WO2017147988A1 - 一种利用标准光源对色观察箱进行颜色测试的方法 - Google Patents

一种利用标准光源对色观察箱进行颜色测试的方法 Download PDF

Info

Publication number
WO2017147988A1
WO2017147988A1 PCT/CN2016/079514 CN2016079514W WO2017147988A1 WO 2017147988 A1 WO2017147988 A1 WO 2017147988A1 CN 2016079514 W CN2016079514 W CN 2016079514W WO 2017147988 A1 WO2017147988 A1 WO 2017147988A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
observation box
standard
light source
Prior art date
Application number
PCT/CN2016/079514
Other languages
English (en)
French (fr)
Inventor
邱迦易
李长军
雷国林
史建达
詹应胜
Original Assignee
温州佳易仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州佳易仪器有限公司 filed Critical 温州佳易仪器有限公司
Priority to US15/546,458 priority Critical patent/US10215640B2/en
Priority to EP16885452.9A priority patent/EP3376187B1/en
Publication of WO2017147988A1 publication Critical patent/WO2017147988A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/463Colour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/501Colorimeters using spectrally-selective light sources, e.g. LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources

Definitions

  • the present invention relates to a test method, and more particularly to a method for color testing a color observation box using a standard light source.
  • the current market is used for standard light source color observation boxes or light boxes of standard D illuminators.
  • D illuminators There are various brands of fluorescent tubes and a tungsten halogen lamp permeable filter to make the spectrum of the radiation simulate the D illuminator specified by the CIE standard.
  • the relative spectral power distribution of the irradiated light source passing through the filter with the tungsten halogen lamp can reach the level D level of the D illuminant metamerism index specified by the CIE standard, but its function is irradiated to the light source due to the influence of materials and manufacturing process technology.
  • the relative spectral power distribution technical index is difficult to achieve the CIE D standard illuminant ⁇ 0.2 A-level metamerism index quality level, which will gradually deteriorate during long-term use, and will exceed 0.25 metamerism index. Only the B level of >0.25 to 0.50.
  • the emitted illuminance relative to the spectral power distribution is impossible to stabilize the quality, and the colored optical glass filter is also arranged, because of the material, the transmitted illuminating light is relatively
  • the spectral power distribution will also vary, and the combination of a filter and a tungsten halogen lamp can only form a single-size CIE standard D illuminator (CIE standard illuminating body D65, D75, D55, D50 and other standard specifications) . It is difficult to ensure that the standard light source continues to have a stable spectral power distribution after a long period of use, and the replacement of the tungsten halogen lamp or the filter will cause a difference, thereby affecting the accuracy of the test.
  • CIE standard D illuminator CIE standard illuminating body D65, D75, D55, D50 and other standard specifications
  • the spectral power distribution of the tungsten halogen lamp through the filter is difficult to solve the sawtooth shape of different wavelengths. Therefore, the highest quality SpectraLightQC standard light source color observation box (new product introduced into the market in 2013) is recognized as the light source in the market.
  • the mass spectroscopic isochrome index of the quality index according to CIE15:2004 can only reach the A or B level of 0.20--0.30.
  • This standard D daylight source uses halogen Due to the tungsten filament and the inert gas containing halide and halogen element, the tungsten lamp tube gradually produces efficiency changes during the long-term use of the lamp tube and the material of the colored optical glass used for the filter (chemical material) The resulting variation causes the relative spectral power distribution of the source to mutate. Therefore, the metachromatic index of the light source gradually increases from 0.21 to 0.25--0.30 during use, and can only be maintained at the B level. Although the illuminance is still very high, the illuminating area formed by the tungsten wire in the tube has different spacings at different lengths, and the illuminating energy emitted by the illuminating body is different. Therefore, the illumination uniformity of the object placed in the light source box is only uniform. Can reach a quality level of about 90%.
  • a multi-segment narrow-wavelength LED is used to combine the illuminating light to illuminate the spectral power distribution close to the D illuminant specification specified by the CIE standard, but the relative spectral power distribution of the illuminating light in the color light box at the object placement position is uneven. Sex.
  • an LED-based intelligent color light box has been introduced, which uses at least one LED white light source and a plurality of single-color LEDs as illumination main bodies.
  • a special filter is used to emit light from a tungsten halogen lamp to supplement the radiant energy of the entire visible light.
  • Electronic technology monitoring is used to intelligently adjust the energy of each LED to emit light.
  • the combined light emitted by the LED can simulate the color temperature index of the CIE standard D illuminator, the main peak energy of the light spectrum emitted by various LEDs is prominent, and the emitted light is emitted.
  • the relative spectral power distribution parameters of the light are unlikely to reach the index for each band specified by the CIE standard. As long as the measured measured data of the relative spectral power distribution of the emitted light is compared with the relative spectral power distribution parameter of the D illuminant specified by the CIE standard, the difference is obvious.
  • the color temperature value measured by the current universal color temperature measuring instrument can reach the D light source index specified by the CIE standard.
  • the source of the isochromatic index of the light emitted by the light source is difficult to reach the A level, and the adoption of this light is more than Different monochromatic LEDs are equipped with white LEDs as the main body of the radiant energy of the light source, but the light transmitted by the filter is used as a supplement of the irradiation energy, and the uniformity of the radiation is still difficult to have good uniformity on the surface of the sample to be tested. .
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a standard light source pair by compensating for the relative spectral power distribution of a standard light source to reach the level of the metameric index of the CIE standard, and to ensure the test accuracy and durability of the device. Color observation box for color test method.
  • the invention adopts the following technical scheme: a method for color testing a color observation box by using a standard light source, and a tungsten halogen lamp and a filter are arranged in the color observation box, and the light of the tungsten halogen lamp is transmitted through the filter to emit the irradiation main body.
  • a narrow-wave LED light source with a plurality of different light-emitting wavelengths is emitted to compensate the light; the irradiated main light and the compensated light are mixed in a color observation box to become a mixed light of a uniform analog standard D illumination body;
  • the tested items in the color are tested.
  • the tungsten halogen lamp and the narrow-wave LED light source are in operation, the tungsten halogen lamp is the illumination main body, which provides the main illumination energy, and the illumination energy of the narrow-wave LED light source accounts for less than 20% of the total irradiation energy.
  • a UV ultraviolet lamp is disposed in the color observation box, and the UV ultraviolet lamp compensates for ultraviolet energy when working together with the tungsten halogen lamp and the narrow wave LED light source.
  • the bulb of the tungsten halogen lamp is a quartz tube with a transparent surface, and the surface of the quartz tube is made into a diffuse light-transmitting body by a sand blasting process.
  • the color observation box adjusts the brightness of the narrow-wave LED light source of different illumination wavelengths by measuring the change of the color temperature data during the color test, so that the color temperature data of the mixed light meets the requirements.
  • the color observation box is calibrated by the following steps before leaving the factory:
  • the color observation box is calibrated before leaving the factory: the color temperature data is sampled by an external spectrum analyzer, and the RGB data is sampled by the color sensor set in the color observation box to calculate the RGB data and the color temperature data. Matrix coefficient, and the matrix coefficient is sent to the main control module of the color observation box;
  • the color temperature data is calculated by calculating the RGB data and matrix coefficients sampled by the color sensor at the factory after the factory.
  • RGB to XYZ is implemented by a polynomial regression algorithm.
  • the formula is:
  • R is a red light signal
  • G is a green light signal
  • B is a blue light signal
  • X, Y, and Z are spectral tristimulus values
  • I T represents the transposition of I
  • V (x-0.3320)/(0.1858-y) (4)
  • CCT is the color temperature
  • V, x, and y are intermediate variables.
  • the image color data of the standard color card in the color observation box is collected by a digital camera, and the image color data is combined with the XYZ spectrum tristimulus value of the standard color card to obtain a conversion relationship between the two;
  • the XYZ spectrum tristimulus value is used to calculate the correlated color difference, and the color is judged according to the requirements of the quality of the tested object.
  • the polynomial regression model is as follows:
  • R is a red light signal
  • G is a green light signal
  • B is a blue light signal
  • X, Y, and Z are spectral tristimulus values
  • I T represents the transposition of I.
  • the digital camera can be disposed at the upper middle of the color observation box or at the upper side of the color observation box; when the digital camera is disposed at the upper middle of the color observation box, the measured object is directly placed on the bottom of the color observation box.
  • the digital camera is placed at the side opening above the color observation box, the digital camera is at an angle of 45 degrees with the bottom plate, and a substrate facing the digital camera is disposed on the bottom plate, and the substrate and the bottom plate are at an angle of 45 degrees.
  • the object to be tested is placed on the substrate.
  • the invention has the beneficial effects that the combination of the tungsten halogen lamp and the narrow-wave LED light source can simulate CIE standard D illuminating bodies of different specifications, namely D65, D75, D55, D50, etc., as long as the brightness of the narrow-wave LED light source can be adjusted; After the compensation of the narrow-wavelength LED light source with different illumination wavelengths, the quality of the light source is ⁇ 0.2A level according to the CIE standard D illuminant, which is difficult to achieve with the original tungsten halogen lamp plus filter; The stability of the light source, so that the color temperature does not change during the use of the light source, the compensation light is adjusted by automatic monitoring, so that the relative spectral power distribution of the irradiated light conforms to the standard, and the accuracy of the long-term color test result is ensured.
  • the light emitted by the tungsten halogen lamp as the main irradiation light can have a more gradual spectral power distribution curve, and compensates for the insufficient energy of the tungsten halogen lamp through the low-power narrow-wave LED light source, and can simulate high precision.
  • the CIE standard D illuminator The CIE standard D illuminator.
  • 1 is a comparison diagram of spectral power distribution curve standards D65, D65, D65+LED, D65+LED+UV of the present invention.
  • Figure 2 is a comparison of spectral power distribution curve standards D65 and D65 of the present invention.
  • FIG. 3 is a comparison diagram of spectral power distribution curve standards D65, D65, D65+LED of the present invention.
  • Figure 4 is a comparison of the spectral power distribution curve standards D65, D65, D65+LED+UV of the present invention. Figure.
  • Figure 5 is a structural schematic diagram of the present invention.
  • Figure 6 is a flow chart of the color temperature adjustment of the present invention after leaving the factory.
  • Fig. 7 is a flow chart showing the debugging of the narrow wave LED light source before leaving the factory of the present invention.
  • Figure 8 is a side cross-sectional view 1 of a standard light source color observation box of the present invention.
  • Figure 9 is a side cross-sectional view 2 of the standard light source color observation box of the present invention.
  • Figure 10 is an internal bottom view of the standard light source color observation box of the present invention.
  • a specific embodiment of a method for color testing a color observation box using a standard light source is provided.
  • a tungsten halogen lamp 1 and a filter 2 are disposed, and the light of the tungsten halogen lamp 1 transmits the irradiated main light through the filter 2; and a plurality of narrow-wave LED light sources 3 with different emission wavelengths are disposed.
  • the compensating light is emitted; the irradiated subject light and the compensating light are mixed in the color observation box to become a mixed light of the uniform analog standard D illuminating body; the mixed light is used to color test the measured object in the color observation box.
  • the daylight source is an important source for testing color, but the existing method of simulating the daylight source of the tungsten halogen lamp 1 plus filter 2 will still produce a change in the relative spectral power distribution of the source after a period of use, resulting in a color test.
  • the error occurs and is getting larger and larger; and a tungsten halogen lamp 1 configuration filter can only simulate a standard D illuminator.
  • the spectral power distribution between the tungsten halogen lamps 1 is different, and the replacement will also bring errors.
  • Figure 5 is a schematic diagram, the adjustable narrow-wave LED light source 3 is arranged to cooperate with the tungsten halogen lamp 1 configuration filter, so that the light mixing compensation of the two can be tested to meet the standard D illumination body light source; the narrow-wave LED light source 3 narrow band The range of 350nm-850nm, the brightness of the narrow-wavelength LED light source 3 can be adjusted to simulate different specifications of the CIE standard D illuminating body, namely D65, D75, D55, D50, etc.; after using for a period of time, after testing, if the mixed light source is found In line with the standard, it can be compensated by debugging the narrow-wave LED light source 3, so that the relative spectral power distribution of the compensated hybrid light source re-complies with the CIE standard, and the tungsten halogen lamp 1 has uniform outgoing light energy, and improves the standard light source color observation box pair.
  • the simulated D65 light emitted from the tungsten halogen lamp 1 through the filter 2 as the main irradiation light can have a relatively flat spectral power distribution curve and pass the low-power narrow-wave LED light source.
  • 3 compensated for the insufficient energy of the tungsten halogen lamp 1 through the filter 2 can be simulated into a high-precision CIE standard D65, the source of the metamerism index can reach the A-level level in the range of 0.10-0.18, its color rendering index Can exceed 97.5 quality indicators.
  • the tungsten halogen lamp 1 when the tungsten halogen lamp 1 and the narrow-wave LED light source 3 are in operation, the tungsten halogen lamp 1 is an illumination main body, which provides main illumination energy, and the illumination energy of the narrow-wave LED light source 3 accounts for total irradiation. Within 20% of energy.
  • the narrow-wave LED light source 3 has less power during use, and occupies less illumination energy, ensuring a smooth spectral power distribution curve while performing good light compensation, and the simulated curve is closer to the CIE standard curve.
  • a UV ultraviolet lamp 7 is disposed in the color observation box, and the UV ultraviolet lamp 7 compensates for ultraviolet energy when working together with the tungsten halogen lamp 1 and the narrow wave LED light source 3.
  • the light intensity of the 360--390 nm near-ultraviolet spectrum of the tungsten halogen lamp 1 through the filter 2 can only reach about 20% of the energy specified by the CIE standard D illuminator.
  • a UV ultraviolet lamp 7 with a main wavelength of 365 nm is arranged, and the energy of the UV ultraviolet lamp 7 is calibrated at the factory, and the energy of the light source of the tungsten halogen lamp 1 can be supplemented.
  • the UV ultraviolet lamp 7 and the tungsten halogen lamp 1 and the narrow-wave LED light source 3 are simultaneously turned on. It can simulate the relative spectral power distribution curve of a more standard D illuminator, making the test results more accurate.
  • the lamp of the tungsten halogen lamp 1 is a quartz tube with a transparent surface.
  • the surface of the quartz tube is blasted to make it a diffusely diffusing light-transmitting body.
  • the tungsten wire has a certain length, and the spacing around the molding will be more or less different. Therefore, the light emitted by the whole tungsten halogen lamp 1 at different lengths may also have a strong difference; a sandblasting layer is disposed on the surface of the lamp tube. After that, the lamp tube is made into a diffusely scattered glass structure, and the light is reflected in each of the light-emitting segments of the tungsten halogen lamp 1 lamp, and finally the light emitted is more uniform.
  • the color observation box adjusts the brightness of the narrow-wavelength LED light source 3 of different illumination wavelengths by measuring the change of the color temperature data during the color test, so that the color temperature data of the mixed light meets the requirements.
  • a color sensor is set in the color observation box to measure the color temperature change, and according to the law of the change of the relative power distribution of the light source when the color temperature changes, an instruction is issued to adjust the brightness of each narrow-wave LED light source 3, and the color temperature data meets the requirements.
  • the accuracy of the test when the tungsten halogen lamp 1 and the narrow-wave LED light source 3 are combined as a standard light source is ensured.
  • the color observation box is calibrated by the following steps before leaving the factory:
  • the color temperature and the metachromatic index are detected by the spectrum analyzer before leaving the factory, thereby adjusting the brightness of the narrow-wave LED light source 3, so that the brightness of each narrow-wave LED light source 3 meets the standard requirement at the factory.
  • the compensated light emitted by the halogen halogen lamp 1 and the narrow-wave LED light source 3 satisfies the CIE standard D photo
  • the metamerism index specified by the body is ⁇ 0.2A level, and the result obtained by the color test is more accurate; the real-time debugging of the narrow-wave LED light source 3 is performed in combination with the flow shown in FIG. 6 during use.
  • the color observation box is calibrated before leaving the factory: the color temperature data is sampled by an external spectrum analyzer, and the RGB data is sampled by the color sensor set in the color observation box to calculate the RGB data and the color temperature.
  • the matrix coefficient between the data is sent to the main control module of the color observation box; the RGB data sampled by the color sensor and the matrix coefficient of the color observation box are calculated to obtain the color temperature data.
  • the spectrum analyzer is relatively expensive and has a large volume. It has strict requirements on the ambient temperature. It is not convenient to set it in the color observation box from various aspects. To accurately test the color temperature and the metamerism index, the spectrum analyzer must be used. to realise.
  • the color sensor is installed in the color observation box instead of the spectrum analyzer, which greatly reduces the test cost.
  • the light source of each color observation box is tested by the spectrum analyzer before the factory, and the color sensor is used to test the RGB data.
  • the matrix coefficients of the two sets of data are saved in the main control module of the color observation box.
  • the RGB data and the matrix coefficient measured by the color sensor under the factory can obtain the color temperature data, so that the state of the light source can be monitored in real time. calibration.
  • the RGB to XYZ is implemented by a polynomial regression algorithm, and the formula is:
  • R is a red light signal
  • G is a green light signal
  • B is a blue light signal
  • X, Y, and Z are spectral tristimulus values
  • I T represents the transposition of I
  • -1 represents the matrix inversion.
  • the best transformation should minimize the predicted chromatic aberration of all the color patches.
  • the M obtained by the above formula minimizes the mean square error between the predicted XYZ values of the model in each state of the light source and the corresponding XYZ test values.
  • V (x-0.3320)/(0.1858-y) (4)
  • CCT is the color temperature
  • V, x, and y are intermediate variables.
  • color collection is performed with the digital camera 10 above; and the image color data of the standard color card under the light source of the color observation box is collected by the digital camera 10,
  • the image color data is combined with the XYZ spectral tristimulus values of the standard color card to obtain a conversion relationship between the two; the digital camera 10 is used to measure the image color data of the standard sample and the batch sample under the light source in the color observation box, obtained by the standard color card.
  • the specific embodiment adopts a digital camera 10 instead of human visual observation, and the digital camera 10 acquires image color data, and obtains XYZ spectral tristimulus values according to the conversion relationship, thereby calculating relevant colorimetric parameters.
  • the manner in which the digital camera 10 acquires the image color data can measure the color of the color image, the curved surface or the unevenness, the color mixing, the uneven coloring, or the irregular surface color of the object which can not be detected by the conventional color measuring instrument, and the use range is wider, and the test result is wider. More reliable.
  • the conversion relationship between the image color data and the tristimulus value of the XYZ spectrum is calculated as follows:
  • the polynomial regression model is as follows:
  • R is a red light signal
  • G is a green light signal
  • B is a blue light signal
  • X, Y, and Z are spectral tristimulus values
  • I T represents the transposition of I.
  • the conversion relationship is obtained by the above formula by using the standard color card as a standard, and the XYZ spectral tristimulus value can be obtained according to the conversion relationship after the digital camera 10 acquires the image color data of the standard sample and the batch sample, and the relevant colorimetric parameters can be calculated. Contrast color difference is judged by the computer to determine whether the batch sample meets the requirements.
  • the automated detection makes the accuracy higher, the external interference is small, and the application is wider, and more items can be tested.
  • the digital camera 10 may be disposed at the upper middle portion of the color observation box or at the upper side of the color observation box; when the digital camera 10 is disposed at the upper middle of the color observation box, the measured object is directly placed On the color observation box bottom plate 9; when the digital camera 10 is disposed at the upper side opening of the color observation box, the digital camera 10 is at an angle of 45 degrees with the bottom plate 9, and is disposed on the bottom plate 9 opposite to the digital camera 10.
  • the substrate 8 is placed at an angle of 45 degrees with the bottom plate 9, and the object to be tested is placed on the substrate 8.
  • Different digital camera 10 settings can be taken depending on the arrangement position of the light sources.
  • the digital camera 10 can be disposed at the upper side opening of the color observation box, and the substrate 8 is set at an angle of 45 degrees, so that the substrate 8 is facing the image color data of the digital camera 10.
  • the upper light source is projected onto the object to be tested on the substrate 8 at 45 degrees, and the light source is less interfered, which is convenient for the tester to observe the situation in the color observation box.
  • the digital camera 10 is placed at the upper position of the upper part of the color observation box as the best position, and the digital camera 10 directly collects the image color data of the object placed under the color, and the light source is directed to the positive
  • the measured objects below are more evenly illuminated.
  • the tungsten halogen lamp 1 is one of the light sources, and the tungsten halogen lamp 1 and the filter 2 have two groups and are symmetrically arranged on the left and right sides of the color observation box, the narrow wave LED light source 3 and the UV ultraviolet lamp. 7 for two The group is separately arranged with two sets of tungsten halogen lamps 1; the light source further comprises incandescent lamp 4, sunset lamp 5 and fluorescent lamp 6, and various light sources are symmetrically arranged above the color observation box; incandescent lamp 4, sunset lamp 5, fluorescent lamp 6 work alone for color testing.
  • the two sets of tungsten halogen lamps 1 and the narrow-wave LED light source 3 are arranged to cooperate, so that the light of the entire color observation box is more uniform, which overcomes the shortcomings of the middle and strong sides of the traditional intermediate single light source arrangement;
  • the light source namely incandescent lamp 4, sunset lamp 5 and fluorescent lamp 6, can calibrate the uniformity and relative color value of illumination under a variety of standard light sources, which is convenient for debugging the color observation box and improving the accuracy of the color test of the measured object. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种利用标准光源对色观察箱进行颜色测试的方法: 在对色观察箱内设置卤钨灯(1)和滤光器(2),卤钨灯的光线透过滤光器射出辐照主体光线;设置多种不同发光波长的窄波LED光源(3)射出补偿光线;辐照主体光线和补偿光线在对色观察箱中混合成为均匀模拟标准D照明体的混合光线;由混合光线对对色观察箱中的被测物品进行颜色测试。在采用不同发光波长的LED光源补偿后,光源的质量达到了按CIE标准D照明体规定的同色异谱指数<0.2A级的水平,这是采用卤钨灯加滤光器所难以实现的;同时提高了光源的稳定性,因此在光源使用过程中不会产生辐照相对光谱功率分布的变化,此外,通过自动监控来调整补偿光线,使得辐照光源的相对光谱功率分布符合标准。

Description

一种利用标准光源对色观察箱进行颜色测试的方法 技术领域
本发明涉及一种测试方法,尤其是涉及一种利用标准光源对色观察箱进行颜色测试的方法。
背景技术
当前市场用于标准光源对色观察箱或灯箱的标准D照明体的日光光源有多种品牌的荧光灯管和采用卤钨灯透过滤光器使辐照的光谱模拟CIE标准规定的D照明体。用卤钨灯通过滤光器的辐照光源的相对光谱功率分布能达到CIE标准规定的D照明体同色异谱指数A级水平,但由于材质和制造工艺技术的影响,其功能对光源辐照的相对光谱功率分布技术指标很难达到CIE D标准照明体<0.2的A级同色异谱指数质量水平,在长时间的使用过程中还会逐渐变差,尽之会超过0.25同色异谱指数,只有>0.25~0.50级的B级水平。由于同一规格的卤钨灯存在材质成分的差异,其发射出的光照度相对光谱功率分布不可能稳定质量,配置的有色光学玻璃的滤光器,也因为材质原因,对透过的辐照光相对光谱功率分布也会产生变异,而且一种滤光器和卤钨灯的组合只能形成单一规格的CIE标准D照明体(CIE标准照明体分D65、D75、D55、D50等多种标准规格)。现有技术难以保证标准光源在长时间使用后继续拥有稳定的光谱功率分布,更换卤钨灯或者滤光器都会产生差异,从而影响到测试的准确性。
卤钨灯透过滤光器的光线其光谱功率分布难以解决不同波长段的锯齿形态,因此在目前市场认定最高质量的SpectraLightQC标准光源对色观察箱(2013年才推入市场的新产品)其光源质量按CIE15:2004规定的质量指标光源同色异谱指数只能达到0.20--0.30的A或B级水平。这种标准D日光光源,采用的卤 钨灯灯管因采用的钨丝和含有卤化物、卤族元素的惰性气体在灯管的长时间使用过程中逐渐产生了效率的变化和用于滤光器的有色光学玻璃其材质(化学材料)产生的变异,使光源的相对光谱功率分布产生变异。因此在使用过程中其光源的同色异谱指数从0.21逐渐上升至0.25--0.30只能维持在B级水平。虽然其照度依然很高,但灯管内钨丝卷成的发光区域在不同长度的间距存在差异,其发射出来的光照能量也会不相同,因此对光源箱体内放置物体部位的照明均匀程度只能达到90%左右的质量水平。
近几年由于LED光源节省耗电、发光效率高而且使用寿命长等优点,多家光源研究单位推出了采用LED来模拟CIE标准D光源。由于LED发出光线的光谱分布只能处于窄波波长段,而且每种LED发出的光谱主峰窄成尖峰,虽然可以用红绿蓝三种窄波的光线组成一体发射出白光,但其光谱功率分布存在缺陷。因此采用多段窄波LED来组合发光使其照射出光谱功率分布接近CIE标准规定的D照明体规格要求,但其在标准光源对色灯箱内照射在物体放置位置光线的相对光谱功率分布存在不均匀性。近期有人推出一种基于LED的智能对色灯箱,采用的方法至少用一只LED白光光源和多只单色LED为照明主体。用卤钨灯配置特殊的滤光片发射光线来补充整体可见光线的辐射能量。采用电子技术监控实现智能化调整各只LED发射光线的能量,虽然其发射出的组合光线可模拟CIE标准D照明体的色温指数,但各种LED发射的光线光谱主峰能量突出,其发射出的光线相对光谱功率分布参数不可能达到CIE标准规定的每个波段的指标。只要分析其发射光线的相对光谱功率分布的实测数据与CIE标准规定的D照明体的相对光谱功率分布参数进行比对,即可明白其差异很明显。虽然用目前通用的测色温仪器测定其色温量值能达到CIE标准规定的D光源指标。但其发射出的光线的光源同色异谱指数很难达到A级水平,而且这种采用以多只 不同单色LED配置白光LED作为光源辐射能量的主体,却用卤钨灯配置滤光片透射的光线作为辐照能量的补充,辐射均匀程度仍然很难在被测样品的表面有良好的均匀性。
发明内容
本发明的目的是克服现有技术的不足,提供一种通过补偿使标准光源的相对光谱功率分布达到CIE标准规定的同色异谱指数A级水平,保证测试精度和装置耐用程度的利用标准光源对色观察箱进行颜色测试的方法。
本发明采用以下技术方案:一种利用标准光源对色观察箱进行颜色测试的方法,对色观察箱内设置卤钨灯和滤光器配合,卤钨灯的光线透过滤光器射出辐照主体光线;设置多种不同发光波长的窄波LED光源射出补偿光线;辐照主体光线和补偿光线在对色观察箱中混合成为均匀模拟标准D照明体的混合光线;由混合光线对对色观察箱中的被测物品进行颜色测试。
作为一种改进,卤钨灯和窄波LED光源在工作时,卤钨灯为照明主体,其提供主要的光照能量,窄波LED光源的光照能量占总辐照能量的20%以内。
作为一种改进,对色观察箱内设置UV紫外灯,所述UV紫外灯与卤钨灯、窄波LED光源一起工作时补偿紫外能量。
作为一种改进,卤钨灯的灯管为表面透明的石英灯管,将石英灯管表面采用喷砂工艺使其成为漫散射的透光体。
作为一种改进,对色观察箱在颜色测试过程中通过测量色温数据的变化,调试不同发光波长的窄波LED光源的亮度,使混合光线的色温数据满足要求。
作为一种改进,对色观察箱在出厂前通过以下步骤校准:
[1]由外接的光谱分析仪测出辐照主体光线的光谱功率分布曲线;
[2]将[1]中测出的光谱功率分布曲线与CIE标准D照明体的相对光谱功率分 布曲线对比,初调各窄波LED光源的亮度;
[3]由外接的光谱分析仪测出混合光线的色温数据和同色异谱指数数据;
[4]判断[3]中测出的色温数据和同色异谱指数数据是否满足要求;
[5]当色温数据或同色异谱指数数据不满足要求时,细调各窄波LED光源的亮度,并重复[3]、[4]、[5]步骤;当色温数据和同色异谱指数数据同时满足要求时,校准结束,保存校准数据。
作为一种改进,对色观察箱在出厂前进行校准:即通过外接的光谱分析仪采样色温数据,通过对色观察箱内设置的颜色传感器采样RGB数据,计算出RGB数据与色温数据之间的矩阵系数,并将该矩阵系数发送至对色观察箱的主控模块保存;
对色观察箱在出厂后通过颜色传感器采样的RGB数据与矩阵系数经过计算得到色温数据。
作为一种改进,通过多项式回归算法实现RGB转XYZ,公式为:
Figure PCTCN2016079514-appb-000001
式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
Figure PCTCN2016079514-appb-000002
即公式(1)可表示为H=IM,M为需要求解的矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
M=(ITI)-1ITH         (2)
式中IT表示I的转置;
通过公式计算XYZ转色温:
CCT=449V3+3525V2+6823.3V+5520.33          (3)
V=(x-0.3320)/(0.1858-y)          (4)
x=X/(X+Y+Z)            (5)
y=Y/(X+Y+Z)            (6)
式中CCT为色温,V、x、y为中间变量。
作为一种改进,通过在对色观察箱上方设置光源,配合上方的数码相机进行颜色采集;
通过数码相机采集标准色卡在对色观察箱中光源下的图像颜色数据,图像颜色数据结合标准色卡的XYZ光谱三刺激值得到两者的转换关系;
使用数码相机测量标准样和批次样在对色观察箱中光源下的图像颜色数据,通过标准色卡获得的转换关系,计算出标准样和批次样的XYZ光谱三刺激值,基于两者XYZ光谱三刺激值计算相关色差,根据被测物品质量的要求进行颜色是否符合要求的判断。
作为一种改进,图像颜色数据到XYZ光谱三刺激值的转换关系的计算方法如下:
获取标准色卡上的N个色块的图像颜色数据,获取标准色卡上N个色卡的XYZ光谱三刺激值,建立两者之间的多项式回归模型,计算出两者之间的转换矩阵;多项式回归模型如下:
Figure PCTCN2016079514-appb-000003
式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
Figure PCTCN2016079514-appb-000004
即公式(1)可表示为H=IM,M为需要求解的矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
M=(ITI)-1ITH         (2)
式中IT表示I的转置。
作为一种改进,数码相机可设置在对色观察箱上方中部或对色观察箱上方侧面开口处;当数码相机设置在对色观察箱上方中部时,被测物品直接放置于对色观察箱底板上;当数码相机设置在对色观察箱上方侧面开口处时,数码相机与底板成45度夹角,并在底板上设置与数码相机正对的基板,基板与底板成45度夹角,在基板上放置被测物品。
本发明的有益效果:卤钨灯和窄波LED光源的组合可以模拟不同规格的CIE标准D照明体即D65、D75、D55、D50等,只要通过调整窄波LED光源的亮度即可实现;采用不同发光波长的窄波LED光源补偿后,光源的质量按CIE标准D照明体规定的同色异谱指数<0.2A级水平,这是原来采用卤钨灯加滤光器所难以实现的;并且提高了光源的稳定性,因此在光源使用过程中不会产生色温的变化,通过自动监控来调整补偿光线,使得辐照光线的相对光谱功率分布符合标准,保证长时间颜色测试结果的准确性。以卤钨灯射出的光线作为主体辐照光线,可以具有更加平缓的光谱功率分布曲线,并通过小功率的窄波LED光源补偿卤钨灯透过滤光器存在的不足能量,能模拟成高精度的CIE标准的D照明体。
附图说明
图1是本发明的光谱功率分布曲线标准D65、D65、D65+LED、D65+LED+UV的比较图。
图2是本发明的光谱功率分布曲线标准D65和D65的比较图。
图3是本发明的光谱功率分布曲线标准D65、D65、D65+LED的比较图。
图4是本发明的光谱功率分布曲线标准D65、D65、D65+LED+UV的比较 图。
图5是本发明的结构原理图。
图6是本发明出厂后色温调试的流程图。
图7是本发明出厂前窄波LED光源调试的流程图。
图8是本发明的标准光源对色观察箱的侧面剖视图一。
图9是本发明的标准光源对色观察箱的侧面剖视图二。
图10是本发明的标准光源对色观察箱的内部仰视图。
图中:1、卤钨灯;2、滤光器;3、窄波LED光源;4、白炽灯;5、日落灯;6、荧光灯;7、UV紫外灯;8、基板;9、底板;10、数码相机。
具体实施方式
以下结合附图对本发明的具体实施例做详细说明。
如图1、2、3、4、5、6、7、8、9、10所示,为本发明一种利用标准光源对色观察箱进行颜色测试的方法的具体实施方式。该实施方式的对色观察箱内设置卤钨灯1和滤光器2配合,卤钨灯1的光线透过滤光器2射出辐照主体光线;设置多种不同发光波长的窄波LED光源3射出补偿光线;辐照主体光线和补偿光线在对色观察箱中混合成为均匀模拟标准D照明体的混合光线;由混合光线对对色观察箱中的被测物品进行颜色测试。日光光源是测试颜色的重要光源,但现有的卤钨灯1加滤光器2模拟日光光源的方式还是会在使用一段时间后产生光源的相对光谱功率分布变化的情况,从而导致颜色测试的误差发生并且越来越大;并且一个卤钨灯1配置滤光器仅能模拟一种标准D照明体,卤钨灯1之间的光谱功率分布又不相同,更换后也会带来误差。图5为原理图,设置了可调节的窄波LED光源3与卤钨灯1配置滤光器配合,可以使两者的光线混合补偿成为符合标准的D照明体光源进行测试;窄波LED光源3的窄波段范 围为350nm-850nm,调节窄波LED光源3的亮度可以做到模拟不同规格的CIE标准D照明体即D65、D75、D55、D50等;当使用一段时间后,经过测试若发现混合的光源不符合标准了,可以通过调试窄波LED光源3进行补偿,令补偿后的混合光源的相对光谱功率分布重新符合CIE标准,卤钨灯1具有均匀的出射光线能量,提高标准光源对色观察箱对被测物品颜色测试的准确性。如图1、2、3所示,以卤钨灯1透过滤光器2射出的模拟D65光线作为主体辐照光线,可以具有较平缓的光谱功率分布曲线,并通过小功率的窄波LED光源3补偿卤钨灯1透过滤光器2存在的不足能量,能模拟成高精度的CIE标准的D65,其光源的同色异谱指数可达0.10-0.18范围内的A级水平,其显色指数可超过97.5质量指标。
作为一种改进的具体实施方式,卤钨灯1和窄波LED光源3在工作时,卤钨灯1为照明主体,其提供主要的光照能量,窄波LED光源3的光照能量占总辐照能量的20%以内。窄波LED光源3在使用时功率较小,所占的光照能量少,在良好的进行光线补偿的同时保证光谱功率分布曲线平缓,模拟出的曲线更接近与CIE标准曲线。
作为一种改进的具体实施方式,对色观察箱内设置UV紫外灯7,所述UV紫外灯7与卤钨灯1、窄波LED光源3一起工作时补偿紫外能量。如图1、2、3、4所示,卤钨灯1透过滤光器2后的光线其360--390nm近紫外光谱能量只能达到CIE标准D照明体规定的能量的20%左右,在标准光源中配置365nm主波长的UV紫外灯7,出厂校准UV紫外灯7的能量,可以补充卤钨灯1光源的能量,UV紫外灯7与卤钨灯1、窄波LED光源3同时开启工作时能够模拟更加标准的D照明体相对光谱功率分布曲线,使测试结果更加准确。
作为一种改进的具体实施方式,卤钨灯1的灯管为表面透明的石英灯管, 将石英灯管表面采用喷砂工艺使其成为漫散射的透光体。钨丝具有一定的长度,其环绕成型的间距会有或多或少的差异,因此整根卤钨灯1不同长度位置上发出的光也会存在强弱差异;在灯管表面设置喷砂层之后,使灯管成为漫散射的玻璃结构,光线在卤钨灯1灯管内各发光段产生反射,最后射出的光线均匀性更好。
作为一种改进的具体实施方式,对色观察箱在颜色测试过程中通过测量色温数据的变化,调试不同发光波长的窄波LED光源3的亮度,使混合光线的色温数据满足要求。如图6所示,在对色观察箱中设置颜色传感器,测量色温变化,根据色温变化时光源相对光谱功率分布变化的规律,发出指令调节各窄波LED光源3的亮度,待色温数据满足要求时结束调试,从而保证了卤钨灯1和窄波LED光源3配合作为标准光源时测试的准确性。
作为一种改进的具体实施方式,对色观察箱在出厂前通过以下步骤校准:
[1]由外接的光谱分析仪测出辐照主体光线的光谱功率分布曲线;
[2]将[1]中测出的光谱功率分布曲线与CIE标准D照明体的相对光谱功率分布曲线对比,初调各窄波LED光源的亮度;
[3]由外接的光谱分析仪测出混合光线的色温数据和同色异谱指数数据;
[4]判断[3]中测出的色温数据和同色异谱指数数据是否满足要求;
[5]当色温数据或同色异谱指数数据不满足要求时,细调各窄波LED光源的亮度,并重复[3]、[4]、[5]步骤;当色温数据和同色异谱指数数据同时满足要求时,校准结束。
如图7所示,为出厂前通过光谱分析仪对色温和同色异谱指数进行的检测,从而调整窄波LED光源3的亮度,令出厂时各窄波LED光源3的亮度达到标准要求,出厂时卤钨灯1和窄波LED光源3射出的补偿后光线满足CIE标准D照 明体规定的同色异谱指数<0.2A级水平,颜色测试时得到的结果准确性更高;使用过程中结合图6所示的流程进行窄波LED光源3的实时调试。
作为一种改进的具体实施方式,对色观察箱在出厂前进行校准:即通过外接的光谱分析仪采样色温数据,通过对色观察箱内设置的颜色传感器采样RGB数据,计算出RGB数据与色温数据之间的矩阵系数,并将该矩阵系数发送至对色观察箱的主控模块保存;对色观察箱在出厂后通过颜色传感器采样的RGB数据与矩阵系数经过计算得到色温数据。光谱分析仪较为昂贵,体积较大,对环境温度有严格要求,从各方面考虑不便于设置在对色观察箱内,而若要进行色温和同色异谱指数的准确测试,必须使用光谱分析仪来实现。在没有色温和同色异谱指数数据的情况下,又难以判断标准光源的初始状态是否符合测试标准,或者标准光源在使用时间增加后光谱发生变化,从而影响到测试的准确性。采用在对色观察箱内设置颜色传感器代替光谱分析仪,大大降低了测试成本,每台对色观察箱的光源在出厂前利用光谱分析仪进行色温数据测试,配合颜色传感器进行RGB数据测试,建立两组数据的矩阵系数保存到对色观察箱的主控模块中,出厂后的对色观察箱通过颜色传感器测得的RGB数据与矩阵系数经过计算就能得到色温数据,从而实时监视光源状态便于校准。
作为一种改进的具体实施方式,通过多项式回归算法实现RGB转XYZ,公式为:
Figure PCTCN2016079514-appb-000005
式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
Figure PCTCN2016079514-appb-000006
记光源N个状态下的颜色传感器获取的RGB信 号为I,相应的N个状态下通过光谱分析仪获取的光源XYZ信号记为矩阵H,即公式(1)可表示为H=IM,M为需要求解的矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
M=(ITI)-1ITH          (2)
式中IT表示I的转置;-1表示矩阵求逆。最佳的变换应该使所有色块的预测色差最小,由上式求取的M使光源各状态下的模型预测XYZ值于相应XYZ测试值之间的均方误差最小。通过求取的矩阵系数,我们可以将颜色传感器获取的RGB换算为XYZ三刺激值。
通过公式计算XYZ转色温:
CCT=449V3+3525V2+6823.3V+5520.33          (3)
V=(x-0.3320)/(0.1858-y)          (4)
x=X/(X+Y+Z)           (5)
y=Y/(X+Y+Z)               (6)
式中CCT为色温,V、x、y为中间变量。通过以上公式的计算,可以将颜色传感器测得的RGB数据转化为色温数据,从而了解光源的状态,便于对色观察箱的主控模块以及上位机进行校准和调试,保证光源的标准化,保证颜色测试的准确性;并且成本较低,有利于普及使用。
作为一种改进的具体实施方式,通过在对色观察箱上方设置光源,配合上方的数码相机10进行颜色采集;通过数码相机10采集标准色卡在对色观察箱中光源下的图像颜色数据,图像颜色数据结合标准色卡的XYZ光谱三刺激值得到两者的转换关系;使用数码相机10测量标准样和批次样在对色观察箱中光源下的图像颜色数据,通过标准色卡获得的转换关系,计算出标准样和批次样的XYZ光谱三刺激值,基于两者XYZ光谱三刺激值计算相关色差,根据被测物品 质量的要求进行颜色是否符合要求的判断。
传统由经过培训的熟练技术人员肉眼比对两者之间的差异,并做出是否符合要求的判断但是目视观察法易受使用的标准光源其光谱相对功率分布的精确程度对物体表面呈现的颜色有直接影响,加上观察者的情绪,生理和心理因素等影响,因而主观性很强,重复性很差。传统仪器测量的方式虽然可以尽量减少人为因素的影响,给出可靠的客观的和可重复的测量鉴定结果,但传统的测色仪器因仪器本身原理和结构的限制,无法测量彩色图像,曲面或凹凸不平、颜色混合、着色不均匀或不规则的物体表面颜色。该具体实施方式采用数码相机10代替人肉眼观察,数码相机10获取图像颜色数据,根据转换关系得到XYZ光谱三刺激值进而可以计算相关的色度学参数。数码相机10获取图像颜色数据的方式能够对传统测色仪器所不能检测的彩色图像、曲面或凹凸不平、颜色混合、着色不均匀或不规则的物体表面颜色进行测量,使用范围更加广泛,测试结果更加可靠。
作为一种改进的具体实施方式,图像颜色数据到XYZ光谱三刺激值的转换关系的计算方法如下:
获取标准色卡上的N个色块的图像颜色数据,获取标准色卡上N个色卡的XYZ光谱三刺激值,建立两者之间的多项式回归模型,计算出两者之间的转换矩阵;多项式回归模型如下:
Figure PCTCN2016079514-appb-000007
式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
Figure PCTCN2016079514-appb-000008
即公式(1)可表示为H=IM,M为需要求解的 矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
M=(ITI)-1ITH            (2)
式中IT表示I的转置。
以标准色卡为标准通过上述公式得到了转换关系,可以在数码相机10获取标准样和批次样的图像颜色数据后根据转换关系得到XYZ光谱三刺激值进而可以计算相关的色度学参数,对比色差由计算机判断批次样是否符合要求,自动化的检测使准确性更高,受外界的干扰小,并且应用面更广,可以测试的物品更多。
作为一种改进的具体实施方式,数码相机10可设置在对色观察箱上方中部或对色观察箱上方侧面开口处;当数码相机10设置在对色观察箱上方中部时,被测物品直接放置于对色观察箱底板9上;当数码相机10设置在对色观察箱上方侧面开口处时,数码相机10与底板9成45度夹角,并在底板9上设置与数码相机10正对的基板8,基板8与底板9成45度夹角,在基板8上放置被测物品。根据光源的布置位置的不同,可以采取不同的数码相机10设置方式。当对色观察箱上方光源较密集时,可以将数码相机10设置在对色观察箱上方侧面开口处,采用45度的夹角设置基板8,令基板8正对数码相机10进行图像颜色数据的采集,上方光源以45度投射到基板8上的被测物品上,光源受干扰较少,也便于测试人员观察对色观察箱内情况。当对色观察箱上方的中部留有空间时,将数码相机10设置在对色观察箱上方中部为最佳位置,数码相机10直接采集放置于正下方被测物品的图像颜色数据,光源投向正下方的被测物品,光照效果更均匀。
作为一种改进的具体实施方式,卤钨灯1为光源之一,卤钨灯1和滤光器2有两组并在对色观察箱上方左右对称设置,窄波LED光源3、UV紫外灯7为两 组并分别与两组卤钨灯1配合设置;光源还包括白炽灯4、日落灯5和荧光灯6,各种光源均对称的设置在对色观察箱上方;白炽灯4、日落灯5、荧光灯6单独工作进行颜色测试。设置左右两组卤钨灯1和窄波LED光源3配合,使整个对色观察箱的光线更加均匀,克服了传统中间单光源的布置存在的光线中间强两侧弱的缺点;设置多种标准光源,即白炽灯4、日落灯5和荧光灯6,可以对多种标准光源下照明的均匀性和相对颜色量值进行标定,便于调试对色观察箱,提高对被测物品颜色测试的准确性。

Claims (10)

  1. 一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:对色观察箱内设置卤钨灯和滤光器配合,卤钨灯的光线透过滤光器射出辐照主体光线;设置多种不同发光波长的窄波LED光源射出补偿光线;辐照主体光线和补偿光线在对色观察箱中混合成为均匀模拟标准D照明体的混合光线;由混合光线对对色观察箱中的被测物品进行颜色测试。
  2. 根据权利要求1所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:卤钨灯和窄波LED光源在工作时,卤钨灯为照明主体,其提供主要的光照能量,窄波LED光源的光照能量占总辐照能量的20%以内。
  3. 根据权利要求2所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:对色观察箱内设置UV紫外灯,所述UV紫外灯与卤钨灯、窄波LED光源一起工作时补偿紫外能量。
  4. 根据权利要求1或2或3所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:对色观察箱在颜色测试过程中通过测量色温数据的变化,调试不同发光波长的窄波LED光源的亮度,使混合光线的色温数据满足要求。
  5. 根据权利要求4所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:
    对色观察箱在出厂前通过以下步骤校准:
    [1]由外接的光谱分析仪测出辐照主体光线的光谱功率分布曲线;
    [2]将[1]中测出的光谱功率分布曲线与CIE标准D照明体的相对光谱功率分布曲线对比,初调各窄波LED光源的亮度;
    [3]由外接的光谱分析仪测出混合光线的色温数据和同色异谱指数数据;
    [4]判断[3]中测出的色温数据和同色异谱指数数据是否满足要求;
    [5]当色温数据或同色异谱指数数据不满足要求时,细调各窄波LED光源的 亮度,并重复[3]、[4]、[5]步骤;当色温数据和同色异谱指数数据同时满足要求时,校准结束,保存校准数据。
  6. 根据权利要求4所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:对色观察箱在出厂前进行校准:即通过外接的光谱分析仪采样色温数据,通过对色观察箱内设置的颜色传感器采样RGB数据,计算出RGB数据与色温数据之间的矩阵系数,并将该矩阵系数发送至对色观察箱的主控模块保存;
    对色观察箱在出厂后通过颜色传感器采样的RGB数据与矩阵系数经过计算得到色温数据。
  7. 根据权利要求6所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:通过多项式回归算法实现RGB转XYZ,公式为:
    Figure PCTCN2016079514-appb-100001
    式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
    Figure PCTCN2016079514-appb-100002
    Figure PCTCN2016079514-appb-100003
    即公式(1)可表示为H=IM,M为需要求解的矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
    M=(ITI)-1ITH          (2)
    式中IT表示I的转置;
    通过公式计算XYZ转色温:
    CCT=449V3+3525V2+6823.3V+5520.33      (3)
    V=(x-0.3320)/(0.1858-y)         (4)
    x=X/(X+Y+Z)        (5)
    y=Y/(X+Y+Z)        (6)
    式中CCT为色温,V、x、y为中间变量。
  8. 根据权利要求1或2或3所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:通过在对色观察箱上方设置光源,配合上方的数码相机进行颜色采集;
    通过数码相机采集标准色卡在对色观察箱中光源下的图像颜色数据,图像颜色数据结合标准色卡的XYZ光谱三刺激值得到两者的转换关系;
    使用数码相机测量标准样和批次样在对色观察箱中光源下的图像颜色数据,通过标准色卡获得的转换关系,计算出标准样和批次样的XYZ光谱三刺激值,基于两者XYZ光谱三刺激值计算相关色差,根据被测物品质量的要求进行颜色是否符合要求的判断。
  9. 根据权利要求8所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:图像颜色数据到XYZ光谱三刺激值的转换关系的计算方法如下:
    获取标准色卡上的N个色块的图像颜色数据,获取标准色卡上N个色卡的XYZ光谱三刺激值,建立两者之间的多项式回归模型,计算出两者之间的转换矩阵;多项式回归模型如下:
    Figure PCTCN2016079514-appb-100004
    式中R为红光信号,G为绿光信号,B为蓝光信号,X、Y、Z为光谱三刺激值,令矩阵
    Figure PCTCN2016079514-appb-100005
    Figure PCTCN2016079514-appb-100006
    即公式(1)可表示为H=IM,M为需要求解的矩阵系数,基于最小二乘法,变换矩阵M可由下式求解:
    M=(ITI)-1ITH          (2)
    式中IT表示I的转置。
  10. 根据权利要求9所述的一种利用标准光源对色观察箱进行颜色测试的方法,其特征在于:所述数码相机可设置在对色观察箱上方中部或对色观察箱上方侧面开口处;当数码相机设置在对色观察箱上方中部时,被测物品直接放置于对色观察箱底板上;当数码相机设置在对色观察箱上方侧面开口处时,数码相机与底板成45度夹角,并在底板上设置与数码相机正对的基板,基板与底板成45度夹角,在基板上放置被测物品。
PCT/CN2016/079514 2016-03-04 2016-04-15 一种利用标准光源对色观察箱进行颜色测试的方法 WO2017147988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,458 US10215640B2 (en) 2016-03-04 2016-04-15 Method for performing color measurement using standard light source color matching observation box
EP16885452.9A EP3376187B1 (en) 2016-03-04 2016-04-15 Color testing method using standard illuminant color matching box

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610123689.6A CN105651386B (zh) 2016-03-04 2016-03-04 一种利用标准光源对色观察箱进行颜色测试的方法
CN201610123689.6 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017147988A1 true WO2017147988A1 (zh) 2017-09-08

Family

ID=56493058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079514 WO2017147988A1 (zh) 2016-03-04 2016-04-15 一种利用标准光源对色观察箱进行颜色测试的方法

Country Status (4)

Country Link
US (1) US10215640B2 (zh)
EP (1) EP3376187B1 (zh)
CN (1) CN105651386B (zh)
WO (1) WO2017147988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838815A (zh) * 2022-04-28 2022-08-02 厦门大学 一种多维度表征激光照明光均匀性的装置与方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534701A (ja) 2012-08-28 2015-12-03 デロス リビング エルエルシーDelos Living Llc 居住環境に関連するウェルネスを増進するためのシステム、方法、及び物品
WO2015130786A1 (en) 2014-02-28 2015-09-03 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
CN105588639B (zh) * 2016-03-04 2018-03-23 温州佳易仪器有限公司 一种标准光源对色观察箱
USD912882S1 (en) * 2017-06-01 2021-03-09 Wenzhoujiayi Instruments Co. Ltd Standard light source color matching observation box
CN107389196B (zh) * 2017-07-21 2018-09-07 深圳大学 照明效应/性能的可视化表征、监测、关联方法及系统
US11668481B2 (en) 2017-08-30 2023-06-06 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
CN108805246B (zh) * 2018-06-19 2020-08-07 江苏大学 一种智能指示二维码及利用该二维码对食品状态监测的方法
WO2020035798A1 (en) * 2018-08-17 2020-02-20 Avalon St Sàrl Solar simulator
EP3850458A4 (en) 2018-09-14 2022-06-08 Delos Living, LLC AIR CLEANING SYSTEMS AND PROCEDURES
CN111050444B (zh) * 2019-02-01 2021-04-09 靳鹏 一种多通道led模拟cie标准照明体的方法和照明系统
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
WO2020198183A1 (en) 2019-03-25 2020-10-01 Delos Living Llc Systems and methods for acoustic monitoring
CN110702615B (zh) * 2019-09-25 2022-06-17 宁波永新光学股份有限公司 一种彩色数码透射显微镜颜色校正方法
CN110726536B (zh) * 2019-09-25 2021-08-06 宁波永新光学股份有限公司 一种彩色数码反射显微镜颜色校正方法
CN111803085A (zh) * 2020-08-06 2020-10-23 深圳市德光浦科技有限公司 一种基于颜色特性的无创血红蛋白浓度水平测量装置
CN112745113A (zh) * 2020-12-30 2021-05-04 福建省佳美集团公司 一种耐蚀陶瓷配方及陶瓷产品的制备方法
CN113418605A (zh) * 2021-07-16 2021-09-21 绍兴市越城区飞龙数码制作室 一种对色用标准光源及其校准方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327405A1 (en) * 2011-06-23 2012-12-27 Canon Kabushiki Kaisha Color measurement device and image forming apparatus
CN202814866U (zh) * 2012-08-24 2013-03-20 绥化学院 用于生化分析仪的色差评定系统
CN203705052U (zh) * 2014-02-19 2014-07-09 姚科 一种便携式led齿科标准比色光源
CN104748848A (zh) * 2015-04-13 2015-07-01 杭州远方光电信息股份有限公司 一种基于led的智能对色灯箱
CN104777106A (zh) * 2015-04-17 2015-07-15 杭州远方光电信息股份有限公司 一种光谱反馈调光比色灯箱

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812904A (en) * 1986-08-11 1989-03-14 Megatronics, Incorporated Optical color analysis process
CN87210106U (zh) * 1987-07-10 1988-06-01 南京大学 一种色度测量仪
US5850472A (en) * 1995-09-22 1998-12-15 Color And Appearance Technology, Inc. Colorimetric imaging system for measuring color and appearance
US5803579A (en) * 1996-06-13 1998-09-08 Gentex Corporation Illuminator assembly incorporating light emitting diodes
KR100441595B1 (ko) * 2001-10-15 2004-07-23 삼성전자주식회사 색온도 변환장치 및 방법
US20070133867A1 (en) * 2005-12-14 2007-06-14 Samsung Electronics., Ltd. Apparatus and method of adaptively converting image in image display system
US7840360B1 (en) * 2006-10-26 2010-11-23 Micheels Ronald H Optical system and method for inspection and characterization of liquids in vessels
US7700928B2 (en) * 2007-01-25 2010-04-20 Etaluma, Inc. Apparatus and method for interleaving detection of fluorescence and luminescence
US8278018B2 (en) * 2007-03-14 2012-10-02 Xerox Corporation Process for producing dry ink colorants that will reduce metamerism
US7759854B2 (en) * 2007-05-30 2010-07-20 Global Oled Technology Llc Lamp with adjustable color
GB2452716A (en) * 2007-09-11 2009-03-18 Verivide Ltd Illumination arrangement for colour assessment apparatus and method
US20130307419A1 (en) * 2012-05-18 2013-11-21 Dmitri Simonian Lighting system with sensor feedback
US7972028B2 (en) * 2008-10-31 2011-07-05 Future Electronics Inc. System, method and tool for optimizing generation of high CRI white light, and an optimized combination of light emitting diodes
JP5334602B2 (ja) * 2009-01-23 2013-11-06 三菱電機株式会社 カラーキャリブレーションシステム
CN201594013U (zh) * 2010-01-28 2010-09-29 北京光学仪器厂 分光测色仪的测头
US9076068B2 (en) * 2010-10-04 2015-07-07 Datacolor Holding Ag Method and apparatus for evaluating color in an image
JP5633334B2 (ja) * 2010-11-25 2014-12-03 セイコーエプソン株式会社 分光測定装置
CN102487556A (zh) * 2010-12-06 2012-06-06 西安中科麦特电子技术设备有限公司 一种太阳光谱模拟光源
US8508730B2 (en) * 2011-01-28 2013-08-13 Atmel Corporation Quality assurance of a solid-state illumination source
EP2697837A4 (en) * 2011-04-11 2015-03-11 Cree Inc SOLID BODY LIGHTING DEVICE WITH A GREEN-SHIFTED RED COMPONENT
CN103389162B (zh) * 2012-11-26 2016-04-20 中国计量学院 一种利用彩色数码相机的反射物体颜色测量仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327405A1 (en) * 2011-06-23 2012-12-27 Canon Kabushiki Kaisha Color measurement device and image forming apparatus
CN202814866U (zh) * 2012-08-24 2013-03-20 绥化学院 用于生化分析仪的色差评定系统
CN203705052U (zh) * 2014-02-19 2014-07-09 姚科 一种便携式led齿科标准比色光源
CN104748848A (zh) * 2015-04-13 2015-07-01 杭州远方光电信息股份有限公司 一种基于led的智能对色灯箱
CN104777106A (zh) * 2015-04-17 2015-07-15 杭州远方光电信息股份有限公司 一种光谱反馈调光比色灯箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376187A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838815A (zh) * 2022-04-28 2022-08-02 厦门大学 一种多维度表征激光照明光均匀性的装置与方法
CN114838815B (zh) * 2022-04-28 2024-06-04 厦门大学 一种多维度表征激光照明光均匀性的装置与方法

Also Published As

Publication number Publication date
EP3376187A1 (en) 2018-09-19
EP3376187A4 (en) 2020-01-01
US20180120162A1 (en) 2018-05-03
EP3376187B1 (en) 2022-09-21
US10215640B2 (en) 2019-02-26
CN105651386B (zh) 2018-12-11
CN105651386A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017147988A1 (zh) 一种利用标准光源对色观察箱进行颜色测试的方法
EP3324160B1 (en) Standard illuminant color matching box
US7532324B2 (en) Equipment and method for LED&#39;s total luminous flux measurement with a narrow beam standard light source
US9243953B1 (en) Spectrophotometric colorimeter based on LED light source and method for realizing the same
CN105136432B (zh) 基于主客观实验数据的led照明质量评价方法及系统
CN109618479B (zh) 光源参数测量方法、装置、照明系统和终端设备
CN105938016A (zh) 一种颜色测量装置
CN105571822A (zh) 一种二维色彩分析仪校准装置及校准方法
CN104777106A (zh) 一种光谱反馈调光比色灯箱
US20090103075A1 (en) Method For Measuring Chroma Value By a Colorimeter
CN104792710B (zh) 一种物体光学特性测量装置
KR20080066206A (ko) 다색상 led 패키지의 광특성 분석방법 및 분석장치
CN111721507B (zh) 基于极坐标识别的键盘背光模组的智能检测方法及装置
CN202710183U (zh) 一种物体色度测量系统
CN111060204A (zh) 一种色彩分析仪的定标装置及方法
CN205384086U (zh) 一种标准光源对色观察箱
CN204924914U (zh) 一种光谱反馈调光比色灯箱
RU91761U1 (ru) Эталонное устройство для передачи размера единиц координат цветности самосветящихся объектов
CN205748642U (zh) 一种颜色测量装置
CN105572055A (zh) 一种基于数码影像技术非接触式颜色检测方法
CN211291747U (zh) 一种色彩分析仪的定标装置
CN205402398U (zh) 一种对色标准光源箱
WO2016165269A1 (zh) 一种物体光学特性测量装置
ITBZ970019A1 (it) Sistema di rilevamenti densitometrici e spettrometrici.
CN114061768B (zh) 一种积分球式光源色温校准装置及色温表校准方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016885452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546458

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE