WO2017146238A1 - ラテックス組成物および膜成形体 - Google Patents
ラテックス組成物および膜成形体 Download PDFInfo
- Publication number
- WO2017146238A1 WO2017146238A1 PCT/JP2017/007225 JP2017007225W WO2017146238A1 WO 2017146238 A1 WO2017146238 A1 WO 2017146238A1 JP 2017007225 W JP2017007225 W JP 2017007225W WO 2017146238 A1 WO2017146238 A1 WO 2017146238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- latex
- carboxyl group
- weight
- latex composition
- monomer
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/04—Appliances for making gloves; Measuring devices for glove-making
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L13/00—Compositions of rubbers containing carboxyl groups
- C08L13/02—Latex
Definitions
- the present invention relates to a latex composition that can suppress the occurrence of delayed allergy (Type IV) in addition to immediate allergy (Type I), and has high tensile strength, large elongation, and a flexible texture.
- the present invention relates to a latex composition capable of providing a film molded body such as a dip molded body, a method for producing such a latex composition, and a dip molded body and a film molded body obtained using such a latex composition.
- a dip-molded product that is used in contact with a human body such as a nipple, a balloon, a glove, a balloon, and a sack is formed by dip-molding a latex composition containing a natural latex typified by a natural rubber latex.
- natural rubber latex contains proteins that cause allergic symptoms in the human body, it contains proteins that cause immediate allergy (Type I) symptoms in the human body, so it is in direct contact with living mucous membranes or organs.
- types I immediate allergy
- Patent Document 1 includes zinc oxide, sulfur and a vulcanization accelerator in an emulsion containing a carboxylated nitrile butadiene random terpolymer of acrylonitrile, carboxylic acid, and butadiene and having a total solid content of 15 to 25% by weight. Is disclosed. However, the technique of Patent Document 1 can prevent the occurrence of immediate type allergy (Type I). On the other hand, when a dip-molded body is formed, the human body is caused by sulfur and a vulcanization accelerator contained in the dip-molded body. When touched, allergic symptoms of delayed type allergy (Type IV) may occur.
- Type I immediate type allergy
- Type IV allergic symptoms of delayed type allergy
- Patent Document 2 contains 25 to 30% by weight of acrylonitrile residues, 62 to 71% by weight of butadiene residues, and 4 to 8% by weight of unsaturated carboxylic acid residues, contains zinc oxide, and is crosslinked. Latex compositions that do not contain sulfur as an agent and sulfur compounds as vulcanization accelerators are disclosed. According to the technique of Patent Document 2, since sulfur and sulfur compounds that are vulcanization accelerators are not included, not only immediate type allergy (Type I) but also delayed type allergy (Type IV) can be suppressed. However, the obtained dip-molded article had low elongation and was also inferior in texture and touch.
- the present invention can suppress the occurrence of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), and has a high tensile strength, large elongation, a flexible texture, etc.
- An object of the present invention is to provide a latex composition capable of providing a film molded body, a method for producing such a latex composition, and a dip molded body and a film molded body obtained by using such a latex composition. To do.
- the present inventors have obtained a latex obtained by blending a predetermined amount of a metal compound containing a trivalent or higher metal into a latex of a carboxyl group-containing conjugated diene rubber (A).
- the present inventors have found that the above object can be achieved by a composition, and have completed the present invention.
- a latex composition comprising a latex of a carboxyl group-containing conjugated diene rubber (A) and a metal compound (B) containing a trivalent or higher metal, the metal compound Is provided in a latex composition of 0.1 to 1.5 parts by weight with respect to 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A).
- the metal compound (B) is an aluminum compound.
- the latex composition of the present invention further contains at least one alcoholic hydroxyl group-containing compound (C) selected from saccharide (c1), sugar alcohol (c2), hydroxy acid (c3) and hydroxy acid salt (c4). It is preferable to do.
- the content of the metal compound (B) and the content of the alcoholic hydroxyl group-containing compound (C) are in a weight ratio of “metal compound (B): alcoholic hydroxyl group-containing compound (C)”. 1: 0.1 to 1:50.
- the alcoholic hydroxyl group-containing compound (C) is at least one selected from sugar alcohol (c2) and hydroxy acid salt (c4).
- the carboxyl group-containing conjugated diene rubber (A) comprises 56 to 78% by weight of a conjugated diene monomer unit, 20 to 40% by weight of an ethylenically unsaturated nitrile monomer unit, and an ethylenically unsaturated acid monomer.
- the carboxyl group-containing conjugated diene rubber (A) is a conjugated diene monomer unit, an ethylenically unsaturated carboxylic acid monomer unit, an amide group-containing monomer unit, and an epoxy group-containing monomer. And at least one monomer unit selected from the units.
- the monomer constituting at least one monomer unit selected from the amide group-containing monomer unit and the epoxy group-containing monomer unit is (meth) acrylamide.
- the monomer constituting at least one monomer unit selected from the amide group-containing monomer unit and the epoxy group-containing monomer unit is an epoxy group-containing (meth) acrylate.
- a method for producing a latex composition comprising a latex of a carboxyl group-containing conjugated diene rubber (A) and a metal compound (B) containing a trivalent or higher metal. And A monomer mixture containing at least a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer is subjected to emulsion polymerization at 0 to 25 ° C., whereby the latex of the carboxyl group-containing conjugated diene rubber (A) is obtained. A first step to obtain; There is provided a method for producing a latex composition comprising a second step of blending the metal compound (B) with the latex of the carboxyl group-containing conjugated diene rubber (A).
- a method for producing a latex composition comprising a latex of a carboxyl group-containing conjugated diene rubber (A) and a metal compound (B) containing a trivalent or higher metal.
- a method for producing a latex composition comprising a second step of blending the metal compound (B) with the latex of the carboxyl group-containing conjugated diene rubber (A).
- a saccharide (c1) in addition to the metal compound (B), a saccharide (c1), a sugar alcohol (to the latex of the carboxyl group-containing conjugated diene rubber (A) ( It is preferable to further blend at least one alcoholic hydroxyl group-containing compound (C) selected from c2), hydroxy acid (c3) and hydroxy acid salt (c4).
- the manufacturing method of a dip molded object provided with the process of dip-molding the latex composition of the said invention or the latex composition obtained by the manufacturing method of the said invention is provided.
- the film molded object which consists of a latex composition of the said invention is provided.
- a dip-molded body that can suppress the occurrence of delayed allergy (Type IV) in addition to immediate allergy (Type I), and has high tensile strength, large elongation, and a soft texture. It is possible to provide a latex composition capable of providing a film molded body such as, a method for producing such a latex composition, and a dip molded body and a film molded body obtained using such a latex composition it can.
- the latex composition of the present invention comprises a latex of carboxyl group-containing conjugated diene rubber (A) and a metal compound containing a trivalent or higher metal, and the content ratio of the metal compound is the carboxyl group-containing content.
- the latex composition is 0.1 to 1.5 parts by weight with respect to 100 parts by weight of the conjugated diene rubber (A).
- Latex of carboxyl group-containing conjugated diene rubber (A) is a monomer comprising at least a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer.
- a latex of a copolymer obtained by copolymerizing a body mixture, and examples of the carboxyl group-containing conjugated diene rubber (A) include a carboxyl group-containing nitrile rubber (a1), a carboxyl group-containing styrene-butadiene rubber (a2), and At least one selected from carboxyl group-containing conjugated diene rubber (a3) is preferred.
- the latex of the carboxyl group-containing nitrile rubber (a1) is a copolymer latex obtained by copolymerizing an ethylenically unsaturated nitrile monomer in addition to a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer.
- a latex of a copolymer obtained by copolymerizing other ethylenically unsaturated monomers copolymerizable with these used as necessary may be used.
- conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. It is done. Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable.
- These conjugated diene monomers can be used alone or in combination of two or more.
- the content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the carboxyl group-containing nitrile rubber (a1) is preferably 56 to 78% by weight, more preferably 56 to 73% by weight, More preferably, it is 56 to 70% by weight.
- the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group.
- a single amount of ethylenically unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid Body
- ethylenically unsaturated polyvalent carboxylic acid monomer such as itaconic acid, maleic acid, fumaric acid
- ethylenically unsaturated polyvalent carboxylic acid anhydride such as maleic anhydride, citraconic anhydride
- monobutyl fumarate maleic acid
- ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate.
- ethylenically unsaturated monocarboxylic acid is preferable, and methacrylic acid is particularly preferable.
- These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts. Further, the ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
- the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the carboxyl group-containing nitrile rubber (a1) is preferably 2 to 6.5% by weight.
- the film molded product such as a dip molded product obtained is excellent in texture and stretched while having sufficient tensile strength. Can be big.
- the ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a nitrile group.
- acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethylacrylonitrile Etc acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable.
- These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
- the content ratio of the ethylenically unsaturated nitrile monomer unit formed by the ethylenically unsaturated nitrile monomer in the carboxyl group-containing nitrile rubber (a1) is preferably 20 to 40% by weight, more preferably It is 25 to 40% by weight, more preferably 30 to 40% by weight.
- ethylenically unsaturated monomers copolymerizable with the conjugated diene monomer, ethylenically unsaturated carboxylic acid monomer and ethylenically unsaturated nitrile monomer are not particularly limited, and can be obtained.
- an amide group-containing monomer and an epoxy group-containing monomer Preferable examples include at least one monomer selected from the group consisting of:
- the amide group-containing monomer is not particularly limited as long as it has at least one amide group in one molecule.
- (meth) acrylamide is preferable, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide is more preferable, and N-methylol (meth) acrylamide is particularly preferable.
- These amide group-containing monomers can be used alone or in combination of two or more.
- the content ratio of the amide group-containing monomer unit in the carboxyl group-containing nitrile rubber (a1) is preferably 0.1 to 5.0% by weight, more preferably 0.25 to 4.5% by weight, More preferably, it is 0.5 to 4.0% by weight.
- the epoxy group-containing monomer is not particularly limited as long as it is a monomer having at least one epoxy group in one molecule.
- an epoxy group-containing (meth) acrylate is preferable, and glycidyl (meth)
- the content ratio of the epoxy group-containing monomer unit in the carboxyl group-containing nitrile rubber (a1) is preferably 0.1 to 4.0% by weight, more preferably 0.25 to 3.5% by weight, More preferably, it is 0.5 to 3.0% by weight.
- the carboxyl group-containing nitrile rubber (a1) is a copolymerizable other ethylenically unsaturated monomer other than at least one monomer selected from amide group-containing monomers and epoxy group-containing monomers.
- Such other copolymerizable ethylenically unsaturated monomers include, for example, vinyl aromatic monomers such as styrene, alkylstyrene and vinylnaphthalene; fluoro Fluoroalkyl vinyl ethers such as ethyl vinyl ether; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, trifluoroethyl (meth) acrylate, (meth ) Tetrafluoropropyl acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate , Methoxymethyl (me
- the content of other monomer units formed by other ethylenically unsaturated monomers is preferably 10% by weight or less, more preferably 5% by weight. Hereinafter, it is more preferably 3% by weight or less.
- the latex of the carboxyl group-containing nitrile rubber (a1) used in the present invention is obtained by copolymerizing a monomer mixture containing the above-mentioned monomers, and a method of copolymerization by emulsion polymerization is preferred. The emulsion polymerization method will be described later.
- the latex of carboxyl group-containing styrene-butadiene rubber (a2) used in the present invention is copolymerized with styrene in addition to 1,3-butadiene and an ethylenically unsaturated carboxylic acid monomer as a conjugated diene monomer.
- the content ratio of butadiene units formed from 1,3-butadiene in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 56 to 78% by weight, more preferably 56 to 73% by weight, still more preferably. Is 56 to 70% by weight.
- the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group.
- the same as the latex of the carboxyl group-containing nitrile rubber (a1) described above Can be used.
- the content of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 2 to 6.5% by weight.
- the film molded product such as a dip molded product obtained is excellent in texture and stretched while having sufficient tensile strength. Can be big.
- the content of styrene units formed by styrene is preferably 20 to 40% by weight, more preferably 25 to 40% by weight, and still more preferably 30 to 40%. % By weight.
- 1,3-butadiene as the conjugated diene monomer ethylenically unsaturated carboxylic acid monomer and other ethylenically unsaturated monomers copolymerizable with styrene are not particularly limited, and can be obtained.
- an amide group-containing monomer and an epoxy group-containing monomer Preferable examples include at least one monomer selected from the group consisting of:
- the amide group-containing monomer is not particularly limited as long as it is a monomer having at least one amide group in one molecule.
- the same amide group-containing nitrile rubber (a1) latex as described above is used. Can be used.
- the content ratio of the amide group-containing monomer unit in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 0.1 to 5.0% by weight, more preferably 0.25 to 4.5% by weight. %, More preferably 0.5 to 4.0% by weight.
- the epoxy group-containing monomer is not particularly limited as long as it is a monomer having at least one epoxy group in one molecule.
- the epoxy group-containing monomer is the same as the latex of the carboxyl group-containing nitrile rubber (a1) described above. Can be used.
- the content ratio of the epoxy group-containing monomer unit in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 0.1 to 4.0% by weight, more preferably 0.25 to 3.5% by weight. %, More preferably 0.5 to 3.0% by weight.
- the carboxyl group-containing styrene-butadiene rubber (a2) is a copolymerizable other ethylenically unsaturated group other than at least one monomer selected from amide group-containing monomers and epoxy group-containing monomers.
- the monomer may be copolymerized.
- examples of such other copolymerizable ethylenically unsaturated monomers include those similar to the latex of the carboxyl group-containing nitrile rubber (a1) described above.
- 1,3-butadiene such as isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene And conjugated diene monomers.
- the content ratio of other monomer units formed by other ethylenically unsaturated monomers is preferably 10% by weight or less, more preferably 5%. % By weight or less, more preferably 3% by weight or less.
- the latex of the carboxyl group-containing styrene-butadiene rubber (a2) used in the present invention can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomers. preferable.
- the emulsion polymerization method will be described later. *
- the latex of carboxyl group-containing conjugated diene rubber (a3) used in the present invention is a copolymer latex obtained by copolymerizing a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer. Further, it may be a latex of a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable with these, which is used as necessary.
- the content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the carboxyl group-containing conjugated diene rubber (a3) is preferably 80 to 98% by weight, more preferably 90 to 98% by weight, More preferably, it is 95 to 97.5% by weight.
- the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group.
- the same as the latex of the carboxyl group-containing nitrile rubber (a1) described above Can be used.
- the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer is preferably 2 to 10% by weight, and more It is preferably 2 to 7.5% by weight, more preferably 2 to 6.5% by weight, even more preferably 2 to 6% by weight, particularly preferably 2 to 5% by weight, and most preferably 2.5 to 5%. % By weight.
- the film molded product such as a dip molded product obtained is excellent in texture and stretched while having sufficient tensile strength. Can be big.
- conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. Any one of these conjugated diene monomers may be used alone, or two or more may be used in combination.
- ethylenically unsaturated monomers copolymerizable with the conjugated diene monomer and the ethylenically unsaturated carboxylic acid monomer are not particularly limited, but the obtained film molded body such as a dip molded body From the viewpoint that the tensile strength can be further increased and a high stress retention can be provided, at least one monomer selected from an amide group-containing monomer and an epoxy group-containing monomer is used. A body is mentioned suitably.
- the amide group-containing monomer is not particularly limited as long as it is a monomer having at least one amide group in one molecule.
- the same amide group-containing nitrile rubber (a1) latex as described above is used.
- the content ratio of the amide group-containing monomer unit in the carboxyl group-containing conjugated diene rubber (a3) is preferably 0.1 to 5.0% by weight, more preferably 0.25 to 4.5% by weight, More preferably, it is 0.5 to 4.0% by weight.
- the epoxy group-containing monomer is not particularly limited as long as it is a monomer having at least one epoxy group in one molecule.
- the epoxy group-containing monomer is the same as the latex of the carboxyl group-containing nitrile rubber (a1) described above. Can be used.
- the content ratio of the epoxy group-containing monomer unit in the carboxyl group-containing conjugated diene rubber (a3) is preferably 0.1 to 4.0% by weight, more preferably 0.25 to 3.5% by weight, More preferably, it is 0.5 to 3.0% by weight.
- the carboxyl group-containing conjugated diene rubber (a3) is a copolymerizable other ethylenically unsaturated monomer other than at least one monomer selected from amide group-containing monomers and epoxy group-containing monomers.
- Such other copolymerizable ethylenically unsaturated monomers may be, for example, those similar to the latex of the carboxyl group-containing nitrile rubber (a1) described above ( However, excluding styrene).
- the content of other monomer units formed by other ethylenically unsaturated monomers is preferably 10% by weight or less, more preferably 5% by weight. Hereinafter, it is more preferably 3% by weight or less.
- the latex of the carboxyl group-containing conjugated diene rubber (a3) used in the present invention is obtained by copolymerizing a monomer mixture containing the above-mentioned monomers, and a method of copolymerization by emulsion polymerization is preferred.
- the emulsion polymerization method will be described later.
- latex of the carboxyl group-containing conjugated diene rubber (A) (latex of carboxyl group-containing nitrile rubber (a1), latex of carboxyl group-containing styrene-butadiene rubber (a2), carboxyl group-containing conjugated diene rubber (a3)
- the emulsion polymerization method for obtaining the latex will be described.
- the latex of the carboxyl group-containing conjugated diene rubber (A) described above can be produced by emulsion polymerization of a monomer mixture containing the above-described monomer by a conventionally known emulsion polymerization method.
- the polymerization temperature for carrying out the emulsion polymerization is not particularly limited, and may be selected, for example, in the range of 0 to 75 ° C., preferably in the range of 0 to 50 ° C. From the viewpoint of further increasing the tensile strength, it is preferable to control the temperature of the emulsion polymerization to 0 to 25 ° C., and to control the temperature of the emulsion polymerization to 0 to 25 ° C. to obtain a film molded body such as a dip molded body. The tensile strength can be further increased while the elongation is large and the texture is excellent.
- the temperature of emulsion polymerization is preferably 0 to 75 ° C., more preferably 0 to 50 ° C., further preferably 0 to 25 ° C., even more preferably 5 to 20 ° C. 15 ° C. is particularly preferred.
- a specific emulsion polymerization method is not particularly limited as long as the polymerization can be performed by controlling the polymerization temperature within the above range, and a monomer mixture containing the above-described monomers is used. And can be polymerized by a conventionally known method.
- a single amount used for polymerization is preferably performed in the presence of 0.15 to 0.95 parts by weight of a chain transfer agent with respect to 100 parts by weight of the body mixture.
- the amount of the chain transfer agent used is preferably 0.15 to 0.95 parts by weight, more preferably 0.20 to 0.70 parts by weight, more preferably 100 parts by weight of the monomer mixture used for the polymerization.
- the amount is preferably 0.20 to 0.50 parts by weight.
- the molecular weight of the carboxyl group-containing conjugated diene rubber (A) can be adjusted moderately, whereby the amount of carboxyl group-containing conjugated diene rubber (A) insoluble in methyl ethyl ketone and the degree of swelling with respect to methyl ethyl ketone are within a desired range. Thereby, the tensile strength, elongation, and stress at 500% elongation of a film molded body such as a dip molded body can be more highly balanced.
- the methyl ethyl ketone insoluble content of the carboxyl group-containing conjugated diene rubber (A) can be preferably 50 to 90% by weight, more preferably 55 to 85% by weight.
- the swelling degree of the carboxyl group-containing conjugated diene rubber (A) with respect to methyl ethyl ketone can be preferably 10 to 150 times, more preferably 10 to 100 times.
- the methyl ethyl ketone insoluble content and the degree of swelling with respect to methyl ethyl ketone can be measured, for example, by the following method. That is, first, a film of carboxyl group-containing conjugated diene rubber (A) was obtained, and the weight (W1) of the dried film before being immersed in methyl ethyl ketone was measured, and the film before being immersed in an 80-mesh cage metal mesh In the put state, it is immersed in methyl ethyl ketone for 24 hours at room temperature. Then, the weight (W2) of the swelled film remaining in the cage wire net is measured, and then the film after the immersion is dried at 105 ° C.
- A carboxyl group-containing conjugated diene rubber
- the chain transfer agent used in the emulsion polymerization is not particularly limited as long as the molecular weight of the obtained carboxyl group-containing conjugated diene rubber (A) can be appropriately adjusted.
- examples thereof include mercaptans such as mercaptan and t-dodecyl mercaptan, sulfides such as tetraethylthiuram sulfide and dibentamethylenethiuram hexasulfide, ⁇ -methylstyrene dimer, carbon tetrachloride and the like.
- mercaptans are preferable, and t-dodecyl mercaptan is more preferable. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- polymerization auxiliary materials such as an emulsifier and a polymerization initiator can be used.
- the method for adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a divided addition method, or a continuous addition method may be used.
- Nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; potassium dodecylbenzenesulfonate, dodecylbenzene
- Anionic emulsifiers such as alkyl benzene sulfonates such as sodium sulfonate, higher alcohol sulfates and alkyl sulfosuccinates; Cationic emulsifiers such as alkyltrimethylammonium chloride, dialkylammonium chloride and benzylammonium chloride; ⁇ , ⁇ -unsaturated Such as sulfo ester of carboxylic acid, sulfate ester of ⁇ , ⁇ -unsaturated carboxylic acid, sulfoalkyl aryl ether, etc.
- a polymerizable emulsifier can be mentioned.
- anionic emulsifiers are preferable, alkylbenzene sulfonates are more preferable, and potassium dodecylbenzenesulfonate and sodium dodecylbenzenesulfonate are particularly preferable.
- These emulsifiers can be used alone or in combination of two or more.
- the amount of the emulsifier used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
- the polymerization initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di- ⁇ - Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate; Can be mentionedThese polymerization initiators can be used alone or in combination of two or more. The amount of the poly
- the peroxide initiator can be used as a redox polymerization initiator in combination with a reducing agent.
- the reducing agent is not particularly limited, but is a compound containing a metal ion in a reduced state such as ferrous sulfate or cuprous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline. And so on.
- These reducing agents can be used alone or in combination of two or more.
- the amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
- the amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all monomers used.
- Examples of the monomer addition method include a method of adding monomers to be used in a reaction vessel all at once, a method of adding continuously or intermittently as the polymerization proceeds, and a part of the monomer is added. And a method in which the remaining monomer is continuously or intermittently added and polymerized, and any method may be employed.
- the composition of the mixture may be constant or may be changed.
- Each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added separately to the reaction vessel.
- polymerization auxiliary materials such as a chelating agent, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used, and these are not particularly limited in type and amount used.
- the polymerization time for carrying out the emulsion polymerization is not particularly limited, but is usually about 5 to 40 hours.
- the monomer mixture is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
- the polymerization conversion rate when stopping the polymerization reaction is preferably 90% by weight or more, more preferably 93% by weight or more.
- the polymerization terminator is not particularly limited.
- hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyaminesulfonic acid and its alkali metal salt sodium dimethyldithiocarbamate, hydroquinone derivative, catechol derivative, and hydroxydimethyl
- aromatic hydroxydithiocarboxylic acids such as benzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof.
- the amount of the polymerization terminator used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
- the unreacted monomer is removed, and the solid content concentration and pH are adjusted so that the latex of the carboxyl group-containing conjugated diene rubber (A) (the carboxyl group-containing nitrile described above) is obtained.
- an anti-aging agent an antiseptic, an antibacterial agent, a dispersant, and the like may be appropriately added to the carboxyl group-containing conjugated diene rubber (A) latex used in the present invention, if necessary.
- the number average particle diameter of the latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention is preferably 60 to 300 nm, more preferably 80 to 150 nm.
- the particle diameter can be adjusted to a desired value by a method such as adjusting the amount of emulsifier and polymerization initiator used.
- the latex composition of the present invention comprises a metal compound (B) containing a trivalent or higher metal in addition to the carboxyl group-containing conjugated diene rubber (A) latex described above.
- the content ratio of the metal compound (B) containing a trivalent or higher metal to 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A) is in the range of 0.1 to 1.5 parts by weight. .
- the metal compound (B) containing a trivalent or higher metal acts as a crosslinking agent.
- a metal compound (B) containing a trivalent or higher metal is used as a cross-linking agent instead of sulfur that is usually used as a cross-linking agent. Because it does not require a sulfur accelerator, in addition to immediate type allergy (Type I), it may cause delayed type allergy (Type IV) due to sulfur and sulfur-containing vulcanization accelerators. It can be effectively suppressed.
- the above-mentioned specific amount of the metal compound (B) containing a trivalent or higher metal is contained in the latex of the carboxyl group-containing conjugated diene rubber (A), so that a dip-molded body or the like is obtained.
- the obtained film molded body such as a dip molded body can be provided with a soft texture in addition to high tensile strength and high elongation.
- a film molded body such as a dip molded body is used for a glove application, in addition to high tensile strength and large elongation, a feeling of use when a user wears this and works is important. Is. And when the present inventors examined such a usability
- the metal compound (B) containing a trivalent or higher metal is not particularly limited as long as it is a compound containing a trivalent or higher metal, and examples thereof include an aluminum compound, a cobalt compound, a zirconium compound, and a titanium compound. Among these, an aluminum compound is preferable from the viewpoint that the carboxyl group-containing conjugated diene rubber (A) contained in the latex can be more favorably crosslinked.
- the aluminum compound is not particularly limited.
- these aluminum compounds can be used individually or in combination of 2 or more types. Among these, sodium aluminate is preferable from the viewpoint that the effects of the present invention can be made more remarkable.
- the content ratio of the metal compound (B) containing a trivalent or higher valent metal in the latex composition of the present invention is 0.100 parts by weight with respect to 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A) contained in the latex. 1 to 1.5 parts by weight, preferably 0.1 to 1.25 parts by weight, more preferably 0.1 to 1 part by weight, still more preferably 0.1 to 0.8 parts by weight, Particularly preferred is 0.1 to 0.6 parts by weight. If the content ratio of the metal compound containing a trivalent or higher metal is too small, the crosslinking becomes insufficient, and the obtained film molded body such as a dip molded body is inferior in tensile strength. When a film molded body such as a dip molded body is obtained, the obtained film molded body such as a dip molded body has a small elongation and a poor texture.
- the latex composition of the present invention includes a saccharide (c1), a sugar alcohol ( It is preferable to contain at least one alcoholic hydroxyl group-containing compound (C) selected from c2), hydroxy acid (c3) and hydroxy acid salt (c4).
- the stability as a latex composition can be further improved, and when it is formed into a film molded body such as a dip molded body, the dip molded body obtained, etc.
- the film molded body can be provided with a high stress retention.
- an alcoholic hydroxyl group-containing compound (C) is blended with such a metal compound (B) containing a trivalent or higher metal.
- a film molded body such as a dip molded body obtained by the action of the metal compound (B) containing a trivalent or higher metal and the alcoholic hydroxyl group-containing compound (C), In addition to having a high tensile strength, a high elongation, and a soft texture, it can also have a high stress retention.
- the tensile strength is high and the elongation is large from the viewpoint of a feeling of use when this is worn and the work is performed.
- M 100 such as (0)
- the high stress retention represented by a percentage of stretch to stop to six minutes later stress M 100 (6)
- the film composition such as a dip-molded body obtained with good stability as a latex composition has high tensile strength, large elongation, and stress at 500% elongation. In addition to being excellent in (texture), it can have a high stress retention.
- the alcoholic hydroxyl group-containing compound (C) used in the present invention is at least one selected from saccharide (c1), sugar alcohol (c2), hydroxy acid (c3) and hydroxy acid salt (c4). From the viewpoint that the obtained film molded body such as a dip molded body can have a softer texture and a higher stress retention, sugar alcohol (c2) and hydroxy acid salt (c4) It is preferable to use at least one selected from When two or more alcoholic hydroxyl group-containing compounds (C) are used in combination, at least one selected from saccharide (c1) and sugar alcohol (c2), hydroxy acid (c3) and hydroxy acid salt It is preferable to use a combination of at least one selected from (c4), and it is more preferable to use a combination of sugar alcohol (c2) and hydroxy acid salt (c4).
- the saccharide (c1) is not particularly limited as long as it is a monosaccharide or a polysaccharide in which two or more monosaccharides are bonded by a glycosidic bond.
- the sugar alcohol (c2) is not particularly limited as long as it is a monosaccharide or polysaccharide sugar alcohol; for example, tritol such as glycerin; tetritol such as erythritol, D-threitol, L-threitol; D-arabinitol, Pentitols such as L-arabinitol, xylitol, ribitol, pentaerythritol; pentaerythritol; hexitols such as sorbitol, D-iditol, galactitol, D-glucitol, mannitol; heptitols such as boleitol, perseitol; D-erythro-D- Octitol such as galacto-octitol; and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, hexi
- the hydroxy acid (c3) is not particularly limited as long as it is a carboxylic acid having a hydroxyl group.
- glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxy Aliphatic acids such as butyric acid, malic acid, 3-methylmalic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucine acid, mevalonic acid, pantoic acid, ricinoleic acid, ricinaleic acid, cerebronic acid, quinic acid, shikimic acid, serine Hydroxy acid; salicylic acid, creosote acid (homosalicylic acid, hydroxy (methyl) benzoic acid), vanillic acid, syringic acid, hydroxypropanoic acid, hydroxypentanoic acid, hydroxyhexanoic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, hydroxynona
- aliphatic hydroxy acids are preferable, aliphatic ⁇ -hydroxy acids are more preferable, glycolic acid, lactic acid, tartronic acid, glyceric acid, malic acid, tartaric acid, and citric acid are more preferable, and glycolic acid is particularly preferable.
- the hydroxy acid salt (c4) is not particularly limited as long as it is a salt of a hydroxy acid, and examples thereof include metal salts of hydroxy acid exemplified as specific examples of the hydroxy acid (c3), such as sodium and potassium. And alkali metal salts such as calcium and magnesium.
- the hydroxy acid salt (c4) one kind may be used alone, or two or more kinds may be used in combination.
- an alkali metal salt of hydroxy acid is preferable, and a sodium salt of hydroxy acid is preferable.
- the hydroxy acid constituting the hydroxy acid salt (c4) is preferably an aliphatic hydroxy acid, more preferably an aliphatic ⁇ -hydroxy acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, malic acid, tartaric acid, citric acid.
- An acid is further preferred, and glycolic acid is particularly preferred. That is, sodium glycolate is particularly suitable as the hydroxy acid salt (c4).
- the content of the alcoholic hydroxyl group-containing compound (C) in the latex composition of the present invention is “the metal compound (B) containing a trivalent or higher metal” relative to the metal compound (B) containing a trivalent or higher metal.
- Alcoholic hydroxyl group-containing compound (C) preferably in an amount ranging from 1: 0.1 to 1:50, more preferably from 1: 0.2 to 1:45. The amount is more preferably in the range of 1: 0.3 to 1:30.
- the content of the alcoholic hydroxyl group-containing compound (C) may be such that the content with respect to the metal compound (B) containing a trivalent or higher metal falls within the above range, but the carboxyl group contained in the latex
- the content with respect to 100 parts by weight of the conjugated diene rubber (A) is preferably 0.03 to 15 parts by weight, and more preferably 0.05 to 10 parts by weight.
- the latex composition of the present invention includes, for example, a metal compound (B) containing a trivalent or higher metal in a latex of a carboxyl group-containing conjugated diene rubber (A), and an alcoholic hydroxyl group-containing compound (if necessary) ( And C).
- the metal compound (B) containing a trivalent or higher metal and the alcoholic hydroxyl group-containing compound (C) used as necessary can be favorably dispersed in the obtained latex composition.
- the metal compound (B) containing a trivalent or higher metal and the alcoholic hydroxyl group-containing compound (C) used as necessary are dissolved in water or alcohol and added in the form of an aqueous solution or alcohol solution.
- a stabilizer such as a chelating agent or a buffering agent in order to increase the stability of the solution when dissolved.
- the latex composition of the present invention contains a latex of the carboxyl group-containing conjugated diene rubber (A) described above, a metal compound (B) containing a trivalent or higher metal, and an alcoholic hydroxyl group used as necessary.
- a filler, a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener and the like may be blended as desired.
- the solid content concentration of the latex composition of the present invention is preferably 10 to 40% by weight, more preferably 15 to 35% by weight.
- the pH of the latex composition of the present invention is preferably 7.5 to 12.0, more preferably 7.5 to 11.0, still more preferably 7.5 to 9.4, particularly preferably 7.5. ⁇ 9.2.
- the dip molded body of the present invention can be obtained by dip molding the latex composition of the present invention described above.
- a normal method may be employed, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method.
- the anode coagulation dipping method is preferable in that a dip-formed body having a uniform thickness is easily obtained.
- a dip-molding mold is dipped in a coagulant solution to attach a coagulant to the mold surface, and then dipped in a latex composition to dip on the mold surface.
- a molding layer is formed.
- the coagulant examples include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; and the like. Of these, calcium chloride and calcium nitrate are preferred.
- the coagulant is usually used as a solution of water, alcohol, or a mixture thereof.
- the coagulant concentration is usually 5 to 50% by weight, preferably 10 to 35% by weight.
- the obtained dip-molded layer is usually subjected to heat treatment to be crosslinked.
- water-soluble impurities for example, excess emulsifier and coagulant
- water-soluble impurities may be removed by immersing in water, preferably warm water of 30 to 70 ° C., for about 1 to 60 minutes.
- the operation for removing the water-soluble impurities may be performed after the dip-molded layer is heat-treated, but it is preferably performed before the heat-treatment because the water-soluble impurities can be more efficiently removed.
- the crosslinking of the dip-molded layer is usually performed by performing a heat treatment at a temperature of 80 to 150 ° C., preferably 10 to 130 minutes.
- a heating method an external heating method using infrared rays or heated air or an internal heating method using high frequency can be employed. Of these, external heating with heated air is preferred.
- the dip molded body is obtained as a film-shaped film molded body by detaching the crosslinked dip molded layer from the dip molding die.
- the desorption method it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure. After the desorption, a heat treatment may be further performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
- the film thickness of the film molded body is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
- the film molded body of the present invention is a method that can form the latex composition of the present invention into a film (for example, a coating method, etc.). ) As long as it is obtained by any method.
- the film molded body of the present invention including the dip molded body of the present invention is obtained using the above-described latex composition of the present invention, in addition to immediate allergy (Type I), delayed allergy (Type IV) ) Is also suppressed, and the tensile strength is high, the elongation is large, and a soft texture is provided. Therefore, it is suitable for glove use, particularly for surgical gloves.
- the membrane molded body of the present invention including the dip molded body of the present invention is a medical product such as a baby bottle nipple, a dropper, a tube, a water pillow, a balloon sack, a catheter, and a condom in addition to gloves; a balloon, a doll, It can also be used for toys such as balls; industrial articles such as pressure forming bags and gas storage bags;
- the stress retention rate was measured in Examples 2-1 to 2-9, 3-1 to 3-9, 4-1 to 4-8, and Comparative Examples 2-1 to 2-3, 4-1, 4 -2.
- Production Example 1 Production of latex of carboxyl group-containing nitrile rubber (a1-1)
- composition of the carboxyl group-containing nitrile rubber (a1-1) contained in the obtained latex is 34.0% by weight of acrylonitrile units, 62.5% by weight of 1,3-butadiene units, and 3.5% by weight of methacrylic acid units. Met.
- Production Example 2 36 parts from 34 parts amount of the preparation acrylonitrile latex of the carboxyl group-containing nitrile rubber (a1-2), 61 parts of the usage 62.5 parts of 1,3-butadiene, the amount of methacrylic acid 3
- a latex of carboxyl group-containing nitrile rubber (a1-2) having a solid content of 40% and a pH of 7.5 was obtained in the same manner as in Production Example 1, except that the amount was changed from 5 parts to 3 parts.
- the composition of the carboxyl group-containing nitrile rubber (a1-2) contained in the obtained latex is 36.0% by weight of acrylonitrile units, 61.0% by weight of 1,3-butadiene units, and 3.0% by weight of methacrylic acid units. Met.
- Production Example 3 Production of latex of carboxyl group-containing nitrile rubber (a1-3) The amount of acrylonitrile used was changed from 34 parts to 28.0 parts, and the amount of 1,3-butadiene used was changed from 62.5 parts to 68.5 parts. Except for the above, a latex of carboxyl group-containing nitrile rubber (a1-3) having a solid content of 40% and a pH of 7.5 was obtained in the same manner as in Production Example 1. The composition of the carboxyl group-containing nitrile rubber (a1-3) contained in the obtained latex was as follows: acrylonitrile unit 28.0% by weight, 1,3-butadiene unit 68.5% by weight, methacrylic acid unit 3.5% by weight. Met.
- Production Example 4 Production of latex of carboxyl group-containing nitrile rubber (a1-4) The amount of acrylonitrile used was changed from 34 parts to 30.5 parts, the amount of 1,3-butadiene used was changed from 62.5 parts to 63.5 parts, The amount used was changed from 3.5 parts to 6 parts, respectively, and the pH after the unreacted monomer was distilled off under reduced pressure from the obtained copolymer latex was changed from 7.5 to 7.0.
- a latex of carboxyl group-containing nitrile rubber (a1-4) having a solid content concentration of 40% and a pH of 7.0 was obtained in the same manner as in Production Example 1 except for the change.
- composition of the carboxyl group-containing nitrile rubber (a1-4) contained in the obtained latex is 30.5% by weight of acrylonitrile units, 63.5% by weight of 1,3-butadiene units, and 6.0% by weight of methacrylic acid units. Met.
- Production Example 5 Production of latex of carboxyl group-containing nitrile rubber (a1-5)
- a pressure-resistant polymerization reaction vessel equipped with a stirrer
- the temperature was maintained at 37 ° C.
- Production Example 6 Production of latex of carboxyl group-containing styrene-butadiene rubber (a2-1) In a pressure-resistant vessel equipped with a stirrer, 50 parts of deionized water, 0.3 part of sodium dodecylbenzenesulfonate, 0.4 part of t-dodecyl mercaptan, 1, A monomer emulsion was obtained by charging 63 parts of 3-butadiene, 34 parts of styrene, and 3 parts of methacrylic acid.
- composition of the obtained carboxyl group-containing styrene-butadiene rubber (a2-1) was 63% by weight of 1,3-butadiene units, 34% by weight of styrene units, and 3% by weight of methacrylic acid units.
- Production Example 7 In a pressure-resistant polymerization reactor equipped with a latex stirrer of carboxyl group-containing butadiene rubber (a3-1), 97 parts of 1,3-butadiene, 3 parts of methacrylic acid, 0.8 part of t-dodecyl mercaptan as a chain transfer agent, deionized water 132 parts, sodium dodecylbenzenesulfonate 3 parts, ⁇ -naphthalenesulfonic acid formalin condensate 1 part, potassium persulfate 0.3 part, and ethylenediaminetetraacetate 0.005 part are charged, and the polymerization temperature is maintained at 37 ° C. Then, polymerization was started.
- Production Example 8 Production of latex of carboxyl group-containing nitrile rubber (a1-6)
- a pressure-resistant polymerization reaction vessel equipped with a stirrer 63 parts of 1,3-butadiene, 34 parts of acrylonitrile, 3 parts of methacrylic acid, t-dodecyl mercaptan as a chain transfer agent 25 parts, 132 parts of deionized water, 3 parts of sodium dodecylbenzenesulfonate, 1 part of sodium ⁇ -naphthalenesulfonate formalin condensate and 0.01 part of sodium hyposulfite were charged, and the polymerization reaction vessel temperature was maintained at 5 ° C.
- the temperature of the reaction system was kept in the range of 5 to 10 ° C.
- the unreacted monomer was distilled off from the copolymer latex under reduced pressure, and then the solid content concentration and pH were adjusted to obtain a carboxyl content having a solid content concentration of 40% by weight and pH 8.0.
- a latex of group-containing nitrile rubber (a1-6) was obtained.
- the carboxyl group-containing nitrile rubber (a1-6) contained in the obtained latex was measured for the amount of methyl ethyl ketone insoluble matter and the degree of swelling with respect to methyl ethyl ketone.
- the composition of the obtained carboxyl group-containing nitrile rubber (a1-6) was 63% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, and 3% by weight of methacrylic acid units.
- Production Example 9 Production of latex of carboxyl group-containing styrene-butadiene rubber (a2-1)
- a pressure-resistant polymerization reaction vessel equipped with a stirrer 63 parts of 1,3-butadiene, 34 parts of styrene, 3 parts of methacrylic acid, t-dodecyl mercaptan as a chain transfer agent 0.4 parts, 132 parts of deionized water, 1.5 parts of sodium dodecylbenzenesulfonate, 1 part of ⁇ -naphthalenesulfonic acid formalin condensate and 0.01 part of sodium hyposulfite were charged, and the temperature of the polymerization reaction vessel was 10. Held at 0C.
- the carboxyl group-containing styrene-butadiene rubber (a2-2) contained in the obtained latex was measured for the insoluble content of methyl ethyl ketone and the degree of swelling with respect to methyl ethyl ketone.
- the insoluble amount of methyl ethyl ketone was 70% by weight and the degree of swelling with respect to methyl ethyl ketone was 60%. It was twice.
- the composition of the obtained carboxyl group-containing styrene-butadiene rubber (a2-2) was 63% by weight of 1,3-butadiene units, 34% by weight of styrene units, and 3% by weight of methacrylic acid units.
- the carboxyl group-containing butadiene rubber (a3-2) contained in the obtained latex was measured for the insoluble content of methyl ethyl ketone and the degree of swelling with respect to methyl ethyl ketone.
- the insoluble amount of methyl ethyl ketone was 65% by weight and the degree of swelling with respect to methyl ethyl ketone was 80 times. there were.
- the composition of the resulting carboxyl group-containing butadiene rubber (a3-2) was 97% by weight of 1,3-butadiene units and 3% by weight of methacrylic acid units.
- Production Example 11 Production of latex of carboxyl group-containing nitrile rubber (a1-7) Carboxyl group-containing nitrile rubber in the same manner as in Production Example 5, except that the amount of t-dodecyl mercaptan used as a chain transfer agent was changed to 0.50 parts. A latex (a1-7) was obtained. The carboxyl group-containing nitrile rubber (a1-7) contained in the obtained latex was measured for the insoluble content of methyl ethyl ketone and the degree of swelling with respect to methyl ethyl ketone.
- the composition of the obtained carboxyl group-containing nitrile rubber (a1-7) was 63% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, and 3% by weight of methacrylic acid units.
- the composition of the obtained carboxyl group-containing nitrile rubber (a1-8) was 63% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, and 3% by weight of methacrylic acid units.
- Production Example 13 Production of latex of carboxyl group-containing nitrile rubber (a1-9)
- a pressure-resistant polymerization reaction vessel equipped with a stirrer 62.5 parts of 1,3-butadiene, 34 parts of acrylonitrile, 3 parts of methacrylic acid, as an amide group-containing monomer N-methylolacrylamide 0.5 part, t-dodecyl mercaptan 0.25 part as chain transfer agent, deionized water 132 parts, sodium dodecylbenzenesulfonate 3 parts, sodium ⁇ -naphthalenesulfonate formalin condensate 1 part,
- the polymerization reaction vessel temperature was maintained at 5 ° C.
- a latex (a1-9) was obtained.
- the composition of the obtained carboxy group-containing nitrile rubber (a1-9) was 62.5% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, 3% by weight of methacrylic acid units, 0.5% of N-methylolacrylamide units. % By weight.
- Production Example 14 Preparation of latex of carboxyl group-containing nitrile rubber (a1-10) Instead of N-methylolacrylamide as an amide group-containing monomer, except that 0.5 part of glycidyl methacrylate as an epoxy group-containing monomer was used In the same manner as in Production Example 13, a latex of carboxyl group-containing nitrile rubber (a1-10) was obtained.
- the composition of the resulting carboxyl group-containing nitrile rubber (a1-10) was composed of 62.5% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, 3% by weight of methacrylic acid units, and 0.5% by weight of glycidyl methacrylate units. Met.
- Production Example 15 Manufacture of latex of carboxyl group-containing nitrile rubber (a1-11) The amount of 1,3-butadiene used was changed to 61 parts, and the amount of N-methylolacrylamide as an amide group-containing monomer was changed to 2.0 parts. Except for the above, a carboxyl group-containing nitrile rubber (a1-11) latex was obtained in the same manner as in Production Example 13. The composition of the obtained carboxyl group-containing nitrile rubber (a1-11) was composed of 61% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, 3% by weight of methacrylic acid units, and 2.0% by weight of N-methylolacrylamide units. Met.
- Production Example 16 61 parts of the amount of production of 1,3-butadiene latex of the carboxyl group-containing nitrile rubber (A1-12), except for changing each 2.0 parts usage glycidyl methacrylate as the epoxy group-containing monomer
- a latex of carboxyl group-containing nitrile rubber (a1-12) was obtained.
- the composition of the resulting carboxyl group-containing nitrile rubber (a1-12) was 61% by weight of 1,3-butadiene units, 34% by weight of acrylonitrile units, 3% by weight of methacrylic acid units, and 2.0% by weight of glycidyl methacrylate units. It was.
- Production Example 17 Production of latex of carboxyl group-containing styrene-butadiene rubber (a2-3) In a pressure-resistant vessel equipped with a stirrer, 50 parts of deionized water, 0.3 part of sodium dodecylbenzenesulfonate, 0.4 t-dodecyl mercaptan as a chain transfer agent Parts, 1.3-butadiene 62.5 parts, styrene 34 parts, methacrylic acid 3 parts, and amide group-containing monomer N-methylolacrylamide 0.5 parts were obtained to obtain a monomer emulsion.
- a2-3 carboxyl group-containing styrene-butadiene rubber
- the resulting carboxyl group-containing styrene-butadiene rubber (a2-3) had a composition of 62.5% by weight of 1,3-butadiene units, 34% by weight of styrene units, 3% by weight of methacrylic acid units, 0 units of N-methylolacrylamide units. 0.5% by weight.
- Production Example 18 Preparation of latex of carboxyl group-containing styrene-butadiene rubber (a2-4) Instead of N-methylolacrylamide as an amide group-containing monomer, 0.5 part of glycidyl methacrylate as an epoxy group-containing monomer was used. Except for the above, a carboxyl group-containing styrene-butadiene rubber (a2-4) latex was obtained in the same manner as in Production Example 17.
- the resulting carboxyl group-containing styrene-butadiene rubber (a2-4) had a composition of 62.5% by weight of 1,3-butadiene units, 34% by weight of styrene units, 3% by weight of methacrylic acid units, 0.5% of glycidyl methacrylate units. % By weight.
- Production Example 19 In a pressure-resistant polymerization reaction vessel equipped with a latex stirrer of carboxyl group-containing butadiene rubber (a3-3), 96.5 parts of 1.3-butadiene, 3 parts of methacrylic acid, and N-methylolacrylamide as an amide group-containing monomer were added.
- sodium dimethyldithiocarbamate 0% as a polymerization terminator is used as a polymerization terminator.
- the polymerization reaction was stopped by adding 1 part.
- the unreacted monomer was distilled off from the copolymer latex under reduced pressure, and then the solid content concentration and pH were adjusted to obtain a carboxyl content having a solid content concentration of 40% by weight and pH 8.0.
- a latex of group-containing butadiene rubber (a3-3) was obtained.
- the composition of the obtained carboxyl group-containing butadiene rubber (a3-3) was 96.5% by weight of 1,3-butadiene units, 3% by weight of methacrylic acid units, and 0.5% by weight of N-methylolacrylamide units.
- Production Example 20 Manufactured except that 0.5 part of glycidyl methacrylate as an epoxy group-containing monomer was used in place of N-methylolacrylamide as a latex amide group-containing monomer of carboxyl group-containing butadiene rubber (a3-4) In the same manner as in Example 19, a latex of carboxyl group-containing butadiene rubber (a3-4) was obtained.
- the composition of the obtained carboxyl group-containing butadiene rubber (a3-4) was 96.5% by weight of 1,3-butadiene units, 3% by weight of methacrylic acid units, and 0.5% by weight of glycidyl methacrylate units.
- Example 1-1 Preparation of Latex Composition
- Deionized water was added to 250 parts of latex (100 parts in terms of carboxyl group-containing nitrile rubber (a1-1)) of carboxyl group-containing nitrile rubber (a1-1) obtained in Production Example 1.
- the solid concentration was adjusted to 35% by weight, and then 0.4 part of a sodium aluminate aqueous solution was added in terms of sodium aluminate.
- the latex composition was obtained by adjusting solid content concentration to 30 weight% by further adding deionized water. .
- the obtained latex composition was subjected to an operation for removing aggregates and the like in the latex composition by filtration as necessary (Examples 1-2 to 1-5, Comparative Example 1 described later).
- Examples 1-2 to 1-5, Comparative Example 1 described later the operation for removing aggregates and the like was performed in the same manner as necessary.
- Example 1-2 Example 1-1, except that when preparing the latex composition, the amount of sodium aluminate aqueous solution added was changed to 0.2 parts in terms of sodium aluminate and the pH of the composition was adjusted to 8.5.
- a latex composition and a dip-formed product (rubber glove) were produced in the same manner as described above and evaluated in the same manner. The results are shown in Table 1.
- Example 1-3 In preparing the latex composition, instead of the latex of the carboxyl group-containing nitrile rubber (a1-1) obtained in Production Example 1, the carboxyl group-containing nitrile rubber (a1-2) obtained in Production Example 2 was used. While using latex (100 parts in terms of carboxyl group-containing nitrile rubber (a1-2)), the amount of sodium aluminate aqueous solution added was 0.3 parts in terms of sodium aluminate, and the pH of the composition was 8.5. A latex composition and a dip-molded body (rubber glove) were produced in the same manner as in Example 1-1 except that the above was adjusted, and evaluated in the same manner. The results are shown in Table 1.
- Example 1-4 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-1) latex obtained in Production Example 1, the carboxyl group-containing nitrile rubber (a1-3) obtained in Production Example 3 was used. A latex composition and dip were prepared in the same manner as in Example 1-2 except that latex (100 parts in terms of carboxyl group-containing nitrile rubber (a1-3)) was used and the pH of the composition was adjusted to 8.3. A molded body (rubber glove) was produced and evaluated in the same manner. The results are shown in Table 1.
- Example 1-5 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-1) latex obtained in Production Example 1, the carboxyl group-containing nitrile rubber (a1-4) obtained in Production Example 4 was used. Except that latex (100 parts in terms of carboxyl group-containing nitrile rubber (a1-4)) was used and the pH of the composition was adjusted to 7.5, the latex composition and A dip-molded body (rubber glove) was produced and evaluated in the same manner. The results are shown in Table 1.
- Comparative Example 1-1 A latex composition and a dip-molded body (rubber gloves) were prepared in the same manner as in Example 1-1 except that when preparing the latex composition, the aqueous sodium aluminate solution was not added and the pH was adjusted to 8.4. Were manufactured and evaluated in the same manner. The results are shown in Table 1.
- Comparative Example 1-2 In preparing the latex composition, 1 part of sulfur (crosslinking agent), 0.5 part of zinc dibutyldithiocarbamate (vulcanization accelerator), and 1.2 parts of zinc oxide were used in place of the sodium aluminate aqueous solution. A latex composition and a dip-formed product (rubber glove) were produced in the same manner as in Example 1-1 except that the pH was adjusted to 8.5, and evaluated in the same manner. The results are shown in Table 1.
- Comparative Example 1-3 A latex composition and a dip-formed product (rubber gloves) were prepared in the same manner as in Example 1-1 except that 1.5 parts of zinc oxide was used instead of the sodium aluminate aqueous solution when preparing the latex composition. Were manufactured and evaluated in the same manner. The results are shown in Table 1.
- Comparative Example 1-4 A latex composition and a dip-molded body (rubber) were prepared in the same manner as in Example 1-1 except that the amount of the sodium aluminate aqueous solution was changed to 2.0 parts in terms of sodium aluminate when preparing the latex composition. Gloves) were manufactured and evaluated in the same manner. The results are shown in Table 1.
- Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4 As shown in Table 1, latex containing carboxyl group-containing conjugated diene rubber (A) and a metal containing a trivalent or higher metal The content ratio of the metal compound (B) containing the compound (B) and containing a trivalent or higher metal is 0.1 to 1.5 with respect to 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A).
- the dip-molded body (rubber glove) obtained by using the latex composition in parts by weight has a large tensile strength and elongation and a soft texture (less stress at 500% elongation). Examples 1-1 to 1-5).
- Example 2-1 250 parts latex of a carboxyl group-containing nitrile rubber obtained in Preparation Production Example 5 (a1-5) latex composition (carboxyl group-containing nitrile rubber (a1-5) 100 parts by equivalent), sodium aluminate 0.5 Part, 0.75 part of sorbitol and 0.75 part of sodium glycolate in water were added. And deionized water was added to this, and the latex composition was obtained by adjusting solid content concentration to 30 weight%.
- a coagulant aqueous solution was prepared by mixing 30 parts of calcium nitrate, 0.05 part of polyethylene glycol octylphenyl ether, which is a nonionic emulsifier, and 70 parts of water.
- a ceramic glove mold preliminarily heated to 70 ° C. is immersed in this aqueous coagulant solution for 5 seconds, pulled up, and dried at a temperature of 70 ° C. for 10 minutes to attach the coagulant to the glove mold. It was. Then, the glove mold with the coagulant attached is immersed in the latex composition obtained above for 10 seconds, pulled up, then immersed in warm water at 50 ° C.
- Example 2-2 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-5) latex, 250 parts of the carboxyl group-containing styrene-butadiene rubber (a2-1) latex obtained in Production Example 6 (carboxyl A latex composition having a solid content concentration of 30% by weight and a dip-molded body (rubber gloves) except that a group-containing styrene-butadiene rubber (a2-1) 100 parts) was used. Were manufactured and evaluated in the same manner. The results are shown in Table 2.
- Example 2-3 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-5) latex, 250 parts of the carboxyl group-containing butadiene rubber (a3-1) latex obtained in Production Example 7 (carboxyl group-containing) A latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced in the same manner as in Example 2-1, except that 100 parts of butadiene rubber (a3-1) was used. Evaluation was performed in the same manner. The results are shown in Table 2.
- Example 2-4 When preparing the latex composition, the solid content concentration was 30% by weight in the same manner as in Example 2-1, except that the blending amount of sorbitol was changed to 1.5 parts and sodium glycolate was not blended. A latex composition and a dip-molded body (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 2.
- Example 2-5 When preparing the latex composition, the solid content concentration was 30% by weight in the same manner as in Example 2-1, except that the blending amount of sodium glycolate was changed to 1.5 parts and sorbitol was not blended. A latex composition and a dip-molded body (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 2.
- Example 2-6 When preparing the latex composition, the amount of sodium aluminate was changed to 0.1 part, the amount of sorbitol was changed to 0.015 part, and the amount of sodium glycolate was changed to 0.015 part. In the same manner as in Example 2-1, a latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber glove) were produced and evaluated in the same manner. The results are shown in Table 2.
- Example 2-7 When preparing the latex composition, the amount of sodium aluminate was changed to 0.1 part, the amount of sorbitol was changed to 0.5 part, and the amount of sodium glycolate was changed to 0.5 part, respectively.
- a latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber glove) were produced and evaluated in the same manner. The results are shown in Table 2.
- Example 2-8 When preparing the latex composition, the amount of sodium aluminate was changed to 1 part, the amount of sorbitol was changed to 0.15 parts, and the amount of sodium glycolate was changed to 0.15 parts, respectively.
- a latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber glove) were produced and evaluated in the same manner. The results are shown in Table 2.
- Example 2-9 Example 2 was prepared except that the amount of sodium aluminate was changed to 1 part, the amount of sorbitol was changed to 5 parts, and the amount of sodium glycolate was changed to 5 parts when preparing the latex composition.
- a latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 2.
- Comparative Example 2-1 A latex composition and a dip-molded body having a solid content of 30% by weight were prepared in the same manner as in Example 2-1, except that sodium aluminate, sorbitol and sodium glycolate were not blended when preparing the latex composition. (Rubber gloves) were manufactured and evaluated in the same manner. The results are shown in Table 2.
- Comparative Example 2-2 A latex composition and a dip-molded body having a solid content concentration of 30% by weight were prepared in the same manner as in Example 2-2, except that sodium aluminate, sorbitol and sodium glycolate were not blended when preparing the latex composition. (Rubber gloves) were manufactured and evaluated in the same manner. The results are shown in Table 2.
- Comparative Example 2-3 A latex composition having a solid content concentration of 30% by weight and a dip-molded article were prepared in the same manner as in Example 2-3, except that sodium aluminate, sorbitol and sodium glycolate were not blended when preparing the latex composition. (Rubber gloves) were manufactured and evaluated in the same manner. The results are shown in Table 2.
- a latex composition obtained by blending a carboxyl group-containing conjugated diene rubber (A) latex with an alcoholic hydroxyl group-containing compound (C) in addition to a metal compound (B) containing a trivalent or higher metal.
- the dip-molded body (rubber glove) obtained by using such a latex composition is excellent in stability as a latex composition, has a large tensile strength and elongation, and has a soft texture (stress at 500% elongation). (Examples 2-1 to 2-9).
- the resulting latex composition has a tensile strength when formed into a dip-molded body (rubber glove). As a result (Comparative Examples 2-1 to 2-3).
- Example 3-1 250 parts latex of a carboxyl group-containing nitrile rubber obtained in Preparation Production Example 8 (a1-6) latex composition (carboxyl group-containing nitrile rubber (a1-6) 100 parts by equivalent), sodium aluminate 0.2 A mixed aqueous solution in which 0.4 part of sorbitol and 0.4 part of sodium glycolate were dissolved in water was added. And a deionized water and 5 weight% potassium hydroxide aqueous solution were added to this, and the latex composition was obtained by adjusting solid content concentration to 30 weight% and pH to 9.2.
- a coagulant aqueous solution was prepared by mixing 30 parts of calcium nitrate, 0.05 part of polyethylene glycol octylphenyl ether, which is a nonionic emulsifier, and 70 parts of water.
- a ceramic glove mold preliminarily heated to 70 ° C. is immersed in this aqueous coagulant solution for 5 seconds, pulled up, and dried at a temperature of 70 ° C. for 10 minutes to attach the coagulant to the glove mold. It was. Then, the glove mold with the coagulant attached is immersed in the latex composition obtained above for 10 seconds, pulled up, then immersed in warm water at 50 ° C.
- Example 3-2 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing styrene-butadiene rubber (a2-2) latex obtained in Production Example 9 (carboxyl A latex composition having a solid content concentration of 30% by weight and a dip-molded body (rubber glove) in the same manner as in Example 3-1, except that a group-containing styrene-butadiene rubber (a2-2) 100 parts) was used. Were manufactured and evaluated in the same manner. The results are shown in Table 3.
- Example 3-3 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing butadiene rubber (a3-2) latex obtained in Production Example 10 (carboxyl group-containing) Except that butadiene rubber (100 parts in terms of a3-2) was used, a latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced in the same manner as in Example 3-1, Evaluation was performed in the same manner. The results are shown in Table 3.
- Example 3-4 The amount of sodium aluminate is 0.2 to 0.5 parts, the amount of sorbitol is 0.4 to 0.75 parts, and the amount of sodium glycolate is 0.4 to 0.75 parts
- a latex composition and a dip-molded body (rubber glove) having a solid content concentration of 30% by weight were produced in the same manner as in Example 3-1, except that each was changed. The results are shown in Table 3.
- Example 3-5 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-5) latex obtained in Production Example 5 (carboxyl group-containing) A latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced in the same manner as in Example 3-1, except that 100 parts of nitrile rubber (a1-5) was used. Evaluation was performed in the same manner. The results are shown in Table 3.
- Example 3-6 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing styrene-butadiene rubber (a2-1) latex obtained in Production Example 6 (carboxyl) A latex composition having a solid content concentration of 30% by weight and a dip-molded article (rubber gloves) except that a group-containing styrene-butadiene rubber (a2-1) 100 parts) was used. Were manufactured and evaluated in the same manner. The results are shown in Table 3.
- Example 3-7 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing butadiene rubber (a3-1) latex obtained in Production Example 7 (carboxyl group-containing) A latex composition having a solid content concentration of 30% by weight and a dip-molded body (rubber gloves) were produced in the same manner as in Example 3-1, except that 100 parts of butadiene rubber (a3-1) was used. Evaluation was performed in the same manner. The results are shown in Table 3.
- Example 3-8 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-7) latex obtained in Production Example 11 (carboxyl group-containing) A latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced in the same manner as in Example 3-1, except that 100 parts of nitrile rubber (a1-7) was used. Evaluation was performed in the same manner. The results are shown in Table 3.
- Example 3-9 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-6) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-8) latex obtained in Production Example 12 (carboxyl group-containing) A latex composition having a solid content concentration of 30% by weight and a dip-formed product (rubber gloves) were produced in the same manner as in Example 3-1, except that 100 parts of nitrile rubber (a1-8) was used. Evaluation was performed in the same manner. The results are shown in Table 3.
- the results shown in Table 3 indicate that by using the carboxyl group-containing conjugated diene rubber (A) obtained by emulsion polymerization at 0 to 25 ° C., the elongation is large and the soft texture (at 500% elongation) It is confirmed that the tensile strength can be further improved while keeping the stress of the Further, by comparing Examples 3-5, 3-8, and 3-9, the amount of chain transfer agent used was in the range of 0.15 to 0.95 parts by weight with respect to 100 parts by weight of the monomer mixture. It can be said that the tensile strength, the elongation, and the soft texture (the stress at the time of 500% elongation is small) can be appropriately adjusted within a suitable range.
- Example 4-1 250 parts latex of a carboxyl group-containing nitrile rubber obtained in Preparation Production Example 13 (A1-9) latex composition (carboxyl group-containing nitrile rubber (A1-9) 100 parts by equivalent), sodium aluminate 0.2 A mixed aqueous solution in which 0.4 part of sorbitol and 0.4 part of sodium glycolate were dissolved in water was added. And the deionized water and 5% potassium hydroxide aqueous solution were added to this, and the latex composition was obtained by adjusting solid content concentration to 30 weight% and pH9.2.
- Example 4-2 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-10) latex obtained in Production Example 14 (carboxyl group-containing) A latex composition and a dip-formed product (rubber glove) were produced in the same manner as in Example 4-1, except that 100 parts of nitrile rubber (a1-10) was used, and evaluated in the same manner. The results are shown in Table 4.
- Example 4-3 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-11) latex obtained in Production Example 15 (carboxyl group-containing) A latex composition and a dip-molded body (rubber glove) were produced in the same manner as in Example 4-1, except that 100 parts of nitrile rubber (a1-11) was used, and evaluated in the same manner. The results are shown in Table 4.
- Example 4-4 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing nitrile rubber (a1-12) latex obtained in Production Example 16 (carboxyl group-containing) A latex composition and a dip-formed product (rubber glove) were produced in the same manner as in Example 4-1, except that 100 parts of nitrile rubber (a1-12) was used, and evaluated in the same manner. The results are shown in Table 4.
- Example 4-5 When preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing styrene-butadiene rubber (a2-3) latex obtained in Production Example 17 (carboxyl) A latex composition and a dip-molded body (rubber glove) were produced in the same manner as in Example 4-1, except that the group-containing styrene-butadiene rubber (100 parts in terms of a2-3) was used. went. The results are shown in Table 4.
- Example 4-6 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing styrene-butadiene rubber (a2-4) latex obtained in Production Example 18 (carboxyl) A latex composition and a dip-molded body (rubber glove) were produced in the same manner as in Example 4-1, except that the group-containing styrene-butadiene rubber (100 parts in terms of a2-4) was used. went. The results are shown in Table 4.
- Example 4-7 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing butadiene rubber (a3-3) latex obtained in Production Example 19 (carboxyl group-containing) A latex composition and a dip-molded body (rubber glove) were produced in the same manner as in Example 4-1, except that butadiene rubber (100 parts in terms of a3-3) was used, and evaluated in the same manner. The results are shown in Table 4.
- Example 4-8 In preparing the latex composition, instead of the carboxyl group-containing nitrile rubber (a1-9) latex, 250 parts of the carboxyl group-containing butadiene rubber (a3-4) latex obtained in Production Example 20 (carboxyl group-containing) A latex composition and a dip-formed product (rubber gloves) were produced in the same manner as in Example 4-1, except that butadiene rubber (100 parts in terms of a3-4) was used, and evaluated in the same manner. The results are shown in Table 4.
- Comparative Example 4-1 A latex composition and a dip-formed product (rubber gloves) were produced in the same manner as in Example 4-1, except that sodium aluminate, sorbitol and sodium glycolate were not blended when preparing the latex composition. Evaluation was performed in the same manner. The results are shown in Table 4.
- Comparative Example 4-2 A latex composition and a dip-formed product (rubber gloves) were produced in the same manner as in Example 4-2, except that sodium aluminate, sorbitol and sodium glycolate were not blended when preparing the latex composition. Evaluation was performed in the same manner. The results are shown in Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物とを含有してなるラテックス組成物であって、前記金属化合物の含有割合が、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物を提供する。
Description
本発明は、ラテックス組成物に関し、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の発生を抑制可能であり、しかも、引張強度が高く、伸びが大きく、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできるラテックス組成物、およびこのようなラテックス組成物の製造方法、ならびに、このようなラテックス組成物を用いて得られるディップ成形体および膜成形体に関する。
従来、天然ゴムのラテックスに代表される天然ラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が知られている。しかしながら、天然ゴムのラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、人体に即時型アレルギー(Type I)の症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そこで、合成のニトリルゴムのラテックスを用いる検討がされている。
たとえば、特許文献1には、アクリロニトリル、カルボン酸、及びブタジエンのカルボキシル化ニトリルブタジエンランダム三元重合体を含み、全固形分量が15~25重量%のエマルジョンに、酸化亜鉛、硫黄および加硫促進剤を配合してなるラテックス組成物が開示されている。しかしながら、この特許文献1の技術では、即時型アレルギー(Type I)の発生を防止できる一方で、ディップ成形体とした場合に、ディップ成形体に含まれる硫黄や加硫促進剤が原因で、人体に触れた際に、遅延型アレルギー(Type IV)のアレルギー症状を発生させることがあった。
これに対し、たとえば、特許文献2では、アクリロニトリル残基25~30重量%、ブタジエン残基62~71重量%、および不飽和カルボン酸残基4~8重量%を含み、酸化亜鉛を含み、架橋剤である硫黄および加硫促進剤である硫黄化合物を含まないラテックス組成物が開示されている。この特許文献2の技術によれば、硫黄および加硫促進剤である硫黄化合物を含まないため、即時型アレルギー(Type I)だけでなく、遅延型アレルギー(Type IV)の発生をも抑制できるものであるが、得られるディップ成形体は、伸びが低く、さらには、風合いおよび触感性にも劣るものであった。
本発明は、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の発生を抑制可能であり、しかも、引張強度が高く、伸びが大きく、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできるラテックス組成物、およびこのようなラテックス組成物の製造方法、ならびに、このようなラテックス組成物を用いて得られるディップ成形体および膜成形体を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究した結果、カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、3価以上の金属を含む金属化合物を所定量配合することにより得られるラテックス組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
すなわち、本発明によれば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)とを含有してなるラテックス組成物であって、前記金属化合物の含有割合が、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物が提供される。
好ましくは、前記金属化合物(B)が、アルミニウム化合物である。
好ましくは、前記金属化合物(B)が、アルミニウム化合物である。
本発明のラテックス組成物は、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)をさらに含有することが好ましい。
好ましくは、前記金属化合物(B)の含有量と、前記アルコール性水酸基含有化合物(C)の含有量とが、「金属化合物(B):アルコール性水酸基含有化合物(C)」の重量比で、1:0.1~1:50である。
好ましくは、前記アルコール性水酸基含有化合物(C)が、糖アルコール(c2)およびヒドロキシ酸塩(c4)から選択される少なくとも1種である。
好ましくは、前記金属化合物(B)の含有量と、前記アルコール性水酸基含有化合物(C)の含有量とが、「金属化合物(B):アルコール性水酸基含有化合物(C)」の重量比で、1:0.1~1:50である。
好ましくは、前記アルコール性水酸基含有化合物(C)が、糖アルコール(c2)およびヒドロキシ酸塩(c4)から選択される少なくとも1種である。
好ましくは、前記カルボキシル基含有共役ジエン系ゴム(A)が、共役ジエン単量体単位56~78重量%、エチレン性不飽和ニトリル単量体単位20~40重量%、およびエチレン性不飽和酸単量体単位2~6.5重量%を含有するカルボキシル基含有ニトリルゴム(a1)である。
好ましくは、前記カルボキシル基含有共役ジエン系ゴム(A)が、共役ジエン単量体単位と、エチレン性不飽和カルボン酸単量体単位と、アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位と、を含有するものである。
好ましくは、前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、(メタ)アクリルアミドである。
好ましくは、前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、エポキシ基含有(メタ)アクリレートである。
好ましくは、前記カルボキシル基含有共役ジエン系ゴム(A)が、共役ジエン単量体単位と、エチレン性不飽和カルボン酸単量体単位と、アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位と、を含有するものである。
好ましくは、前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、(メタ)アクリルアミドである。
好ましくは、前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、エポキシ基含有(メタ)アクリレートである。
また、本発明によれば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)と、を含有してなるラテックス組成物を製造する方法であって、
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、0~25℃にて乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法が提供される。
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、0~25℃にて乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法が提供される。
あるいは、本発明によれば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)と、を含有してなるラテックス組成物を製造する方法であって、
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、前記単量体混合物100重量部に対して0.15~0.95重量部の連鎖移動剤の存在下で、乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法が提供される。
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、前記単量体混合物100重量部に対して0.15~0.95重量部の連鎖移動剤の存在下で、乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法が提供される。
上記ラテックス組成物の製造方法においては、前記第2工程において、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに対し、前記金属化合物(B)に加えて、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)をさらに配合することが好ましい。
また、本発明によれば、上記本発明のラテックス組成物、または上記本発明の製造方法により得られるラテックス組成物を、ディップ成形する工程を備えるディップ成形体の製造方法が提供される。
さらに、本発明によれば、上記本発明のラテックス組成物からなる膜成形体が提供される。
さらに、本発明によれば、上記本発明のラテックス組成物からなる膜成形体が提供される。
本発明によれば、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の発生を抑制可能であり、しかも、引張強度が高く、伸びが大きく、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできるラテックス組成物、およびこのようなラテックス組成物の製造方法、ならびに、このようなラテックス組成物を用いて得られるディップ成形体および膜成形体を提供することができる。
本発明のラテックス組成物は、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物とを含有してなり、前記金属化合物の含有割合が、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物である。
カルボキシル基含有共役ジエン系ゴム(A)のラテックス
本発明で用いるカルボキシル基含有共役ジエン系ゴム(A)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を共重合して得られる共重合体のラテックスであり、カルボキシ基含有共役ジエン系ゴム(A)としては、カルボキシル基含有ニトリルゴム(a1)、カルボキシル基含有スチレン-ブタジエンゴム(a2)およびカルボキシル基含有共役ジエンゴム(a3)から選択される少なくとも1種が好ましい。
本発明で用いるカルボキシル基含有共役ジエン系ゴム(A)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を共重合して得られる共重合体のラテックスであり、カルボキシ基含有共役ジエン系ゴム(A)としては、カルボキシル基含有ニトリルゴム(a1)、カルボキシル基含有スチレン-ブタジエンゴム(a2)およびカルボキシル基含有共役ジエンゴム(a3)から選択される少なくとも1種が好ましい。
カルボキシル基含有ニトリルゴム(a1)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体に加えて、エチレン性不飽和ニトリル単量体を共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらの共役ジエン単量体は、単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~70重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いに優れ、かつ伸びが大きいものとすることができる。
エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸が好ましく、メタクリル酸が特に好ましい。これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。また、エチレン性不飽和カルボン酸単量体は単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~6.5重量%であり、より好ましくは2~6重量%、さらに好ましくは2~5重量%、さらにより好ましくは2~4.5重量%、特に好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
エチレン性不飽和ニトリル単量体としては、ニトリル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリルなどが挙げられる。なかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのエチレン性不飽和ニトリル単量体は、単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、エチレン性不飽和ニトリル単量体により形成されるエチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
また、共役ジエン単量体、エチレン性不飽和カルボン酸単量体およびエチレン性不飽和ニトリル単量体と共重合可能なその他のエチレン性不飽和単量体としては、特に限定されないが、得られるディップ成形体などの膜成形体の引張強度をより高くすることができ、かつ、高い応力保持率を備えるものとすることができるという観点より、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体が好適に挙げられる。
アミド基含有単量体としては、1分子中に少なくとも1つのアミド基を有する単量体であれば特に限定されないが、たとえば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、(メタ)アクリロイルモルホリンなどが挙げられる。これらのなかでも、(メタ)アクリルアミドが好ましく、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミドがより好ましく、N-メチロール(メタ)アクリルアミドが特に好ましい。これらのアミド基含有単量体は、単独で、または2種以上を組合せて用いることができる。
カルボキシル基含有ニトリルゴム(a1)中における、アミド基含有単量体単位の含有割合は、好ましくは0.1~5.0重量%であり、より好ましくは0.25~4.5重量%、さらに好ましくは0.5~4.0重量%である。アミド基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる
エポキシ基含有単量体としては、1分子中に少なくとも1つのエポキシ基を有する単量体であれば特に限定されないが、たとえば、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、ビニルグリシジルエーテル、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-メチル-1-ブテン、3,4-エポキシ-1-ペンテン、3,4-エポキシ-3-メチル-1-ペンテン、5,6-エポキシ-1-ヘキセン、1,2-ビニルシクロヘキセンモノエポキシド、スチレン-p-グリシジルエーテルなどが挙げられる。これらのなかでも、エポキシ基含有(メタ)アクリレートが好ましく、グリシジル(メタ)アクリレートが特に好ましい。これらのエポキシ基含有単量体は、単独で、または2種以上を組合せて用いることができる。
カルボキシル基含有ニトリルゴム(a1)中における、エポキシ基含有単量体単位の含有割合は、好ましくは0.1~4.0重量%であり、より好ましくは0.25~3.5重量%、さらに好ましくは0.5~3.0重量%である。エポキシ基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる。
また、カルボキシル基含有ニトリルゴム(a1)は、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体以外の、共重合可能なその他のエチレン性不飽和単量体を共重合したものであってもよく、このような共重合可能なその他のエチレン性不飽和単量体としては、たとえば、スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジエチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸-2-シアノエチル、(メタ)アクリル酸-1-シアノプロピル、(メタ)アクリル酸-2-エチル-6-シアノヘキシル、(メタ)アクリル酸-3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、ジメチルアミノエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体;などを挙げることができる。これらのエチレン性不飽和単量体は単独で、または2種以上を組み合わせて使用することができる。
カルボキシル基含有ニトリルゴム(a1)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
本発明で用いるカルボキシル基含有ニトリルゴム(a1)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法については、後述する。
また、本発明で用いるカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスは、共役ジエン単量体としての1,3-ブタジエンおよびエチレン性不飽和カルボン酸単量体に加えて、スチレンを共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、1,3-ブタジエンにより形成されるブタジエン単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~70重量%である。ブタジエン単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~6.5重量%であり、より好ましくは2~6重量%、さらに好ましくは2~5重量%、さらにより好ましくは2~4.5重量%、特に好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、スチレンにより形成されるスチレン単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。スチレン単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
また、共役ジエン単量体としての1,3-ブタジエン、エチレン性不飽和カルボン酸単量体およびスチレンと共重合可能なその他のエチレン性不飽和単量体としては、特に限定されないが、得られるディップ成形体などの膜成形体の引張強度をより高くすることができ、かつ、高い応力保持率を備えるものとすることができるという観点より、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体が好適に挙げられる。
アミド基含有単量体としては、1分子中に少なくとも1つのアミド基を有する単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、アミド基含有単量体単位の含有割合は、好ましくは0.1~5.0重量%であり、より好ましくは0.25~4.5重量%、さらに好ましくは0.5~4.0重量%である。アミド基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる。
エポキシ基含有単量体としては、1分子中に少なくとも1つのエポキシ基を有する単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、エポキシ基含有単量体単位の含有割合は、好ましくは0.1~4.0重量%であり、より好ましくは0.25~3.5重量%、さらに好ましくは0.5~3.0重量%である。エポキシ基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる。
また、カルボキシル基含有スチレン-ブタジエンゴム(a2)は、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体以外の、共重合可能なその他のエチレン性不飽和単量体を共重合したものであってもよく、このような共重合可能なその他のエチレン性不飽和単量体としては、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のもの(ただし、スチレンを除く)の他、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどの1,3-ブタジエン以外の共役ジエン単量体などが挙げられる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
本発明で用いるカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法については、後述する。
また、本発明で用いるカルボキシル基含有共役ジエンゴム(a3)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
カルボキシル基含有共役ジエンゴム(a3)中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは80~98重量%であり、より好ましくは90~98重量%、さらに好ましくは95~97.5重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有共役ジエンゴム(a3)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~10重量%であり、より好ましくは2~7.5重量%、さらに好ましくは2~6.5重量%であり、さらにより好ましくは2~6重量%、特に好ましくは2~5重量%、最も好ましくは2.5~5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いにより優れ、かつ伸びがより大きいものとすることができる。
共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられ、共役ジエン単量体としてはこれらの何れかを単独で用いても、2種以上を組み合わせて用いてもよい。
また、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体と共重合可能なその他のエチレン性不飽和単量体としては、特に限定されないが、得られるディップ成形体などの膜成形体の引張強度をより高くすることができ、かつ、高い応力保持率を備えるものとすることができるという観点より、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体が好適に挙げられる。
アミド基含有単量体としては、1分子中に少なくとも1つのアミド基を有する単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有共役ジエンゴム(a3)中における、アミド基含有単量体単位の含有割合は、好ましくは0.1~5.0重量%であり、より好ましくは0.25~4.5重量%、さらに好ましくは0.5~4.0重量%である。アミド基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる。
エポキシ基含有単量体としては、1分子中に少なくとも1つのエポキシ基を有する単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有共役ジエンゴム(a3)中における、エポキシ基含有単量体単位の含有割合は、好ましくは0.1~4.0重量%であり、より好ましくは0.25~3.5重量%、さらに好ましくは0.5~3.0重量%である。エポキシ基含有単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、引張強度をより向上させることができるとともに、高い応力保持率を備えるものとすることができる。
また、カルボキシル基含有共役ジエンゴム(a3)は、アミド基含有単量体およびエポキシ基含有単量体から選ばれる少なくとも1種の単量体以外の、共重合可能なその他のエチレン性不飽和単量体を共重合したものであってもよく、このような共重合可能なその他のエチレン性不飽和単量体としては、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のもの(ただし、スチレンを除く)が挙げられる。カルボキシル基含有共役ジエンゴム(a3)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
本発明で用いるカルボキシル基含有共役ジエンゴム(a3)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法については、後述する。
次いで、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス(上述したカルボキシル基含有ニトリルゴム(a1)のラテックス、カルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックス、カルボキシル基含有共役ジエンゴム(a3)のラテックスを含む。)を得るための乳化重合方法について説明する。
上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックスは、上述した単量体を含有してなる単量体混合物を、従来公知の乳化重合方法により乳化重合することにより製造することができる。
乳化重合を行う際における重合温度は、特に限定されず、たとえば、0~75℃の範囲、好ましくは0~50℃の範囲で選択すればよいが、得られるディップ成形体などの膜成形体の引張強度をより高めるという観点から、乳化重合の温度を0~25℃に制御することが好ましく、乳化重合の温度を0~25℃に制御することにより、得られるディップ成形体などの膜成形体を、伸びが大きく、風合いに優れたものとしながら、引張強度がより高められたものとすることができる。このことから乳化重合の温度は、0~75℃であることが好ましく、さらに0~50℃であることがより好ましく、0~25℃はさらに好ましく、5~20℃はさらにより好ましく、5~15℃は特に好ましい。
具体的な乳化重合方法としては、重合温度を上記範囲に制御することにより重合を行えるような方法であればよく、特に限定されず、上述した単量体を含有してなる単量体混合物を用い、従来公知の方法により重合することができる。
また、得られるディップ成形体などの膜成形体を、引張強度、伸びおよび風合いにバランス良く優れたものとするという観点からは、単量体混合物を乳化重合する際には、重合に用いる単量体混合物100重量部に対して0.15~0.95重量部の連鎖移動剤の存在下で乳化重合を行うことが好ましい。連鎖移動剤の使用量は、重合に用いる単量体混合物100重量部に対して、好ましくは0.15~0.95重量部であり、より好ましくは0.20~0.70重量部、さらに好ましくは0.20~0.50重量部である。
また、単量体混合物を乳化重合する際に、重合に用いる単量体混合物100重量部に対して0.15~0.95重量部の連鎖移動剤の存在下で乳化重合を行うことにより、カルボキシル基含有共役ジエン系ゴム(A)の分子量を適度に調整することができ、これにより、得られるカルボキシル基含有共役ジエン系ゴム(A)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を所望の範囲とすることができ、これにより、得られるディップ成形体などの膜成形体の引張強度、伸び、および500%伸長時応力をより高度にバランスさせることができる。
具体的には、カルボキシル基含有共役ジエン系ゴム(A)のメチルエチルケトン不溶解分量を、好ましくは50~90重量%、より好ましくは55~85重量%とすることができる。さらに、カルボキシル基含有共役ジエン系ゴム(A)のメチルエチルケトンに対する膨潤度を、好ましくは10~150倍、より好ましくは10~100倍とすることができる。
なお、メチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度は、たとえば、次の方法により測定することができる。すなわち、まず、カルボキシル基含有共役ジエン系ゴム(A)のフィルムを得て、メチルエチルケトンへの浸漬前の乾燥フィルムの重量(W1)を測定し、浸漬前のフィルムを、80メッシュのかご状金網に入れた状態にて、室温下において、メチルエチルケトン中に24時間浸漬させる。そして、かご状金網に残った浸漬後の膨潤フィルムの重量(W2)を測定し、次いで、浸漬後のフィルムを105℃で乾燥することによりメチルエチルケトンを除去することで、乾燥フィルムを得て、浸漬後の乾燥フィルムの重量(W3)を測定する。そして、得られた測定結果に基づいて、下記式(1)、(2)により算出することができる。
メチルエチルケトン不溶解分量(単位:重量%)=(浸漬後の乾燥フィルムの重量(W3)/浸漬前の乾燥フィルムの重量(W1))×100 (1)
メチルエチルケトンに対する膨潤度(単位:倍)=(膨潤フィルムの重量(W2)/浸漬後の乾燥フィルムの重量(W3)) (2)
メチルエチルケトン不溶解分量(単位:重量%)=(浸漬後の乾燥フィルムの重量(W3)/浸漬前の乾燥フィルムの重量(W1))×100 (1)
メチルエチルケトンに対する膨潤度(単位:倍)=(膨潤フィルムの重量(W2)/浸漬後の乾燥フィルムの重量(W3)) (2)
また、乳化重合において用いる連鎖移動剤としては、得られるカルボキシル基含有共役ジエン系ゴム(A)の分子量を適度に調整することができるものであればよく、特に限定されないが、たとえば、n-ブチルメルカプタン、t-ドデシルメルカプタン等のメルカプタン類、テトラエチルチウラムスルフィド、ジベンタメチレンチウラムヘキサスルフィド等のスルフィド類、α-メチルスチレン2量体、四塩化炭素等が挙げられる。なかでも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
また、乳化重合に際しては、上述した連鎖移動剤に加えて、通常用いられる、乳化剤、重合開始剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。
乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。なかでも、アニオン性乳化剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましく、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。これらの乳化剤は、単独で、または2種以上を組合せて用いることができる。乳化剤の使用量は、単量体混合物100重量部に対して、好ましくは0.1~10重量部である。
重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-α-クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを挙げることができる。これらの重合開始剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体混合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~2重量部である。
また、過酸化物開始剤は還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。この還元剤としては、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などが挙げられる。これらの還元剤は単独で、または2種以上を組合せて用いることができる。還元剤の使用量は、過酸化物100重量部に対して3~1000重量部であることが好ましい。
乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。
単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができ、これらは種類、使用量とも特に限定されない。
乳化重合を行う際の重合時間は、特に限定されないが、通常、5~40時間程度である。
以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。
重合停止剤としては、特に限定されないが、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノン誘導体、カテコール誘導体、ならびに、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩などが挙げられる。重合停止剤の使用量は、単量体混合物100重量部に対して、好ましくは0.05~2重量部である。
重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整することで、カルボキシル基含有共役ジエン系ゴム(A)のラテックス(上述したカルボキシル基含有ニトリルゴム(a1)のラテックス、カルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックス、カルボキシル基含有共役ジエンゴム(a3)のラテックスを含む。)を得ることができる。
また、本発明で用いるカルボキシル基含有共役ジエン系ゴム(A)のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。
本発明で用いるカルボキシル基含有共役ジエン系ゴム(A)のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。
3価以上の金属を含む金属化合物(B)
本発明のラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックスに加えて、3価以上の金属を含む金属化合物(B)を含有してなるものであり、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対する、3価以上の金属を含む金属化合物(B)の含有割合を、0.1~1.5重量部の範囲とするものである。本発明のラテックス組成物において、3価以上の金属を含む金属化合物(B)は、架橋剤として作用する。
本発明のラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックスに加えて、3価以上の金属を含む金属化合物(B)を含有してなるものであり、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対する、3価以上の金属を含む金属化合物(B)の含有割合を、0.1~1.5重量部の範囲とするものである。本発明のラテックス組成物において、3価以上の金属を含む金属化合物(B)は、架橋剤として作用する。
本発明によれば、架橋剤として通常用いられる硫黄の代わりに、3価以上の金属を含む金属化合物(B)を架橋剤として用いるものであり、さらには、架橋に際しては、硫黄を含有する加硫促進剤をも必要としないものであるため、即時型アレルギー(Type I)に加えて、硫黄や、硫黄を含有する加硫促進剤に起因する、遅延型アレルギー(Type IV)の発生をも有効に抑制できるものである。
加えて、本発明によれば、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックスに、3価以上の金属を含む金属化合物(B)を上記特定量含有させることにより、ディップ成形体などの膜成形体とした場合に、得られるディップ成形体などの膜成形体を、引張強度が高く、伸びが大きいことに加え、柔軟な風合いを備えるものとすることができるものである。特に、ディップ成形体などの膜成形体を手袋用途に用いる場合には、引張強度が高く、伸びが大きいことに加え、これを装着し、作業を行った際における使用感が重要となってくるものである。そして、本発明者等は、このような使用感について検討を行ったところ、風合い(500%伸長時の応力が低いこと)にも優れていることが望ましいことを見出したものである。
3価以上の金属を含む金属化合物(B)としては、3価以上の金属を含む化合物であればよく、特に限定されないが、アルミニウム化合物、コバルト化合物、ジルコニウム化合物、チタン化合物などが挙げられるが、これらのなかでも、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)をより良好に架橋させることができるという点より、アルミニウム化合物が好ましい。
アルミニウム化合物としては、特に限定されないが、たとえば、酸化アルミニウム、塩化アルミニウム、水酸化アルミニウム、硝酸アルミウム、硫酸アルミニウム、アルミニウム金属、硫酸アルミニウムアンモニウム、臭化アルミニウム、フッ化アルミニウム、硫酸アルミニウム・カリウム、アルミニウム・イソプロポキシド、アルミン酸ナトリウム、アルミン酸カリウム、亜硫酸アルミウムナトリウムなどが挙げられる。なお、これらアルミニウム化合物は、単独で、または2種以上を組合せて用いることができる。これらの中でも、本発明の作用効果をより顕著なものとすることができるという点より、アルミン酸ナトリウムが好ましい。
本発明のラテックス組成物中における、3価以上の金属を含む金属化合物(B)の含有割合は、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であり、好ましくは0.1~1.25重量部であり、より好ましくは0.1~1重量部であり、さらに好ましくは0.1~0.8重量部、特に好ましくは0.1~0.6重量部である。3価以上の金属を含む金属化合物の含有割合が少なすぎると、架橋が不十分となり、得られるディップ成形体などの膜成形体は、引張強度に劣るものとなってしまい、一方、多すぎると、ディップ成形体などの膜成形体とした場合に、得られるディップ成形体などの膜成形体が、伸びが小さく、風合いに劣るものとなってしまう。
アルコール性水酸基含有化合物(C)
また、本発明のラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、および3価以上の金属を含む金属化合物(B)に加えて、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)を含有していることが好ましい。
また、本発明のラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、および3価以上の金属を含む金属化合物(B)に加えて、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)を含有していることが好ましい。
アルコール性水酸基含有化合物(C)をさらに含有させることにより、ラテックス組成物としての安定性をより高めることができ、しかも、ディップ成形体などの膜成形体とした場合に、得られるディップ成形体などの膜成形体を、引張強度が高く、伸びが大きく、柔軟な風合いを備えることに加え、高い応力保持率をも備えるものとすることができるものである。
特に、架橋剤として3価以上の金属を含む金属化合物(B)を使用するに際し、このような3価以上の金属を含む金属化合物(B)に対し、アルコール性水酸基含有化合物(C)を配合することにより、ラテックス組成物中における、3価以上の金属を含む金属化合物(B)の分散状態をより良好なものとすることができ、これにより、ラテックス組成物としての安定性をより良好なものとすることができるものであり、しかも、3価以上の金属を含む金属化合物(B)とアルコール性水酸基含有化合物(C)との作用により、得られるディップ成形体などの膜成形体を、引張強度が高く、伸びが大きく、柔軟な風合いを備えることに加え、高い応力保持率をも備えるものとすることができるものである。
特に、ディップ成形体などの膜成形体を手袋用途に用いる場合には、上述したように、これを装着し、作業を行った際における使用感の観点より、引張強度が高く、伸びが大きいことに加え、柔軟な風合いを備えることが重要であるが、さらなる使用感の向上という観点からは、装着してから時間経過とともに緩みやたるみが発生することを有効に防止できること(すなわち、ディップ成形体などの膜成形体を100%伸張した引張応力M100(0)に対する、伸張を停止してから6分経過後の応力M100(6)の百分率で示される応力保持率が高いこと)がより好ましい。そのため、このような観点より、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、および3価以上の金属を含む金属化合物(B)に加えて、アルコール性水酸基含有化合物(C)をさらに配合することが好ましく、これにより、ラテックス組成物としての安定性を良好なものとしながら、得られるディップ成形体などの膜成形体を、引張強度が高く、伸びが大きく、500%伸長時の応力(風合い)に優れていることに加え、高い応力保持率を備えるものとすることができるものである。
本発明で用いるアルコール性水酸基含有化合物(C)は、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種であり、これらの中でも、得られるディップ成形体などの膜成形体を、より柔軟な風合いを備えるとともに、より高い応力保持率を備えるものとすることができるという観点より、糖アルコール(c2)およびヒドロキシ酸塩(c4)から選択される少なくとも1種を用いることが好ましい。また、アルコール性水酸基含有化合物(C)として、2種以上を併用する場合には、糖類(c1)および糖アルコール(c2)から選択される少なくとも1種と、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種とを組み合わせて用いることが好ましく、糖アルコール(c2)とヒドロキシ酸塩(c4)とを組み合わせて用いることがより好ましい。
糖類(c1)としては、単糖類、あるいは、2以上の単糖がグリコシド結合によって結合した多糖類であればよく特に限定されないが、たとえば、エリスロース、スレオース、リボース、リキソース、キシロース、アラビノース、アロース、タロース、グロース、アルトロース、ガラクトース、イドース、エリスルロース、キシルロース、リブロース、プシコース、フルクトース、ソルボース、タガトースなどの単糖類;トレハロース、マルトース、イソマルトース、セロビオース、ゲンチオビオース、メリビオース、ラクトース、スクロース、パラチノースなどの二糖類;マルトトリオース、イソマルトトリオース、パノース、セロトリオース、マンニノトリオース、ソラトリオース、メレジトース、プランテオース、ゲンチアノース、ウンベリフェロース、ラクトスクロース、ラフィノースなどの三糖類;マルトテトラオース、イソマルトテトラオースなどのホモオリゴ糖;スタキオース、セロテトラオース、スコロドース、リキノース、パノースなどの四糖類;マルトペンタオース、イソマルトペンタオースなどの五糖類;マルトヘキサオース、イソマルトヘキサオースなどの六糖類;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
糖アルコール(c2)としては、単糖あるいは多糖類の糖アルコールであればよく、特に限定されないが、たとえば、グリセリンなどのトリトール;エリスリトール、D-スレイトール、L-スレイトールなどのテトリトール;D-アラビニトール、L-アラビニトール、キシリトール、リビトール、ペンタエリスリトールなどのペンチトール;ペンタエリスリトール;ソルビトール、D-イジトール、ガラクチトール、D-グルシトール、マンニトールなどのヘキシトール;ボレミトール、ペルセイトールなどのへプチトール;D-エリトロ-D-ガラクト-オクチトールなどのオクチトール;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。これらのなかでも、炭素数6の糖アルコールであるヘキシトールが好ましく、ソルビトールがより好ましい。
ヒドロキシ酸(c3)としては、ヒドロキシル基を有するカルボン酸であればよく、特に限定されないが、たとえば、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、3-メチリンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸、セリンなどの脂肪族ヒドロキシ酸;サリチル酸、クレオソート酸(ホモサリチル酸、ヒドロキシ(メチル)安息香酸)、バニリン酸、シリング酸、ヒドロキシプロパン酸、ヒドロキシペンタン酸、ヒドロキシヘキサン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸、ヒドロキシノナン酸、ヒドロキシデカン酸、ヒドロキシウンデカン酸、ヒドロキシドドデカン酸、ヒドロキシトリデカン酸、ヒドロキシテトラデカン酸、ヒドロキシペンタデカン酸、ヒドロキシヘプタデカン酸、ヒドロキシオクタデカン酸、ヒドロキシノナデカン酸、ヒドロキシイコサン酸、リシノール酸などのモノヒドロキシ安息香酸誘導体、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸などのジヒドロキシ安息香酸誘導体、没食子酸などのトリヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、アトロラクチン酸などのフェニル酢酸誘導体、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、シナピン酸等のケイヒ酸・ヒドロケイヒ酸誘導体などの芳香族ヒドロキシ酸;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。これらのなかでも、脂肪族ヒドロキシ酸が好ましく、脂肪族α-ヒドロキシ酸がより好ましく、グリコール酸、乳酸、タルトロン酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸がさらに好ましく、グリコール酸が特に好ましい。
ヒドロキシ酸塩(c4)としては、ヒドロキシ酸の塩であればよく、特に限定されず、ヒドロキシ酸(c3)の具体例として例示したヒドロキシ酸の金属塩などが挙げられ、たとえば、ナトリウム、カリウムなどのアルカリ金属の塩;カルシウム、マグネシウムなどのアルカリ土類金属の塩が挙げられる。ヒドロキシ酸塩(c4)としては、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。ヒドロキシ酸塩(c4)としては、ヒドロキシ酸のアルカリ金属塩が好ましく、ヒドロキシ酸のナトリウム塩が好ましい。また、ヒドロキシ酸塩(c4)を構成するヒドロキシ酸としては、脂肪族ヒドロキシ酸が好ましく、脂肪族α-ヒドロキシ酸がより好ましく、グリコール酸、乳酸、タルトロン酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸がさらに好ましく、グリコール酸が特に好ましい。すなわち、ヒドロキシ酸塩(c4)としては、グリコール酸ナトリウムが特に好適である。
本発明のラテックス組成物中における、アルコール性水酸基含有化合物(C)の含有量は、3価以上の金属を含む金属化合物(B)に対し、「3価以上の金属を含む金属化合物(B):アルコール性水酸基含有化合物(C)」の重量比で、好ましくは1:0.1~1:50の範囲となる量であり、より好ましくは1:0.2~1:45の範囲となる量、さらに好ましくは1:0.3~1:30の範囲となる量である。3価以上の金属を含む金属化合物(B)に対する、アルコール性水酸基含有化合物(C)の含有量を上記範囲とすることにより、アルコール性水酸基含有化合物(C)の添加効果をより高めることができる。
なお、アルコール性水酸基含有化合物(C)の含有量は、3価以上の金属を含む金属化合物(B)に対する含有量が上記範囲となる量とすればよいが、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対する含有量としては、0.03~15重量部であることが好ましく、0.05~10重量部であることがより好ましい。
本発明のラテックス組成物は、たとえば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、3価以上の金属を含む金属化合物(B)と、必要に応じて用いられるアルコール性水酸基含有化合物(C)とを配合することにより得ることができる。カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、3価以上の金属を含む金属化合物(B)と、必要に応じて用いられるアルコール性水酸基含有化合物(C)とを配合する方法としては、特に限定されないが、得られるラテックス組成物中に、3価以上の金属を含む金属化合物(B)および必要に応じて用いられるアルコール性水酸基含有化合物(C)を良好に分散させることができるという点より、3価以上の金属を含む金属化合物(B)および必要に応じて用いられるアルコール性水酸基含有化合物(C)を水またはアルコールに溶解し、水溶液またはアルコール溶液の状態で添加することが好ましい。また、溶解させる際には溶液の安定性をあげる為、キレート剤や緩衝剤などといった安定化剤を加えることが好ましい。
また、本発明のラテックス組成物には、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、3価以上の金属を含む金属化合物(B)、および必要に応じて用いられるアルコール性水酸基含有化合物(C)に加えて、所望により、充填剤、pH調整剤、増粘剤、老化防止剤、分散剤、顔料、充填剤、軟化剤等を配合してもよい。
本発明のラテックス組成物の固形分濃度は、好ましくは10~40重量%、より好ましくは15~35重量%である。また、本発明のラテックス組成物のpHは、好ましくは7.5~12.0、より好ましくは7.5~11.0、さらに好ましくは7.5~9.4、特に好ましくは7.5~9.2である。
ディップ成形体
本発明のディップ成形体は、上述した本発明のラテックス組成物を、ディップ成形することにより得られる。
ディップ成形法としては、通常の方法を採用すればよく、たとえば、直接浸漬法、アノード凝着浸漬法、ティーグ凝着浸漬法等が挙げられる。なかでも、均一な厚みを有するディップ成形体が得られやすい点で、アノード凝着浸漬法が好ましい。
本発明のディップ成形体は、上述した本発明のラテックス組成物を、ディップ成形することにより得られる。
ディップ成形法としては、通常の方法を採用すればよく、たとえば、直接浸漬法、アノード凝着浸漬法、ティーグ凝着浸漬法等が挙げられる。なかでも、均一な厚みを有するディップ成形体が得られやすい点で、アノード凝着浸漬法が好ましい。
アノード凝着浸漬法の場合、たとえば、ディップ成形用型を凝固剤溶液に浸漬して、該型表面に凝固剤を付着させた後、それをラテックス組成物に浸漬して、該型表面にディップ成形層を形成する。
凝固剤としては、たとえば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;等が挙げられる。なかでも、塩化カルシウムおよび硝酸カルシウムが好ましい。
凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用する。凝固剤濃度は、通常、5~50重量%、好ましくは10~35重量%である。
凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用する。凝固剤濃度は、通常、5~50重量%、好ましくは10~35重量%である。
得られたディップ成形層は、通常、加熱処理を施し架橋する。加熱処理を施す前に、水、好ましくは30~70℃の温水に、1~60分程度浸漬し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去してもよい。水溶性不純物の除去操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、加熱処理前に行なうことが好ましい。
ディップ成形層の架橋は、通常、80~150℃の温度で、好ましくは10~130分の加熱処理を施すことにより行われる。加熱の方法としては、赤外線や加熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、加熱空気による外部加熱が好ましい。
そして、架橋したディップ成形層をディップ成形用型から脱着することによって、ディップ成形体が、膜状の膜成形体として得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。なお、脱着後、更に60~120℃の温度で、10~120分の加熱処理を行なってもよい。
膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。なお、本発明の膜成形体は、上述した本発明のラテックス組成物を、ディップ成形する方法以外にも、上述した本発明のラテックス組成物を、膜状に成形できる方法(たとえば、塗布法等)であれば、いずれの方法で得られるものであってもよい。
膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。なお、本発明の膜成形体は、上述した本発明のラテックス組成物を、ディップ成形する方法以外にも、上述した本発明のラテックス組成物を、膜状に成形できる方法(たとえば、塗布法等)であれば、いずれの方法で得られるものであってもよい。
本発明のディップ成形体を含む本発明の膜成形体は、上述した本発明のラテックス組成物を用いて得られるものであるため、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の発生をも抑制され、しかも、張強度が高く、伸びが大きく、柔軟な風合いを備えるものであり、そのため、手袋用途、とりわけ、手術用手袋に好適である。あるいは、本発明のディップ成形体を含む本発明の膜成形体は、手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験、評価は下記によった。
引張強度、破断時伸び、500%伸長時の応力
実施例および比較例において得られたディップ成形体としてのゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製した。次いで、得られた試験片を、引張速度500mm/分で引っ張り、破断時の引張強度、破断時の伸び、および500%伸長時の応力を測定した。また、引張強度および破断時伸びは高いほど好ましい。また、500%伸長時の応力が小さいほど、柔軟な風合いとなるため、好ましい。
実施例および比較例において得られたディップ成形体としてのゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製した。次いで、得られた試験片を、引張速度500mm/分で引っ張り、破断時の引張強度、破断時の伸び、および500%伸長時の応力を測定した。また、引張強度および破断時伸びは高いほど好ましい。また、500%伸長時の応力が小さいほど、柔軟な風合いとなるため、好ましい。
応力保持率
実施例および比較例において得られたディップ成形体としてのゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製し、該試験片の両端に速度500mm/分にて引張応力をかけ、該試験片の標準区間20mmが2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定した。そして、M100(0)に対するM100(6)の百分率(すなわち、M100(6)/M100(0)の百分率)を応力保持率とした。応力保持率は大きいほど、手袋の使用に伴うへたり(緩みやたるみ)が起きにくいため好ましい。なお、応力保持率の測定は、実施例2-1~2-9、3-1~3-9、4-1~4-8、比較例2-1~2-3、4-1、4-2について行った。
実施例および比較例において得られたディップ成形体としてのゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製し、該試験片の両端に速度500mm/分にて引張応力をかけ、該試験片の標準区間20mmが2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定した。そして、M100(0)に対するM100(6)の百分率(すなわち、M100(6)/M100(0)の百分率)を応力保持率とした。応力保持率は大きいほど、手袋の使用に伴うへたり(緩みやたるみ)が起きにくいため好ましい。なお、応力保持率の測定は、実施例2-1~2-9、3-1~3-9、4-1~4-8、比較例2-1~2-3、4-1、4-2について行った。
製造例1
カルボキシル基含有ニトリルゴム(a1-1)のラテックスの製造
重合反応器に、アクリロニトリル34部、1,3-ブタジエン62.5部、メタクリル酸3.5部、t-ドデシルメルカプタン0.4部、イオン交換水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部およびエチレンジアミン四酢酸ナトリウム0.05部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を44℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHを調整し、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-1)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-1)の組成は、アクリロニトリル単位34.0重量%、1,3-ブタジエン単位62.5重量%、メタクリル酸単位3.5重量%であった。
カルボキシル基含有ニトリルゴム(a1-1)のラテックスの製造
重合反応器に、アクリロニトリル34部、1,3-ブタジエン62.5部、メタクリル酸3.5部、t-ドデシルメルカプタン0.4部、イオン交換水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部およびエチレンジアミン四酢酸ナトリウム0.05部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を44℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHを調整し、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-1)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-1)の組成は、アクリロニトリル単位34.0重量%、1,3-ブタジエン単位62.5重量%、メタクリル酸単位3.5重量%であった。
製造例2
カルボキシル基含有ニトリルゴム(a1-2)のラテックスの製造
アクリロニトリルの使用量を34部から36部に、1,3-ブタジエンの使用量62.5部から61部に、メタクリル酸の使用量を3.5部から3部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-2)の組成は、アクリロニトリル単位36.0重量%、1,3-ブタジエン単位61.0重量%、メタクリル酸単位3.0重量%であった。
カルボキシル基含有ニトリルゴム(a1-2)のラテックスの製造
アクリロニトリルの使用量を34部から36部に、1,3-ブタジエンの使用量62.5部から61部に、メタクリル酸の使用量を3.5部から3部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-2)の組成は、アクリロニトリル単位36.0重量%、1,3-ブタジエン単位61.0重量%、メタクリル酸単位3.0重量%であった。
製造例3
カルボキシル基含有ニトリルゴム(a1-3)のラテックスの製造
アクリロニトリルの使用量を34部から28.0部に、1,3-ブタジエンの使用量62.5部から68.5部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-3)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-3)の組成は、アクリロニトリル単位28.0重量%、1,3-ブタジエン単位68.5重量%、メタクリル酸単位3.5重量%であった。
カルボキシル基含有ニトリルゴム(a1-3)のラテックスの製造
アクリロニトリルの使用量を34部から28.0部に、1,3-ブタジエンの使用量62.5部から68.5部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.5のカルボキシル基含有ニトリルゴム(a1-3)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-3)の組成は、アクリロニトリル単位28.0重量%、1,3-ブタジエン単位68.5重量%、メタクリル酸単位3.5重量%であった。
製造例4
カルボキシル基含有ニトリルゴム(a1-4)のラテックスの製造
アクリロニトリルの使用量を34部から30.5部に、1,3-ブタジエンの使用量62.5部から63.5部に、メタクリル酸の使用量を3.5部から6部にそれぞれ変更するとともに、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後における、pHを7.5から7.0に変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.0のカルボキシル基含有ニトリルゴム(a1-4)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-4)の組成は、アクリロニトリル単位30.5重量%、1,3-ブタジエン単位63.5重量%、メタクリル酸単位6.0重量%であった。
カルボキシル基含有ニトリルゴム(a1-4)のラテックスの製造
アクリロニトリルの使用量を34部から30.5部に、1,3-ブタジエンの使用量62.5部から63.5部に、メタクリル酸の使用量を3.5部から6部にそれぞれ変更するとともに、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後における、pHを7.5から7.0に変更した以外は、製造例1と同様にして、固形分濃度40%、pH7.0のカルボキシル基含有ニトリルゴム(a1-4)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-4)の組成は、アクリロニトリル単位30.5重量%、1,3-ブタジエン単位63.5重量%、メタクリル酸単位6.0重量%であった。
製造例5
カルボキシル基含有ニトリルゴム(a1-5)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、アクリロニトリル34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-5)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-5)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ニトリルゴム(a1-5)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、アクリロニトリル34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-5)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-5)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
製造例6
カルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスの製造
攪拌機付き耐圧容器に、脱イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.3部、t-ドデシルメルカプタン0.4部、1,3-ブタジエン63部、スチレン34部、およびメタクリル酸3部仕込み、モノマーエマルジョンを得た。これとは別の攪拌機付きの耐圧重合反応容器に、脱イオン交換水40部、ドデシルベンゼンスルホン酸ナトリウム0.2部、重炭酸ソーダ0.35部、エチレンジアミン四酢酸ナトリウム0.05部を仕込み、攪拌混合しながら70℃に昇温した。そして、これに過硫酸カリウム0.5部添加した後、直ちに、上記にて得られたモノマーエマルジョンの添加を開始し、攪拌混合しながら5時間かけて連続添加した。モノマーエマルジョン添加終了後、過硫酸カリウム0.2部を3重量%水溶液にて添加し、重合転化率が90%になったときに、85℃に昇温して、さらに3時間反応を継続し重合転化率が95%の時点で重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)の組成は、1,3-ブタジエン単位63重量%、スチレン単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスの製造
攪拌機付き耐圧容器に、脱イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.3部、t-ドデシルメルカプタン0.4部、1,3-ブタジエン63部、スチレン34部、およびメタクリル酸3部仕込み、モノマーエマルジョンを得た。これとは別の攪拌機付きの耐圧重合反応容器に、脱イオン交換水40部、ドデシルベンゼンスルホン酸ナトリウム0.2部、重炭酸ソーダ0.35部、エチレンジアミン四酢酸ナトリウム0.05部を仕込み、攪拌混合しながら70℃に昇温した。そして、これに過硫酸カリウム0.5部添加した後、直ちに、上記にて得られたモノマーエマルジョンの添加を開始し、攪拌混合しながら5時間かけて連続添加した。モノマーエマルジョン添加終了後、過硫酸カリウム0.2部を3重量%水溶液にて添加し、重合転化率が90%になったときに、85℃に昇温して、さらに3時間反応を継続し重合転化率が95%の時点で重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)の組成は、1,3-ブタジエン単位63重量%、スチレン単位34重量%、メタクリル酸単位3重量%であった。
製造例7
カルボキシル基含有ブタジエンゴム(a3-1)のラテックス
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン97部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.8部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-1)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-1)の組成は、1,3-ブタジエン単位97重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ブタジエンゴム(a3-1)のラテックス
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン97部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.8部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-1)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-1)の組成は、1,3-ブタジエン単位97重量%、メタクリル酸単位3重量%であった。
製造例8
カルボキシル基含有ニトリルゴム(a1-6)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、アクリロニトリル34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を5℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.020部、硫酸第一鉄0.002部、ナトリウムホルムアルデヒドスルホキシラート0.003部を混合したものを重合反応容器に添加し、1,1,3,3-テトラメチルブチルハイドロパーオキサイド0.004部添加して温度5℃に保持して重合を開始した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は5~10℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-6)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-6)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は80重量%、メチルエチルケトンに対する膨潤度は45倍であった。得られたカルボキシル基含有ニトリルゴム(a1-6)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ニトリルゴム(a1-6)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、アクリロニトリル34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を5℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.020部、硫酸第一鉄0.002部、ナトリウムホルムアルデヒドスルホキシラート0.003部を混合したものを重合反応容器に添加し、1,1,3,3-テトラメチルブチルハイドロパーオキサイド0.004部添加して温度5℃に保持して重合を開始した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は5~10℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-6)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-6)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は80重量%、メチルエチルケトンに対する膨潤度は45倍であった。得られたカルボキシル基含有ニトリルゴム(a1-6)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
製造例9
カルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、スチレン34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム1.5部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、および次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を10℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.05部、硫酸第一鉄0.006部、ナトリウムホルムアルデヒドスルホキシラート0.05部を混合したものを重合反応容器に添加し、ジイソプロピルベンゼンハイドロパーオキサイド0.15部添加して温度10℃に保持して重合を開始した。重合転化率が50%、70%になった時点で、脱イオン交換水1.2部、ドデシルベンゼンスルホン酸ナトリウム0.5部をそれぞれ重合反応容器に添加した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は10~15℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は70重量%、メチルエチルケトンに対する膨潤度は60倍であった。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-2)の組成は、1,3-ブタジエン単位63重量%、スチレン単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、スチレン34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム1.5部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、および次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を10℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.05部、硫酸第一鉄0.006部、ナトリウムホルムアルデヒドスルホキシラート0.05部を混合したものを重合反応容器に添加し、ジイソプロピルベンゼンハイドロパーオキサイド0.15部添加して温度10℃に保持して重合を開始した。重合転化率が50%、70%になった時点で、脱イオン交換水1.2部、ドデシルベンゼンスルホン酸ナトリウム0.5部をそれぞれ重合反応容器に添加した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は10~15℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は70重量%、メチルエチルケトンに対する膨潤度は60倍であった。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-2)の組成は、1,3-ブタジエン単位63重量%、スチレン単位34重量%、メタクリル酸単位3重量%であった。
製造例10
カルボキシル基含有ブタジエンゴム(a3-2)のラテックス
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン97部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、脱イオン水135部、ドデシルベンゼンスルホン酸ナトリウム1.5部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を10℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄0.008部、ナトリウムホルムアルデヒドスルホキシラート0.05部を混合したものを重合反応容器に添加し、ジイソプロピルベンゼンハイドロパーオキサイド0.05部添加して温度10℃に保持して重合を開始した。重合転化率が60%、80%になった時点で、脱イオン交換水1.2部、ドデシルベンゼンスルホン酸ナトリウム0.5部をそれぞれ重合反応容器に添加した。また、重合転換率60%になった時点で、ジイソプロピルベンゼンハイドロパーオキサイド0.01部添加した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は10~15℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ブタジエンゴム(a3-2)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は65重量%、メチルエチルケトンに対する膨潤度は80倍であった。得られたカルボキシル基含有ブタジエンゴム(a3-2)の組成は、1,3-ブタジエン単位97重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ブタジエンゴム(a3-2)のラテックス
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン97部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、脱イオン水135部、ドデシルベンゼンスルホン酸ナトリウム1.5部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、次亜硫酸ナトリウム0.01部を仕込み、重合反応容器温度を10℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄0.008部、ナトリウムホルムアルデヒドスルホキシラート0.05部を混合したものを重合反応容器に添加し、ジイソプロピルベンゼンハイドロパーオキサイド0.05部添加して温度10℃に保持して重合を開始した。重合転化率が60%、80%になった時点で、脱イオン交換水1.2部、ドデシルベンゼンスルホン酸ナトリウム0.5部をそれぞれ重合反応容器に添加した。また、重合転換率60%になった時点で、ジイソプロピルベンゼンハイドロパーオキサイド0.01部添加した。そして、重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。なお、重合反応中における、反応系の温度は10~15℃の範囲で保たれていた。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-2)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ブタジエンゴム(a3-2)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は65重量%、メチルエチルケトンに対する膨潤度は80倍であった。得られたカルボキシル基含有ブタジエンゴム(a3-2)の組成は、1,3-ブタジエン単位97重量%、メタクリル酸単位3重量%であった。
製造例11
カルボキシル基含有ニトリルゴム(a1-7)のラテックスの製造
連鎖移動剤としてのt-ドデシルメルカプタンの使用量を0.50部に変更した以外は、製造例5と同様にして、カルボキシル基含有ニトリルゴム(a1-7)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-7)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は75重量%、メチルエチルケトンに対する膨潤度は30倍であった。また、得られたカルボキシル基含有ニトリルゴム(a1-7)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ニトリルゴム(a1-7)のラテックスの製造
連鎖移動剤としてのt-ドデシルメルカプタンの使用量を0.50部に変更した以外は、製造例5と同様にして、カルボキシル基含有ニトリルゴム(a1-7)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-7)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は75重量%、メチルエチルケトンに対する膨潤度は30倍であった。また、得られたカルボキシル基含有ニトリルゴム(a1-7)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
製造例12
カルボキシル基含有ニトリルゴム(a1-8)のラテックスの製造
連鎖移動剤としてのt-ドデシルメルカプタンの使用量を0.80部に変更した以外は、製造例5と同様にして、カルボキシル基含有ニトリルゴム(a1-8)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-8)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は55重量%、メチルエチルケトンに対する膨潤度は60倍であった。また、得られたカルボキシル基含有ニトリルゴム(a1-8)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
カルボキシル基含有ニトリルゴム(a1-8)のラテックスの製造
連鎖移動剤としてのt-ドデシルメルカプタンの使用量を0.80部に変更した以外は、製造例5と同様にして、カルボキシル基含有ニトリルゴム(a1-8)のラテックスを得た。得られたラテックス中に含まれるカルボキシル基含有ニトリルゴム(a1-8)のメチルエチルケトン不溶解分量およびメチルエチルケトンに対する膨潤度を測定した結果、メチルエチルケトン不溶解分量は55重量%、メチルエチルケトンに対する膨潤度は60倍であった。また、得られたカルボキシル基含有ニトリルゴム(a1-8)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
製造例13
カルボキシル基含有ニトリルゴム(a1-9)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン62.5部、アクリロニトリル34部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部を仕込み、重合反応容器温度を5℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.020部、硫酸第一鉄0.002部、ナトリウムホルムアルデヒドスルホキシラート0.003部を混合したものを重合反応容器に添加し、1,1,3,3-テトラメチルブチルハイドロパーオキサイド0.004部添加して重合を開始した。重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHを調整し、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-9)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-9)の組成は、1,3-ブタジエン単位62.5重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
カルボキシル基含有ニトリルゴム(a1-9)のラテックスの製造
攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン62.5部、アクリロニトリル34部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部を仕込み、重合反応容器温度を5℃に保持した。その後、イオン交換水6部、エチレンジアミン四酢酸ナトリウム0.020部、硫酸第一鉄0.002部、ナトリウムホルムアルデヒドスルホキシラート0.003部を混合したものを重合反応容器に添加し、1,1,3,3-テトラメチルブチルハイドロパーオキサイド0.004部添加して重合を開始した。重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体ラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHを調整し、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-9)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-9)の組成は、1,3-ブタジエン単位62.5重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
製造例14
カルボキシル基含有ニトリルゴム(a1-10)のラテックスの製造
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-10)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-10)の組成は、1,3-ブタジエン単位62.5重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
カルボキシル基含有ニトリルゴム(a1-10)のラテックスの製造
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-10)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-10)の組成は、1,3-ブタジエン単位62.5重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
製造例15
カルボキシル基含有ニトリルゴム(a1-11)のラテックスの製造
1,3-ブタジエンの使用量を61部に、アミド基含有単量体としてのN-メチロールアクリルアミドの使用量を2.0部にそれぞれ変更した以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-11)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-11)の組成は、1,3-ブタジエン単位61重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位2.0重量%であった。
カルボキシル基含有ニトリルゴム(a1-11)のラテックスの製造
1,3-ブタジエンの使用量を61部に、アミド基含有単量体としてのN-メチロールアクリルアミドの使用量を2.0部にそれぞれ変更した以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-11)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-11)の組成は、1,3-ブタジエン単位61重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位2.0重量%であった。
製造例16
カルボキシル基含有ニトリルゴム(a1-12)のラテックスの製造
1,3-ブタジエンの使用量を61部に、エポキシ基含有単量体としてのグリシジルメタクリレートの使用量を2.0部にそれぞれ変更した以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-12)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-12)の組成は、1,3-ブタジエン単位61重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位2.0重量%であった。
カルボキシル基含有ニトリルゴム(a1-12)のラテックスの製造
1,3-ブタジエンの使用量を61部に、エポキシ基含有単量体としてのグリシジルメタクリレートの使用量を2.0部にそれぞれ変更した以外は、製造例13と同様にして、カルボキシル基含有ニトリルゴム(a1-12)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-12)の組成は、1,3-ブタジエン単位61重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位2.0重量%であった。
製造例17
カルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックスの製造
攪拌機付き耐圧容器に、脱イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、1.3-ブタジエン62.5部、スチレン34部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部を仕込み、モノマーエマルジョンを得た。これとは別の攪拌機付きの耐圧重合反応容器に、脱イオン交換水40部、ドデシルベンゼンスルホン酸ナトリウム0.2部、重炭酸ソーダ0.35部、エチレンジアミン四酢酸ナトリウム0.05部を仕込み、攪拌混合しながら70℃に昇温した。そして、これに過硫酸カリウム0.5部を添加した後、直ちに、上記にて得られたモノマーエマルジョンの添加を開始し、攪拌混合しながら5時間かけて連続添加した。モノマーエマルジョン添加終了後、過硫酸カリウム0.2部を3重量%水溶液にて添加し、重合転化率が90%になったときに、85℃に昇温して、さらに3時間反応を継続し重合転化率が95%の時点で重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-3)の組成は、1,3-ブタジエン単位62.5重量%、スチレン単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
カルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックスの製造
攪拌機付き耐圧容器に、脱イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.3部、連鎖移動剤としてt-ドデシルメルカプタン0.4部、1.3-ブタジエン62.5部、スチレン34部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部を仕込み、モノマーエマルジョンを得た。これとは別の攪拌機付きの耐圧重合反応容器に、脱イオン交換水40部、ドデシルベンゼンスルホン酸ナトリウム0.2部、重炭酸ソーダ0.35部、エチレンジアミン四酢酸ナトリウム0.05部を仕込み、攪拌混合しながら70℃に昇温した。そして、これに過硫酸カリウム0.5部を添加した後、直ちに、上記にて得られたモノマーエマルジョンの添加を開始し、攪拌混合しながら5時間かけて連続添加した。モノマーエマルジョン添加終了後、過硫酸カリウム0.2部を3重量%水溶液にて添加し、重合転化率が90%になったときに、85℃に昇温して、さらに3時間反応を継続し重合転化率が95%の時点で重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-3)の組成は、1,3-ブタジエン単位62.5重量%、スチレン単位34重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
製造例18
カルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックスの製造
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例17と同様にして、カルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-4)の組成は、1,3-ブタジエン単位62.5重量%、スチレン単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
カルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックスの製造
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例17と同様にして、カルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックスを得た。得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-4)の組成は、1,3-ブタジエン単位62.5重量%、スチレン単位34重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
製造例19
カルボキシル基含有ブタジエンゴム(a3-3)のラテックス
攪拌機付きの耐圧重合反応容器に、1.3-ブタジエン96.5部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部、連鎖移動剤としてt-ドデシルメルカプタン0.8部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-3)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-3)の組成は、1,3-ブタジエン単位96.5重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
カルボキシル基含有ブタジエンゴム(a3-3)のラテックス
攪拌機付きの耐圧重合反応容器に、1.3-ブタジエン96.5部、メタクリル酸3部、アミド基含有単量体としてのN-メチロールアクリルアミド0.5部、連鎖移動剤としてt-ドデシルメルカプタン0.8部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ブタジエンゴム(a3-3)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-3)の組成は、1,3-ブタジエン単位96.5重量%、メタクリル酸単位3重量%、N-メチロールアクリルアミド単位0.5重量%であった。
製造例20
カルボキシル基含有ブタジエンゴム(a3-4)のラテックス
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例19と同様にして、カルボキシル基含有ブタジエンゴム(a3-4)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-4)の組成は、1,3-ブタジエン単位96.5重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
カルボキシル基含有ブタジエンゴム(a3-4)のラテックス
アミド基含有単量体としてのN-メチロールアクリルアミドに代えて、エポキシ基含有単量体としてのグリシジルメタクリレート0.5部を用いたこと以外は、製造例19と同様にして、カルボキシル基含有ブタジエンゴム(a3-4)のラテックスを得た。得られたカルボキシル基含有ブタジエンゴム(a3-4)の組成は、1,3-ブタジエン単位96.5重量%、メタクリル酸単位3重量%、グリシジルメタクリレート単位0.5重量%であった。
実施例1-1
ラテックス組成物の調製
製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-1)換算で100部)に、脱イオン水を加えて固形分濃度35重量%に調整し、次いで、アルミン酸ナトリウム水溶液を、アルミン酸ナトリウム換算で0.4部加えた。そして、水酸化カリウムを用いて前記組成物のpHを8.3に調整した後、脱イオン水をさらに加えることで、固形分濃度を30重量%に調整することで、ラテックス組成物を得た。なお、得られたラテックス組成物について、必要に応じて、濾過によりラテックス組成物中の凝集物等を除去する操作を行った(後述する、実施例1-2~1-5、比較例1-1~1-4においても、必要に応じて、同様にして凝集物等を除去する操作を行った。)。
ラテックス組成物の調製
製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-1)換算で100部)に、脱イオン水を加えて固形分濃度35重量%に調整し、次いで、アルミン酸ナトリウム水溶液を、アルミン酸ナトリウム換算で0.4部加えた。そして、水酸化カリウムを用いて前記組成物のpHを8.3に調整した後、脱イオン水をさらに加えることで、固形分濃度を30重量%に調整することで、ラテックス組成物を得た。なお、得られたラテックス組成物について、必要に応じて、濾過によりラテックス組成物中の凝集物等を除去する操作を行った(後述する、実施例1-2~1-5、比較例1-1~1-4においても、必要に応じて、同様にして凝集物等を除去する操作を行った。)。
ディップ成形体の製造
硝酸カルシウム13部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水87部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、引張強度、破断時伸び、および500%伸長時の応力の各測定を行った。結果を表1に示す。
硝酸カルシウム13部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水87部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、引張強度、破断時伸び、および500%伸長時の応力の各測定を行った。結果を表1に示す。
実施例1-2
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で0.2部に変更し、組成物のpHを8.5に調整した以外は、実施例1-1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で0.2部に変更し、組成物のpHを8.5に調整した以外は、実施例1-1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
実施例1-3
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例2で得られたカルボキシル基含有ニトリルゴム(a1-2)のラテックス(カルボキシル基含有ニトリルゴム(a1-2)換算で100部)を使用するとともに、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で0.3部にし、組成物のpHを8.5に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例2で得られたカルボキシル基含有ニトリルゴム(a1-2)のラテックス(カルボキシル基含有ニトリルゴム(a1-2)換算で100部)を使用するとともに、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で0.3部にし、組成物のpHを8.5に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
実施例1-4
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例3で得られたカルボキシル基含有ニトリルゴム(a1-3)のラテックス(カルボキシル基含有ニトリルゴム(a1-3)換算で100部)を使用し、組成物のpHを8.3に調整した以外は、実施例1-2と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例3で得られたカルボキシル基含有ニトリルゴム(a1-3)のラテックス(カルボキシル基含有ニトリルゴム(a1-3)換算で100部)を使用し、組成物のpHを8.3に調整した以外は、実施例1-2と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
実施例1-5
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例4で得られたカルボキシル基含有ニトリルゴム(a1-4)のラテックス(カルボキシル基含有ニトリルゴム(a1-4)換算で100部)を使用するとともに、組成物のpHを7.5に調整した以外は、実施例1-2と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックスに代えて、製造例4で得られたカルボキシル基含有ニトリルゴム(a1-4)のラテックス(カルボキシル基含有ニトリルゴム(a1-4)換算で100部)を使用するとともに、組成物のpHを7.5に調整した以外は、実施例1-2と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
比較例1-1
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液を添加せず、pHを8.4に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液を添加せず、pHを8.4に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
比較例1-2
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液に代えて、硫黄(架橋剤)1部、ジブチルジチオカルバミン酸亜鉛(加硫促進剤)0.5部、および酸化亜鉛1.2部を使用し、pHを8.5に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液に代えて、硫黄(架橋剤)1部、ジブチルジチオカルバミン酸亜鉛(加硫促進剤)0.5部、および酸化亜鉛1.2部を使用し、pHを8.5に調整した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
比較例1-3
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液に代えて、酸化亜鉛1.5部を使用した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液に代えて、酸化亜鉛1.5部を使用した以外は、実施例1-1と同様にして、ラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
比較例1-4
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で2.0部に変更した以外は、実施例1-1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム水溶液の添加量を、アルミン酸ナトリウム換算で2.0部に変更した以外は、実施例1-1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
実施例1-1~1-5、比較例1-1~1-4の評価
表1に示すように、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)とを含有し、3価以上の金属を含む金属化合物(B)の含有割合が、カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物を用いて得られたディップ成形体(ゴム手袋)は、引張強度および伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を備えるものであった(実施例1-1~1-5)。
表1に示すように、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)とを含有し、3価以上の金属を含む金属化合物(B)の含有割合が、カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物を用いて得られたディップ成形体(ゴム手袋)は、引張強度および伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を備えるものであった(実施例1-1~1-5)。
一方、3価以上の金属を含む金属化合物(B)を配合しなかった場合には、ディップ成形体(ゴム手袋)は、引張強度に劣るものであった(比較例1-1)。
3価以上の金属を含む金属化合物(B)の代わりに、硫黄を加硫促進剤と酸化亜鉛と組み合わせて用いた場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-2)。なお、比較例1-2においては、硫黄および加硫促進剤を含むため、遅延型アレルギー(Type IV)の発生も抑制できないものと考えられる。
また、3価以上の金属を含む金属化合物(B)の代わりに、酸化亜鉛を単独で用いた場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-3)。
さらに、3価以上の金属を含む金属化合物(B)の配合量が多すぎる場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-4)。
3価以上の金属を含む金属化合物(B)の代わりに、硫黄を加硫促進剤と酸化亜鉛と組み合わせて用いた場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-2)。なお、比較例1-2においては、硫黄および加硫促進剤を含むため、遅延型アレルギー(Type IV)の発生も抑制できないものと考えられる。
また、3価以上の金属を含む金属化合物(B)の代わりに、酸化亜鉛を単独で用いた場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-3)。
さらに、3価以上の金属を含む金属化合物(B)の配合量が多すぎる場合には、伸びが小さく、500%伸長時の応力に劣るものであった(比較例1-4)。
実施例2-1
ラテックス組成物の調製
製造例5で得られたカルボキシル基含有ニトリルゴム(a1-5)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-5)換算で100部)に、アルミン酸ナトリウム0.5部、ソルビトール0.75部、グリコール酸ナトリウム0.75部を水溶させた混合水溶液を加えた。そして、これに脱イオン水を加えて、固形分濃度を30重量%に調整することで、ラテックス組成物を得た。
ラテックス組成物の調製
製造例5で得られたカルボキシル基含有ニトリルゴム(a1-5)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-5)換算で100部)に、アルミン酸ナトリウム0.5部、ソルビトール0.75部、グリコール酸ナトリウム0.75部を水溶させた混合水溶液を加えた。そして、これに脱イオン水を加えて、固形分濃度を30重量%に調整することで、ラテックス組成物を得た。
ディップ成形体の製造
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表2に示す。
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表2に示す。
実施例2-2
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-5)のラテックスに代えて、製造例6で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-1)換算で100部)を使用した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-5)のラテックスに代えて、製造例6で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-1)換算で100部)を使用した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-3
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-5)のラテックスに代えて、製造例7で得られたカルボキシル基含有ブタジエンゴム(a3-1)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-1)換算で100部)を使用した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-5)のラテックスに代えて、製造例7で得られたカルボキシル基含有ブタジエンゴム(a3-1)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-1)換算で100部)を使用した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-4
ラテックス組成物を調製する際に、ソルビトールの配合量を1.5部に変更するとともに、グリコール酸ナトリウムを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、ソルビトールの配合量を1.5部に変更するとともに、グリコール酸ナトリウムを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-5
ラテックス組成物を調製する際に、グリコール酸ナトリウムの配合量を1.5部に変更するとともに、ソルビトールを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、グリコール酸ナトリウムの配合量を1.5部に変更するとともに、ソルビトールを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-6
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を0.1部に、ソルビトールの配合量を0.015部に、グリコール酸ナトリウムの配合量を0.015部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を0.1部に、ソルビトールの配合量を0.015部に、グリコール酸ナトリウムの配合量を0.015部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-7
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を0.1部に、ソルビトールの配合量を0.5部に、グリコール酸ナトリウムの配合量を0.5部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を0.1部に、ソルビトールの配合量を0.5部に、グリコール酸ナトリウムの配合量を0.5部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-8
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を1部に、ソルビトールの配合量を0.15部に、グリコール酸ナトリウムの配合量を0.15部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を1部に、ソルビトールの配合量を0.15部に、グリコール酸ナトリウムの配合量を0.15部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-9
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を1部に、ソルビトールの配合量を5部に、グリコール酸ナトリウムの配合量を5部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウムの配合量を1部に、ソルビトールの配合量を5部に、グリコール酸ナトリウムの配合量を5部に、それぞれ変更した以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
比較例2-1
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
比較例2-2
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-2と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-2と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
比較例2-3
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-3と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例2-3と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表2に示す。
実施例2-1~2-9、比較例2-1~2-3の評価
表2から、以下のことが確認できる。
すなわち、カルボキシル基含有共役ジエン系ゴム(A)のラテックスに対し、3価以上の金属を含む金属化合物(B)に加えて、アルコール性水酸基含有化合物(C)を配合してなるラテックス組成物は、ラテックス組成物としての安定性に優れ、このようなラテックス組成物を用いて得られたディップ成形体(ゴム手袋)は、引張強度および伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を実現しながら、高い応力保持率をも備えるものであった(実施例2-1~2-9)。
表2から、以下のことが確認できる。
すなわち、カルボキシル基含有共役ジエン系ゴム(A)のラテックスに対し、3価以上の金属を含む金属化合物(B)に加えて、アルコール性水酸基含有化合物(C)を配合してなるラテックス組成物は、ラテックス組成物としての安定性に優れ、このようなラテックス組成物を用いて得られたディップ成形体(ゴム手袋)は、引張強度および伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を実現しながら、高い応力保持率をも備えるものであった(実施例2-1~2-9)。
一方、3価以上の金属を含む金属化合物(B)およびアルコール性水酸基含有化合物(C)を含有しない場合は、得られるラテックス組成物は、ディップ成形体(ゴム手袋)とした場合に、引張強度が低くなる結果となった(比較例2-1~2-3)。
実施例3-1
ラテックス組成物の調製
製造例8で得られたカルボキシル基含有ニトリルゴム(a1-6)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-6)換算で100部)に、アルミン酸ナトリウム0.2部、ソルビトール0.4部、グリコール酸ナトリウム0.4部を水溶させた混合水溶液を加えた。そして、これに脱イオン水および5重量%水酸化カリウム水溶液を加えて、固形分濃度を30重量%に、pHを9.2に調整することで、ラテックス組成物を得た。
ラテックス組成物の調製
製造例8で得られたカルボキシル基含有ニトリルゴム(a1-6)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-6)換算で100部)に、アルミン酸ナトリウム0.2部、ソルビトール0.4部、グリコール酸ナトリウム0.4部を水溶させた混合水溶液を加えた。そして、これに脱イオン水および5重量%水酸化カリウム水溶液を加えて、固形分濃度を30重量%に、pHを9.2に調整することで、ラテックス組成物を得た。
ディップ成形体の製造
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表3に示す。
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表3に示す。
実施例3-2
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例9で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-2)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例9で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-2)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-2)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-3
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例10で得られたカルボキシル基含有ブタジエンゴム(a3-2)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-2)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例10で得られたカルボキシル基含有ブタジエンゴム(a3-2)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-2)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-4
アルミン酸ナトリウムの配合量を0.2部から0.5部に、ソルビトールの配合量を0.4部から0.75部に、グリコール酸ナトリウムの配合量を0.4部から0.75部に、それぞれ変更した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
アルミン酸ナトリウムの配合量を0.2部から0.5部に、ソルビトールの配合量を0.4部から0.75部に、グリコール酸ナトリウムの配合量を0.4部から0.75部に、それぞれ変更した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-5
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例5で得られたカルボキシル基含有ニトリルゴム(a1-5)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-5)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例5で得られたカルボキシル基含有ニトリルゴム(a1-5)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-5)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-6
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例6で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-1)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例6で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-1)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-1)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-7
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例7で得られたカルボキシル基含有ブタジエンゴム(a3-1)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-1)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例7で得られたカルボキシル基含有ブタジエンゴム(a3-1)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-1)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-8
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例11で得られたカルボキシル基含有ニトリルゴム(a1-7)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-7)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例11で得られたカルボキシル基含有ニトリルゴム(a1-7)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-7)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-9
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例12で得られたカルボキシル基含有ニトリルゴム(a1-8)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-8)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-6)のラテックスに代えて、製造例12で得られたカルボキシル基含有ニトリルゴム(a1-8)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-8)換算で100部)を使用した以外は、実施例3-1と同様にして、固形分濃度30重量%のラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表3に示す。
実施例3-1~3-9の評価
表3から、以下のことが確認できる。
すなわち、実施例3-1~3-4と、実施例3-5~3-7とを比較することにより、0~25℃にて乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用することにより、37℃~70℃で乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用した場合と比較して、引張強度のさらなる向上が可能であることが確認できる。特に、表3の結果より、0~25℃にて乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用することにより、伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を保ちながら、引張強度のさらなる向上が可能となることが確認できる。
また、実施例3-5、3-8、3-9を比較することにより、連鎖移動剤の使用量を、単量体混合物100重量部に対して0.15~0.95重量部の範囲で変動させることにより、引張強度、伸び、および柔軟な風合い(500%伸長時の応力が小さい)を好適な範囲で適宜調整できるものといえる。
表3から、以下のことが確認できる。
すなわち、実施例3-1~3-4と、実施例3-5~3-7とを比較することにより、0~25℃にて乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用することにより、37℃~70℃で乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用した場合と比較して、引張強度のさらなる向上が可能であることが確認できる。特に、表3の結果より、0~25℃にて乳化重合することにより得られたカルボキシル基含有共役ジエン系ゴム(A)を使用することにより、伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を保ちながら、引張強度のさらなる向上が可能となることが確認できる。
また、実施例3-5、3-8、3-9を比較することにより、連鎖移動剤の使用量を、単量体混合物100重量部に対して0.15~0.95重量部の範囲で変動させることにより、引張強度、伸び、および柔軟な風合い(500%伸長時の応力が小さい)を好適な範囲で適宜調整できるものといえる。
実施例4-1
ラテックス組成物の調製
製造例13で得られたカルボキシル基含有ニトリルゴム(a1-9)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-9)換算で100部)に、アルミン酸ナトリウム0.2部、ソルビトール0.4部、グリコール酸ナトリウム0.4部を水溶させた混合水溶液を加えた。そして、これに脱イオン水および5%水酸化カリウム水溶液を加えて、固形分濃度30重量%、pH9.2に調整することで、ラテックス組成物を得た。
ラテックス組成物の調製
製造例13で得られたカルボキシル基含有ニトリルゴム(a1-9)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-9)換算で100部)に、アルミン酸ナトリウム0.2部、ソルビトール0.4部、グリコール酸ナトリウム0.4部を水溶させた混合水溶液を加えた。そして、これに脱イオン水および5%水酸化カリウム水溶液を加えて、固形分濃度30重量%、pH9.2に調整することで、ラテックス組成物を得た。
ディップ成形体の製造
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表4に示す。
硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。
次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表4に示す。
実施例4-2
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例14で得られたカルボキシル基含有ニトリルゴム(a1-10)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-10)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例14で得られたカルボキシル基含有ニトリルゴム(a1-10)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-10)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-3
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例15で得られたカルボキシル基含有ニトリルゴム(a1-11)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-11)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例15で得られたカルボキシル基含有ニトリルゴム(a1-11)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-11)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-4
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例16で得られたカルボキシル基含有ニトリルゴム(a1-12)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-12)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例16で得られたカルボキシル基含有ニトリルゴム(a1-12)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-12)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-5
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例17で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-3)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例17で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-3)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-3)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-6
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例18で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-4)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例18で得られたカルボキシル基含有スチレン-ブタジエンゴム(a2-4)のラテックス250部(カルボキシル基含有スチレン-ブタジエンゴム(a2-4)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-7
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例19で得られたカルボキシル基含有ブタジエンゴム(a3-3)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-3)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例19で得られたカルボキシル基含有ブタジエンゴム(a3-3)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-3)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-8
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例20で得られたカルボキシル基含有ブタジエンゴム(a3-4)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-4)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、カルボキシル基含有ニトリルゴム(a1-9)のラテックスに代えて、製造例20で得られたカルボキシル基含有ブタジエンゴム(a3-4)のラテックス250部(カルボキシル基含有ブタジエンゴム(a3-4)換算で100部)を使用した以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
比較例4-1
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例4-1と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
比較例4-2
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例4-2と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
ラテックス組成物を調製する際に、アルミン酸ナトリウム、ソルビトールおよびグリコール酸ナトリウムを配合しなかった以外は、実施例4-2と同様にしてラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表4に示す。
実施例4-1~4-8、比較例4-1、4-2の評価
表4から、以下のことが確認できる。
すなわち、カルボキシル基含有共役ジエン系ゴム(A)のラテックスを構成するカルボキシル基含有共役ジエン系ゴム(A)として、アミド基含有単量体単位またはエポキシ基含有単量体単位を含むものを使用した場合には、得られるディップ成形体(ゴム手袋)を、応力保持率がより高められたものとすることができるものである(実施例4-1~4-8)。特に、表4の結果より、カルボキシル基含有共役ジエン系ゴム(A)として、アミド基含有単量体単位またはエポキシ基含有単量体単位を含むものを使用した場合には、引張強度が高く、伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を保ちながら、応力保持率のさらなる向上が可能となることが確認できる。
表4から、以下のことが確認できる。
すなわち、カルボキシル基含有共役ジエン系ゴム(A)のラテックスを構成するカルボキシル基含有共役ジエン系ゴム(A)として、アミド基含有単量体単位またはエポキシ基含有単量体単位を含むものを使用した場合には、得られるディップ成形体(ゴム手袋)を、応力保持率がより高められたものとすることができるものである(実施例4-1~4-8)。特に、表4の結果より、カルボキシル基含有共役ジエン系ゴム(A)として、アミド基含有単量体単位またはエポキシ基含有単量体単位を含むものを使用した場合には、引張強度が高く、伸びが大きく、柔軟な風合い(500%伸長時の応力が小さい)を保ちながら、応力保持率のさらなる向上が可能となることが確認できる。
一方、カルボキシル基含有共役ジエン系ゴム(A)として、アミド基含有単量体単位またはエポキシ基含有単量体単位を含むものを使用した場合でも、3価以上の金属を含む金属化合物(B)およびアルコール性水酸基含有化合物(C)を含有しない場合は、得られるディップ成形体(ゴム手袋)は、引張強度および応力保持率に劣るものであった(比較例4-1、4-2)。
Claims (14)
- カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)とを含有してなるラテックス組成物であって、
前記金属化合物の含有割合が、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部であるラテックス組成物。 - 前記金属化合物(B)が、アルミニウム化合物である請求項1に記載のラテックス組成物。
- 糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)をさらに含有する請求項1または2に記載のラテックス組成物。
- 前記金属化合物(B)の含有量と、前記アルコール性水酸基含有化合物(C)の含有量とが、「金属化合物(B):アルコール性水酸基含有化合物(C)」の重量比で、1:0.1~1:50である請求項3に記載のラテックス組成物。
- 前記アルコール性水酸基含有化合物(C)が、糖アルコール(c2)およびヒドロキシ酸塩(c4)から選択される少なくとも1種である請求項3または4に記載のラテックス組成物。
- 前記カルボキシル基含有共役ジエン系ゴム(A)が、共役ジエン単量体単位56~78重量%、エチレン性不飽和ニトリル単量体単位20~40重量%、およびエチレン性不飽和カルボン酸単量体単位2~6.5重量%を含有するカルボキシル基含有ニトリルゴム(a1)である請求項1~5のいずれかに記載のラテックス組成物。
- 前記カルボキシル基含有共役ジエン系ゴム(A)が、共役ジエン単量体単位と、エチレン性不飽和カルボン酸単量体単位と、アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位と、を含有する請求項1~5のいずれかに記載のラテックス組成物。
- 前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、(メタ)アクリルアミドである請求項7記載のラテックス組成物。
- 前記アミド基含有単量体単位およびエポキシ基含有単量体単位から選ばれる少なくとも1種の単量体単位を構成する単量体が、エポキシ基含有(メタ)アクリレートである請求項7に記載のラテックス組成物。
- カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)と、を含有してなるラテックス組成物を製造する方法であって、
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、0~25℃にて乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法。 - カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、3価以上の金属を含む金属化合物(B)と、を含有してなるラテックス組成物を製造する方法であって、
共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を少なくとも含む単量体混合物を、前記単量体混合物100重量部に対して0.15~0.95重量部の連鎖移動剤の存在下で、乳化重合することで、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスを得る第1工程と、
前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、前記金属化合物(B)を配合する第2工程とを備えるラテックス組成物の製造方法。 - 前記第2工程において、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスに対し、前記金属化合物(B)に加えて、糖類(c1)、糖アルコール(c2)、ヒドロキシ酸(c3)およびヒドロキシ酸塩(c4)から選択される少なくとも1種のアルコール性水酸基含有化合物(C)をさらに配合する請求項10または12に記載のラテックス組成物の製造方法。
- 請求項1~9のいずれかに記載のラテックス組成物、または請求項10~12のいずれかに記載の製造方法により得られるラテックス組成物を、ディップ成形する工程を備えるディップ成形体の製造方法。
- 請求項1~9のいずれかに記載のラテックス組成物からなる膜成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2018001475A MY194391A (en) | 2016-02-25 | 2017-02-24 | Latex composition and film molded body |
US16/078,554 US11236218B2 (en) | 2016-09-30 | 2017-02-24 | Latex composition and film molded body |
EP17756672.6A EP3421532B1 (en) | 2016-02-25 | 2017-02-24 | Latex composition and film molded body |
CN201780011194.7A CN108602991B (zh) | 2016-02-25 | 2017-02-24 | 胶乳组合物及膜成型体 |
KR1020187023980A KR20180114064A (ko) | 2016-02-25 | 2017-02-24 | 라텍스 조성물 및 막 성형체 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034267 | 2016-02-25 | ||
JP2016-034267 | 2016-02-25 | ||
JP2016193434A JP6787008B2 (ja) | 2016-02-25 | 2016-09-30 | ラテックス組成物の製造方法 |
JP2016-193434 | 2016-09-30 | ||
JP2016193439A JP2017149927A (ja) | 2016-02-25 | 2016-09-30 | ラテックス組成物の製造方法 |
JP2016193430A JP6855734B2 (ja) | 2016-02-25 | 2016-09-30 | ラテックス組成物および膜成形体 |
JP2016193443A JP2017149928A (ja) | 2016-02-25 | 2016-09-30 | ラテックス組成物および膜成形体 |
JP2016-193443 | 2016-09-30 | ||
JP2016-193430 | 2016-09-30 | ||
JP2016-193439 | 2016-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017146238A1 true WO2017146238A1 (ja) | 2017-08-31 |
Family
ID=59686314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007225 WO2017146238A1 (ja) | 2016-02-25 | 2017-02-24 | ラテックス組成物および膜成形体 |
Country Status (2)
Country | Link |
---|---|
MY (1) | MY194391A (ja) |
WO (1) | WO2017146238A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020049825A (ja) * | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | ディップ成形体の製造方法 |
WO2020066835A1 (ja) * | 2018-09-26 | 2020-04-02 | 日本ゼオン株式会社 | 手袋の製造方法 |
CN111655780A (zh) * | 2018-02-16 | 2020-09-11 | 日本瑞翁株式会社 | 胶乳组合物和膜成型体 |
JP2020164690A (ja) * | 2019-03-29 | 2020-10-08 | 日本ゼオン株式会社 | ディップ成形用ラテックス組成物 |
CN112912432A (zh) * | 2019-09-27 | 2021-06-04 | 株式会社Lg化学 | 用于浸渍模塑的胶乳组合物、其制备方法和由其模塑的模塑制品 |
US11058162B2 (en) | 2016-02-25 | 2021-07-13 | Zeon Corporation | Method for manufacturing glove |
US11065788B2 (en) | 2016-02-25 | 2021-07-20 | Zeon Corporation | Method for manufacturing gloves |
JP2022093281A (ja) * | 2020-12-11 | 2022-06-23 | エルジー・ケム・リミテッド | ディップ成形用ラテックス組成物由来の層を含むディップ成形品 |
WO2022168831A1 (ja) | 2021-02-04 | 2022-08-11 | ミドリ安全株式会社 | ディップ成形用アルミニウム架橋剤、ディップ成形用組成物、手袋、及び手袋の製造方法 |
CN114981340A (zh) * | 2020-12-11 | 2022-08-30 | 株式会社Lg化学 | 包括来自用于浸渍成型的胶乳组合物的层的浸渍成型制品 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316211A (ja) * | 1994-05-23 | 1995-12-05 | Takeda Chem Ind Ltd | 共重合体ラテックス組成物及びその製造方法 |
WO2000073367A1 (fr) * | 1999-05-28 | 2000-12-07 | Suzuki Latex Industry Co., Ltd. | Produits de latex non collants |
JP2005060577A (ja) * | 2003-08-15 | 2005-03-10 | Jsr Corp | ラテックス組成物及びその製造方法、並びにこれを用いたアスファルト組成物及びカチオン性アスファルト乳剤 |
WO2007072900A1 (ja) * | 2005-12-21 | 2007-06-28 | Zeon Corporation | 架橋性ゴム組成物およびゴム架橋物 |
JP2009520049A (ja) * | 2005-12-16 | 2009-05-21 | エクソンモービル・ケミカル・パテンツ・インク | エラストマー組成物の加工助剤 |
JP2012188797A (ja) * | 2011-02-25 | 2012-10-04 | Nippon A&L Inc | 紙塗工用共重合体ラテックス及び紙塗工用組成物 |
JP2015105281A (ja) * | 2013-11-28 | 2015-06-08 | 日本ゼオン株式会社 | ディップ成形用組成物およびディップ成形品 |
US20150232637A1 (en) * | 2013-08-29 | 2015-08-20 | Lg Chem, Ltd. | Carboxylic acid-modified nitrile-based copolymer latex composition and dip molded article including the same |
WO2016104057A1 (ja) * | 2014-12-25 | 2016-06-30 | 日本ゼオン株式会社 | ディップ成形用ラテックス組成物及びディップ成形品 |
-
2017
- 2017-02-24 WO PCT/JP2017/007225 patent/WO2017146238A1/ja active Application Filing
- 2017-02-24 MY MYPI2018001475A patent/MY194391A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316211A (ja) * | 1994-05-23 | 1995-12-05 | Takeda Chem Ind Ltd | 共重合体ラテックス組成物及びその製造方法 |
WO2000073367A1 (fr) * | 1999-05-28 | 2000-12-07 | Suzuki Latex Industry Co., Ltd. | Produits de latex non collants |
JP2005060577A (ja) * | 2003-08-15 | 2005-03-10 | Jsr Corp | ラテックス組成物及びその製造方法、並びにこれを用いたアスファルト組成物及びカチオン性アスファルト乳剤 |
JP2009520049A (ja) * | 2005-12-16 | 2009-05-21 | エクソンモービル・ケミカル・パテンツ・インク | エラストマー組成物の加工助剤 |
WO2007072900A1 (ja) * | 2005-12-21 | 2007-06-28 | Zeon Corporation | 架橋性ゴム組成物およびゴム架橋物 |
JP2012188797A (ja) * | 2011-02-25 | 2012-10-04 | Nippon A&L Inc | 紙塗工用共重合体ラテックス及び紙塗工用組成物 |
US20150232637A1 (en) * | 2013-08-29 | 2015-08-20 | Lg Chem, Ltd. | Carboxylic acid-modified nitrile-based copolymer latex composition and dip molded article including the same |
JP2015105281A (ja) * | 2013-11-28 | 2015-06-08 | 日本ゼオン株式会社 | ディップ成形用組成物およびディップ成形品 |
WO2016104057A1 (ja) * | 2014-12-25 | 2016-06-30 | 日本ゼオン株式会社 | ディップ成形用ラテックス組成物及びディップ成形品 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11058162B2 (en) | 2016-02-25 | 2021-07-13 | Zeon Corporation | Method for manufacturing glove |
US11065788B2 (en) | 2016-02-25 | 2021-07-20 | Zeon Corporation | Method for manufacturing gloves |
CN111655780A (zh) * | 2018-02-16 | 2020-09-11 | 日本瑞翁株式会社 | 胶乳组合物和膜成型体 |
WO2020066835A1 (ja) * | 2018-09-26 | 2020-04-02 | 日本ゼオン株式会社 | 手袋の製造方法 |
JP7547204B2 (ja) | 2018-09-26 | 2024-09-09 | 日本ゼオン株式会社 | 手袋の製造方法 |
JPWO2020066835A1 (ja) * | 2018-09-26 | 2021-09-24 | 日本ゼオン株式会社 | 手袋の製造方法 |
JP7131255B2 (ja) | 2018-09-27 | 2022-09-06 | 日本ゼオン株式会社 | ディップ成形体の製造方法 |
JP2020049825A (ja) * | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | ディップ成形体の製造方法 |
JP2020164690A (ja) * | 2019-03-29 | 2020-10-08 | 日本ゼオン株式会社 | ディップ成形用ラテックス組成物 |
CN112912432B (zh) * | 2019-09-27 | 2022-10-25 | 株式会社Lg化学 | 用于浸渍模塑的胶乳组合物、其制备方法和由其模塑的模塑制品 |
CN112912432A (zh) * | 2019-09-27 | 2021-06-04 | 株式会社Lg化学 | 用于浸渍模塑的胶乳组合物、其制备方法和由其模塑的模塑制品 |
CN114981340A (zh) * | 2020-12-11 | 2022-08-30 | 株式会社Lg化学 | 包括来自用于浸渍成型的胶乳组合物的层的浸渍成型制品 |
JP2022093281A (ja) * | 2020-12-11 | 2022-06-23 | エルジー・ケム・リミテッド | ディップ成形用ラテックス組成物由来の層を含むディップ成形品 |
JP7348941B2 (ja) | 2020-12-11 | 2023-09-21 | エルジー・ケム・リミテッド | ディップ成形用ラテックス組成物由来の層を含むディップ成形品 |
CN114981340B (zh) * | 2020-12-11 | 2024-04-12 | 株式会社Lg化学 | 包括来自用于浸渍成型的胶乳组合物的层的浸渍成型制品 |
WO2022168831A1 (ja) | 2021-02-04 | 2022-08-11 | ミドリ安全株式会社 | ディップ成形用アルミニウム架橋剤、ディップ成形用組成物、手袋、及び手袋の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
MY194391A (en) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3421532B1 (en) | Latex composition and film molded body | |
WO2017146238A1 (ja) | ラテックス組成物および膜成形体 | |
US11236218B2 (en) | Latex composition and film molded body | |
JP6930525B2 (ja) | 手袋の製造方法 | |
JP7351289B2 (ja) | ラテックス組成物および膜成形体 | |
JP6969535B2 (ja) | 手袋の製造方法 | |
JP7400187B2 (ja) | ディップ成形体およびその製造方法 | |
JP7131255B2 (ja) | ディップ成形体の製造方法 | |
JP7547204B2 (ja) | 手袋の製造方法 | |
JP7238879B2 (ja) | ディップ成形体の製造方法 | |
WO2024181146A1 (ja) | ディップ成形体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017756672 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017756672 Country of ref document: EP Effective date: 20180925 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756672 Country of ref document: EP Kind code of ref document: A1 |