WO2017146349A1 - 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템 - Google Patents

수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템 Download PDF

Info

Publication number
WO2017146349A1
WO2017146349A1 PCT/KR2016/013679 KR2016013679W WO2017146349A1 WO 2017146349 A1 WO2017146349 A1 WO 2017146349A1 KR 2016013679 W KR2016013679 W KR 2016013679W WO 2017146349 A1 WO2017146349 A1 WO 2017146349A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
pipe
impeller
fluid
water
Prior art date
Application number
PCT/KR2016/013679
Other languages
English (en)
French (fr)
Inventor
이종조
장진원
이우진
Original Assignee
주식회사 금강이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금강이엔지 filed Critical 주식회사 금강이엔지
Publication of WO2017146349A1 publication Critical patent/WO2017146349A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power generation system using a decompression device installed in a piping of a water supply system, and installed vertically on the bottom of the high water tank so that the water stored in the water tank provided on the roof of the building can be moved downward and supplied to each floor.
  • An impeller rotating through the fluid flowing into the pump Is formed on the inner wall of the pipe, is formed on both sides of the impeller to form a diagonal direction with respect to the impeller, is formed to have a gradually lower slope from the impeller side toward the end of the pipe, minimizing the generation of turbulence by fluid
  • a generator coupled to an end of the rotating shaft and generating electric power through the rotational force of the impeller;
  • high-rise buildings such as apartments or buildings have underground reservoirs in the basement to supply water to each floor, and high-rise tanks are installed at the top of the building to draw water from the underground reservoirs to the elevated tanks. Water is supplied to each layer as it moves to.
  • FIG. 1 is an exemplary view of a water supply facility provided in a conventional high-rise building, conventionally forcibly reducing the pressure inside the pipe for moving the water stored in the high water tank or the pipe for supplying water to each floor. Pressure reducing device must be installed.
  • Conventional decompression device is a method of reducing the pressure of the spring repulsion force is inevitable energy loss and requires repair or replacement work due to the breakage of the device there was a problem that waste unnecessary time and cost.
  • general hydroelectric power is a method of converting free energy of water into electric energy by rotating a turbine while confining seawater in a region with a large difference between a river and tidal water, and discharging the stored water.
  • High-efficiency water resources energy development method that develops small hydropower technology for the unused hydropower resources to reduce enormous initial investment cost such as dam construction cost is also generalized technology.
  • hydropower or small hydropower are different in size, they are similar in terms of converting hydro energy into electrical energy with relatively large turbine generation based on large-scale facility investment. Since the power generation method in hydro and small hydro power generation is a method of generating a turbine by using large drop energy due to a large amount of low capacity, the turbine and generator capacity at this time is very large as an industrial scale, so that water pipes of general households, It is not suitable for small-scale power generation facilities using high water pressure such as water supply pipes for apartment water supply pipes, apartments and large-scale public baths, and lower water discharge pipes for underground and underground roads.
  • the present invention has been invented to solve the above problems, the impeller installed inside the pipe can be produced by generating energy by directly rotating the rotation force through the fluid to generate energy, easy maintenance, energy loss
  • the purpose of the present invention is to provide a power generation system using a pressure reducing device installed in a pipe of a water supply facility which can produce a small amount of environmentally friendly renewable energy at relatively low cost.
  • the present invention is installed perpendicular to the bottom of the high water tank to move down the water stored in the tank provided on the roof of the building to be supplied to each floor, the fluid is introduced into both ends
  • a pipe having a water extraction portion for discharging the portion and the fluid, and a reduced-pressure power generation portion having a predetermined length formed between the water acquisition portion and the water extraction portion; It is installed inside the decompression power generation unit, and includes a cylindrical body, a rotating shaft installed to penetrate the center of the body, and a plurality of blades extending in a radial direction from the outer circumferential surface of the body, the inside of the pipe
  • An impeller rotating through the fluid flowing into the pump It is formed on the inner wall of the pipe, is formed on both sides of the impeller to form a diagonal direction with respect to the impeller, is formed to have a gradually lower slope from the impeller side toward the end of the pipe, minimizing the generation of turbulence by fluid
  • a guide vane having a concave turbulence
  • the blade is characterized in that it is formed to be inclined at a predetermined angle toward the flow direction of the fluid so as to reduce the frictional force with the inflowing fluid and increase the rotational force.
  • the pipe is characterized in that the bypass pipe for discharging the fluid passing through the water inlet by the water outlet when the closing the decompression power generation unit is provided.
  • the present invention is characterized in that when the BESS exceeds the maximum charging capacity, additionally charged charging electricity is put into the inverter to convert to AC electricity and then transferred to the utility grid to obtain a profit. .
  • the present invention made as described above is an impeller installed inside the pipe can be produced by generating energy by generating a direct rotational force while rotating through the fluid, easy to maintain, low energy loss, eco-friendly recycling at a relatively low cost It has the advantage of producing energy.
  • FIG. 1 is an exemplary view for explaining a state in which a pressure reducing device is installed in a conventional pipe.
  • Figure 2 is an illustration of a power generation system using a pressure reduction device installed in the piping of the water supply system according to the present invention.
  • 3a to 3b are illustrations of the impeller according to the invention.
  • FIG 4 is an exemplary view of a power generation system using a pressure reduction device installed in a pipe of a water supply system according to another embodiment of the present invention.
  • FIG 5 is an exemplary view of a power generation system using a pressure reduction device installed in a pipe of a water supply system according to another embodiment of the present invention.
  • the present invention can be used when the impeller installed inside the pipe of the water facility is stored in the BESS (Battery Energy Storage System: BESS) by generating energy by directly rotating the rotating force through the fluid to be used as needed, the BESS is the maximum charging If the capacity is exceeded, it is installed in the piping of the water supply facility, which is technically designed to generate profits by converting it into AC electricity, converting it into AC electricity, and transferring it to the utility grid without discharging additional charged charging electricity. It relates to a power generation system using a decompression device.
  • BESS Battery Energy Storage System
  • the present invention provides a pipe 100, an impeller 200 installed inside the pipe, a guide vane 300 formed inside the pipe, and a generator 400 connected to the impeller.
  • a DC-DC converter 500 for converting the electricity generated by the generator into a generator of a predetermined voltage
  • BESS battery energy storage device 600
  • the pipe 100 is installed vertically from the bottom of the high water tank to move down the water stored in the high water tank provided on the roof of the building to supply to each floor, the inlet for the fluid flow in both ends ( 110 and a water outlet portion 120 through which the fluid is discharged, and a reduced pressure generator 130 having a predetermined length is formed between the water inlet portion and the water outlet portion.
  • the reduced pressure generator 130 forcibly reduces the pressure in the pipe 100 to prevent the speed of the fluid passing through the pipe from decreasing, and generates electricity through the rotational force of the impeller 200 rotating through the fluid. It is formed inside the pipe to produce.
  • An impeller 200 that rotates through a fluid flowing into the pipe is installed inside the decompression power generation unit 130, and guides a path to smoothly move the inflowing fluid on both sides of the impeller and increases a flow rate.
  • the vanes 300 are formed.
  • the impeller 200 includes a cylindrical body 210, a rotating shaft 220 installed to penetrate the center of the body, and a plurality of blades 230 extending in a radial direction from an outer circumferential surface of the body. Both ends of the rotating shaft 220 are rotatably coupled to the inner wall of the pipe 100 to be fixed inside the pipe.
  • the blade 230 extends in a straight line form from an outer circumferential surface of the body so that the blade 230 may rotate by the fluid while being in contact with the fluid. As shown in FIG. It may be formed to be inclined at a predetermined angle toward the flow direction of the fluid.
  • the guide vanes 300 are formed to protrude from the inner wall of the pipe 100, are formed on both sides of the impeller 200, and are formed to face each other in a diagonal direction with respect to the impeller, and the pipe from the impeller 200 side ( It is formed to have a gradually lower slope toward the end side of 100).
  • the reason why the guide vane 300 is formed to have a lower slope gradually toward the end side of the pipe 100 is to apply the 'principle of Bernoulli, Bernoulli's principle,' according to the Bernoulli principle.
  • a large cross-sectional area has a slow flow and high pressure
  • a small cross-sectional area has a high flow and low pressure.
  • the guide vane 300 is formed with a turbulence preventing groove 310 concave in the surface facing the impeller 200 to minimize the generation of turbulence by the fluid and to prevent the formation of vortices.
  • the convex turbulence preventing groove 310 is formed on the surface of the guide vane 300 that faces the impeller 200 so that the fluid exiting after rotating the blade 230 does not hit the outer wall of the guide vane. Minimize turbulence and maintain torque.
  • the impeller 200 when the fluid is introduced into the pipe 100, the impeller 200 is rotated by the fluid to obtain rotational force, and the generator 400 connected to the impeller produces power through the rotational force of the impeller.
  • the DC-DC converter 500 converts the electricity generated from the generator into power generation electricity of a predetermined voltage
  • the BESS 600 stores the power generation electricity converted through the DC-DC converter and then distributes the power distribution network. Supply it so that it can be used when needed.
  • the present invention if the BESS 600 exceeds the maximum charge capacity as shown in FIG. 5, the charging electricity additionally charged into the inverter 700 is converted into AC electricity, and then transferred to a utility grid.
  • the utility grid refers to a power supply network that supplies electricity.
  • the power generation system or hydroelectric power generation system using a conventional pressure reducing device is a configuration that can be used if necessary by simply supplying power to the power distribution network after the rotational power, using a pressure reducing device installed in the piping of the water facility according to the present invention
  • the power generation system has a merit that the economical efficiency is remarkably excellent as a configuration to obtain a profit to the user by transmitting the overcharged charging electricity to the system.
  • the pipe 100 according to the present invention bypasses the fluid passing through the inlet to the outlet when the pressure reducing unit 130 is closed and discharges to the outlet. Is provided.
  • the bypass pipe 140 is coupled to communicate with the pipe, the gate valves 141 and 142 are coupled to both ends of the decompression power generation unit, and the bypass pipe 140 opens and closes the bypass pipe. 143 is combined.
  • the shaming power generation unit 130 may be closed due to the replacement of the impeller 200 or the cleaning of the decompression power generation unit, and in this case, the gate valve 141 coupled to the inlet side of the decompression power generation unit may be obtained.
  • the fluid passing through the part is allowed to flow along the bypass pipe without being introduced into the reduced pressure generator.
  • the gate valve 142 coupled to the outlet portion of the decompression generator, which prevents the fluid passing through the bypass pipe from flowing back to the decompression generator. It is intended to induce natural discharge to the outlet side of the.
  • the power generation system using a pressure reduction device installed in the pipe of the water supply system is a fossil by converting the pressure energy that is extinguished in the process of reducing the high pressure to low pressure in the current water pipe water supply system to electric energy It can replace a part of the electric energy obtained by burning the fuel, etc., and also has a significant advantage that can reduce the emission of carbon due to the burning of fossil fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 배관 내부에 설치되는 임펠러가 유체를 통해 회전하면서 직접 회전력을 얻어 에너지를 발생시켜 전기로 생산할 수 있으며, 유지보수가 용이하고, 에너지 손실이 적으며, 비교적 저비용으로 친환경적 재생에너지를 생산할 수 있는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템을 개시한다.

Description

수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템
본 발명은 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템에 관한 것으로, 건물의 옥상에 구비되는 수조에 저장된 물을 아래로 이동시켜 각 층에 공급할 수 있도록 상기 고가수조의 저면에 수직으로 설치되는 것으로, 양측 단부에는 유체가 유입되는 입수부 및 유체가 배출되는 출수부가 형성되고, 상기 입수부와 출수부 사이에 소정길이의 감압발전부가 형성되는 배관과; 상기 감압발전부 내부에 설치되는 것으로, 원통형의 몸체와, 상기 몸체의 중심을 관통하도록 설치되는 회전축과, 상기 몸체의 외주면으로부터 방사상 방향으로 연장형성되는 복수의 블레이드를 포함하여 이루어지며, 상기 배관 내부로 유입되는 유체를 통해 회전하는 임펠러와; 상기 배관의 내벽에 형성되는 것으로, 상기 임펠러의 양측에 형성되되 임펠러를 기준으로 대각 방향을 이루도록 형성되고, 임펠러 측으로부터 배관의 단부 측으로 갈수록 점차 낮은 경사를 갖도록 형성되며, 유체에 의한 난류발생을 최소화하고 와류가 형성되는 것을 방지할 수 있도록 임펠러와 대향하는 면에 오목한 형상의 난류방지홈이 형성되는 가이드 베인과; 상기 회전축의 단부에 결합되며, 상기 임펠러의 회전력을 통해 전력을 생산하는 발전기와; 상기 발전기로부터 발생된 전기를 기설정된 전압의 발전전기로 변환하는 DC-DC컨버터와; 상기 발전전기를 충전하는 배터리에너지저장장치(Battery Energy Storage System: BESS);를 포함하여 이루어지는 것을 특징으로 하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템에 관한 것이다.
일반적으로 종래의 아파트 또는 빌딩과 같은 고층건물은 각 층에 물을 공급하기 위해 지하에 지하저수조를 구비하고 건물의 상부에 고가수조를 설치하여 지하저수조로부터 공급되는 물을 고가수조로 끌어올려 위에서 아래로 이동시키면서 각 층에 물을 공급하게 된다.
도 1은 종래의 고층건물에 구비도는 수도시설의 예시도로서, 종래에는 고가수조에 저장된 물을 아래로 이동시키기 위한 배관 또는 각 층에 물을 공급하는 배관의 내부에 압력을 강제로 감소시키기 위한 감압장치를 반드시 설치하여야 하였다.
종래의 감압장치는 스프링의 반발력을 압력을 감소하는 방법으로써 에너지 손실이 불가피하고 장치의 파손에 따른 수리 또는 교체작업이 필요하며 이로 인해 불필요한 시간과 비용이 낭비되는 문제점이 있었다.
한편, 일반적인 수력발전은 강이나 간만의 차이가 큰 지역의 바닷물을 댐에 가두어 저수된 물을 방류시키면서 터빈을 회전시켜 물의 낙차에너지를 전기에너지로 변환하는 방식이며, 이와 함께 하수처리장과 정수장 등에서 방류되는 미활용 소수력자원에 대하여 소수력발전(small hydropower) 기술을 개발하여 댐건설비 등의 막대한 초기투자비를 크게 절감하는 경제성이 높은 수자원에너지 개발방식 역시 일반화된 기술이다.
수력발전 또는 소수력발전은 그 규모가 다르기는 하지만 대단위 설비투자를 바탕으로 비교적 큰 규모의 터빈발전으로 수력에너지를 전기에너지로 변환하는 점에서 유사하다. 이러한 수력발전 및 소수력발전에서의 발전방식은 대량의 저수용량으로 인한 큰 낙차에너지를 이용하여 터빈을 회전시켜서 발전시키는 방식이므로, 이때의 터빈 및 발전기 용량은 산업적 규모로서 매우 크기 때문에 일반 가정의 수도관, 아파트 상수도 공급관, 아파트 및 대규모 목욕탕 등 옥내외 물탱크(저수조) 하부배출관, 도로지하 매설 상수도관 등의 높은 수압을 이용한 소규모 발전 설비로는 적합하지 않은 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로, 배관 내부에 설치되는 임펠러가 유체를 통해 회전하면서 직접 회전력을 얻어 에너지를 발생시켜 전기로 생산할 수 있으며, 유지보수가 용이하고, 에너지 손실이 적으며, 비교적 저비용으로 친환경적 재생에너지를 생산할 수 있는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템을 제공하는데 그 목적이 있다.
상기와 같은 목적을 위하여 본 발명은 건물의 옥상에 구비되는 수조에 저장된 물을 아래로 이동시켜 각 층에 공급할 수 있도록 상기 고가수조의 저면에 수직으로 설치되는 것으로, 양측 단부에는 유체가 유입되는 입수부 및 유체가 배출되는 출수부가 형성되고, 상기 입수부와 출수부 사이에 소정길이의 감압발전부가 형성되는 배관과; 상기 감압발전부 내부에 설치되는 것으로, 원통형의 몸체와, 상기 몸체의 중심을 관통하도록 설치되는 회전축과, 상기 몸체의 외주면으로부터 방사상 방향으로 연장형성되는 복수의 블레이드를 포함하여 이루어지며, 상기 배관 내부로 유입되는 유체를 통해 회전하는 임펠러와; 상기 배관의 내벽에 형성되는 것으로, 상기 임펠러의 양측에 형성되되 임펠러를 기준으로 대각 방향을 이루도록 형성되고, 임펠러 측으로부터 배관의 단부 측으로 갈수록 점차 낮은 경사를 갖도록 형성되며, 유체에 의한 난류발생을 최소화하고 와류가 형성되는 것을 방지할 수 있도록 임펠러와 대향하는 면에 오목한 형상의 난류방지홈이 형성되는 가이드 베인과; 상기 회전축의 단부에 결합되며, 상기 임펠러의 회전력을 통해 전력을 생산하는 발전기와; 상기 발전기로부터 발생된 전기를 기설정된 전압의 발전전기로 변환하는 DC-DC컨버터와; 상기 발전전기를 충전하는 배터리에너지저장장치(Battery Energy Storage System: BESS);를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 발명에서 상기 블레이드는 유입되는 유체와의 마찰력을 줄이고 회전력을 증가시킬 수 있도록 유체의 흐르는 방향 측으로 소정의 각도로 경사지게 형성되는 것을 특징으로 한다.
또한, 본 발명에서 상기 배관에는 상기 감압발전부를 폐쇄하였을 때 상기 입수부를 통과한 유체를 출수부로 우회시켜 배출하기 위한 바이패스관이 구비되는 것을 특징으로 한다.
또한, 본 발명은 상기 BESS가 최대충전용량을 초과하는 경우, 추가적으로 충전되는 충전전기는 인버터에 투입하여 AC전기로 변환한 다음 계통(Utility grid)으로 전송하여 수익을 얻을 수 있도록 한 것을 특징으로 한다.
상기와 같이 이루어지는 본 발명은 배관 내부에 설치되는 임펠러가 유체를 통해 회전하면서 직접 회전력을 얻어 에너지를 발생시켜 전기로 생산할 수 있으며, 유지보수가 용이하고, 에너지 손실이 적으며, 비교적 저비용으로 친환경적 재생에너지를 생산할 수 있는 장점이 있다.
또한, 상기 BESS가 최대충전용량을 초과하는 경우 추가적으로 충전되는 충전전기를 방전시키기 않고, 인버터에 투입하여 AC전기로 변환한 다음 계통(Utility grid)으로 전송하여 수익을 창출할 수 있는 경제적인 장점이 있다.
도 1은 종래의 배관 내부에 감압장치가 설치된 상태를 설명하기 위한 예시도.
도 2는 본 발명에 따른 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템의 예시도.
도 3a 내지 3b는 본 발명에 따른 임펠러의 예시도.
도 4는 본 발명의 다른 실시예에 따른 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템의 예시도.
도 5는 본 발명의 또 다른 실시예에 따른 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템의 예시도.
이하, 첨부된 도면을 참조하면서 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템에 대하여 더욱 상세하게 설명하도록 한다.
본 발명은 수도시설의 배관 내부에 설치되는 임펠러가 유체를 통해 회전하면서 직접 회전력을 얻어 에너지를 발생시켜 BESS(Battery Energy Storage System: BESS)에 저장되었다가 필요시 사용할 수 있고, 상기 BESS가 최대충전용량을 초과하는 경우 추가적으로 충전되는 충전전기를 방전시키기 않고 인버터에 투입하여 AC전기로 변환한 다음 계통(Utility grid)으로 전송함으로써 수익을 창출할 수 있도록 한 것을 기술적 특징으로하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템에 관한 것이다.
도 2를 참조하면, 본 발명은 배관(100)과, 상기 배관 내부에 설치되는 임펠러(200)와, 상기 배관 내부에 형성되는 가이드 베인(300)과, 상기 임펠러와 연결되는 발전기(400)와, 상기 발전기로부터 발생된 전기를 기설정된 전압의 발전전기로 변환하는 DC-DC컨버터(500) 및 상기 발전전기를 충전하는 배터리에너지저장장치(600)(Battery Energy Storage System, 이하 BESS)를 포함하여 이루어진다.
상기 배관(100)은 건물의 옥상에 구비되는 고가수조에 저장된 물을 아래로 이동시켜 각 층에 공급할 수 있도록 상기 고가수조의 저면으로부터 수직으로 설치되는 것으로, 양측 단부에는 유체가 유입되는 입수부(110) 및 유체가 배출되는 출수부(120)가 형성되고, 상기 입수부와 출수부 사이에는 소정길이의 감압발전부(130)가 형성된다.
상기 감압발전부(130)는 배관(100) 내부의 압력을 강제로 감소시켜 배관 내부를 통과하는 유체의 속도가 저하되는 것을 방지하고, 유체를 통해 회전하는 임펠러(200)의 회전력을 통해 발전전기를 생산하기 위해 상기 배관 내부에 형성된다.
상기 감압발전부(130) 내부에는 상기 배관 내부로 유입되는 유체를 통해 회전하는 임펠러(200)가 설치되고, 상기 임펠러의 양측에는 유입되는 유체가 원활하게 이동하도록 경로를 가이드하고 유속을 증가시키는 가이드 베인(300)이 형성된다.
상기 임펠러(200)는 원통형의 몸체(210)와, 상기 몸체의 중심을 관통하도록 설치되는 회전축(220)과, 상기 몸체의 외주면으로부터 방사상 방향으로 연장형성되는 복수의 블레이드(230)를 포함하여 이루어지며, 상기 회전축(220)의 양측 단부가 배관(100)의 내벽에 회전 가능하도록 결합되어 배관 내부에 고정된다.
도 3a와 같이 상기 블레이드(230)가 연장되는 방향은 유체와 접촉하면서 유체에 의해 회전할 수 있도록 몸체의 외주면으로부터 직선형으로 형성되되, 도 3b와 같이 유입되는 유체와의 마찰력을 줄이고 회전력을 증가시킬 수 있도록 유체의 흐르는 방향 측으로 소정의 각도로 경사지게 형성될 수 있다.
유체가 상기 배관(100) 내부에서 적정 속도로 이동하는 경우 유속의 저하를 염려할 필요는 없으나 빠른 속도로 이동하는 경우 상기 블레이드(230)가 직선형으로 형성되어 있으면 유체가 블레이드(230)와 부딪히면서 유속이 감소하거나 임펠러의 회전력이 감소하는 문제점이 발생할 수 있다. 이러한 경우 도 3b와 같이 블레이드(230)를 유체의 흐르는 방향 측으로 소정 각도로 경사지게 형성하면 유체가 블레이드의 내주면에 자연스럽게 감싸지는 형태로 유입되면서 임펠러를 회전시킬 수 있으므로 유속이나 임펠러의 회전력을 그대로 유지할 수 있다.
상기 가이드 베인(300)은 상기 배관(100)의 내벽으로부터 돌출형성되며, 상기 임펠러(200)의 양측에 형성되되 임펠러를 기준으로 서로 대각방향으로 마주보도록 형성되고, 임펠러(200) 측으로부터 배관(100)의 단부 측으로 갈수록 점차 낮은 경사를 갖도록 형성된다.
상기 가이드 베인(300)이 배관(100)의 단부 측으로 갈수록 점차 낮은 경사를 갖도록 형성한 이유는 '베르누이 원리(principle of Bernoulli, Bernoulli’s principle)'를 적용하기 위한 것으로, 베르누이 원리에 따르면 벤투리관을 흐르는 유체가 단면적이 큰 곳과 작은 곳을 흐를 때, 단면적이 큰 곳은 유체의 흐름이 느리고 압력은 높으며, 단면적이 작은 곳은 유체의 흐름이 빠르고 압력은 낮다는 것을 알 수 있다.
즉, 상기 입수부(110)를 통과한 유체가 가이드 베인(300)으로 진입할 때 배관(100)의 내경이 점차 좁아지도록 하여 자연스럽게 유속은 증가시키고 압력은 낮출 수 있게 된다.
또한, 상기 가이드 베인(300)은 유체에 의한 난류발생을 최소화하고 와류가 형성되는 것을 방지할 수 있도록 임펠러(200)와 대향하는 면에 오목하게 파인 난류방지홈(310)이 형성된다.
상기 블레이드(230)를 회전시킨 후 블레이드로부터 빠져나가는 유체가 상기 가이드 베인(300)의 외벽에 부딪히게 되면 난류가 발생하면서 임펠러(200)의 회전력이 저하되는 문제점이 발생할 수 있다. 따라서, 상기 가이드 베인(300)의 임펠러(200)와 대향하는 면에 오목한 형상의 난류방지홈(310)을 형성하여 블레이드(230)를 회전시킨 후 빠져나온 유체가 가이드베인의 외벽에 부딪히지 않도록 하여 난류발생을 최소화하고 회전력을 유지하도록 한다.
본 발명은 상기 배관(100) 내부에 유체가 유입되면 임펠러(200)가 유체에 의해 회전하면서 회전력을 얻게 되고, 임펠러와 연결된 발전기(400)가 임펠러의 회전력을 통해 전력을 생산하게 된다. 상기 DC-DC컨버터(500)는 발전기로부터 발생된 전기를 기설정된 전압의 발전전기로 변환하고, 상기 BESS(600)는 DC-DC컨버터를 통해 변환된 발전전기를 저장하였다가 배전(配電)망에 공급하여 필요시 사용할 수 있도록 한다.
또한, 본 발명은 도 5와 같이 상기 BESS(600)가 최대충전용량을 초과하는 경우 추가적으로 충전되는 충전전기를 인버터(700)에 투입하여 AC전기로 변환한 다음 계통(Utility grid)으로 전송하여 수익을 얻을 수도 있다. 여기에서, 계통(Utility grid)라 함은 전기를 공급해주는 급전(給電)망을 말한다.
종래의 감압장치를 이용한 발전시스템 또는 수력발전장치가 단순히 회전력을 통해 전력을 생산한 다음 배전망에 공급하여 필요시 사용할 수 있는 구성이었다면, 본 발명에 따른 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템은 과충전되는 충전전기를 계통으로 전송하여 사용자에게 수익을 얻을 수 있도록 하는 구성으로서 경제성이 현저히 우수한 장점을 갖는다.
다음으로, 도 4를 참조하면, 본 발명에 따른 상기 배관(100)에는 상기 감압발전부(130)를 폐쇄하였을 때 상기 입수부를 통과한 유체를 출수부로 우회시켜 배출하기 위한 바이패스관(140)이 구비된다.
상기 바이패스관(140)은 상기 배관과 연통되도록 결합되고, 상기 감압발전부의 양측 단부에는 게이트밸브(141,142)가 결합되며, 상기 바이패스관(140)에는 바이패스관을 개폐하기 위한 바이패스밸브(143)가 결합된다.
상기 감암발전부(130)는 임펠러(200)의 교체나 감압발전부 내부의 세척 등의 이유로 폐쇄할 수 있으며, 이러한 경우 상기 감압발전부의 입수부 측에 결합된 게이트밸브(141)를 차단하여 입수부를 통과한 유체가 감압발전부로 유입되지 않고 바이패스관을 따라 흐르도록 한다.
상기 감압발전부 폐쇄시에는 상기 감압발전부의 출수부 측에 결합된 게이트밸브(142) 역시 차단하는 것이 바람직한데, 이는 상기 바이패스관을 통과한 유체가 감압발전부 측으로 역류하는 것을 방지하고, 배관의 출수부 측으로 자연스럽게 배출되도록 유도하기 위한 것이다.
이상의 설명에서와 같이, 본 발명에 따른 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템은 현재의 수도관 급수 시스템에서 고압을 저압으로 감압하는 과정에서 소멸되고 있는 압력에너지를 전기에너지로 변환함으로써 화석연료 등을 연소시켜 얻었던 전기에너지의 일부를 대체할 수 있고, 아울러 화석연료의 연소에 따른 탄소의 배출을 줄일 수 있는 현저한 장점이 있다.
[부호의 설명]
100 : 배관
110 : 입수부
120 : 출수부
130 : 감압발전부
140 : 바이패스관
141,142 : 게이트밸브
143 : 바이패스밸브
200 : 임펠러
210 : 몸체
220 : 회전축
230 : 블레이드
300 : 가이드베인
310 : 난류방지홈
400 : 발전기
500 : DC-DC컨버터
600 : 배터리에너지저장장치
700 : 인버터

Claims (4)

  1. 건물의 옥상에 구비되는 수조에 저장된 물을 아래로 이동시켜 각 층에 공급할 수 있도록 상기 고가수조의 저면에 수직으로 설치되는 것으로, 양측 단부에는 유체가 유입되는 입수부 및 유체가 배출되는 출수부가 형성되고, 상기 입수부와 출수부 사이에 소정길이의 감압발전부가 형성되는 배관(100)과;
    상기 감압발전부 내부에 설치되는 것으로, 원통형의 몸체와, 상기 몸체의 중심을 관통하도록 설치되는 회전축과, 상기 몸체의 외주면으로부터 방사상 방향으로 연장형성되는 복수의 블레이드를 포함하여 이루어지며, 상기 배관 내부로 유입되는 유체를 통해 회전하는 임펠러(200)와;
    상기 배관의 내벽에 형성되는 것으로, 상기 임펠러의 양측에 형성되되 임펠러를 기준으로 대각 방향을 이루도록 형성되고, 임펠러 측으로부터 배관의 단부 측으로 갈수록 점차 낮은 경사를 갖도록 형성되며, 유체에 의한 난류발생을 최소화하고 와류가 형성되는 것을 방지할 수 있도록 임펠러와 대향하는 면에 오목한 형상의 난류방지홈이 형성되는 가이드 베인(300)과;
    상기 회전축의 단부에 결합되며, 상기 임펠러의 회전력을 통해 전력을 생산하는 발전기(400)와;
    상기 발전기로부터 발생된 전기를 기설정된 전압의 발전전기로 변환하는 DC-DC컨버터(500)와;
    상기 발전전기를 충전하는 배터리에너지저장장치(Battery Energy Storage System: BESS)(600);
    를 포함하여 이루어지는 것을 특징으로 하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템.
  2. 제1항에 있어서, 상기 블레이드는 유입되는 유체와의 마찰력을 줄이고 회전력을 증가시킬 수 있도록 유체의 흐르는 방향 측으로 소정의 각도로 경사지게 형성되는 것을 특징으로 하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템.
  3. 제1항에 있어서, 상기 배관에는 상기 감압발전부를 폐쇄하였을 때 상기 입수부를 통과한 유체를 출수부로 우회시켜 배출하기 위한 바이패스관이 구비되는 것을 특징으로 하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템.
  4. 제1항에 있어서, 상기 BESS가 최대충전용량을 초과하는 경우 추가적으로 충전되는 충전전기를 인버터에 투입하여 AC전기로 변환한 다음 계통(Utility grid)으로 전송하여 수익을 얻을 수 있도록 한 것을 특징으로 하는 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템.
PCT/KR2016/013679 2016-02-23 2016-11-25 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템 WO2017146349A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160021342A KR101769080B1 (ko) 2016-02-23 2016-02-23 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템
KR10-2016-0021342 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017146349A1 true WO2017146349A1 (ko) 2017-08-31

Family

ID=59685360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013679 WO2017146349A1 (ko) 2016-02-23 2016-11-25 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템

Country Status (2)

Country Link
KR (1) KR101769080B1 (ko)
WO (1) WO2017146349A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480915A1 (fr) * 2017-11-06 2019-05-08 Vanbaleghem, Marc Installation de recharge de véhicules électriques equipée d'une turbogénératrice exploitant les réseaux de fluides
WO2019240593A1 (en) * 2018-06-15 2019-12-19 Equinor Energy As Method of generating electricity
CN112997000A (zh) * 2018-09-07 2021-06-18 金成植 水轮旋转体管涡轮机及管转子涡轮机被多级串联安装的水力发电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052479A (ko) 2017-11-08 2019-05-16 주식회사 금성이앤씨 고압 관로의 감압형 수력 에너지 회수장치
KR102208524B1 (ko) * 2018-09-07 2021-01-27 김성식 수차회전체 관로지지형 관로터빈과 관로터빈을 다단으로 직렬 설치한 수력 발전장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036736U (ja) * 1996-10-11 1997-05-02 大野重電土木株式会社 水道力発電装置
JP2003254220A (ja) * 2002-02-26 2003-09-10 Oki Electric Ind Co Ltd 発電装置
JP2011076444A (ja) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd 配電装置
KR101082013B1 (ko) * 2011-04-26 2011-11-10 이종조 배관에 설치되는 감압장치를 이용한 발전시스템
KR101381022B1 (ko) * 2013-07-16 2014-04-04 주성훈 관로 발전 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036736B2 (ja) * 1995-12-27 2000-04-24 川崎製鉄株式会社 タンクローリへの出荷方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036736U (ja) * 1996-10-11 1997-05-02 大野重電土木株式会社 水道力発電装置
JP2003254220A (ja) * 2002-02-26 2003-09-10 Oki Electric Ind Co Ltd 発電装置
JP2011076444A (ja) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd 配電装置
KR101082013B1 (ko) * 2011-04-26 2011-11-10 이종조 배관에 설치되는 감압장치를 이용한 발전시스템
KR101381022B1 (ko) * 2013-07-16 2014-04-04 주성훈 관로 발전 장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480915A1 (fr) * 2017-11-06 2019-05-08 Vanbaleghem, Marc Installation de recharge de véhicules électriques equipée d'une turbogénératrice exploitant les réseaux de fluides
FR3073335A1 (fr) * 2017-11-06 2019-05-10 Marc Vanbaleghem Installation de recharge de vehicules electriques equipee d'une turbogeneratrice exploitant les reseaux de fluides
WO2019240593A1 (en) * 2018-06-15 2019-12-19 Equinor Energy As Method of generating electricity
CN112997000A (zh) * 2018-09-07 2021-06-18 金成植 水轮旋转体管涡轮机及管转子涡轮机被多级串联安装的水力发电装置
US11719215B2 (en) 2018-09-07 2023-08-08 Seongsik KIM Conduit turbine for supporting conduit of water wheel rotational body, and hydroelectric generator having conduit turbines serially provided in multiple levels
US11959451B2 (en) 2018-09-07 2024-04-16 Seongsik KIM Pumped-storage hydropower generation tower employing conduit turbines installed in multiple stages
CN112997000B (zh) * 2018-09-07 2024-05-24 金成植 水轮旋转体管涡轮机及管转子涡轮机被多级串联安装的水力发电装置

Also Published As

Publication number Publication date
KR101769080B1 (ko) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2017146349A1 (ko) 수도시설의 배관 내에 설치되는 감압장치를 이용한 발전시스템
WO2014168287A1 (ko) 간이 수력 발전장치
US7501712B2 (en) Process for using waste water from community sewer systems to generate electrical power
CN101603303A (zh) 一种水力真空发电站
WO2012165789A2 (ko) 하수방류관용 수력발전장치
CN108644058A (zh) 一种超低水头水力发电机
WO2016133294A1 (ko) 관로용 수력 발전장치
WO2016129836A1 (ko) 하천용 수력 발전장치
CN101886378A (zh) 一种水力真空发电站
CN202500710U (zh) 生活废水水力发电装置
CN208686517U (zh) 一种引水工程中多级水轮发电系统
WO2013048007A2 (ko) 고효율 다단 조류 발전기 및 복합 발전 시스템
CN101666079A (zh) 一种槽渠水力集群式发电站
WO2011019094A1 (ko) 유체 배관을 이용한 발전장치
WO2012077890A1 (ko) 유수에 설치되는 소수력 발전기
CN109162855B (zh) 一种涡扇水轮加力发电系统
CN101865070A (zh) 一种管道式水力循环发电站
CN106836156A (zh) 水电站离心式水力发电系统
CN108953041B (zh) 一种运用波浪能发电装置
WO2013012137A1 (ko) 파력발전시스템
WO2020235842A1 (ko) 건물형 양수발전시스템
Suryatna et al. Prototype design of waterwheel micro hydro power plants for small water discharge
CN207047804U (zh) 中等流量江河激流式水力发电系统
CN101603496A (zh) 管道式水力循环发电站和发电机组
Suryatna Design Micro Hydro Power Plant for Generate Electrical Energy About 3000 to 5000 Watt

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891751

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891751

Country of ref document: EP

Kind code of ref document: A1