WO2017146381A1 - Rf signal providing apparatus for tripolar electron gun - Google Patents

Rf signal providing apparatus for tripolar electron gun Download PDF

Info

Publication number
WO2017146381A1
WO2017146381A1 PCT/KR2017/000800 KR2017000800W WO2017146381A1 WO 2017146381 A1 WO2017146381 A1 WO 2017146381A1 KR 2017000800 W KR2017000800 W KR 2017000800W WO 2017146381 A1 WO2017146381 A1 WO 2017146381A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electron gun
pulse signal
frequency
pulse
Prior art date
Application number
PCT/KR2017/000800
Other languages
French (fr)
Korean (ko)
Inventor
채종서
문상철
이승현
전우정
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2017146381A1 publication Critical patent/WO2017146381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present invention relates to an RF signal providing apparatus for a three-pole electron gun, and more particularly, by applying an RF signal to a grid of a thermo-electron generating electron gun used in medical or industrial use, a three-pole electron gun RF for generating beam bunching in the electron gun. It relates to a signal providing device.
  • the application number 10-2015-0011576 (name of the invention: electron gun power supply device of the medical electron accelerator) and 10-2015-0009176 (name of the invention: electron gun power supply device)
  • a three-pole electron gun By applying a DC pulse signal to the grid, 10-20 kV of low energy electrons were emitted.
  • the electron beam is transmitted to the accelerator tube after generating the electrons, and in order to accelerate the low energy electron beam, an additional component such as a bunching cell must be included in the accelerator tube, which causes a problem in that the structure of the electron accelerator becomes complicated.
  • the present invention was created in order to solve the problems described above, and is output from the electron gun by supplying the signal supplied to the grid of the electron gun to the grid by loading the RF signal with the DC pulse signal instead of the existing DC pulse signal. It is an object to provide an invention that can produce a beam in the form of a bunching beam.
  • the object of the present invention described above includes a pulse signal generator for generating and supplying a pulse signal, and a first RF signal generator for generating and supplying a first RF signal, wherein the first RF signal is included in the pulse signal and is an electron gun. It can be achieved by providing an RF signal providing apparatus for a three-pole electron gun, characterized in that the beam bunching is formed by being supplied to a grid of.
  • the pulse signal is a DC pulse signal
  • the first RF signal is periodically loaded in either the high or low state of the DC pulse signal.
  • the frequency of the first RF signal is higher than that of the DC pulse signal.
  • the apparatus further includes an accelerator tube that receives the electron beam generated by the electron gun and accelerates the electrons, and a second RF signal generator that generates and supplies a second RF signal to the accelerator tube.
  • the efficiency of the electron beam passing through the accelerator tube can be increased.
  • the apparatus may further include a trigger unit that synchronizes the DC pulse signal and the first RF signal or synchronizes the first and second RF signals.
  • the RF signal generated by the second RF signal generator is supplied to the accelerator tube through the waveguide.
  • the configuration of the accelerator tube can be simplified, and the efficiency of the beam can be increased as compared with the conventional one.
  • FIG. 1 is a block diagram showing the overall configuration of the RF signal providing apparatus for a three-pole electron gun according to an embodiment of the present invention
  • FIG. 2 is a view showing a DC pulse signal f1 according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an RF signal f2 loaded together with a DC pulse signal f1 according to an embodiment of the present invention.
  • FIG. 4 is a view showing the shape of the beam output from the electron gun when the DC pulse signal is supplied to the grid of the electron gun according to an embodiment of the present invention
  • FIG. 5 is a view showing the shape of the bunching beam output from the electron gun when the DC pulse signal including the RF signal to the grid of the electron gun according to an embodiment of the present invention
  • FIG. 6 is a view showing a configuration for simultaneously controlling the frequency-output power of the magnetron for an electronic accelerator according to another embodiment of the present invention
  • FIG. 7 is a diagram illustrating a sequential procedure for controlling the frequency-output power of the magnetron for the electronic accelerator according to another embodiment of the present invention.
  • the RF signal providing apparatus for a three-pole electron gun can omit a bunching cell included in an accelerator tube by sending an RF signal to a conventional pulse signal, thereby simplifying the configuration of the electron accelerator. You can.
  • the configuration and function of the conventional pulse signal providing apparatus including an electron gun is the applicant's application No. 10-2015-0011576 (invention name: electron gun power supply device of the medical electron accelerator) and the 10-2015- The contents described in 0009176 (Invention: Electron Gun Power Supply) may be referred to without departing from the spirit of the present invention.
  • the electron gun 400 is a heat electron generating electron gun widely used in medical and industrial applications, and a detailed description thereof is given in the aforementioned two patent applications filed by the present applicant. The description will be replaced. However, the description will be made based on the three-pole electron gun, and the electron gun 400 includes the cathode 410 and the grid 420.
  • the pulse signal generator 100 generates a pulse signal as shown in FIG. 2 and supplies a pulse signal to the cathode 410 and the grid 420.
  • the pulse signal generator 100 may be divided into a first pulse signal generator and a second pulse signal generator, respectively, and may supply pulse signals to the cathode 410 and the grid 420, respectively.
  • the pulse signal f1 supplied to the cathode 410 and the grid 420 has a voltage magnitude of approximately ⁇ 25 kV to 0 [v] to accelerate the electron gun, and the period of the pulse signal (or Frequency) is 10 to 300 Hz, and a pulse width at a high signal may be 0.00001 to 10 us.
  • the shape of the above-described pulse signal can be variously changed as necessary.
  • the configuration and function of the pulse signal generator 100 may be referred to by the two patent applications previously filed by the present applicant.
  • the pulse signal f1 of FIG. 2 shows a signal having a voltage magnitude of ⁇ 25 kV and having a frequency of 100 Hz.
  • the first RF signal generator 200 generates an RF signal to be supplied to the grid 420.
  • the generated RF signal is loaded on the pulse signal generated by the pulse signal generator 100 and supplied to the grid 420.
  • the RF signal is supplied to the cathode of the electron gun, but in the present invention, the RF signal is supplied to the grid and the frequency of the RF signal is also greatly different.
  • the RF signal generated by the first RF signal generator 200 is loaded with the RF signal f2 on the pulse signal f1 generated by the pulse signal generator 100. To feed.
  • the generated RF signal f2 is a signal that is carried out when the pulse signal f1 is a high signal (in this case, the meaning of the high signal has a value other than 0v in FIG. 3, for example, -25 kV). It has a frequency of ⁇ 9.350 GHz. Further, the amplitude (magnitude of the voltage) of the RF signal f2 has a difference value of approximately 0.1 kV compared to the pulse signal f1, and thus has an amplitude value of -25.1 kV to -24.9 kV. However, the shape of the above-described RF signal f2 may be changed as necessary.
  • the trigger unit 300 loads the RF signal f2 generated by the first RF signal generator 200 on the pulse signal f1 generated by the pulse signal generator 100 according to an embodiment of the present invention.
  • a first synchronization signal for synchronizing with each other is generated to cause the RF signal f2 to be accurately synchronized with the high signal of the pulse signal f1.
  • the trigger unit 300 generates a second synchronization signal to synchronize the RF signal generated by the second RF signal generator 600 to be described later with the RF signal generated by the first RF signal generator 200. .
  • the RF signal generated by the first RF signal generator 200 and the RF signal generated by the second RF signal generator 200 do not coincide with each other in frequency and synchronization, they pass through the bunching cell of the accelerator tube 500.
  • the efficiency of the bunching beam (approximately 50-60% when the efficiency of the bunching beam is synchronized, or about 30% when the synchronization is not synchronized) is greatly reduced, so it is important to match the frequency and synchronization with each other.
  • the electron beam is generated to accelerate the tube 500.
  • the bunching cell module of the accelerator tube 500 is required by supplying only the pulse signal f1 to the electron gun.
  • the electron gun is supplied by supplying the pulse signal f1 loaded with the RF signal f2 to the grid 420. Since the electron beam generated at 400 is generated in the form of a bunching low energy electron beam (bundling beam) is supplied to the acceleration tube 500, there is no need for a conventional bunching cell module.
  • beam bunching is a structure that can increase the beam efficiency of an initial ion source such as an electron gun or a proton generating source.
  • a beam 10 as shown in FIG. 4 is generated from an electron gun and supplied to the accelerator tube.
  • a bunching cell module (bunching cavity) capable of generating a bunching beam from the accelerator tube is provided. It is necessary.
  • the beam bunching 20 as shown in FIG. 5 is generated by the electron gun and supplied to the acceleration tube by loading the RF signal together with the pulse signal to the grid.
  • the bunching cell module is not required in the accelerator tube, thereby minimizing the size of the accelerator tube (or accelerator) and further increasing the beam efficiency to the maximum, thereby maximizing the electron gun efficiency and the accelerator beam focusing-acceleration efficiency.
  • the present invention can be used in industrial accelerators requiring high power beam generation, and can be effectively used for radiation treatment using X-rays and protons.
  • the second RF signal generator 600 may be embodied as a magnetron, and receives a pulse voltage from the high voltage generator 1100 to be described later.
  • the signal is loaded and supplied to the accelerator tube 500 through the waveguide 700.
  • the pulse signal generated by the second RF signal generator 600 and the RF signal loaded on the pulse signal may be the same as the signal generated by the first RF signal generator 200.
  • the pulse signals generated in the first RF signal generator 200 and the second RF signal generator 600 and the RF signals carried on the pulse signals are not in synchronization with each other, they pass through the accelerator tube 500.
  • the efficiency of the beam is about 30%, which is much lower than that of about 50 to 60% of efficiency when synchronized with each other.
  • the signals generated by the first RF signal generator 200 and the second RF signal generator 600 by the trigger unit 300 are generated to be synchronized with each other.
  • the magnitude and frequency of the amplitude of the signal may vary depending on the situation.
  • the trigger unit 300 receives the signals generated by the first RF signal generator 200 and the second RF signal generator 600 so that both signals are synchronized with each other and phase.
  • the pulse signal carrying the first RF signal generated by the first RF signal generator 200 is supplied to the grid 420 to supply the bunching beam to the acceleration tube 500 and at the same time, the second RF signal generator 200.
  • the pulse signal carrying the second RF signal generated by the RF signal generator 600 may be supplied to the accelerator tube 500 through the waveguide 700 to maximize the efficiency of the beam passing through the accelerator tube 500. .
  • signals generated by the pulse signal generator 100 and the first RF signal generator 200 must be synthesized and supplied to the grid 420, respectively, so that a signal synthesizer for synthesizing each of these signals is further added, or In either case, the signal of the other side may be input, and the final signal may be synthesized and supplied to the grid 420.
  • the high voltage generator 1100 supplies a pulse voltage of approximately 38 to 40 [kV] to the second RF signal generator 1200.
  • the second RF signal generator 1200 may be embodied as a magnetron, and the second RF signal generator 1200 receives a pulse signal supplied from the high voltage generator 1100 to generate a frequency of about 9.3 GHz to generate a waveguide. Supply to the acceleration tube 1500 through (1300). However, the amplitude and frequency of the RF signal generated from the second RF signal generator 1200 may be variously applied depending on the situation.
  • the RF signal may be supplied to the antenna 1500 instead of the accelerator tube 1500. In this case, the generated RF signal may be a signal carried in a pulse signal as described above.
  • the RF pickup sample unit 1400 samples the signal output from the waveguide 1300, and the RF power measurement unit 1700 measures the RF power using the signal sampled from the RF pickup sample unit 1400.
  • the frequency measuring unit 1800 receives a signal from the accelerator tube or the antenna 1500 to measure the frequency. Therefore, the RF power measuring unit 1700 and the frequency measuring unit 1800 may measure the RF power and frequency of the signal passing through the accelerator tube or the antenna 1500.
  • the measured RF power and frequency are supplied to the controller 1600, and the controller 1600 changes the output voltage of the high voltage generator 1100 by the voltage converter 1610 based on this, and converts the frequency converter 1620. To change the frequency of the second RF signal generator 1200.
  • the present invention is to change the output power and frequency of the signal output from the second RF signal generator 1200 at the same time.
  • the accelerator tube or the antenna 1500 Receive the frequency and power of the signal passed through, and the input frequency to synchronize the frequency to output the current resonant frequency, the input power to the maximum transmission power and the reflected power to the minimum. Information necessary for stabilizing the resonance frequency and output stabilization is calculated and compared with existing frequency and power values to determine whether the frequency or power is changed.
  • the resonance frequency (the output frequency of the antenna or the accelerator tube) must exactly match the frequency of the RF signal output from the second RF signal generator 1200.
  • the resonant frequency and output power of the accelerator tube or antenna should continuously check whether the user outputs the desired frequency. Therefore, the resonance frequency and output power measurement to check whether the RF signal of the frequency we want to know is output correctly.
  • the frequency of the preset accelerator tube or antenna and the RF signal of the second RF signal generator 1200 coincide with each other, the power delivered to the accelerator tube or antenna becomes maximum and the reflected power becomes minimum. .
  • the resonance frequency of the designed acceleration tube or antenna may be changed by some temperature change or environmental change (acceleration tube or antenna is particularly sensitive to temperature change, and may change by more than 1 ⁇ 10 MHz.
  • RF signal is magnetized.
  • the reflected wave can be high even if it is generated by the tron. To prevent this, the frequency measurement and the power measurement are always performed simultaneously.
  • the generation of RF power output efficiencies results in higher RF transfer efficiency and naturally higher beam bunching synchronization and beam generation efficiency (minimizing beam current and voltage losses).
  • the present invention described above is applicable not only to the triode of the electron gun, but also to the dipole and the like. Description of the configuration and functions of the above-described parts have been described separately from each other for convenience of description, and any configuration and function may be implemented by being integrated into other components, or may be further subdivided as necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)

Abstract

The present invention relates to an RF signal providing apparatus for a tripolar electron gun, which applies an RF signal to a grid of a thermion generating electron gun utilized for medical or industrial use, to enable the electron gun to generate beam bunching. To this end, the RF signal providing apparatus for a tripolar electron gun includes a pulse signal generating unit for generating and supplying a pulse signal, and a first RF signal generating unit for generating and supplying a first RF signal, wherein the first RF signal is included in a pulse signal and is supplied to a grid of an electron gun, whereby beam bunching is generated.

Description

3극 전자총용 RF신호 제공장치RF signal providing device for 3-pole gun
본 발명은 3극 전자총용 RF신호 제공장치에 관한 것으로서, 보다 상세하게는 의료용 또는 산업용에서 사용되는 열전자 발생용 전자총의 그리드에 RF신호를 인가시킴으로써 전자총에서 빔 번칭이 생성되도록 하는 3극 전자총용 RF신호 제공장치에 관한 것이다.The present invention relates to an RF signal providing apparatus for a three-pole electron gun, and more particularly, by applying an RF signal to a grid of a thermo-electron generating electron gun used in medical or industrial use, a three-pole electron gun RF for generating beam bunching in the electron gun. It relates to a signal providing device.
본 출원인이 기 출원한 출원번호 제10-2015-0011576(발명의 명칭 : 의료용 전자가속기의 전자총 전원공급장치) 및 제10-2015-0009176(발명의 명칭 : 전자총 전원공급장치) 발명에서는 3극 전자총의 그리드에 DC 펄스신호를 인가함으로써 10~20kV의 저에너지 전자를 방출시켰다. 이때, 전자를 발생시킨 후 가속관으로 전자빔이 전달되는데 저에너지 전자빔을 가속시키기 위해서는 번칭셀 등의 추가 부품이 가속관에 포함되어야 하기 때문에 전자 가속기의 구성이 복잡해지는 문제점이 있었다.In the present invention, the application number 10-2015-0011576 (name of the invention: electron gun power supply device of the medical electron accelerator) and 10-2015-0009176 (name of the invention: electron gun power supply device) In the invention, a three-pole electron gun By applying a DC pulse signal to the grid, 10-20 kV of low energy electrons were emitted. At this time, the electron beam is transmitted to the accelerator tube after generating the electrons, and in order to accelerate the low energy electron beam, an additional component such as a bunching cell must be included in the accelerator tube, which causes a problem in that the structure of the electron accelerator becomes complicated.
따라서, 본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 창출된 것으로서, 전자총의 그리드에 공급되는 신호를 기존의 DC 펄스신호 대신에 RF신호를 DC 펄스신호에 같이 실어 그리드에 공급함으로써 전자총에서 출력되는 빔을 번칭 빔 형태로 생성할 수 있는 발명을 제공하는데 그 목적이 있다.Therefore, the present invention was created in order to solve the problems described above, and is output from the electron gun by supplying the signal supplied to the grid of the electron gun to the grid by loading the RF signal with the DC pulse signal instead of the existing DC pulse signal. It is an object to provide an invention that can produce a beam in the form of a bunching beam.
그러나, 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
전술한 본 발명의 목적은, 펄스신호를 생성하여 공급하는 펄스신호 발생부, 및 제1 RF신호를 생성하여 공급하는 제1 RF신호 발생부를 포함하며, 제1 RF신호는 펄스신호에 포함되어 전자총의 그리드에 공급됨으로써 빔의 번칭이 형성되는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치를 제공함으로써 달성될 수 있다.The object of the present invention described above includes a pulse signal generator for generating and supplying a pulse signal, and a first RF signal generator for generating and supplying a first RF signal, wherein the first RF signal is included in the pulse signal and is an electron gun. It can be achieved by providing an RF signal providing apparatus for a three-pole electron gun, characterized in that the beam bunching is formed by being supplied to a grid of.
또한, 펄스신호는 DC 펄스신호로서 제1 RF신호가 DC 펄스신호의 하이 또는 로우 상태 중 어느 하나에 주기적으로 실린다.In addition, the pulse signal is a DC pulse signal, the first RF signal is periodically loaded in either the high or low state of the DC pulse signal.
또한, DC 펄스신호보다 제1 RF신호의 주파수가 더 높다.Also, the frequency of the first RF signal is higher than that of the DC pulse signal.
또한, 전자총에서 발생된 전자 빔을 입력받아 전자를 가속하는 가속관, 및 가속관에 제2 RF신호를 생성하여 공급하는 제2 RF신호 발생부를 더 포함한다.The apparatus further includes an accelerator tube that receives the electron beam generated by the electron gun and accelerates the electrons, and a second RF signal generator that generates and supplies a second RF signal to the accelerator tube.
또한, 제1,2 RF신호의 주파수 및 진폭의 크기를 서로 동일하게 함으로써 가속관을 통과한 전자 빔의 효율을 높일 수 있다.In addition, by making the magnitudes of the frequencies and amplitudes of the first and second RF signals the same, the efficiency of the electron beam passing through the accelerator tube can be increased.
또한, DC 펄스신호 및 제1 RF신호의 동기를 맞추거나, 제1,2 RF신호의 동기를 맞추는 트리거부를 더 포함한다.The apparatus may further include a trigger unit that synchronizes the DC pulse signal and the first RF signal or synchronizes the first and second RF signals.
또한, 제2 RF신호 발생부에서 생성된 RF신호는 도파관을 거쳐 가속관으로 공급된다.In addition, the RF signal generated by the second RF signal generator is supplied to the accelerator tube through the waveguide.
전술한 바와 같은 본 발명에 의하면 전자총에서 출력되는 빔이 번칭 빔 형태로 가속관에 제공됨으로 가속관의 구성을 단순화시킬 수 있고, 또한, 빔의 효율을 종래와 비교하여 높일 수 있는 효과가 있다.According to the present invention as described above, since the beam output from the electron gun is provided to the accelerator tube in the form of a bunching beam, the configuration of the accelerator tube can be simplified, and the efficiency of the beam can be increased as compared with the conventional one.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate one preferred embodiment of the present invention, and together with the detailed description thereof, serve to further understand the technical spirit of the present invention. It should not be construed as limited.
도 1은 본 발명의 일실시예에 따른 3극 전자총용 RF신호 제공장치의 전체 구성을 나타낸 구성도이고,1 is a block diagram showing the overall configuration of the RF signal providing apparatus for a three-pole electron gun according to an embodiment of the present invention,
도 2는 본 발명의 일실시예에 따른 DC 펄스신호(f1)를 나타낸 도면이고,2 is a view showing a DC pulse signal f1 according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 DC 펄스신호(f1)에 RF신호(f2)를 같이 실은 것을 나타낸 도면이고,3 is a diagram showing an RF signal f2 loaded together with a DC pulse signal f1 according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 전자총의 그리드에 DC 펄스신호를 공급했을 때의 전자총에서 출력되는 빔의 형상을 나타낸 도면이고,4 is a view showing the shape of the beam output from the electron gun when the DC pulse signal is supplied to the grid of the electron gun according to an embodiment of the present invention,
도 5는 본 발명의 일실시예에 따른 전자총의 그리드에 RF신호가 포함된 DC 펄스신호를 공급했을 때의 전자총에서 출력되는 번칭 빔의 형상을 나타낸 도면이고,5 is a view showing the shape of the bunching beam output from the electron gun when the DC pulse signal including the RF signal to the grid of the electron gun according to an embodiment of the present invention,
도 6은 본 발명의 다른 실시예에 따른 전자가속기용 마그넷트론의 주파수-출력파워를 동시에 제어하기 위한 구성을 나타낸 도면이고,6 is a view showing a configuration for simultaneously controlling the frequency-output power of the magnetron for an electronic accelerator according to another embodiment of the present invention,
도 7은 본 발명의 다른 실시예에 따른 전자가속기용 마그넷트론의 주파수-출력파워를 각각 제어하기 위한 순차적인 절차를 나타낸 도면이다.7 is a diagram illustrating a sequential procedure for controlling the frequency-output power of the magnetron for the electronic accelerator according to another embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 바람직한 일실시예에 대해서 설명한다. 또한, 이하에 설명하는 일실시예는 특허청구범위에 기재된 본 발명의 내용을 부당하게 한정하지 않으며, 본 실시 형태에서 설명되는 구성 전체가 본 발명의 해결 수단으로서 필수적이라고는 할 수 없다. 또한, 종래 기술 및 당업자에게 자명한 사항은 설명을 생략할 수도 있으며, 이러한 생략된 구성요소(방법) 및 기능의 설명은 본 발명의 기술적 사상을 벗어나지 아니하는 범위내에서 충분히 참조될 수 있을 것이다.Hereinafter, with reference to the drawings will be described a preferred embodiment of the present invention. In addition, one Example described below does not unduly limit the content of this invention described in the Claim, and the whole structure demonstrated by this Embodiment is not necessarily required as a solution of this invention. In addition, the matters obvious to those skilled in the art and the art may be omitted, and the description of the omitted elements (methods) and functions may be sufficiently referred to without departing from the spirit of the present invention.
(3극 전자총용 RF신호 제공장치)(RF signal providing device for 3-pole gun)
본 발명의 일실시예에 따른 3극 전자총용 RF신호 제공장치는 종래의 펄스신호에 RF신호를 실어 보냄으로써 가속관에 포함된 번칭셀을(buncher cavity) 생략할 수 있어 전자 가속기의 구성을 단순화시킬 수 있다. 한편, 종래의 전자총을 포함한 펄스신호 제공장치의 구성 및 기능은 본 출원인이 기 출원한 출원번호 제10-2015-0011576(발명의 명칭 : 의료용 전자가속기의 전자총 전원공급장치) 및 제10-2015-0009176(발명의 명칭 : 전자총 전원공급장치)에 기재된 내용을 본 발명의 기술적 사상을 벗어나지 아니하는 범위내에서 참조할 수 있다.The RF signal providing apparatus for a three-pole electron gun according to an embodiment of the present invention can omit a bunching cell included in an accelerator tube by sending an RF signal to a conventional pulse signal, thereby simplifying the configuration of the electron accelerator. You can. On the other hand, the configuration and function of the conventional pulse signal providing apparatus including an electron gun is the applicant's application No. 10-2015-0011576 (invention name: electron gun power supply device of the medical electron accelerator) and the 10-2015- The contents described in 0009176 (Invention: Electron Gun Power Supply) may be referred to without departing from the spirit of the present invention.
도 1에 도시된 바와 같이 본 발명의 일실시예에 따른 전자총(400)은 의료용 및 산업용에 널리 사용되는 열전자 발생용 전자총으로서 이에 대한 자세한 설명은 본 출원인이 기 출원한 상술한 2건의 특허출원에 기재된 내용에 갈음하기로 한다. 다만, 여기에서는 3극 전자총을 기준으로 설명하기로 하며 따라서 전자총(400)에는 캐소드(410)와 그리드(420)가 포함된다.As shown in FIG. 1, the electron gun 400 according to an embodiment of the present invention is a heat electron generating electron gun widely used in medical and industrial applications, and a detailed description thereof is given in the aforementioned two patent applications filed by the present applicant. The description will be replaced. However, the description will be made based on the three-pole electron gun, and the electron gun 400 includes the cathode 410 and the grid 420.
도 1에 도시된 바와 같이 본 발명의 일실시예에 따른 펄스신호 발생부(100)는 도 2와 같은 펄스신호를 생성하여 캐소드(410) 및 그리드(420)로 펄스신호를 공급한다. 다만, 필요에 따라 펄스신호 발생부(100)는 각각 제1 펄스신호 발생부 및 제2 펄스신호 발생부로 분리되어 캐소드(410) 및 그리드(420)로 각각 펄스신호를 공급할 수도 있다. 도 2에 도시된 바와 같이 캐소드(410) 및 그리드(420)로 공급되는 펄스신호(f1)는 전자총을 가속시키기 위해 대략 -25kV ~ 0[v]의 전압 크기를 가지며, 펄스신호의 주기(또는 주파수)는 10 ~ 300Hz이고, 하이 신호(high signal) 일때의 펄스폭은 0.00001 ~ 10us일 수 있다. 다만, 상술한 펄스신호의 형태는 필요에 따라 다양하게 변경 가능하다. 또한, 펄스신호 발생부(100)의 구성 및 기능은 상술한 본 출원인이 기 출원한 2건의 특허출원에 의해 참조될 수 있다. 도 2의 펄스신호(f1)는 일예로서 -25kV의 전압 크기를 가지며, 주파수는 100Hz인 신호를 나타낸 것이다.As shown in FIG. 1, the pulse signal generator 100 generates a pulse signal as shown in FIG. 2 and supplies a pulse signal to the cathode 410 and the grid 420. However, if necessary, the pulse signal generator 100 may be divided into a first pulse signal generator and a second pulse signal generator, respectively, and may supply pulse signals to the cathode 410 and the grid 420, respectively. As shown in FIG. 2, the pulse signal f1 supplied to the cathode 410 and the grid 420 has a voltage magnitude of approximately −25 kV to 0 [v] to accelerate the electron gun, and the period of the pulse signal (or Frequency) is 10 to 300 Hz, and a pulse width at a high signal may be 0.00001 to 10 us. However, the shape of the above-described pulse signal can be variously changed as necessary. In addition, the configuration and function of the pulse signal generator 100 may be referred to by the two patent applications previously filed by the present applicant. As an example, the pulse signal f1 of FIG. 2 shows a signal having a voltage magnitude of −25 kV and having a frequency of 100 Hz.
본 발명의 일실시예에 따른 제1 RF신호 발생부(200)는 그리드(420)에 공급할 RF신호를 생성한다. 생성된 RF신호는 펄스신호 발생부(100)에서 생성한 펄스신호에 같이 실려 그리드(420)에 공급된다. 기 출원한 특허출원번호 제10-2015-0011576에서는 RF신호를 전자총의 캐소드에 공급하였으나 본 발명에서는 그리드에 공급하며 RF신호의 주파수도 크게 차이가 난다. 제1 RF신호 발생부(200)에서 생성되는 RF신호는 도 3에 도시된 바와 같이 펄스신호 발생부(100)에서 생성된 펄스신호(f1)에 RF신호(f2)를 같이 실어 그리드(420)에 공급한다. 이때, 생성되는 RF신호(f2)는 펄스신호(f1)가 하이 신호(이때 하이 신호의 의미는 도 3에서 0v 이외의 값을 가질때를 의미하며 일예로서 -25kV) 일때 실리는 신호로서 대략 9.250GHz ~ 9.350GHz의 주파수를 가진다. 또한, RF신호(f2)의 진폭(전압의 크기)은 펄스신호(f1)에 비해 대략 0.1kV 차이값을 가지며 따라서 -25.1kV ~ -24.9kV의 진폭 값을 가진다. 다만, 상술한 RF신호(f2)의 형태는 필요에 따라 바뀔 수 있다.The first RF signal generator 200 according to an embodiment of the present invention generates an RF signal to be supplied to the grid 420. The generated RF signal is loaded on the pulse signal generated by the pulse signal generator 100 and supplied to the grid 420. In Patent Application No. 10-2015-0011576, the RF signal is supplied to the cathode of the electron gun, but in the present invention, the RF signal is supplied to the grid and the frequency of the RF signal is also greatly different. As shown in FIG. 3, the RF signal generated by the first RF signal generator 200 is loaded with the RF signal f2 on the pulse signal f1 generated by the pulse signal generator 100. To feed. At this time, the generated RF signal f2 is a signal that is carried out when the pulse signal f1 is a high signal (in this case, the meaning of the high signal has a value other than 0v in FIG. 3, for example, -25 kV). It has a frequency of ~ 9.350 GHz. Further, the amplitude (magnitude of the voltage) of the RF signal f2 has a difference value of approximately 0.1 kV compared to the pulse signal f1, and thus has an amplitude value of -25.1 kV to -24.9 kV. However, the shape of the above-described RF signal f2 may be changed as necessary.
본 발명의 일실시예 따른 트리거부(300)는 펄스신호 발생부(100)에서 생성된 펄스신호(f1)에 제1 RF신호 발생부(200)에서 생성한 RF신호(f2)를 실을 때 서로 간의 동기를 맞추기 위한 제1 동기신호를 생성하여 RF신호(f2)가 펄스신호(f1)의 하이신호에 정확히 동기되어 실리도록 한다. 또한 트리거부(300)는 후술하는 제2 RF신호 발생부(600)에서 생성한 RF신호와 제1 RF신호 발생부(200)에서 생성한 RF신호의 동기를 맞추도록 제2 동기신호를 생성한다. 제1 RF신호 발생부(200)에서 생성한 RF신호와 제2 RF신호 발생부(200)에서 생성한 RF신호가 서로 주파수 및 동기가 맞지 않은 경우에는 가속관(500)의 번칭셀을 통과한 번칭빔의 효율(대략적으로 번칭빔의 효율이 동기가 맞을때는 50~60%이나 동기가 맞지 않을때는 대략 30% 대임)이 많이 떨어지게 되며 따라서 서로간의 주파수 및 동기를 맞추는 것이 중요하다. When the trigger unit 300 loads the RF signal f2 generated by the first RF signal generator 200 on the pulse signal f1 generated by the pulse signal generator 100 according to an embodiment of the present invention. A first synchronization signal for synchronizing with each other is generated to cause the RF signal f2 to be accurately synchronized with the high signal of the pulse signal f1. Also, the trigger unit 300 generates a second synchronization signal to synchronize the RF signal generated by the second RF signal generator 600 to be described later with the RF signal generated by the first RF signal generator 200. . When the RF signal generated by the first RF signal generator 200 and the RF signal generated by the second RF signal generator 200 do not coincide with each other in frequency and synchronization, they pass through the bunching cell of the accelerator tube 500. The efficiency of the bunching beam (approximately 50-60% when the efficiency of the bunching beam is synchronized, or about 30% when the synchronization is not synchronized) is greatly reduced, so it is important to match the frequency and synchronization with each other.
상술한 펄스신호(f1) 및 펄스신호(f1)에 RF신호(f2)를 실은 신호를 각각 전자총(400)의 캐소드(410) 및 그리드(420)에 공급하면 전자빔이 생성되어 가속관(500)으로 공급된다. 이때, 기존에는 펄스신호(f1)만을 전자총에 공급함으로써 가속관(500)의 번칭셀 모듈이 필요했으나 본 발명에서는 그리드(420)에 RF신호(f2)가 실린 펄스신호(f1)를 공급함으로써 전자총(400)에서 생성되는 전자빔이 번칭 형태로 저에너지 전자빔(번칭 빔)이 발생되어 가속관(500)으로 공급되므로 종래의 번칭셀 모듈이 필요 없게 된다.When the signal carrying the RF signal f2 in addition to the above-described pulse signal f1 and pulse signal f1 is supplied to the cathode 410 and the grid 420 of the electron gun 400, the electron beam is generated to accelerate the tube 500. Is supplied. In this case, the bunching cell module of the accelerator tube 500 is required by supplying only the pulse signal f1 to the electron gun. However, in the present invention, the electron gun is supplied by supplying the pulse signal f1 loaded with the RF signal f2 to the grid 420. Since the electron beam generated at 400 is generated in the form of a bunching low energy electron beam (bundling beam) is supplied to the acceleration tube 500, there is no need for a conventional bunching cell module.
빔 번칭에 대해서 좀 더 자세히 설명하면, 빔 번칭은 전자총 또는 양성자 발생 소스 등의 초기 이온 소소의 빔 효율을 높일 수 있도록 하는 구조이다. 종래의 펄스신호만을 그리드에 공급하는 경우에는 도 4와 같은 빔(10)이 전자총에서 생성되어 가속관으로 공급되며, 이때에는 가속관에서 번칭 빔을 생성할 수 있는 번칭셀 모듈(bunching cavity)이 필요하게 된다. 그러나 본 발명에서는 펄스신호에 RF신호를 같이 실어 그리드에 공급함으로써 도 5와 같은 빔 번칭(20)이 전자총에서 생성되어 가속관으로 공급된다. 따라서 번칭셀 모듈이 가속관에 필요 없게 되어 가속관(또는 가속기)의 크기를 최소화시키고 나아가 빔 효율을 최대한으로 높일 수 있어 전자총 효율과 가속기 빔 집속-가속 효율을 극대화시킬 수 있다. 한편, 이러한 본 발명은 대전력 빔 발생이 필요한 산업용 가속기에 사용될 수 있으며, X-선 및 양성자를 이용한 방사선 치료에 효과적으로 이용될 수 있다. In more detail about beam bunching, beam bunching is a structure that can increase the beam efficiency of an initial ion source such as an electron gun or a proton generating source. When only the conventional pulse signal is supplied to the grid, a beam 10 as shown in FIG. 4 is generated from an electron gun and supplied to the accelerator tube. In this case, a bunching cell module (bunching cavity) capable of generating a bunching beam from the accelerator tube is provided. It is necessary. However, in the present invention, the beam bunching 20 as shown in FIG. 5 is generated by the electron gun and supplied to the acceleration tube by loading the RF signal together with the pulse signal to the grid. Therefore, the bunching cell module is not required in the accelerator tube, thereby minimizing the size of the accelerator tube (or accelerator) and further increasing the beam efficiency to the maximum, thereby maximizing the electron gun efficiency and the accelerator beam focusing-acceleration efficiency. On the other hand, the present invention can be used in industrial accelerators requiring high power beam generation, and can be effectively used for radiation treatment using X-rays and protons.
도 1에 도시된 바와 같이 본 발명의 일실시예에 따른 제2 RF신호 발생부(600)는 마그네트론으로 구체화될 수 있으며, 후술하는 고전압 발생장치(1100)로부터 펄스 전압을 공급받아 펄스신호에 RF신호를 실어 도파관(700)을 통해 가속관(500)으로 신호를 공급한다. 이때, 제2 RF신호 발생부(600)에서 생성되는 펄스신호 및 펄스신호에 같이 실려지는 RF신호는 제1 RF신호 발생부(200)에서 생성되는 신호와 동일한 신호인 것이 바람직하다. 제1 RF신호 발생부(200) 및 제2 RF신호 발생부(600)에서 생성되는 각각의 펄스신호 및 펄스신호에 실려지는 RF신호가 서로 동기가 맞지 않는 경우에는 가속관(500)을 통과한 빔의 효율이 대략 30% 정도로서 서로 동기가 맞는 경우의 대략 50~60% 효율에 비해 효율이 많이 떨어진다. 따라서 트리거부(300)에 의해 제1 RF신호 발생부(200) 및 제2 RF신호 발생부(600)에서 생성되는 각각의 신호가 서로 동기가 맞도록 생성된다. 다만, 상황에 따라 신호의 진폭의 크기 및 주파수는 달라질 수 있다. 한편, 트리거부(300)는 제1 RF신호 발생부(200) 및 제2 RF신호 발생부(600)에서 생성된 신호를 피드백 받아 양자의 신호가 서로 동기 및 위상이 같아지도록 한다.As shown in FIG. 1, the second RF signal generator 600 according to an embodiment of the present invention may be embodied as a magnetron, and receives a pulse voltage from the high voltage generator 1100 to be described later. The signal is loaded and supplied to the accelerator tube 500 through the waveguide 700. In this case, the pulse signal generated by the second RF signal generator 600 and the RF signal loaded on the pulse signal may be the same as the signal generated by the first RF signal generator 200. When the pulse signals generated in the first RF signal generator 200 and the second RF signal generator 600 and the RF signals carried on the pulse signals are not in synchronization with each other, they pass through the accelerator tube 500. The efficiency of the beam is about 30%, which is much lower than that of about 50 to 60% of efficiency when synchronized with each other. Accordingly, the signals generated by the first RF signal generator 200 and the second RF signal generator 600 by the trigger unit 300 are generated to be synchronized with each other. However, the magnitude and frequency of the amplitude of the signal may vary depending on the situation. On the other hand, the trigger unit 300 receives the signals generated by the first RF signal generator 200 and the second RF signal generator 600 so that both signals are synchronized with each other and phase.
상술한 바와 같이 본 발명에서는 제1 RF신호 발생부(200)에서 생성되는 제1의 RF신호가 실린 펄스신호를 그리드(420)에 공급하여 번칭 빔을 가속관(500)에 공급함과 동시에 제2 RF신호 발생부(600)에서 생성되는 제2의 RF신호가 실린 펄스신호를 도파관(700)을 통해 가속관(500)에 공급함으로써 가속관(500)을 통과한 빔의 효율을 극대화시킬 수 있다. 이때, 제1의 RF신호가 실린 펄스신호와 제2의 RF신호가 실린 펄스신호는 서로 동기가 맞는 것이 바람직하다.As described above, in the present invention, the pulse signal carrying the first RF signal generated by the first RF signal generator 200 is supplied to the grid 420 to supply the bunching beam to the acceleration tube 500 and at the same time, the second RF signal generator 200. The pulse signal carrying the second RF signal generated by the RF signal generator 600 may be supplied to the accelerator tube 500 through the waveguide 700 to maximize the efficiency of the beam passing through the accelerator tube 500. . In this case, it is preferable that the pulse signal carrying the first RF signal and the pulse signal carrying the second RF signal coincide with each other.
한편, 펄스신호 발생부(100)와 제1 RF신호 발생부(200)에서 생성되는 신호는 각각 합성되어 그리드(420)에 공급되어야 하므로 이러한 각각의 신호를 합성하는 신호 합성부가 더 추가되거나, 또는 어느 하나에서 다른 쪽의 신호를 입력받아 최종 신호를 합성하여 그리드(420)에 공급할 수도 있다.Meanwhile, signals generated by the pulse signal generator 100 and the first RF signal generator 200 must be synthesized and supplied to the grid 420, respectively, so that a signal synthesizer for synthesizing each of these signals is further added, or In either case, the signal of the other side may be input, and the final signal may be synthesized and supplied to the grid 420.
(전자가속기용 마그네트론 주파수-출력파워 동시 제어장치)(Simultaneous Control of Magnetron Frequency-Output Power for Electronic Accelerator)
도 6에 도시된 바와 같이 고전압 발생장치(1100)는 대략 38~40[kV]의 펄스전압을 제2 RF신호 발생부(1200)에 공급한다. 제2 RF신호 발생부(1200)는 마그네트론으로 구체화될 수 있으며, 제2 RF신호 발생부(1200)는 고전압 발생장치(1100)로부터 공급된 펄스신호를 공급받아 대략 9.3GHz의 주파수를 생성하여 도파관(1300)을 통해 가속관(1500)으로 공급한다. 다만, 제2 RF신호 발생부(1200)로부터 생성되는 RF신호의 진폭 및 주파수는 상황에 따라 다양하게 적용될 수 있다. 또한, 가속관(1500) 대신에 안테나(1500)에도 RF신호가 공급될 수 있다. 이때 생성되는 RF신호는 상술한 바와 같이 펄스신호에 실린 신호일 수 있다.As shown in FIG. 6, the high voltage generator 1100 supplies a pulse voltage of approximately 38 to 40 [kV] to the second RF signal generator 1200. The second RF signal generator 1200 may be embodied as a magnetron, and the second RF signal generator 1200 receives a pulse signal supplied from the high voltage generator 1100 to generate a frequency of about 9.3 GHz to generate a waveguide. Supply to the acceleration tube 1500 through (1300). However, the amplitude and frequency of the RF signal generated from the second RF signal generator 1200 may be variously applied depending on the situation. In addition, the RF signal may be supplied to the antenna 1500 instead of the accelerator tube 1500. In this case, the generated RF signal may be a signal carried in a pulse signal as described above.
RF 픽업 샘플부(1400)는 도파관(1300)으로부터 출력된 신호를 샘플링하며, RF파워 측정부(1700)는 RF 픽업 샘플부(1400)로부터 샘플링된 신호를 이용하여 RF파워를 측정한다. 또한, 주파수 측정부(1800)는 가속관 또는 안테나(1500)로부터 신호를 공급받아 주파수를 측정한다. 따라서 RF파워 측정부(1700) 및 주파수 측정부(1800)에 의해 가속관 또는 안테나(1500)를 거친 신호의 RF전력 및 주파수를 측정할 수 있다.The RF pickup sample unit 1400 samples the signal output from the waveguide 1300, and the RF power measurement unit 1700 measures the RF power using the signal sampled from the RF pickup sample unit 1400. In addition, the frequency measuring unit 1800 receives a signal from the accelerator tube or the antenna 1500 to measure the frequency. Therefore, the RF power measuring unit 1700 and the frequency measuring unit 1800 may measure the RF power and frequency of the signal passing through the accelerator tube or the antenna 1500.
측정된 RF파워 및 주파수는 제어부(1600)로 공급되며, 제어부(1600)는 이를 기초로 전압 변환부(1610)에 의해 고전압 발생장치(1100)의 출력전압을 변경하며, 주파수 변환부(1620)는 제2 RF신호 발생부(1200)의 주파수를 변경하도록 한다. The measured RF power and frequency are supplied to the controller 1600, and the controller 1600 changes the output voltage of the high voltage generator 1100 by the voltage converter 1610 based on this, and converts the frequency converter 1620. To change the frequency of the second RF signal generator 1200.
상술한 바와 같이 본 발명은 제2 RF신호 발생부(1200)에서 출력되는 신호의 출력파워 및 주파수를 동시에 변경하기 위한 것으로서 좀 더 상세히 설명하면 도 7에 도시된 바와 같이 가속관 또는 안테나(1500)를 거친 신호의 주파수 및 파워를 입력받고, 입력된 주파수는 주파수를 동기화하여 현재의 공진 주파수를 출력하도록 하고, 입력된 파워는 전달 파워는 최대로 하고 반사 파워는 최소로 한다. 공진 주파수 및 출력 안정화에 필요한 정보를 계산하고, 기존 주파수 및 파워값과 비교하여 주파수 또는 파워의 변경 여부 판단한다. As described above, the present invention is to change the output power and frequency of the signal output from the second RF signal generator 1200 at the same time. In more detail, as shown in FIG. 7, the accelerator tube or the antenna 1500 Receive the frequency and power of the signal passed through, and the input frequency to synchronize the frequency to output the current resonant frequency, the input power to the maximum transmission power and the reflected power to the minimum. Information necessary for stabilizing the resonance frequency and output stabilization is calculated and compared with existing frequency and power values to determine whether the frequency or power is changed.
좀 더 자세히 설명하면 공진주파수(안테나 또는 가속관의 출력 주파수)의 경우 제2 RF신호 발생부(1200)에서 출력된 RF신호의 주파수와 정확히 일치해야 한다. 이때, 가속관 또는 안테나의 공진주파수 및 출력전력이 사용자가 원하는 주파수를 출력하고 있는지 지속적으로 체크해야 한다. 따라서 공진주파수 및 출력전력 측정을 통해 우리가 알고자 하는 주파수의 RF 신호가 제대로 출력되고 있는지 확인한다. 이때, 기 설정된 가속관 또는 안테나의 주파수와 제2 RF신호 발생부(1200, 마그넷트론)의 RF신호가 일치하게 될 경우 가속관 또는 안테나로 전달되는 파워는 최대가되고, 반사 파워는 최소가 된다. 일부 온도 변화, 환경 변화 등에 의하여 설계한 가속관 또는 안테나의 공진주파수가 달라질 수 있으므로(가속관이나 안테나는 특히 온도변화에 민감하며, 최대 1~10 MHz 이상 변하기도 한다. 이 경우 RF신호를 마그넷트론에서 발생시켜도 반사파가 높아질 수 있다) 이를 방지하기 위하여 주파수 측정과 파워 측정을 항상 동시에 한다. RF 파워 출력 효율(최대 전달 파워, 최소 반사 파워)이 발생하게 되면 RF 전달 효율이 높아지게 되고, 자연적으로 빔 번칭 동기화 및 빔 발생 효율은 높아지게 된다(빔 전류 및 전압 손실을 최소화 시키게 된다).In more detail, the resonance frequency (the output frequency of the antenna or the accelerator tube) must exactly match the frequency of the RF signal output from the second RF signal generator 1200. At this time, the resonant frequency and output power of the accelerator tube or antenna should continuously check whether the user outputs the desired frequency. Therefore, the resonance frequency and output power measurement to check whether the RF signal of the frequency we want to know is output correctly. At this time, when the frequency of the preset accelerator tube or antenna and the RF signal of the second RF signal generator 1200 (magnetron) coincide with each other, the power delivered to the accelerator tube or antenna becomes maximum and the reflected power becomes minimum. . The resonance frequency of the designed acceleration tube or antenna may be changed by some temperature change or environmental change (acceleration tube or antenna is particularly sensitive to temperature change, and may change by more than 1 ~ 10 MHz. In this case, RF signal is magnetized. The reflected wave can be high even if it is generated by the tron. To prevent this, the frequency measurement and the power measurement are always performed simultaneously. The generation of RF power output efficiencies (maximum transfer power, minimum reflection power) results in higher RF transfer efficiency and naturally higher beam bunching synchronization and beam generation efficiency (minimizing beam current and voltage losses).
상술한 본 발명은 전자총의 3극관 뿐만아니라 2극관 등에서도 적용 가능하다. 상술한 각부의 구성 및 기능에 대한 설명은 설명의 편의를 위하여 서로 분리하여 설명하였을 뿐 필요에 따라 어느 한 구성 및 기능이 다른 구성요소로 통합되어 구현되거나, 또는 더 세분화되어 구현될 수도 있다.The present invention described above is applicable not only to the triode of the electron gun, but also to the dipole and the like. Description of the configuration and functions of the above-described parts have been described separately from each other for convenience of description, and any configuration and function may be implemented by being integrated into other components, or may be further subdivided as necessary.
이상, 본 발명의 일실시예를 참조하여 설명했지만, 본 발명이 이것에 한정되지는 않으며, 다양한 변형 및 응용이 가능하다. 즉, 본 발명의 요지를 일탈하지 않는 범위에서 많은 변형이 가능한 것을 당업자는 용이하게 이해할 수 있을 것이다. 또한, 본 발명과 관련된 공지 기능 및 그 구성 또는 본 발명의 각 구성에 대한 결합관계에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.As mentioned above, although demonstrated with reference to one Embodiment of this invention, this invention is not limited to this, A various deformation | transformation and an application are possible. That is, those skilled in the art will readily appreciate that many modifications are possible without departing from the spirit of the invention. In addition, when it is determined that the detailed description of the known function and its configuration or the coupling relationship for each configuration of the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted. something to do.

Claims (7)

  1. 펄스신호를 생성하여 공급하는 펄스신호 발생부, 및A pulse signal generator for generating and supplying a pulse signal, and
    제1 RF신호를 생성하여 공급하는 제1 RF신호 발생부를 포함하며,A first RF signal generating unit for generating and supplying a first RF signal,
    제1 RF신호는 펄스신호에 포함되어 전자총의 그리드에 공급됨으로써 빔의 번칭이 형성되는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.The first RF signal is included in the pulse signal is supplied to the grid of the electron gun RF signal providing apparatus for the three-pole electron gun, characterized in that the bunching of the beam is formed.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 펄스신호는 DC 펄스신호로서 상기 제1 RF신호가 상기 DC 펄스신호의 하이 또는 로우 상태 중 어느 하나에 주기적으로 실리는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.And the pulse signal is a DC pulse signal, wherein the first RF signal is periodically loaded on either the high or low state of the DC pulse signal.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 DC 펄스신호보다 상기 제1 RF신호의 주파수가 더 높은 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.And a first frequency of the first RF signal is higher than that of the DC pulse signal.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 전자총에서 발생된 전자 빔을 입력받아 전자를 가속하는 가속관, 및An accelerator tube that receives the electron beam generated by the electron gun and accelerates the electrons, and
    상기 가속관에 제2 RF신호를 생성하여 공급하는 제2 RF신호 발생부를 더 포함하는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.And a second RF signal generator for generating and supplying a second RF signal to the accelerator tube.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제1,2 RF신호의 주파수 및 진폭의 크기를 서로 동일하게 함으로써 상기 가속관을 통과한 전자 빔의 효율을 높일 수 있는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.The RF signal providing apparatus for a three-pole electron gun, characterized in that the efficiency of the electron beam passing through the acceleration tube can be increased by equalizing the magnitudes of the frequency and amplitude of the first and second RF signals.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 DC 펄스신호 및 제1 RF신호의 동기를 맞추거나, 상기 제1,2 RF신호의 동기를 맞추는 트리거부를 더 포함하는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치. And a trigger unit for synchronizing the DC pulse signal with the first RF signal or synchronizing the first and second RF signals.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제2 RF신호 발생부에서 생성된 RF신호는 도파관을 거쳐 가속관으로 공급되는 것을 특징으로 하는 3극 전자총용 RF신호 제공장치.The RF signal generator for a three-pole electron gun, characterized in that the RF signal generated by the second RF signal generator is supplied to the acceleration tube via a waveguide.
PCT/KR2017/000800 2016-02-26 2017-01-24 Rf signal providing apparatus for tripolar electron gun WO2017146381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160023762A KR101773881B1 (en) 2016-02-26 2016-02-26 RF signal apparatus for 3 pole elcectron gun
KR10-2016-0023762 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146381A1 true WO2017146381A1 (en) 2017-08-31

Family

ID=59685612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000800 WO2017146381A1 (en) 2016-02-26 2017-01-24 Rf signal providing apparatus for tripolar electron gun

Country Status (2)

Country Link
KR (1) KR101773881B1 (en)
WO (1) WO2017146381A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250299A (en) * 1995-03-14 1996-09-27 Agency Of Ind Science & Technol Electron beam generating method
US20120230471A1 (en) * 2008-08-12 2012-09-13 Gongyin Chen Interlaced multi-energy radiation sources
KR20140126655A (en) * 2013-04-23 2014-10-31 한국전기연구원 Medical Linear accelerator radiation dose control method and system
KR20140137599A (en) * 2013-05-23 2014-12-03 한국원자력연구원 Electron accelerator having plural-Energy, cargo inspection device and control method using the same
KR101564683B1 (en) * 2015-01-23 2015-11-02 성균관대학교산학협력단 Power supplying device for electron gun in medical electron accelerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250299A (en) * 1995-03-14 1996-09-27 Agency Of Ind Science & Technol Electron beam generating method
US20120230471A1 (en) * 2008-08-12 2012-09-13 Gongyin Chen Interlaced multi-energy radiation sources
KR20140126655A (en) * 2013-04-23 2014-10-31 한국전기연구원 Medical Linear accelerator radiation dose control method and system
KR20140137599A (en) * 2013-05-23 2014-12-03 한국원자력연구원 Electron accelerator having plural-Energy, cargo inspection device and control method using the same
KR101564683B1 (en) * 2015-01-23 2015-11-02 성균관대학교산학협력단 Power supplying device for electron gun in medical electron accelerator

Also Published As

Publication number Publication date
KR101773881B1 (en) 2017-09-04

Similar Documents

Publication Publication Date Title
Dexter et al. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity
US20100039051A1 (en) Power Variator
WO2024002341A1 (en) X-band small-focus accelerator used for nondestructive testing
CN104188679A (en) Homologous double-beam medical accelerator
KR101773878B1 (en) Control apparatus for magnetron in electron accelerator
WO2017146381A1 (en) Rf signal providing apparatus for tripolar electron gun
EP0351970B1 (en) Electron storage ring
Zhang et al. A precision LLRF control system for UED
WO2018128235A1 (en) Power supply device for plasma generation
Beuret et al. The LHC lead injector chain
KR101773884B1 (en) RF signal apparatus for 3 pole elcectron gun
Baboi et al. Commissioning of the FLASH2 Electron Beam Diagnostics in Respect to its use at the European XFEL
Miura et al. Low Level RF System for cERL
WO2016117766A1 (en) Electron gun power supply device
Jarvis et al. Optical Stochastic Cooling Program at Fermilab's Integrable Optics Test Accelerator
EP1442470B1 (en) Electron beam tube apparatus
Scheible et al. Bunch arrival-time measurement with rod-shaped pickups on a printed circuit board for X-ray freeelectron lasers
WO2023085646A1 (en) Linear accelerator having precise radiation dose control function
Marco-Hernandez et al. A new orbit system for the CERN antiproton decelerator
Dumortier et al. JET ILA full array and polychromatic operation
CN107919260A (en) The ultrafast electron microscope of super-pressure based on THERMIONIC CATHODE MICROWAVE ELECTRON GUN
CN217608030U (en) X-waveband small-focus accelerator for nondestructive testing
Brunner et al. RF power generation in LHC
Czwalinna et al. Performance Study of High Bandwidth Pickups Installed at FLASH and ELBE for Femtosecond-Precision Arrival Time Monitors
Sahakyan et al. Beam Diagnostic and Control Systems for AREAL 50 MeV Linac

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756719

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756719

Country of ref document: EP

Kind code of ref document: A1