WO2017147854A1 - 一种玻璃用涂料 - Google Patents

一种玻璃用涂料 Download PDF

Info

Publication number
WO2017147854A1
WO2017147854A1 PCT/CN2016/075496 CN2016075496W WO2017147854A1 WO 2017147854 A1 WO2017147854 A1 WO 2017147854A1 CN 2016075496 W CN2016075496 W CN 2016075496W WO 2017147854 A1 WO2017147854 A1 WO 2017147854A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
oxide
glass
mass content
less
Prior art date
Application number
PCT/CN2016/075496
Other languages
English (en)
French (fr)
Inventor
胡伟
王钰
陈芳华
常瑞荆
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Priority to PCT/CN2016/075496 priority Critical patent/WO2017147854A1/zh
Publication of WO2017147854A1 publication Critical patent/WO2017147854A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder

Definitions

  • the invention belongs to the technical field of coatings, and in particular relates to a coating for glass.
  • the consumer electronics market generally recognizes glass materials as the substrate for the back cover of the mobile phone, the protective screen of the display screen, and the protective screen of the touch screen.
  • the surface treatment and decoration technology of the glass for electronic products is also becoming mature.
  • the existing glass is decorated with a low-temperature ink, which is cured by screen printing and low-temperature heat curing on the glass for electronic products.
  • This ink is generally cured at 120-160 ° C, but this ink can not withstand high temperatures, yellowing, carbonization and other phenomena will occur above 250 ° C.
  • the processing process of the glass protection screen is a process of forming the formed glass by hot bending treatment and ion exchange strengthening, and then printing low temperature ink or decorative plastic film. Since the hot bending treatment is a non-planar profiled structure on both sides of the glass, this causes the printing size to be difficult to control during printing, and is highly prone to deviation; and because the film cannot be uniformly pulled up, it cannot be used. The film is completely conformable; therefore there is a huge challenge to the surface finish of thermoformed glass.
  • the glass transmittance is reduced from 92% to 88%, which seriously affects the visual effect and increases the consumption of the battery compensation brightness; also because the ultraviolet light in the sunlight accelerates the aging of the organic material. It can also seriously affect the visual effects and screen life.
  • the present invention provides a coating for glass.
  • the invention is achieved by a coating for glass which is applied over a glass and which, after complete curing, obtains a coating which can be thermoformed together with glass and subjected to ion exchange chemical strengthening Processing; the coating comprises silica and an alkali metal oxide, the silica having a mass content of 15 to 52% in the coating; the alkali metal oxide in the coating The absolute value of the difference between the mass content of not less than 3% and the mass content of the alkali metal oxide in the coated glass is less than 10%.
  • the alkali metal oxide includes at least one of lithium oxide, sodium oxide, and potassium oxide.
  • the coating may be heat formed together with the coated glass and ion-exchanged by the ion exchange of the coated glass.
  • the inorganic substance in the coating has a mass content of not less than 98%; the inorganic substance includes an oxide and a fluoride, and the oxide has a mass content of more than 80% in the inorganic substance, The content of fluoride in the inorganic material is less than 5%.
  • the coating is pre-cured prior to curing, including pre-curing including heating or UV curing.
  • the ion exchange temperature is 350-550 ° C
  • the ion exchange participating ions are at least one of lithium, sodium, potassium, rubidium, and cesium.
  • the coating has a coefficient of expansion Ea of 60-100 x 10-7 / ° C (at 30-380 ° C test conditions).
  • the relationship between the Ea and the expansion coefficient Eb of the glass coated with the coating material is such that the absolute value of (Ea-Eb)/Eb is less than 40%.
  • the coating has a viscosity of 10 to 100 Pa•s.
  • the solid content of the coating material is 30-90% by mass; the coating has a particle size of less than 35 ⁇ m.
  • the solid matter includes silica and an alkali metal oxide; the silica has a mass content of not less than 15% in the solid matter.
  • the solid material further includes a pigment material, and the pigment material has a mass content of 10% to 50% in the coating layer.
  • the pigment material comprises iron oxide, copper oxide, chromium oxide, cobalt oxide, oxidized mercury, titanium oxide, barium sulfate, lead sulfide, magnesium oxide, manganese oxide, carbon black, cerium oxide, silver oxide, lead oxide. At least one of lead sulfate, lead chromate, iron ferrocyanide, aluminum hydroxide, calcium carbonate, barium sulfate, cadmium oxide, and nickel oxide.
  • the solid material further includes aluminum oxide, cerium oxide, magnesium oxide, cerium oxide, cerium oxide, zirconium oxide, boron oxide, lead oxide, cerium oxide, phosphorus oxide, zinc oxide, calcium oxide, tin oxide, antimony. It is at least one of an oxide and a lanthanide oxide.
  • the content of the calcium oxide in the solid matter is less than 5%.
  • the coating further includes an organic substance, the organic substance having a mass content of 30-50% in the coating; the organic substance including a resin, a solvent, a coupling agent, a film forming agent, an antifoaming agent, and a dispersion At least two of a agent, a leveling agent, a filler, a heat curing agent, and a photoinitiator.
  • the resin has a mass content of 35-60% in the organic material; the resin is at least at least one of a phenolic resin, an epoxy resin, an acrylic resin, a modified epoxy resin, and a modified epoxy acrylic resin.
  • the solvent is 10-40% by mass in the organic matter; the solvent is lower fatty acid butyl ester, methyl pyrrolidone, nylon ester, terpineol, dipropylene glycol, anisole, two At least one of propylene glycol methyl ether.
  • the film forming agent has a mass content of 10-15% in the organic matter; and the film forming agent is at least one of silicon ethoxylate and titanium t-butoxide.
  • the coating has a complete curing temperature of 400 to 900 ° C and a lower than 1 to 70 ° C of the softening point of the coated glass.
  • the coating method of the coating is screen printing, pad printing or spraying.
  • the invention has the beneficial effects that the glass coating of the invention contains a large amount of inorganic substances, can withstand the high temperature of the glass during the hot bending treatment, and is formed by heating together with the glass, and is a high temperature resistant coating. .
  • the internal structure formed by the alkali metal oxide and other oxides in the formed coating is a network structure, allowing ions to pass through, so that when ion exchange chemical strengthening is performed, foreign ions can be worn.
  • the glass body ions can also be exchanged into the ion exchange salt bath through the coating layer, which can ensure that the glass surface under the coating coverage area can also be strengthened by uniform ion exchange.
  • the mass content of silica and alkali metal oxide in the cured coating is close to the mass content in the glass, and the network structure formed is similar to the network structure inside the glass, so it does not affect the ion exchange strengthening of the glass. .
  • the coating of the invention can be applied to the surface of the glass before the glass is subjected to the hot bending treatment, and the coating does not affect the ion exchange strengthening of the glass after coating, and the existing low temperature coating or ink for glass must be used in the application of the hot bending glass. It is a technical problem that the ion exchange is carried out, the curing is carried out in a relatively low temperature section, and the coating is not easily applied on the surface of the irregularly curved glass.
  • the coating has a high solid content, so that the coating formed after curing has a high hiding rate, so that the thickness of the coating can be lowered, so that the precision of the coating is remarkably improved.
  • Example 1 is a schematic view showing the total mass ratio of inorganic raw materials provided in Example 1 of the present invention
  • Example 2 is a schematic view showing the total mass ratio of the organic material raw materials provided in Example 1 of the present invention
  • Embodiment 3 is a schematic diagram showing the result of compensation of measured values provided by Embodiment 1 of the present invention.
  • Figure 4 is a schematic view showing the total mass ratio of the inorganic raw materials provided in Example 2 of the present invention.
  • Figure 5 is a schematic view showing the total mass ratio of the organic material raw material provided in Example 2 of the present invention.
  • FIG. 6 is a schematic diagram showing the result of the measurement value compensation provided by Embodiment 2 of the present invention.
  • the alkali metal oxide in the glass has a mass content of from 3 to 25%
  • a coating is prepared for coating on the glass and obtaining a coating after complete curing, the coating It can be heat-formed together with glass and subjected to ion-exchange chemical strengthening treatment; the coating includes silica and an alkali metal oxide; wherein the content of silica in the coating is 15-52%, alkali metal oxide
  • the mass content in the coating is not less than 3%, and the absolute value of the difference from the mass content value of the alkali metal oxide in the coated glass is less than 10%.
  • the alkali metal oxide is at least one of lithium oxide, sodium oxide, and potassium oxide.
  • the solid content of the coating is from 30 to 90% by mass.
  • the solid matter has a particle size of less than 35 ⁇ m, preferably less than 15 ⁇ m.
  • the viscosity of the coating is from 10 to 100 Pa•s, preferably from 30 to 70 Pa•s.
  • the solid matter includes silica and an alkali metal oxide, and the silica has a mass content of not less than 15%, preferably not less than 30%, in the solid matter.
  • the cured coating of the coating can be heat formed with the coated glass and ion exchange enhanced ion exchange by the coated glass.
  • the mass content of the inorganic substance in the coating layer is not less than 98%; the inorganic substance includes an oxide and a fluoride, wherein the mass content of the oxide in the inorganic substance is more than 80%, and the content of the fluoride in the inorganic substance is less than 5%.
  • the coating is pre-cured prior to curing, including pre-curing by heating or UV curing.
  • the temperature of ion exchange performed by the glass coated with the coating is 350-550 ° C, and the ion-exchanged participating ions are at least one of lithium, sodium, potassium, rubidium, and cesium.
  • the coefficient of expansion Ea of the coating is 60-100 x 10-7 / ° C; the relationship between Ea and the coefficient of expansion Eb of the glass coated with the coating is: (Ea-Eb) / Eb has an absolute value of less than 40%.
  • the coefficient of expansion Ea of the coating obtained after the coating is completely cured is 60-100 ⁇ 10-7/° C. (30-380° C.), and the relationship between the expansion coefficient Eb of the glass coated with the coating material is (Ea- The absolute value of Eb)/Eb is less than 40%.
  • the solid material of the coating further comprises a pigment material, wherein the pigment material has a mass content of 10%-50% in the coating after the coating is completely cured; wherein the pigment material comprises iron oxide, copper oxide, chromium oxide, cobalt oxide. , oxidized mercury, titanium oxide, barium sulfate, lead sulfide, magnesium oxide, manganese oxide, carbon black, cerium oxide, silver oxide, lead oxide, lead sulfate, lead chromate, iron ferrocyanide, aluminum hydroxide, calcium carbonate At least one of barium sulfate, cadmium oxide, and nickel oxide.
  • the pigment material can be selected according to actual needs so that the prepared paint exhibits a desired color.
  • the solid material further includes an organic substance, and the organic substance has a mass content of 30-50% in the solid substance; wherein the organic substance includes a resin, a solvent, a coupling agent, a film forming agent, an antifoaming agent, a dispersing agent, a leveling agent, a filler, At least two of a heat curing agent and a photoinitiator.
  • the organic substance includes a resin, a solvent, a coupling agent, a film forming agent, an antifoaming agent, a dispersing agent, a leveling agent, a filler, At least two of a heat curing agent and a photoinitiator.
  • the mass content of the resin in the organic substance is 35-60%; the resin is at least one of a phenolic resin, an epoxy resin, an acrylic resin, a modified epoxy resin, and a modified epoxy acrylic resin, and preferably has a degree of polymerization of 1000. -20000 molecular weight resin.
  • the content of the solvent in the organic substance is 10-40%; the solvent is at least one of lower fatty acid butyl ester, methyl pyrrolidone, nylon ester, terpineol, dipropylene glycol, anisole, dipropylene glycol methyl ether.
  • the film former is present in an amount of 10-15% by mass; the film former comprises silicon ethoxylated amine and/or titanium t-butoxide.
  • other oxides are included in the solid matter, and other oxides include alumina, cerium oxide, magnesium oxide, cerium oxide, cerium oxide, zirconium oxide, boron oxide, cerium oxide, phosphorus oxide, zinc oxide, calcium oxide, At least one of tin oxide, lanthanide oxide, and lanthanide oxide.
  • the calcium oxide has a mass content of less than 5% in the solid matter.
  • the coating method is: screen printing, pad printing, spray coating, or the like.
  • Thermal curing is divided into several steps: simple adhesion, ie pre-curing, to increase the bonding force, can be pre-cured by heating or ultraviolet light; then fully cured, the complete curing temperature of the coating is 400-900 ° C, and lower than the softening point of the coated glass 1-270 ° C, preferably 1-100 ° C; wherein the complete curing temperature of the glass for mobile phones is 700-900 ° C. This prevents the coated glass from softening when the coating is cured at a high temperature, resulting in uneven coating. Among them, the total heat curing time is 10-60 min.
  • the process of glass ion exchange strengthening is to exchange ions with other alkali metal ions and Na+ or K+ on the surface of the glass, and the surface forms an exchange layer.
  • the glass When cooled to normal temperature, the glass is in the inner layer and the outer layer is pressed, thereby achieving Increase the intensity of the purpose.
  • the principle is to form compressive stress on the surface of the glass. When the glass is subjected to external force, the surface stress is first offset, thereby improving the bearing capacity, enhancing the wind resistance of the glass itself, cold and heat, impact and the like.
  • the coating of the present invention is suitable for coating a glass surface which needs to be strengthened by an ion exchange method, and is applied before the glass is subjected to ion exchange and hot bending treatment; after the coating is applied to the surface of the glass and completely cured, the coating can be combined with the glass. One is heated and then ion exchange strengthened.
  • the coating layer can be ion traversed, and foreign ions can be exchanged through the coating into the glass matrix, and ions in the glass matrix can also be exchanged through the coating into the ion exchange salt bath.
  • the glass ion exchange temperature ranges from 350 to 550 ° C, and the ions involved in the exchange are at least one of lithium, sodium, potassium, rubidium, cesium, and cesium.
  • the internal structure is a network structure, which is easy to carry out ion exchange.
  • the mass content of the silica and alkali metal oxide in the coating is relatively close to the mass content in the coated glass, which allows the ions to be exchanged freely.
  • the inorganic material and the organic raw material in Fig. 2 were sequentially added, a total of 5.1 kg, and the original particle size was required to be less than 50 ⁇ m, and uniformly mixed using a mechanical method.
  • the slurry was stirred at a rotational speed of 1500 rpm (revolution per minute) for 30 minutes using a high speed mixer to give a total weight of 10 kg, and the total amount was 100% by weight.
  • the slurry was placed in a micro-nano ball mill for grinding.
  • the ball mill was pulverized with 0.2 mm diameter zirconia beads at a grinding speed of 1000 rpm for about 1 hour until the particle size of the inorganic solids was less than 15 ⁇ m, and the white slurry was taken out.
  • the viscosity of the coating is: 45 Pa•s.
  • the paint is printed on the surface of Corning 2320 flat glass with a thickness of 0.55mm (the alkali metal in this glass is sodium oxide, and its mass content in glass is 18-22). %), pre-bake for 10 minutes at 160 degrees Celsius, the total thickness of the coating is about 6 ⁇ m; put the printing plate glass into the curved graphite mold, put it into the glass hot press, and hot press at 720 degrees Celsius for about time. After 10 minutes, the coating was finally cured while glass thermoforming was carried out; the shaped glass was placed in a bath of potassium nitrate at 420 ° C for ion exchange for 4 hours.
  • the final coating obtained was white in color and had a high hiding rate.
  • the total cure time of the coating was 20 minutes.
  • the adhesion of the coating was measured by a hundred-grain knife, and the test result was 5B, the coating did not fall off, and the adhesion was good.
  • the FSM6000 surface stress measuring instrument measures the stress on the uncovered coating area on both sides of the glass. The result is a surface compressive stress of 750 MPa and an ion exchange depth of 45 ⁇ m.
  • the paint is printed on the surface of Corning 2320 flat glass with a thickness of 0.55mm, pre-baked for 10 minutes at 160 degrees Celsius, and then printed and dried for the second time using a common method. Two layers were printed, and the total thickness of the coating was about 12 ⁇ m; the printing plate glass was placed in a flat graphite mold, placed in a glass hot press, and finally cured at 720 ° C for about 10 minutes. At the same time, glass thermoforming was carried out; the flat glass was placed in a bath of potassium nitrate at 420 ° C for ion exchange for 4 hours.
  • the final coating obtained was white in color and had a high hiding rate.
  • the total cure time of the coating was 30 minutes.
  • the adhesion of the coating was measured by a hundred-grain knife, and the test result was 5B, the coating did not fall off, and the adhesion was good.
  • Orihara FSM6000 surface stress measuring instrument measuring the stress on the double-coated uncovered coating area of the glass, the result is that the surface compressive stress is 750Mpa, the ion exchange depth is 45 ⁇ m; the flat glass is placed on the glass single-side polishing machine, and the coating is thrown away. All the coatings on the surface were measured, and the surface compressive stress on the surface of the original coating of the coating surface and the uncovered area of the coating surface was measured. The measurement results were: 605 Mpa, and the ion exchange depth was 32 ⁇ m. This coating demonstrates the ability to penetrate ion exchange sufficiently.
  • the coating is 100% inorganic after curing; wherein the proportion of oxide is 89.9%; silicon oxide accounts for 42.5% of the total mass of the solid; sodium oxide is 13.8%, of which sodium oxide Compared to the 20% sodium oxide mass content of Corning 2030 glass, the difference is 6.2%.
  • the mixture was stirred at 1,500 rpm for 30 minutes using a high speed mixer to form a slurry having a total weight of 10 kg and a total mass ratio of 100% by weight.
  • the slurry was placed in a micro-nano ball mill for grinding.
  • the ball mill was pulverized with 0.2 mm diameter zirconia beads at a grinding speed of 1000 rpm for about 1 hour until the inorganic solids could have a particle size of less than 15 ⁇ m, and the black slurry was taken out.
  • the viscosity of the coating is: 50 Pa•s.
  • the paint is printed on the surface of Corning 2320 flat glass with a thickness of 0.55mm, pre-baked for 10 minutes at 160 degrees Celsius, and the total thickness of the coating is about 8 ⁇ m;
  • the curved graphite mold is placed in a glass hot press and hot-pressed at 720 ° C for about 10 minutes to finalize the coating and simultaneously perform glass thermoforming; then the shaped glass is put into 420 In the potassium nitrate bath of Celsius, do ion exchange for 4 hours.
  • the coating obtained was black in color and had a high hiding rate.
  • the total cure time of the coating was 20 minutes.
  • the adhesion of the coating was measured by a hundred-grain knife, and the test result was 5B, the coating did not fall off, and the adhesion was good.
  • the FSM6000 surface stress measuring instrument measures the stress on the uncovered coating area on both sides of the glass. The result is a surface compressive stress of 750 MPa and an ion exchange depth of 45 ⁇ m.
  • the coating obtained was black in color and had a high hiding rate.
  • the total cure time of the coating was 30 minutes.
  • the adhesion of the coating was measured by a hundred-grain knife, and the test result was 5B, the coating did not fall off, and the adhesion was good.
  • Orihara FSM6000 surface stress measuring instrument measuring the stress on the double-coated uncovered coating area of the glass, the result is that the surface compressive stress is 750Mpa, the ion exchange depth is 45 ⁇ m; the flat glass is placed on the glass single-side polishing machine, and the coating is thrown away. All the coatings on the surface were measured, and the surface compressive stress on the surface of the original coating of the coating surface and the uncovered area of the coating surface was measured. The measurement results were all: 550 MPa, and the ion exchange depth was 28 ⁇ m. This coating demonstrates the ability to penetrate ion exchange sufficiently.
  • the coating is 100% inorganic; the oxide ratio is 100%; the silica accounts for 43.8% of the total solid content; the sodium oxide is 13.6%, and the sodium oxide is 20% compared to the Corning 2030 glass.
  • the content of sodium oxide was 6.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

一种玻璃用涂料,用于涂覆在玻璃之上并在完全固化之后获得涂层。该涂层可连同玻璃一起加热成型并进行离子交换式化学强化处理。该涂层包括二氧化硅和碱金属氧化物。二氧化硅在该涂层中的质量含量为15-52%。碱金属氧化物在该涂层中的质量含量不低于3%,且与被涂覆玻璃中的碱金属氧化物的质量含量之差的绝对值小于10%。

Description

一种玻璃用涂料 技术领域
本发明属于涂料技术领域,尤其涉及一种玻璃用涂料。
背景技术
目前消费类电子产品市场普遍认可了玻璃材料作为手机后盖、显示屏的保护屏以及触摸屏的保护屏的基材,电子产品用玻璃的表面处理及装饰技术也趋于成熟。现有的玻璃用装饰用的是低温油墨,采用的是丝网印刷涂装和低温热固化方式固化于电子产品用玻璃上。这种油墨一般在120-160℃固化,但是这种油墨不能耐高温,在250℃以上会出现黄化、碳化等现象。
随着柔性显示屏的出现,消费类电子产品加工行业面临一个挑战,玻璃保护屏的外型需要是与柔性显示屏完全准确贴合。由于柔性显示屏的形状是非平面的异型,所以玻璃保护屏的加工制程是将成形后的玻璃进行热弯处理和离子交换强化,然后再印刷低温油墨或装饰塑料薄膜贴合等外观制程。由于热弯处理是使玻璃两个面都成为非平面的异型结构,这会造成在进行印刷时印刷尺寸很难把控,极易出现偏差;又由于无法对薄膜进行均匀拉升,也无法采用贴膜的方式完全贴合;因此对热成形玻璃的表面装饰存在一个巨大挑战。此外,由于塑料薄膜材质及胶水的特质,造成玻璃透过率从92%降到88%,严重影响了视觉效果及增加电池补偿亮度的消耗;还由于太阳光中紫外线会加速有机材质的老化,也会严重影响视觉效果及屏幕使用寿命。
技术问题
为解决上述技术问题,本发明提供一种玻璃用涂料。
技术解决方案
本发明是这样实现的,一种玻璃用涂料,所述涂料用于涂覆在玻璃之上并在完全固化之后获得涂层,所述涂层可连同玻璃一起加热成型并进行离子交换式化学强化处理;所述涂层中包括二氧化硅和碱金属氧化物,所述二氧化硅在所述涂层中的质量含量为15-52%;所述碱金属氧化物在所述涂层中的质量含量不低于3%、且与被涂敷玻璃中的碱金属氧化物的质量含量值之差的绝对值小于10%。
进一步地,所述碱金属氧化物包括氧化锂、氧化钠、氧化钾中的至少一种。
进一步地,所述涂层可与被涂敷玻璃一起被加热成形,且可被所涂覆玻璃所进行离子交换强化的离子穿越。
进一步地,所述涂层中的无机物的质量含量不低于98%;所述无机物包括氧化物和氟化物,所述氧化物在所述无机物中的质量含量大于80%,所述氟化物在所述无机物中的含量小于5%。
进一步地,所述涂层在固化之前先进行预固化,所述预固化方式包括加热或紫外固化。
更进一步地,所述离子交换的温度为350-550℃,所述离子交换的参与离子为锂、钠、钾、铷、铯中的至少一种。
进一步地,所述涂层的膨胀系数Ea为60-100×10-7/℃(在30-380℃测试条件下)。
更进一步地,所述Ea与涂料所涂敷玻璃的膨胀系数Eb之间的关系为:(Ea-Eb)/Eb的绝对值小于40%。
进一步地,所述涂料的粘度为10-100Pa•s。
进一步地,所述涂料的固体物质的质量含量为30-90%;所述涂料的颗粒度低于35μm。
更进一步地,所述固体物质中包括二氧化硅和碱金属氧化物;所述二氧化硅在所述固体物质中的质量含量不低于15%。
进一步地,所述固体物质中还包括颜料物质,所述颜料物质在所述涂层中的质量含量为10%-50%。
更进一步地,所述颜料物质包括氧化铁、氧化铜、氧化铬、氧化钴、氧化汞、氧化钛、硫酸钡▪硫化铅、氧化镁、氧化锰、碳黑、氧化锗、氧化银、氧化铅、硫酸铅、铬酸铅、亚铁氰化铁、氢氧化铝、碳酸钙、硫酸钡、氧化镉、氧化镍中的至少一种。
进一步地,所述固体物质中还包括氧化铝、氧化钡、氧化镁、氧化铋、氧化锑、氧化锆、氧化硼、氧化铅、氧化锶、氧化磷、氧化锌、氧化钙、氧化锡、镧系氧化物、锕系氧化物的至少一种。
更进一步地,所述氧化钙在所述固体物质中的含量低于5%。
进一步地,所述涂料中还包括有机物,所述有机物在所述涂料中的的质量含量为30-50%;所述有机物包括树脂、溶剂、偶联剂、成膜剂、消泡剂、分散剂、流平剂、填充剂、热固化剂、光引发剂中的至少两种。
更进一步地,所述树脂在所述有机物中的质量含量为35-60%;所述树脂为酚醛树脂、环氧树脂、丙烯酸树脂、改性环氧树脂、改性环氧丙烯酸树脂中的至少一种。
更进一步地,所述溶剂在所述有机物中的质量含量为10-40%;所述溶剂为低级脂肪酸丁酯、甲基吡咯烷酮、尼龙酸酯、松油醇、二丙二醇、苯甲醚、二丙二醇甲醚中至少一种。
更进一步地,所述成膜剂在所述有机物中的质量含量为10-15%;所述成膜剂为硅乙氧醇胺、叔丁醇钛中至少一种。
进一步地,所述涂料的完全固化温度为400-900℃、且低于被涂敷玻璃的软化点1-270℃。
进一步地,所述涂料的涂敷方法为网版印刷、移印或喷涂。
有益效果
本发明与现有技术相比,有益效果在于:本发明的玻璃用涂料含有大量无机物,可以耐受玻璃进行热弯处理时的高温,并连同玻璃一道被加热成型,是一种耐高温涂料。涂料涂敷在玻璃表面进行固化完成后,形成的涂层中的碱金属氧化物与其它氧化物形成的内部结构为网络结构,允许离子穿越,因此在做离子交换化学强化时,外来离子可以穿过涂料层并进入到玻璃基体中,玻璃机体离子也可以经由涂料层交换至离子交换盐浴里,可以保证涂层覆盖区域下的玻璃表面也可以被均匀的离子交换从而得到强化。固化后的涂料中的二氧化硅和碱金属氧化物的质量含量与玻璃中的质量含量比较接近,形成的网络结构类似于玻璃内部的网络结构,因此不会对玻璃进行的离子交换强化产生影响。本发明的涂料可以在玻璃进行热弯处理之前涂敷在玻璃表面,且涂敷后不影响玻璃进行离子交换强化,避免了现有玻璃用低温涂料或油墨在涂敷热弯玻璃时必须要在离子交换之后进行、固化要在相对的低温段进行、以及在不规则热弯玻璃表面不易实施涂敷等技术问题。
此外,所述涂料的固质量含量很高,从而使固化后形成的涂层的遮盖率高,因此可以降低涂层厚度,从而使涂层的精度显著提高。
附图说明
图1是本发明实施例1提供的无机物原材料的总质量比示意图;
图2是本发明实施例1提供的有机物原材料的总质量比示意图;
图3是本发明实施例1提供的测量值补偿后的结果示意图;
图4是本发明实施例2提供的无机物原材料的总质量比示意图;
图5是本发明实施例2提供的有机物原材料的总质量比示意图;
图6是本发明实施例2提供的测量值补偿后的结果示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一般玻璃中的碱金属氧化物的质量含量为3-25%,按照本发明的技术方案制备涂料,所述涂料用于涂覆在玻璃之上并在完全固化之后获得涂层,所述涂层可连同玻璃一起加热成型并进行离子交换式化学强化处理;涂层中包括二氧化硅和碱金属氧化物;其中,二氧化硅在涂层中的质量含量为15-52%,碱金属氧化物在涂层中的质量含量不低于3%、且与被涂敷玻璃中的碱金属氧化物的质量含量值之差的绝对值小于10%。碱金属氧化物为氧化锂、氧化钠、氧化钾中的至少一种。
具体地,涂料的固体物质的质量含量为30-90%。固体物质的颗粒度低于35μm,优选低于15μm。涂料的粘度为10-100Pa•s,优选为30-70Pa•s。其中固体物质中包括二氧化硅和碱金属氧化物,所述二氧化硅在所述固体物质中的质量含量不低于15%,优选不低于30%。涂料固化后的涂层可与被涂敷玻璃一起被加热成形,且可被所涂覆玻璃所进行离子交换强化的离子穿越。其中,涂层中的无机物的质量含量不低于98%;无机物中包括氧化物和氟化物,其中氧化物在无机物中的质量含量大于80%,氟化物在无机物中的含量小于5%。涂层在固化之前先进行预固化,所述预固化方式包括加热或紫外固化。
具体地,涂层所涂敷玻璃所进行的离子交换的温度为350-550℃,离子交换的参与离子为锂、钠、钾、铷、铯中的至少一种。涂层的膨胀系数Ea为60-100×10-7/℃;Ea与涂料所涂敷玻璃的膨胀系数Eb之间的关系为:(Ea-Eb)/Eb的绝对值小于40%。
具体地,涂料完全固化之后所得涂层的膨胀系数Ea为60-100×10-7/℃(30-380℃),其与涂料所涂敷玻璃的膨胀系数Eb之间的关系为(Ea-Eb)/Eb的绝对值小于40%。
具体地,涂料的固体物质中还包括颜料物质,颜料物质在涂料完全固化后的涂层中的质量含量为10%-50%;其中,颜料物质包括氧化铁、氧化铜、氧化铬、氧化钴、氧化汞、氧化钛、硫酸钡•硫化铅、氧化镁、氧化锰、碳黑、氧化锗、氧化银、氧化铅、硫酸铅、铬酸铅、亚铁氰化铁、氢氧化铝、碳酸钙、硫酸钡、氧化镉、氧化镍中的至少一种。颜料物质可以根据实际需求选择,以使制备出的涂料呈现出所需的颜色。
固体物质中还包括有机物,有机物在固体物质的质量含量为30-50%;其中,有机物包括树脂、溶剂、偶联剂、成膜剂、消泡剂、分散剂、流平剂、填充剂、热固化剂、光引发剂中的至少两种。这些有机物的作用是辅助涂料被精准、方便的涂敷在玻璃表面。
具体地,有机物中树脂的质量含量为35-60%;树脂为酚醛树脂、环氧树脂、丙烯酸树脂、改性环氧树脂、改性环氧丙烯酸树脂中的至少一种,优选聚合度为1000-20000分子量树脂。有机物中溶剂的质量含量为10-40%;溶剂为低级脂肪酸丁酯、甲基吡咯烷酮、尼龙酸酯、松油醇、二丙二醇、苯甲醚、二丙二醇甲醚中的至少一种。有机物中成膜剂的质量含量为10-15%;所述成膜剂包括硅乙氧醇胺和/或叔丁醇钛。
具体地,固体物质中还包括其它氧化物,其它氧化物还包括氧化铝、氧化钡、氧化镁、氧化铋、氧化锑、氧化锆、氧化硼、氧化锶、氧化磷、氧化锌、氧化钙、氧化锡、镧系氧化物、锕系氧化物的至少一种。其中,氧化钙在所述固体物质中的质量含量低于5%。这些无机氧化物可以增加涂料的耐磨性能。
涂料制备完成之后,将其涂敷在玻璃表面,然后进行热固化。具体地,涂敷方法为:网版印刷、移印、喷涂等。热固化分为多个步骤:先进行简单粘附即预固化,以增加结合力,可以被使用加热的方式或紫外光照射的方式进行预固化;然后再进行完全固化,涂料的完全固化温度为400-900℃、且低于被涂敷玻璃的软化点1-270℃,优选1-100℃;其中手机用玻璃的完全固化温度为700-900℃。这样可避免被涂敷玻璃在对涂料进行高温固化时出现软化现象,造成涂敷不均匀。其中,热固化总时间为10-60min。
玻璃离子交换强化的过程是用其他碱金属离子与玻璃表层的Na+或K+发生离子交换,表面形成交换层,当冷却到常温后,玻璃处于内层受拉、外层受压的状态,从而达到增加强度的目的。其原理是在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
本发明的涂料适用于需要经过离子交换法来强化的玻璃表面涂敷,且在玻璃进行离子交换和热弯处理之前进行涂敷;涂料在被涂敷于玻璃表面并完全固化之后,可以连同玻璃一道被加热成型,再进行离子交换强化。在被离子交换强化时,该涂料层可以被离子穿越,外来离子可以经由涂层交换至玻璃基体中,玻璃基体中的离子也可以经由涂层交换至离子交换盐浴里。所述玻璃离子交换的温度范围为350-550℃,参与交换的离子为锂、钠、钾、铷、铯、钫中的至少一种。
涂料在玻璃表面进行固化完成后,其内部结构为网络结构,易于离子交换的进行。涂料中的二氧化硅和碱金属氧化物的质量含量与被涂敷玻璃中的质量含量比较接近,这使得离子可以自由地进行交换。
下面结合具体实施例对本发明的涂料及其功能进行说明。
实施例1
首先按图1中数据称取下列无机物原材料,共4.9kg,将所有配料混合之后,放入铂金坩埚在1200℃的温度下熔化,充分搅拌均匀后,徐冷后倒入冷水中,淬冷成小颗粒。
然后依次加入图2中无机物和有机物原材料,共5.1kg,要求其原始颗粒度小于50μm,使用机械法均匀混合。
采用高速搅拌机,在1500rpm(转每分钟)的转速下搅拌30分钟,形成浆料,总重量为10kg,总量为100wt%。
将浆料投入到微纳米球磨机内研磨,球磨机采用直径0.2mm氧化锆珠,在1000rpm研磨速度下,研磨大约1小时,直至无机物固体的颗粒度小于15μm,取出白色浆料即可。
对制得的涂料进行相关测量,结果如下:
涂料固体质量含量为70%;采用粒径分析仪测量所得颗粒度为:d10=5μm,d50=8.2μm,d90=10.5μm,d99=13.7μm。涂料的粘度为:45Pa•s。
使用并测试涂料性能:
(1)采用丝印的方法,使用165T网砂,将涂料印刷在厚度为0.55mm的康宁2320平板玻璃表面(这种玻璃中的碱金属为氧化钠,其在玻璃中的质量含量为18-22%),160摄氏度预烘干10分钟,涂层总厚度约6μm;将印刷平板玻璃放入到曲面石墨模具内,放入到玻璃热压机内,在720摄氏度下热压成型,持续时间约10分钟,对涂层进行最终固化,同时进行玻璃热成型;再将已经异型成型玻璃投入到420摄氏度的硝酸钾盐浴内,做离子交换4小时。
最终获得的涂层颜色为白色,遮盖率高。涂层总共固化时间为20分钟。采用百格刀测量涂层得附着力,测试结果为5B,涂层没有脱落,附着力良好。采用Orihara FSM6000表面应力测量仪,测量玻璃双面未覆盖涂层区域的应力,结果为均为表面压应力为750Mpa,离子交换深度为45μm。
(2)采用丝印的方法,使用165T网砂,将涂料印刷在厚度为0.55mm的康宁2320平板玻璃表面,160摄氏度预烘干10分钟,再使用通用的方法印刷第二次并烘干,总共印刷两层,涂层总厚度约12μm;将印刷平板玻璃放入到平面石墨模具内,放入到玻璃热压机内,在720摄氏度下,持续时间约10分钟,对涂层进行最终固化,同时进行玻璃热成型;再将平面玻璃投入到420摄氏度的硝酸钾盐浴内,做离子交换4小时。
最终获得的涂层颜色为白色,遮盖率高。涂层总共固化时间为30分钟。采用百格刀测量涂层得附着力,测试结果为5B,涂层没有脱落,附着力良好。
采用Orihara FSM6000表面应力测量仪,测量玻璃双面未覆盖涂层区域的应力,结果为均为表面压应力为750Mpa,离子交换深度为45μm;将平面玻璃放入到玻璃单面抛光机上,抛去涂层覆盖面的所有涂层,再测量涂层面原涂层覆盖区域和涂层面原涂层未覆盖区域的表面的表面压应力,测量结果均为:605Mpa,离子交换深度为32μm。证明本涂料具备了让离子交换充分穿透的能力。
(3)选取制备的涂料500g,倒入到陶瓷坩埚内,放入烘烤箱内,在700摄氏度条件下烘烤15分钟固化后取出,采用X荧光定性分析,测量其组分,根据测量值补偿后的结果如图3。
从图3中结果可以看出,涂料在固化之后,为100%无机物;其中氧化物所占比例为89.9%;氧化硅占固体总质量含量的42.5%;氧化钠为13.8%,其中氧化钠相比康宁2030玻璃中的20%氧化钠质量含量,差值为6.2%。
(4)选取制备的涂料500g,倒入到陶瓷坩埚内,放入烘烤箱内,在700摄氏度条件下烘烤30分钟固化后取出,采用膨胀仪精密测定膨胀系数为:69×10^-7/℃,相比康宁2320玻璃的膨胀系数为:91×10^-7/℃,两者差值为22×10^-7/℃,为被覆康宁2320玻璃的24.2%。
实施例2
首先按图4中数据称取下列无机物原材料,共5.6kg,将所有配料混合之后,放入铂金坩埚在约1200℃的温度下熔化,充分搅拌均匀后,徐冷后倒入冷水中,淬冷成小颗粒。
然后按图5中数据依次加入下列无机物和有机物原材料,共4.4kg,要求其原始颗粒度小于50μm,用机械法均匀混合。
采用高速搅拌机,在1500rpm的转速下搅拌30分钟,形成浆料,总重量为10kg,总质量比为100wt%。将浆料投入到微纳米球磨机内研磨,球磨机采用直径0.2mm氧化锆珠,在1000rpm研磨速度下,研磨大约1小时,直至无机物固体可以的颗粒度小于15μm,取出黑色浆料即可。
对制得的涂料进行相关测量,结果如下:
涂料固体质量含量为80%;采用粒径分析仪测量所得颗粒度为:d10=4.3μm, d50=7.0μm,d90=9.8μm,d99=13.5μm。涂料的粘度为:50Pa•s。
使用并测试涂料性能:
(1)采用丝印的方法,使用120T网砂,将涂料印刷在厚度为0.55mm的康宁2320平板玻璃表面,160摄氏度预烘干10分钟,涂层总厚度约8μm;将印刷平板玻璃放入到曲面石墨模具内,放入到玻璃热压机内,在720摄氏度下热压成型,持续时间约10分钟,对涂层进行最终固化,同时进行玻璃热成型;再将已经异型成型玻璃投入到420摄氏度的硝酸钾盐浴内,做离子交换4小时。
获得的涂层颜色为黑色,遮盖率高。涂层总共固化时间为20分钟。采用百格刀测量涂层得附着力,测试结果为5B,涂层没有脱落,附着力良好。采用Orihara FSM6000表面应力测量仪,测量玻璃双面未覆盖涂层区域的应力,结果为均为表面压应力为750Mpa,离子交换深度为45μm。
(2)采用丝印的方法,使用120T网砂,将涂料印刷在厚度为0.55mm的康宁2320平板玻璃表面,160摄氏度预烘干10分钟,再使用通用的方法印刷第二次并烘干,总共印刷两层涂层,总厚度约16μm;将印刷平板玻璃放入到平面石墨模具内,放入到玻璃热压机内,在720摄氏度下,持续时间约10分钟,对涂层进行最终固化,同时进行玻璃热成型;再将平面玻璃投入到420摄氏度的硝酸钾盐浴内,做离子交换4小时。
获得的涂层颜色为黑色,遮盖率高。涂层总共固化时间为30分钟。采用百格刀测量涂层得附着力,测试结果为5B,涂层没有脱落,附着力良好。
采用Orihara FSM6000表面应力测量仪,测量玻璃双面未覆盖涂层区域的应力,结果为均为表面压应力为750Mpa,离子交换深度为45μm;将平面玻璃放入到玻璃单面抛光机上,抛去涂层覆盖面的所有涂层,再测量涂层面原涂层覆盖区域和涂层面原涂层未覆盖区域的表面的表面压应力,测量结果均为:550Mpa,离子交换深度为28μm。证明本涂料具备了让离子交换充分穿透的能力。
(3)选取制备的涂料500g,倒入到陶瓷坩埚内,放入烘烤箱内,在700摄氏度条件下烘烤15分钟固化后取出,采用X荧光定性分析,测量其组分,根据测量值补偿后的结果如图6。
可见涂料在固化之后,为100%无机物;其中氧化物占比为100%;氧化硅占固体总质量含量的43.8%;氧化钠为13.6%,其中氧化钠相比康宁2030玻璃中的20%氧化钠质量含量,差值为6.4%。
(4)选取制备的涂料500g,倒入到陶瓷坩埚内,放入烘烤箱内,在700摄氏度条件下烘烤30分钟固化后取出,采用膨胀仪精密测定膨胀系数为:76×10^-7/℃,相比康宁2320玻璃的膨胀系数为:91×10^-7/℃,两者差值为22×10^-7/℃,为被覆康宁2320玻璃的16.5%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种玻璃用涂料,其特征在于,所述涂料用于涂覆在玻璃之上并在完全固化之后获得涂层,所述涂层可连同玻璃一起加热成型并进行离子交换式化学强化处理;所述涂层中包括二氧化硅和碱金属氧化物,所述二氧化硅在所述涂层中的质量含量为15-52%;所述碱金属氧化物在所述涂层中的质量含量不低于3%、且与被涂敷玻璃中的碱金属氧化物的质量含量值之差的绝对值小于10%。
  2. 如权利要求1所述的涂料,其特征在于,所述碱金属氧化物包括氧化锂、氧化钠、氧化钾中的至少一种。
  3. 如权利要求1所述的涂料,其特征在于,所述涂层可与被涂敷玻璃一起被加热成形,且可被所涂覆玻璃所进行离子交换强化的离子穿越。
  4. 如权利要求1所述的涂料,其特征在于,所述涂层中的无机物的质量含量不低于98%;所述无机物包括氧化物和氟化物,所述氧化物在所述无机物中的质量含量大于80%,所述氟化物在所述无机物中的含量小于5%。
  5. 如权利要求1所述的涂料,其特征在于,所述涂层在固化之前先进行预固化,所述预固化方式包括加热或紫外固化。
  6. 如权利要求3所述的涂料,其特征在于,所述离子交换的温度为350-550℃,所述离子交换的参与离子为锂、钠、钾、铷、铯中的至少一种。
  7. 如权利要求1所述的涂料,其特征在于,所述涂层的膨胀系数Ea为60-100×10-7/℃。
  8. 如权利要求7所述的涂料,其特征在于,所述Ea与涂料所涂敷玻璃的膨胀系数Eb之间的关系为:(Ea-Eb)/Eb的绝对值小于40%。
  9. 如权利要求1所述的涂料,其特征在于,所述涂料的粘度为10-100Pa•s。
  10. 如权利要求1所述的涂料,其特征在于,所述涂料的固体物质的质量含量为30-90%;所述涂料的颗粒度低于35μm。
  11. 如权利要求10所述的涂料,其特征在于,所述固体物质中包括二氧化硅和碱金属氧化物;所述二氧化硅在所述固体物质中的质量含量不低于15%。
  12. 如权利要求10所述的涂料,其特征在于,所述固体物质中还包括颜料物质,所述颜料物质在所述涂层中的质量含量为10%-50%。
  13. 如权利要求12所述的涂料,其特征在于,所述颜料物质包括氧化铁、氧化铜、氧化铬、氧化钴、氧化汞、氧化钛、硫酸钡▪硫化铅、氧化镁、氧化锰、碳黑、氧化锗、氧化银、氧化铅、硫酸铅、铬酸铅、亚铁氰化铁、氢氧化铝、碳酸钙、硫酸钡、氧化镉、氧化镍中的至少一种。
  14. 如权利要求10所述的涂料,其特征在于,所述固体物质中还包括氧化铝、氧化钡、氧化镁、氧化铋、氧化锑、氧化锆、氧化硼、氧化铅、氧化锶、氧化磷、氧化锌、氧化钙、氧化锡、镧系氧化物、锕系氧化物的至少一种。
  15. 如权利要求14所述的涂料,其特征在于,所述氧化钙在所述固体物质中的含量低于5%。
  16. 如权利要求1所述的涂料,其特征在于,所述涂料中还包括有机物,所述有机物在所述涂料中的的质量含量为30-50%;所述有机物包括树脂、溶剂、偶联剂、成膜剂、消泡剂、分散剂、流平剂、填充剂、热固化剂、光引发剂中的至少两种。
  17. 如权利要求16所述的涂料,其特征在于,所述树脂在所述有机物中的质量含量为35-60%;所述树脂为酚醛树脂、环氧树脂、丙烯酸树脂、改性环氧树脂、改性环氧丙烯酸树脂中的至少一种。
  18. 如权利要求16所述的涂料,其特征在于,所述溶剂在所述有机物中的质量含量为10-40%;所述溶剂为低级脂肪酸丁酯、甲基吡咯烷酮、尼龙酸酯、松油醇、二丙二醇、苯甲醚、二丙二醇甲醚中至少一种。
  19. 如权利要求16所述的涂料,其特征在于,所述成膜剂在所述有机物中的质量含量为10-15%;所述成膜剂为硅乙氧醇胺、叔丁醇钛中至少一种。
  20. 如权利要求1所述的涂料,其特征在于,所述涂料的完全固化温度为400-900℃、且低于被涂敷玻璃的软化点1-270℃。
PCT/CN2016/075496 2016-03-03 2016-03-03 一种玻璃用涂料 WO2017147854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075496 WO2017147854A1 (zh) 2016-03-03 2016-03-03 一种玻璃用涂料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075496 WO2017147854A1 (zh) 2016-03-03 2016-03-03 一种玻璃用涂料

Publications (1)

Publication Number Publication Date
WO2017147854A1 true WO2017147854A1 (zh) 2017-09-08

Family

ID=59742492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075496 WO2017147854A1 (zh) 2016-03-03 2016-03-03 一种玻璃用涂料

Country Status (1)

Country Link
WO (1) WO2017147854A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159505A (ja) * 2012-02-02 2013-08-19 Asahi Glass Co Ltd 化学強化ガラスの製造方法及び化学強化ガラス
CN103466948A (zh) * 2013-08-15 2013-12-25 河北省沙河玻璃技术研究院 一种无铅环保玻璃釉及其制备方法和制备釉面的方法
CN104203855A (zh) * 2012-04-24 2014-12-10 费罗公司 不含重金属的离子可交换玻璃釉料
CN105143128A (zh) * 2013-02-26 2015-12-09 康宁股份有限公司 与离子交换过程相容的装饰性多孔无机层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159505A (ja) * 2012-02-02 2013-08-19 Asahi Glass Co Ltd 化学強化ガラスの製造方法及び化学強化ガラス
CN104203855A (zh) * 2012-04-24 2014-12-10 费罗公司 不含重金属的离子可交换玻璃釉料
CN105143128A (zh) * 2013-02-26 2015-12-09 康宁股份有限公司 与离子交换过程相容的装饰性多孔无机层
CN103466948A (zh) * 2013-08-15 2013-12-25 河北省沙河玻璃技术研究院 一种无铅环保玻璃釉及其制备方法和制备釉面的方法

Similar Documents

Publication Publication Date Title
CN105776880B (zh) 一种玻璃用涂料
WO2015051598A1 (zh) 一种无机涂料的基体材料及其应用
US20080199708A1 (en) Glaze composition
CN101649175B (zh) 紫外光固化聚氨酯丙烯酸酯胶粘剂及其制备方法
CN108623158A (zh) 一种耐酸搪玻璃瓷釉及其制备方法
CN101580593B (zh) 一种着色溶胶-凝胶组合物的制造方法及其应用
JPH06183784A (ja) 車輌窓ガラス用セラミックカラー組成物及びそれを用いた車輌窓ガラスの製法
EP4230600A1 (en) Soft-light super-wear-resistant diamond glaze, ceramic tile and preparation method there of
CN112832392A (zh) 一种复合型隔离砂及其制备方法
CN101214543A (zh) 一种中间包内衬修补方法
CN110655384A (zh) 一种高稳定性琉璃瓦的制备方法
WO2017147854A1 (zh) 一种玻璃用涂料
CN107857472A (zh) 防护玻璃及防护玻璃的制造方法
CN110563335B (zh) 一种无铅透明熔块釉及其制备方法
CN113683308B (zh) 一种超白陶瓷砖及其生产工艺
CN111349391A (zh) 一种耐高温涂料及其制备方法
WO2011145782A1 (ko) 편면 용융도금강판의 제조방법
CN115074027B (zh) 一种有机-无机复合高温隔热涂料及其制备方法
CN115849753A (zh) 一种无机煅烧彩砂及其制备方法和应用
CN109280466A (zh) 一种低温热障粉末涂料及其制备方法
CN104163571A (zh) 一种铂金通道用涂敷材料
CN104150771A (zh) 一种用于铂金通道的涂敷材料
CN109305754B (zh) 一种磨砂玻璃的制备方法
CN106219982B (zh) 一种微晶玻璃之间用于结合的釉及其使用方法
CN112125639A (zh) 一种高性能陶瓷复合涂料及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892045

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892045

Country of ref document: EP

Kind code of ref document: A1