WO2017146284A1 - Method for making 3d printing structure using reinforcement and composite - Google Patents
Method for making 3d printing structure using reinforcement and composite Download PDFInfo
- Publication number
- WO2017146284A1 WO2017146284A1 PCT/KR2016/001886 KR2016001886W WO2017146284A1 WO 2017146284 A1 WO2017146284 A1 WO 2017146284A1 KR 2016001886 W KR2016001886 W KR 2016001886W WO 2017146284 A1 WO2017146284 A1 WO 2017146284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reinforcing
- printing
- reinforcement
- truss
- target
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C37/00—Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/02—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
Definitions
- the present invention relates to a 3D printing structure manufacturing method using a reinforcing material and a composite material, and more particularly, to a 3D printing structure manufacturing method for reinforcing a core output through 3D printing using a reinforcing material and a composite material.
- the 3D printer is a printer that produces three-dimensional sculptures using plastic powder, metal components, and polymer composite materials based on a three-dimensional design, and was originally developed to produce prototypes before manufacturing products.
- the 3D printers are becoming more diverse, and the use of the 3D printer is expanding endlessly.
- products printed with 3D printers are still lacking in terms of strength, and are supplemented by adding other materials.
- Composite materials are made of macroscopic mixtures of two or more materials with different properties (reinforcement materials and matrix materials). They can form composite materials of various physical properties according to their combination and ratio. In addition, it has the advantage of reducing the number of parts by integrating a complicated shape and various parts while solving the fatigue damage problem of metal structures due to its flexibility and resistance to vibration. Developing composite materials is one of the future industries as a way to reduce carbon dioxide emissions, a global issue through fuel economy, by reducing the weight of composite materials in aircraft and automobiles.
- the present invention provides a method for manufacturing a structure reinforced with a 3D printing structure by printing the core of the structure through a 3D printer and composite molding and ceramic coating on the outer surface, thereby increasing the lightness and strength.
- the present invention provides a method for manufacturing a structure that reinforces a 3D printed structure by reinforcing an additional structure in a skeleton based on a truss structure so as to reinforce the inside of the 3D printed core, thereby improving bearing capacity in the core.
- the present invention reinforces the interior of the 3D printed core using a reinforcing structure, and after forming a composite material to remove all or part of the reinforcing structure, thereby improving the support structure inside the core 3D printing structure that can reduce the weight of the target structure It provides a structure manufacturing method reinforced with.
- 3D printing structure manufacturing method the step of 3D printing the core frame of the target structure, the step of reinforcing the interior of the core frame with a predetermined reinforcement structure, of the target structure reinforced with the reinforcement structure Molding a surface using a composite material, removing a predetermined reinforcing structure from among the reinforcing structures inside the target structure in which the composite is molded, and using a predetermined coating material on the surface of the target structure from which the predetermined reinforcing structure is removed. And coating.
- the reinforcing may include reinforcing the inside of the target structure with a plurality of triangular wave structures having a predetermined displacement difference.
- the intersection of the plurality of triangular wave structure can be fastened using fastening means.
- the reinforcing step may include the first step of reinforcing the interior of the target structure with a truss structure and the second step of reinforcing the triangular inside of the truss structure with a circular structure. have.
- the reinforcing step may include the step of reinforcing the inside of the lower triangular shape of the structure to the polygonal structure.
- the structure reinforcing the 3D printing structure that can improve the bearing capacity inside the core A manufacturing method is provided.
- the reinforcement structure by reinforcing the interior of the 3D printed core using the reinforcement structure, and after forming the composite material to remove all or part of the reinforcement structure, to reduce the weight of the target structure while improving the bearing capacity inside the core.
- FIG. 1 is a flowchart illustrating a method of manufacturing a 3D printing structure according to an embodiment of the present invention.
- FIG. 2 is a view showing an aircraft wing and its cross-sectional shape for explaining an embodiment of the present invention.
- Figure 3 is a view showing an embodiment of the reinforcement inside and the cross section of the aircraft wing according to the prior art.
- FIG. 4 is a view showing an embodiment of the cross section and the inner truss structure of the aircraft wing according to the prior art.
- FIG. 5 is a view for explaining the process of reinforcing the cylindrical structure to the triangular structure inside the aircraft wing according to an embodiment of the present invention.
- FIG. 6 is a view of applying a reinforcing structure reinforcing the truss structure inside the aircraft wing according to an embodiment of the present invention.
- FIG. 7 is a view illustrating a reinforcing structure in which a truss structure is reinforced by using cylindrical and polygonal structures in an aircraft wing according to an embodiment of the present invention.
- FIG. 8 is a view showing a reinforcing structure in which a double truss structure is reinforced inside an aircraft wing according to an exemplary embodiment of the present invention.
- FIG. 1 is a flowchart illustrating a method of manufacturing a 3D printing structure according to an embodiment of the present invention.
- a core frame of a target structure may be output to a 3D printer.
- a target structure to manufacture a target structure, by outputting the core frame of the target structure through a 3D printer, easily and easily manufacture difficult shapes by machining, the design change is relatively free, customer opinion It can actively reflect, and can increase the supply rate of structures with increasing demand can occur.
- the inside of the core frame may be reinforced with a predetermined reinforcement structure.
- the process of reinforcing the reinforcing structure may be made at the same time as the output of the core frame to the 3D printer, or may be made through a separate process.
- the material of the reinforcing structure may also be selectively applied to the same material as the core frame or a separate material.
- the predetermined reinforcing structure may be utilized in various forms of reinforcing structures ranging from the reinforcing structure using the reinforcing material of the truss structure to various structures modified therefrom, and these embodiments will be described in more detail below.
- the surface of the 3D printed target structure can be molded using a composite material.
- the target structure is the wing structure of the aircraft, if you want to produce it through the manufacturing method of the present invention, after outputting the aircraft wing structure through a 3D printer, the outer surface to reinforce the strength, such as glass fiber, carbon fiber, etc. It can be molded into a composite material.
- a predetermined reinforcement structure may be removed from the reinforcement structures inside the target structure in which the composite material is molded. That is, after the composite molding is made, since the strength of the target structure is substantially supplemented, it is possible to remove the predetermined reinforcing structure of the reinforcing structure reinforced in the step 120 to reduce unnecessary weight increase of the target structure.
- the predetermined reinforcement structure may be all or part of the reinforcement structure reinforced in step 120, it may vary depending on the manufacturing environment.
- the surface of the target structure from which the reinforcement structure is set in step 140 may be coated using a predetermined coating material.
- a predetermined coating material may be one of ceramic and paint, and various materials may be used depending on the manufacturing environment.
- FIG. 2 is a view showing an aircraft wing and its cross-sectional shape for explaining an embodiment of the present invention
- Figure 3 is a view showing an embodiment of the cross section and the internal reinforcement of the aircraft wing according to the prior art
- Figure 4 is a view showing an embodiment of the cross section and the inner truss structure of the aircraft wing according to the prior art.
- Figure 2 shows a portion of the aircraft wing, the shape 220 of each part in the process of manufacturing and combining the aircraft wing by part is formed with a gentle curve.
- the surface of the aircraft wing 210 is laminated in multiple layers, and as shown in the cross-section 220, the inside is using the reinforcement material from the outside Reinforcement was used to withstand pressure.
- the reinforcing structures are arranged in a line, and as shown in FIG. 4, the reinforcing structures have been widely used as truss structures in which the reinforcing structures are continuously arranged in an oblique shape.
- FIG. 5 is a view for explaining the process of reinforcing the cylindrical structure to the triangular structure inside the aircraft wing according to an embodiment of the present invention.
- the reinforcing structure of the column shape 240 is inserted into the triangular column shape to compensate for this. It is possible to implement a more reinforced form of reinforcement structure.
- FIG. 6 is a view of applying a reinforcing structure reinforcing the truss structure inside the aircraft wing according to an embodiment of the present invention.
- the reinforcing structure As shown in FIG. 6, it is most effective to use the reinforcing structure when the upper and lower surfaces of the structure are close to a straight line, and when the shape of some or all of the surface of the structure is curved, another type of reinforcing structure may be used. .
- Reinforcing step 140 of the present invention for this purpose, including the first step of reinforcing the interior of the structure to the truss structure and the second step of reinforcing the triangular inside of the truss structure as a circular structure, the reinforcement The structure can be implemented.
- FIG. 7 is a view illustrating a reinforcing structure in which a truss structure is reinforced by using cylindrical and polygonal structures in an aircraft wing according to an embodiment of the present invention.
- reinforcing step 140 the first step of reinforcing the inside of the structure with a truss structure, the second step of reinforcing the inside of the upper triangular shape of the truss structure with a circular structure and
- the shape of the reinforcing structure may be implemented by including reinforcing the inside of the lower triangular shape of the truss structure with a polygonal structure.
- FIG. 8 is a view showing a reinforcing structure in which a double truss structure is reinforced inside an aircraft wing according to an exemplary embodiment of the present invention.
- the existing truss structure has a triangular wave shape, and when an additional triangular wave shape structure is applied so that the triangular wave does not overlap, an internal reinforcement structure having a double truss structure may be implemented. Therefore, the internal supporting force can be further strengthened through such a shape, and the double truss structure has been described in FIG.
- the reinforcing step 140 may reinforce the inside of the structure with a plurality of triangular wave structures having a predetermined displacement difference.
- the intersection of the plurality of triangular wave structures may be fastened by using fastening means, so that the bearing force between the structures may be further strengthened.
- the structure manufacturing method reinforcing the 3D printing structure to enhance the light and strength This may be provided.
- the method of manufacturing a 3D printing structure according to an embodiment of the present invention may be recorded in a computer readable medium including program instructions for performing various computer-implemented operations.
- the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
- the medium or program instructions may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
- Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
- Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
Abstract
Disclosed is a method for making a 3D printing structure using a reinforcement and a composite. A method for making a 3D printing structure comprises the steps of: 3D printing a core frame of a structure; molding a surface of the structure by using a composite; coating the surface molded with the composite by using ceramic; and reinforcing the inside of the structure with a predetermined reinforcement structure.
Description
본 발명은 보강재 및 복합재를 활용한 3D 프린팅 구조물 제조 방법에 관한 것으로 특히, 3D 프린팅을 통해 출력된 코어를 보강재 및 복합재를 이용하여 보강하는 3D 프린팅 구조물 제조 방법에 관한 것이다.The present invention relates to a 3D printing structure manufacturing method using a reinforcing material and a composite material, and more particularly, to a 3D printing structure manufacturing method for reinforcing a core output through 3D printing using a reinforcing material and a composite material.
3D 프린터는 3차원 설계도를 바탕으로 플라스틱 가루나 금속성분, 고분자 복합 소재 등을 이용해 입체적인 조형물을 만들어 내는 프린터로서, 본래 기업에서 물건을 제품화기 전에 시제품을 만들기 위한 용도로 개발되었다. 그러나 최근에는 3D 프린터의 활용도가 더욱 다양해지고 있으며, 총기에서 전투기까지 그 사용처가 끝없이 확대되고 있다. 다만, 3D 프린터로 프린팅된 제품은 강도면에서 아직 부족한 점이 있어 기타 소재를 부가하여 이를 보완하고 있다.The 3D printer is a printer that produces three-dimensional sculptures using plastic powder, metal components, and polymer composite materials based on a three-dimensional design, and was originally developed to produce prototypes before manufacturing products. However, in recent years, the utilization of 3D printers is becoming more diverse, and the use of the 3D printer is expanding endlessly. However, products printed with 3D printers are still lacking in terms of strength, and are supplemented by adding other materials.
복합소재는 성질이 다른 두 가지 이상의 물질(강화재, 기지재)이 거시적으로 혼합되어 만든 소재로, 조합 및 비율에 따라 다양한 물성의 복합소재를 형성 할 수 있어, 무게는 낮추면서 강도를 높일 수 있으며, 유연성이 크고 진동에 강해 금속 구조물의 피로파손문제를 해소하는 한편, 복잡한 형상 및 여러 부품의 일체화로 부품 수를 줄일 수 있는 장점이 있다. 항공기나 자동차 등에 복합소재를 사용하여 무게를 줄임으로써, 연비절약을 통해 전 세계적 이슈인 이산화탄소 방출을 줄이기 위한 방안으로 복합소재 개발은 미래 산업 중 하나로 꼽힌다.Composite materials are made of macroscopic mixtures of two or more materials with different properties (reinforcement materials and matrix materials). They can form composite materials of various physical properties according to their combination and ratio. In addition, it has the advantage of reducing the number of parts by integrating a complicated shape and various parts while solving the fatigue damage problem of metal structures due to its flexibility and resistance to vibration. Developing composite materials is one of the future industries as a way to reduce carbon dioxide emissions, a global issue through fuel economy, by reducing the weight of composite materials in aircraft and automobiles.
종래에도 보강재 투입수단이 구비된 3D 프린터(한국공개특허 10-2016-0010202)등과 같이 3D 프린터를 통한 프린팅 시 보강재가 함께 토출되도록 하는 구성이 개시되어 있으나, 항공기의 날개 등 대형 구조물을 제조하기 위해 복합재, 보강재 등이 효율적으로 적용되기에는 부족함이 있었다.Conventionally, a configuration is disclosed in which a reinforcement is discharged together when printing through a 3D printer such as a 3D printer equipped with reinforcement input means (Korea Patent Publication No. 10-2016-0010202), but to manufacture a large structure such as a wing of an aircraft. Composites, reinforcements, etc. were not enough to be applied efficiently.
따라서, 복합재를 통해 구조물을 보강하고, 최적화된 구조의 보강재를 통해 구조물의 강도를 보강하는 3D 프린팅 구조물 제조 방법에 관한 연구가 요구된다.Therefore, there is a need for a method of manufacturing a 3D printed structure that reinforces a structure through a composite material and reinforces the strength of the structure through an optimized reinforcement material.
본 발명은 3D 프린터를 통해 구조물의 코어를 프린팅하고 외면을 복합재 성형 및 세라믹 코팅함으로써, 가벼우면서도 강도를 강화할 수 있도록 3D 프린팅 구조물을 보강한 구조물 제조 방법을 제공한다.The present invention provides a method for manufacturing a structure reinforced with a 3D printing structure by printing the core of the structure through a 3D printer and composite molding and ceramic coating on the outer surface, thereby increasing the lightness and strength.
본 발명은 3D 프린팅된 코어의 내부를 보강할 수 있도록 트러스 구조를 기반으로 한 골격에 추가 구조물을 보강함으로써, 코어 내부의 지지력을 향상시킬 수 있는 3D 프린팅 구조물을 보강한 구조물 제조 방법을 제공한다.The present invention provides a method for manufacturing a structure that reinforces a 3D printed structure by reinforcing an additional structure in a skeleton based on a truss structure so as to reinforce the inside of the 3D printed core, thereby improving bearing capacity in the core.
본 발명은 3D 프린팅된 코어의 내부를 보강 구조물을 이용하여 보강하고, 복합재를 성형한 후 보강 구조물의 전부 또는 일부를 제거함으로써, 코어 내부의 지지력을 향상시키면서 타겟 구조물을 경량화 할 수 있는 3D 프린팅 구조물을 보강한 구조물 제조 방법을 제공한다.The present invention reinforces the interior of the 3D printed core using a reinforcing structure, and after forming a composite material to remove all or part of the reinforcing structure, thereby improving the support structure inside the core 3D printing structure that can reduce the weight of the target structure It provides a structure manufacturing method reinforced with.
본 발명의 일실시예에 따른 3D 프린팅 구조물 제조 방법은, 타겟 구조물의 코어 프레임을 3D 프린팅하는 단계, 상기 코어 프레임의 내부를 기설정된 보강 구조물로 보강하는 단계, 상기 보강 구조물로 보강된 타겟 구조물의 표면을 복합재를 이용하여 성형하는 단계, 상기 복합재를 성형한 타겟 구조물 내부의 상기 보강 구조물 중 기설정된 보강 구조물을 제거하는 단계 및 상기 기설정된 보강 구조물을 제거한 타겟 구조물의 표면을 기설정된 코팅물질을 이용하여 코팅하는 단계를 포함한다.3D printing structure manufacturing method according to an embodiment of the present invention, the step of 3D printing the core frame of the target structure, the step of reinforcing the interior of the core frame with a predetermined reinforcement structure, of the target structure reinforced with the reinforcement structure Molding a surface using a composite material, removing a predetermined reinforcing structure from among the reinforcing structures inside the target structure in which the composite is molded, and using a predetermined coating material on the surface of the target structure from which the predetermined reinforcing structure is removed. And coating.
본 발명의 일측면에 따르면, 상기 보강하는 단계는, 상기 타겟 구조물의 내부를 기설정된 변위차를 갖는 복수의 삼각파동 구조물로 보강할 수 있다.According to an aspect of the present invention, the reinforcing may include reinforcing the inside of the target structure with a plurality of triangular wave structures having a predetermined displacement difference.
본 발명의 일측면에 따르면, 상기 보강하는 단계에서, 상기 복수의 삼각파동 구조물의 교차점은 체결수단을 이용하여 체결할 수 있다.According to one aspect of the invention, in the reinforcing step, the intersection of the plurality of triangular wave structure can be fastened using fastening means.
본 발명의 일측면에 따르면, 상기 보강하는 단계는, 상기 타겟 구조물의 내부를 트러스 구조물로 1차 보강하는 단계 및 상기 트러스 구조물의 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계를 포함할 수 있다.According to one aspect of the invention, the reinforcing step may include the first step of reinforcing the interior of the target structure with a truss structure and the second step of reinforcing the triangular inside of the truss structure with a circular structure. have.
본 발명의 일측면에 따르면, 상기 보강하는 단계는, 상기 타겟 구조물의 내부를 트러스 구조물로 1차 보강하는 단계, 상기 트러스 구조물의 상단 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계 및 상기 트러스 구조물의 하단 삼각형상 내부를 다각형의 구조물로 3차 보강하는 단계를 포함할 수 있다.According to one aspect of the invention, the reinforcing step, the first step of reinforcing the inside of the target structure with a truss structure, the second step of reinforcing the inside of the upper triangular shape of the truss structure with a circular structure and the truss It may include the step of reinforcing the inside of the lower triangular shape of the structure to the polygonal structure.
본 발명의 일실시예에 따르면, 3D 프린터를 통해 구조물의 코어를 프린팅하고 외면을 복합재 성형 및 세라믹 코팅함으로써, 가벼우면서도 강도를 강화할 수 있도록 3D 프린팅 구조물을 보강한 구조물 제조 방법이 제공된다.According to one embodiment of the present invention, a method of manufacturing a structure in which a 3D printing structure is reinforced by printing a core of the structure through a 3D printer and composite molding and ceramic coating of an outer surface thereof to enhance the lightness and strength.
본 발명의 일실시예에 따르면, 3D 프린팅된 코어의 내부를 보강할 수 있도록 트러스 구조를 기반으로 한 골격에 추가 구조물을 보강함으로써, 코어 내부의 지지력을 향상시킬 수 있는 3D 프린팅 구조물을 보강한 구조물 제조 방법이 제공된다.According to an embodiment of the present invention, by reinforcing the additional structure to the skeleton based on the truss structure to reinforce the interior of the 3D printed core, the structure reinforcing the 3D printing structure that can improve the bearing capacity inside the core A manufacturing method is provided.
본 발명의 일실시예에 따르면, 3D 프린팅된 코어의 내부를 보강 구조물을 이용하여 보강하고, 복합재를 성형한 후 보강 구조물의 전부 또는 일부를 제거함으로써, 코어 내부의 지지력을 향상시키면서 타겟 구조물을 경량화 할 수 있는 3D 프린팅 구조물을 보강한 구조물 제조 방법이 제공된다.According to one embodiment of the present invention, by reinforcing the interior of the 3D printed core using the reinforcement structure, and after forming the composite material to remove all or part of the reinforcement structure, to reduce the weight of the target structure while improving the bearing capacity inside the core There is provided a structure manufacturing method that reinforces a 3D printing structure.
도 1은 본 발명의 실시예에 따른 3D 프린팅 구조물 제조 방법을 나타낸 동작 흐름도이다.1 is a flowchart illustrating a method of manufacturing a 3D printing structure according to an embodiment of the present invention.
도 2는 본 발명의 실시예를 설명하기 위한 항공기 날개 및 그 단면형상을 도시한 도면이다.2 is a view showing an aircraft wing and its cross-sectional shape for explaining an embodiment of the present invention.
도 3은 종래기술에 따른 항공기 날개의 단면 및 내부의 보강재의 일실시예를 도시한 도면이다.Figure 3 is a view showing an embodiment of the reinforcement inside and the cross section of the aircraft wing according to the prior art.
도 4는 종래기술에 따른 항공기 날개의 단면 및 내부 트러스 구조의 일실시예를 도시한 도면이다.4 is a view showing an embodiment of the cross section and the inner truss structure of the aircraft wing according to the prior art.
도 5는 본 발명의 실시예에 따른 항공기 날개 내부에 삼각 구조물에 원통형상의 구조물을 보강하는 과정을 설명하기 위한 도면이다.5 is a view for explaining the process of reinforcing the cylindrical structure to the triangular structure inside the aircraft wing according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 항공기 날개 내부에 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.6 is a view of applying a reinforcing structure reinforcing the truss structure inside the aircraft wing according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 항공기 날개 내부에 원통형상과 다각형상의 구조물을 이용하여 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.FIG. 7 is a view illustrating a reinforcing structure in which a truss structure is reinforced by using cylindrical and polygonal structures in an aircraft wing according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 항공기 날개 내부에 이중 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.FIG. 8 is a view showing a reinforcing structure in which a double truss structure is reinforced inside an aircraft wing according to an exemplary embodiment of the present invention. FIG.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.Hereinafter, with reference to the contents described in the accompanying drawings will be described in detail the embodiments of the present invention. However, the present invention is not limited or limited by the embodiments. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 실시예에 따른 3D 프린팅 구조물 제조 방법을 나타낸 동작 흐름도이다.1 is a flowchart illustrating a method of manufacturing a 3D printing structure according to an embodiment of the present invention.
도 1을 참고하면, 보강재 및 복합재를 활용한 3D 프린팅 구조물 제조 방법은 우선, 단계(110)에서 타겟 구조물의 코어 프레임을 3D 프린터로 출력할 수 있다. 여기서, 타겟(target) 구조물을 제조하고자 하는 목표 구조물을 의미하며, 3D 프린터를 통해 타겟 구조물의 코어 프레임을 출력함으로써, 기계가공으로 어려운 형상을 쉽고 간편하게 제조하며, 설계변경이 비교적 자유로워 고객사의 의견을 적극적으로 반영 할 수 있고, 수요가 증가하는 구조물의 공급률을 높일 수는 장점이 발생할 수 있다.Referring to FIG. 1, in the method of manufacturing a 3D printing structure using a reinforcement and a composite material, first, in step 110, a core frame of a target structure may be output to a 3D printer. Here, it refers to a target structure to manufacture a target structure, by outputting the core frame of the target structure through a 3D printer, easily and easily manufacture difficult shapes by machining, the design change is relatively free, customer opinion It can actively reflect, and can increase the supply rate of structures with increasing demand can occur.
단계(120)에서는 상기 코어 프레임의 내부를 기설정된 보강 구조물로 보강할 수 있다. 여기서, 상기 보강 구조물로 보강하는 과정은 3D 프린터로 코어 프레임의 출력과 동시에 이루어질 수도 있으며, 별도의 공정을 통해 이루어질 수도 있다. In operation 120, the inside of the core frame may be reinforced with a predetermined reinforcement structure. Here, the process of reinforcing the reinforcing structure may be made at the same time as the output of the core frame to the 3D printer, or may be made through a separate process.
따라서, 보강 구조물의 재질 또한 코어 프레임과 동일한 재질 또는 별도의 재질 중 선택적으로 적용할 수 있다. Therefore, the material of the reinforcing structure may also be selectively applied to the same material as the core frame or a separate material.
이때, 기설정된 보강 구조물은 트러스 구조의 보강재를 이용한 보강 구조물부터 이를 변형한 다양한 구조물에 이르기까지 여러 형태의 보강 구조물이 활용될 수 있으며, 이러한 실시예들은 이하에서 보다 상세하게 설명한다.In this case, the predetermined reinforcing structure may be utilized in various forms of reinforcing structures ranging from the reinforcing structure using the reinforcing material of the truss structure to various structures modified therefrom, and these embodiments will be described in more detail below.
다음으로 단계(130)에서는 상기 3D 프린팅된 타겟 구조물의 표면을 복합재를 이용하여 성형할 수 있다. 예를 들어, 타겟 구조물이 항공기의 날개 구조물인 경우, 이를 본 발명의 제조방법을 통해 생산하고자 하면, 항공기 날개 구조물을 3D 프린터를 통해 출력한 후 강도를 보강하기 위해 외면을 유리섬유, 탄소섬유 등의 복합재로 성형할 수 있다. Next, in step 130, the surface of the 3D printed target structure can be molded using a composite material. For example, if the target structure is the wing structure of the aircraft, if you want to produce it through the manufacturing method of the present invention, after outputting the aircraft wing structure through a 3D printer, the outer surface to reinforce the strength, such as glass fiber, carbon fiber, etc. It can be molded into a composite material.
단계(140)에서는 상기 복합재를 성형한 타겟 구조물 내부의 상기 보강 구조물 중 기설정된 보강 구조물을 제거할 수 있다. 즉, 복합재 성형이 이루어지고 나면, 타겟 구조물의 강도가 상당부분 보완되므로, 타겟 구조물의 불필요한 무게 증가를 줄이기 위해 상기 단계(120)에서 보강한 보강 구조물 중 기설정된 보강 구조물을 제거할 수 있다. 여기서, 기설정된 보강 구조물은 단계(120)에서 보강한 보강 구조물의 전부 또는 일부일 수 있으며, 제작 환경에 따라 달라질 수 있다.In step 140, a predetermined reinforcement structure may be removed from the reinforcement structures inside the target structure in which the composite material is molded. That is, after the composite molding is made, since the strength of the target structure is substantially supplemented, it is possible to remove the predetermined reinforcing structure of the reinforcing structure reinforced in the step 120 to reduce unnecessary weight increase of the target structure. Here, the predetermined reinforcement structure may be all or part of the reinforcement structure reinforced in step 120, it may vary depending on the manufacturing environment.
단계(150)에서는 상기 단계(140)에서 기설정된 보강 구조물을 제거한 타겟 구조물의 표면을 기설정된 코팅물질을 이용하여 코팅할 수 있다. 이를 통해 복합재로 강화된 코어 프레임을 한층 더 강화시킬 수 있어, 강도에서 약점을 갖는 3D 프린팅 구조물의 단점을 보완할 수 있다. 여기서, 기설정된 코팅물질은 세라믹, 도료 중 하나가 사용될 수 있으며, 이외에도 제조환경에 따라 다양한 물질이 사용될 수 있다.In step 150, the surface of the target structure from which the reinforcement structure is set in step 140 may be coated using a predetermined coating material. This can further strengthen the core frame reinforced with a composite material, which can compensate for the shortcomings of 3D printing structures having weaknesses in strength. Herein, the predetermined coating material may be one of ceramic and paint, and various materials may be used depending on the manufacturing environment.
도 2는 본 발명의 실시예를 설명하기 위한 항공기 날개 및 그 단면형상을 도시한 도면이고, 도 3은 종래기술에 따른 항공기 날개의 단면 및 내부의 보강재의 일실시예를 도시한 도면이며, 도 4는 종래기술에 따른 항공기 날개의 단면 및 내부 트러스 구조의 일실시예를 도시한 도면이다.2 is a view showing an aircraft wing and its cross-sectional shape for explaining an embodiment of the present invention, Figure 3 is a view showing an embodiment of the cross section and the internal reinforcement of the aircraft wing according to the prior art, Figure 4 is a view showing an embodiment of the cross section and the inner truss structure of the aircraft wing according to the prior art.
도 2에는 항공기 날개의 일부 형상이 도시되어 있으며, 항공기 날개를 파트별로 제조하여 결합하는 공정에서 각 파트의 형상(220)은 완만한 곡선을 그리며 형성되어 있다. Figure 2 shows a portion of the aircraft wing, the shape 220 of each part in the process of manufacturing and combining the aircraft wing by part is formed with a gentle curve.
항공기 날개를 제조하기 위해 종래의 경우, 도 3에 도시된 바와 같이, 항공기 날개(210)의 표면을 다층으로 적층하고, 그 단면(220)에 나타난 바와 같이, 내부는 보강재를 이용하여 외부에서의 압력에 견딜 수 있도록 보강하는 방법을 사용하였다. 도 3에 도시된 단면에서는 보강 구조물이 일렬로 배치된 형태를 띠고 있으며, 도 4의 경우와 같이, 사선 형태로 보강 구조물을 연속 배열한 트러스 구조로 보강 구조물도 널리 사용되고 있었다. In the conventional case for manufacturing the aircraft wing, as shown in Figure 3, the surface of the aircraft wing 210 is laminated in multiple layers, and as shown in the cross-section 220, the inside is using the reinforcement material from the outside Reinforcement was used to withstand pressure. In the cross section shown in FIG. 3, the reinforcing structures are arranged in a line, and as shown in FIG. 4, the reinforcing structures have been widely used as truss structures in which the reinforcing structures are continuously arranged in an oblique shape.
그러나, 본 발명의 경우, 기존에 사용되어 오던 보강 구조물을 보다 강화하기 위해 다양한 형태의 변형된 구조물을 사용할 수 있으며 이는 하기에서 자세히 설명한다.However, in the case of the present invention, various types of modified structures may be used to further reinforce the reinforcing structures that have been used previously, which will be described in detail below.
<실시예 1><Example 1>
도 5는 본 발명의 실시예에 따른 항공기 날개 내부에 삼각 구조물에 원통형상의 구조물을 보강하는 과정을 설명하기 위한 도면이다.5 is a view for explaining the process of reinforcing the cylindrical structure to the triangular structure inside the aircraft wing according to an embodiment of the present invention.
도 5를 참고하면, 내부에 1차 보강 구조물을 삽입하여 삼각 기둥형상(230)의 내부가 만들어지면, 이를 보충하기 위해 내부에 원기둥 형상(240)의 보강 구조물을 삼각 기둥형상 내부에 삽입하여, 보다 강화된 형태의 보강 구조를 구현할 수 있다. Referring to FIG. 5, when the interior of the triangular column shape 230 is made by inserting a primary reinforcing structure therein, the reinforcing structure of the column shape 240 is inserted into the triangular column shape to compensate for this. It is possible to implement a more reinforced form of reinforcement structure.
도 6은 본 발명의 실시예에 따른 항공기 날개 내부에 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.6 is a view of applying a reinforcing structure reinforcing the truss structure inside the aircraft wing according to an embodiment of the present invention.
도 6을 참고하면, 기존의 트러스 구조를 통해 다수의 삼각형이 인접 배치된 종래의 단면 형태에서 각 삼각형 내부에 각 삼각형에 내접하는 원통형상의 보강 구조물을 삽입함으로써, 내부 지지력이 한층 강화된 보강 구조물이 만들어 질 수 있다. Referring to FIG. 6, in the conventional cross-sectional form in which a plurality of triangles are adjacent to each other through a conventional truss structure, by inserting a cylindrical reinforcing structure inscribed into each triangle in each triangle, the reinforcing structure having an enhanced internal support force may be obtained. Can be made.
도 6에 도시된 바와 같은 보강 구조물은 구조물의 상하 표면이 직선에 가까운 경우 사용하는 것이 가장 효과적이며, 구조물의 표면 일부 또는 전부의 형상이 곡선을 이루는 경우에는 또 다른 형태의 보강 구조물을 사용할 수 있다. As shown in FIG. 6, it is most effective to use the reinforcing structure when the upper and lower surfaces of the structure are close to a straight line, and when the shape of some or all of the surface of the structure is curved, another type of reinforcing structure may be used. .
이를 위해 본 발명의 보강하는 단계(140)는, 상기 구조물의 내부를 트러스 구조물로 1차 보강하는 단계 및 상기 트러스 구조물의 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계를 포함하여, 상기 보강 구조물을 구현할 수 있다.Reinforcing step 140 of the present invention for this purpose, including the first step of reinforcing the interior of the structure to the truss structure and the second step of reinforcing the triangular inside of the truss structure as a circular structure, the reinforcement The structure can be implemented.
<실시예 2><Example 2>
도 7은 본 발명의 실시예에 따른 항공기 날개 내부에 원통형상과 다각형상의 구조물을 이용하여 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.FIG. 7 is a view illustrating a reinforcing structure in which a truss structure is reinforced by using cylindrical and polygonal structures in an aircraft wing according to an embodiment of the present invention.
도 7을 참고하면, 종래의 트러스 구조로 1차 보강한 후, 코어 구조물 상단의 경우 완만한 곡선 형태를 이루므로, 원통형상의 구조물로 2차 보강하고, 코어 구조물 하단의 경우는 직선에 가까운 형태를 이루므로, 다각 기둥형상의 구조물로 3차 보강할 수 있다. 본 발명의 일실시예인 도 7에서는 하단을 보강하기 위한 구조물로 5각 기둥을 사용하였으나, 다른 형태의 다각 기둥 형상도 시공 상황에 맞추어 사용할 수 있다.Referring to FIG. 7, after the first reinforcement with a conventional truss structure, since the upper end of the core structure forms a gentle curved shape, the secondary reinforcement is performed with a cylindrical structure, and the lower end of the core structure has a shape close to a straight line. As a result, it is possible to reinforce the tertiary structure by the polygonal columnar structure. In Figure 7, which is an embodiment of the present invention, a pentagonal pillar is used as a structure for reinforcing a lower end, but a polygonal pillar shape of another form may be used according to construction conditions.
이를 위해 본 발명의 실시예에 따른 보강하는 단계(140)는, 상기 구조물의 내부를 트러스 구조물로 1차 보강하는 단계, 상기 트러스 구조물의 상단 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계 및 상기 트러스 구조물의 하단 삼각형상 내부를 다각형의 구조물로 3차 보강하는 단계를 포함하여 상기 보강 구조물의 형상을 구현할 수 있다.To this end, reinforcing step 140 according to an embodiment of the present invention, the first step of reinforcing the inside of the structure with a truss structure, the second step of reinforcing the inside of the upper triangular shape of the truss structure with a circular structure and The shape of the reinforcing structure may be implemented by including reinforcing the inside of the lower triangular shape of the truss structure with a polygonal structure.
<실시예 3><Example 3>
도 8은 본 발명의 실시예에 따른 항공기 날개 내부에 이중 트러스 구조를 보강한 보강 구조물을 적용한 도면이다.FIG. 8 is a view showing a reinforcing structure in which a double truss structure is reinforced inside an aircraft wing according to an exemplary embodiment of the present invention. FIG.
도 8을 참고하면, 기존의 트러스 구조는 삼각 파동 형상을 갖는데, 상기 삼각 파동이 중첩되지 않도록 추가적인 삼각 파동 형상의 구조물을 적용하면 이중 트러스 구조 형태의 내부 보강 구조물이 구현될 수 있다. 따라서, 이러한 형태를 통해 내부 지지력이 보다 강화될 수 있으며, 도 8에서는 이중 트러스 구조를 설명하였으나, 다수의 삼각 파동 형상 구조물을 적용하여 다중 트러스 구조 또한 구현 가능할 수 있다.Referring to FIG. 8, the existing truss structure has a triangular wave shape, and when an additional triangular wave shape structure is applied so that the triangular wave does not overlap, an internal reinforcement structure having a double truss structure may be implemented. Therefore, the internal supporting force can be further strengthened through such a shape, and the double truss structure has been described in FIG.
즉, 본 발명의 일실시예에 따르면, 상기 보강하는 단계(140)는, 상기 구조물의 내부를 기설정된 변위차를 갖는 복수의 삼각파동 구조물로 보강할 수 있다. 이때, 상기 복수의 삼각파동 구조물의 교차점은 체결수단을 이용하여 체결함으로써, 구조물 간의 지지력이 보다 강화될 수 있도록 할 수 있다.That is, according to an embodiment of the present invention, the reinforcing step 140 may reinforce the inside of the structure with a plurality of triangular wave structures having a predetermined displacement difference. In this case, the intersection of the plurality of triangular wave structures may be fastened by using fastening means, so that the bearing force between the structures may be further strengthened.
상기에서 살펴본 바와 같이, 본 발명의 일실시예에 따르면, 3D 프린터를 통해 구조물의 코어를 프린팅하고 외면을 복합재 성형 및 세라믹 코팅함으로써, 가벼우면서도 강도를 강화할 수 있도록 3D 프린팅 구조물을 보강한 구조물 제조 방법이 제공될 수 있다. As described above, according to an embodiment of the present invention, by printing the core of the structure through a 3D printer and composite molding and ceramic coating the outer surface, the structure manufacturing method reinforcing the 3D printing structure to enhance the light and strength This may be provided.
또한, 3D 프린팅된 코어의 내부를 보강할 수 있도록 트러스 구조를 기반으로 한 골격에 추가 구조물을 보강함으로써, 코어 내부의 지지력을 향상시킬 수 있는 3D 프린팅 구조물을 보강한 구조물 제조 방법이 제공될 수 있다.In addition, by reinforcing the additional structure to the skeleton based on the truss structure to reinforce the interior of the 3D printed core, there can be provided a structure manufacturing method reinforcing the 3D printed structure that can improve the support capacity inside the core. .
또한 본 발명의 일실시예에 따른, 3D 프린팅 구조물 제조 방법은 다양한 컴퓨터로 구현되는 동작을 수행하기 위한 프로그램 명령을 포함하는 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.In addition, the method of manufacturing a 3D printing structure according to an embodiment of the present invention may be recorded in a computer readable medium including program instructions for performing various computer-implemented operations. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. The medium or program instructions may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks. Magneto-optical media, and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
이상과 같이 본 발명의 일실시예는 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명의 일실시예는 상기 설명된 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 일실시예는 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.Although one embodiment of the present invention as described above has been described by a limited embodiment and drawings, one embodiment of the present invention is not limited to the above-described embodiment, which is a general knowledge in the field of the present invention Those having a variety of modifications and variations are possible from these descriptions. Accordingly, one embodiment of the invention should be understood only by the claims set forth below, all equivalent or equivalent modifications will be within the scope of the invention idea.
Claims (5)
- 타겟 구조물의 코어 프레임을 3D 프린팅하는 단계;3D printing the core frame of the target structure;상기 코어 프레임의 내부를 기설정된 보강 구조물로 보강하는 단계;Reinforcing the inside of the core frame with a predetermined reinforcing structure;상기 보강 구조물로 보강된 타겟 구조물의 표면을 복합재를 이용하여 성형하는 단계;Shaping the surface of the target structure reinforced with the reinforcement structure using a composite material;상기 복합재를 성형한 타겟 구조물 내부의 상기 보강 구조물 중 기설정된 보강 구조물을 제거하는 단계; 및Removing a predetermined reinforcement structure from among the reinforcement structures inside the target structure in which the composite is molded; And상기 기설정된 보강 구조물을 제거한 타겟 구조물의 표면을 기설정된 코팅물질을 이용하여 코팅하는 단계;Coating a surface of the target structure from which the predetermined reinforcing structure is removed using a predetermined coating material;를 포함하는 3D 프린팅 구조물 제조 방법.3D printing structure manufacturing method comprising a.
- 제1항에 있어서,The method of claim 1,상기 보강하는 단계는,Reinforcing step,상기 타겟 구조물의 내부를 기설정된 변위차를 갖는 복수의 삼각파동 구조물로 보강하는 것을 특징으로 하는 3D 프린팅 구조물 제조 방법.And reinforcing the inside of the target structure with a plurality of triangular wave structures having a predetermined displacement difference.
- 제1항에 있어서,The method of claim 1,상기 보강하는 단계에서,In the reinforcing step,상기 복수의 삼각파동 구조물의 교차점은 체결수단을 이용하여 체결하는 것을 특징으로 하는 3D 프린팅 구조물 제조 방법.The intersection of the plurality of triangular wave structure is fastened using a fastening means, characterized in that for producing a 3D printing structure.
- 제1항에 있어서,The method of claim 1,상기 보강하는 단계는,Reinforcing step,상기 타겟 구조물의 내부를 트러스 구조물로 1차 보강하는 단계; 및Primary reinforcing the interior of the target structure with a truss structure; And상기 트러스 구조물의 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계Secondary reinforcing the triangular inside of the truss structure with a circular structure를 포함하는 것을 특징으로 하는 3D 프린팅 구조물 제조 방법.3D printing structure manufacturing method comprising a.
- 제1항에 있어서,The method of claim 1,상기 보강하는 단계는,Reinforcing step,상기 타겟 구조물의 내부를 트러스 구조물로 1차 보강하는 단계;Primary reinforcing the interior of the target structure with a truss structure;상기 트러스 구조물의 상단 삼각형상 내부를 원형의 구조물로 2차 보강하는 단계; 및Secondary reinforcing the inside of the upper triangular shape of the truss structure into a circular structure; And상기 트러스 구조물의 하단 삼각형상 내부를 다각형의 구조물로 3차 보강하는 단계;Tertiary reinforcing the inside of the lower triangular shape of the truss structure with a polygonal structure;를 포함하는 것을 특징으로 하는 3D 프린팅 구조물 제조 방법.3D printing structure manufacturing method comprising a.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160022403 | 2016-02-25 | ||
KR10-2016-0022403 | 2016-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017146284A1 true WO2017146284A1 (en) | 2017-08-31 |
Family
ID=59685347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/001886 WO2017146284A1 (en) | 2016-02-25 | 2016-02-25 | Method for making 3d printing structure using reinforcement and composite |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017146284A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019074916A3 (en) * | 2017-10-11 | 2019-05-23 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
US10836120B2 (en) | 2018-08-27 | 2020-11-17 | Divergent Technologies, Inc . | Hybrid composite structures with integrated 3-D printed elements |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08164488A (en) * | 1994-12-09 | 1996-06-25 | Ship & Ocean Zaidan | Multi-layer clad plate for forming superplasticity and its manufacture, and hollow rigid board using it and its manufacture |
US6630093B1 (en) * | 1999-08-21 | 2003-10-07 | Ronald D. Jones | Method for making freeform-fabricated core composite articles |
WO2008118649A1 (en) * | 2007-03-27 | 2008-10-02 | Dynastrosi Laboratories, Inc. | Method for bonding a facing skin to a freeform-fabricated composite core |
US8383028B2 (en) * | 2008-11-13 | 2013-02-26 | The Boeing Company | Method of manufacturing co-molded inserts |
US8522416B2 (en) * | 2008-02-29 | 2013-09-03 | Airbus Operations Gmbh | Method for tolerance compensation between two fibre composite components |
KR20150120643A (en) * | 2014-04-18 | 2015-10-28 | 쓰리디토시스 주식회사 | 3d printing system using block type structure combined with fdm technology and this hybrid data generation method for 3d printing |
-
2016
- 2016-02-25 WO PCT/KR2016/001886 patent/WO2017146284A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08164488A (en) * | 1994-12-09 | 1996-06-25 | Ship & Ocean Zaidan | Multi-layer clad plate for forming superplasticity and its manufacture, and hollow rigid board using it and its manufacture |
US6630093B1 (en) * | 1999-08-21 | 2003-10-07 | Ronald D. Jones | Method for making freeform-fabricated core composite articles |
WO2008118649A1 (en) * | 2007-03-27 | 2008-10-02 | Dynastrosi Laboratories, Inc. | Method for bonding a facing skin to a freeform-fabricated composite core |
US8522416B2 (en) * | 2008-02-29 | 2013-09-03 | Airbus Operations Gmbh | Method for tolerance compensation between two fibre composite components |
US8383028B2 (en) * | 2008-11-13 | 2013-02-26 | The Boeing Company | Method of manufacturing co-molded inserts |
KR20150120643A (en) * | 2014-04-18 | 2015-10-28 | 쓰리디토시스 주식회사 | 3d printing system using block type structure combined with fdm technology and this hybrid data generation method for 3d printing |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019074916A3 (en) * | 2017-10-11 | 2019-05-23 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
KR20200055794A (en) * | 2017-10-11 | 2020-05-21 | 디버전트 테크놀로지스, 인크. | Composite inlay in laminated fabric |
US10814564B2 (en) | 2017-10-11 | 2020-10-27 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
JP2020536769A (en) * | 2017-10-11 | 2020-12-17 | ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. | Composite inlays in additively manufactured structures |
JP7100122B2 (en) | 2017-10-11 | 2022-07-12 | ダイバージェント テクノロジーズ, インコーポレイテッド | Composite material inlays in additively manufactured structures |
US11584094B2 (en) | 2017-10-11 | 2023-02-21 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
KR102522931B1 (en) | 2017-10-11 | 2023-04-17 | 디버전트 테크놀로지스, 인크. | Composite material inlays in additively manufactured structures |
US10836120B2 (en) | 2018-08-27 | 2020-11-17 | Divergent Technologies, Inc . | Hybrid composite structures with integrated 3-D printed elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104866673B (en) | A kind of axle presses the Cutout reinforcement method of reinforcement post shell | |
CN103832576B (en) | Include the high integrity structure of leading edge rib and trailing edge rib for ROV lifting surface | |
Kelly et al. | On interpreting load paths and identifying a load bearing topology from finite element analysis | |
WO2017146284A1 (en) | Method for making 3d printing structure using reinforcement and composite | |
Rothwell | Optimization methods in structural design | |
US8434719B2 (en) | Leading edge element of aircraft, method for manufacturing one, wing and stabilizer | |
Hemp | Theory of structural design | |
CN102372084A (en) | Method for realization of an aircraft structure and resulting structure | |
EP2024228B1 (en) | Fuselage structure | |
JP2010527303A (en) | Hybrid composite panel system and method | |
US20190079492A1 (en) | Apparatus and methods for additively manufacturing lattice structures | |
Denny et al. | Conceptual design and numerical validation of a composite monocoque solar passenger vehicle chassis | |
CN102164817A (en) | Fuselage section having an integral pressure bulkhead formed from composite fibre material, as well as a fuselage shell having a fuselage section such as this | |
JP2007502231A (en) | 3D fiber element with high moment of inertia in multilayer sandwich laminates | |
US20190031329A1 (en) | Method of fabricating a rotor blade filler body, and a rotor blade filler body comprising at least one cellular assembly having closed cells | |
Vitale et al. | Manufacturing and compressive response of ultra-lightweight CFRP cores | |
CN109543335B (en) | Method for designing external pressure resistant carbon fiber composite material cylinder structure | |
Vijayachandran et al. | Minimizing stress concentrations using steered fiberpaths and incorporating realistic manufacturing signatures | |
CN110727998A (en) | Optimized design method and system for composite material X-shaped support structure for connecting fuel storage tank | |
Coburn et al. | Buckling analysis and optimization of blade stiffened variable stiffness panels | |
Groh et al. | Nonlinear buckling and postbuckling analysis of tow-steered composite cylinders with cutouts | |
CN109299499B (en) | Multi-step structure optimization design method considering correction factors and aircraft | |
JP5016062B2 (en) | Lightweight structure with fractal structured support structure | |
CN100566970C (en) | The assembling die of preparation fibre reinforcement pyramid shape dot matrix sandwich board | |
CN112711799B (en) | Method for calculating buckling deformation of large-opening structure of reinforced rectangular thin-wall machine body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891688 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891688 Country of ref document: EP Kind code of ref document: A1 |