连接;
相干耦合单元3101,用于对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号;并将第一相干耦合后光信号发送给参考光平衡探测单元3102,将第二相干耦合后光信号发送给量子光平衡探测单元3103;其中,第一相干耦合后光信号中包括的参考光信号的脉冲出现频率为第一频率,第二相干耦合后光信号中包括的量子光信号的脉冲出现频率为第二频率,第一频率大于第二频率;
本振单元3201,用于产生本振光信号,并将本振光信号发送给相干耦合 单元3101;
参考光平衡探测单元3102,用于对第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号,并将第一电信号传输给载波恢复单元3104;
量子光平衡探测单元3103,用于对第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号,并将第二电信号传输给密钥恢复单元3105;
载波恢复单元3104,用于从第一电信号中确定出本振光信号和参考光信号之间的相位频率信息;
密钥恢复单元3105,用于根据接收到的相位频率信息,从第二电信号中恢复出原始密钥。
具体来说,本发明实施例中密钥恢复单元3105根据接收到的相位频率信息,从第二电信号中恢复出原始密钥的工作原理为:经过探测得到参考光信号和本振光信号之间的相位频率信息,比如相位差,之后根据参考光信号和本振光信号之间的相位频率信息估算出量子光信号和本振光信号之间的相位频率信息,进而使用量子光信号和本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号进行调制相位补偿,之后使用调制后的本振光信号与量子光信号进行相干耦合,并从相干耦合后的量子光信号中恢复出原始密钥。
由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小。举个例子,比如每2秒钟一个参考光信号的脉冲,每20秒一个量子光信号的脉冲,此时由于参考光信号和量子光信号时分复用,因此量子光信号的脉冲应该位于两个相邻参考光信号的脉冲之间,两个相邻参考光信号的脉冲之间的时间间隔为2秒,因此量子光信号与该量子光信号相邻的参考光信号的时间间隔可为1秒。可看出,参考光信号的脉冲的出现频率越高,相邻参考光信号的脉冲之间的时间间隔越短,此时量子光信号与其相邻的参 考光信号之间的时间间隔也越短。进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
由于本发明实施例中分别使用了参考光平衡探测单元3102和量子光平衡探测单元3103,因此,可通过参考光平衡探测单元3102对传输光信号中的参考光信号进行相干探测,可通过量子光平衡探测单元3103对传输光信号中的量子光信号进行相干探测,进而可对参考光平衡探测单元3102和量子光平衡探测单元3103的参数分别进行设置。可选地,参考光平衡探测单元3102的带宽,高于量子光平衡探测单元3103的带宽;参考光平衡探测单元3102的增益,低于量子光平衡探测单元3103的增益。
本发明实施例中,可选地,传输光信号中包括的参考光信号和量子光信号偏振复用;比如,图2b所示的传输光的结构图所示。此时,图3b示例性示出了本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图。如图3b所示,相干耦合单元3101包括偏振分光单元5401,以及与偏振分光单元5401连接的第一子相干耦合单元5502和第二子相干耦合单元5503,第一子相干耦合单元5502连接参考光平衡探测单元3102,第二子相干耦合单元5503连接量子光平衡探测单元3103。
本振单元3201,用于产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号;将第一子本振光信号发送给第一子相干耦合单元5502;将第二子本振光信号发送给第二子相干耦合单元5503;
偏振分光单元5401,用于通过偏振分光处理,将传输光信号分为包括参考光信号的第一分光处理后光信号和包括量子光信号的第二分光处理后光信号;
第一子相干耦合单元5502,用于使用第一子本振光信号对第一分光处理后光信号进行相干耦合,输出第一相干耦合后光信号;
第二子相干耦合单元5503,用于使用第二子本振光信号对第二分光处理后光信号进行相干耦合,输出第二相干耦合后光信号。
图3b还示例性示出了本发明实施例中本振单元3201的一种可能的结构示意图。如图3b所示,本振单元3201包括本振分光单元4501,以及与本振分光单元4501连接的第一本振调制单元4502和第二本振调制单元4503,第一本振调制单元4502连接第一子相干耦合单元5502;第二本振调制单元4503连接第二子相干耦合单元5503;可选地,本振分光单元4501可为偏振分束器4401;
本振分光单元4501,用于将产生的本振光信号分为第三子本振光信号和第四子本振光信号,并将第三子本振光信号发送给第一本振调制单元4502,将第四子本振光信号发送给第二本振调制单元4503;第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致;
第一本振调制单元4502,用于对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对第一光脉冲本振信号进行相位调制,得到第一子本振光信号;第一光脉冲本振信号中包括的脉冲的频率为第一频率;
第二本振调制单元4503,用于对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据接收到的相位频率信息对第二光脉冲本振信号进行相位调制,得到第二子本振光信号;第二光脉冲本振信号中包括的脉冲的频率为第二频率。
可选地,本振光信号包括用于对传输光信号中的参考光信号进行拟合的第一本振光信号,以及用于对传输光信号中的量子光信号进行拟合的第二本振光信号;第一本振光信号的相位为预设的固定相位值;第二本振光信号的相位为为通过载波恢复单元确定出的相位频率信息之后所计算出的用于选择测量基的两个相位值中的随机一个。
可选地,第一本振调制单元4502,还用于:
对第一光脉冲本振信号在时域上延迟,以使得到的第一子本振光信号中的脉冲与第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;并对在时域上延迟的第一光脉冲本振信号进行相位调制;
第二本振调制单元4503,还用于:
对第二光脉冲本振信号在时域上延迟,以使得到的第二子本振光信号中的脉冲与第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应;并对在时域上延迟的第二光脉冲本振信号进行相位调制。
如图3b所示,可选地,相干耦合单元3101还连接偏振控制单元3301。具体来说,发送装置通过光纤向接收装置传输一个传输光信号,该传输光信号先进入到偏振控制单元3301中,进入到该偏振控制单元3301之前的传输光信号的偏振状态是实时变化的,此时,通过偏振控制单元3301,可实时跟踪并调整该传输光信号的偏振状态,以使输出至相干耦合单元3101的传输光信号中的参考光信号和量子光信号之间仍然是确定的正交偏振状态。可选地,偏振控制单元3301可为动态偏振控制器。
如图3b所示,载波恢复单元3104包括与参考光平衡探测单元3102连接的第一ADC单元3302,和与第一ADC单元3302连接的第一处理单元3303。密钥恢复单元3105包括与量子光平衡探测单元3103连接的第二ADC单元3304,和与第二ADC单元3304连接的第二处理单元3305。
第一ADC单元3302,用于接收第一电信号,并对第一电信号进行采样量化,得到参考信号采样序列,并将参考信号采样序列发送给第一处理单元3303;第一相干耦合后光信号中包括的参考光信号在对应的第一电信号中对应的电信号幅值处于第一ADC单元3302的第一预设幅值范围内;
第一处理单元3303,根据接收到的参考信号采样序列,确定出本振光信号和参考光信号之间的相位频率信息,并将相位频率信息发送给第二本振调制单元4503。
第二ADC单元3304,用于接收第二电信号,并对第二电信号进行采样量 化,得到量子信号采样序列,并将量子信号采样序列发送给第二处理单元3305;每个第二相干耦合后光信号中包括的量子光信号在对应的第二电信号中对应的电信号幅值处于第二ADC单元3304的第二预设幅值范围内;
第二处理单元3305,根据接收到的量子信号采样序列恢复出原始密钥。
具体实施中,第一ADC单元3302可包括一个或多个ADC,第二ADC单元3304可包括一个或多个ADC。第一ADC单元3302的第一预设幅值范围为第一ADC单元3302中包括的ADC可以进行采样量化的一个幅值范围,第二ADC单元3304的第二预设幅值范围为第二ADC单元3304中包括的ADC可以进行采样量化的一个幅值范围。
图3c示例性示出了本发明实施例提供的一种用于量子密钥分配的接收装置的结构示意图,如图3c所示,本振分光单元4501包括本振激光器4201,以及与本振激光器4201连接的偏振分束器4401;偏振分束器4401分别连接第一本振调制单元4502中的第三脉冲调制器4402和第二本振调制单元4503中的第四脉冲调制器4405,第三脉冲调制器4402连接第一延时器4403,第一延时器4403连接第一本振相位调制器4404,第一本振相位调制器4404连接第一子相干耦合单元5502;第四脉冲调制器4405连接第二延时器4406,第二延时器4406连接第二本振相位调制器4407,第二本振相位调制器4407连接第二子相干耦合单元5503;信号产生器4408连接载波恢复单元3104的第一处理单元3303,以及第三脉冲调制器4402、第四脉冲调制器4405、第一延时器4403和第二延时器4406。
当参考光信号和量子光信号通过偏振复用进行传输时,参考光信号在Y偏振态上,量子光信号在X偏振态上,此时一种可选地实施方式为相干耦合单元3101中的偏振分光单元5401接收偏振控制单元3301输出的光信号,并将其分为X偏振态上传输的量子光信号和Y偏振态上传输的参考光信号,也就是说偏振分光单元5401输出的第一分光处理后光信号和第二分光处理后光信号的偏振态不一致。此时本振分光单元4501输出的第一子本振光信号和第二子本振光信号的偏振态也不一致,具体的,比如可为本振分光单元4501将 输入至第一本振调制单元4502的第一子本振光信号的偏振态进行旋转,以使第一子本振光信号的偏振态和参考光信号的偏振态保持一致,均为Y偏振态,X偏振态为默认偏振态,即默然情况下本振分光单元4501所输出的第二子本振光信号的偏振态即为X偏振态,因此无需对第二子本振光信号的偏振态进行旋转,即可保证第二子本振光信号的偏振态与量子光信号的偏振态一致。
另一种可选地实施方式中,如图3b所示,参考光信号在Y偏振态上,量子光信号在X偏振态上,相干耦合单元3101中的偏振分光单元5401接收偏振控制单元3301输出的光信号,并将其分为X偏振态上传输的量子光信号,并对Y偏振态上传输的参考光信号的偏振态进行旋转,以使偏振分光单元5401输出的第一分光处理后光信号和第二分光处理后光信号的偏振态一致,比如均为X偏振态。此时本振分光单元4501用于将产生的本振光信号分为第三子本振光信号和第四子本振光信号,并将第三子本振光信号发送给第一本振调制单元4502,将第四子本振光信号发送给第二本振调制单元4503,并未对第三子本振光信号和第四子本振光信号的偏振态进行任何的调整。此时,本振分光单元4501所产生的第三子本振光信号和第四子本振光信号的偏振态一致,且第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致。此时,图3b中的本振风光单元可仅仅包括本振激光器4201和一个分光器即可,分光器所分出的第三子本振光信号和第四子本振光信号分别进入第三脉冲条分之前和第四脉冲调制器4405中。
可选地,如果传输光信号中的参考光信号中还调制有经典信息,则本发明实施例中的参考光平衡探测单元3102,还用于对第一电信号进行同相正交IQ探测,并将进行了IQ探测的第一电信号传输给载波恢复单元3104;载波恢复单元3104,还用于从进行了IQ探测的第一电信号中解调出调制在参考光信号上的经典信息。如此,则可提高参考光信号的利用率。
为了更清楚的介绍本发明实施例中接收装置的工作原理,下面结合图3c进行详细介绍。以传输光信号中参考光信号和量子光信号通过偏振复用和时 分复用传输至接收装置为例,且参考光信号和量子光信号的偏振态正交,参考光信号通过Y偏振态传输,量子光信号通过X偏振态传输。
发送装置通过光纤向接收装置传输一个传输光信号,该传输光信号先进入到偏振控制单元3301中,进入到该偏振控制单元3301中的传输光信号的偏振状态是实时变化的,此时,通过偏振控制单元3301,可实时跟踪并调整该传输光信号的偏振状态,以使输出至相干耦合单元3101的传输光信号具有确定的偏振状态。可选地,偏振控制单元3301可为动态偏振控制器。结合具体示例,则偏振控制单元3301输出的光信号中参考光信号和量子光信号的偏振态依然正交。
偏振控制单元3301所输出的光信号进入偏振分光单元5401中,偏振分光单元5401通过偏振分光处理,将传输光信号分为包括参考光信号的第一分光处理后光信号和包括量子光信号的第二分光处理后光信号,第一分光处理后光信号的偏振态依然是Y偏振态,第二处理后光信号的偏振态依然是X偏振态。可见,通过偏振分光单元5401使两个偏振态上传输的光信号偏振解复用,此时即可实现不同偏振态的光信号在不同的光纤中传输的目的。第一分光处理后光信号进入第一子相干耦合单元5502,第二分光处理后光信号进入第二子相干耦合单元5503。可选地,第一子相干耦合单元5502和第二子相干耦合单元5503可均为2:2的耦合器。
本振单元3201中本振激光器4201产生本振光信号,由偏振分束器4401将其分为第三子本振光信号和第四子本振光信号,并将第三子本振光信号发送给第一本振调制单元4502,将第四子本振光信号发送给第二本振调制单元4503;第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致。也就是说偏振分束器4401将第三子本振光信号的偏振态进行旋转,以使第三子本振光信号的偏振态为Y偏振态,偏振分束器4401输出的第四子本振光信号的偏振态为X偏振态。
之后第一本振调制单元4502中的第三脉冲调制器4402对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;第一延时器4403对第一光脉 冲本振信号在时域上延迟,以使得到的第一子本振光信号中的脉冲与第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;第一本振相位调制器4404对在时域上延迟的第一光脉冲本振信号进行相位调制,得到第一子本振光信号;第一光脉冲本振信号中包括的脉冲的频率为第一频率。
之后第二本振调制单元4503中的第四脉冲调制器4405对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;第二延时器4406对第二光脉冲本振信号在时域上延迟,以使得到的第二子本振光信号中的脉冲与第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应;第二本振相位调制器4407对在时域上延迟的第二光脉冲本振信号进行相位调制,得到第二子本振光信号;第二光脉冲本振信号中包括的脉冲的频率为第二频率。第一子本振光信号和第二子本振光信号的光强度可以调节为一致,也可调节为不一致。
进一步,理想情况下本振单元3201所输出的本振光信号和相干耦合单元3101所接收的本振光信号是同频同相的,但是实际运行的系统中,本振单元3201和光信号产生单元2101分处于两地,其输出频率是分别进行控制,无法保证其频率完全相同,更无法保证其相位完全一样。同时受限外部环境温度的变化,会导致光纤长度产生变化,进而使系统不可避免发生扰动,产生新的相位差。为了保证在相干耦合单元3101的输入端所接收到的本振光信号和偏振控制单元3301所输入的传输光信号之间的相位关系,信号产生器4408需要接收第一处理单元3303所输出的同步时钟参数,以及相位频率信息,比如相差补偿参数和频偏补偿参数,相差补偿参数即为相位差补偿参数,进而由信号产生器4408实时调整输入到第三脉冲调制器4402和第四脉冲调制器4405的电脉冲信号,以及输入到相位调制器的相位调制信号,进而达到实时调整输入至第二本振相位调制器4407的测量基信号。
第一子相干耦合单元5502和参考光平衡探测单元3102对第一子本振光信号和第一第一分光处理后光信号进行平衡零拍探测,第一子相干耦合单元5502可为2:2耦合器,参考光平衡探测单元3102可为一个平衡接收机。载波 恢复单元3104通过平衡探测结果确定出参考光信号和本振光信号之间的相位频率信息。
平衡零拍探测原理如下:
在量子系统中,对于参考光信号进行的相干检测的结果可以用公式(1)来表示:
Figure PCTCN2016100182-appb-000001
在公式(1)中,θ为参考光信号和本振光信号的等效相位差;Xr和Pr是参考光信号自身被调制的参数(在量子密钥分配系统中,Xr和Pr被设定为发送装置和接收装置均已知的参数);Ir为参考光平衡探测单元3102输出的电流值;IL0为输入第一子相干耦合单元5502的第一子本振光信号的光强;∝为正比例符号。
通过上述公式(1)可以确定出参考光信号和本振光信号之间的相位差。
在确定出参考光信号和本振光信号之间的相位差之后,根据参考光信号和本振光信号之间的相位差对用来和量子光信号做平衡零拍探测的第二子本振光信号做相位调制,使得第二子本振光信号和量子光信号的相位是0或者π/2。
本发明实施例中对于相位差的估算需要通过仔细的理论推演,这是因为本振光信号和量子光信号是不同的光源发出的光,它们之间是存在一定的频差,会对本振光信号和量子光信号之间的相位差产生影响,不能直接用公式(1)中的本振光信号和参考光信号之间的相位差θ代替本振光信号和量子光信号的相位差。
将频差带入参考光信号的相干探测结果可以近似表示为公式(2):
Figure PCTCN2016100182-appb-000002
公式(2)中,Δω为本振光信号和量子光信号的频率差;t为参考光信号与邻近的量子光信号的时间间隔,θ为参考光信号和本振光信号的等效相位差;
Figure PCTCN2016100182-appb-000003
是额外加载在本振光信号上的相位调制;Xs为调制在量子光信号上的正则位 置参数;Ps为调制在量子光信号上的正则动量参数;Is为量子光平衡探测单元3103输出的电流值;IL0为输入第二子相干耦合单元5503的第二子本振光信号的光强;∝为正比例符号;·为乘以。
在量子密钥分配系统中,对本振光的相位做调制使得该本振光信号和量子光信号的相位是0或者π/2的目的就是是能够将公式(2)简化为公式(3)或者公式(4)中的任一个公式,但是因为频率差的不确定值导致无法做到这种绝对的简化。
Figure PCTCN2016100182-appb-000004
在公式(3)中,Xs为调制在量子光信号上的正则位置参数;Is为量子光平衡探测单元3103输出的电流值;IL0为输入第二子相干耦合单元5503的第二子本振光信号的光强;∝为正比例符号。
Figure PCTCN2016100182-appb-000005
在公式(4)中,Ps为调制在量子光信号上的正则动量参数;Is为量子光平衡探测单元3103输出的电流值;IL0为输入第二子相干耦合单元5503的第二子本振光信号的光强;∝为正比例符号。
要评估出频率差对探测结果的影响,则需要知道上述公式(2)中Δω·t的大小。对于两个不同激光器发射出的光,其频率差可以通过光谱仪来测量。而以目前的技术水平来说,光谱仪的分辨率最高只能做到5MHz,因此对于两个不同激光器发出的光的频率差,仪器探测只能测量到10MHz量级,那么可以认为频率差的上限:Δω<10MHz(Δω的实际值是实时变化的)。
分析公式(2)中的本振光和量子光信号的相位差:
Figure PCTCN2016100182-appb-000006
如果能够满足
Figure PCTCN2016100182-appb-000007
的条件下,由频率差引起的相位变化影响就可以相对地忽略,通过数值计算可以得到t≤10ns的结论。
例如,选择量子光信号脉冲的重复频率是100MHz,参考脉冲的重复频率是500MHz,通过偏振复用和时分复用后,参考脉冲和信号脉冲的间隔时间是1ns。由此可以计算出Δω·t<0.01,这是个非常小的量,数值计算上可以忽略掉, 这样对信号脉冲的相干检测结果就能够近似表示为公式(5):
Figure PCTCN2016100182-appb-000008
在公式(5)中,θ为参考光信号和本振光信号的等效相位差;
Figure PCTCN2016100182-appb-000009
是额外加载在本振光信号上的相位调制;Xs为调制在量子光信号上的正则位置参数;Ps为调制在量子光信号上的正则动量参数;Is为量子光平衡探测单元3103输出的电流值;IL0为输入第二子相干耦合单元5503的第二子本振光信号的光强;∝为正比例符号。
通过选择合适的
Figure PCTCN2016100182-appb-000010
就可以将上述公式(5)简化为公式(3)或者公式(4),这就是对信号脉冲的两个调制参数的选择测量。
估算相位差的理论分析中,还需要补充一个随机相位变化δθ,其产生的原因是基于外界环境的扰动。因为参考光信号和量子光信号是存在时间间隔的,即使两者都经过同一个信道从发送装置传输到接收装置,外界环境引入的随机干扰导致两者在传输过程中相位变化出现差异也是存在的。如果时间间隔越长,那么这种随机相位变化δθ可能就会变得很大,会使得相位估算的误差非常大,即使是采用量子光信号的前后两个参考光信号与本振光信号的相位差的平均值来估算中间的量子光信号与本振光信号的相位差的方法也可无法消除随机相位变化δθ的影响。在上述对本发明实施例的示例中参考光信号和量子光信号的间隔时间只有1ns,而现有技术中参考光信号和量子光信号的间隔时间是50ns,因此本发明实施例中外界环境对信号传输过程中随机相位变化δθ会更小,如此,本发明实施例提高了所确定出的量子光信号和本振光信号的相位信息的准确度和精度。
进而本发明实施例中的第二本振调制单元4503可根据更加准确和精确的量子光信号和本振光信号的相位信息来更加准确地调制第二子本振光信号的相位,从而对量子光信号做选择基测量,从而从量子光信号中恢复出更加准确和精确的原始密钥。
从上述内容可看出,本发明实施例中,由于第一光脉冲信号中包括的脉 冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
图4a示例性示出了本发明实施例提供的一种量子密钥分配方法的流程示意图。
基于相同构思,本发明实施例提供一种量子密钥分配方法,可由上述内容中的发送装置实现,如图4a所示,包括:
步骤401,发送装置对产生的光信号进行分光处理,得到第一光信号和第二光信号;
步骤402,发送装置对第一光信号进行斩波处理,得到第一光脉冲信号;并对第一光脉冲信号进行衰减和调制,得到参考光信号;
步骤403,发送装置对第二光信号进行斩波处理,得到第二光脉冲信号;并对第二光脉冲信号进行衰减和调制,得到量子光信号;第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率;
步骤404,发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,并将传输光信号传输给接收装置。
可选地,发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号,包括:
将接收到的参考光信号的偏振态旋转第一角度;对接收到的量子光信号脉冲,以及偏振态旋转第一角度的参考光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号;
或者,
将接收到的量子光信号的偏振态旋转第二角度;对接收到的参考光信号脉冲,以及偏振态旋转第二角度的量子光信号进行偏振耦合处理,得到参考光信号和量子光信号偏振复用和时分复用的一路待发送的传输光信号。
可选地,发送装置对参考光信号和量子光信号进行合束处理,得到包括参考光信号和量子光信号的一路待传输的传输光信号之前,还用于:
将经典信息调制于第一光脉冲信号上,以使参考光信号中包括经典信息。
从上述内容可看出,本发明实施例中,由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
图5a示例性示出了本发明实施例提供的一种量子密钥分配方法的流程示意图。
基于相同构思,本发明实施例提供一种量子密钥分配方法,可由上述内容中的发送装置实现,如图5a所示,包括:
步骤501,接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号;其中,第一相干耦合后光信号中包括的参考光信号的脉冲出现频率为第一频率,第二相干耦合后光信号中包括的量子光信号的脉冲出现频率为第二频率,第一频率大于第二频率;
步骤502,接收装置对第一相干耦合后光信号进行光电转换并做差分处理 和放大,得到第一电信号;对第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号;
步骤503,接收装置从第一电信号中确定出本振光信号和参考光信号之间的相位频率信息,根据相位频率信息,从第二电信号中恢复出原始密钥。
根据相位频率信息,从第二电信号中恢复出原始密钥,具体原理为:
使用相位频率信息对用于对量子光信号进行相干耦合的本振光信号进行调制,之后使用调制后的本振光信号与量子光信号进行相干耦合,并从相干耦合后的量子光信号中恢复出原始密钥。
可选地,传输光信号中包括的参考光信号和量子光信号偏振复用;
接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括参考光信号的第一相干耦合后光信号和包括量子光信号的第二相干耦合后光信号,包括:
接收装置产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号;
接收装置通过偏振分光处理,将传输光信号分为包括参考光信号的第一分光处理后光信号和包括量子光信号的第二分光处理后光信号;
接收装置使用第一子本振光信号对第一分光处理后光信号进行相干耦合,输出第一相干耦合后光信号;使用第二子本振光信号对第二分光处理后光信号进行相干耦合,输出第二相干耦合后光信号。
可选地,接收装置产生本振光信号,并将本振光信号分为第一子本振光信号和第二子本振光信号,包括;
接收装置将产生的本振光信号分为第三子本振光信号和第四子本振光信号;第三子本振光信号和第一分光处理后光信号的偏振态一致,第四子本振光信号和第二分光处理后光信号的偏振态一致;
接收装置对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对第一光脉冲本振信号进行相位调制,得到第一子本振光信号;第一光脉 冲本振信号中包括的脉冲的频率为第一频率;
接收装置对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据相位频率信息对第二光脉冲本振信号进行相位调制,得到第二子本振光信号;第二光脉冲本振信号中包括的脉冲的频率为第二频率。
可选地,接收装置对第三子本振光信号进行斩波处理,得到第一光脉冲本振信号之后,对第一光脉冲本振信号进行相位调制之前,还包括:
对第一光脉冲本振信号在时域上延迟,以使得到的第一子本振光信号中的脉冲与第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;
接收装置对第四子本振光信号进行斩波处理,得到第二光脉冲本振信号之后,对第二光脉冲本振信号进行相位调制之前,还包括:
对第二光脉冲本振信号在时域上延迟,以使得到的第二子本振光信号中的脉冲与第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应。
可选地,接收装置对第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号之后,还包括:
对第一电信号进行同相正交IQ探测,并从进行了IQ探测的第一电信号中解调出调制在参考光信号上的经典信息。
从上述内容可看出,本发明实施例中由于第一光脉冲信号中包括的脉冲的频率大于第二光脉冲信号中包括的脉冲的频率,因此量子光信号的脉冲与相邻的参考光信号的脉冲之间的时间间隔较小,进而当接收装置测量出参考光信号的脉冲与本振光信号之间的相位频率信息,进而根据参考光信号的脉冲与本振光信号之间的相位频率信息估算量子光信号的脉冲与本振光信号之间的相位频率信息时误差会降低,进而根据误差降低的量子光信号的脉冲与本振光信号之间的相位频率信息对用于对量子光信号进行相干耦合的本振光信号的调制则会更加准确,进而从相干耦合后的量子光信号中恢复出的原始密钥则会更加准确。
本领域内的技术人员应明白,本发明的实施例可提供为方法、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合 软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种用于量子密钥分配的发送装置,其特征在于,包括:
    光信号产生单元,用于对产生的光信号进行分光处理,得到第一光信号和第二光信号;并将所述第一光信号发送给第一调制单元,将所述第二光信号发送给第二调制单元;
    所述第一调制单元,用于对所述第一光信号进行斩波处理,得到第一光脉冲信号;并对所述第一光脉冲信号进行衰减和调制,得到参考光信号,将所述参考光信号发送给耦合单元;
    所述第二调制单元,用于对所述第二光信号进行斩波处理,得到第二光脉冲信号;并对所述第二光脉冲信号进行衰减和调制,得到量子光信号,将所述量子光信号发送给所述耦合单元;所述第一光脉冲信号中包括的脉冲的频率大于所述第二光脉冲信号中包括的脉冲的频率;
    所述耦合单元,用于对所述参考光信号和所述量子光信号进行合束处理,得到包括所述参考光信号和所述量子光信号的一路待传输的传输光信号,并将所述传输光信号传输给接收装置。
  2. 如权利要求1所述的发送装置,其特征在于,所述耦合单元包括与所述第一调制单元连接的偏振旋转单元,以及同时与所述偏振旋转单元和所述第二调制单元连接的偏振耦合单元;
    所述偏振旋转单元,用于将接收到的所述参考光信号的偏振态旋转第一角度,并将偏振态旋转所述第一角度的参考光信号发送给所述偏振耦合单元;
    所述偏振耦合单元,用于对接收到的所述量子光信号脉冲,以及偏振态旋转所述第一角度的参考光信号进行偏振耦合处理,得到所述参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号,并将所述传输光信号传输给接收装置;
    或者,
    所述耦合单元包括与所述第二调制单元连接的偏振旋转单元,以及同时 与所述偏振旋转单元和所述第一调制单元连接的偏振耦合单元;
    所述偏振旋转单元,用于将接收到的所述量子光信号的偏振态旋转第二角度,并将偏振态旋转所述第二角度的量子光信号发送给所述偏振耦合单元;
    所述偏振耦合单元,用于对接收到的所述参考光信号脉冲,以及偏振态旋转所述第二角度的量子光信号进行偏振耦合处理,得到所述参考光信号和量子光信号偏振复用和时分复用的一路待发送的传输光信号,并将所述传输光信号发送给接收装置。
  3. 如权利要求1或2所述的发送装置,其特征在于,所述第一调制单元,还用于:
    将经典信息调制于所述第一光脉冲信号上,以使所述参考光信号中包括所述经典信息。
  4. 一种用于量子密钥分配的接收装置,其特征在于,包括:
    相干耦合单元,用于对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括所述参考光信号的第一相干耦合后光信号和包括所述量子光信号的第二相干耦合后光信号;并将所述第一相干耦合后光信号发送给参考光平衡探测单元,将所述第二相干耦合后光信号发送给量子光平衡探测单元;其中,所述第一相干耦合后光信号中包括的所述参考光信号的脉冲出现频率为第一频率,所述第二相干耦合后光信号中包括的所述量子光信号的脉冲出现频率为第二频率,所述第一频率大于所述第二频率;
    所述本振单元,用于产生所述本振光信号,并将所述本振光信号发送给所述相干耦合单元;
    所述参考光平衡探测单元,用于对所述第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号,并将所述第一电信号传输给所述载波恢复单元;
    所述量子光平衡探测单元,用于对所述第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号,并将所述第二电信号传输给所 述密钥恢复单元;
    所述载波恢复单元,用于从所述第一电信号中确定出所述本振光信号和所述参考光信号之间的相位频率信息;
    所述密钥恢复单元,用于根据接收到的所述相位频率信息,从所述第二电信号中恢复出原始密钥。
  5. 如权利要求4所述的接收装置,其特征在于,所述参考光平衡探测单元的带宽,高于所述量子光平衡探测单元的带宽;
    所述参考光平衡探测单元的增益,低于所述量子光平衡探测单元的增益。
  6. 如权利要求4或5所述的接收装置,其特征在于,所述传输光信号中包括的所述参考光信号和所述量子光信号偏振复用;
    所述相干耦合单元包括偏振分光单元,以及与所述偏振分光单元连接的第一子相干耦合单元和第二子相干耦合单元,所述第一子相干耦合单元连接所述参考光平衡探测单元,所述第二子相干耦合单元连接所述量子光平衡探测单元;
    所述本振单元,用于产生所述本振光信号,并将所述本振光信号分为第一子本振光信号和第二子本振光信号;将所述第一子本振光信号发送给所述第一子相干耦合单元;将所述第二子本振光信号发送给所述第二子相干耦合单元;
    所述偏振分光单元,用于通过偏振分光处理,将所述传输光信号分为包括所述参考光信号的第一分光处理后光信号和包括所述量子光信号的第二分光处理后光信号;
    所述第一子相干耦合单元,用于使用所述第一子本振光信号对所述第一分光处理后光信号进行相干耦合,输出所述第一相干耦合后光信号;
    所述第二子相干耦合单元,用于使用所述第二子本振光信号对所述第二分光处理后光信号进行相干耦合,输出所述第二相干耦合后光信号。
  7. 如权利要求6所述的接收装置,其特征在于,所述本振单元包括本振分光单元,以及与所述本振分光单元连接的第一本振调制单元和第二本振调 制单元,所述第一本振调制单元连接所述第一子相干耦合单元;所述第二本振调制单元连接所述第二子相干耦合单元;
    所述本振分光单元,用于将产生的所述本振光信号分为第三子本振光信号和第四子本振光信号,并将所述第三子本振光信号发送给所述第一本振调制单元,将所述第四子本振光信号发送给所述第二本振调制单元;所述第三子本振光信号和所述第一分光处理后光信号的偏振态一致,所述第四子本振光信号和所述第二分光处理后光信号的偏振态一致;
    所述第一本振调制单元,用于对所述第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对所述第一光脉冲本振信号进行相位调制,得到所述第一子本振光信号;所述第一光脉冲本振信号中包括的脉冲的频率为第一频率;
    所述第二本振调制单元,用于对所述第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据所述相位频率信息对所述第二光脉冲本振信号进行相位调制,得到所述第二子本振光信号;所述第二光脉冲本振信号中包括的脉冲的频率为第二频率。
  8. 如权利要求7所述的接收装置,其特征在于,所述第一本振调制单元,还用于:
    对所述第一光脉冲本振信号在时域上延迟,以使得到的所述第一子本振光信号中的脉冲与所述第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;以使所述第一本振调制单元对在时域上延迟的第一光脉冲本振信号进行相位调制;
    所述第二本振调制单元,还用于:
    对所述第二光脉冲本振信号在时域上延迟,以使得到的所述第二子本振光信号中的脉冲与所述第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应;以使所述第二本振调制单元对在时域上延迟的第二光脉冲本振信号进行相位调制。
  9. 如权利要求4至8任一权利要求所述的接收装置,其特征在于,所述 参考光平衡探测单元,还用于:
    对所述第一电信号进行同相正交IQ探测,并将进行了IQ探测的第一电信号传输给所述载波恢复单元;
    所述载波恢复单元,还用于:
    从进行了IQ探测的第一电信号中解调出调制在所述参考光信号上的经典信息。
  10. 一种量子密钥分配方法,其特征在于,包括:
    发送装置对产生的光信号进行分光处理,得到第一光信号和第二光信号;
    所述发送装置对所述第一光信号进行斩波处理,得到第一光脉冲信号;并对所述第一光脉冲信号进行衰减和调制,得到参考光信号;
    所述发送装置对所述第二光信号进行斩波处理,得到第二光脉冲信号;并对所述第二光脉冲信号进行衰减和调制,得到量子光信号;所述第一光脉冲信号中包括的脉冲的频率大于所述第二光脉冲信号中包括的脉冲的频率;
    所述发送装置对所述参考光信号和所述量子光信号进行合束处理,得到包括所述参考光信号和所述量子光信号的一路待传输的传输光信号,并将所述传输光信号传输给接收装置。
  11. 如权利要求10所述的方法,其特征在于,所述发送装置对所述参考光信号和所述量子光信号进行合束处理,得到包括所述参考光信号和所述量子光信号的一路待传输的传输光信号,包括:
    将接收到的所述参考光信号的偏振态旋转第一角度;对接收到的所述量子光信号脉冲,以及偏振态旋转所述第一角度的参考光信号进行偏振耦合处理,得到所述参考光信号和量子光信号偏振复用和时分复用的一路待传输的传输光信号;
    或者,
    将接收到的所述量子光信号的偏振态旋转第二角度;对接收到的所述参考光信号脉冲,以及偏振态旋转所述第二角度的量子光信号进行偏振耦合处理,得到所述参考光信号和量子光信号偏振复用和时分复用的一路待发送的 传输光信号。
  12. 如权利要求10或11所述的方法,其特征在于,所述所述发送装置对所述参考光信号和所述量子光信号进行合束处理,得到包括所述参考光信号和所述量子光信号的一路待传输的传输光信号之前,还用于:
    将经典信息调制于所述第一光脉冲信号上,以使所述参考光信号中包括所述经典信息。
  13. 一种量子密钥分配方法,其特征在于,包括:
    接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据所述本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括所述参考光信号的第一相干耦合后光信号和包括所述量子光信号的第二相干耦合后光信号;其中,所述第一相干耦合后光信号中包括的所述参考光信号的脉冲出现频率为第一频率,所述第二相干耦合后光信号中包括的所述量子光信号的脉冲出现频率为第二频率,所述第一频率大于所述第二频率;
    所述接收装置对所述第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号;对所述第二相干耦合后光信号进行光电转换并做差分处理和放大,得到第二电信号;
    所述接收装置从所述第一电信号中确定出所述本振光信号和所述参考光信号之间的相位频率信息;根据所述相位频率信息,从所述第二电信号中恢复出原始密钥。
  14. 如权利要求13所述的方法,其特征在于,所述传输光信号中包括的所述参考光信号和所述量子光信号偏振复用;
    所述接收装置产生本振光信号,对接收到的包括参考光信号和量子光信号的传输光信号进行分光处理,并根据所述本振光信号对进行分光处理后的传输光信号进行相干耦合,得到包括所述参考光信号的第一相干耦合后光信号和包括所述量子光信号的第二相干耦合后光信号,包括:
    所述接收装置产生所述本振光信号,并将所述本振光信号分为第一子本 振光信号和第二子本振光信号;
    所述接收装置通过偏振分光处理,将所述传输光信号分为包括所述参考光信号的第一分光处理后光信号和包括所述量子光信号的第二分光处理后光信号;
    所述接收装置使用所述第一子本振光信号对所述第一分光处理后光信号进行相干耦合,输出所述第一相干耦合后光信号;使用所述第二子本振光信号对所述第二分光处理后光信号进行相干耦合,输出所述第二相干耦合后光信号。
  15. 如权利要求14所述的方法,其特征在于,所述接收装置产生所述本振光信号,并将所述本振光信号分为第一子本振光信号和第二子本振光信号,包括;
    所述接收装置将产生的所述本振光信号分为第三子本振光信号和第四子本振光信号;所述第三子本振光信号和所述第一分光处理后光信号的偏振态一致,所述第四子本振光信号和所述第二分光处理后光信号的偏振态一致;
    所述接收装置对所述第三子本振光信号进行斩波处理,得到第一光脉冲本振信号;并对所述第一光脉冲本振信号进行相位调制,得到所述第一子本振光信号;所述第一光脉冲本振信号中包括的脉冲的频率为第一频率;
    所述接收装置对所述第四子本振光信号进行斩波处理,得到第二光脉冲本振信号;并根据所述相位频率信息对所述第二光脉冲本振信号进行相位调制,得到所述第二子本振光信号;所述第二光脉冲本振信号中包括的脉冲的频率为第二频率。
  16. 如权利要求15所述的方法,其特征在于,所述接收装置对所述第三子本振光信号进行斩波处理,得到第一光脉冲本振信号之后,对所述第一光脉冲本振信号进行相位调制之前,还包括:
    对所述第一光脉冲本振信号在时域上延迟,以使得到的所述第一子本振光信号中的脉冲与所述第一分光处理后光信号中包括的参考光信号的脉冲在时域上对应;
    所述接收装置对所述第四子本振光信号进行斩波处理,得到第二光脉冲本振信号之后,对所述第二光脉冲本振信号进行相位调制之前,还包括:
    对所述第二光脉冲本振信号在时域上延迟,以使得到的所述第二子本振光信号中的脉冲与所述第二分光处理后光信号中包括的量子光信号的脉冲在时域上对应。
  17. 如权利要求13至16任一权利要求所述的方法,其特征在于,所述接收装置对所述第一相干耦合后光信号进行光电转换并做差分处理和放大,得到第一电信号之后,还包括:
    对所述第一电信号进行同相正交IQ探测,并从进行了IQ探测的第一电信号中解调出调制在所述参考光信号上的经典信息。
PCT/CN2016/100182 2016-02-29 2016-09-26 一种量子密钥分配方法及发送装置、接收装置 WO2017148141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610114455.5 2016-02-29
CN201610114455.5A CN107135065B (zh) 2016-02-29 2016-02-29 一种量子密钥分配方法及发送装置、接收装置

Publications (1)

Publication Number Publication Date
WO2017148141A1 true WO2017148141A1 (zh) 2017-09-08

Family

ID=59721277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100182 WO2017148141A1 (zh) 2016-02-29 2016-09-26 一种量子密钥分配方法及发送装置、接收装置

Country Status (2)

Country Link
CN (1) CN107135065B (zh)
WO (1) WO2017148141A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947925A (zh) * 2017-12-06 2018-04-20 安徽继远软件有限公司 一种适用于纵差保护的量子密钥加密系统及控制方法
CN109547202A (zh) * 2018-12-18 2019-03-29 国科量子通信网络有限公司 量子密钥回收的方法、装置及系统
CN110351071A (zh) * 2018-04-02 2019-10-18 浙江九州量子信息技术股份有限公司 一种发射端无需干涉环的量子密钥分发系统及方法
CN110456468A (zh) * 2019-09-17 2019-11-15 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) 一种量子光器件空间混合集成组件
WO2020020100A1 (zh) * 2018-07-23 2020-01-30 华为技术有限公司 量子密钥传输装置及系统
CN110896329A (zh) * 2018-09-12 2020-03-20 中国科学技术大学 基于本地本振光方案的连续变量量子密钥分发相干探测系统
CN111211900A (zh) * 2020-01-16 2020-05-29 无锡太湖学院 一种自由空间连续变量量子密钥分发的极化成对编码方法
WO2020200449A1 (en) * 2019-04-04 2020-10-08 Huawei Technologies Duesseldorf Gmbh Optical injection locking in quantum key distribution
CN111970280A (zh) * 2020-08-18 2020-11-20 中南大学 连续变量量子密钥分发系统的攻击检测方法
US11228430B2 (en) 2019-09-12 2022-01-18 General Electric Technology Gmbh Communication systems and methods
CN114268433A (zh) * 2021-12-27 2022-04-01 中南大学 高速连续变量量子密钥分发系统的非线性补偿方法
WO2023151927A1 (en) * 2022-02-11 2023-08-17 Institut Mines Telecom Joint classical and quantum optical communications

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612686B (zh) * 2017-09-07 2020-06-05 中南大学 外差检测的一维调制连续变量量子密钥分发系统及方法
CN107809312B (zh) * 2017-10-16 2020-05-08 北京航天控制仪器研究所 一种基于偏振编码的量子通信终端
CN108599929A (zh) * 2018-03-27 2018-09-28 四川航天系统工程研究所 一种基于偏振复用的相位编码量子密钥分发系统
US11223424B2 (en) * 2018-08-10 2022-01-11 Nokia Technologies Oy Fibre-based communication
CN110896328B (zh) * 2018-09-12 2022-04-19 中国科学技术大学 基于单个参考光脉冲单零差探测的连续变量量子密钥分发系统
CN109617687B (zh) * 2019-01-15 2021-03-09 三峡大学 一种可见光通信的量子加密系统
CN110851111B (zh) * 2019-10-15 2022-08-23 中国电子科技集团公司第三十研究所 一种高安全的源无关量子随机数产生装置与方法
CN111064067B (zh) * 2019-12-19 2021-05-25 中国兵器装备研究院 光纤激光相干合成系统
CN112468298B (zh) * 2021-01-27 2021-04-23 北京中创为南京量子通信技术有限公司 用于cv-qkd的脉冲调制装置、发射机、系统及方法
CN114785420B (zh) * 2022-04-19 2023-07-11 国开启科量子技术(北京)有限公司 用于合束光脉冲的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414553A (zh) * 2013-07-29 2013-11-27 南京发艾博光电科技有限公司 基于时隙交织主动偏振补偿的量子密钥分发系统及方法
CN105024809A (zh) * 2015-07-22 2015-11-04 上海交通大学 基于高斯调制相干态的长距离连续变量量子密钥分发方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576791C (zh) * 2006-05-30 2009-12-30 华南师范大学 相位差分量子密钥分发方法及系统
US7853020B2 (en) * 2007-09-19 2010-12-14 Mogiq Technologies, Inc. Systems and methods for enhanced quantum key formation using an actively compensated QKD system
CN102916807B (zh) * 2012-10-12 2015-05-20 上海交通大学 连续变量量子密钥分发系统的偏振补偿实现方法
US9722784B2 (en) * 2013-01-25 2017-08-01 Selex Es S.P.A. Quantum cryptographic key distribution system including two peripheral devices and an optical source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414553A (zh) * 2013-07-29 2013-11-27 南京发艾博光电科技有限公司 基于时隙交织主动偏振补偿的量子密钥分发系统及方法
CN105024809A (zh) * 2015-07-22 2015-11-04 上海交通大学 基于高斯调制相干态的长距离连续变量量子密钥分发方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947925A (zh) * 2017-12-06 2018-04-20 安徽继远软件有限公司 一种适用于纵差保护的量子密钥加密系统及控制方法
CN110351071A (zh) * 2018-04-02 2019-10-18 浙江九州量子信息技术股份有限公司 一种发射端无需干涉环的量子密钥分发系统及方法
WO2020020100A1 (zh) * 2018-07-23 2020-01-30 华为技术有限公司 量子密钥传输装置及系统
CN110896329A (zh) * 2018-09-12 2020-03-20 中国科学技术大学 基于本地本振光方案的连续变量量子密钥分发相干探测系统
CN109547202A (zh) * 2018-12-18 2019-03-29 国科量子通信网络有限公司 量子密钥回收的方法、装置及系统
WO2020200449A1 (en) * 2019-04-04 2020-10-08 Huawei Technologies Duesseldorf Gmbh Optical injection locking in quantum key distribution
US11228430B2 (en) 2019-09-12 2022-01-18 General Electric Technology Gmbh Communication systems and methods
CN110456468A (zh) * 2019-09-17 2019-11-15 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) 一种量子光器件空间混合集成组件
CN110456468B (zh) * 2019-09-17 2024-04-05 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) 一种量子光器件空间混合集成组件
CN111211900A (zh) * 2020-01-16 2020-05-29 无锡太湖学院 一种自由空间连续变量量子密钥分发的极化成对编码方法
CN111970280A (zh) * 2020-08-18 2020-11-20 中南大学 连续变量量子密钥分发系统的攻击检测方法
CN111970280B (zh) * 2020-08-18 2022-05-06 中南大学 连续变量量子密钥分发系统的攻击检测方法
CN114268433A (zh) * 2021-12-27 2022-04-01 中南大学 高速连续变量量子密钥分发系统的非线性补偿方法
CN114268433B (zh) * 2021-12-27 2024-04-16 中南大学 高速连续变量量子密钥分发系统的非线性补偿方法
WO2023151927A1 (en) * 2022-02-11 2023-08-17 Institut Mines Telecom Joint classical and quantum optical communications

Also Published As

Publication number Publication date
CN107135065A (zh) 2017-09-05
CN107135065B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2017148141A1 (zh) 一种量子密钥分配方法及发送装置、接收装置
WO2017084380A1 (zh) 一种量子通信方法和装置
CN108432177B (zh) 具有偏振和频分多路复用的片上连续变量量子密钥分发系统
Gisin et al. Trojan-horse attacks on quantum-key-distribution systems
JP4822811B2 (ja) 光通信装置
JP4632652B2 (ja) 量子暗号鍵配布システム及びそれに用いる同期方法
KR102031966B1 (ko) 수신기에서 광자 추출에 기반한 양자 암호 키 분배 방법 및 장치
WO2017148140A1 (zh) 一种原始密钥恢复装置和方法
US20030169880A1 (en) Quantum cryptography key distribution system and method
US9768885B2 (en) Pilot-aided feedforward data recovery in optical coherent communications
WO2017161961A1 (zh) 量子信号检测方法和量子信号检测装置
US11777723B2 (en) Post-reception synchronization in a continuous variable quantum key distribution (CV-QKD) system
US7266304B2 (en) System for secure optical transmission of binary code
WO2020177848A1 (en) Calibrating trusted noise in quantum key distribution
Chin et al. Digital synchronization for continuous-variable quantum key distribution
JP4962700B2 (ja) 量子暗号通信装置
Pelet et al. Operational entanglement-based quantum key distribution over 50 km of field-deployed optical fibers
Jain et al. qTReX: A semi-autonomous continuous-variable quantum key distribution system
Roberts et al. Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution
WO2020192910A1 (en) Synchronization in quantum key distribution
JP4882491B2 (ja) 量子暗号通信装置、通信端末および付加情報送信方法
JP2005286485A (ja) 量子暗号通信方法、および量子暗号通信装置
SE2150855A1 (en) Encoder, decoder, systems and methods for d-dimensional frequency-encoded quantum communication and information processing
Giudice et al. Using QKD-exchanged keys for encryption of VPN
JP4737225B2 (ja) 量子暗号鍵配布システム及びそれに用いる同期方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892323

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892323

Country of ref document: EP

Kind code of ref document: A1