WO2017148100A1 - 一种彩色3d物体的制作方法及系统 - Google Patents

一种彩色3d物体的制作方法及系统 Download PDF

Info

Publication number
WO2017148100A1
WO2017148100A1 PCT/CN2016/093243 CN2016093243W WO2017148100A1 WO 2017148100 A1 WO2017148100 A1 WO 2017148100A1 CN 2016093243 W CN2016093243 W CN 2016093243W WO 2017148100 A1 WO2017148100 A1 WO 2017148100A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
printing
layer
molding material
ink
Prior art date
Application number
PCT/CN2016/093243
Other languages
English (en)
French (fr)
Inventor
蒋韦
陈伟
李嘉
陈晓坤
周毅
Original Assignee
珠海赛纳打印科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610119405.6A external-priority patent/CN107160671B/zh
Priority claimed from CN201610117648.6A external-priority patent/CN107150437B/zh
Application filed by 珠海赛纳打印科技股份有限公司 filed Critical 珠海赛纳打印科技股份有限公司
Publication of WO2017148100A1 publication Critical patent/WO2017148100A1/zh
Priority to US16/106,292 priority Critical patent/US10919213B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/22Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0007Manufacturing coloured articles not otherwise provided for, e.g. by colour change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention belongs to the field of rapid prototyping of 3D objects, in particular to a technology for manufacturing a 3D object by layer-by-layer superposition using an inkjet print head, in particular to a method and system for manufacturing a color 3D object.
  • Rapid prototyping technology also known as rapid prototyping or additive manufacturing, is based on 3D model slicing and layering to create 3D objects.
  • the rapid prototyping technology is used to produce 3D objects, including fused deposition technology (abbreviation: FDM technology), stereolithography (SLA technology), selective laser sintering technology (SLS technology), and lamination molding technology. : LOM technology) or 3D inkjet printing technology (abbreviation: 3DP technology).
  • FDM technology fused deposition technology
  • SLA technology stereolithography
  • SLS technology selective laser sintering technology
  • LOM technology stereolithography
  • SLS technology selective laser sintering technology
  • lamination molding technology lamination molding technology
  • LOM technology stereolithography
  • 3DS technology selective laser sintering technology
  • 3DP technology 3D inkjet printing technology
  • the use of 3DP technology to produce 3D objects is one of the hotspots of research in recent years, especially in how to use 3DP technology to produce full-color 3D objects.
  • each drop of ink ejected by the print head has a certain volume after photocuring, and a large number of solidified ink droplets are stacked layer by layer to form a 3D object.
  • the principle of inkjet printing in inkjet printing is that each pixel corresponds to one ink droplet. For example, when printing a red area, each pixel corresponds to a red ink droplet. When printing a green area, each pixel needs to be sprayed with a yellow color.
  • red (M), yellow (Y), blue (C) three-color light-curing resin and white (W) light-curing resin are used as molding materials in combination to print full-color 3D objects.
  • the physical properties between different materials are basically the same, such as viscosity, shrinkage, surface tension, etc., especially the shrinkage rate is strict, if the shrinkage rate between the materials Inconsistent, the volume of ink droplets is different after photocuring, which causes the surface of the 3D object to be uneven, which ultimately affects the dimensional accuracy of the 3D object.
  • the color 3D object is produced by this method, and the manufacturing cost of the molding material is relatively high.
  • a method of fabricating a color 3D object wherein the color 3D object is formed by layer-by-layer printing, and the method includes the following steps:
  • the layer structure data based on the target object is printed using the molding material to form a layer structure result
  • step b after the step a or at the same time, using the color ink to print on the surface of the layer structure result based on the layer color data to form a layer printing result;
  • the molding material is ejected by means of variable frequency injection.
  • the manner of the variable frequency injection is alternately performed by interval ejection or full ejection and interval ejection, and in the step b, printing is performed using color ink at a position where the molding material is not sprayed.
  • the number of orifices is an even number.
  • the layer structure results in a grid-like structure.
  • the printing direction of the step a is repeated twice in the same time; when the step b is performed simultaneously with the step a, the step a is repeated twice.
  • the printing direction is reversed.
  • step a the following steps are included:
  • A1 stratifying the target object and acquiring corresponding molding data of each layer based on structural information and color information of each layer, the molding data including the layer structure data and layer color data.
  • printing is performed using a single type of molding material in the step a; or printing is performed using different types of molding materials in the step a and the shrinkage rates between the different kinds of molding materials are substantially the same.
  • the molding material is a photosensitive resin material, and the color ink is a weak solvent ink;
  • the photosensitive resin material has a viscosity of 14 to 180 cps at 25 ° C and a viscosity of 5 to 15 cps at 25 to 80 ° C;
  • the weak solvent ink has a viscosity of 4 to 14 cps, and the weak solvent ink has a surface tension of 22 to 35 mN/m.
  • the molding material is a white material, a transparent material or a light color material.
  • a production system for a color 3D object for performing the manufacturing method according to any of the preceding claims, comprising:
  • a drive controller that controls the print head to perform a printing action based on the molding data
  • a printhead for ejecting printed material including at least one molding material passage, a color ink passage, and a spray orifice.
  • the molding material passage and the color ink passage are arranged in the following manner:
  • the print head is provided with a passage of the molding material and is located at one side of the color ink passage;
  • the print head is provided with two molding material passages, and the two molding material passages are respectively located on both sides of the color ink passage in the printing direction.
  • the print head is provided with one of the molding material passages, and the molding material passage is located in front of the color ink passage in the printing direction of the print head.
  • the color ink channel is one of the following:
  • Consists of a red ink channel, a yellow ink channel, and a blue ink channel Consists of a red ink channel, a yellow ink channel, and a blue ink channel
  • It consists of a red ink channel, a yellow ink channel, a blue ink channel, and a black ink channel.
  • the printhead is further provided with at least one channel of support material.
  • LED lights are respectively disposed on both sides of the print head in the printing direction.
  • a lifting platform is further included for placing the colored 3D object.
  • the method for manufacturing a color 3D object according to the present invention when using a single type of molding material for printing to form a layer structure, on the one hand, avoids the influence of inconsistent shrinkage rates of different materials on the flatness of the printed object, and on the other hand, the use is omitted.
  • the step of filling the white light-curing resin improves dimensional accuracy and printing efficiency.
  • the method for manufacturing a color 3D object according to the present invention is performed on the one hand by layer-by-layer bidirectional printing, which can improve the molding efficiency of the color 3D object and reduce the molding cost; the layer-by-layer bidirectional printing, that is, the print head during the movement, The printing action is always executed. Different from the prior art, after completing a printing process, the print head needs to be reset in reverse, and then the printing process of the next printing process is performed. On the other hand, the method of variable-frequency jetting is used to print the layer structure results by using the molding material, so that the layer structure result is microscopically meshed, which saves the amount of molding materials and reduces the manufacturing cost of the color 3D object.
  • the method for manufacturing a color 3D object according to the present invention uses a weak solvent ink for color printing on the layer structure result, thereby forming a layer printing result, on the one hand, avoiding chromatic aberration caused by mutual bleed between adjacent color layers, and the other
  • the aspect is also more environmentally friendly.
  • the method for manufacturing a color 3D object according to the present invention has the characteristics of wide color gamut and vivid color in the color 3D object formed by superimposing a plurality of layer printing results, and the transition between different colors is natural.
  • the color 3D object manufacturing system of the invention specially arranges the molding material channel and the color ink channel of the printing head to improve the channel utilization rate, so as to cooperate with the method for realizing the color 3D object.
  • FIG. 1 is a flow chart showing a method of fabricating a color 3D object according to a first embodiment of the present invention
  • FIG. 2 is a flow chart showing a method of fabricating the color 3D object including layering and acquiring molding data according to a first embodiment of the present invention
  • Figure 3 is a flow chart showing a method of fabricating the color 3D object of the second embodiment of the present invention using a variable frequency jet injection molding material
  • Figure 4 is a view showing a spray hole distribution pattern of a molding material passage for realizing printing of a molding material according to a specific embodiment of the present invention
  • Figure 5 is a view showing a spray hole distribution pattern of a molding material passage for realizing printing of a molding material according to another embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of fabricating the color 3D object using a variable-frequency injection type injection molding material including layering and acquiring molding data according to a third embodiment of the present invention
  • Figure 7 is a view showing a fourth embodiment of the second embodiment of the present invention, a schematic diagram of a production system of a color 3D object provided with a molding material passage;
  • Figure 8 is a view showing a fifth embodiment of the second embodiment of the present invention, a schematic diagram of a production system of the color 3D object provided with two molding material passages;
  • Figure 9 is a schematic view showing an embodiment of a second embodiment of the present invention, a system for fabricating the color 3D object provided with two molding material containers;
  • Figure 10 is a schematic illustration of an arrangement of color ink channels and molding material channels in accordance with one embodiment of a second embodiment of the present invention.
  • Fig. 11 is a view showing an embodiment of the present invention, a result of printing results of adjacent two layers and results of layer support.
  • FIG. 1 shows a method for fabricating a color 3D object.
  • the color 3D object is formed by layer-by-layer printing, and specifically includes the following steps:
  • step S101 is performed, and the layer structure data is printed based on the layer structure data of the target object to form a layer structure result.
  • the layer structure data is composed of N structured pixel points.
  • the print head injects the molding material at a position corresponding to each of the structural pixel points according to the N pieces of the structured pixel point data, and finally forms a layer structure result.
  • the N pieces of the structure pixel point data are actually space coordinate values corresponding to the N structure pixel points, and the driving controller controls the movement track of the print head according to the spatial coordinate value corresponding to each structure pixel point.
  • the molding material is used for printing at a position corresponding to each spatial coordinate value.
  • the layer structure result constitutes a solid structural part of a color 3D object, and functions to form an outline of the color 3D object, so that the molding material preferentially selects a single kind of material, such as white or shallow.
  • a single kind of material such as white or shallow.
  • the advantage of using a single type of material is that it can avoid dimensional instability caused by the difference in shrinkage between different materials, and a single curing condition can be used, and the curing speed can be controlled.
  • the subsequent steps are divided into two main line processes, and the difference between the two main line processes mainly depends on whether the subsequent color printing step is performed synchronously with the step S101.
  • the first main line process is that step S1021 and step S101 are performed simultaneously, that is, while step S101 is being performed, step S1021 is performed, and color ink is used on the layer structure result surface based on the layer color data.
  • the layer color data is composed of M color pixel points, and the print head ejects the color ink according to the M color pixel point data at a position corresponding to each color pixel point, thereby finally forming a layer printing result.
  • the color ink is sprayed on the layer structure result, so M pieces of the color pixel point data are associated with N pieces of the structured pixel point data, and the color pixel point data is not only
  • the spatial coordinate value corresponding to each color pixel point is further included, and the color value corresponding to each color pixel point is used, and the color value is color data that can be based on a CMY color mode, or color data based on a CMYK color mode, and It can be color data based on other color modes, which is defined based on the technology of 2D printing.
  • the print head forms a structure point according to the structure pixel point data after the molding material is injected at a position corresponding to the structure pixel point, and then according to the color pixel point data.
  • Spraying at the formed structural point Color ink, forming a color structure point which is understood by those skilled in the art, the color pixel point data is associated with the structure pixel point data, that is, the spatial coordinate value of the color pixel point is associated with the spatial coordinate value of the structure pixel point. of.
  • step S1031 is performed, and the step S1021 and the step S101 are repeated to form a plurality of layer print results. It is understood by those skilled in the art that since the step S1021 and the step S101 are performed synchronously, that is, the formation process of the layer structure result and the printing process using the color ink are synchronized, the print head can be in a printing process. Form a layer to print the results. On this basis, when the print head continues to the next printing process, the next layer of printing results is formed, and thus a plurality of the layer printing results are formed in a loop.
  • step S1022 is performed after the step S101, that is, the step S101 is performed to form a layer printing result, and then step S1022 is performed, and the color ink is used based on the layer color data.
  • the layer structure results in surface printing, forming a layer print result. It is understood by those skilled in the art that the printing principle of the step S1022 is similar to the step S1021, except that the step S1022 is different from the step S101.
  • the printhead first forms a layer structure result in the previous printing process (by performing step S101), and uses the color ink to print on the layer structure result to form a layer print result in the subsequent printing process, so the second main line
  • two printing processes are required to form a layer printing result
  • the first main line process only needs one printing process to form a layer printing result.
  • which main line process is selected for printing depends on the curing speed of the molding material and the complexity of the color of the 3D color object. The faster the curing speed and the simpler the color, the first main line process is preferred, and vice versa.
  • the second main line process is employed.
  • step S1032 is performed, and the step S1022 and the step S101 are repeated to form a plurality of layer print results.
  • step S104 is performed to superimpose a plurality of the layer printing results to form a color 3D object.
  • this step is a molding step, and the target object is divided into a plurality of layers, which are printed and superimposed layer by layer through all the foregoing steps to finally form the color 3D object.
  • the superimposition described in step S104 is not a step that is performed last, but is performed along with the foregoing steps, that is, through the steps S101 to S1031 or through steps S101 to S1032.
  • a layer printing result is superimposed one layer.
  • the superimposition process is a cumulative process, and the superimposed direction includes superposition along the extending direction of each layer, and superposition along the layering direction of the target object. After the superposition is completed, a color 3D object is finally formed.
  • FIG. 2 shows a flowchart of a method for fabricating the color 3D object including layering and acquiring molding data, specifically including the following steps:
  • step S201 is performed to layer the target object, and the corresponding molding data of each layer is obtained based on the structural information and the color information of each layer, and the molding data includes the layer structure data and the layer color data.
  • the purpose of this step is to convert the target object into a data form, wherein the target object can acquire structural information and color information by scanning, and then convert the structural information and color information into a processed
  • the data format recognized by the layered slicing software of the terminal such as STL format, PLY format, WRL format, and the like.
  • the structure information and the color information are in units of layers, that is, the target object is scanned and sliced and layered by layering software, and then each slice layer is parsed to obtain structural information and color of each layer. Information, and then transform the structural information and color information of each layer into layer structure data and layer color data.
  • the target object can also be directly drawn by the drawing software.
  • Common drawing software such as: CAD, Proe, Solidwork, UG, 3D Max, etc., as understood by those skilled in the art, the drawing is drawn by the drawing software.
  • the basic structural model of the target object on the basis of which the coloring of the drawn basic structure is also performed.
  • There are various common color matching methods for example, directly mapping the drawn basic structural model to a PLY format; for example, The basic structure model drawn by the drawing software is converted into the STL format and then color-matched; those skilled in the art can make different changes on the basis of the prior art, and will not be described herein.
  • step S202 to step S2041 or step S202 to step S2042 are performed.
  • the description of S1032 is only further defined in step S2041 as compared with step S1031, and the printing directions of the two adjacent steps S202 are reversed in the steps of forming the plurality of layer prints in steps S202 and S2031 because the print head is in a printing process. In this case, a layer printing result is formed.
  • the print head when the print head starts the next printing process, in the prior art, the print head first needs to be reversely reset, and then the steps S202 and S2031 are continuously performed synchronously, so that , before and after In the printing process, the printing directions of step S202 are the same (actually, the printing directions of step S2031 are also the same).
  • the reverse reset step is omitted, and the latter printing process is reversed with respect to the previous printing process, so that the steps are performed in the two printing processes.
  • the printing direction of S202 is reversed (actually, the printing direction of step S2031 is also reversed), and the present invention omits the reverse resetting step compared to the prior art, thereby greatly improving the molding efficiency.
  • the step S2042 is further defined as compared with the step S1032 in FIG. 1, and the printing directions of the two adjacent steps S202 are the same in the steps of forming the plurality of layer printing results in steps S202 and S2032, which are understood by those skilled in the art.
  • the reverse reset step is also omitted, specifically, in the second main line process, the step S202 and the step S2032
  • the printing directions of step S202 and step S2032 are actually opposite, corresponding The printing directions of the two adjacent steps S202 are the same.
  • the molding efficiency can be improved by the printing method of the second main line process.
  • step S205 is further performed, and the supporting material is used to perform printing to form a layer supporting result based on the layer structure data, and the supporting result provides support for the printing results of the adjacent two layers.
  • the structural shapes of the printing results of two adjacent layers are different, there may be a phenomenon in which the previous layer is partially overlapped, and the layer before the printing is required.
  • An additional support layer is printed to provide support for the back layer to prevent collapse.
  • Fig. 11 shows the positional relationship between the adjacent two layer print results P1, P2 and the support layer P to more vividly represent the purpose of step S205.
  • the printing principle of step S205 is similar to the printing principle of step S101.
  • the spatial position coordinate value corresponding to each supporting pixel point is also obtained based on the layer structure data. More specifically, when the layer structure data is acquired in the step S201, a plurality of supporting pixel points are constructed according to the basic structure of the adjacent two layers, and spatial coordinate values are set for each supporting pixel point, and the plurality of supporting pixel points are corresponding. Numerous spatial coordinate values are part of the layer structure data.
  • step S206 is performed to superimpose a plurality of the layer printing results to form a color 3D object, and the specific implementation is consistent with step S104, and details are not described herein again.
  • FIG. 3 is a flow chart showing a method of fabricating the color 3D object using the variable-frequency injection method to spray the molding material, and specifically includes the following steps: first performing step S301, based on the layer structure of the target object
  • the data is printed using a molding material to form a layer structure.
  • the molding material is further defined to be ejected by means of variable frequency injection.
  • the variable frequency injection is defined relative to the manner of full injection in the prior art, which means that all the injection holes on the molding material passage of the print head all work when the molding material is sprayed.
  • variable frequency injection means that all of the orifices on the passage of the molding material of the print head do not all work when the molding material is sprayed, but only a part of the orifice injection molding material.
  • the ratio of the number of working orifices to the total orifices may be 1/4, 1/3, 1/2, 3/4 or other ratios, and the working orifices may Evenly spaced, or randomly distributed, these can achieve the purpose of this step.
  • the number of orifices on the passage of the molding material is evenly sprayed, so that in the process of the variable frequency injection, it is more advantageous to uniformly distribute the position of the working orifice, so that the positioning is more uniform when printing with color ink. accurate.
  • the center spacing of two adjacent nozzle holes can be matched with the size of the droplets of the molding material.
  • the center spacing of two adjacent nozzle holes is 1/360 dpi or 0.07 mm, so that the method is used by variable frequency injection.
  • the result of the layer structure formed by the printing of the molding material is microscopically a grid-like structure, which can save the amount of molding materials and reduce the printing cost.
  • FIG. 4 a spray hole distribution diagram of a molding material passage for realizing printing of a molding material, wherein the manner of the variable frequency injection is interval injection
  • FIG. 4 shows The distribution of the two types of orifices, wherein the black orifices represent the working orifices during the variable frequency injection process, and the white orifices represent the non-working orifices during the variable frequency injection process. More specifically, the distribution of the working nozzles shown in FIG. 4 is a uniform interval distribution and a non-uniform spacing distribution, and those skilled in the art can also make more changes on this basis. Give a brief description.
  • FIG. 5 for printing a molding material.
  • the orifice distribution map of the molding material passage the mode of the variable frequency injection is alternately performed for the full injection and the interval injection.
  • FIG. 5 shows the distribution manner of the two injection holes, wherein the black injection hole indicates the frequency conversion.
  • the working orifice during the spraying process the white orifice indicates the non-working orifice during the variable frequency injection.
  • the distribution manner of the working nozzles shown in FIG. 5 includes a uniform spacing distribution and a non-uniform spacing distribution, and those skilled in the art can also make more changes on this basis, and all can be realized.
  • the object of the invention is a uniform spacing distribution and a non-uniform spacing distribution, and those skilled in the art can also make more changes on this basis, and all can be realized.
  • the subsequent steps are divided into two main line processes.
  • the main line process and the second main line process in the steps S3021 and S3022, respectively, it is further possible to use the color ink to print at the position where the molding material is not sprayed, in combination with FIGS. 4 and 5, that is, the non-working of the molding material passage.
  • the position of the orifice ejects color ink droplets.
  • step S301 the structural points after the solidification of the molding material droplets form a grid-like layer structure result, and after performing step S3021, the layer-like layer structure result In the mesh, the color structure points after the color ink droplets are solidified, so that the ejected color ink droplets are positioned more accurately, and at the same time, the bleeding phenomenon is not easy due to the blocking effect of the molding material.
  • the step S3021 and the step S301 are performed simultaneously, the print head forms a structure point and a corresponding mesh after the molding material is sprayed according to the structure pixel point data at a position corresponding to the structure pixel point, and then Color ink is ejected on the corresponding mesh corresponding to the structure point according to the color pixel data to form a color structure point.
  • the color pixel data is associated with the structure pixel data, that is, the The spatial coordinate values of the color pixel points are associated with the spatial coordinate values of the structured pixel points.
  • step S3031 is performed, and the step S301 and the step S3021 are repeated to form a plurality of layer print results. It is understood by those skilled in the art that since the step S301 and the step S3021 are performed synchronously, that is, the formation process of the layer structure result and the printing process using the color ink are synchronized, the print head can be in a printing process. Form a layer to print the results. On this basis, when the print head continues to the next printing process, the next layer of printing results is formed, and thus a plurality of the layer printing results are formed in a loop.
  • the second main line process in this embodiment is different from the first main line process in that the step S3022 is different from the step S301.
  • the print head first forms a layer structure result in the previous printing process (by performing step S301), and uses the color ink to print on the layer structure result to form a layer print result in the subsequent printing process, so the second main line In the process, two printing processes are required to form a layer printing result, and the first main line process only needs one printing process to form a layer printing result.
  • which main line process is selected for printing depends on the curing speed of the molding material and the complexity of the color of the 3D color object. The faster the curing speed and the simpler the color, the first main line process is preferred, and vice versa.
  • the second main line process is employed.
  • step S3032 is performed, and the step S301 and the step S3022 are repeated to form a plurality of layer print results. It is understood by those skilled in the art that in the second main line process, the step S301 and the step S3022 are alternately performed before and after, so the difference between step S3032 and step S3031 is that the same number of layer structure results are used as a reference, step S3032 The number of times the printing process is required to be repeated is twice the number of times the printing process needs to be repeated in step S3031. The reason is that in the second main line process, two printing processes can form a layer printing result, and the curing speed of the molding material is slow. And in the case where the color of the 3D color object is relatively complicated, the printing method of the second main line process is usually selected.
  • step S304 is performed to superimpose a plurality of the layer printing results to form a color 3D object, and the specific implementation is consistent with step S104, and details are not described herein again.
  • FIG. 6 is a flow chart showing a method of fabricating the color 3D object using the variable-frequency injection type injection molding material including layering and acquiring molding data, and specifically includes the following steps:
  • step S401 is performed to layer the target object, and corresponding molding data of each layer is obtained based on structural information and color information of each layer, where the molding data includes the layer structure data and layer color data;
  • the manner is the same as that in step S201, and details are not described herein again.
  • step S402 to step S4041 or step S402 to step S4042 are performed.
  • the description to step S3032 is only further defined in step S4041 as compared with step S3031, and is repeated.
  • Steps S402 and S4031 form a plurality of layer prints in which the printing directions of the two adjacent steps S402 are reversed, because the print head forms a layer print result in one printing process, on the basis of which the print head starts the next print.
  • step S402 In the process, in the prior art, the print head first needs to be reversely reset, and then the steps S402 and S4031 are continuously performed synchronously, so that the printing directions of step S402 are the same in the two printing processes before and after (actually step S4031) The printing direction is also the same).
  • the reverse reset step is omitted, and the latter printing process is reversed with respect to the previous printing process.
  • step S402 The printing direction is reversed (actually, the printing direction of step S4031 is also reversed), and the present invention omits the reverse resetting step compared to the prior art, thereby greatly improving the molding efficiency.
  • step S4042 is further defined as compared with step S3032 in FIG. 3, and the printing directions of the two adjacent steps S402 are the same in forming the plurality of layer printing results in steps S402 and S4032, which is understood by those skilled in the art.
  • the reverse reset step is also omitted, specifically, in the second main line process, the step S402 and the step S4032
  • the printing directions of step S402 and step S4032 are actually opposite, corresponding The printing directions of the two adjacent steps S402 are the same.
  • the molding efficiency can be improved by the printing method of the second main line process.
  • step S405 is further performed, and the supporting material is used to perform printing to form a layer supporting result based on the layer structure data, and the supporting result provides support for printing results of two adjacent layers;
  • the specific implementation is consistent with the step S205, and details are not described herein again.
  • step S406 is performed to superimpose a plurality of the layer printing results to form a color 3D object, which is specifically the same as step S104, and details are not described herein again.
  • the molding material in the above embodiments is a photosensitive resin material
  • the color ink is a weak solvent ink.
  • the photosensitive resin material is at room temperature (usually defined as The viscosity at 25 ° C) is 14 to 180 cps, the viscosity at 25 to 80 ° C is 5 to 15 cps, the viscosity of the weak solvent ink is 4 to 14 cps, and the surface tension of the weak solvent ink is 22 to 35 mN/m. It is understood by those skilled in the art that the molding material is used to fabricate the structural portion of the color 3D object, and then the coloring ink is used to form the structural portion of the molding material to complete the fabrication.
  • the basic principle for selecting the color of the molding material is the molding material.
  • the color does not affect the color development of the color ink on the surface thereof, and accordingly, the molding material may be any one of a white material, a transparent material, or a light color material.
  • the commonly used color inks are solvent-based inks or aqueous inks, which have been used less because of the environmental problems of solvent-based inks, while the aqueous inks are environmentally friendly, but their drying speed is slow. Easy to bleed.
  • the present invention employs a layer-by-layer bidirectional printing technique, that is, the print head always performs a printing action during the movement, or sprays a molding material, or ejects color ink, which improves printing efficiency, but at this time If the aqueous ink is still used, the drying of the aqueous ink may be insufficient, and the bleeding phenomenon may be aggravated. For this reason, the present invention uses a weak solvent ink for coloring, thereby avoiding bleeding and on the other hand being more environmentally friendly.
  • Figure 7 shows a fourth embodiment of a second embodiment of the present invention, a production system for a color 3D object provided with a channel of molding material for performing the first embodiment described above and the description of the various embodiments.
  • the manufacturing method mainly includes: a processing terminal 2 for layering the target object 1 and acquiring corresponding molding data of each layer based on structural information and color information of each layer.
  • the drive controller 3 controls the print head 5 to perform a printing action based on the molding data.
  • the implementation of the functions of the processing terminal 2 and the drive controller 3 may be hardware, software executed by a processor, or a combination of both. Specifically, if implemented by a software module, a pre-program can be burned into the processor, or the software can be installed into a preset system; if implemented by hardware, a field programmable gate array (FPGA) can be utilized. The corresponding function is fixed.
  • a software module a pre-program can be burned into the processor, or the software can be installed into a preset system; if implemented by hardware, a field programmable gate array (FPGA) can be utilized. The corresponding function is fixed.
  • FPGA field programmable gate array
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, a hard disk, or any other form of storage medium known in the art.
  • the processor By coupling the storage medium to a processor, the processor is capable of reading information from the storage medium and can write information to the storage medium.
  • the storage medium may be an integral part of a processor, or both the processor and the storage medium may be located on an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the hardware may be a general purpose processor capable of implementing specific functions, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or Transistor logic device, discrete hardware component, or a combination of these.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • it can also be implemented by a combination of computing devices, such as a combination of a DSP and a microprocessor, a combination of multiple microprocessors, a combination of one or more microprocessors in conjunction with DSP communications, and the like.
  • the processing terminal 2 acquires the molding data of the target object 1 by the method of step S201, and the molding data includes layer structure data and layer color. data.
  • the processing terminal 2 transmits the molding data to the drive controller 3, and the drive controller 3 completes printing according to the second main line process of FIG. 2 according to the first embodiment.
  • the print head 5 includes a support material passage 5e, a molding material passage 5a, and color ink passages 5b, 5c, 5d.
  • the support material passage 5e is connected to the support material container 4e through a connecting pipe
  • the molding material passage 5a is connected to the molding material container 4a through a connecting pipe
  • the color ink channels 5b, 5c, 5d are connected by a connecting pipe
  • the color ink containers 4b, 4c, 4d, the support material, the molding material, and the color ink are introduced from the support material container 4e, the color ink containers 4b, 4c, 4d, and the molding material container 4a to the print head 5, and are sprayed.
  • the hole is ejected.
  • the color ink containers 4b, 4c, 4d are divided into a red ink container, a yellow ink container, and a blue ink container.
  • the color ink channels 5b, 5c, 5d are divided into a red ink channel and a yellow ink channel. And a blue ink channel.
  • full color can be realized by mixing three primary colors of red (M), yellow (Y), and blue (C) according to different mixing ratios.
  • the print head 5 color ink channel is specifically set to three channels M, Y and C or four channels M, Y, C and BK are not limited.
  • the print head 5 is advanced in the X direction on the guide rail 7 under the control of the drive controller 3, and during the advancement, the molding material passage 5a sprays the molding material while driving
  • the controller 3 controls the print head 5 to eject the support material through the support material passage 5e based on the layer structure data at a position where the support material is required, and is cured by the LED lamp 6' disposed on the side of the print head 5, so that after a printing process is completed, Step S202 is implemented.
  • the print head 5 is advanced in the -X direction on the guide rail 7 under the control of the drive controller 3, and during the advancement, the color ink channels 5b, 5c, 5d eject the color ink and pass
  • the LED lamp 6 disposed on the other side of the print head 5 is irradiated and cured, so that step S2032 is realized after a printing process is completed.
  • the print head 5 is moved by one step in the Y direction, and the above two printing processes are repeated, so that the printing of one layer is completed.
  • the driving controller 3 controls the lifting platform 8 to descend a certain height in the -Z direction, and then performs printing of the next layer in the same manner.
  • the lifting platform 8 According to the gradual decrease in the layer thickness, the lowering action is performed by the servo motor and the screw.
  • the descending amplitude of the lifting table 8 can also be greater than the layer thickness, which can also achieve the object of the present invention.
  • FIG. 8 shows a production system of still another color 3D object provided with two molding material passages.
  • the difference diagram of FIG. 7 is that the print head 5 in FIG. 8 has two molding material passages 5a, 5f, and is respectively located on both sides of the color ink passage, hereinafter combined with the target object 1, the support material container 4e, the color ink shown in FIG.
  • the processing terminal 2 acquires the molding data of the target object 1 by the method of step S201, and the molding data includes layer structure data and layer color. data.
  • the processing terminal 2 transmits the molding data to the drive controller 3, and the drive controller 3 completes printing according to the first main line process in FIG. 2 according to the first embodiment.
  • the print head 5 advances in the X direction on the guide rail 7 under the control of the drive controller 3, during which the molding material passage 5a sprays the molding material, and the color ink passages 5b, 5c, 5d eject the color ink Then, the LED lamp 6' disposed on the side of the print head 5 is irradiated and cured, so that the synchronization of step S202 and step S2031 is performed, and at the same time, the drive controller 3 controls the print head at a position where the support material is required based on the layer structure data. 5 spraying the support material through the support material passage 5e and passing the LED disposed on the side of the print head 5 The lamp 6' is cured by irradiation.
  • the print head 5 is moved by one step in the Y direction, and then the next printing process is started in the -X direction, at which time the molding material passage 5f sprays the molding material, and the color ink passage 5b , 5c, 5d eject color ink, at the same time, the drive controller 3 controls the print head 5 to eject the support material through the support material passage 5e at a position where the support material is required based on the layer structure data, and passes the LED lamp disposed on the other side of the print head 5 6 irradiation curing, and then complete the next printing process.
  • the printing of one layer is performed in a reciprocating manner according to the above two processes.
  • the driving controller 3 controls the lifting platform 8 to descend a certain height in the -Z direction, and then completes the next layer in the same manner.
  • Printing preferably, the lifting platform 8 is gradually lowered according to the layer thickness, and the lowering action is completed by the servo motor and the screw rod.
  • the descending amplitude of the lifting platform 8 can also be greater than the layer thickness, which can also be The object of the invention is achieved.
  • the present embodiment passes through the molding material passage by providing two molding material passages 5a, 5f and dividing them on both sides of the color ink passage, during the printing process, when the print head moves in the X-axis direction.
  • 5a injection molding material when the print head moves in the -X axis direction, the molding material is sprayed through the molding material passage 5f, the injection molding material step is synchronized with the ejection color ink, and the print head is along the +X axis direction and -X
  • the manufacturing system involved in the embodiment can better improve the molding efficiency of the 3D object.
  • the object of the present invention can be better achieved.
  • FIG. 9 shows an embodiment of a second embodiment of the present invention.
  • the color 3D object producing system is further provided with a molding material container 4f, the molding material passage 5a.
  • the molding material container 4a is joined, and the molding material passage 5f is connected to the molding material container 4f such that the molding material passages 5a, 5f can eject different molding materials.
  • the color 3D object production system can also be disposed. Two or more molding material passages and correspondingly two or more molding material containers are provided, so that the ejection efficiency of the molding material can be improved, and the molding efficiency of the 3D object can be further improved, which will not be described herein.
  • FIG. 10 shows a schematic view of the arrangement of the color ink channels and the molding material channels, which are understood by those skilled in the art.
  • 10 shows a schematic diagram of the arrangement of the color ink channels and the molding material channels.
  • the molding material channels are located on one side of the color ink channels, which are used to implement the foregoing specific embodiments and the color 3D objects in the embodiments.
  • the second main line process in the manufacturing method, and the other two molding material channels are respectively located on both sides of the color ink channel, which is used to implement the first embodiment and the first method in the manufacturing method of the color 3D object in each embodiment.
  • Main line process Specifically, FIGS.
  • the support material channel S may be located between the M channel, the Y channel, and the C channel of the color ink channel, or may be located on one side of the color ink channel, and the molding material channel B is located One side of the color ink cannot be located between the M channel, the Y channel, and the C channel of the color ink channel.
  • FIGS. 10-4 to 10-6 are provided with two molding material passages B, B' and one support material passage S, the color ink passages including an M passage (red ink passage) and a Y passage (yellow ink passage). And a C channel (blue ink channel), the support material channel S may be located between the M channel, the Y channel, and the C channel of the color ink channel, or may be located on one side of the color ink channel, and the molding material
  • the channels B, B' are respectively located on both sides of the color ink channel, and cannot be located between the M channel, the Y channel, and the C channel of the color ink channel.
  • the molding material passage cannot be located between the M channel, the Y channel, and the C channel of the color ink channel because the steps of printing using color ink and the steps of molding the material are used. There is always a sequence, even if the step of printing with color ink is performed synchronously with the step of spraying the molding material, it is necessary to form a structure point first, and then color the structure point, that is, the order of The formation of each structural point is unitary.
  • the supporting result formed by the supporting material does not need to be colored, so the supporting material passage S can be located between the M channel, the Y channel and the C channel of the color ink channel.
  • six kinds of profiles are shown in FIG. 10, but not all variations of the arrangement diagram are included, and those skilled in the art can make more changes on this basis.
  • a color 3D is produced by using each of the color 3D object production systems of the second embodiment of the present invention and the method of the second embodiment or the third embodiment of the present invention.
  • the difference from the method of manufacturing the color 3D object by the method of the first embodiment is that the drive controller 3 controls the molding material passage, and the driving controller 3 needs to be controlled using the method of the second embodiment or the third embodiment.
  • the molding material passage realizes the injection of the frequency conversion method, and the specific operation method is: each injection hole of the molding material passage corresponds to one liquid chamber, the ink supply chamber, and the piezoelectric element (including the upper electrode, the lower electrode, the piezoelectric body,
  • the upper electrode is composed of an electric piece, the electric piece is connected with a respective switch circuit, the drive controller 3 controls the on/off of the electric piece through the switch circuit, and the vibration plate, and the drive controller 3 controls the electric power through the switch circuit according to the received layer structure data.
  • the opening and closing of the sheet thereby controlling whether the orifice is inked.
  • a driving voltage is applied to the electric piece, a potential difference is generated between the electric piece and the lower electrode, the piezoelectric element is deformed, and an instantaneous stress is generated on the vibrating plate, and the vibrating plate generates a certain displacement, and the liquid is supplied from the ink supply chamber.
  • the chamber flows into the liquid chamber, and then the driving voltage is removed or a reverse voltage is applied.
  • the piezoelectric element is restored to the original shape or deformed in the opposite direction, and the generated stress causes the vibrating plate to return to the original shape or vibrate in the opposite direction to generate a certain displacement, thereby forming a droplet. Ejected from the nozzle to complete one injection.

Abstract

一种彩色3D物体的制作方法及系统,其中,彩色3D物体的制作方法,包括如下步骤:a、基于目标物体(1)的层结构数据使用成型材料打印,形成层结构成果;b、步骤a之后或者同时,基于层色彩数据使用彩色墨水在层结构成果表面打印,形成层打印成果;c、重复步骤a和步骤b形成多个层打印成果,且多个层打印成果叠加形成彩色3D物体。用于执行所述制作方法的制作系统,包括处理终端(2)、驱动控制器(3)以及打印头(5)。本申请的制作方法以及制作系统提高了彩色3D物体的尺寸精度以及打印效率。

Description

一种彩色3D物体的制作方法及系统 技术领域
本发明属于3D物体快速成型领域,尤其涉及采用喷墨打印头进行逐层叠加式制造3D物体的技术,特别是一种彩色3D物体的制作方法及系统。
背景技术
快速成型技术又称快速原型制造技术或加式制造技术,其基本原理都是基于3D模型切片后逐层加工堆积起来制作3D物体。
目前,采用快速成型技术制作3D物体具体有熔融沉积技术(简称:FDM技术)、立体光刻技术(简称:SLA技术)、选择性激光烧结技术(简称:SLS技术)、叠层成型技术(简称:LOM技术)或三维喷墨打印技术(简称:3DP技术)等。其中,采用3DP技术制作3D物体是近年来关注研究的热点之一,尤其在如何使用3DP技术制作出全彩色3D物体方面。
现有的使用3DP技术制作彩色3D物体的报道,如专利名称为“用于3D打印的多彩色墨水、3D打印机和控制3D打印的方法”的美国专利US20150094394A1,采用红(M)、黄(Y)、蓝(C)、黑(BK)四色光固化树脂墨水作为3D物体的成型材料,且该四色墨水分别装于不同的喷墨打印头中,根据3D模型的数据信息通过驱动控制器控制打印头进行逐层喷墨打印,由于采用的是光固化树脂材料,打印头喷出的每一滴墨经光固化后具有一定的体积,大量固化的墨滴逐层堆积形成3D物体。喷墨打印头在进行喷墨打印的原则是每个像素点对应一个墨滴,例如打印红色区域时每个像素点对应喷射一个红色墨滴,当打印绿色区域时每个像素点需要喷射一个黄色墨滴和一个蓝色墨滴,由于绿色区域中一个像素点对应了两个墨滴而红色区域中一个像素点对应了一个墨滴,此时造成3D物体的表面不平整,最终影响3D物体的尺寸精度。因此,采用该专利技术只能打印出有限几种颜色的彩色物体,而不能实现全彩色。
另有资料报道采用红(M)、黄(Y)、蓝(C)三色光固化树脂和白色(W)光固化树脂作为成型材料结合使用能打印出全彩色的3D物体。但是,使用该方法制作彩色3D物体时必须保证不同材料之间的物理性能基本一致,如:粘度、收缩率、表面张力等,尤其是对收缩率的要求严格,若各材料之间的收缩率不一致,在进行光固化之后墨滴的体积大小不一,此时造成3D物体的表面不平整,最终影响3D物体的尺寸精度。而且,采用该方法制作彩色3D物体,成型材料的制作成本相对较高。
发明内容
针对现有技术存在的技术缺陷,根据本发明的一个方面,提供一种彩色3D物体的制作方法,通过逐层打印的方式制成所述彩色3D物体,其特征在于,包括如下步骤:
a、基于目标物体的层结构数据使用成型材料打印,形成层结构成果;
b、所述步骤a之后或者同时,基于层色彩数据使用彩色墨水在所述层结构成果表面打印,形成层打印成果;
c、重复所述步骤a和步骤b形成多个层打印成果,且多个所述层打印成果叠加形成彩色3D物体。
优选地,在所述步骤a中,所述成型材料通过变频喷射的方式喷出。
优选地,在所述步骤a中,所述变频喷射的方式为间隔喷射或者全喷射和间隔喷射交替进行,且在所述步骤b中,在未喷射所述成型材料的位置使用彩色墨水进行打印。
优选地,在所述变频喷射的过程中,当执行全喷射时,喷孔的数量为偶数。
优选地,所述层结构成果为网格状结构。
优选地,当所述步骤b在步骤a之后执行时,相邻两次重复所述步骤a的打印方向相同;当所述步骤b与步骤a同时执行时,相邻两次重复所述步骤a的打印方向相反。
优选地,在所述步骤a之前包括如下步骤:
a1、将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据,所述成型数据包括所述层结构数据和层色彩 数据。
优选地,在重复所述步骤a和步骤b过程中,还执行如下步骤:
c1、基于所述层结构数据使用支撑材料进行打印形成层支撑成果,所述支撑成果为相邻两个层打印成果提供支撑。
优选地,在所述步骤a中使用单一种类的成型材料进行打印;或者在所述步骤a中使用不同种类的成型材料进行打印且不同种类的成型材料之间收缩率基本相同。
优选地,所述成型材料为光敏树脂材料,彩色墨水为弱溶剂墨水;
优选地,所述光敏树脂材料在25℃的粘度为14~180cps,在25~80℃的粘度为5~15cps;
所述弱溶剂墨水的粘度为4~14cps,所述弱溶剂墨水的表面张力为22~35mN/m。
优选地,所述成型材料为白色材料、透明材料或浅色材料。
根据本发明的另一方面,提供一种彩色3D物体的制作系统,用于执行前述任一项所述的制作方法,其特征在于,包括:
处理终端,其用于将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据;
驱动控制器,其基于所述成型数据控制所述打印头执行打印动作;
打印头,其用于喷射打印材料,所述打印头包括至少一条成型材料通道、彩色墨水通道和喷孔。
优选地,所述成型材料通道和彩色墨水通道的设置方式为如下的一种:
所述打印头设置有一条所述成型材料通道,且位于所述彩色墨水通道的一侧;
所述打印头设置有两条所述成型材料通道,两条所述成型材料通道沿打印方向分别位于所述彩色墨水通道的两侧。
优选地,所述打印头设置有一条所述成型材料通道,且所述成型材料通道沿所述打印头的打印方向位于彩色墨水通道的前面。
优选地,所述彩色墨水通道为如下的一种:
由红色墨水通道、黄色墨水通道和蓝色墨水通道组成;
由红色墨水通道、黄色墨水通道、蓝色墨水通道和黑色墨水通道组成。
优选地,所述打印头还设置有至少一条支撑材料通道。
优选地,沿打印方向在所述打印头两侧分别设置LED灯。
优选地,还包括升降台,其用于放置所述彩色3D物体。
本发明涉及的彩色3D物体的制作方法,当使用单一种类的成型材料进行打印形成层结构成果时,一方面避免了不同材料收缩率不一致对打印物体平整度的影响,另一方面省去了使用白色光固化树脂进行填充的步骤,提高了尺寸精度以及打印效率。
本发明涉及的彩色3D物体的制作方法,一方面采用逐层双向打印的方式进行,可以提高彩色3D物体的成型效率以及降低成型成本;所述逐层双向打印,即打印头在运动过程中,始终执行打印动作,区别于现有技术中,完成一个打印进程后,打印头需要反向复位,然后再进行下一个打印进程的打印方式。另一方面采用变频喷射的方式使用成型材料进行打印形成层结构成果,这样得到的层结构成果在微观上呈现网格状,节省了成型材料的用量,降低了彩色3D物体的制作成本,同时,在未喷射成型材料的位置使用彩色墨水进行打印,一方面使喷射出的彩色墨水液滴定位更加精确,另一方面由于成型材料的阻隔作用,不容易出现渗色的现象。
本发明涉及的彩色3D物体的制作方法,在层结构成果上采用弱溶剂墨水进行彩色印刷,进而形成层打印成果,一方面避免了相邻颜色层之间相互渗色导致的色差现象,另一方面也更加环保。
本发明涉及的彩色3D物体的制作方法,在将多个层打印成果叠加后形成的彩色3D物体具有色域宽广、颜色逼真的特点,同时不同颜色间的过渡自然。
同时,本发明涉及的彩色3D物体的制作系统,对打印头的成型材料通道和彩色墨水通道进行特殊排布,提高通道利用率,以配合实现彩色3D物体的制作方法。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1示出了本发明的第一具体实施方式的,一种彩色3D物体的制作方法的流程图;
图2示出了本发明的第一实施例的,包括分层和获取成型数据的所述彩色3D物体的制作方法的流程图;
图3示出了本发明的第二实施例的,采用变频喷射方式喷射成型材料的所述彩色3D物体的制作方法的流程图;
图4示出了本发明的一个具体实施例的,用于实现成型材料打印的成型材料通道的喷孔分布图;
图5示出了本发明的另一个具体实施例的,用于实现成型材料打印的成型材料通道的喷孔分布图;
图6示出了本发明的第三实施例的,包括分层和获取成型数据的采用变频喷射方式喷射成型材料的所述彩色3D物体的制作方法的流程图;
图7示出了本发明的第二具体实施方式的第四实施例,一种设置有一个成型材料通道的彩色3D物体的制作系统的示意图;
图8示出了本发明的第二具体实施方式的第五实施例,设置有两个成型材料通道的所述彩色3D物体的制作系统的示意图;
图9示出了本发明的第二具体实施方式的一个实施例,设置有两个成型材料容器的所述彩色3D物体的制作系统的示意图;
图10示出了本发明的第二具体实施方式的一个实施例,彩色墨水通道和成型材料通道排布的示意图;以及
图11示出了本发明的一个实施例,相邻两个层打印成果以及层支撑成果的示意图。
具体实施方式
图1示出了一种彩色3D物体的制作方法,通过逐层打印的方式制成所述彩色3D物体,具体包括如下步骤:
首先执行步骤S101,基于目标物体的层结构数据使用成型材料打印,形成层结构成果。具体地,所述层结构数据由N个结构像素点数据 组成,打印头根据N个所述结构像素点数据在每个结构像素点对应的位置喷射成型材料,最终形成层结构成果。更为具体地,N个所述结构像素点数据实际上就是N个结构像素点对应的空间坐标值,驱动控制器根据每个结构像素点对应的空间坐标值控制所述打印头的移动轨迹,在每个空间坐标值对应的位置使用成型材料进行打印。本领域技术人员理解,所述层结构成果构成彩色3D物体的实体结构部分,起作用是形成所述彩色3D物体的外形轮廓,因此所述成型材料优先选择单一种类的材料,例如是白色或者浅色材料或者透明材料等,选用单一种类的材料的优点在于,可以避免不同材料间由于收缩率的差异导致的尺寸不稳定,同时采用单一固化条件即可,固化速度可以控制。但是本发明中成型材料也可以选择不同种类的成型材料,此时必须确保所选择的不同种类的成型材料具有相同或基本相同的收缩率,以维持彩色物体的尺寸精度。
进一步地,在所述步骤S101的基础上,后续的步骤分为两个主线进程进行,两个主线进程区别主要在于后续的彩色印刷步骤是否与所述步骤S101同步进行。如图1所示,第一个主线进程为,步骤S1021与所述步骤S101是同时进行,即在执行步骤S101的同时,执行步骤S1021,基于层色彩数据使用彩色墨水在所述层结构成果表面打印,形成层打印成果。具体地,所述层色彩数据是由M个色彩像素点组成,打印头根据M个所述色彩像素点数据在每个色彩像素点对应的位置喷射彩色墨水,最终形成层打印成果。更为具体地,所述彩色墨水是喷射在所述层结构成果上的,因此M个所述色彩像素点数据与N个所述结构像素点数据是相关联的,所述色彩像素点数据不仅包括每个色彩像素点对应的空间坐标值,还包括每个色彩像素点对应的色彩值,所述色彩值是可以基于CMY色彩模式的色彩数据,也可以是基于CMYK色彩模式的色彩数据,还可以是基于其他色彩模式的色彩数据,其定义方式基于2D打印的技术。
进一步地,所述步骤S1021与所述步骤S101同时进行的方式为,打印头根据所述结构像素点数据在该结构像素点对应的位置喷射成型材料后,形成结构点,继而根据色彩像素点数据在形成的结构点上喷射 彩色墨水,形成彩色结构点,本领域技术人员理解,该色彩像素点数据与该结构像素点数据是相关联的,即该色彩像素点的空间坐标值与该结构像素点的空间坐标值是关联的。
进一步地,执行步骤S1031,重复所述步骤S1021与所述步骤S101形成多个层打印成果。本领域技术人员理解,由于所述步骤S1021与所述步骤S101是同步进行的,即所述层结构成果的形成过程和使用彩色墨水的打印过程是同步的,因此打印头在一个打印进程即可形成一个层打印成果。在此基础上,打印头继续下一个打印进程时,再形成下一个层打印成果,如此循环形成多个所述层打印成果。
如图1所示,第二个主线进程为,步骤S1022是在所述步骤S101之后进行,即先执行步骤S101形成层打印成果,继而再执行步骤S1022,基于层色彩数据使用彩色墨水在所述层结构成果表面打印,形成层打印成果。本领域技术人员理解,所述步骤S1022的打印原理与所述步骤S1021是类似的,不同之处在于,所述步骤S1022与所述步骤S101配合实现的方式不同。具体地,打印头在前一个打印进程中首先形成一个层结构成果(通过执行步骤S101实现),在后一个打印进程使用彩色墨水在该层结构成果上进行打印形成层打印成果,因此第二主线进程中,需要两个打印进程才形成一个层打印成果,而第一主线进程则只需要一个打印进程即形成一个层打印成果。本领域技术人员理解,选择哪个主线进程进行打印,其取决于成型材料的固化速度以及3D彩色物体色彩的复杂程度,固化速度越快,色彩越简单,则优选采用第一主线进程,反之,则优选采用第二主线进程。
进一步地,执行步骤S1032,重复所述步骤S1022与所述步骤S101形成多个层打印成果。
进一步地,在前述多个步骤的基础上,执行步骤S104,将多个所述层打印成果叠加形成彩色3D物体。本领域技术人员理解,本步骤是成型步骤,所述目标物体被分为很多层,通过前述所有步骤进行逐层打印并叠加,最终形成所述彩色3D物体。更为具体地,步骤S104所述的叠加,并非是一个最后才执行的步骤,而是伴随着前述步骤而执行的,即通过所述步骤S101至步骤S1031或者通过步骤S101至步骤S1032完成 一个层打印成果即叠加一层,这种叠加的过程是一个累积型的过程,其叠加的方向既包括沿每一层的延伸方向叠加,也包括沿所述目标物体的分层方向的叠加,全部叠加完成后最终形成彩色3D物体。
作为本发明的第一实施例,图2示出了包括分层和获取成型数据的所述彩色3D物体的制作方法的流程图,具体包括如下步骤:
首先执行步骤S201,将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据,所述成型数据包括所述层结构数据和层色彩数据。本领域技术人员理解,本步骤的目的在于将所述目标物体转换为数据形式,其中目标物体可以通过扫描的方式获取结构信息和色彩信息,接着将所述结构信息和色彩信息转换成能被处理终端的分层切片软件识别的数据格式,如STL格式、PLY格式、WRL格式等。具体地,所述结构信息和色彩信息是以层为单位的,即所述目标物体被扫描后通过分层软件进行切片分层,然后对每个切片层进行解析得到每层的结构信息和色彩信息,再将每层的结构信息和色彩信息转化为层结构数据和层色彩数据。
作为一种变化,还可以通过绘图软件将目标物体直接绘制出来,常用的绘图软件如:CAD、Proe、Solidwork、UG、3D Max等,本领域技术人员理解,通过绘图软件绘制出的是所述目标物体的基本结构模型,在此基础上还对绘制出的基本结构进行配色,常用配色方式有多种,例如,直接对绘制好的基本结构模型进行配色后转换成PLY格式;又例如,将绘图软件绘制好的基本结构模型转换成STL格式后再进行配色;本领域技术人员可以在现有技术的基础上做不同的变化,在此不予赘述。
进一步地,在步骤S201的基础上,再执行步骤S202至步骤S2041或者步骤S202至步骤S2042,具体的实现方式可以参照图1示出的具体实施方式中关于步骤S101至步骤S1031或者步骤S101至步骤S1032的描述,只是在步骤S2041中相较于步骤S1031做了进一步限定,在重复步骤S202和S2031形成多个层打印成果中相邻两次步骤S202的打印方向相反,因为打印头在一个打印进程中即形成了一个层打印成果,在此基础上,当打印头开始下一个打印进程时,在现有技术中,打印头首先需要反向复位,再继续同步执行所述步骤S202和S2031,这样,前后两 个打印进程中,步骤S202的打印方向是相同的(实际上步骤S2031的打印方向也是相同的)。而在本发明中实施例中,前一个打印进程结束后,省略了反向复位步骤,同时后一个打印进程是相对于前一个打印进程反向进行的,这样,前后两个打印进程中,步骤S202的打印方向是相反的(实际上步骤S2031的打印方向也是相反的),相比于现有技术,本发明省略了反向复位步骤,从而大大提高了成型效率。
在第一实施例中步骤S2042相较于图1中步骤S1032做了进一步限定,在重复步骤S202和S2032形成多个层打印成果中相邻两次步骤S202的打印方向相同,本领域技术人员理解,与第一实施例中第一主线进程类似,在第二主线进程中开始后一个打印进程时,同样省略反向复位步骤,具体地,在第二主线进程中,所述步骤S202和步骤S2032是前后交替进行的,在执行步骤S2042的过程中,即重复执行步骤S202和步骤S2032的过程中,在省略反向复位步骤后,步骤S202和步骤S2032的打印方向实际上是相反的,相应的,相邻两次步骤S202的打印方向则是相同的。同样的,在成型材料固化速度慢,并且彩色3D物体色彩比较复杂的情形下,通过第二个主线进程的打印方式,同样可以提高成型效率。
进一步地,在执行步骤S2041或者步骤S2042的过程中,还执行步骤S205,基于所述层结构数据使用支撑材料进行打印形成层支撑成果,所述支撑成果为相邻两个层打印成果提供支撑。本领域技术人员理解,在本发明中,相邻两个层打印成果的结构形状如果不同,可能会存在后一层的部分位置架空前一层的现象,此时在打印前一层时还需额外打印支撑层,以为后一层提供支撑防止塌陷现象。图11示出了相邻两个层打印成果P1、P2与支撑层P的位置关系,以更加形象的表示步骤S205的目的。具体地,步骤S205的打印原理与步骤S101的打印原理是类似的,使用所述支撑材料进行打印时,每个支撑像素点对应的空间位置坐标值也是基于所述层结构数据得出。更为具体地,在所述步骤S201获取层结构数据时,会根据相邻两层的基本结构构建众多支撑像素点,并为每个支撑像素点设置空间坐标值,将众多支撑像素点对应的众多空间坐标值作为层结构数据的一部分。
进一步地,在前述多个步骤的基础上,执行步骤S206,将多个所述层打印成果叠加形成彩色3D物体,具体的实现方式和步骤S104一致,在此不再赘述。
作为本发明的第二实施例,图3示出了采用变频喷射方式喷射成型材料的所述彩色3D物体的制作方法的流程图,具体包括如下步骤:首先执行步骤S301,基于目标物体的层结构数据使用成型材料打印,形成层结构成果,具体实现方式可以参照步骤S101,只不过本实施例中步骤S301中进一步限定所述成型材料通过变频喷射的方式喷出。具体地,所述变频喷射是相对于现有技术中的全喷射的方式定义的,所述全喷射的方式是指所述打印头的成型材料通道上的全部喷孔在喷射成型材料时全部工作,相应地,所述变频喷射是指所述打印头的成型材料通道上的全部喷孔在喷射成型材料时并非全部工作,而是只有部分喷孔喷射成型材料。更为具体地,在进行变频喷射时,工作喷孔数量占所述全部喷孔的比例可以是1/4、1/3、1/2、3/4或者其他比例,所述工作喷孔可以均匀间隔分布,也可以随机分布,这些均可以实现本步骤的目的。优选地,成型材料通道上的喷孔数量全喷时为偶数,这样,在所述变频喷射的过程中,更有利于均匀分布工作喷孔的位置,以至于在使用彩色墨水进行打印时定位更加精确。更为优选地,相邻两个喷孔中心间距可以与成型材料液滴的大小相匹配,例如,相邻两个喷孔中心间距为1/360dpi即0.07mm,这样,通过变频喷射的方式使用成型材料打印形成的所述层结构成果从微观上看为网格状结构,这样可以节约成型材料的用量,降低打印成本。
在一个具体的实施例中,如图4所示,用于实现成型材料打印的成型材料通道的喷孔分布图,图中所述变频喷射的方式为间隔喷射,具体地,图4示出了两种喷孔的分布方式,其中黑色的喷孔表示在变频喷射过程中的工作喷孔,白色的喷孔表示在变频喷射过程中的非工作喷孔。更为具体地,图4示出的所述工作喷孔的分布方式为均匀间隔分布以及非均匀间隔分布的情形,本领域技术人员也可以在此基础上做出更多的变化,在此不予赘述。
在另一个具体的实施例中,如图5所示,用于实现成型材料打印的 成型材料通道的喷孔分布图,图中所述变频喷射的方式为全喷射和间隔喷射交替进行,具体地,图5示出了两种喷孔的分布方式,其中黑色的喷孔表示在变频喷射过程中的工作喷孔,白色的喷孔表示在变频喷射过程中的非工作喷孔。更为具体地,图5示出的所述工作喷孔的分布方式包括均匀间隔分布以及非均匀间隔分布的情形,本领域技术人员也可以在此基础上做出更多的变化,均可以实现本发明的目的。
进一步地,在所述步骤S301的基础上,后续的步骤分为两个主线进程进行,具体可参照图1中第一主线进程和第二主线进程的实现方式,只是本实施例中在第一主线进程和第二主线进程中,分别在所述步骤S3021和S3022中,可进一步限定,在未喷射成型材料的位置使用彩色墨水进行打印,结合图4和5,即在成型材料通道的非工作喷孔的位置喷射彩色墨水液滴。具体地,本领域技术人员理解,在执行步骤S301中,成型材料液滴固化后的结构点形成网格状的所述层结构成果,在执行步骤S3021后,网格状的所述层结构成果的网孔中为彩色墨水液滴固化后的彩色结构点,这样,喷射出的彩色墨水液滴定位更加精确,同时由于成型材料的阻隔作用,不容易出现渗色的现象。
进一步地,所述步骤S3021与所述步骤S301同时进行的方式为,打印头根据所述结构像素点数据在该结构像素点对应的位置喷射成型材料后,形成结构点及对应的网孔,继而根据色彩像素点数据在形成的该结构点对应的网孔上喷射彩色墨水,形成一个彩色结构点,本领域技术人员理解,该色彩像素点数据与该结构像素点数据是相关联的,即该色彩像素点的空间坐标值与该结构像素点的空间坐标值是关联的。
进一步地,执行步骤S3031,重复所述步骤S301与所述步骤S3021形成多个层打印成果。本领域技术人员理解,由于所述步骤S301与所述步骤S3021是同步进行的,即所述层结构成果的形成过程和使用彩色墨水的打印过程是同步的,因此打印头在一个打印进程即可形成一个层打印成果。在此基础上,打印头继续下一个打印进程时,再形成下一个层打印成果,如此循环形成多个所述层打印成果。
本领域技术人员理解,本实施例中第二主线进程与第一主线进程的不同之处在于,所述步骤S3022与所述步骤S301配合实现的方式不同。 具体地,打印头在前一个打印进程中首先形成一个层结构成果(通过执行步骤S301实现),在后一个打印进程使用彩色墨水在该层结构成果上进行打印形成层打印成果,因此第二主线进程中,需要两个打印进程才形成一个层打印成果,而第一主线进程则只需要一个打印进程即形成一个层打印成果。本领域技术人员理解,选择哪个主线进程进行打印,其取决于成型材料的固化速度以及3D彩色物体色彩的复杂程度,固化速度越快,色彩越简单,则优选采用第一主线进程,反之,则优选采用第二主线进程。
进一步地,执行步骤S3032,重复所述步骤S301与所述步骤S3022形成多个层打印成果。本领域技术人员理解,在第二主线进程中,所述步骤S301与所述步骤S3022是前后交替进行的,因此步骤S3032与步骤S3031的区别在于,以同样数量的层结构成果为基准,步骤S3032需要重复的打印进程的次数是步骤S3031需要重复的打印进程的次数的两倍,其原因在于,在第二主线进程中,两个打印进程才能形成一个层打印成果,在成型材料固化速度慢,并且3D彩色物体色彩比较复杂的情形下,则通常选用第二个主线进程的打印方式。
进一步地,在前述多个步骤的基础上,执行步骤S304,将多个所述层打印成果叠加形成彩色3D物体,具体的实现方式和步骤S104一致,在此不再赘述。
作为本发明的第三实施例,图6示出了包括分层和获取成型数据的采用变频喷射方式喷射成型材料的所述彩色3D物体的制作方法的流程图,具体包括如下步骤:
首先执行步骤S401,将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据,所述成型数据包括所述层结构数据和层色彩数据;具体的实现方式和步骤S201一致,在此不再赘述。
进一步地,在步骤S401的基础上,再执行步骤S402至步骤S4041或者步骤S402至步骤S4042,具体的实现方式可以参照图3中示出的第二实施例中关于步骤S301至步骤S3031或者步骤S301至步骤S3032的描述,只是在步骤S4041中相较于步骤S3031做了进一步限定,在重复 步骤S402和S4031形成多个层打印成果中相邻两次步骤S402的打印方向相反,因为打印头在一个打印进程中即形成了一个层打印成果,在此基础上,当打印头开始下一个打印进程时,在现有技术中,打印头首先需要反向复位,再继续同步执行所述步骤S402和S4031,这样,前后两个打印进程中,步骤S402的打印方向是相同的(实际上步骤S4031的打印方向也是相同的)。而在本发明实施例中,前一个打印进程结束后,省略了反向复位步骤,同时后一个打印进程是相对于前一个打印进程反向进行的,这样,前后两个打印进程中,步骤S402的打印方向是相反的(实际上步骤S4031的打印方向也是相反的),相比于现有技术,本发明省略了反向复位步骤,从而大大提高了成型效率。
在第三实施例中步骤S4042相较于图3中步骤S3032做了进一步限定,在重复步骤S402和S4032形成多个层打印成果中相邻两次步骤S402的打印方向相同,本领域技术人员理解,与第三实施例中第一主线进程类似,在第二主线进程中开始后一个打印进程时,同样省略反向复位步骤,具体地,在第二主线进程中,所述步骤S402和步骤S4032是前后交替进行的,在执行步骤S4042的过程中,即重复执行步骤S402和步骤S4032的过程中,在省略反向复位步骤后,步骤S402和步骤S4032的打印方向实际上是相反的,相应的,相邻两次步骤S402的打印方向则是相同的。同样的,在成型材料固化速度慢,并且彩色3D物体色彩比较复杂的情形下,通过第二个主线进程的打印方式,同样可以提高成型效率。
进一步地,在执行步骤S4041或者步骤S4042的过程中,还执行步骤S405,基于所述层结构数据使用支撑材料进行打印形成层支撑成果,所述支撑成果为相邻两个层打印成果提供支撑;具体的实现方式和步骤S205一致,在此不再赘述。
进一步地,在前述多个步骤的基础上,执行步骤S406,将多个所述层打印成果叠加形成彩色3D物体,具体的和步骤S104一致,在此不再赘述。
在一个优选地实施例中,上述各实施例中所述成型材料为光敏树脂材料,彩色墨水为弱溶剂墨水。所述光敏树脂材料在室温下(通常定为 25℃)的粘度为14~180cps,在25~80℃的粘度为5~15cps;所述弱溶剂墨水的粘度为4~14cps,所述弱溶剂墨水的表面张力为22~35mN/m。本领域技术人员理解,所述成型材料用于制作所述彩色3D物体的结构部分,然后通过彩色墨水在所述成型材料形成结构部分上色完成制作,因此选择成型材料颜色的基本原则是成型材料的颜色不会影响彩色墨水在其表面上的显色,相应地,所述成型材料可以为白色材料、透明材料或浅色材料中的任一种。
进一步地,本领域技术人员理解,现有技术中,常用的彩色墨水为溶剂型墨水或者水性墨水,由于溶剂型墨水的环保问题,已经较少使用,而水性墨水虽然环保,但其干燥速度慢,容易渗色。在本发明中,由于本发明采用的是逐层双向打印技术,即打印头在运动过程中,始终执行打印动作,或喷射成型材料,或喷射彩色墨水,这样虽然提高了打印效率,但此时如果仍然使用水性墨水,会导致水性墨水干燥不充分,渗色现象会加重,为此,本发明改用弱溶剂墨水进行上色,一方面可以避免渗色现象,另一方面也更加环保。
具体地,以下示出了应用于本发明的光敏树脂材料以及弱溶剂墨水的若干示例:
示例一:
配方表:
Figure PCTCN2016093243-appb-000001
Figure PCTCN2016093243-appb-000002
参数表:
Figure PCTCN2016093243-appb-000003
示例二:
配方表:
Figure PCTCN2016093243-appb-000004
Figure PCTCN2016093243-appb-000005
参数表:
Figure PCTCN2016093243-appb-000006
示例三:
配方表:
Figure PCTCN2016093243-appb-000007
Figure PCTCN2016093243-appb-000008
参数表:
Figure PCTCN2016093243-appb-000009
示例四:
配方表:
Figure PCTCN2016093243-appb-000010
Figure PCTCN2016093243-appb-000011
参数表:
Figure PCTCN2016093243-appb-000012
图7示出了本发明的第二具体实施方式的第四实施例,一种设置有一个成型材料通道的彩色3D物体的制作系统,其用于执行前述第一具体实施方式以及各实施例描述的制作方法,主要包括:处理终端2,其用于将所述目标物体1进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据。驱动控制器3,其基于所述成型数据控制所述打印头5执行打印动作。
进一步地,所述处理终端2和所述驱动控制器3功能的实现可以是硬件、由处理器执行的软件或者二者的组合。具体地,如果通过软件模块实现,可将预先的程序烧录到所述处理器中,或者将软件安装到预置的系统中;如果通过硬件实现,则可利用现场可编程门阵列(FPGA)将对应的功能固定化实现。
进一步地,所述软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、硬盘、或本领域已知的任何其他形式的存储介质。通过将所述存储介质耦接至处理器,从而使所述处理器能够从所述存储介质中读取信息,并且可以向所述存储介质写入信息。作为一种变化,所述存储介质可以是处理器的组成部分,或者所述处理器和所述存储介质均位于专用集成电路(ASIC)上。
进一步地,所述硬件可以是能够实现具体功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件或以上这些硬件的组合。作为一种变化,还可以通过计算设备的组合实现,例如,DSP和微处理器的组合、多个微处理器的组合、与DSP通信结合的一个或者多个微处理器的组合等。
进一步地,以下结合图7中示出的目标物体1、支撑材料容器4e、彩色墨水容器4b,4c,4d、成型材料容器4a、打印头5、LED灯6和6′、导轨7以及升降台8等,详细描述所述彩色3D物体制作过程。具体地,以采用上述第一实施例的方法制作彩色3D物体为例,所述处理终端2通过步骤S201的方式获取所述目标物体1的成型数据,所述成型数据包括层结构数据和层色彩数据。所述处理终端2将所述成型数据发送到所述驱动控制器3,所述驱动控制器3根据第一实施例图2中第二主线进程完成打印。
进一步地,所述驱动控制器3通过控制打印头5完成相应的打印动作,如图7所示,所述打印头5包括支撑材料通道5e、成型材料通道5a,彩色墨水通道5b,5c,5d,所述支撑材料通道5e通过连接管连接所述支撑材料容器4e,所述成型材料通道5a通过连接管连接所述成型材料容器4a,所述彩色墨水通道5b,5c,5d通过连接管连接所述彩色墨水容器4b,4c,4d,所述支撑材料、成型材料、彩色墨水从所述支撑材料容器4e、彩色墨水容器4b,4c,4d、成型材料容器4a导入到打印头5,并通过喷孔喷出。具体地,所述彩色墨水容器4b,4c,4d分为红色墨水容器、黄色墨水容器以及蓝色墨水容器,相应地,所述彩色墨水通道5b,5c,5d分为红色墨水通道、黄色墨水通道以及蓝色墨水通道。根据色彩管理理论,使用三原色红(M)、黄(Y)、蓝(C)按照不同的混合比例混合能够实现全彩色,作为一种变化,也可以使用红(M)、黄(Y)、蓝(C)以及黑(BK)来实现全彩色,本发明中打印头5彩色墨水通道具体设置为三通道M、Y和C还是四通道M、Y、C和BK不受限制。
进一步地,打印头5在驱动控制器3的控制下,在导轨7上沿X方向前进,在前进的过程中,成型材料通道5a喷射成型材料,同时,驱动 控制器3基于层结构数据在需要支撑材料的位置控制打印头5通过支撑材料通道5e喷射支撑材料,并通过设置在打印头5一侧的LED灯6′照射固化,这样一个打印进程完毕后即实现了步骤S202。之后,在下一个打印进程中,打印头5在驱动控制器3的控制下,在导轨7上沿-X方向前进,在前进的过程中,彩色墨水通道5b,5c,5d喷射彩色墨水,并通过设置在打印头5另一侧的LED灯6照射固化,这样一个打印进程完毕后即实现了步骤S2032。之后,打印头5沿Y方向移动一个步进,再重复上述前后两个打印进程,如此往复最终完成一层的打印。
进一步地,按照上述方式完成一层的打印后,驱动控制器3控制升降台8沿-Z方向下降一定高度后,再按照同样的方式完成下一层的打印,优选地,所述升降台8按照分层厚度逐步下降,通过伺服电机和丝杆完成下降动作,作为一种变化,所述升降台8的下降幅度也可以大于分层厚度,这同样可以实现本发明的目的。
作为本发明的第二具体实施方式的第五实施例,图8示出了设置有两个成型材料通道的又一种彩色3D物体的制作系统,从图8中可以看出,图8区别图7之处在于,图8中的打印头5具有两个成型材料通道5a,5f,且分别位于彩色墨水通道两侧,以下结合图8中示出的目标物体1、支撑材料容器4e、彩色墨水容器4b,4c,4d、成型材料容器4a、打印头5、LED灯6和6′、导轨7以及升降台8等,详细描述所述彩色3D物体制作过程。具体地,以采用上述第一实施例的方法制作彩色3D物体为例,所述处理终端2通过步骤S201的方式获取所述目标物体1的成型数据,所述成型数据包括层结构数据和层色彩数据。所述处理终端2将所述成型数据发送到所述驱动控制器3,所述驱动控制器3根据第一实施例图2中第一主线进程完成打印。
进一步地,打印头5在驱动控制器3的控制下,在导轨7上沿X方向前进,在前进的过程中,成型材料通道5a喷射成型材料,并且彩色墨水通道5b,5c,5d喷射彩色墨水,再通过设置在打印头5一侧的LED灯6′照射固化,这样即实现的步骤S202和步骤S2031的同步进行,同时,驱动控制器3基于层结构数据在需要支撑材料的位置控制打印头5通过支撑材料通道5e喷射支撑材料,并通过设置在打印头5一侧的LED 灯6′照射固化。接下来,沿X方向完成一个打印进程后,打印头5沿Y方向移动一个步进,然后再沿-X方向开始下一个打印进程,此时成型材料通道5f喷射成型材料,并且彩色墨水通道5b,5c,5d喷射彩色墨水,同时,驱动控制器3基于层结构数据在需要支撑材料的位置控制打印头5通过支撑材料通道5e喷射支撑材料,并通过设置在打印头5另一侧的LED灯6照射固化,进而完成下一个打印进程。
进一步地,按照上述两个进程的方式往复运行完成一层的打印,在此基础上,驱动控制器3控制升降台8沿-Z方向下降一定高度后,再按照同样的方式完成下一层的打印,优选地,所述升降台8按照分层厚度逐步下降,通过伺服电机和丝杆完成下降动作,作为一种变化,所述升降台8的下降幅度也可以大于分层厚度,这同样可以实现本发明的目的。
基于以上描述可以看出,本实施例通过设置两个成型材料通道5a、5f并且分置于彩色墨水通道的两侧,在打印过程中,当打印头沿X轴方向运动时,通过成型材料通道5a喷射成型材料,当打印头沿-X轴方向运动时,通过成型材料通道5f喷射成型材料,实现了喷射成型材料步骤与喷射彩色墨水同步进行,并且在打印头沿+X轴方向和-X轴方向往复运动的整个过程中,一直在执行打印动作,相比于设置一个成型材料通道的所述3D彩色物体制作系统,本实施例涉及的制作系统可以更好的提高3D物体的成型效率,能够更好的实现本发明的目的。
进一步地,如图8所示,成型材料从成型材料容器4a经由所述成型材料通道5a、5f喷出。作为一种变化,图9示出了本发明的第二具体实施方式的一个实施例,如图9所示,所述彩色3D物体制作系统还设置有成型材料容器4f,所述成型材料通道5a连接成型材料容器4a,所述成型材料通道5f连接成型材料容器4f,这样所述成型材料通道5a、5f可以喷射不同成型材料,在另一些变化例中,所述彩色3D物体制作系统还可以设置两条以上的成型材料通道,以及对应设置两个以上的成型材料容器,这样可以提高成型材料的喷射效率,也可以进一步提高3D物体的成型效率,在此不予赘述。
进一步地,作为第二具体实施方式的另一个实施例,图10示出了彩色墨水通道和成型材料通道排布的示意图,本领域技术人员理解,图 10示出的彩色墨水通道和成型材料通道排布示意图分为两种,一种是成型材料通道位于彩色墨水通道的一侧,其用于实现前述具体实施方式以及各实施例中彩色3D物体的制作方法中的第二主线进程,另一种是两个成型材料通道分别位于彩色墨水通道的两侧,其用于实现前述具体实施方式以及各实施例中彩色3D物体的制作方法中的第一主线进程。具体地,图10-1至10-3设置有一个成型材料通道B和一个支撑材料通道S,所述彩色墨水通道包括M通道(红色墨水通道)、Y通道(黄色墨水通道)以及C通道(蓝色墨水通道),所述支撑材料通道S可以位于彩色墨水通道的M通道、Y通道、C通道之间,也可以位于所述彩色墨水通道的一侧,而所述成型材料通道B则位于所述彩色墨水的一侧,并不能位于在彩色墨水通道的M通道、Y通道、C通道之间。
进一步地,图10-4至10-6设置有两个成型材料通道B,B′和一个支撑材料通道S,所述彩色墨水通道包括M通道(红色墨水通道)、Y通道(黄色墨水通道)以及C通道(蓝色墨水通道),所述支撑材料通道S可以位于彩色墨水通道的M通道、Y通道、C通道之间,也可以位于所述彩色墨水通道的一侧,而所述成型材料通道B,B′则分别位于所述彩色墨水通道的两侧,并不能位于在彩色墨水通道的M通道、Y通道、C通道之间。
更进一步地,本领域技术人员理解,所述成型材料通道不能位于所述彩色墨水通道的M通道、Y通道、C通道之间,其原因在于无论使用彩色墨水印刷的步骤与喷射成型材料的步骤始终是有先后顺序的,即使使用彩色墨水印刷的步骤与喷射成型材料的步骤是同步进行,也需要先形成一个结构点,然后再对结构点进行上色处理,即此时的先后顺序是以每个结构点的形成为单位的。相应地,所述支撑材料形成的支撑成果则不需要上色,因此支撑材料通道S可以位于彩色墨水通道的M通道、Y通道、C通道之间。本领域技术人员理解,图10中共示出了6种分布图,但并非包括排布示意图的所有变化例,本领域技术人员可以在此基础上做出更多的变化。
具体的,以使用本发明的第二具体实施方式的各彩色3D物体制作系统以及采用本发明的第二实施例或第三实施例的方法来制作彩色3D 物体为例,其与采用第一实施例的方法制作彩色3D物体的差别在于驱动控制器3对成型材料通道的控制上,使用第二实施例或第三实施的方法中驱动控制器3需要控制成型材料通道实现变频方式的喷射,具体操作方法为:所述成型材料通道的每个喷孔对应一个液体腔室、供墨腔室、压电元件(包括上电极、下电极、压电体,上电极由电片构成,电片与各自的开关电路连接,驱动控制器3通过开关电路控制电片的通断)和振动板,驱动控制器3根据接收的层结构数据,通过开关电路控制电片的通断,从而控制喷孔是否喷墨。具体地,当施加一个驱动电压给电片时,电片和下电极之间产生电势差,压电元件发生变形,产生瞬间的应力作用于振动板,振动板产生一定的位移,液体从供墨腔室流入液体腔室,接着移除驱动电压或施加一个反向电压,压电原件恢复原形或朝反方向变形,产生的应力致使振动板恢复原形或朝反方向振动产生一定的位移,从而液滴从喷嘴喷出,完成一次喷射。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (19)

  1. 一种彩色3D物体的制作方法,通过逐层打印的方式制成所述彩色3D物体,其特征在于,包括如下步骤:
    a、基于目标物体的层结构数据使用成型材料打印,形成层结构成果;
    b、所述步骤a之后或者同时,基于层色彩数据使用彩色墨水在所述层结构成果表面打印,形成层打印成果;
    c、重复所述步骤a和步骤b形成多个层打印成果,且多个所述层打印成果叠加形成彩色3D物体。
  2. 根据权利要求1所述的制作方法,其特征在于,在所述步骤a中所述成型材料通过变频喷射的方式喷出。
  3. 根据权利要求2所述的制作方法,其特征在于,所述变频喷射的方式为间隔喷射或者全喷射和间隔喷射交替进行,且在所述步骤b中,在未喷射所述成型材料的位置使用彩色墨水进行打印。
  4. 根据权利要求3所述的制作方法,其特征在于,在所述变频喷射的过程中,当执行全喷射时,喷孔的数量为偶数。
  5. 根据权利要求2-4中任一项所述的制作方法,其特征在于,所述层结构成果为网格状结构。
  6. 根据权利要求1-4中任一项所述的制作方法,其特征在于,当所述步骤b在步骤a之后执行时,相邻两次重复所述步骤a的打印方向相同;当所述步骤b与步骤a同时执行时,相邻两次重复所述步骤a的打印方向相反。
  7. 根据权利要求6所述的制作方法,其特征在于,在所述步骤a之前包括如下步骤:
    a1、将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据,所述成型数据包括所述层结构数据和层色彩数据。
  8. 根据权利要求7所述的制作方法,其特征在于,在重复所述步骤a和步骤b过程中,还执行如下步骤:
    c1、基于所述层结构数据使用支撑材料进行打印形成层支撑成果,所述支撑成果为相邻两个层打印成果提供支撑。
  9. 根据权利要求1-4和7-8中任一项所述的制作方法,其特征在于,在所述步骤a中使用单一种类的成型材料进行打印;或者在所述步骤a中使用不同种类的成型材料进行打印且不同种类的成型材料之间收缩率基本相同。
  10. 根据权利要求9所述的制作方法,其特征在于,所述成型材料为光敏树脂材料,彩色墨水为弱溶剂墨水。
  11. 根据权利要求10所述的制作方法,其特征在于,所述光敏树脂材料在25℃的粘度为14~180cps,在25~80℃的粘度为5~15cps;
    所述弱溶剂墨水的粘度为4~14cps,所述弱溶剂墨水的表面张力为22~35mN/m。
  12. 根据权利要求11所述的制作方法,其特征在于,所述成型材料为白色材料、透明材料或浅色材料中的任一种。
  13. 一种彩色3D物体的制作系统,用于执行权利要求1-12中任一项所述的制作方法,其特征在于,包括:
    处理终端,其用于将所述目标物体进行分层,并基于每层的结构信息和色彩信息获取每层对应的成型数据;
    驱动控制器,其基于所述成型数据控制所述打印头执行打印动作;
    打印头,其用于喷射打印材料,所述打印头包括至少一条成型材料通道、彩色墨水通道和喷孔。
  14. 根据权利要求13所述的制作系统,其特征在于,所述成型材料通道和彩色墨水通道的设置方式为如下的一种:
    所述打印头设置有一条所述成型材料通道,且位于所述彩色墨水通道的一侧;
    所述打印头设置有两条所述成型材料通道,两条所述成型材料通道,沿打印方向分别位于所述彩色墨水通道的两侧。
  15. 根据权利要求14所述的制作系统,其特征在于,所述打印头设置有一条所述成型材料通道,且所述成型材料通道沿所述打印头的打印方向位于彩色墨水通道的前面。
  16. 根据权利要求15所述的制作系统,其特征在于,所述彩色墨水通道为如下的一种:
    由红色墨水通道、黄色墨水通道和蓝色墨水通道组成;
    由红色墨水通道、黄色墨水通道、蓝色墨水通道和黑色墨水通道组成。
  17. 根据权利要求16所述的制作系统,其特征在于,所述打印头还设置有至少一条支撑材料通道。
  18. 根据权利要求17所述的制作系统,其特征在于,沿打印方向在所述打印头两侧分别设置LED灯。
  19. 根据权利要求18所述的制作系统,其特征在于,还包括升降台,其用于放置所述彩色3D物体。
PCT/CN2016/093243 2016-03-02 2016-08-04 一种彩色3d物体的制作方法及系统 WO2017148100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/106,292 US10919213B2 (en) 2016-03-02 2018-08-21 Method and system for fabricating colored 3D object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610119405.6 2016-03-02
CN201610119405.6A CN107160671B (zh) 2016-03-02 2016-03-02 一种彩色3d物体的制作方法及系统
CN201610117648.6A CN107150437B (zh) 2016-03-02 2016-03-02 一种彩色3d物体的变频打印方法及系统
CN201610117648.6 2016-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/106,292 Continuation US10919213B2 (en) 2016-03-02 2018-08-21 Method and system for fabricating colored 3D object

Publications (1)

Publication Number Publication Date
WO2017148100A1 true WO2017148100A1 (zh) 2017-09-08

Family

ID=59742449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093243 WO2017148100A1 (zh) 2016-03-02 2016-08-04 一种彩色3d物体的制作方法及系统

Country Status (2)

Country Link
US (1) US10919213B2 (zh)
WO (1) WO2017148100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180133983A1 (en) * 2016-11-17 2018-05-17 Xyzprinting, Inc. Method of slicing printing color 3d object and color 3d printing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674966B (zh) * 2017-01-05 2019-10-21 三緯國際立體列印科技股份有限公司 彩色3d物件的著色範圍補償方法
CN107471648B (zh) * 2017-05-23 2018-10-12 珠海赛纳打印科技股份有限公司 用于打印技术的图像数据处理方法以及打印系统
CN110142965B (zh) * 2019-05-17 2021-07-27 珠海赛纳三维科技有限公司 伺服电机驱动电路及3d打印装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136252A (en) * 1995-09-27 2000-10-24 3D Systems, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing
CN104742364A (zh) * 2013-12-29 2015-07-01 周建 一种堆叠式彩色三维打印机用六通道聚熔式挤注喷头
CN104786496A (zh) * 2015-04-08 2015-07-22 金文韬 喷墨式的热熔挤出全彩色3d打印机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505924B2 (en) * 1998-09-30 2003-01-14 Brother Kogyo Kabushiki Kaisha Ink cartridge
US7794636B2 (en) * 2003-06-13 2010-09-14 Hewlett-Packard Development Company, L.P. Methods to produce an object through solid freeform fabrication
US7807077B2 (en) * 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
JP6532286B2 (ja) 2014-07-07 2019-06-19 株式会社ミマキエンジニアリング 立体物造形装置及び立体物造形方法
CN104191616A (zh) 2014-08-29 2014-12-10 马驰 一种喷墨3d打印设备及打印方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136252A (en) * 1995-09-27 2000-10-24 3D Systems, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing
CN104742364A (zh) * 2013-12-29 2015-07-01 周建 一种堆叠式彩色三维打印机用六通道聚熔式挤注喷头
CN104786496A (zh) * 2015-04-08 2015-07-22 金文韬 喷墨式的热熔挤出全彩色3d打印机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180133983A1 (en) * 2016-11-17 2018-05-17 Xyzprinting, Inc. Method of slicing printing color 3d object and color 3d printing system
US10710355B2 (en) * 2016-11-17 2020-07-14 Xyzprinting, Inc. Method of slicing printing color 3D object with position error correction

Also Published As

Publication number Publication date
US20180370118A1 (en) 2018-12-27
US10919213B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP6461488B2 (ja) 三次元構造物を形成する形成装置
WO2017148100A1 (zh) 一种彩色3d物体的制作方法及系统
JP6444077B2 (ja) 三次元構造物の形成装置および形成方法
US7700020B2 (en) Methods for producing an object through solid freeform fabrication
TWI531486B (zh) 彩色立體列印裝置及彩色立體列印方法
US11207822B2 (en) Method and system for fabricating mixed-material 3D object
JP6378932B2 (ja) 三次元構造物の形成装置および形成方法
KR20150079119A (ko) 3차원 프린터 및 그 제어 방법
CN106393662A (zh) 一种全彩色3d打印的装置和方法
JP2016047603A (ja) 立体物造形装置及び立体物の製造方法
JP2000280356A (ja) 三次元造形装置および三次元造形方法
CN104786496A (zh) 喷墨式的热熔挤出全彩色3d打印机
WO2017206327A1 (zh) 一种3d物体喷墨打印方法及系统
JP6725361B2 (ja) 立体物の造形方法および造形装置
CN107263863A (zh) Dlp三维打印机及其打印方法
CN107150437A (zh) 一种彩色3d物体的变频打印方法及系统
JP6773517B2 (ja) 立体造形物、立体造形物製造方法、及び立体造形物製造装置
CN106346778A (zh) 三维全彩复合打印装置
JP6612404B2 (ja) 三次元構造物の形成装置および形成方法
CN107160671B (zh) 一种彩色3d物体的制作方法及系统
TWM511953U (zh) 三維全彩複合列印裝置
TWI606917B (zh) 三維全彩複合列印裝置
CN110126275A (zh) 一种多彩3d打印方法
JP2016037007A (ja) 3次元プリンタ、及び、3次元造形物製造方法
TWI600529B (zh) 三維全彩複合列印裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892287

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892287

Country of ref document: EP

Kind code of ref document: A1