WO2017147845A1 - 一种内置微型马达式光 - 声一体化自旋转血管内成像探头 - Google Patents

一种内置微型马达式光 - 声一体化自旋转血管内成像探头 Download PDF

Info

Publication number
WO2017147845A1
WO2017147845A1 PCT/CN2016/075480 CN2016075480W WO2017147845A1 WO 2017147845 A1 WO2017147845 A1 WO 2017147845A1 CN 2016075480 W CN2016075480 W CN 2016075480W WO 2017147845 A1 WO2017147845 A1 WO 2017147845A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
acoustic
sound
built
imaging probe
Prior art date
Application number
PCT/CN2016/075480
Other languages
English (en)
French (fr)
Inventor
彭珏
秦志飞
彭小健
唐浒
陈思平
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2016/075480 priority Critical patent/WO2017147845A1/zh
Publication of WO2017147845A1 publication Critical patent/WO2017147845A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to the field of intravascular imaging interventional diagnosis and treatment devices.
  • Cardiovascular disease as the leading cause of high morbidity and mortality in humans, has long threatened human health. 70% of acute coronary syndromes are caused by the rupture of unstable atherosclerotic plaques (also known as vulnerable plaques), and the clinically characterized form of such unstable plaques is called thin Thin-cap fibroatheroma (TCFA). Therefore, early identification and treatment of such vulnerable plaque can effectively prevent sudden death of the patient due to its rupture, and it is also a research hotspot of current cardiovascular imaging.
  • TCFA Thin-cap fibroatheroma
  • Coronary angiography is the main method and gold standard for the diagnosis of coronary artery stenosis and peripheral vascular disease.
  • Percutaneous transluminal coronary angioplasty (PTC) A) and coronary stenting are widely used in this field.
  • this imaging method can only show the two-dimensional contour of the coronary lumen, such as branch lesions, overlapping vessels and the degree of lesions in the mouth, which can cause underestimation; in addition, coronary angiography can not distinguish the histological features of the plaque, for the selection Treatment will be limited. Therefore, clinically, an advanced and comprehensive imaging technique is needed to display the official cavity and wall structure, monitor the lesions of the wall and evaluate the postoperative results.
  • Catheter-based intravascular imaging modalities include intravascular ultrasound imaging (intravascular ultrasound,
  • IVUS intravascular optical coherence tomography
  • OCT intravascular photoacoustic imaging
  • Imaging modalities provide detailed vascular lumen and coronary atherosclerosis Structural information on plaque, as well as quantitative assessment of plaque burden and plaque composition, greatly expands the diagnostic range of coronary atherosclerotic disease.
  • IVUS is the first imaging modality that provides direct visualization of atherosclerotic plaque within the vessel wall, which utilizes a miniature high-frequency ultrasound transducer mounted on the tip of the intravascular catheter to retract the catheter ( During the process of 0.5mm/s), a rotating shaft drives 360° rotation in the lumen of the blood vessel, and simultaneously emits and receives high-frequency ultrasonic signals, and performs cross-sectional tomographic imaging of the vascular lumen and the transmural wall. Due to the lower attenuation of ultrasound in the blood, IVUS can perform cross-sectional tomography of the vessel wall without blocking blood flow. Ultrasound signals can penetrate the entire vessel wall to identify atherosclerotic plaque, effectively detecting the extent of plaque. However, the resolution of IVUS is usually only 50-200 ⁇ m, and it is not effective to measure a thin fiber cap with a thickness of 50-60 ⁇ m.
  • Intravascular OCT utilizes backscattered near-infrared light to perform high-resolution (2-15 ⁇ ) vascular wall tomography imaging. OCT measures the interturn delay of different reflective layers of the vessel wall by means of a flight diurnal method
  • the core is the Michelson low-coherence interferometer, which uses the interference between the reference light and the tissue signal pulse sequence to detect the structure of different depth layers, scans the cross section of the vessel wall through the probe, and obtains the signal. Computer processing, and finally a tomographic image of the vessel wall.
  • Current intravascular OC ⁇ probes like single-element ivus probes, also require mechanical rotation.
  • the mechanical rotary probe uses an external motor and drive shaft to rotate the flat mirror mounted on the top of the catheter. The rotation speed is usually 1800 rpm and can be imaged at 100 frames per second.
  • OCT Compared to the significant resolution advantages of other imaging modalities, OCT is considered to be the only imaging method that has been able to measure microscopic features associated with TCFA to date, and is superior to IVUS in the detection and characterization of components of coronary atherosclerotic plaque.
  • OCT has significant advantages in micron-scale biological tissue detection, the penetration depth in most complex tissues is only 1 ⁇ 2mm. The small penetration depth makes it difficult for OCT to estimate the entire size of the blood vessel and the penetrating plaque. The entire depth. Because of the inability to obtain additional molecular information, OCT does not effectively detect high-risk lesions that cause acute coronary disease. In addition, the blood will severely attenuate the OCT signal, making OCT image acquisition largely dependent on blood cleaning.
  • IVPA is an emerging hybrid imaging modal based on photoacoustic imaging.
  • the front end of the IVPA catheter usually contains an optical fiber for emitting light and an ultrasonic transducer for detecting sound waves.
  • the short-pulse laser is used to illuminate the blood vessel wall tissue, the tissue absorbs electromagnetic waves and undergoes a short thermal expansion, and the resulting broadband ultrasonic signal is finally ultrasonically transduced.
  • the device receives, and in turn obtains a light absorption profile of the tissue components of the blood vessel wall, providing structural and functional information of the vessel wall.
  • Intravascular photoacoustic imaging uses an ultrasonic transducer to receive ultrasonic signals instead of a single optical The detection of scattered photons in the image effectively avoids the strong scattering effect of the tissue on the light.
  • IVPA lacks the ability to detect blood vessel wall structures such as IVUS.
  • Intravascular NIRF is an imaging technique that provides specific molecular information within coronary atherosclerotic plaques, detecting plaque components at the cellular or molecular level. It uses different antibodies and fluorescent dyes or autofluorescence to detect different molecular components, which in turn reveals the pathological state of atherosclerotic plaque.
  • a single intravascular fluorescent probe typically only provides a 2D image of a particular fluorescent molecule and is unable to acquire molecular information for the plaque.
  • bulk molecular imaging needs to be combined with high-resolution microstructure imaging modalities to achieve proper alignment of the fluorescent signal.
  • Intravascular NIRS is an imaging technique for detecting lipid content in atherosclerotic plaques, which utilizes unique spectral identification features to quantify Lipid-core plaque (LPP) and provide plaque Vulnerability information.
  • the imaging principle of NIRS is based on the various chemical bonds present in the tissue. It has different absorption rates for electromagnetic radiation in the near-infrared spectrum (wavelength 800 n m ⁇ 2500 nm), and analyzes the backscattered signals to obtain the characteristic map of the absorptivity. Reveal the possibility of the presence of lipid plaques.
  • intracoronary NIRS imaging is the only imaging modality for FDA-approved in vivo detection of LCP.
  • NIRS imaging lacks vascular lumen, plaque size, and plaque volume information as is the case with NIRF.
  • Dual-Mode Integrated IVUS-OCT Imaging Previous clinical studies have demonstrated the high complementarity of the two imaging modalities of IVUS and OCT in the detection of fibrous, fibrous calcification and neuronal core regions. For example, in the detection of TCFA, the advantages of the combination of the two imaging methods are more obvious. Therefore, the integrated dual-mode IV US-OCT probe utilizes the high-resolution image of OCT and the wide image range of IVUS, which will result in deeper high-resolution cross-sectional tomographic images of the vessel wall, allowing for more accurate evaluation and detection of arteries. Atherosclerotic plaques, which are not achievable for any single imaging modality.
  • IVUS can provide guidance for the region of interest, blood cleaning and vascular occlusion required by OCT can be minimized. Further, set The IVUS-OCT system provides simultaneous OCT and IVUS images, requiring only one disposable IVUS-OCCT catheter at a time, saving labor and costs.
  • Dual-Mode Integration IVUS-IVPA Imaging A catheter that combines an IVUS probe with a laser delivery system to provide dual-mode IVUS-IVPA imaging.
  • IVUS can provide information on the structure of the vascular lumen, plaque, and vessel wall.
  • IVPA can characterize the type of plaque and identify the inflammation of the vessel wall.
  • Dual-Mode Integration IVUS-NIRF Imaging The combination of IVUS and intravascular NIRF provides synchronized vascular morphology and plaque inflammation information for a more comprehensive assessment of plaque vulnerability. Image registration of IVUS and intravascular NIRF helps to show the molecular differences in plaque.
  • Dual-Mode Integrated IVUS-NIRS Imaging Integrating IVUS and NIRS into an imaging catheter, acquiring IVUS images during catheter retraction, and simultaneously performing simultaneous registration of NIRS probing, resulting in simultaneous registration An image of the vascular wall structure and plaque chemistry composition provides a more comprehensive plaque diagnosis.
  • the catheters currently used are driven by an external motor.
  • the probe spindle that is undergoing a rotational scan is largely In the lumen of the catheter, the free rotation of the catheter is hindered, and the imaging pattern is rotated and twisted.
  • the object of the present invention is to solve the diagnostic limitations of the current current single intravascular imaging modality, and to solve the problem of image rotational distortion caused by the catheter passing through a highly narrow or curved vascular segment.
  • a built-in micro-motor light-acoustic integrated spin-rotating intravascular imaging probe is proposed.
  • the technical solution adopted is: a built-in micro-motor type photo-acoustic integrated spin-rotating intravascular imaging probe, characterized in that the probe comprises a stainless steel tube, and is sleeved The light-transmissive sound-transmissive shell on the stainless steel tube is introduced into the transparent acoustic housing by a stainless steel tube.
  • the single-mode optical fiber for OCT, IVPA, NIRF or NIRS optical signal transmission is arranged in the transparent transparent housing and single mode.
  • the electromagnetic motor comprises a motor stator and a motor rotor, and the motor stator is fixed to the inner wall of the transparent transparent housing
  • the motor stator is movably coupled to the motor rotor, and the motor rotor is disposed at one end of the Green lens with a reflecting slope, and the reflecting slope is provided with a high frequency ultrasonic signal for emitting the light signal emitted by the Green lens and the ring ultrasonic transducer to the blood vessel wall.
  • High acoustic impedance mirror layer is provided.
  • the motor rotor reflecting slope has an angle of 45 degrees with its central axis.
  • the motor stator includes a set of two-phase winding coils having an angle of 90 degrees.
  • the Green lens is arranged coaxially with the annular ultrasonic transducer.
  • the light transmissive sound-permeable casing has a diameter of 1.5 to 2 mm.
  • the annular ultrasonic transducer includes an acoustic lens, a matching layer, a ceramic piezoelectric sheet, and a backing disposed in order from front to back.
  • the beneficial effects of the present invention are:
  • the present invention combines an acoustic component suitable for acoustic signal transmission of IVUS with an optical component suitable for optical signal transmission of OCT, IVPA, NIRF or NIRS to be integrated into a transparent sound transmission
  • a light-acoustic integrated imaging probe is formed, and the IV US image is acquired during the retraction of the imaging probe, and the optical detection of the corresponding synchronous registration is performed simultaneously, and the synchronously registered blood vessel wall structure and constituent light-acoustic are obtained.
  • Integrated image for more comprehensive and accurate intravascular imaging ie bimodal integrated IVUS-0 CT imaging, dual modal integrated IVUS-IVPA imaging, dual modal integrated IVUS-NIRF imaging or dual modal integrated IVUS-NIRS imaging .
  • the thin-neck micro-electromagnetic motor is built in the front end of the light-transmitting sound-permeable casing, and the imaging probe diameter is 1.5 ⁇ 2 mm, and the electromagnetic lens is used to drive the motor lens to reflect the oblique surface to emit the Green lens.
  • the signal and the high-frequency ultrasonic signal emitted by the circular ultrasonic transducer are reflected to the high-acoustic impedance mirror layer of the blood vessel wall for 360-degree rotation, and the 360-degree bimodal stable scanning imaging of the blood vessel wall can be realized;
  • the motor is connected to the built-in flat mirror through the wire connection, which can not only achieve precise control of the motor, but also avoid the disadvantages of the rotation of the conventional external motor connected to the guide wire to drive the probe.
  • the present invention integrates a photo-acoustic imaging modal probe into a single imaging probe, which can utilize the complementary advantages of different imaging modalities to provide more comprehensive and detailed coronary visualization, and more comprehensive and accurate Diagnosis of cardiovascular disease.
  • FIG. 1 is a schematic view showing the structure of the present invention
  • FIG. 2 is a schematic perspective view showing the structure of an electromagnetic motor according to the present invention.
  • FIG. 3 is a schematic cross-sectional structural view of an electromagnetic motor according to the present invention.
  • FIG. 4 is a block diagram showing the structure of an optical-acoustic integrated intravascular imaging system incorporating the present invention.
  • the present invention comprises a stainless steel tube 1 which is sleeved on a stainless steel tube 1 and has a circular tubular transparent light-transmitting outer casing 2 having a diameter of 1.5 to 2 mm, which is introduced through the stainless steel tube 1.
  • the single-mode optical fiber 3 for optical signal transmission of OCT.IVPA, NIRF or NIRS in the optically transparent housing 2 is disposed in the transparent lens 2 and the Green lens 4 corresponding to the single-mode optical fiber 3, and is placed on the single-mode optical fiber.
  • a Teflon tube 5 fixedly connected to the stainless steel tube 1 and the Green lens 4
  • an annular ultrasonic transducer 6 placed on the Green lens 4
  • an electromagnetic motor 7 disposed in the transparent acoustic housing 2.
  • the annular ultrasonic transducer 6 is also an acoustic component integrally packaged into a light transmissive sound-permeable casing 2 of the present invention, which comprises an acoustic lens 61, a matching layer 62, and a pressure disposed in order from front to back.
  • the single mode fiber 3 and the Green lens 4 also constitute the optical component of the integrated package of the present invention into a light transmissive sound permeable casing.
  • the Green lens 4 is taken out through the central hole of the acoustic lens 61 and arranged coaxially with the annular ultrasonic transducer 6, that is, the optical component and the acoustic component of the present invention are arranged coaxially.
  • the electromagnetic motor 7 is a thin-necked electromagnetic motor including a motor stator 71 and a motor rotor 72.
  • the motor stator 71 is fixed to the inner wall of the light-transmitting sound-transmitting casing 2, and the motor stator 71 is slidably coupled to the motor rotor 72.
  • the motor rotor 72 is a cylindrical magnet having a reflective slope 721 at one end of the Green lens 4, a high acoustic impedance mirror layer on the reflective slope 721, and a high acoustic impedance mirror layer for emitting the Green lens and the annular ultrasonic transducer
  • the high frequency ultrasonic signal is reflected to the blood vessel wall, and the angle between the motor rotor reflecting slope 721 and its central axis is preferably 45 degrees, and the sound beam is focused by the acoustic lens 61 and the beam is focused by the Green lens 4 and finally reflected by the high impedance mirror on the inclined surface 721. After the layer is reflected, it is perpendicularly incident on the blood vessel wall.
  • the motor stator 71 includes a set of two-phase winding coils 711, 712 having an angle of 90 degrees; and the two-phase winding coils 711, 712 are wound by a very fine wire in a certain arrangement.
  • the two-phase winding coils 711 and 712 When a two-phase sinusoidal AC signal having a phase difference of 90° is supplied to the motor stator 71, the two-phase winding coils 711 and 712 generate a rotating magnetic field under the action of a sinusoidal alternating current signal, and the motor rotor is subjected to an alternating current signal under the action of a rotating magnetic field.
  • the frequency is synchronized. If technical and process conditions permit, the magnet volume will be smaller and a miniature three-phase winding coil will be realized, which is excited by a three-phase sinusoidal AC signal to make the motor speed more stable.
  • the present invention constructs a closed-loop control system, introducing a miniature rotational speed sensor into the front end of the micro-rotor, measuring the rotational position and rotational speed of the rotor, and combining the closed-loop control system to achieve precise control of the rotational speed of the rotor, and The imaging system is synchronized.
  • a photo-acoustic integrated intravascular imaging system incorporating the imaging probe of the present invention integrates an optical imaging system and an ultrasound imaging system.
  • Different types of emission sources produce corresponding incident light for the imaging probe of the present invention
  • the optical signal detector receives the optical signal reflected by the imaging probe of the present invention.
  • the pulse transceiver excites the ring ultrasonic transducer in the imaging probe of the present invention to generate a high frequency ultrasonic signal and receive a corresponding ultrasonic echo signal.
  • the optical signal and the ultrasonic echo signal are finally collected by a data acquisition card.
  • the emission light source generates a trigger signal to drive the signal generator 1, and the signal generator 1 provides a trigger signal to the data acquisition card and the pulse transceiver to realize synchronous imaging of the ultrasonic signal and the optical signal.
  • the signal generator 2 drives the motor to rotate to perform a 360-degree rotational scan of the vessel wall.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种内置微型马达式光-声一体化自旋转血管内成像探头,包括有不锈钢管(1),套接在不锈钢管(1)上的透光透声外壳(2),经不锈钢管(1)引入透光透声外壳(2)内的单模光纤(3),设于透光透声外壳(2)内与单模光纤(3)对应的格林透镜(4),套于格林透镜(4)上的环形超声换能器(6),设于透光透声外壳(2)内的电磁马达(7);马达转子(72)位于格林透镜(4)的一端设有反射斜面(721),反射斜面(721)上设有高声阻抗镜面层。回撤的过程中获取IVUS图像,同时进行相应同步配准的光学探测,获得同步配准的血管壁结构和组成成分光-声一体化图像,实现更全面准确地血管内成像。

Description

说明书 发明名称:一种内置微型马达式光-声一体化自旋转血管内成像探头 技术领域
[0001] 本发明涉及血管内成像介入诊断及治疗装置技术领域。
背景技术
[0002] 心血管疾病作为人类高发病率和死亡率的首要原因, 长期以来一直威胁着人类 的健康。 70%的急性冠状动脉综合征是由于不稳定粥样硬化斑块 (又称作易损斑 块) 的破裂而造成的, 而此种不稳定斑块在临床学上的表征型被称作薄帽的纤 维性斑块 (Thin-cap fibroatheroma, TCFA) 。 因此早期识别并及吋治疗此种易损 斑块可以有效阻止由于其破裂而造成的病人猝死, 同吋也是当前心血管成像的 研究热点。
[0003] 过去的几十年中, 人们对心血管疾病的研究取得了很大的进步, 各种成像技术 也在不断发展。 冠状动脉血管造影术 (Coronary angiography, CAG) —直是诊断 冠状动脉狭窄以及周围血管疾病的主要方法和金标准, CAG弓 I导下经皮冠状动 脉腔内血管成形术 (Percutaneous transluminal coronary angioplasty, PTC A) 和冠 状动脉支架植入术在该领域应用广泛。 但此成像方式仅能显示冠状动脉管腔的 二维轮廓, 如分支病变、 重叠血管及幵口病变程度等分析, 会造成低估; 此外 , 冠状动脉造影不能分辨斑块的组织学特征, 对于选择治疗会受到限制。 所以 , 临床上都特别需要一种先进全面的成像技术可以同吋显示官腔及管壁结构, 监控管壁的病变情况以及评价术后效果。 基于导管的血管内成像模态包括血管 内超声成像 (intravascular ultrasound,
IVUS) 、 血管内光学相干断层成像 (Optical coherence tomography, OCT) 、 血 管内光声成像 (intravascular photoacoustic,
IVPA) 、 血管内近红外荧光成像 (Near-infrared fluorescence, NIRF) 、 血管内近 红外光谱成像 (Near-infrared spectroscopy, NIRS) 等, 这些成像模态能够提供详 细的血管腔和冠状动脉粥样硬化斑块的结构信息, 以及斑块负荷和斑块组成成 分的量化评估, 极大地扩展了冠状动脉粥样硬化疾病的诊断范围。 [0004] IVUS是提供血管壁内的动脉粥样硬化斑块直接可视化的第一种成像模态, 它 利用了安装在血管腔内导管顶端的微型高频超声换能器, 在导管回撤 (0.5mm/s ) 的过程中, 由一个转动轴带动在血管腔内做 360°旋转, 同吋发射并接收高频超 声信号, 进行实吋的血管腔和经管壁的横切面断层成像。 由于超声在血液中较 低的衰减性, IVUS可以在未阻断血流的情况下进行血管壁的横切面断层成像。 超声信号可以穿透整个血管壁对动脉粥样硬化斑块进行识别, 有效探测斑块的 范围大小。 但通常 IVUS的分辨率仅为 50-200μηι, 并不能有效测量厚度为 50-60μ m的薄纤维帽。
[0005] 血管内 OCT利用反向散射的近红外光进行实吋的高分辨率 (2-15μηι) 血管壁断 层扫描成像。 OCT通过飞行吋间法来对血管壁不同反射层的吋间延迟进行测量
, 其核心是迈克尔逊低相干干涉仪, 利用参考光和组织的信号光脉冲序列间的 干涉现象, 来探测不同深度层组织结构, 通过探头在血管壁横断面实现扫描, 并将得到的信号经计算机处理, 最后得到血管壁的断层图像。 目前的血管内 OC τ探头与单阵元 ivus探头一样, 也需要机械旋转。 机械旋转式探头利用外置的马 达和驱动轴旋转安装于导管顶端的平面反射镜, 旋转速度通常为 1800转 /分, 可 以每秒 100帧的速度成像。 相对于其他成像模态显著的分辨率优势, OCT被认为 是至今能够测量与 TCFA有关微观特征的唯一成像方法, 在冠状动脉粥样硬化斑 块组成成分的探测和表征方面优于 IVUS。 尽管 OCT在微米级的生物组织探测方 面具有显著优势, 但在大多数复杂组织中的穿透深度仅为 l~2mm, 较小的穿透 深度使得 OCT难以估计血管的整个尺寸和穿透斑块整个深度。 同吋由于无法获 取额外的分子信息, OCT并不能有效探测引起急性冠状动脉疾病发生的高风险 性病变。 另外血液会严重衰减 OCT信号, 使得 OCT的图像获取在很大程度上受 制于血液的清洗。
[0006] IVPA是一项新兴的基于光声成像的混合成像模态。 IVPA导管前端通常包含一 个用于发射光的光纤和探测声波的超声换能器, 首先利用短脉冲激光照射血管 壁组织, 组织吸收电磁波并发生短暂的热膨胀, 产生的宽带超声信号最后被超 声换能器接收, 进而获得血管壁组织成分的光吸收分布图, 提供血管壁的结构 和功能信息。 血管内光声成像采用超声换能器接收超声信号来代替单一光学成 像中对散射光子的检测, 有效避免了组织对光的强散射性影响。 但是, IVPA缺 少如 IVUS对血管壁结构探测的能力。
[0007] 血管内 NIRF是一种能够提供冠状动脉粥样硬化斑块内部特定分子信息的成像 技术, 在细胞或分子水平对斑块的组成成分进行探测。 它使用不同的抗体和荧 光染料或自体荧光来探测不同的分子组成成分, 进而显示动脉粥样硬化斑块的 病理状况。 但是, 由于缺少血管壁的结构信息, 单一的血管内荧光探头通常只 能提供特定荧光分子的 2D图像, 无法获取斑块的分子信息。 另外, 在体分子成 像需要与高分辨率的显微结构成像模态结合, 来实现对荧光信号的正确弓 I导。
[0008] 血管内 NIRS是一种探测动脉粥样硬化斑块脂质含量的成像技术, 它利用特有 的光谱鉴别特征来量化估计脂质核斑块 (Lipid-core plaque, LCP) , 提供斑块的 易损性信息。 NIRS的成像原理基于组织中存在的各种不同的化学键, 在近红外 光谱 (波长 800nm~2500nm) 中对电磁辐射有着不同的吸收率, 分析反向散射信 号进而获得吸收率的特征图, 揭示脂质核斑块存在的可能性。 目前, 冠状动脉 内 NIRS成像是唯一取得 FDA认证的在体检测 LCP的成像模态。 但是, NIRS成像 同 NIRF—样缺少血管腔、 斑块大小和斑块体积信息。
[0009] 尽管这些成像模态提供了丰富的信息, 但是由于内在的成像局限性, 并不能获 得冠状动脉的全面评估。 为了解决这个弊端, 不同血管内成像技术幵始结合形 成多模态成像。 这些成像模态的融合提供了更全面详细的冠状动脉可视化, 更 加全面准确地进行心血管疾病的诊断。 因此, 利用基于声学的 IVUS成像和其他 光学成像模态相结合的光 -声一体化成像来提供更全面的心血管疾病诊断逐渐成 为未来成像技术的发展趋势。
[0010] 双模态集成 IVUS-OCT成像: 前期的临床研究已经证实了 IVUS和 OCT两个成像 模态在纤维状、 纤维钙化和神经质的核心区域探测方面的高互补性。 例如在探 测 TCFA方面, 两个成像方法结合的优势显得更加明显。 因此, 集成的双模态 IV US-OCT探头利用 OCT的高分辨率图像和 IVUS的宽图像范围, 将会获得更深深度 的血管壁高分辨率横切面断层图像, 进而更加精确地评价和探测动脉粥样硬化 斑块, 这些对于任何单一的成像模态是无法实现的。 由于 IVUS可以提供感兴趣 区域的引导, OCT要求的血液清洗和血管闭塞可以降到最低。 更进一步的, 集 成的 IVUS-OCT系统能够同吋提供 OCT和 IVUS图像, 一次只需一个一次性 IVUS- OCT导管即可, 大大节约了劳动力和成本。
[0011] 双模态集成 IVUS-IVPA成像: 一个结合了 IVUS探头和一个激光传递系统的导 管, 能够提供双模 IVUS-IVPA成像。 IVUS可以提供血管腔、 斑块和血管壁结构 信息, 同吋 IVPA可表征斑块类型, 辨别血管壁炎症状况。
[0012] 双模态集成 IVUS-NIRF成像: IVUS和血管内 NIRF的结合能够提供同步的血管 形态学和斑块炎症信息, 更全面地评估斑块的易损性。 IVUS和血管内 NIRF的图 像配准有助于显示斑块的分子差异性。
[0013] 双模态集成 IVUS-NIRS成像: 将 IVUS和 NIRS集成到一个成像导管中, 在导管 回撤的过程中获取 IVUS图像, 同吋进行同步配准的 NIRS探测, 最终获得同步配 准的血管壁结构和斑块化学组成成分图像, 提供更全面的斑块诊断。
[0014] 值得注意的是, 目前所用的导管均采用外置马达进行驱动旋转, 当导管通过一 个高度狭窄病变或弯曲的血管段吋, 正在进行旋转扫査的探头主轴在很大程度 上会与导管内腔摩擦, 导管的自由旋转会受到阻碍, 成像图形会发生旋转扭曲
技术问题
[0015] 综上所述, 本发明的目的在于解决现有当前单一血管内成像模态的诊断局限性 , 以及解决导管在通过高度狭窄或弯曲血管段吋, 普遍存在的图像旋转扭曲变 形问题, 而提出一种内置微型马达式光-声一体化自旋转血管内成像探头。
问题的解决方案
技术解决方案
[0016] 为解决本发明所提出的技术问题, 采用的技术方案为: 一种内置微型马达式光 -声一体化自旋转血管内成像探头, 其特征在于所述探头包括有不锈钢管, 套接 在不锈钢管上的透光透声外壳, 经不锈钢管引入透光透声外壳内的适用于 OCT 、 IVPA. NIRF或 NIRS光信号传输的单模光纤, 设于透光透声外壳内与单模光纤 对应的格林透镜, 套于单模光纤上固定连接不锈钢管与格林透镜的聚四氟乙烯 管, 套于格林透镜上的环形超声换能器, 设于透光透声外壳内的电磁马达; 所 述的电磁马达包括有马达定子和马达转子, 马达定子与透光透声外壳内壁固定 , 马达定子与马达转子活动套接, 马达转子位于格林透镜的一端设有反射斜面 , 反射斜面上设有用于将格林透镜射出光信号和环形超声换能器射出的高频超 声信号反射到血管壁的高声阻抗镜面层。
[0017] 所述的马达转子反射斜面与其中心轴夹角为 45度。
[0018] 所述的马达定子包括有一组夹角为 90度的双相绕组线圈。
[0019] 所述的格林透镜与环形超声换能器同轴排列布局。
[0020] 所述的透光透声外壳直径在 1.5 ~ 2 mm。
[0021] 所述的环形超声换能器包括有从前至后依次设置的声透镜、 匹配层、 陶瓷压电 片和背衬。
发明的有益效果
有益效果
[0022] 本发明的有益效果为: 本发明将适用于 IVUS的声信号传输的声学部件和适用 于 OCT、 IVPA、 NIRF或 NIRS的光信号传输的光学部件相结合集成封装到一个 透光透声外壳内, 形成光-声一体化成像探头, 在成像探头回撤的过程中获取 IV US图像, 同吋进行相应同步配准的光学探测, 获得同步配准的血管壁结构和组 成成分光-声一体化图像, 实现更全面准确地血管内成像, 即双模态集成 IVUS-0 CT成像、 双模态集成 IVUS-IVPA成像、 双模态集成 IVUS-NIRF成像或双模态集 成 IVUS-NIRS成像。
[0023] 另外, 将细颈微型电磁马达内置于透光透声外壳内的前端, 可实现成像探头直 径在 1.5~2 mm, 通过电磁马达驱动马达转子反射斜面上的用于将格林透镜射出 光信号和环形超声换能器射出的高频超声信号反射到血管壁的高声阻抗镜面层 进行 360度旋转, 可实现对血管壁的侧视 360度双模态稳定扫査成像; 从而无需 使用外置的马达经过导丝连接来驱动内置的平面反射镜旋转, 既能够完成对马 达的精确控制, 又可以避免传统外置马达连接导丝驱动探头转动带来的弊端。
[0024] 本发明将光 -声两种成像模态的探头集成封装到一个单独的成像探头中, 能够 利用不同成像模态的互补优势, 提供更全面详细的冠状动脉可视化, 更加全面 准确地进行心血管疾病的诊断。
对附图的简要说明 附图说明
[0025] 图 1为本发明的结构原理示意图;
[0026] 图 2为本发明的电磁马达的立体结构示意图;
[0027] 图 3为本发明的电磁马达的横截面结构示意图;
[0028] 图 4为包含有本发明的光-声一体化血管内成像系统结构框图。
本发明的实施方式
[0029] 以下结合附图和本发明优选的具体实施例对本发明的结构作进一步地说明。
[0030] 参照图 1至图 3中所示, 本发明包括有不锈钢管 1, 套接在不锈钢管 1上直径在 1.5 ~ 2 mm圆管状的透光透声外壳 2, 经不锈钢管 1引入透光透声外壳 2内的适用于 OCT. IVPA、 NIRF或 NIRS光信号传输的单模光纤 3, 设于透光透声外壳 2内与单 模光纤 3对应的格林透镜 4, 套于单模光纤 3上固定连接不锈钢管 1与格林透镜 4的 聚四氟乙烯管 5, 套于格林透镜 4上的环形超声换能器 6, 设于透光透声外壳 2内 的电磁马达 7。
[0031] 所述的环形超声换能器 6也即作为本发明集成封装到一个透光透声外壳 2内的声 学部件, 其包括有从前至后依次设置的声透镜 61、 匹配层 62、 压电片 63和背衬 6 4。 单模光纤 3和格林透镜 4也即构成本发明集成封装到一个透光透声外壳内的光 学部件。 格林透镜 4经声透镜 61中心孔引出, 与环形超声换能器 6同轴排列布局 , 也即是本发明的光学部件与声学部件同轴排列布局。
[0032] 电磁马达 7为细颈电磁马达, 包括有马达定子 71和马达转子 72, 马达定子 71与 透光透声外壳 2内壁固定, 马达定子 71与马达转子 72活动套接; 马达转子 72为一 圆柱型磁体, 其位于格林透镜 4的一端设有反射斜面 721, 反射斜面 721上镀有高 声阻抗镜面层; 高声阻抗镜面层用于将格林透镜射出光信号和环形超声换能器 射出的高频超声信号反射到血管壁, 马达转子反射斜面 721与其中心轴夹角优选 为 45度, 经声透镜 61聚焦声束和经格林透镜 4聚焦光束最后被反射斜面 721上的 高声阻抗镜面层反射后, 垂直入射到血管壁, 在马达转子 72进行 360度旋转过程 中, 实现对血管壁的 360度旋转扫描, 获取 IVUS图像的同吋进行相应同步配准的 光学探测, 获得同步配准的血管壁结构和组成成分光-声一体化图像, 实现更全 面准确地血管内成像。 如图 3所示, 所述的马达定子 71包括有一组夹角为 90度的 双相绕组线圈 711、 712; 双相绕组线圈 711、 712由极细的导线按一定排列绕成 。 当向马达定子 71提供一个相位差为 90°的双相正弦交流信号, 双相绕组线圈 711 、 712在正弦交流信号的作用下产生旋转磁场, 马达转子在旋转磁场的作用下随 着交流信号的频率进行同步转动。 如果技术及工艺条件允许, 磁体体积将做到 更小, 并实现微型的三相绕组线圈, 由三相正弦交流信号激励使马达转速更加 稳定。
[0033] 本发明搭建了一个闭环控制系统, 引入微型的转速传感器植入微型转子的前端 部, 实吋测量转子的转动位置和转速, 结合闭环控制系统, 实现对转子转速的 精确控制, 并与成像系统实现同步。
[0034] 参照图 4中所示, 包含有本发明成像探头的光 -声一体化血管内成像系统集成了 光学成像系统和超声成像系统。 不同类型的发射光源为本发明成像探头产生相 应的入射光, 并由光信号探测器接受本发明成像探头反射回的光信号。 脉冲收 发机激励本发明成像探头内的环形超声换能器产生高频超声信号, 并接受相应 的超声回波信号。 光信号和超声回波信号最后由一个数据采集卡采集。 发射光 源产生触发信号驱动信号发生器 1, 信号发生器 1提供触发信号给数据采集卡和 脉冲收发机, 实现超声信号和光信号的同步成像。 信号发生器 2驱动马达进行转 动, 进行血管壁的 360度旋转扫描。

Claims

权利要求书
一种内置微型马达式光-声一体化自旋转血管内成像探头, 其特征在 于所述探头包括有不锈钢管, 套接在不锈钢管上的透光透声外壳, 经 不锈钢管引入透光透声外壳内的适用于 OCT、 IVPA、 NIRF或 NIRS 光信号传输的单模光纤, 设于透光透声外壳内与单模光纤对应的格林 透镜, 套于单模光纤上固定连接不锈钢管与格林透镜的聚四氟乙烯管
, 套于格林透镜上的环形超声换能器, 设于透光透声外壳内的电磁马 达; 所述的电磁马达包括有马达定子和马达转子, 马达定子与透光透 声外壳内壁固定, 马达定子与马达转子活动套接, 马达转子位于格林 透镜的一端设有反射斜面, 反射斜面上设有用于将格林透镜射出光信 号和环形超声换能器射出的高频超声信号反射到血管壁的高声阻抗镜 面层。
根据权利要求 1所述的一种内置微型马达式光-声一体化自旋转血管内 成像探头, 其特征在于: 所述的马达转子反射斜面与其中心轴夹角为 45度。
根据权利要求 1所述的一种内置微型马达式光-声一体化自旋转血管内 成像探头, 其特征在于: 所述的马达定子包括有一组夹角为 90度的双 相绕组线圈。
根据权利要求 1所述的一种内置微型马达式光-声一体化自旋转血管内 成像探头, 其特征在于: 所述的格林透镜与环形超声换能器同轴排列 布局。
根据权利要求 1所述的一种内置微型马达式光-声一体化自旋转血管内 成像探头, 其特征在于: 所述的透光透声外壳直径在 1.5 ~ 2 mm。 根据权利要求 1所述的一种内置微型马达式光-声一体化自旋转血管内 成像探头, 其特征在于: 所述的环形超声换能器包括有从前至后依次 设置的声透镜、 匹配层、 压电片和背衬。
PCT/CN2016/075480 2016-03-03 2016-03-03 一种内置微型马达式光 - 声一体化自旋转血管内成像探头 WO2017147845A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075480 WO2017147845A1 (zh) 2016-03-03 2016-03-03 一种内置微型马达式光 - 声一体化自旋转血管内成像探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075480 WO2017147845A1 (zh) 2016-03-03 2016-03-03 一种内置微型马达式光 - 声一体化自旋转血管内成像探头

Publications (1)

Publication Number Publication Date
WO2017147845A1 true WO2017147845A1 (zh) 2017-09-08

Family

ID=59743368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075480 WO2017147845A1 (zh) 2016-03-03 2016-03-03 一种内置微型马达式光 - 声一体化自旋转血管内成像探头

Country Status (1)

Country Link
WO (1) WO2017147845A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1593351A (zh) * 2004-06-28 2005-03-16 天津大学 医用经内窥镜微型超声-oct探头
WO2010080991A2 (en) * 2009-01-09 2010-07-15 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
CN103637819A (zh) * 2013-12-26 2014-03-19 广州佰奥廷电子科技有限公司 声、光共旋转扫描的直肠光声内窥镜装置及其成像方法
CN203776938U (zh) * 2014-04-08 2014-08-20 马晓鹏 一种光声成像内窥镜装置
CN104977298A (zh) * 2015-06-13 2015-10-14 李洋 一种旋转式光学和声学合并成像探头和导管
CN105286800A (zh) * 2015-11-25 2016-02-03 深圳大学 一种机械旋转式血管内oct成像探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1593351A (zh) * 2004-06-28 2005-03-16 天津大学 医用经内窥镜微型超声-oct探头
WO2010080991A2 (en) * 2009-01-09 2010-07-15 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
CN103637819A (zh) * 2013-12-26 2014-03-19 广州佰奥廷电子科技有限公司 声、光共旋转扫描的直肠光声内窥镜装置及其成像方法
CN203776938U (zh) * 2014-04-08 2014-08-20 马晓鹏 一种光声成像内窥镜装置
CN104977298A (zh) * 2015-06-13 2015-10-14 李洋 一种旋转式光学和声学合并成像探头和导管
CN105286800A (zh) * 2015-11-25 2016-02-03 深圳大学 一种机械旋转式血管内oct成像探头

Similar Documents

Publication Publication Date Title
Jansen et al. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification
Zhou et al. Photoacoustic imaging with fiber optic technology: A review
US8052605B2 (en) Multimodal catheter system and method for intravascular analysis
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US10231706B2 (en) Integrated multimodality intravascular imaging system that combines optical coherence tomography, ultrasound imaging, and acoustic radiation force optical coherence elastography
Guo et al. Photoacoustic endoscopy: A progress review
US9528966B2 (en) Reflection-mode photoacoustic tomography using a flexibly-supported cantilever beam
Wei et al. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging
JP4619803B2 (ja) 蛍光断層画像取得装置
Wang et al. Intravascular photoacoustic imaging
US20160296208A1 (en) Intravascular Photoacoustic and Ultrasound Echo Imaging
JP6335909B2 (ja) ハイブリッドカテーテルシステム
US20200196873A1 (en) Device for endoscopic optoacoustic imaging, in particular for endoscopic optoacoustic imaging of cavities and hollow objects
US20090024040A1 (en) Wall-Contacting Intravascular Ultrasound Probe Catheters
JP2006204430A (ja) 断層画像取得装置
Cao et al. Highly sensitive lipid detection and localization in atherosclerotic plaque with a dual‐frequency intravascular photoacoustic/ultrasound catheter
Rosenthal et al. Intravascular multispectral optoacoustic tomography of atherosclerosis: prospects and challenges
He et al. Optoacoustic endoscopy of the gastrointestinal tract
Sethuraman et al. Development of a combined intravascular ultrasound and photoacoustic imaging system
Kong et al. Integrated US-OCT-NIRF tri-modality endoscopic imaging system for pancreaticobiliary duct imaging
WO2017147845A1 (zh) 一种内置微型马达式光 - 声一体化自旋转血管内成像探头
Yang et al. Endoscopic photoacoustic microscopy
Yang et al. Volumetric photoacoustic endoscopy of internal organs: a phantom and in situ study
Wang et al. Intravascular photoacoustic and optical coherence tomography imaging dual-mode system for detecting spontaneous coronary artery dissection: A feasibility study.
US20210282642A1 (en) Scanning mechanism for multimodality intravascular and endoscopic imaging catheters

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892036

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.12.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16892036

Country of ref document: EP

Kind code of ref document: A1