WO2017146082A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2017146082A1
WO2017146082A1 PCT/JP2017/006520 JP2017006520W WO2017146082A1 WO 2017146082 A1 WO2017146082 A1 WO 2017146082A1 JP 2017006520 W JP2017006520 W JP 2017006520W WO 2017146082 A1 WO2017146082 A1 WO 2017146082A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrode
power transmission
power receiving
transmitting
Prior art date
Application number
PCT/JP2017/006520
Other languages
French (fr)
Japanese (ja)
Inventor
原川 健一
Original Assignee
株式会社ExH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ExH filed Critical 株式会社ExH
Priority to JP2018501725A priority Critical patent/JPWO2017146082A1/en
Publication of WO2017146082A1 publication Critical patent/WO2017146082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling

Definitions

  • the present invention relates to a power supply system.
  • Patent Documents 1 and 2 Conventionally, techniques for increasing the junction capacitance when supplying power by electric field coupling have been disclosed (see Patent Documents 1 and 2).
  • JP 2014-007200 A Japanese Patent Laying-Open No. 2015-099880
  • Patent Documents 1 and 2 since the power receiving electrode portion and the power transmitting electrode portion are exposed, a measure for reducing electromagnetic radiation and an electric shock that may occur due to human contact are prevented. No measures have been taken, such as measures to prevent waste contamination. Moreover, it does not have the correspondence to the track
  • the present invention has been made in view of such a situation, and solves the above-mentioned problem fundamentally, increases the junction capacitance stably, reduces electromagnetic radiation, and prevents electric shock.
  • An object of the present invention is to provide a technique for enhancing the resistance and further enhancing the resistance to contamination of dust and the like.
  • a power supply system includes: A power supply system using electric field coupled power transmission technology, A power transmission line for transmitting power from an AC power source of a predetermined wavelength; A plurality of junction capacitors formed by the power transmission electrode and the power receiving electrode, having a power receiving electrode, moving along the power transmission line, and using a portion of the power transmission line facing the power receiving electrode as a power transmitting electrode; A power receiving unit that receives power from the power transmission line via the power supply and supplies the power to a load; With The power receiving unit includes a spring-like member as a component, and is movable along a curved portion of the power transmission line in a state where power is supplied to the load.
  • junction capacitance can be formed in a state where the power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
  • a power transmission side conductive plate disposed in a noncontact manner with respect to the plurality of power transmission electrodes, and A power-receiving-side conductive plate that is disposed in the vicinity of the plurality of power-receiving electrodes and on the load side in a noncontact manner with respect to the plurality of power-receiving electrodes; Further comprising
  • the power transmission side conductive plate and the power reception side conductive plate may be disposed so as to sandwich the power transmission electrode and the power reception electrode from the outside in a state where the power transmission side conductive plate and the power reception side conductive plate protrude outside the ends of the power transmission electrode and the power reception electrode. it can.
  • a portion that protrudes outside the end portions of the power transmission electrode and the power reception electrode has a curved portion, and an end portion of the power transmission side conductive plate It is possible to maintain a state where the end portions of the power receiving side conductive plate are close to each other.
  • the power supply system to which the present invention is applied is A power supply system using electric field coupled power transmission technology, A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load, With The power transmission unit A rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates electrically insulated from the rotating shaft,
  • the power receiving unit A stationary body arranged around the rotating shaft, and a power receiving electrode composed of a plurality of layers of flat plates fixed to the stationary body in a state of being electrically insulated from the stationary body and the power transmission electrode,
  • the power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
  • the power supply system to which the present invention is applied is A power supply system using electric field coupled power transmission technology, A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load, With The power transmission unit A fixed body disposed around a rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the power receiving electrode, The power receiving unit The rotating shaft, and a power receiving electrode comprising a plurality of layers of flat plates electrically insulated from the rotating shaft, The power receiving electrode and the power transmitting electrode are arranged opposite to each other in a nested manner.
  • the power supply system to which the present invention is applied is A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load, With A first electrode group comprising a rotating shaft and a plurality of layers of flat plates electrically insulated from the rotating shaft; A fixed body disposed around the rotating shaft, and a second electrode group composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the first electrode; Are placed opposite each other in a nested manner, When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the rotation axis is included in a part of the circuit, a part of the first electrode group Even when in contact with the rotating shaft, power can be supplied to the load via the junction capacitance.
  • the second electrode group Even when a part of the fixed body is in contact with the fixed body, electric power can be supplied to the load through the junction capacitance. Further, even when the first electrode is the power transmitting electrode and the second electrode is the power receiving electrode, power can be supplied to the load.
  • the power transmitting electrode and the power receiving electrode can be separated from each other by the presence of the fluid flowing between the power transmitting electrode and the power receiving electrode.
  • the junction capacitance is stably increased, electromagnetic radiation is reduced, and safety is improved by preventing electric shock. Furthermore, it is possible to increase the resistance against contamination of dust and the like.
  • FIG. It is a figure which shows the example which uses trench itself as a GND electrode. It is a figure which shows the example at the time of attaching an ultra-thin metal cover to the whole trench type power transmission rail. It is a figure which shows the example of the electric power transmission bearing which has an electrode of a sandwich structure. It is a step view which shows the relationship between a circuit and a shield in the bearing which has two sets of sandwich electrodes. It is a figure which shows the example of the circuit of a high power type electric power transmission bearing.
  • FIG. 1 is a circuit diagram showing an example in which a junction capacitance Cc is formed by a sandwich electrode in a power transmission circuit to which an electric field coupling power transmission technique is applied.
  • the power transmission circuit to which the electric field coupling power transmission technology is applied includes a power transmission unit 1 and a power reception unit 2.
  • the electric field coupling power transmission technology is a technology that realizes non-contact power transmission by flowing a high-frequency current in a state where a junction capacitance Cc is formed by an electrode pair made of opposing metal plates. That is, the multi-groove power transmitting electrode 12 made of a metal plate is connected to the end of the power transmitting unit 1 that transmits power from the power source Vf, and the comb-shaped power receiving electrode 22 made of a metal plate is attached to the tip of the power receiving unit 2 that receives the power and supplies it to the load R.
  • the multi-groove power transmitting electrode 12 made of a metal plate is connected to the end of the power transmitting unit 1 that transmits power from the power source Vf
  • the comb-shaped power receiving electrode 22 made of a metal plate is attached to the tip of the power receiving unit 2 that receives the power and supplies it to the load R.
  • the sandwich electrode refers to an electrode pair in which a comb-shaped power receiving electrode 22 that is a comb-shaped power receiving electrode is nested in a multi-groove power transmitting electrode 12 that is a power transmitting electrode having a plurality of grooves.
  • the area of the portion where the power transmission electrode and the power reception electrode face each other can be efficiently increased, so that the junction capacitance Cc can be efficiently increased.
  • what uses a sandwich electrode can be adopted not only for a slide rail type electrode described later with reference to FIG. 2, but also for a bearing type electrode described later with reference to FIG.
  • the power transmission unit 1 includes a parallel resonant circuit 11, a multi-groove power transmission electrode 12, and a transformer T1. Since the AC power source Vf is connected to the power transmission unit 1, the power transmission unit 1 can receive power from here.
  • the parallel resonant circuit 11 includes a capacitor C1 and a coil L2.
  • An AC power supply Vf is connected to the parallel resonance circuit 11 via a transformer T1. That is, the parallel resonant circuit 11 is configured by connecting the capacitor C1 and the coil L2 in parallel with each other. Further, the coil L1 is adopted as the primary winding and the coil L2 is adopted as the secondary winding, thereby forming the transformer T1.
  • the ratio of the number of windings of the coil L1 and the number of windings of the coil L2 is 1: n.
  • the voltage on the primary side that is, the voltage of the AC power supply Vf is boosted n times in the transformer T1 and applied to the parallel resonant circuit 11.
  • two multi-groove power transmitting electrodes 12 are connected to both ends of the parallel resonant circuit 11.
  • the power receiving unit 2 includes a parallel resonant circuit 21, a comb-shaped power receiving electrode 22, and a transformer T2.
  • the parallel resonant circuit 21 includes a capacitor C2 and a coil L3.
  • a comb-shaped power receiving electrode 22 of the power receiving unit 2 is connected to the parallel resonant circuit 21. That is, the parallel resonant circuit 21 is configured by connecting the capacitor C2 and the coil L3 in parallel with each other. Further, the coil L3 is employed as the primary winding, and the coil L4 is employed as the secondary winding, whereby the transformer T2 is configured.
  • the ratio of the number of turns of the coil L3 and the number of turns of the coil L4 is n: 1. For this reason, the voltage on the primary side, that is, the voltage received by the power receiving unit 2 and applied to the parallel resonance circuit 21 is stepped down 1 / n times by the transformer T2 and applied to the load R.
  • FIG. 2 is a diagram showing a head-attached feather-touch curved comb-shaped power receiving electrode 22 as an example of a comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
  • FIG. 2A is a cross-sectional plan view showing a state in which a pair of comb-shaped power receiving electrodes 22 are arranged on the curved portion of the multi-groove power transmitting electrode 12 including two grooves.
  • the number of grooves of the multi-groove power transmission electrode 12 is composed of two lines, but the number of grooves is not limited to two.
  • FIG. 2A when the multi-groove power transmitting electrode 12 has a curved portion C, the comb-shaped power receiving electrode 22 is deformed in accordance with the shape of the curved portion C when positioned at the curved portion C, and is The groove power transmission electrode 12 and the power reception electrode part 221 do not contact.
  • FIG. 2B is a cross-sectional front view showing a state where the comb-shaped power receiving electrode 22 is inserted into the multi-groove power transmitting electrode 12. As shown in FIG. 2B, the comb-shaped power receiving electrode 22 is connected and fixed by the electrode fixing rod 224 so that two power receiving electrode portions 221 form a pair.
  • FIG. 2C is a plan view showing an outline of the comb-shaped power receiving electrode 22.
  • FIG. 2D is a side view showing an outline of the comb-shaped power receiving electrode 22.
  • the comb-shaped power receiving electrode 22 has a three-layer structure including a power receiving electrode portion 221, an elastic body 222, and a head fixing portion 223. Head portions 225 are disposed at both ends of the comb-shaped power receiving electrode 22.
  • the power receiving electrode portion 221 is formed of an extremely thin metal plate having conductivity.
  • the elastic body 222 is configured by an elastic foam body or the like, but is not particularly limited to a foam body.
  • the head fixing portion 223 is formed of an extremely thin metal plate having spring properties.
  • the electrode fixing rod 224 connects and fixes a plurality of power receiving electrode portions 221 in a set.
  • the head portion 225 is connected to a conductive wire disposed in the electrode fixing rod 224 and functions as an electrode that actually receives power.
  • fixed part 223 has the following function. That is, (a) it functions as an overhang electrode described later, and does not conduct with the power receiving electrode portion 221. (A) The head portion 225 that protects the end portion of the comb-shaped power receiving electrode 22 is fixed.
  • the head fixing portion 223 prevents the lengths of the end portions of the two power receiving electrode portions 221 from being different when the comb power receiving electrode 22 is curved, and connects the multi-groove power transmitting electrodes 12 to each other.
  • the comb-shaped power receiving electrode 22 is prevented from being caught at the step portion of the eye.
  • the elastic body 222 for fixing the power receiving electrode portion 221 is fixed.
  • the method for fixing the elastic body 222 is not particularly limited. Specifically, for example, the elastic body 222 may be fixed by sticking a foam body adopted as the elastic body 222 with a double-sided tape.
  • the elastic body 222 supports the power receiving electrode portion 221. Further, when the power receiving electrode portion 221 is positioned at the curved portion C, the power receiving electrode portion 221 is deformed so as to widely face the inner wall surface of the multi-groove power transmitting electrode 12.
  • the head fixing portion 223 has a spring property and has a function of extending the power receiving electrode portion 221 straightly.
  • FIG. 3 is a diagram illustrating a hinge-type comb-shaped power receiving electrode 22 as an example of the comb-shaped power-receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
  • FIG. 3A is a plan view showing an outline of the hinge-type comb-shaped power receiving electrode 22.
  • FIG. 3B is a side view showing an outline of the hinge-type comb-shaped power receiving electrode 22.
  • the hinge-type comb-shaped power receiving electrode 22 has five blocks (center block A and hinge blocks B to E) connected by hinge pins 235. Note that the number of blocks is not limited to five.
  • the hinge pin 235 is provided with a wheel 233, the power receiving electrode portions 231 of each block are not in contact with each other. Further, since the spring member 234 is inserted through all the blocks, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside. Further, in order to improve the electrical connection of each block, the connection line 236 is connected to the conducting wire in the electrode fixing rod 232. The center block A is mechanically connected to the electrode fixing rod 232. In the case of the hinge-type comb-shaped power receiving electrode 22, it is not possible to apply a function of suppressing electromagnetic wave radiation by an overhang described later. Further, the hinge-type comb-shaped power receiving electrode 22 is expected to be heavier than other methods.
  • FIG. 4 is a diagram showing a feather touch comb-shaped power receiving electrode 22 as an example of the comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
  • FIG. 4A is a plan view showing an outline of a feather-touch type comb-shaped power receiving electrode 22 with a wheel.
  • FIG. 4B is a front view showing the outline of the feather-touch type comb-shaped power receiving electrode 22 with a wheel.
  • the wheel-attached feather-touch comb-shaped power receiving electrode 22 has a wheel-fixing metal plate 246 formed of an extremely thin metal plate having spring properties at the center.
  • the wheel fixing metal plate 246 has a function of fixing the wheel 244.
  • An elastic body 247 with a double-sided adhesive is attached to the front and back surfaces of the wheel fixing metal plate 246. Further, on the outside of the elastic body 247, a power receiving electrode portion 241 made of an extremely thin metal plate coated with DLC (diamond-like carbon) is attached. These power receiving electrode portions 241 are connected to a conducting wire 249 in the electrode fixing rod 242.
  • the power receiving electrode portion 241 is configured to be slightly smaller than the wheel-fixing metal plate 246. For this reason, the wheel fixing metal plate 246 has an overhang radiation reducing function. Furthermore, since the wheel fixing metal plate 246 also has a spring property, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside.
  • the comb-shaped power receiving electrode 22 of the wheel touch type with touch When the comb-shaped power receiving electrode 22 of the wheel touch type with touch is adopted, the comb-shaped power receiving electrode 22 can slide and move on the power transmitting electrode surface in the curved portion of the multi-groove power transmitting electrode 12. Cc can be obtained.
  • the wheels 244 are disposed at both ends of the comb-shaped power receiving electrode 22. For this reason, the comb-shaped power receiving electrode 22 can smoothly pass through the stepped portion of the joint of the multi-groove power transmitting electrode 12.
  • the surface of the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12 are in contact with each other at the curved portion of the multi-groove power transmitting electrode 12, the surface of the power receiving electrode portion 241 is hard, lubricous, wear resistant, chemically A DLC film having physical stability, surface smoothness and the like is coated.
  • the comb-shaped power receiving electrode 22 is provided with an intake / exhaust port 251 on the surface of the power receiving electrode portion 241 through which the electrode fixing rod 242 passes. Gas can be sucked and exhausted from here.
  • the intake / exhaust port 251 is connected to the intake / exhaust port 248.
  • the gas When the gas is exhausted from the intake / exhaust port 251, the gas is sent between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12, so that the interval between the facing electrodes can be increased. In addition, when gas is sucked from the intake / exhaust port 251, the interval can be reduced. Furthermore, the power receiving electrode portion 241 may be vibrated by repeating the intake and exhaust of the gas. By applying vibration to the power receiving electrode portion 241, the coefficient of friction between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12 can be reduced. Furthermore, a substance having a function as a rotary bearing may be dispersed and mixed in the gas to be sucked and exhausted.
  • fullerene (C60, C70, C76, C78, C82, C84, C86, C88, C90, C92, C94, C96, C116, etc.), a ceramic ball, or the like can be used. In this case, it can be properly used according to the distance between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12. Further, the positions of the intake / exhaust ports 248 and 251 may be shifted in accordance with the moving speed of the comb-shaped power receiving electrode 22. From the intake / exhaust port 251, gas may be sucked / exhausted, and liquid may be sucked / exhausted.
  • FIG. 5 is a diagram illustrating a comb-shaped power receiving electrode 22 with a wheel as an example of the comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
  • FIG. 5A is a plan view showing an outline of the comb-shaped power receiving electrode 22 with a wheel.
  • FIG. 5B is a side view showing an outline of the comb-shaped power receiving electrode 22 with a wheel.
  • the example shown in FIG. 5 is obtained by increasing the number of wheels with respect to the example of FIG. 4 (feather touch type comb-shaped power receiving electrode 22 with wheels). In this way, by increasing the number of wheels, the gap between the comb-shaped power receiving electrode 22 and the multi-groove power transmitting electrode 12 can be maintained in a non-contact state.
  • the intake / exhaust port 251 is provided on the surface of the power receiving electrode portion 261 through the electrode fixing rod 252 in the example of FIG. 5.
  • the intake / exhaust port 251 is connected to the intake / exhaust port 258.
  • interval of the receiving electrode part 241 and the surface of the multi-groove power transmission electrode 12 can be adjusted.
  • the central holding plate 253 has a spring property, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside.
  • FIG. 6 is a diagram illustrating a distribution of the electric field E radiated to the outside when electric power is transmitted from the power transmission side to the power reception side by the electric field coupled power transmission technique.
  • a power transmission unit chassis 111 serving as a conductive plate disposed in a non-contact manner and opposed to the power transmission electrode plate 123 is disposed in the vicinity of the two power transmission electrode plates 123 and on the power supply Vf side.
  • a power receiving unit chassis 271 serving as a conductive plate disposed in a non-contact manner with respect to the power receiving electrode plate 273 is disposed in the vicinity of the two power receiving electrode plates 273 and on the load R side.
  • the power transmission unit chassis 111 and the power reception unit chassis 271 are arranged so as to sandwich the electrode plate from the outside in a state of protruding outward from the electrode plate.
  • the power transmission electrode plate 123 is directly connected to the power source Vf, a sufficient charge supply can be received.
  • the power receiving electrode plate 273 and the surrounding power receiving unit chassis 271 are neutralized in terms of charge. In this state, when one of the two power transmission electrode plates 123 has a positive charge and the other has a negative charge, a reverse charge is induced in the peripheral metal. The reverse charge is not only induced in the power reception electrode plate 273 but also induced up to the power reception unit chassis 271.
  • FIG. 7 shows the power transmission electrode plate 123 and the power reception electrode plate 273 when the power transmission unit chassis 111 and the power reception unit chassis 271 (hereinafter simply referred to as “chassis”) change from the retracted state to the protruding state. It is a figure which shows what kind of change arises in the electric field E to radiate
  • FIG. 7A is a diagram showing a state of the electric field E when the value of OH is ⁇ 5.
  • FIG. 7B is a diagram illustrating a state of the electric field E when the value of OH is zero.
  • FIG. 7C is a diagram illustrating a state of the electric field E when the value of OH is 5.
  • FIG. 7A is a diagram showing a state of the electric field E when the value of OH is ⁇ 5.
  • FIG. 7B is a diagram illustrating a state of the electric field E when the value of OH is zero.
  • FIG. 7C is a diagram illustrating a state of the electric field E when the
  • FIG. 7D is a diagram showing a state of the electric field E when the value of OH is 10.
  • FIG. 7E is a diagram showing the state of the electric field E when the value of OH is 15.
  • overhang or OH
  • the electrode is exposed to the outside of the chassis, so that a large electric field E is distributed on the outside.
  • the electric field E radiated to the outside decreases as OH increases.
  • the radiation electromagnetic wave can be suppressed by increasing the value of OH.
  • FIG. 8 is a graph showing changes in the relationship between the radiation electric field strength and the distance caused by overhang (OH) when the voltage between electrodes is 10 V, the frequency is 6.78 MHz, and the load resistance is 50 ⁇ .
  • X on the horizontal axis indicates the value of OH
  • Y on the vertical axis indicates the absolute value of the radiation field intensity.
  • the OH value changes from ⁇ 5 mm to 10 mm
  • the radiation electric field strength is reduced to about 1/100.
  • even if the value of OH is increased, a particularly great effect cannot be obtained. This can also be seen from the fact that there is no significant difference in the electric field radiated to the outside when comparing FIG. 7D and FIG.
  • FIG. 9 is a diagram showing an example in which an overhang technique is applied to a curved power receiving electrode.
  • a trench T is provided so as to surround these electrodes.
  • the trench T functions as a shield that prevents leakage of electromagnetic waves.
  • the trench T shown in FIG. 9 has a structure in which the upper end portion is open, and thus is insufficient as a shield for preventing leakage of electromagnetic waves. For example, when transmitting kW class power, it is necessary to take additional measures to prevent leakage of electromagnetic waves.
  • FIG. 9A is a cross-sectional view showing an outline when two opposing positive and negative electrode plates are arranged as power transmission electrode plates P and R inside the trench T.
  • FIG. 9B is an enlarged view of only one positive / negative power transmission electrode plate of the two sets of positive / negative power transmission electrode plates for convenience of explanation.
  • a power receiving electrode plate Q is disposed facing the power transmitting electrode plate P, and a power receiving electrode plate S is disposed facing the power transmitting electrode plate R. Further, an overhang electrode OH that is overhanged is disposed above the power reception electrode plates Q and S (that is, on the side opposite to the power transmission electrode plates P and R). The overhang electrode OH is not connected to a conducting wire and is in a floating state.
  • the overhang electrode OH exists and the overhang electrode OH exists overhanging from the power transmission electrode plate P and the power transmission electrode plate Q, the trench T and the overhang electrode OH are induced to have the same polarity. Therefore, the displacement current between them becomes small. That is, the electric field Epq-Ept is localized only in the overhang electrode OH and the trench T, and cannot come out to the external space. Thereby, it is possible to significantly reduce radiated electromagnetic waves.
  • FIG. 10 is a view showing an example in which a pair of positive and negative electrode plates and an overhang electrode OH for reducing radiation are arranged on each of the inner surfaces facing each other in one trench T.
  • FIG. FIG. 10 is a cross-sectional view showing an outline when opposing positive and negative electrode plates are arranged as power transmission electrode plates P and R inside the trench T.
  • the positive and negative electrodes arranged as the power transmission electrode plates P and R inside the trench T are constituted by long rails, and thus the power transmission electrodes extending in the longitudinal direction like the trench T. It is a board.
  • the power receiving electrode plate Q is disposed on the power receiving electrode side so as to face the power transmitting electrode plate P.
  • a power receiving electrode plate S is disposed opposite to the power transmitting electrode plate R.
  • a cable U is provided to neutralize the charge induced in the overhang electrode OH.
  • the overhang electrode OH1 and the overhang electrode OH2 are separated. However, in the examples of FIGS. 2, 4, and 5, one metal plate may be shared. .
  • the overhang electrode OH1 and the overhang electrode OH2 can move flexibly. This facilitates the handling of the multi-groove power transmission electrode 12 to the curved portion C and the like. For this reason, the cable U connecting the overhang electrode OH1 and the overhang electrode OH2 is also flexible.
  • the example of FIG. 10 also projects the overhang electrode OH to the space side from the power transmission electrode plate P, the power reception electrode plate Q, the power transmission electrode plate R, and the power reception electrode plate S. Displacement current flowing in the edge portion of each electrode plate can be prevented from being radiated to the space. As a result, the intensity of the radiated electric field E can be greatly reduced.
  • a CAP electrode 400 that reduces the electromagnetic wave radiation on the positive power transmission electrode plate and the negative power transmission electrode plate separately provided by providing a wall W serving as a sill inside the trench T.
  • the positive and negative electrodes arranged as power transmission electrode plates P and R inside the trench T are constituted by long rails.
  • the power transmission electrode plate extends in the longitudinal direction.
  • FIG.11 (c) is the figure which looked at the elongate rail from the side surface, Therefore The power transmission electrode plate P and the receiving electrode plate Q are extended in the right and left.
  • the CAP electrode 400 is used without using the overhang electrode OH. As shown in FIGS. 11A and 11B, the CAP electrode 400 is placed so as to straddle the positive electrode side and the negative electrode side of the trench T. In the CAP electrode 400, opposite charges appear on the surfaces facing the positive electrode and the negative electrode. Similarly, the same charge as that induced in the CAP electrode 400 is also induced on the trench T side. As a result, the potential difference between the CAP electrode 400 and the trench T is extremely small, so that almost no displacement current flows. For this reason, electromagnetic waves are not emitted outside.
  • the electromagnetic wave emission from the front and rear can be reduced by bending and arranging the CAP electrode 400 in the front-rear direction of the power receiving electrode plate Q serving as a moving body.
  • the method for reducing electromagnetic wave radiation using the trench T, the overhang electrode OH, and the CAP electrode 400 has been described with reference to FIGS. Next, a method for causing the trench T itself to function as a GND electrode will be described.
  • FIG. 12 is a diagram illustrating an example in which the trench T itself is used as the GND electrode. As shown in FIG. 12, the ground is connected to the trench T as the GND electrode, and one of the power supplies is also grounded. Thereby, since it is not necessary to install a negative electrode inside the trench T, the structure can be simplified. Furthermore, it is safe even if a person touches the surface of the trench T.
  • FIG. 13 is a diagram illustrating an example in which an extremely thin metal cover 121 is attached to the entire trench type power transmission rail (trench T).
  • a metal cover 121 is used for the purpose of preventing dust from entering a uniaxial slider having a ball screw.
  • FIGS. 13A1, 13B1 and 13C1 are cross-sectional views when the movable body 272 as a power receiver exists in the trench type power transmission rail T.
  • FIG. 13 (a2), (b2), and (c2) are cross-sectional views when the moving body 272 is not present in the trench type power transmission rail T.
  • FIG. 13 (a3), (b3), and (c3) are side views of the trench type power transmission rail T.
  • FIG. 13 (a2), (b2), and (c2) are cross-sectional views when the moving body 272 is not present in the trench type power transmission rail T.
  • FIG. 13 (a3), (b3), and (c3) are side views of the trench type power transmission rail T.
  • the metal cover 121 is comprised by the ultra-thin metal film which consists of a ferromagnetic material.
  • the performance as a shield for preventing leakage of electromagnetic waves can be enhanced.
  • Many permanent magnets are arranged on the trench type power transmission rail (trench T) side. For this reason, the metal cover 121 can be normally adhered to the trench type power transmission rail T. However, the metal cover 121 is rolled up only when the moving body 272 moves, and passes through a hole that penetrates the moving body 272.
  • the metal cover 121 made of an extremely thin metal film to the trench type power transmission rail (trench T) there is the following method in addition to the method using the magnet described above. That is, (1) applying a tensile force in the front-rear direction, (2) reducing the pressure in the trench type power transmission rail (trench T). (3) Put a weight on the metal cover 121 (use of gravity), (4) Use the spring property of the metal cover 121 itself (that is, press the metal cover 121 with spring pressure), (5) The metal cover 121 and the trench There is a method of making the interface between the power transmission rail (trench T) hydrophilic and fixing it using the surface tension of water.
  • the metal cover 121 is divided and arranged at the center along the longitudinal direction of the trench type power transmission rail T.
  • the central opening can be closed using the spring property of the metal cover 121.
  • the metal cover 121 separated at the center may be overlapped.
  • the metal cover 121 is fixed to one side of the trench type power transmission rail T.
  • the moving body 272 can be moved by opening a gap from the side of the trench-type power transmission rail T when the moving body 272 passes over the trench-type power transmission rail T. .
  • Radiant electromagnetic waves can be further reduced by using the various methods described above.
  • FIG. 14 shows an example of a power transmission bearing having an electrode having a sandwich structure.
  • the power transmission electrode disk 131 connected to the power transmission electrode is displayed in black, and the power reception electrode disk 281 connected to the load is displayed in white.
  • the number of power receiving electrode disks 281 is one more than the number of power transmitting electrode disks 131.
  • both sides can be covered with the power transmission electrode disk 131 having a large number of sheets.
  • it can be set as a shield structure by covering the whole with the receiving electrode disk 281 with many disks.
  • the disk having a large number of disks is not limited to the power receiving electrode disk 281 but may be the power transmitting electrode disk 131.
  • the entire two sets of sandwich electrodes can be placed in a shield box.
  • the parasitic capacitance between the shield box and the electrode becomes a problem, but it can be dealt with by adjusting the resonance capacitance of the parallel resonance circuit.
  • the example of FIG. 14 is a power transmission bearing, either the power source side or the load side is disposed on the rotating shaft 500 side, and the other is disposed on the fixed body side.
  • FIG. 15 is a step view showing a relationship between a circuit and a shield in a bearing having two pairs of sandwich electrodes.
  • a rotating body 601 is disposed at the center of the bearing, and a donut-shaped fixed body 701 is disposed at the periphery.
  • the power transmission electrode disk 141 and the power reception electrode disk 291 are disposed on both sides of the rotating body 601.
  • the power transmission electrode disk 141 and the power reception electrode disk 291 are integrated in a disk shape.
  • the fixed body 701 and the rotating body 601 can be interchanged. That is, either the power source side or the load side can be arranged on the rotating body 601 side, and the other side can be arranged on the fixed body 701 side.
  • FIG. 15 (a) shows an example in which the whole is surrounded by one of the electrodes constituting a pair of sandwich structure electrodes. These are stacked in two stages, and an insulating layer 293 is disposed therebetween.
  • a displacement current flows between the electrode A and the electrode B because a voltage is applied.
  • an electric shock will occur if a person touches it.
  • the electrode A and the electrode B are short-circuited by the rotator 601.
  • the rotator 601 is not made of metal, electromagnetic waves leak to the outside, making it difficult to obtain mechanical strength.
  • FIG. 15B shows an example in which the entire two sets of sandwich electrodes are covered with a shield material independent of the electrodes. At this time, it is necessary to reduce the parasitic capacitance by securing the distance between the shield S and the electrode. However, if the distance between the rotating body 601 and the fixed body 701 is small, it is possible to shield almost completely. Moreover, the problem of dust mixing and the problem of electromagnetic wave radiation can be solved. The problem of parasitic capacitance can be solved by using a parallel resonant circuit. That is, in the example of FIG. 15B, a method of completely covering with the shield S is adopted.
  • FIG. 16 is a diagram illustrating an example of a circuit of a high power type power transmission bearing.
  • an inverter is installed for each set of power transmission electrodes.
  • FIG. 17 is a diagram illustrating a method of fixing the rotating shaft 303 by the shaft fixing block 301. As shown in FIG. 17, it arrange
  • the shaft fixing block 301 is made of an insulator, and a required number of conducting wires 302 are passed through the shaft fixing block 301.
  • a through hole or a tapped screw hole is formed in the rotary shaft 303 and pressed against the shaft fixing block by using a through bolt 304 and a presser fitting 305.
  • the two shaft fixing blocks 301 can be integrated and brought into close contact with the rotating shaft 303.
  • a method of fastening between the screw holes provided in the shaft fixing block 301 is employed as a method of fixing the shaft fixing block 301.
  • This method has an advantage that the rotating shaft 303 does not need to be processed at all.
  • a method is adopted in which the shaft fixing block 301 is brought into close contact with a screw fastening type fixing band 306. This method also has the advantage that there is no need to process the rotating shaft 303 at all.
  • FIG. 18 is a view showing a method for fixing the insulating bellows 307 to the rotating shaft 303.
  • a loose plate 307 made of a resin such as nylon is wound around a rotating shaft 303 and fixed by a fixing band 306.
  • the screw receiving bracket 310 having the function of the conducting wire 302 in the example of FIG.
  • a connecting metal fitting 308 having a needle is sandwiched between the ends of the loose plate 307.
  • the needle of the connecting metal fitting 308 bites into a resin material such as nylon, so that no shift occurs in the joint portion.
  • FIG. 19 is a diagram illustrating a method of attaching the rotor electrodes 312 and 313 to the rotating shaft 303 using the shaft fixing block 311.
  • the rotor electrodes 312 and 313 are attached.
  • a half-cracked disk is used, and a half-cracked pipe that fits the rotating shaft 303 is attached to the base of the disk.
  • one rotating plate can be configured.
  • a half-cracked disk having the same configuration is applied from the back.
  • one rotor plate can be formed on the surface by joining the rotor electrode 312a on the left side of the surface and the rotor electrode 312b on the right side of the surface. Furthermore, one rotating plate can be formed on the back surface by bonding the rotating electrode element 313a on the upper surface side and the rotating electrode element 313b on the lower surface side. Then, the front rotating plate and the rear rotating plate are pasted back to back. Then, the rotating plate is fastened to the shaft fixing block 311 with fixing bolts 315.
  • the method for attaching the rotor electrodes 312 and 313 is not particularly limited, and may be welding or double-sided tape adhesion. However, it is necessary to keep conduction between the front surface and the back surface.
  • FIG. 20 is a diagram illustrating another method of attaching the half-cracked rotor electrode 324 to the rotating shaft 303.
  • FIG. 20A is a view showing a state in which an insulating rubber plate 321 is wound around the rotating shaft 303.
  • FIG. 20B is a diagram illustrating a state in which a half-cracked metal pipe 323 is covered from above and below on the rotating shaft 303 in the state illustrated in FIG. Since the half-cracked metal pipe 323 is electrically connected to the half-cracked rotor electrode 324, the half-cracked metal pipe 323 is provided with a covered conducting wire 322. The covered conductive wire 322 is embedded in the insulating rubber plate 321. In FIG.
  • the half-cracked rotor electrode 324 is sandwiched and attached from the left and right so as to be orthogonal to the crack of the half-cracked metal pipe 323. It should be noted that the joint portion between the half-cracked rotor electrodes 324 is attached to the end portion of the half-cracked rotor electrode 324 so that a step does not occur.
  • the rotor electrode is fixed by attaching the separate collar 325 last. If the required number of the rotor electrode plates are arranged and the rotor electrode plates are connected by the conductive wires, the stator electrode is attached next.
  • a method of attaching the stator electrode will be described with reference to FIGS.
  • FIG. 21 is a diagram showing a half crack method as an example of a method of attaching the stator electrode 333 to the rotating shaft 303.
  • a plurality of half-cracked stator electrodes 333 are housed in separate divided cases 335 and fitted from the left and right of the rotating shaft 303. Then, the left and right half-cracked stator electrodes 333 are electrically connected to each other so as to be electrically integrated.
  • the number of stator electrodes 333 is the same as the number of rotor electrodes 332, or the number of stator electrodes 333 is increased or decreased by one.
  • the rotor electrode 332 is housed in the split case 335 to be fitted together with the two half-cracked stator electrodes 333 to be fitted.
  • FIG. 22 is a diagram illustrating an opening method as an example of a method of attaching the stator electrode 341 to the rotating shaft 303.
  • an opening is made in one of the stator electrodes 341 having an opening so that the rotating shaft 303 can be inserted from one direction. That is, an opening is provided in a portion through which the rotation shaft 303 passes.
  • an attachment for closing the opening later may be prepared. However, the attachment is electrically integrated with the surrounding stator electrodes.
  • the rotor electrode 332 is housed in the case 342 together with the stator electrode 341 having an opening. As described above, by the method shown in FIGS. 17 to 22, the electric field coupling non-contact power supply unit can be attached to the existing rotating shaft 303 later.
  • FIG. 23 is a diagram illustrating an example of a power transmission bearing in which a fluid G is injected between the rotating body electrode 354 and the fixed body electrode 353.
  • a substance functioning as a rotary bearing may be dispersed in the fluid G and mixed.
  • Substances that function as rotating bearings include fullerenes (C60, C70, C76, C78, C82, C84, C86, C88, C90, C92, C94, C96, C116, etc.) and ceramic balls, depending on the distance between the electrodes. Can be used properly.
  • the fluid P and the substance functioning as the rotary bearing are circulated by the pump P.
  • the stirring mechanism is provided in the rotating body electrode 354, the pump P is not necessary.
  • the electrode pair is not in contact, but it is sufficient if contact is made through an insulator and the electrical proximity state is maintained even if it is not completely contactless. It is possible to ensure the junction capacity. That is, even if some of the electrode pairs are physically in contact with each other, sufficient electric power can be supplied as long as they are electrically insulated.
  • the power supply system to which the present invention is applied is A power supply system using electric field coupled power transmission technology, A power transmission line (for example, the power transmission unit 1 in FIG. 1) that transmits power from an AC power source (for example, the power source Vf in FIG. 1) having a predetermined wavelength; It has a power receiving electrode (for example, the comb-shaped power receiving electrode 22 in FIG. 1), moves along the power transmission line, and a portion of the power transmission line that faces the power receiving electrode is a power transmitting electrode (for example, multi-groove power transmitting in FIG. 1).
  • a power transmission line for example, the power transmission unit 1 in FIG. 1
  • AC power source for example, the power source Vf in FIG. 1
  • a power receiving electrode for example, the comb-shaped power receiving electrode 22 in FIG. 1
  • the electrode 12 receives power from the power transmission line through a plurality of junction capacitances (for example, the junction capacitance Cc in FIG. 1) formed by the power transmission electrode and the power reception electrode, and loads (for example, the load in FIG. 1). R) for receiving power (for example, power receiving unit 2 in FIG. 1),
  • the power receiving unit includes a spring-like member (for example, the head fixing unit 223 in FIG. 2) as a component, and the power transmission line has a curved portion (for example, the curved portion C in FIG. 2) while power is supplied to the load. ).
  • the junction capacitance can be stably increased when power is transmitted.
  • junction capacitance may be formed in a state where the power transmission electrode and the power reception electrode are arranged opposite to each other in a nested manner. Thereby, in the power transmission line having the curved portion, the junction capacitance can be increased more stably.
  • a power transmission side conductive plate (for example, the power transmission unit chassis 111 in FIG. 6) disposed in the vicinity of the plurality of power transmission electrodes and on the AC power supply side in a noncontact manner with respect to the plurality of power transmission electrodes;
  • a power-receiving-side conductive plate (for example, power-receiving unit chassis 271 in FIG.
  • the power transmission electrode in a state where the power transmission side conductive plate and the power reception side conductive plate protrude outward from the ends of the power transmission electrode and the power reception electrode (for example, the states of FIGS. 7C to 7E).
  • the power receiving electrode may be disposed so as to be sandwiched from outside.
  • a portion that protrudes outside the end portions of the power transmission electrode and the power reception electrode has a curved portion, and an end portion of the power transmission side conductive plate It is possible to maintain a state where the end portions of the power receiving side conductive plate are close to each other.
  • the junction capacitance is stably increased, electromagnetic radiation is reduced, safety (prevention of electric shock) is increased, and resistance to contamination such as dust is increased. be able to.
  • the power supply system to which the present invention is applied is A power supply system using electric field coupled power transmission technology, A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load With The power transmission unit A rotating shaft, and a power transmitting electrode (for example, a power transmitting electrode disk 131 in FIG. 14) composed of a plurality of layers of plates that are electrically insulated from the rotating shaft (for example, the rotating shaft 500 in FIG.
  • the power receiving unit A stationary body arranged around the rotation shaft, and a power receiving electrode composed of a plurality of layers of flat plates fixed to the stationary body in a state of being electrically insulated from the stationary body and the power transmission electrode (for example, the power receiving in FIG. 14)
  • An electrode disk 281), The power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
  • the power supply system to which the present invention is applied is A power supply system using electric field coupled power transmission technology, A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load, With The power transmission unit A fixed body disposed around a rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the power receiving electrode, The power receiving unit The rotating shaft, and a power receiving electrode comprising a plurality of layers of flat plates electrically insulated from the rotating shaft, The power receiving electrode and the power transmitting electrode are arranged opposite to each other in a nested manner. As a result, in power transmission to the rotating body, it is possible to stably increase the junction capacity, reduce electromagnetic radiation, increase safety (prevention of electric shock), and increase resistance to contamination of dust and the like. it can.
  • the power supply system to which the present invention is applied is A power transmission unit for transmitting power from an AC power source of a predetermined wavelength; A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode.
  • a power receiving unit that supplies power to the load, A power supply system to which electric field coupled power transmission technology is applied, A first electrode comprising a rotating shaft and a plurality of layers of flat plates electrically insulated from the rotating shaft; A fixed body arranged around the rotating shaft, and a second electrode comprising a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the first electrode; Are placed opposite each other in a nested manner, When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the rotation axis is included in a part of the circuit, a part of the first electrode group Even when in contact with the rotating shaft, power can be supplied to the load via the junction capacitance.
  • the second electrode group Even when a part of the fixed body is in contact with the fixed body, electric power can be supplied to the load through the junction capacitance. Further, even when the first electrode is the power transmitting electrode and the second electrode is the power receiving electrode, power can be supplied to the load.
  • the power transmitting electrode and the power receiving electrode can be separated by the presence of the fluid that flows between the power transmitting electrode and the power receiving electrode. Thereby, in electric power transmission with respect to the track
  • the power supply system to which the present invention is applied is completely contactless and satisfies these characteristics.
  • the sandwich electrode increases the area of the opposing surface by a laminated structure, it can be made completely non-contact.
  • it is highly necessary to use a sandwich electrode in a high-speed rotating part.
  • it is possible to ensure a sufficient junction capacity when the contact is made through the insulator and the electrical proximity state is maintained. That is, even if some of the electrode pairs are physically in contact with each other, sufficient electric power can be supplied as long as they are electrically insulated.

Abstract

The purpose of the present invention is to provide a method for stably increasing junction capacitance, and increasing safety by reducing electromagnetic radiation, and for increasing resistance to contamination by dust or the like. Provided is a power supply system to which field coupling power transmission technology is applied. A power transmission part 1 transmits power from a power source Vf having a predetermined wavelength. A power reception part 2 has a comb-shaped power reception electrode 22, and moves along the power transmission part 1. Locations on the power transmission part 1 that face the comb-shaped power reception electrodes 22 constitute multi-groove power transmission electrodes 12. The power reception part 2 receives power from the power transmission part 1 via a plurality of junction capacitors Cc formed by the multi-groove power transmission electrodes 12 and the comb-shaped power reception electrodes 22, and supplies the power to a load R. The power reception part 2 further includes, as a component thereof, a head fixing part 223, which is a spring member, and is movable along a curved part C of the power transmission part 1, with power being supplied to the load R.

Description

電力供給システムPower supply system
 本発明は、電力供給システムに関する。 The present invention relates to a power supply system.
 従来より、電界結合によって電力を供給する際に接合容量を増大させる技術は公開されている(特許文献1乃至2参照)。 Conventionally, techniques for increasing the junction capacitance when supplying power by electric field coupling have been disclosed (see Patent Documents 1 and 2).
特開2014-007200号公報JP 2014-007200 A 特開2015-099880号公報Japanese Patent Laying-Open No. 2015-099880
 しかしながら、特許文献1及び2の技術では、受電電極部と送電電極部とがむき出しの状態となっているため、電磁波放射を低減させるための対策、人が接触することにより生じ得る感電を防ぐための対策、ごみの混入への対策等が取られていない。また、湾曲部を有する線路への対応性も有しない。
 このように、特許文献1及び2を含め、従来の技術では、以上のような課題が存在するため、利用範囲が限定されている状況にあった。
 また、電極同士が軽く接触するフェザータッチ電極を用いた場合、接合容量を増大させ、電磁波放射を低減させ、ゴミ混入に対する耐性等を持たせることは実現できるが、電極間が完全に非接触の状態でこれらを実現させることはできない。
However, in the techniques of Patent Documents 1 and 2, since the power receiving electrode portion and the power transmitting electrode portion are exposed, a measure for reducing electromagnetic radiation and an electric shock that may occur due to human contact are prevented. No measures have been taken, such as measures to prevent waste contamination. Moreover, it does not have the correspondence to the track | line which has a curved part.
As described above, the conventional techniques including Patent Documents 1 and 2 have a problem in that the range of use is limited because the above-described problems exist.
In addition, when using a feather touch electrode where the electrodes are lightly in contact with each other, it is possible to increase the junction capacity, reduce electromagnetic radiation, and have resistance to contamination, but the electrodes are completely non-contact. These cannot be realized in the state.
 本発明は、このような状況に鑑みてなされたものであり、上述の課題を根本的に解決し、接合容量を安定的に増大させるとともに、電磁波放射を低減させ、感電を防止することにより安全性を高め、さらに、ゴミ等の混入に対しての耐性を高める手法を提供することを目的とする。 The present invention has been made in view of such a situation, and solves the above-mentioned problem fundamentally, increases the junction capacitance stably, reduces electromagnetic radiation, and prevents electric shock. An object of the present invention is to provide a technique for enhancing the resistance and further enhancing the resistance to contamination of dust and the like.
 上記目的を達成するため、本発明の一態様の電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源からの電力を送電する電力伝送線路と、
 受電電極を有し、前記電力伝送線路に沿って移動し、前記電力伝送線路のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記電力伝送線路から電力を受電して負荷に供給する受電部と、
 を備え、
 前記受電部は、ばね性部材を構成要素に含み、前記負荷に電力が供給されている状態で前記電力伝送線路の湾曲部に沿って移動可能である。
In order to achieve the above object, a power supply system according to an aspect of the present invention includes:
A power supply system using electric field coupled power transmission technology,
A power transmission line for transmitting power from an AC power source of a predetermined wavelength;
A plurality of junction capacitors formed by the power transmission electrode and the power receiving electrode, having a power receiving electrode, moving along the power transmission line, and using a portion of the power transmission line facing the power receiving electrode as a power transmitting electrode A power receiving unit that receives power from the power transmission line via the power supply and supplies the power to a load;
With
The power receiving unit includes a spring-like member as a component, and is movable along a curved portion of the power transmission line in a state where power is supplied to the load.
 また、前記送電電極と前記受電電極とが相互に入れ子状に対向配置された状態で前記接合容量を形成させることができる。 In addition, the junction capacitance can be formed in a state where the power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
 また、複数の前記送電電極の近傍かつ前記交流電源側に、前記複数の送電電極に対し非接触で対向配置された送電側導電板と、
 複数の前記受電電極の近傍かつ前記負荷側に、前記複数の受電電極に対し非接触で対向配置された受電側導電板と、
 をさらに備え、
 前記送電側導電板と前記受電側導電板とが、前記送電電極及び前記受電電極の端部よりも外側にはみ出た状態で、前記送電電極及び前記受電電極を外側から挟むように配置させることができる。
Further, in the vicinity of the plurality of power transmission electrodes and on the AC power supply side, a power transmission side conductive plate disposed in a noncontact manner with respect to the plurality of power transmission electrodes, and
A power-receiving-side conductive plate that is disposed in the vicinity of the plurality of power-receiving electrodes and on the load side in a noncontact manner with respect to the plurality of power-receiving electrodes;
Further comprising
The power transmission side conductive plate and the power reception side conductive plate may be disposed so as to sandwich the power transmission electrode and the power reception electrode from the outside in a state where the power transmission side conductive plate and the power reception side conductive plate protrude outside the ends of the power transmission electrode and the power reception electrode. it can.
 また、前記送電側導電板と前記受電側導電板とのうち、前記送電電極及び前記受電電極の端部よりも外側にはみ出た部位が湾曲部を有し、前記送電側導電板の端部と前記受電側導電板の端部とが互いに接近した状態を維持させることができる。 Further, of the power transmission side conductive plate and the power reception side conductive plate, a portion that protrudes outside the end portions of the power transmission electrode and the power reception electrode has a curved portion, and an end portion of the power transmission side conductive plate It is possible to maintain a state where the end portions of the power receiving side conductive plate are close to each other.
 また、本発明が適用される電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備え、
 前記送電部は、
 回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる送電電極とを有し、
 前記受電部は、
 前記回転軸の周囲に配置された固定体と、前記固定体及び前記送電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる受電電極と、を有し、
 前記送電電極と前記受電電極とが、相互に入れ子状に対向配置されている。
The power supply system to which the present invention is applied is
A power supply system using electric field coupled power transmission technology,
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
With
The power transmission unit
A rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates electrically insulated from the rotating shaft,
The power receiving unit
A stationary body arranged around the rotating shaft, and a power receiving electrode composed of a plurality of layers of flat plates fixed to the stationary body in a state of being electrically insulated from the stationary body and the power transmission electrode,
The power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
 また、本発明が適用される電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備え、
 前記送電部は、
 回転軸の周囲に配置された固定体と、前記固定体及び前記受電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる送電電極と、を有し、
 前記受電部は、
 前記回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる受電電極とを有し、
 前記受電電極と前記送電電極とが、相互に入れ子状に対向配置されている。
The power supply system to which the present invention is applied is
A power supply system using electric field coupled power transmission technology,
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
With
The power transmission unit
A fixed body disposed around a rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the power receiving electrode,
The power receiving unit
The rotating shaft, and a power receiving electrode comprising a plurality of layers of flat plates electrically insulated from the rotating shaft,
The power receiving electrode and the power transmitting electrode are arranged opposite to each other in a nested manner.
 また、本発明が適用される電力供給システムは、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備え、
 回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる第1電極群と、
 前記回転軸の周囲に配置された固定体と、前記固定体及び前記第1電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる第2電極群と、
 が相互に入れ子状に対向配置されており、
 前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記回転軸を回路の一部に含む場合には、前記第1電極群の一部が前記回転軸に接触した状態であっても、前記接合容量を介して前記負荷に電力を供給することができる。
 また、前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記固定体を回路の一部に含む場合には、前記第2電極群の一部が前記固定体に接触した状態であっても、前記接合容量を介して前記負荷に電力を供給することができる。
 また、前記第1電極が前記送電電極であり前記第2電極が前記受電電極である場合であっても前記負荷に電力を供給することができる。
The power supply system to which the present invention is applied is
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
With
A first electrode group comprising a rotating shaft and a plurality of layers of flat plates electrically insulated from the rotating shaft;
A fixed body disposed around the rotating shaft, and a second electrode group composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the first electrode;
Are placed opposite each other in a nested manner,
When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the rotation axis is included in a part of the circuit, a part of the first electrode group Even when in contact with the rotating shaft, power can be supplied to the load via the junction capacitance.
Further, when the first electrode group is the power receiving electrode and the second electrode group is the power transmission electrode, and the fixed body is included in a part of the circuit, the second electrode group Even when a part of the fixed body is in contact with the fixed body, electric power can be supplied to the load through the junction capacitance.
Further, even when the first electrode is the power transmitting electrode and the second electrode is the power receiving electrode, power can be supplied to the load.
 また、前記送電電極と前記受電電極との間に流入された流体の存在によって、前記送電電極と前記受電電極とを離隔させることができる。 Further, the power transmitting electrode and the power receiving electrode can be separated from each other by the presence of the fluid flowing between the power transmitting electrode and the power receiving electrode.
 本発明によれば、回転体及び湾曲部を有する線路において、電力の伝送を行う際に、接合容量を安定的に増大させるとともに、電磁波放射を低減させ、感電を防止することにより安全性を高め、さらに、ゴミ等の混入に対しての耐性を高めることができる。 According to the present invention, in a line having a rotating body and a curved portion, when power is transmitted, the junction capacitance is stably increased, electromagnetic radiation is reduced, and safety is improved by preventing electric shock. Furthermore, it is possible to increase the resistance against contamination of dust and the like.
電界結合電力伝送技術を適用した電力伝送回路のうち、サンドウィッチ電極によって接合容量を形成させた場合の例を示す回路図である。It is a circuit diagram which shows the example at the time of forming junction capacity | capacitance by a sandwich electrode among the electric power transmission circuits to which an electric field coupling electric power transmission technique is applied. 湾曲部を有する多溝送電電極に対応する櫛形受電電極の一例として、ヘッド付フェザータッチ湾曲型の櫛形受電電極を示す図である。It is a figure which shows a feather touch curved comb-shaped receiving electrode with a head as an example of the comb-shaped receiving electrode corresponding to the multi-groove power transmitting electrode which has a curved part. 湾曲部を有する多溝送電電極に対応する櫛形受電電極の一例として、ヒンジ型の櫛形受電電極を示す図である。It is a figure which shows a hinge-shaped comb-shaped receiving electrode as an example of the comb-shaped receiving electrode corresponding to the multi-groove power transmitting electrode which has a curved part. 湾曲部を有する多溝送電電極に対応する櫛形受電電極の一例として、ホイール付フェザータッチ型の櫛形受電電極を示す図である。It is a figure which shows the feather-touch type comb-shaped receiving electrode with a wheel as an example of the comb-shaped receiving electrode corresponding to the multi-groove power transmitting electrode which has a curved part. 湾曲部を有する多溝送電電極に対応する櫛形受電電極の一例として、ホイール付の櫛形受電電極を示す図である。It is a figure which shows the comb-shaped receiving electrode with a wheel as an example of the comb-shaped receiving electrode corresponding to the multi-groove power transmitting electrode which has a curved part. 電界結合電力伝送技術によって、送電側から受電側に電力が送電された際に、外部に放射される電界Eの分布を示す図である。It is a figure which shows distribution of the electric field E radiated | emitted outside, when electric power is transmitted from the power transmission side to the receiving side by the electric field coupling | bonding power transmission technique. 多溝送電電極及び櫛形受電電極に対してシャーシが引っ込んだ状態から飛び出た状態に変化する際に、外部に放射する電界にどのような変化が生ずるのかを示す図である。It is a figure which shows what kind of change arises in the electric field radiated | emitted outside, when a chassis changes with respect to a multi-groove power transmission electrode and a comb-shaped power reception electrode from the retracted state. 電極間電圧を10V、周波数を6.78MHz、負荷抵抗を50Ωとした場合に、オーバーハングによって放射電界強度と距離との関係にどのような変化が生じるかを表すグラフを示す図である。It is a figure which shows what kind of change arises in the relationship between a radiation electric field strength and distance by overhanging, when the voltage between electrodes is 10V, a frequency is 6.78 MHz, and load resistance is 50 (ohm). 湾曲した受電電極に、オーバーハングの技術を応用した例を示す図である。It is a figure which shows the example which applied the technique of overhang to the curved receiving electrode. 1つのトレンチ内で対向する内面の夫々に、1対の正負電極と放射低減用のオーバーハング電極とを配置させた例を示す図である。It is a figure which shows the example which has arrange | positioned a pair of positive / negative electrode and the overhang electrode for radiation reduction to each of the inner surface which opposes within one trench. トレンチの内部に敷居となる壁を設けることにより、正の送電電極と負の送電電極とを分離して配置させ、その上に電磁波放射を低減化させるCAP電極を配置させた場合の例を示す図である。An example in which a positive transmission electrode and a negative transmission electrode are separated from each other by providing a wall serving as a sill inside the trench, and a CAP electrode that reduces electromagnetic radiation is disposed thereon is shown. FIG. トレンチ自体をGND電極として用いる例を示す図である。It is a figure which shows the example which uses trench itself as a GND electrode. トレンチ型電力伝送レールの全体に極薄の金属カバーを取り付けた場合の例を示す図である。It is a figure which shows the example at the time of attaching an ultra-thin metal cover to the whole trench type power transmission rail. サンドウィッチ構造の電極を有する電力伝送軸受の例を示す図である。It is a figure which shows the example of the electric power transmission bearing which has an electrode of a sandwich structure. 2組のサンドウィッチ電極を有する軸受けにおける、回路とシールドとの関係を示す段面図である。It is a step view which shows the relationship between a circuit and a shield in the bearing which has two sets of sandwich electrodes. 大電力型の電力伝送軸受けの回路の例を示す図である。It is a figure which shows the example of the circuit of a high power type electric power transmission bearing. 軸固定ブロックによる回転軸の固定方法を示す図である。It is a figure which shows the fixing method of the rotating shaft by a shaft fixing block. 回転軸に絶縁性のじゃばら板を固定させる方法を示す図である。It is a figure which shows the method of fixing an insulating bellows plate to a rotating shaft. 軸固定ブロックを用いて、回転軸に回転子電極を取り付ける方法を示す図である。It is a figure which shows the method of attaching a rotor electrode to a rotating shaft using a shaft fixed block. 回転軸に半割れ形状の回転子電極を取り付ける他の方法を示す図である。It is a figure which shows the other method of attaching the rotor electrode of a half crack shape to a rotating shaft. 回転軸に固定子電極を取り付ける方法の一例として、半割れ法を示す図である。It is a figure which shows the half crack method as an example of the method of attaching a stator electrode to a rotating shaft. 回転軸に固定子電極を取り付ける方法の一例として、開口法を示す図である。It is a figure which shows the opening method as an example of the method of attaching a stator electrode to a rotating shaft. 回転体電極と固定体電極との間に流体を注入する電力伝送軸受の例を示す図である。It is a figure which shows the example of the electric power transmission bearing which injects a fluid between a rotary body electrode and a fixed body electrode.
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、電界結合電力伝送技術を適用した電力伝送回路のうち、サンドウィッチ電極によって接合容量Ccを形成させた場合の例を示す回路図である。 FIG. 1 is a circuit diagram showing an example in which a junction capacitance Cc is formed by a sandwich electrode in a power transmission circuit to which an electric field coupling power transmission technique is applied.
 図1に示すように、電界結合電力伝送技術を適用した電力伝送回路は、送電部1と受電部2とを備える。
 電界結合電力伝送技術は、対向する金属板からなる電極対によって接合容量Ccが形成された状態で、高周波電流を流すことにより非接触の電力電送を実現する技術である。
 即ち、電源Vfからの電力を送電する送電部1の末端に金属板の多溝送電電極12と、当該電力を受電して負荷Rに供給する受電部2の先端に金属板の櫛形受電電極22とを対向させて配置することにより接合容量Ccが形成され、電界結合電力電送技術が実現される。
As shown in FIG. 1, the power transmission circuit to which the electric field coupling power transmission technology is applied includes a power transmission unit 1 and a power reception unit 2.
The electric field coupling power transmission technology is a technology that realizes non-contact power transmission by flowing a high-frequency current in a state where a junction capacitance Cc is formed by an electrode pair made of opposing metal plates.
That is, the multi-groove power transmitting electrode 12 made of a metal plate is connected to the end of the power transmitting unit 1 that transmits power from the power source Vf, and the comb-shaped power receiving electrode 22 made of a metal plate is attached to the tip of the power receiving unit 2 that receives the power and supplies it to the load R. Are arranged so as to face each other to form a junction capacitance Cc, and an electric field coupling power transmission technique is realized.
 ここで、サンドウィッチ電極とは、複数の溝を有する送電電極である多溝送電電極12に、櫛形形状の受電電極である櫛形受電電極22を入れ子にした状態にある電極対をいう。このように、送電電極と受電電極とを入れ子にすることにより、送電電極と受電電極とが対向する部分の面積を効率良く増やすことができるため、接合容量Ccを効率良く増大させることができる。
 なお、サンドウィッチ電極を使用したものは、図2を参照して後述するスライドレール型の電極だけではなく、図14を参照して後述する軸受型の電極にも採用することができる。
Here, the sandwich electrode refers to an electrode pair in which a comb-shaped power receiving electrode 22 that is a comb-shaped power receiving electrode is nested in a multi-groove power transmitting electrode 12 that is a power transmitting electrode having a plurality of grooves. In this manner, by nesting the power transmission electrode and the power reception electrode, the area of the portion where the power transmission electrode and the power reception electrode face each other can be efficiently increased, so that the junction capacitance Cc can be efficiently increased.
In addition, what uses a sandwich electrode can be adopted not only for a slide rail type electrode described later with reference to FIG. 2, but also for a bearing type electrode described later with reference to FIG.
 送電部1は、並列共振回路11と、多溝送電電極12と、トランスT1とを備える。送電部1には交流電源Vfが接続されるため、送電部1はここから電力の供給を受けることができる。
 並列共振回路11は、コンデンサC1とコイルL2とを備える。並列共振回路11にはトランスT1を介して交流電源Vfが接続される。即ち、コンデンサC1とコイルL2とが相互に並列に接続されることによって並列共振回路11が構成される。
 また、コイルL1が一次側巻線として採用され、コイルL2が二次側巻線として採用されることによってトランスT1が構成される。
 ここで、コイルL1の巻線数とコイルL2の巻線数との比率は、1:nとなる。このため、一次側の電圧、即ち交流電源Vfの電圧は、トランスT1においてn倍に昇圧されて並列共振回路11に印加されることになる。
 また、並列共振回路11の両端には、2つの多溝送電電極12が接続される。
The power transmission unit 1 includes a parallel resonant circuit 11, a multi-groove power transmission electrode 12, and a transformer T1. Since the AC power source Vf is connected to the power transmission unit 1, the power transmission unit 1 can receive power from here.
The parallel resonant circuit 11 includes a capacitor C1 and a coil L2. An AC power supply Vf is connected to the parallel resonance circuit 11 via a transformer T1. That is, the parallel resonant circuit 11 is configured by connecting the capacitor C1 and the coil L2 in parallel with each other.
Further, the coil L1 is adopted as the primary winding and the coil L2 is adopted as the secondary winding, thereby forming the transformer T1.
Here, the ratio of the number of windings of the coil L1 and the number of windings of the coil L2 is 1: n. For this reason, the voltage on the primary side, that is, the voltage of the AC power supply Vf is boosted n times in the transformer T1 and applied to the parallel resonant circuit 11.
In addition, two multi-groove power transmitting electrodes 12 are connected to both ends of the parallel resonant circuit 11.
 受電部2は、並列共振回路21と、櫛形受電電極22と、トランスT2とを備える。
 並列共振回路21は、コンデンサC2とコイルL3とを備える。並列共振回路21には受電部2の櫛形受電電極22が接続される。即ち、コンデンサC2とコイルL3とが相互に並列に接続されることによって並列共振回路21が構成される。
 また、コイルL3が一次側巻線として採用され、コイルL4が二次側巻線として採用されることによってトランスT2が構成される。
 ここで、コイルL3の巻線数とコイルL4の巻線数との比率は、n:1となる。このため、一次側の電圧、即ち受電部2で受信されて並列共振回路21に印加された電圧は、トランスT2において1/n倍に降圧されて、負荷Rに印加されることになる。
The power receiving unit 2 includes a parallel resonant circuit 21, a comb-shaped power receiving electrode 22, and a transformer T2.
The parallel resonant circuit 21 includes a capacitor C2 and a coil L3. A comb-shaped power receiving electrode 22 of the power receiving unit 2 is connected to the parallel resonant circuit 21. That is, the parallel resonant circuit 21 is configured by connecting the capacitor C2 and the coil L3 in parallel with each other.
Further, the coil L3 is employed as the primary winding, and the coil L4 is employed as the secondary winding, whereby the transformer T2 is configured.
Here, the ratio of the number of turns of the coil L3 and the number of turns of the coil L4 is n: 1. For this reason, the voltage on the primary side, that is, the voltage received by the power receiving unit 2 and applied to the parallel resonance circuit 21 is stepped down 1 / n times by the transformer T2 and applied to the load R.
 ここからは、多溝送電電極12が、スライドレール型である場合の例について説明する。
 図2は、湾曲部を有する多溝送電電極12に対応する櫛形受電電極22の一例として、ヘッド付フェザータッチ湾曲型の櫛形受電電極22を示す図である。
 図2(a)は、2条の溝からなる多溝送電電極12の湾曲部に2枚で一組の櫛形受電電極22が配置された状態を示す断面平面図である。なお、図2の例では多溝送電電極12の溝の数は2条で構成されているが、溝の数は2条に限定されるものではない。
 図2(a)に示すように、多溝送電電極12が湾曲部Cを有する場合、櫛形受電電極22は、湾曲部Cに位置するときには湾曲部Cの形状に合わせて変形し、かつ、多溝送電電極12と受電電極部221とが接触しない。
 図2(b)は、櫛形受電電極22が多溝送電電極12に挿入された状態を示す断面正面図である。
 図2(b)に示すように、櫛形受電電極22は、電極固定ロッド224によって受電電極部221が2枚で一組となるように繋ぎ合わされ固定される。
From here, the example in case the multi-groove power transmission electrode 12 is a slide rail type | mold is demonstrated.
FIG. 2 is a diagram showing a head-attached feather-touch curved comb-shaped power receiving electrode 22 as an example of a comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
FIG. 2A is a cross-sectional plan view showing a state in which a pair of comb-shaped power receiving electrodes 22 are arranged on the curved portion of the multi-groove power transmitting electrode 12 including two grooves. In the example of FIG. 2, the number of grooves of the multi-groove power transmission electrode 12 is composed of two lines, but the number of grooves is not limited to two.
As shown in FIG. 2A, when the multi-groove power transmitting electrode 12 has a curved portion C, the comb-shaped power receiving electrode 22 is deformed in accordance with the shape of the curved portion C when positioned at the curved portion C, and is The groove power transmission electrode 12 and the power reception electrode part 221 do not contact.
FIG. 2B is a cross-sectional front view showing a state where the comb-shaped power receiving electrode 22 is inserted into the multi-groove power transmitting electrode 12.
As shown in FIG. 2B, the comb-shaped power receiving electrode 22 is connected and fixed by the electrode fixing rod 224 so that two power receiving electrode portions 221 form a pair.
 図2(c)は、櫛形受電電極22の概要を示す平面図である。
 図2(d)は、櫛形受電電極22の概要を示す側面図である。
 図2(c)及び(d)に示すように、櫛形受電電極22は、受電電極部221と、弾性体222と、ヘッド固定部223との3層構造となっている。櫛形受電電極22の両端部にはヘッド部225が配置されている。
 受電電極部221は、導電性を有する極薄の金属板で構成される。弾性体222は、弾性を有する発砲体等で構成されるが、特に発砲体に限定されない。ヘッド固定部223は、ばね性を有する極薄の金属板で構成される。電極固定ロッド224は、上述したように、複数枚の受電電極部221を一組になるように繋ぎ合わせて固定する。ヘッド部225は、電極固定ロッド224の中に配置されている導電線に接続されており、実際に電力を受電する電極として機能する。
 また、ヘッド固定部223は、次の機能を有する。
 即ち、(ア)後述するオーバーハング電極として機能し、受電電極部221とは導通しない。(イ)櫛形受電電極22の端部を防護するヘッド部225を固定する。なお、ヘッド固定部223は、櫛形受電電極22が湾曲する際に、2枚の受電電極部221の夫々の端部の長さに差異が生じること防止するとともに、多溝送電電極12同士の繋ぎ目の段差部で櫛形受電電極22が引っかかることを防止する。(ウ)受電電極部221を固定するための弾性体222を固定する。なお、弾性体222を固定する方法は特に限定されない。具体的には例えば、弾性体222として採用された発砲体を両面テープで張り付けることによって弾性体222を固定してもよい。なお、弾性体222は、受電電極部221を支える。さらに、受電電極部221が湾曲部Cに位置するときには、受電電極部221が多溝送電電極12の内壁面に広く対向するように変形する。(エ)ヘッド固定部223は、ばね性を有しており、受電電極部221を真っすぐに伸ばす機能を有している。(オ)電極固定ロッド224と機械的に接続されており、櫛形受電電極22の全体を支える。
FIG. 2C is a plan view showing an outline of the comb-shaped power receiving electrode 22.
FIG. 2D is a side view showing an outline of the comb-shaped power receiving electrode 22.
As shown in FIGS. 2C and 2D, the comb-shaped power receiving electrode 22 has a three-layer structure including a power receiving electrode portion 221, an elastic body 222, and a head fixing portion 223. Head portions 225 are disposed at both ends of the comb-shaped power receiving electrode 22.
The power receiving electrode portion 221 is formed of an extremely thin metal plate having conductivity. The elastic body 222 is configured by an elastic foam body or the like, but is not particularly limited to a foam body. The head fixing portion 223 is formed of an extremely thin metal plate having spring properties. As described above, the electrode fixing rod 224 connects and fixes a plurality of power receiving electrode portions 221 in a set. The head portion 225 is connected to a conductive wire disposed in the electrode fixing rod 224 and functions as an electrode that actually receives power.
Moreover, the head fixing | fixed part 223 has the following function.
That is, (a) it functions as an overhang electrode described later, and does not conduct with the power receiving electrode portion 221. (A) The head portion 225 that protects the end portion of the comb-shaped power receiving electrode 22 is fixed. The head fixing portion 223 prevents the lengths of the end portions of the two power receiving electrode portions 221 from being different when the comb power receiving electrode 22 is curved, and connects the multi-groove power transmitting electrodes 12 to each other. The comb-shaped power receiving electrode 22 is prevented from being caught at the step portion of the eye. (C) The elastic body 222 for fixing the power receiving electrode portion 221 is fixed. The method for fixing the elastic body 222 is not particularly limited. Specifically, for example, the elastic body 222 may be fixed by sticking a foam body adopted as the elastic body 222 with a double-sided tape. The elastic body 222 supports the power receiving electrode portion 221. Further, when the power receiving electrode portion 221 is positioned at the curved portion C, the power receiving electrode portion 221 is deformed so as to widely face the inner wall surface of the multi-groove power transmitting electrode 12. (D) The head fixing portion 223 has a spring property and has a function of extending the power receiving electrode portion 221 straightly. (E) It is mechanically connected to the electrode fixing rod 224 and supports the entire comb-shaped power receiving electrode 22.
 図3は、湾曲部を有する多溝送電電極12に対応する櫛形受電電極22の一例として、ヒンジ型の櫛形受電電極22を示す図である。
 図3(a)は、ヒンジ型の櫛形受電電極22の概要を示す平面図である。
 図3(b)は、ヒンジ型の櫛形受電電極22の概要を示す側面図である。
 図3に示すように、ヒンジ型の櫛形受電電極22は、5つのブロック(センターブロックA、ヒンジブロックB乃至E)をヒンジピン235で連接させている。なお、ブロックの数は5つに限定されない。ヒンジピン235には、ホイール233が設けられていることにより、各ブロックの受電電極部231の夫々が互いに接触しない構成となっている。また、全てのブロックを通してばね材234が挿入されているため、外部から力が加わらない限り、櫛形受電電極22全体を真っすぐな状態で維持させることができる。また、各ブロックの電気的接続を向上させるために、接続線236が電極固定ロッド232内の導線に接続されている。
 また、センターブロックAは、電極固定ロッド232と機械的に接続されている。
 なお、ヒンジ型の櫛形受電電極22の場合には、後述するオーバーハングによる電磁波放射の抑圧機能を適用することはできない。また、ヒンジ型の櫛形受電電極22は、重量が他の方式に比べて重くなることが予想される。
FIG. 3 is a diagram illustrating a hinge-type comb-shaped power receiving electrode 22 as an example of the comb-shaped power-receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
FIG. 3A is a plan view showing an outline of the hinge-type comb-shaped power receiving electrode 22.
FIG. 3B is a side view showing an outline of the hinge-type comb-shaped power receiving electrode 22.
As shown in FIG. 3, the hinge-type comb-shaped power receiving electrode 22 has five blocks (center block A and hinge blocks B to E) connected by hinge pins 235. Note that the number of blocks is not limited to five. Since the hinge pin 235 is provided with a wheel 233, the power receiving electrode portions 231 of each block are not in contact with each other. Further, since the spring member 234 is inserted through all the blocks, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside. Further, in order to improve the electrical connection of each block, the connection line 236 is connected to the conducting wire in the electrode fixing rod 232.
The center block A is mechanically connected to the electrode fixing rod 232.
In the case of the hinge-type comb-shaped power receiving electrode 22, it is not possible to apply a function of suppressing electromagnetic wave radiation by an overhang described later. Further, the hinge-type comb-shaped power receiving electrode 22 is expected to be heavier than other methods.
 図4は、湾曲部を有する多溝送電電極12に対応する櫛形受電電極22の一例として、ホイール付フェザータッチ型の櫛形受電電極22を示す図である。
 図4(a)は、ホイール付フェザータッチ型の櫛形受電電極22の概要を示す平面図である。
 図4(b)は、ホイール付フェザータッチ型の櫛形受電電極22の概要を示す正面図である。
 図4に示すように、ホイール付フェザータッチ型の櫛形受電電極22は、中央部に、ばね性を有する極薄の金属板で構成されるホイール固定金属板246が配置されている。ホイール固定金属板246は、ホイール244を固定する機能を有する。また、ホイール固定金属板246の表面と裏面には、両面粘着剤付きの弾性体247が貼付さられている。さらに弾性体247の外側には、DLC(ダイヤモンドライクカーボン)コーティングが施された極薄の金属板からなる受電電極部241が貼付されている。これら受電電極部241は、電極固定ロッド242内の導線249に接続されている。
FIG. 4 is a diagram showing a feather touch comb-shaped power receiving electrode 22 as an example of the comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
FIG. 4A is a plan view showing an outline of a feather-touch type comb-shaped power receiving electrode 22 with a wheel.
FIG. 4B is a front view showing the outline of the feather-touch type comb-shaped power receiving electrode 22 with a wheel.
As shown in FIG. 4, the wheel-attached feather-touch comb-shaped power receiving electrode 22 has a wheel-fixing metal plate 246 formed of an extremely thin metal plate having spring properties at the center. The wheel fixing metal plate 246 has a function of fixing the wheel 244. An elastic body 247 with a double-sided adhesive is attached to the front and back surfaces of the wheel fixing metal plate 246. Further, on the outside of the elastic body 247, a power receiving electrode portion 241 made of an extremely thin metal plate coated with DLC (diamond-like carbon) is attached. These power receiving electrode portions 241 are connected to a conducting wire 249 in the electrode fixing rod 242.
 受電電極部241は、ホイール固定金属板246よりも一回り小さいサイズで構成されている。このため、ホイール固定金属板246は、オーバーハング放射低減機能を有している。さらに、ホイール固定金属板246は、ばね性も有していているため、外部から力が加わらない限り、櫛形受電電極22全体を真っすぐな状態で維持させることができる。 The power receiving electrode portion 241 is configured to be slightly smaller than the wheel-fixing metal plate 246. For this reason, the wheel fixing metal plate 246 has an overhang radiation reducing function. Furthermore, since the wheel fixing metal plate 246 also has a spring property, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside.
 ホイール付フェザータッチ型の櫛形受電電極22を採用した場合には、多溝送電電極12の湾曲部において、櫛形受電電極22が送電電極面を摺動して移動することができるため、大きな接合容量Ccを得ることができる。ホイール244は、櫛形受電電極22の両端部に配置されている。このため、櫛形受電電極22は、多溝送電電極12のつなぎ目の段差部をスムーズに通過することができる。
 また、多溝送電電極12の湾曲部において、受電電極部241の表面と多溝送電電極12の表面が接触するため、受電電極部241の表面には、硬質、潤滑性、耐摩耗性、化学的安定性、表面平滑性等を有するDLC膜がコーティングされている。
 また、櫛形受電電極22は、電極固定ロッド242を貫通させた受電電極部241の表面に吸排気口251を設けている。ここから気体を吸排気させることができる。なお、吸排気口251は吸排気口248につながっている。
 吸排気口251から気体を排気させた場合には、受電電極部241と多溝送電電極12の表面との間に気体が送り込まれることになるため、対向する電極の間隔を広げることができる。また、吸排気口251から気体を吸気させた場合には、当該間隔を狭めることができる。さらに、気体の吸排気を繰り返すことにより、受電電極部241に振動を与えてもよい。受電電極部241に振動を与えることにより、受電電極部241と多溝送電電極12の表面との摩擦係数を低下させることができる。
 さらに、吸排気させる気体内に、回転ベアリングとしての機能を有する物質を分散させて混入させてもよい。混入させる物質としては、フラーレン(C60、C70、C76、C78、C82、C84、C86、C88、C90、C92、C94、C96、C116等)やセラミックボール等を採用することができる。この場合、受電電極部241と多溝送電電極12の表面との間の距離に応じて使い分けることができる。また、櫛形受電電極22の移動速度に対応させて、吸排気口248及び251の位置をずらしても良い。
 なお、吸排気口251からは、気体を吸排気させてもよいし、液体を吸入または排出させてもよい。
When the comb-shaped power receiving electrode 22 of the wheel touch type with touch is adopted, the comb-shaped power receiving electrode 22 can slide and move on the power transmitting electrode surface in the curved portion of the multi-groove power transmitting electrode 12. Cc can be obtained. The wheels 244 are disposed at both ends of the comb-shaped power receiving electrode 22. For this reason, the comb-shaped power receiving electrode 22 can smoothly pass through the stepped portion of the joint of the multi-groove power transmitting electrode 12.
Further, since the surface of the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12 are in contact with each other at the curved portion of the multi-groove power transmitting electrode 12, the surface of the power receiving electrode portion 241 is hard, lubricous, wear resistant, chemically A DLC film having physical stability, surface smoothness and the like is coated.
Further, the comb-shaped power receiving electrode 22 is provided with an intake / exhaust port 251 on the surface of the power receiving electrode portion 241 through which the electrode fixing rod 242 passes. Gas can be sucked and exhausted from here. The intake / exhaust port 251 is connected to the intake / exhaust port 248.
When the gas is exhausted from the intake / exhaust port 251, the gas is sent between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12, so that the interval between the facing electrodes can be increased. In addition, when gas is sucked from the intake / exhaust port 251, the interval can be reduced. Furthermore, the power receiving electrode portion 241 may be vibrated by repeating the intake and exhaust of the gas. By applying vibration to the power receiving electrode portion 241, the coefficient of friction between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12 can be reduced.
Furthermore, a substance having a function as a rotary bearing may be dispersed and mixed in the gas to be sucked and exhausted. As a substance to be mixed, fullerene (C60, C70, C76, C78, C82, C84, C86, C88, C90, C92, C94, C96, C116, etc.), a ceramic ball, or the like can be used. In this case, it can be properly used according to the distance between the power receiving electrode portion 241 and the surface of the multi-groove power transmitting electrode 12. Further, the positions of the intake / exhaust ports 248 and 251 may be shifted in accordance with the moving speed of the comb-shaped power receiving electrode 22.
From the intake / exhaust port 251, gas may be sucked / exhausted, and liquid may be sucked / exhausted.
 図5は、湾曲部を有する多溝送電電極12に対応する櫛形受電電極22の一例として、ホイール付の櫛形受電電極22を示す図である。
 図5(a)は、ホイール付の櫛形受電電極22の概要を示す平面図である。
 図5(b)は、ホイール付の櫛形受電電極22の概要を示す側面図である。
 図5に示すように、図4の例(ホイール付フェザータッチ型の櫛形受電電極22)に対してホイールの数を増やしたものが図5に示す例である。このようにホイールの数を増やすことにより、櫛形受電電極22と多溝送電電極12との間を非接触の状態で維持させることができる。
FIG. 5 is a diagram illustrating a comb-shaped power receiving electrode 22 with a wheel as an example of the comb-shaped power receiving electrode 22 corresponding to the multi-groove power transmitting electrode 12 having a curved portion.
FIG. 5A is a plan view showing an outline of the comb-shaped power receiving electrode 22 with a wheel.
FIG. 5B is a side view showing an outline of the comb-shaped power receiving electrode 22 with a wheel.
As shown in FIG. 5, the example shown in FIG. 5 is obtained by increasing the number of wheels with respect to the example of FIG. 4 (feather touch type comb-shaped power receiving electrode 22 with wheels). In this way, by increasing the number of wheels, the gap between the comb-shaped power receiving electrode 22 and the multi-groove power transmitting electrode 12 can be maintained in a non-contact state.
 なお、図4の例と同様に、図5の例でも電極固定ロッド252を貫通させて受電電極部261の表面に吸排気口251を設けている。なお、吸排気口251は吸排気口258につながっている。これにより、受電電極部241と多溝送電電極12の表面との間隔を調節することができる。また、中央保持板253は、ばね性を有していているため、外部から力が加わらない限り、櫛形受電電極22全体を真っすぐな状態で維持させることができる。 As in the example of FIG. 4, the intake / exhaust port 251 is provided on the surface of the power receiving electrode portion 261 through the electrode fixing rod 252 in the example of FIG. 5. The intake / exhaust port 251 is connected to the intake / exhaust port 258. Thereby, the space | interval of the receiving electrode part 241 and the surface of the multi-groove power transmission electrode 12 can be adjusted. Further, since the central holding plate 253 has a spring property, the entire comb-shaped power receiving electrode 22 can be maintained in a straight state unless a force is applied from the outside.
 図6は、電界結合電力伝送技術によって、送電側から受電側に電力が送電された際に、外部に放射される電界Eの分布を示す図である。
 図6に示すように、2つの送電電極板123の近傍かつ電源Vf側には、送電電極板123に対し非接触で対向配置された導電板としての送電部シャーシ111が配置されている。また、2つの受電電極板273の近傍かつ負荷R側には、受電電極板273に対し非接触で対向配置された導電板としての受電部シャーシ271が配置されている。また、送電部シャーシ111と受電部シャーシ271とが、電極板よりも外側にはみ出た状態で、電極板を外側から挟むように配置されている。
 このとき、送電電極板123は電源Vfに直結されているため、十分な電荷供給を受けることができる。これに対して、受電電極板273とその周辺の受電部シャーシ271は電荷的に中和している。この状態で2つの送電電極板123のうち一方が正の電荷、残りの他方が負の電荷を持つと、周辺金属には逆の電荷が誘起される。逆電荷は、単に受電電極板273に誘起されるだけではなく、受電部シャーシ271まで誘起される。
FIG. 6 is a diagram illustrating a distribution of the electric field E radiated to the outside when electric power is transmitted from the power transmission side to the power reception side by the electric field coupled power transmission technique.
As shown in FIG. 6, a power transmission unit chassis 111 serving as a conductive plate disposed in a non-contact manner and opposed to the power transmission electrode plate 123 is disposed in the vicinity of the two power transmission electrode plates 123 and on the power supply Vf side. In addition, a power receiving unit chassis 271 serving as a conductive plate disposed in a non-contact manner with respect to the power receiving electrode plate 273 is disposed in the vicinity of the two power receiving electrode plates 273 and on the load R side. In addition, the power transmission unit chassis 111 and the power reception unit chassis 271 are arranged so as to sandwich the electrode plate from the outside in a state of protruding outward from the electrode plate.
At this time, since the power transmission electrode plate 123 is directly connected to the power source Vf, a sufficient charge supply can be received. In contrast, the power receiving electrode plate 273 and the surrounding power receiving unit chassis 271 are neutralized in terms of charge. In this state, when one of the two power transmission electrode plates 123 has a positive charge and the other has a negative charge, a reverse charge is induced in the peripheral metal. The reverse charge is not only induced in the power reception electrode plate 273 but also induced up to the power reception unit chassis 271.
 図7は、送電電極板123及び受電電極板273に対して送電部シャーシ111及び受電部シャーシ271(以下単に「シャーシ」と呼ぶ)が引っ込んだ状態から飛び出た状態に変化する際に、外部に放射する電界Eにどのような変化が生ずるのかを示す図である。
 図7(a)は、OHの値が-5であるときの電界Eの様子を示す図である。
 図7(b)は、OHの値が0であるときの電界Eの様子を示す図である。
 図7(c)は、OHの値が5であるときの電界Eの様子を示す図である。
 図7(d)は、OHの値が10であるときの電界Eの様子を示す図である。
 図7(e)は、OHの値が15であるときの電界Eの様子を示す図である。
なお、説明の便宜上、図6の左側の電極のみを拡大表示させている。
 ここで、送電電極板123及び受電電極板273よりシャーシが外に飛び出た距離をオーバーハング(またはOH)と呼ぶ。図7に示すように、OHの値が-5であるときには、電極がシャーシの外側にむき出しの状態になるため、外側に電界Eが多く分布することになる。しかし、OHが大きくなるに従い外部に放射される電界Eが少なくなる。このように、OHの値を大きくすることにより、放射電磁波を抑制させることができる。
FIG. 7 shows the power transmission electrode plate 123 and the power reception electrode plate 273 when the power transmission unit chassis 111 and the power reception unit chassis 271 (hereinafter simply referred to as “chassis”) change from the retracted state to the protruding state. It is a figure which shows what kind of change arises in the electric field E to radiate | emit.
FIG. 7A is a diagram showing a state of the electric field E when the value of OH is −5.
FIG. 7B is a diagram illustrating a state of the electric field E when the value of OH is zero.
FIG. 7C is a diagram illustrating a state of the electric field E when the value of OH is 5.
FIG. 7D is a diagram showing a state of the electric field E when the value of OH is 10.
FIG. 7E is a diagram showing the state of the electric field E when the value of OH is 15.
For convenience of explanation, only the left electrode in FIG. 6 is enlarged.
Here, the distance that the chassis protrudes from the power transmission electrode plate 123 and the power reception electrode plate 273 is referred to as overhang (or OH). As shown in FIG. 7, when the value of OH is −5, the electrode is exposed to the outside of the chassis, so that a large electric field E is distributed on the outside. However, the electric field E radiated to the outside decreases as OH increases. Thus, the radiation electromagnetic wave can be suppressed by increasing the value of OH.
 図8は、電極間電圧を10V、周波数を6.78MHz、負荷抵抗を50Ωとした場合に、オーバーハング(OH)によって放射電界強度と距離との関係にどのような変化が生じるかを表すグラフを示す図である。
 なお、横軸のXはOHの値を示し、縦軸のYは放射電界強度の絶対値を示している。
 図8に示すように、OHの値が-5mmから10mmまで変化したときには、放射電界強度が約1/100に低減している。さらに、OHの値を大きくしても特に大きな効果は得られない。これは図7(d)と(e)とを比較した場合に、外部に放射される電界に大きな差がないことからもわかる。
FIG. 8 is a graph showing changes in the relationship between the radiation electric field strength and the distance caused by overhang (OH) when the voltage between electrodes is 10 V, the frequency is 6.78 MHz, and the load resistance is 50Ω. FIG.
Note that X on the horizontal axis indicates the value of OH, and Y on the vertical axis indicates the absolute value of the radiation field intensity.
As shown in FIG. 8, when the OH value changes from −5 mm to 10 mm, the radiation electric field strength is reduced to about 1/100. Furthermore, even if the value of OH is increased, a particularly great effect cannot be obtained. This can also be seen from the fact that there is no significant difference in the electric field radiated to the outside when comparing FIG. 7D and FIG.
 図9は、湾曲した受電電極に、オーバーハングの技術を応用した例を示す図である。 FIG. 9 is a diagram showing an example in which an overhang technique is applied to a curved power receiving electrode.
 図9に示す例では、正負電極の他に、これら電極を囲むようにトレンチTが設けられている。このトレンチTが電磁波の漏洩を防ぐシールドとして機能する。なお、図9に示すトレンチTは、上端部が開いた構造となっているため、電磁波の漏洩を防ぐシールドとしては不十分である。例えばkWクラスの電力を送電する場合には、電磁波の漏えいを防ぐ追加対策を講じる必要がある。 In the example shown in FIG. 9, in addition to the positive and negative electrodes, a trench T is provided so as to surround these electrodes. The trench T functions as a shield that prevents leakage of electromagnetic waves. Note that the trench T shown in FIG. 9 has a structure in which the upper end portion is open, and thus is insufficient as a shield for preventing leakage of electromagnetic waves. For example, when transmitting kW class power, it is necessary to take additional measures to prevent leakage of electromagnetic waves.
 追加対策として、上述したオーバーハング(OH)の技術を用いることができる。図9(a)は、トレンチTの内部に、対向する2組の正負電極板を送電電極板P及びRとして配置させた場合の概要を示す断面図である。トレンチTの内部に送電電極板P及びRとして配置された正負電極板は、長尺のレールで構成されるため、トレンチTと同様に長手方向に延在する送電電極板となっている。なお、図9(b)は、説明の便宜上、2組の正負送電電極板のうち一方の正負送電電極板のみを拡大表示させた図である。
 受電電極側には、送電電極板Pに対向させて受電電極板Qを配置し、送電電極板Rに対向させて受電電極板Sを配置している。さらに、受電電極板Q及びSの上方(即ち送電電極板P及びRとは反対側)にオーバーハングしたオーバーハング電極OHを配置している。オーバーハング電極OHには、導線が接続されておらず、フローティングの状態となっている。
As an additional measure, the above-described overhang (OH) technique can be used. FIG. 9A is a cross-sectional view showing an outline when two opposing positive and negative electrode plates are arranged as power transmission electrode plates P and R inside the trench T. FIG. Since the positive and negative electrode plates arranged as the power transmission electrode plates P and R in the trench T are constituted by long rails, they are power transmission electrode plates extending in the longitudinal direction like the trench T. FIG. 9B is an enlarged view of only one positive / negative power transmission electrode plate of the two sets of positive / negative power transmission electrode plates for convenience of explanation.
On the power receiving electrode side, a power receiving electrode plate Q is disposed facing the power transmitting electrode plate P, and a power receiving electrode plate S is disposed facing the power transmitting electrode plate R. Further, an overhang electrode OH that is overhanged is disposed above the power reception electrode plates Q and S (that is, on the side opposite to the power transmission electrode plates P and R). The overhang electrode OH is not connected to a conducting wire and is in a floating state.
 電界結合では、結合容量CpqおよびCrsを介して電力が流れるが、送電電極板P及び送電電極板Rは電源に直結されているため、十分な量の電荷が供給される。これに対し、受電電極板Q及び受電電極板Sは、一体化させて考えた場合に電荷の総量が中和されるため、受電電極板Qと受電電極板Sとのうち一方の電極に負電荷が誘起されれば、他方の電極には負電荷と同じ量の正電荷が誘起される。さらに電極OHおよびトレンチTも電荷の総量は0である。 In electric field coupling, power flows through the coupling capacitances Cpq and Crs. However, since the power transmission electrode plate P and the power transmission electrode plate R are directly connected to the power source, a sufficient amount of charge is supplied. On the other hand, when the power receiving electrode plate Q and the power receiving electrode plate S are considered to be integrated, the total amount of charges is neutralized, so that one of the power receiving electrode plate Q and the power receiving electrode plate S is negatively charged. When charge is induced, the same amount of positive charge as that of negative charge is induced on the other electrode. Further, the total amount of charges in the electrode OH and the trench T is zero.
 ここで注目すべきことは、送電電極板Pが正電位、送電電極板Rが負電位を電源から与えられたときには、周辺の電極において反対の電荷が誘起され、送電電極板Pと送電電極板Qとの間には最も強い電界Eが発生する。次に強い電界Eは、送電電極板PとトレンチT間の電界である。ただし、これらの電界は逆方向となっている。この場合、空間に変異電流を流す装置としてのアンテナを定義することができる。即ち、送電電極板Pを中心として流れる電界(変異電流)が空間に流れた場合、これがアンテナとして機能することになる。
 しかし、オーバーハング電極OHが存在し、オーバーハング電極OHが送電電極板P及び送電電極板Qよりもオーバーハングして存在すると、トレンチTとオーバーハング電極OHは、同極に電荷が誘起されているため、その間の変位電流は小さくなる。即ち、電界Epq-Eptは、オーバーハング電極OHとトレンチT内に局在するだけとなり、外部空間に出ることができない。これにより、放射電磁波を大幅に低減させることが可能となる。
It should be noted here that when the power transmission electrode plate P is given a positive potential and the power transmission electrode plate R is given a negative potential from the power source, opposite charges are induced in the peripheral electrodes, and the power transmission electrode plate P and the power transmission electrode plate The strongest electric field E is generated between Q and Q. The next strongest electric field E is an electric field between the power transmission electrode plate P and the trench T. However, these electric fields are in opposite directions. In this case, it is possible to define an antenna as a device for causing a mutation current to flow in the space. That is, when an electric field (mutation current) flowing around the power transmission electrode plate P flows in the space, this functions as an antenna.
However, when the overhang electrode OH exists and the overhang electrode OH exists overhanging from the power transmission electrode plate P and the power transmission electrode plate Q, the trench T and the overhang electrode OH are induced to have the same polarity. Therefore, the displacement current between them becomes small. That is, the electric field Epq-Ept is localized only in the overhang electrode OH and the trench T, and cannot come out to the external space. Thereby, it is possible to significantly reduce radiated electromagnetic waves.
 しかし、送電電極板P及び送電電極板RをトレンチTの近傍に配置し、受電電極板Q及び受電電極板Sの近傍にオーバーハング電極OHを配置する場合、これら電極間で寄生容量が増大する問題が生じる。
 この問題に対しては、並列共振回路が威力を発揮する。即ち、受電側の共振回路には、本来はコンデンサC2で共振することになっているが、受電電極板Qとオーバーハング電極OHとの間の寄生容量CQOHと、受電電極板Sとオーバーハング電極OHと間の寄生容量CSOHとを直列接続した容量が線間容量となるため、コンデンサC2から線間容量分を差し引いた値にすれば、この問題を解決することができる。このような調整が可能なのは、電力供給システムに並列共振回路を使用しているからである。
 なお、正負電極板にまたがってオーバーハング電極OHやトレンチTが近接しているため、これらに対して誘起電荷を中和する電流(J1、J2)が流れる。
However, when the power transmission electrode plate P and the power transmission electrode plate R are disposed in the vicinity of the trench T and the overhang electrode OH is disposed in the vicinity of the power reception electrode plate Q and the power reception electrode plate S, the parasitic capacitance increases between these electrodes. Problems arise.
A parallel resonant circuit is effective for this problem. That is, the resonance circuit on the power receiving side originally resonates with the capacitor C2, but the parasitic capacitance C QOH between the power receiving electrode plate Q and the overhang electrode OH, and the power receiving electrode plate S overhang. Since the capacitance in which the parasitic capacitance C SOH between the electrode OH and the electrode OH is connected in series becomes the line capacitance, this problem can be solved by setting the value obtained by subtracting the line capacitance from the capacitor C2. Such adjustment is possible because a parallel resonant circuit is used in the power supply system.
In addition, since the overhang electrode OH and the trench T are close to each other across the positive and negative electrode plates, currents (J1, J2) for neutralizing the induced charges flow through these electrodes.
 図10は、1つのトレンチT内で対向する内面の夫々に、1対の正負電極板と放射低減用のオーバーハング電極OHとを配置させた例を示す図である。
 図10は、トレンチTの内部に、対向する正負電極板を送電電極板P及びRとして配置させた場合の概要を示す断面図である。図9の例と同様に、トレンチTの内部に送電電極板P及びRとして配置された正負電極は、長尺のレールで構成されるため、トレンチTと同様に長手方向に延在する送電電極板となっている。
 図10(a)に示すように、受電電極側には、送電電極板Pに対向して受電電極板Qが配置される。また、送電電極板Rに対向して受電電極板Sが配置される。なお、オーバーハング電極OHに誘起される電荷を中和するためにケーブルUが設けられている。図10(b)に示すように、オーバーハング電極OH1とオーバーハング電極OH2とは分かれているが、図2、図4、及び図5の例においては、1つの金属板を共用してもよい。
FIG. 10 is a view showing an example in which a pair of positive and negative electrode plates and an overhang electrode OH for reducing radiation are arranged on each of the inner surfaces facing each other in one trench T. FIG.
FIG. 10 is a cross-sectional view showing an outline when opposing positive and negative electrode plates are arranged as power transmission electrode plates P and R inside the trench T. FIG. As in the example of FIG. 9, the positive and negative electrodes arranged as the power transmission electrode plates P and R inside the trench T are constituted by long rails, and thus the power transmission electrodes extending in the longitudinal direction like the trench T. It is a board.
As shown in FIG. 10A, the power receiving electrode plate Q is disposed on the power receiving electrode side so as to face the power transmitting electrode plate P. A power receiving electrode plate S is disposed opposite to the power transmitting electrode plate R. A cable U is provided to neutralize the charge induced in the overhang electrode OH. As shown in FIG. 10B, the overhang electrode OH1 and the overhang electrode OH2 are separated. However, in the examples of FIGS. 2, 4, and 5, one metal plate may be shared. .
 オーバーハング電極OH1と受電電極板Qとの間隔、及びオーバーハング電極OH2と受電電極板Sとの間隔を固定することにより、オーバーハング電極OH1とオーバーハング電極OH2とがフレキシブルに動けるようにしておくことにより、多溝送電電極12の湾曲部C等への対応も容易になる。このために、オーバーハング電極OH1とオーバーハング電極OH2とを結ぶケーブルUもフレキシブルに動けるものとしている。
 図10の例も、図9の例と同様に、オーバーハング電極OHを、送電電極板P、受電電極板Q、送電電極板R、及び受電電極板Sよりも空間側に張り出すことにより、各電極板のエッジ部に流れる変位電流が空間に放射されることを防ぐことができる。その結果として、放射される電界Eの強度を大幅に低減させることができる。
By fixing the distance between the overhang electrode OH1 and the power receiving electrode plate Q and the distance between the overhang electrode OH2 and the power receiving electrode plate S, the overhang electrode OH1 and the overhang electrode OH2 can move flexibly. This facilitates the handling of the multi-groove power transmission electrode 12 to the curved portion C and the like. For this reason, the cable U connecting the overhang electrode OH1 and the overhang electrode OH2 is also flexible.
As in the example of FIG. 9, the example of FIG. 10 also projects the overhang electrode OH to the space side from the power transmission electrode plate P, the power reception electrode plate Q, the power transmission electrode plate R, and the power reception electrode plate S. Displacement current flowing in the edge portion of each electrode plate can be prevented from being radiated to the space. As a result, the intensity of the radiated electric field E can be greatly reduced.
 図11は、トレンチTの内部に敷居となる壁Wを設けることにより、正の送電電極板と負の送電電極板とを分離して配置させ、その上に電磁波放射を低減化させるCAP電極400を配置させた場合の例を示す図である。
 図11(a)及び(b)は、図9及び図10の例と同様に、トレンチTの内部に送電電極板P及びRとして配置された正負電極は、長尺のレールで構成されるため、トレンチTと同様に長手方向に延在する送電電極板となっている。
 また、図11(c)は、長尺のレールを側面から見た図であるため、送電電極板Pと受電電極板Qとが左右に延在いている。
 図11の例では、オーバーハング電極OHは用いずに、CAP電極400を用いる。図11(a)及び(b)に示すように、トレンチTの正電極側と負電極側とを跨ってCAP電極400を被せるように配置している。CAP電極400には、正の電極と負の電極に対向した面に逆の電荷が現れる。同様にトレンチT側にもCAP電極400に誘起された電荷と同じ電荷が誘起される。この結果、CAP電極400とトレンチT間の電位差は極めて小さくなるため、ほとんど変位電流が流れない。これため、電磁波は外部に放射されないことになる。
In FIG. 11, a CAP electrode 400 that reduces the electromagnetic wave radiation on the positive power transmission electrode plate and the negative power transmission electrode plate separately provided by providing a wall W serving as a sill inside the trench T. It is a figure which shows the example at the time of arrange | positioning.
11 (a) and 11 (b), as in the example of FIGS. 9 and 10, the positive and negative electrodes arranged as power transmission electrode plates P and R inside the trench T are constituted by long rails. Like the trench T, the power transmission electrode plate extends in the longitudinal direction.
Moreover, FIG.11 (c) is the figure which looked at the elongate rail from the side surface, Therefore The power transmission electrode plate P and the receiving electrode plate Q are extended in the right and left.
In the example of FIG. 11, the CAP electrode 400 is used without using the overhang electrode OH. As shown in FIGS. 11A and 11B, the CAP electrode 400 is placed so as to straddle the positive electrode side and the negative electrode side of the trench T. In the CAP electrode 400, opposite charges appear on the surfaces facing the positive electrode and the negative electrode. Similarly, the same charge as that induced in the CAP electrode 400 is also induced on the trench T side. As a result, the potential difference between the CAP electrode 400 and the trench T is extremely small, so that almost no displacement current flows. For this reason, electromagnetic waves are not emitted outside.
 図11(c)に示すように、移動体となる受電電極板Qの前後方向にCAP電極400を折り曲げて配置することにより、前後からの電磁波の放射を低減することができる。ただし、トレンチTの境界部分に、送電電極板P及び送電電極板RがCAP電極400を貫通する貫通口を開ける必要がある。
 以上のように、図9、10、及び11を参照して、トレンチT及びオーバーハング電極OH、CAP電極400を用いた電磁波放射の低減方法を説明した。
 次に、トレンチT自体をGND電極として機能させる方法を説明する。
As shown in FIG. 11C, the electromagnetic wave emission from the front and rear can be reduced by bending and arranging the CAP electrode 400 in the front-rear direction of the power receiving electrode plate Q serving as a moving body. However, it is necessary to open a through hole through which the power transmission electrode plate P and the power transmission electrode plate R penetrate the CAP electrode 400 at the boundary portion of the trench T.
As described above, the method for reducing electromagnetic wave radiation using the trench T, the overhang electrode OH, and the CAP electrode 400 has been described with reference to FIGS.
Next, a method for causing the trench T itself to function as a GND electrode will be described.
 図12は、トレンチT自体をGND電極として用いる例を示す図である。
 図12に示すように、GND電極としてのトレンチTにアースを接続し、電源の一方もアースに落とす。これにより、トレンチTの内部には、負の電極を設置する必要がなくなるため、構造を簡素化することができる。
 さらに、トレンチTの表面に人が触れたとしても安全である。
FIG. 12 is a diagram illustrating an example in which the trench T itself is used as the GND electrode.
As shown in FIG. 12, the ground is connected to the trench T as the GND electrode, and one of the power supplies is also grounded. Thereby, since it is not necessary to install a negative electrode inside the trench T, the structure can be simplified.
Furthermore, it is safe even if a person touches the surface of the trench T.
 次に、電磁波の放射を抑制する方法として、レール(トレンチT)全体にシールドカバーを取り付ける方法を説明する。
 図13は、トレンチ型電力伝送レール(トレンチT)の全体に極薄の金属カバー121を取り付けた場合の例を示す図である。
 図13に示す例では、ボールねじを備える一軸スライダーに対するゴミの侵入を防止する目的で金属カバー121が用いられている。
 図13(a1)、(b1)、及び(c1)は、トレンチ型電力伝送レールTに、受電体としての移動体272が存在するときの断面図を示している。
 図13(a2)、(b2)、及び(c2)は、トレンチ型電力伝送レールTに移動体272が存在しないときの断面図を示している。
 図13(a3)、(b3)、及び(c3)は、トレンチ型電力伝送レールTの側面図を示している。
Next, a method for attaching a shield cover to the entire rail (trench T) will be described as a method for suppressing the emission of electromagnetic waves.
FIG. 13 is a diagram illustrating an example in which an extremely thin metal cover 121 is attached to the entire trench type power transmission rail (trench T).
In the example shown in FIG. 13, a metal cover 121 is used for the purpose of preventing dust from entering a uniaxial slider having a ball screw.
FIGS. 13A1, 13B1 and 13C1 are cross-sectional views when the movable body 272 as a power receiver exists in the trench type power transmission rail T. FIG.
FIGS. 13 (a2), (b2), and (c2) are cross-sectional views when the moving body 272 is not present in the trench type power transmission rail T. FIG.
13 (a3), (b3), and (c3) are side views of the trench type power transmission rail T. FIG.
[規則91に基づく訂正 28.04.2017] 
 図13(a1)、(a2)、及び(a3)では、金属カバー121は、強磁性体からなる極薄の金属膜で構成されている。
 金属カバー121に極薄金属膜を用いることにより、電磁波の漏洩を防ぐシールドとしての性能を高めることができる。
 トレンチ型電力伝送レール(トレンチT)側には永久磁石が多数配置されている。このため、通常は、トレンチ型電力伝送レールTに金属カバー121を密着させることができる。ただし、金属カバー121は、移動体272が移動したときにのみ捲れあがり、移動体272を貫通する穴の中を通過する。
 また、極薄の金属膜からなる金属カバー121をトレンチ型電力伝送レール(トレンチT)に固定する方法としては、上述した磁石を用いる方法の他に次のものがある。
 即ち、(1)前後方向への引っ張り力を加える、(2)トレンチ型電力伝送レール(トレンチT)内の圧力を低減させる。(3)金属カバー121に重りを載せる(重力の利用)、(4)金属カバー121自身のばね性を利用する(即ち、ばね圧で金属カバー121を押える)、(5)金属カバー121とトレンチ型電力伝送レール(トレンチT)との間の界面を親水性とし、水の表面張力を利用して固定させる等の方法がある。
[Correction 28.04.2017 under Rule 91]
In FIG. 13 (a1), (a2), and (a3), the metal cover 121 is comprised by the ultra-thin metal film which consists of a ferromagnetic material.
By using an extremely thin metal film for the metal cover 121, the performance as a shield for preventing leakage of electromagnetic waves can be enhanced.
Many permanent magnets are arranged on the trench type power transmission rail (trench T) side. For this reason, the metal cover 121 can be normally adhered to the trench type power transmission rail T. However, the metal cover 121 is rolled up only when the moving body 272 moves, and passes through a hole that penetrates the moving body 272.
As a method for fixing the metal cover 121 made of an extremely thin metal film to the trench type power transmission rail (trench T), there is the following method in addition to the method using the magnet described above.
That is, (1) applying a tensile force in the front-rear direction, (2) reducing the pressure in the trench type power transmission rail (trench T). (3) Put a weight on the metal cover 121 (use of gravity), (4) Use the spring property of the metal cover 121 itself (that is, press the metal cover 121 with spring pressure), (5) The metal cover 121 and the trench There is a method of making the interface between the power transmission rail (trench T) hydrophilic and fixing it using the surface tension of water.
 図13(b1)、(b2)、及び(b3)の例では、トレンチ型電力伝送レールTの長手方向に沿って、金属カバー121を中央部で分けて配置する。この方法では、金属カバー121のばね性を利用して中央の開口部を閉めることができる。なお、中央部で別れた金属カバー121をオーバーラップさせてもよい。
 図13(c1)、(c2)、及び(c3)の例では、トレンチ型電力伝送レールTの片方の淵に金属カバー121を固定する。通常は閉まった状態にあるが、移動体272がトレンチ型電力伝送レールT上を通過する際に、トレンチ型電力伝送レールTの側面側から隙間を開けることにより移動体272を移動させることができる。
 上述した各種方法を用いることにより、放射電磁波をさらに低減することができる。
In the example of FIGS. 13B1, B2, and B3, the metal cover 121 is divided and arranged at the center along the longitudinal direction of the trench type power transmission rail T. In this method, the central opening can be closed using the spring property of the metal cover 121. The metal cover 121 separated at the center may be overlapped.
In the examples of FIGS. 13C1, C2, and C3, the metal cover 121 is fixed to one side of the trench type power transmission rail T. Although normally closed, the moving body 272 can be moved by opening a gap from the side of the trench-type power transmission rail T when the moving body 272 passes over the trench-type power transmission rail T. .
Radiant electromagnetic waves can be further reduced by using the various methods described above.
 ここからは、電力伝送軸受について説明する。
 上述したサンドウィッチ電極構造は、軸受けにも適用することができる。
 図14は、サンドウィッチ構造の電極を有する電力伝送軸受の例を示している。
From here, the power transmission bearing will be described.
The sandwich electrode structure described above can also be applied to bearings.
FIG. 14 shows an example of a power transmission bearing having an electrode having a sandwich structure.
 図14に示すように、送電電極に接続されている送電電極ディスク131を黒色で表示し、負荷に接続されている受電電極ディスク281を白色で表示している。
 また、受電電極ディスク281の枚数は、送電電極ディスク131の枚数よりも1枚多くしてある。これにより、枚数の多い送電電極ディスク131で、両サイドをカバーすることができるようになっている。このため、ディスク数の多い受電電極ディスク281で全体をカバーすることによりシールド構造とすることができる。これにより、受電電極ディスク281と送電電極ディスク131との間に流れる変位電流が外部に漏洩することを遮断することができる。なお、枚数が多いディスクは受電電極ディスク281に限定されず、送電電極ディスク131であってもよい。
 このようなサンドウィッチ電極を2組用意することにより、電源から負荷に対し電力を流すことができる。なお、シールド構造の場合であっても、2組のサンドウィッチ電極間の変位電流は存在するため、距離を離して設置する等の処置が必要となる。
As shown in FIG. 14, the power transmission electrode disk 131 connected to the power transmission electrode is displayed in black, and the power reception electrode disk 281 connected to the load is displayed in white.
Further, the number of power receiving electrode disks 281 is one more than the number of power transmitting electrode disks 131. Thereby, both sides can be covered with the power transmission electrode disk 131 having a large number of sheets. For this reason, it can be set as a shield structure by covering the whole with the receiving electrode disk 281 with many disks. Thereby, it is possible to prevent the displacement current flowing between the power receiving electrode disk 281 and the power transmitting electrode disk 131 from leaking to the outside. The disk having a large number of disks is not limited to the power receiving electrode disk 281 but may be the power transmitting electrode disk 131.
By preparing two sets of such sandwich electrodes, power can be supplied from the power source to the load. Even in the case of the shield structure, there is a displacement current between the two pairs of sandwich electrodes, and therefore a measure such as installing them apart is necessary.
 また、2組のサンドウィッチ電極全体をシールドボックス内に入れることもできる。この場合には、シールドボックスと電極間の寄生容量が問題となるが、並列共振回路の共振容量を調節することにより対応することができる。
 なお、図14の例は、電力伝送軸受であるため、電源側又は負荷側のいずれか一方を回転軸500側に配置させ、残りの他方は固定体側に配置させることとなる。
Also, the entire two sets of sandwich electrodes can be placed in a shield box. In this case, the parasitic capacitance between the shield box and the electrode becomes a problem, but it can be dealt with by adjusting the resonance capacitance of the parallel resonance circuit.
In addition, since the example of FIG. 14 is a power transmission bearing, either the power source side or the load side is disposed on the rotating shaft 500 side, and the other is disposed on the fixed body side.
 図15は、2組のサンドウィッチ電極を有する軸受けにおける、回路とシールドとの関係を示す段面図である。
 図15に示す軸受けの例では、軸受けの中央部に回転体601が配置され、周辺部にドーナッツ状の固定体701が配置されている。このため、送電電極ディスク141と受電電極ディスク291とは、回転体601の両側に配置される。送電電極ディスク141と受電電極ディスク291とは、円盤状に一体化されている。なお、固定体701と回転体601とを入れ替えてことも可能である。即ち、電源側又は負荷側のいずれか一方を回転体601側に配置させ、残りの他方は固定体701側に配置させることができる。
FIG. 15 is a step view showing a relationship between a circuit and a shield in a bearing having two pairs of sandwich electrodes.
In the example of the bearing shown in FIG. 15, a rotating body 601 is disposed at the center of the bearing, and a donut-shaped fixed body 701 is disposed at the periphery. For this reason, the power transmission electrode disk 141 and the power reception electrode disk 291 are disposed on both sides of the rotating body 601. The power transmission electrode disk 141 and the power reception electrode disk 291 are integrated in a disk shape. Note that the fixed body 701 and the rotating body 601 can be interchanged. That is, either the power source side or the load side can be arranged on the rotating body 601 side, and the other side can be arranged on the fixed body 701 side.
 図15(a)は、1組のサンドウィッチ構造電極を構成する電極のうち一方の電極によって全体を囲った場合の例を示している。これを上下に2段積み重ね、間に絶縁層293を配置させている。これにより、サンドウィッチ電極を構成する送電電極と受電電極間との変位電流は外部には漏えいしないが、電極Aと電極Bとの間には、電圧が掛かるため変位電流が流れる。さらに、人が触ると感電することとなる。また、回転体601が金属で構成されている場合には、電極Aと電極Bとは、回転体601でショートされてしまう。これに対して、回転体601が金属で構成されていない場合には、外部に電磁波が漏洩し、機械的な強度を得難くなる。 FIG. 15 (a) shows an example in which the whole is surrounded by one of the electrodes constituting a pair of sandwich structure electrodes. These are stacked in two stages, and an insulating layer 293 is disposed therebetween. Thereby, although the displacement current between the power transmission electrode and the power reception electrode constituting the sandwich electrode does not leak to the outside, a displacement current flows between the electrode A and the electrode B because a voltage is applied. Furthermore, an electric shock will occur if a person touches it. Further, when the rotator 601 is made of metal, the electrode A and the electrode B are short-circuited by the rotator 601. On the other hand, when the rotator 601 is not made of metal, electromagnetic waves leak to the outside, making it difficult to obtain mechanical strength.
 図15(b)は、2組のサンドウィッチ電極全体を、電極とは独立したシールド材でカバーした例を示している。このとき、シールドSと電極との間隔を確保することにより寄生容量を低減させなければならないが、回転体601と固定体701との間隔が小さければ、ほぼ完全にシールドすることが可能となる。また、埃の混入の問題、及び電磁波放射の問題を解決することができる。また、寄生容量の問題については、並列共振回路を使用することにより解決することができる。即ち、図15(b)の例では、シールドSで完全にカバーする方法を採用することとなる。 FIG. 15B shows an example in which the entire two sets of sandwich electrodes are covered with a shield material independent of the electrodes. At this time, it is necessary to reduce the parasitic capacitance by securing the distance between the shield S and the electrode. However, if the distance between the rotating body 601 and the fixed body 701 is small, it is possible to shield almost completely. Moreover, the problem of dust mixing and the problem of electromagnetic wave radiation can be solved. The problem of parasitic capacitance can be solved by using a parallel resonant circuit. That is, in the example of FIG. 15B, a method of completely covering with the shield S is adopted.
 電力供給システムにおいては、用途によっては、極めて大きな電力を送電しなければならない場合がある。
 図16は、大電力型の電力伝送軸受けの回路の例を示す図である。
 図16に示す例では、1組の送電電極毎にインバータが設置される。これら複数のインバータの夫々を同期させて動作させることにより、小さな容量のインバータであっても数を増やすことにより大電力を送電することが可能となる。
In the power supply system, depending on the application, it may be necessary to transmit extremely large power.
FIG. 16 is a diagram illustrating an example of a circuit of a high power type power transmission bearing.
In the example shown in FIG. 16, an inverter is installed for each set of power transmission electrodes. By operating each of the plurality of inverters in synchronism with each other, it is possible to transmit a large amount of power by increasing the number of inverters having a small capacity.
 次に、図17乃至図22を参照して、既存の回転軸303に電界結合非接触電力伝送系を後付けする方法について説明する。
 図17は、軸固定ブロック301による回転軸303の固定方法を示す図である。
 図17に示すように、回転軸303に内径が密着する軸固定ブロック301を被せるように配置させる。この軸固定ブロック301は、半分に分かれているため、後から回転軸303を挟み込むことができる。なお、軸固定ブロック301は、絶縁体で構成されており、内部に導通線302を必要な条数通している。
Next, a method for retrofitting an electric field coupling non-contact power transmission system to an existing rotating shaft 303 will be described with reference to FIGS. 17 to 22.
FIG. 17 is a diagram illustrating a method of fixing the rotating shaft 303 by the shaft fixing block 301.
As shown in FIG. 17, it arrange | positions so that the axis | shaft fixed block 301 to which an internal diameter closely_contact | adheres to the rotating shaft 303 may be covered. Since the shaft fixing block 301 is divided in half, the rotation shaft 303 can be sandwiched later. The shaft fixing block 301 is made of an insulator, and a required number of conducting wires 302 are passed through the shaft fixing block 301.
 図17(a)の例では、回転軸303に貫通穴又はタップネジによる穴を開けて、通しボルト304と押さえ金具305を用いて軸固定ブロックに押し付けている。これにより、2つに分かれている軸固定ブロック301を一体化させるとともに、回転軸303に密着させることができる。
 図17(b)の例では、軸固定ブロック301の固定方法として、軸固定ブロック301に設けたねじ穴間で締め付ける方法を採用している。この方法は、回転軸303には一切加工を施す必要が無いというメリットを有する。
 図17(c)の例では、ネジ締付式の固定バンド306で軸固定ブロック301を密着させる方法を採用している。この方法も回転軸303には一切加工を施す必要が無いというメリットを有する。
In the example of FIG. 17A, a through hole or a tapped screw hole is formed in the rotary shaft 303 and pressed against the shaft fixing block by using a through bolt 304 and a presser fitting 305. As a result, the two shaft fixing blocks 301 can be integrated and brought into close contact with the rotating shaft 303.
In the example of FIG. 17B, a method of fastening between the screw holes provided in the shaft fixing block 301 is employed as a method of fixing the shaft fixing block 301. This method has an advantage that the rotating shaft 303 does not need to be processed at all.
In the example of FIG. 17C, a method is adopted in which the shaft fixing block 301 is brought into close contact with a screw fastening type fixing band 306. This method also has the advantage that there is no need to process the rotating shaft 303 at all.
 図18は、回転軸303に絶縁性のじゃばら板307を固定させる方法を示す図である。
 図18に示すように、ナイロン等の樹脂で構成されるじゃばら板307が回転軸303に巻かれ、固定バンド306で固定されている。この方法では、じゃばら板307の任意の位置に、図17の例における導通線302の機能を有するネジ受け金具310を差し込みネジ309で止める。
 さらに、じゃばら板307の端部には針を有する連接金具308を挟みこむ。これにより、固定バンド306によりじゃばら板307が締め付けられる際に、連接金具308の針がナイロン等の樹脂材に食い込むため、接合部にずれが生じないようにする。
FIG. 18 is a view showing a method for fixing the insulating bellows 307 to the rotating shaft 303.
As shown in FIG. 18, a loose plate 307 made of a resin such as nylon is wound around a rotating shaft 303 and fixed by a fixing band 306. In this method, the screw receiving bracket 310 having the function of the conducting wire 302 in the example of FIG.
Further, a connecting metal fitting 308 having a needle is sandwiched between the ends of the loose plate 307. As a result, when the loose plate 307 is tightened by the fixing band 306, the needle of the connecting metal fitting 308 bites into a resin material such as nylon, so that no shift occurs in the joint portion.
 図19は、軸固定ブロック311を用いて、回転軸303に回転子電極312及び313を取り付ける方法を示す図である。
 図19に示すように、回転軸303に軸固定ブロック311が付けられた後に、回転子電極312及び313を取り付ける。回転子電極312及び313としては、半割れ形状の円板を使用しており、当該円板の付け根には、回転軸303にフィットする半割れ形状のパイプが取り付けられている。これらを左右で合わせることにより1枚の回転板を構成させることができる。ただし、左右の半割れ形状の円板同士を接合させる必要があるため、同様の構成を有する半割れ状の円板を裏からあてがう。このとき、分割線を90度回転させることにより、表側と裏側の回転板同士が背中合わせに重ねた状態で貼り合わせる。具体的には、表面左側の回転子電極312aと表面右側の回転子電極312bとを接合させることにより、表面に1枚の回転板を構成させることができる。さらに、裏面上側の回転電極子313aと裏面下側の回転電極子313bとを接合させることにより、裏面に1枚の回転板を構成させることができる。そして、表面の回転板と裏面の回転板とを背中合わせに重ねた状態で貼り合わせる。
 そして、軸固定ブロック311に回転板を固定ボルト315で留める。このとき、一部のボルト(導通ボルト316)は、導通線314に合わせる。これにより、電気的導通を取ることができる。なお、回転子電極312及び313を貼り合わせる方法は特に限定されず、溶接や両面テープ密着であっても良い。ただし、表面と裏面とは導通を取っておく必要がある。
FIG. 19 is a diagram illustrating a method of attaching the rotor electrodes 312 and 313 to the rotating shaft 303 using the shaft fixing block 311.
As shown in FIG. 19, after the shaft fixing block 311 is attached to the rotating shaft 303, the rotor electrodes 312 and 313 are attached. As the rotor electrodes 312 and 313, a half-cracked disk is used, and a half-cracked pipe that fits the rotating shaft 303 is attached to the base of the disk. By combining these on the left and right, one rotating plate can be configured. However, since it is necessary to join the left and right half-cracked disks, a half-cracked disk having the same configuration is applied from the back. At this time, by rotating the dividing line by 90 degrees, the rotating plates on the front side and the back side are bonded together in a state of being back-to-back. Specifically, one rotor plate can be formed on the surface by joining the rotor electrode 312a on the left side of the surface and the rotor electrode 312b on the right side of the surface. Furthermore, one rotating plate can be formed on the back surface by bonding the rotating electrode element 313a on the upper surface side and the rotating electrode element 313b on the lower surface side. Then, the front rotating plate and the rear rotating plate are pasted back to back.
Then, the rotating plate is fastened to the shaft fixing block 311 with fixing bolts 315. At this time, some bolts (conduction bolts 316) are aligned with the conduction lines 314. Thereby, electrical conduction can be achieved. The method for attaching the rotor electrodes 312 and 313 is not particularly limited, and may be welding or double-sided tape adhesion. However, it is necessary to keep conduction between the front surface and the back surface.
 図20は、回転軸303に半割れ形状の回転子電極324を取り付ける他の方法を示す図である。
 図20(a)は、回転軸303に絶縁性のゴム板321を巻き付けた状態を示す図である。
 図20(b)は、図20(a)に示す状態の回転軸303の上に、半割れ形状の金属パイプ323を上下から挟み込むようにしてカバーした状態を示す図である。この半割れ形状の金属パイプ323は、半割れ形状の回転子電極324と電気的に接続するものであるため、半割れ形状の金属パイプ323には被覆導線322が設けられている。被覆導線322は、絶縁性のゴム板321内に埋め込まれる。
 図20(c)は、半割れ形状の金属パイプ323の割れ目と直交するように、半割れ形状の回転子電極324を左右から挟み込んで取り付けている。なお、半割れ形状の回転子電極324同士の接合部分は、段差が生じないように、半割れ形状の回転子電極324の端部には噛み合わせ部分が取り付けられている。
 図20(d)は、セパレートカラー325を最後に取り付けることにより回転子電極を固定する。このような回転子電極板が必要枚数並べられ、導通線で回転子電極板が接続されたならば、次は固定子電極を取り付けることとなる。ここで、固定子電極を取り付ける方法については、図21及び22を参照して説明する。
FIG. 20 is a diagram illustrating another method of attaching the half-cracked rotor electrode 324 to the rotating shaft 303.
FIG. 20A is a view showing a state in which an insulating rubber plate 321 is wound around the rotating shaft 303.
FIG. 20B is a diagram illustrating a state in which a half-cracked metal pipe 323 is covered from above and below on the rotating shaft 303 in the state illustrated in FIG. Since the half-cracked metal pipe 323 is electrically connected to the half-cracked rotor electrode 324, the half-cracked metal pipe 323 is provided with a covered conducting wire 322. The covered conductive wire 322 is embedded in the insulating rubber plate 321.
In FIG. 20C, the half-cracked rotor electrode 324 is sandwiched and attached from the left and right so as to be orthogonal to the crack of the half-cracked metal pipe 323. It should be noted that the joint portion between the half-cracked rotor electrodes 324 is attached to the end portion of the half-cracked rotor electrode 324 so that a step does not occur.
In FIG. 20D, the rotor electrode is fixed by attaching the separate collar 325 last. If the required number of the rotor electrode plates are arranged and the rotor electrode plates are connected by the conductive wires, the stator electrode is attached next. Here, a method of attaching the stator electrode will be described with reference to FIGS.
 図21は、回転軸303に固定子電極333を取り付ける方法の一例として、半割れ法を示す図である。
 図21に示すように、複数の半割れ形状の固定子電極333を夫々別の分割ケース335に収納して、回転軸303の左右から嵌め合わせる。そして、左右の半割れ形状の固定子電極333の導通を取ることにより電気的に一体化させる。なお、固定子電極333の枚数は、回転子電極332の枚数と同じか、又は1枚増減させて挟み込む。回転子電極332は、嵌め合わされる2つの半割れ形状の固定子電極333と共に、嵌め合わされる分割ケース335の中に収納される。
FIG. 21 is a diagram showing a half crack method as an example of a method of attaching the stator electrode 333 to the rotating shaft 303.
As shown in FIG. 21, a plurality of half-cracked stator electrodes 333 are housed in separate divided cases 335 and fitted from the left and right of the rotating shaft 303. Then, the left and right half-cracked stator electrodes 333 are electrically connected to each other so as to be electrically integrated. Note that the number of stator electrodes 333 is the same as the number of rotor electrodes 332, or the number of stator electrodes 333 is increased or decreased by one. The rotor electrode 332 is housed in the split case 335 to be fitted together with the two half-cracked stator electrodes 333 to be fitted.
 図22は、回転軸303に固定子電極341を取り付ける方法の一例として、開口法を示す図である。
 図22に示すように、開口部を有する固定子電極341の一方に開口を作り、回転軸303が一方向から差し込めるようにする。即ち、回転軸303が通る部分に開口部を設ける。なお、この開口部だけが接合容量Ccが小さくなるため、後から開口を塞ぐアタッチメントを用意しても良い。ただし、アタッチメントは、周囲の固定子電極と電気的に一体化することになる。回転子電極332は、開口部を有する固定子電極341と共にケース342の中に収納される。
 以上のように、図17乃至22に示した方法により、既存の回転軸303に対し後付けで電界結合非接触電力供給部を取り付けることが可能になる。
FIG. 22 is a diagram illustrating an opening method as an example of a method of attaching the stator electrode 341 to the rotating shaft 303.
As shown in FIG. 22, an opening is made in one of the stator electrodes 341 having an opening so that the rotating shaft 303 can be inserted from one direction. That is, an opening is provided in a portion through which the rotation shaft 303 passes. In addition, since the junction capacitance Cc is reduced only in this opening, an attachment for closing the opening later may be prepared. However, the attachment is electrically integrated with the surrounding stator electrodes. The rotor electrode 332 is housed in the case 342 together with the stator electrode 341 having an opening.
As described above, by the method shown in FIGS. 17 to 22, the electric field coupling non-contact power supply unit can be attached to the existing rotating shaft 303 later.
 図23は、回転体電極354と固定体電極353との間に流体Gを注入する電力伝送軸受の例を示す図である。
 このとき、流体G内に回転ベアリングとして機能する物質を分散させて混ぜてもよい。回転ベアリングとして機能する物質としては、フラーレン(C60、C70、C76、C78、C82、C84、C86、C88、C90、C92、C94、C96、C116等)やセラミックボール等があり、電極間距離に応じて使い分けることができる。図23では、ポンプPによって流体G及び回転ベアリングとして機能する物質を循環させている。また、回転体電極354に撹拌機構を設けた場合、ポンプPは不要となる。
FIG. 23 is a diagram illustrating an example of a power transmission bearing in which a fluid G is injected between the rotating body electrode 354 and the fixed body electrode 353.
At this time, a substance functioning as a rotary bearing may be dispersed in the fluid G and mixed. Substances that function as rotating bearings include fullerenes (C60, C70, C76, C78, C82, C84, C86, C88, C90, C92, C94, C96, C116, etc.) and ceramic balls, depending on the distance between the electrodes. Can be used properly. In FIG. 23, the fluid P and the substance functioning as the rotary bearing are circulated by the pump P. In addition, when the stirring mechanism is provided in the rotating body electrode 354, the pump P is not necessary.
 以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. It is.
 例えば、上述した実施形態では、電極対の非接触が前提とされているが、完全な非接触でなくとも絶縁物を介して接触し、電気的に近接状態を維持した場合には、十分な接合容量を確保することは可能である。即ち、電極対の一部が物理的に互いに接触したとしても電気的に絶縁されていれば、十分な電力を供給することができる。 For example, in the above-described embodiment, it is assumed that the electrode pair is not in contact, but it is sufficient if contact is made through an insulator and the electrical proximity state is maintained even if it is not completely contactless. It is possible to ensure the junction capacity. That is, even if some of the electrode pairs are physically in contact with each other, sufficient electric power can be supplied as long as they are electrically insulated.
 以上まとめると、本発明が適用される電力供給システムは、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
 即ち、本発明が適用される電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源(例えば図1の電源Vf)からの電力を送電する電力伝送線路(例えば図1の送電部1)と、
 受電電極(例えば図1の櫛形受電電極22)を有し、前記電力伝送線路に沿って移動し、前記電力伝送線路のうち前記受電電極と対向する部位を送電電極(例えば図1の多溝送電電極12)として、当該送電電極と当該受電電極とにより形成される複数の接合容量(例えば図1の接合容量Cc)を介して前記電力伝送線路から電力を受電して負荷(例えば図1の負荷R)に供給する受電部(例えば図1の受電部2)と、
 を備え、
 前記受電部は、ばね性部材(例えば図2のヘッド固定部223)を構成要素に含み、前記負荷に電力が供給されている状態で前記電力伝送線路の湾曲部(例えば図2の湾曲部C)に沿って移動可能である。
 これにより、湾曲部を有する電力伝送線路において、電力の伝送を行う際に、接合容量を安定的に増大させることができる。
In summary, the power supply system to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
That is, the power supply system to which the present invention is applied is
A power supply system using electric field coupled power transmission technology,
A power transmission line (for example, the power transmission unit 1 in FIG. 1) that transmits power from an AC power source (for example, the power source Vf in FIG. 1) having a predetermined wavelength;
It has a power receiving electrode (for example, the comb-shaped power receiving electrode 22 in FIG. 1), moves along the power transmission line, and a portion of the power transmission line that faces the power receiving electrode is a power transmitting electrode (for example, multi-groove power transmitting in FIG. 1). The electrode 12) receives power from the power transmission line through a plurality of junction capacitances (for example, the junction capacitance Cc in FIG. 1) formed by the power transmission electrode and the power reception electrode, and loads (for example, the load in FIG. 1). R) for receiving power (for example, power receiving unit 2 in FIG. 1),
With
The power receiving unit includes a spring-like member (for example, the head fixing unit 223 in FIG. 2) as a component, and the power transmission line has a curved portion (for example, the curved portion C in FIG. 2) while power is supplied to the load. ).
Thereby, in the power transmission line having a curved portion, the junction capacitance can be stably increased when power is transmitted.
 また、前記送電電極と前記受電電極とが相互に入れ子状に対向配置された状態で前記接合容量が形成されることができる。
 これにより、湾曲部を有する電力伝送線路において、接合容量をさらに安定的に増大させることができる。
In addition, the junction capacitance may be formed in a state where the power transmission electrode and the power reception electrode are arranged opposite to each other in a nested manner.
Thereby, in the power transmission line having the curved portion, the junction capacitance can be increased more stably.
 また、複数の前記送電電極の近傍かつ前記交流電源側に、前記複数の送電電極に対し非接触で対向配置された送電側導電板(例えば図6の送電部シャーシ111)と、
 複数の前記受電電極の近傍かつ前記負荷側に、前記複数の受電電極に対し非接触で対向配置された受電側導電板(例えば図6の受電部シャーシ271)と、
 をさらに備え、
 前記送電側導電板と前記受電側導電板とが、前記送電電極及び前記受電電極の端部よりも外側にはみ出た状態(例えば図7(c)乃至(e)の状態)で、前記送電電極及び前記受電電極を外側から挟むように配置されることができる。
In addition, a power transmission side conductive plate (for example, the power transmission unit chassis 111 in FIG. 6) disposed in the vicinity of the plurality of power transmission electrodes and on the AC power supply side in a noncontact manner with respect to the plurality of power transmission electrodes;
A power-receiving-side conductive plate (for example, power-receiving unit chassis 271 in FIG. 6) disposed in the vicinity of the plurality of power-receiving electrodes and on the load side in a non-contact manner with respect to the plurality of power-receiving electrodes;
Further comprising
The power transmission electrode in a state where the power transmission side conductive plate and the power reception side conductive plate protrude outward from the ends of the power transmission electrode and the power reception electrode (for example, the states of FIGS. 7C to 7E). In addition, the power receiving electrode may be disposed so as to be sandwiched from outside.
 また、前記送電側導電板と前記受電側導電板とのうち、前記送電電極及び前記受電電極の端部よりも外側にはみ出た部位が湾曲部を有し、前記送電側導電板の端部と前記受電側導電板の端部とが互いに接近した状態を維持させることができる。
 これにより、湾曲部を有する電力伝送線路において、接合容量を安定的に増大させるとともに、電磁波放射を低減させ、安全性(感電防止)を高め、さらに、ゴミ等の混入に対しての耐性を高めることができる。
Further, of the power transmission side conductive plate and the power reception side conductive plate, a portion that protrudes outside the end portions of the power transmission electrode and the power reception electrode has a curved portion, and an end portion of the power transmission side conductive plate It is possible to maintain a state where the end portions of the power receiving side conductive plate are close to each other.
As a result, in a power transmission line having a curved portion, the junction capacitance is stably increased, electromagnetic radiation is reduced, safety (prevention of electric shock) is increased, and resistance to contamination such as dust is increased. be able to.
 また、本発明が適用される電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備え、
 前記送電部は、
 回転軸と、前記回転軸(例えば図14の回転軸500)と電気的に絶縁されている複数層の平板からなる送電電極(例えば図14の送電電極ディスク131)とを有し、
 前記受電部は、
 前記回転軸の周囲に配置された固定体と、前記固定体及び前記送電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる受電電極(例えば図14の受電電極ディスク281)と、を有し、
 前記送電電極と前記受電電極とが、相互に入れ子状に対向配置されている。
The power supply system to which the present invention is applied is
A power supply system using electric field coupled power transmission technology,
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
With
The power transmission unit
A rotating shaft, and a power transmitting electrode (for example, a power transmitting electrode disk 131 in FIG. 14) composed of a plurality of layers of plates that are electrically insulated from the rotating shaft (for example, the rotating shaft 500 in FIG. 14),
The power receiving unit
A stationary body arranged around the rotation shaft, and a power receiving electrode composed of a plurality of layers of flat plates fixed to the stationary body in a state of being electrically insulated from the stationary body and the power transmission electrode (for example, the power receiving in FIG. 14) An electrode disk 281),
The power transmitting electrode and the power receiving electrode are arranged opposite to each other in a nested manner.
 また、本発明が適用される電力供給システムは、
 電界結合電力伝送技術を適用した電力供給システムであって、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備え、
 前記送電部は、
 回転軸の周囲に配置された固定体と、前記固定体及び前記受電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる送電電極と、を有し、
 前記受電部は、
 前記回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる受電電極とを有し、
 前記受電電極と前記送電電極とが、相互に入れ子状に対向配置されている。
 これにより、回転体に対する電力伝送において、接合容量を安定的に増大させるとともに、電磁波放射を低減させ、安全性(感電防止)を高め、さらに、ゴミ等の混入に対しての耐性を高めることができる。
The power supply system to which the present invention is applied is
A power supply system using electric field coupled power transmission technology,
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
With
The power transmission unit
A fixed body disposed around a rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the power receiving electrode,
The power receiving unit
The rotating shaft, and a power receiving electrode comprising a plurality of layers of flat plates electrically insulated from the rotating shaft,
The power receiving electrode and the power transmitting electrode are arranged opposite to each other in a nested manner.
As a result, in power transmission to the rotating body, it is possible to stably increase the junction capacity, reduce electromagnetic radiation, increase safety (prevention of electric shock), and increase resistance to contamination of dust and the like. it can.
 また、本発明が適用される電力供給システムは、
 所定の波長の交流電源からの電力を送電する送電部と、
 受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
 を備える、電界結合電力伝送技術を適用した電力供給システムであって、
 回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる第1電極と、
 前記回転軸の周囲に配置された固定体と、前記固定体及び前記第1電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる第2電極と、
 が相互に入れ子状に対向配置されており、
 前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記回転軸を回路の一部に含む場合には、前記第1電極群の一部が前記回転軸に接触した状態であっても、前記接合容量を介して前記負荷に電力を供給することができる。
 また、前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記固定体を回路の一部に含む場合には、前記第2電極群の一部が前記固定体に接触した状態であっても、前記接合容量を介して前記負荷に電力を供給することができる。
 また、前記第1電極が前記送電電極であり前記第2電極が前記受電電極である場合であっても、前記負荷に電力を供給することができる。
The power supply system to which the present invention is applied is
A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
A power supply system to which electric field coupled power transmission technology is applied,
A first electrode comprising a rotating shaft and a plurality of layers of flat plates electrically insulated from the rotating shaft;
A fixed body arranged around the rotating shaft, and a second electrode comprising a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the first electrode;
Are placed opposite each other in a nested manner,
When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the rotation axis is included in a part of the circuit, a part of the first electrode group Even when in contact with the rotating shaft, power can be supplied to the load via the junction capacitance.
Further, when the first electrode group is the power receiving electrode and the second electrode group is the power transmission electrode, and the fixed body is included in a part of the circuit, the second electrode group Even when a part of the fixed body is in contact with the fixed body, electric power can be supplied to the load through the junction capacitance.
Further, even when the first electrode is the power transmitting electrode and the second electrode is the power receiving electrode, power can be supplied to the load.
 また、前記送電電極と前記受電電極との間に流入された流体の存在によって、前記送電電極と前記受電電極とを離隔させることができる。
 これにより、回転体および湾曲部を有する線路に対する電力伝送において、接合容量を安定化させることができる。
Further, the power transmitting electrode and the power receiving electrode can be separated by the presence of the fluid that flows between the power transmitting electrode and the power receiving electrode.
Thereby, in electric power transmission with respect to the track | line which has a rotary body and a curved part, junction capacity can be stabilized.
 本発明が適用される電力供給システムは、完全非接触で、これらの特性を満足するものである。
 即ち、複数の方式で対処できる技術を保有することで、用途によって使い分けることが可能となり、複数の技術を組み合わせて使用することもできる。このことは、電界結合非接触電力供給技術の可能性を大きく広げることに繋がる。
 サンドウィッチ電極は、対向する面の面積を積層構造によって増大させるもので有るため、完全非接触化させることも可能になる。特に、高速回転部分ではサンドウィッチ電極を活用する必要性が高い。ただし、完全な非接触でなくとも絶縁物を介して接触し、電気的に近接状態を維持した場合には、十分な接合容量を確保することは可能である。即ち、電極対の一部が物理的に互いに接触したとしても電気的に絶縁されていれば、十分な電力を供給することができる。
The power supply system to which the present invention is applied is completely contactless and satisfies these characteristics.
In other words, by possessing technologies that can be handled by a plurality of methods, it is possible to use them depending on the application, and it is also possible to use a plurality of technologies in combination. This leads to greatly expanding the possibilities of electric field coupling contactless power supply technology.
Since the sandwich electrode increases the area of the opposing surface by a laminated structure, it can be made completely non-contact. In particular, it is highly necessary to use a sandwich electrode in a high-speed rotating part. However, even if it is not completely non-contact, it is possible to ensure a sufficient junction capacity when the contact is made through the insulator and the electrical proximity state is maintained. That is, even if some of the electrode pairs are physically in contact with each other, sufficient electric power can be supplied as long as they are electrically insulated.
1:送電部、2:受電部、11,21:並列共振回路、12:多溝送電電極、22:櫛形受電電極、111:送電部シャーシ、送電電極板:123、121:金属カバー、131,141:送電電極ディスク、221,241:受電電極部、222,247,257:弾性体、223:ヘッド固定部、224,232,242,252:電極固定ロッド、225:ヘッド部、231:送電電極、233,244,254:ホイール、234:ばね材、235:ヒンジピン、236:接続線、243:中央保持板、245,255:ホイールピン、246:ホイール固定金属板、248,251,258:吸排気口、249,259:導線、250,260:コンタクト、253:中央保持板、271:受電部シャーシ、272:移動体、受電電極板:273、281,291:受電電極ディスク、292:多重ディスク型サンドウィッチ構造電極、293:絶縁層、301:軸固定ブロック、302:導通線、303,500:回転軸、304:通しボルト、305:押さえ金具、306:固定バンド、307:じゃばら板、308:連接金具、309:ネジ、310:ネジ受け金具、311,331:軸固定ブロック、312,312a,312b,313,313a,313b,332:回転子電極、315:固定ボルト、316:導通ボルト、321:ゴム板、322:被覆導線、323:半割れ形状の金属パイプ、324:半割れ形状の回転子電極、325:セパレートカラー、333:半割れ形状の固定子電極、334:導通ケーブル、335:分割ケース、341:開口部を有する固定子電極、342:ケース、351:回転体電極固定絶縁体、352:回転体電極固定流体分配絶縁体、353:固定体電極、354:回転体電極、400:CAP電極、601:回転体(固定体)、701:固定体(回転体) 1: power transmission unit, 2: power reception unit, 11, 21: parallel resonance circuit, 12: multi-groove power transmission electrode, 22: comb-shaped power reception electrode, 111: power transmission unit chassis, power transmission electrode plate: 123, 121: metal cover, 131, 141: Power transmission electrode disk, 221, 241: Power reception electrode part, 222, 247, 257: Elastic body, 223: Head fixing part, 224, 232, 242, 252: Electrode fixing rod, 225: Head part, 231: Power transmission electrode 233, 244, 254: Wheel, 234: Spring material, 235: Hinge pin, 236: Connection line, 243: Center holding plate, 245, 255: Wheel pin, 246: Wheel fixing metal plate, 248, 251, 258: Absorption Exhaust port, 249, 259: conducting wire, 250, 260: contact, 253: central holding plate, 271: power receiving unit chassis, 272: moving body, power receiving Electrode plate: 273, 281, 291: Power receiving electrode disk, 292: Multiple disk type sandwich structure electrode, 293: Insulating layer, 301: Shaft fixing block, 302: Conducting wire, 303,500: Rotating shaft, 304: Through bolt, 305: Press fitting, 306: Fixing band, 307: Sputter plate, 308: Connecting metal fitting, 309: Screw, 310: Screw receiving fitting, 311 and 331: Shaft fixing block, 312, 312a, 312b, 313, 313a, 313b, 332: Rotor electrode, 315: Fixing bolt, 316: Conductive bolt, 321: Rubber plate, 322: Coated conductor, 323: Half-cracked metal pipe, 324: Half-cracked rotor electrode, 325: Separate color, 333: Half-cracked stator electrode, 334: Conductive cable, 335: Split case, 341: Open 342: Case, 351: Rotating body electrode fixed insulator, 352: Rotating body electrode fixed fluid distribution insulator, 353: Fixed body electrode, 354: Rotating body electrode, 400: CAP electrode, 601: Rotating body (fixed body), 701: Fixed body (rotating body)

Claims (8)

  1.  電界結合電力伝送技術を適用した電力供給システムであって、
     所定の波長の交流電源からの電力を送電する電力伝送線路と、
     受電電極を有し、前記電力伝送線路に沿って移動し、前記電力伝送線路のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記電力伝送線路から電力を受電して負荷に供給する受電部と、
     を備え、
     前記受電部は、ばね性部材を構成要素に含み、前記負荷に電力が供給されている状態で前記電力伝送線路の湾曲部に沿って移動可能である、
     電力供給システム。
    A power supply system using electric field coupled power transmission technology,
    A power transmission line for transmitting power from an AC power source of a predetermined wavelength;
    A plurality of junction capacitors formed by the power transmission electrode and the power receiving electrode, having a power receiving electrode, moving along the power transmission line, and using a portion of the power transmission line facing the power receiving electrode as a power transmitting electrode A power receiving unit that receives power from the power transmission line via the power supply and supplies the power to a load;
    With
    The power receiving unit includes a spring-like member as a component, and is movable along a curved portion of the power transmission line in a state where power is supplied to the load.
    Power supply system.
  2.  前記送電電極と前記受電電極とが相互に入れ子状に対向配置された状態で前記接合容量が形成される、
     請求項1に記載の電力供給システム。
    The junction capacitance is formed in a state where the power transmission electrode and the power reception electrode are arranged opposite to each other in a nested manner,
    The power supply system according to claim 1.
  3.  複数の前記送電電極の近傍かつ前記交流電源側に、前記複数の送電電極に対し非接触で対向配置された送電側導電板と、
     複数の前記受電電極の近傍かつ前記負荷側に、前記複数の受電電極に対し非接触で対向配置された受電側導電板と、
     をさらに備え、
     前記送電側導電板と前記受電側導電板とが、前記送電電極及び前記受電電極の端部よりも外側にはみ出た状態で、前記送電電極及び前記受電電極を外側から挟むように配置されている、
     請求項1又は2に記載の電力供給システム。
    Near the plurality of power transmission electrodes and on the AC power supply side, a power transmission side conductive plate disposed in a non-contact manner facing the plurality of power transmission electrodes;
    A power-receiving-side conductive plate that is disposed in the vicinity of the plurality of power-receiving electrodes and on the load side in a noncontact manner with respect to the plurality of power-receiving electrodes;
    Further comprising
    The power transmission side conductive plate and the power reception side conductive plate are arranged so as to sandwich the power transmission electrode and the power reception electrode from the outside in a state of protruding outward from the ends of the power transmission electrode and the power reception electrode. ,
    The power supply system according to claim 1 or 2.
  4.  前記送電側導電板と前記受電側導電板とのうち、前記送電電極及び前記受電電極の端部よりも外側にはみ出た部位が湾曲部を有し、前記送電側導電板の端部と前記受電側導電板の端部とが互いに接近した状態が維持されている、
     請求項3に記載の電力供給システム。
    Of the power transmission side conductive plate and the power reception side conductive plate, a portion that protrudes outside the ends of the power transmission electrode and the power reception electrode has a curved portion, and the end of the power transmission side conductive plate and the power reception The state where the end portions of the side conductive plates are close to each other is maintained,
    The power supply system according to claim 3.
  5.  電界結合電力伝送技術を適用した電力供給システムであって、
     所定の波長の交流電源からの電力を送電する送電部と、
     受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
     を備え、
     前記送電部は、
     回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる送電電極とを有し、
     前記受電部は、
     前記回転軸の周囲に配置された固定体と、前記固定体及び前記送電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる受電電極と、を有し、
     前記送電電極と前記受電電極とが、相互に入れ子状に対向配置されている、
     電力供給システム。
    A power supply system using electric field coupled power transmission technology,
    A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
    A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
    With
    The power transmission unit
    A rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates electrically insulated from the rotating shaft,
    The power receiving unit
    A stationary body arranged around the rotating shaft, and a power receiving electrode composed of a plurality of layers of flat plates fixed to the stationary body in a state of being electrically insulated from the stationary body and the power transmission electrode,
    The power transmission electrode and the power reception electrode are arranged opposite to each other in a nested manner,
    Power supply system.
  6.  電界結合電力伝送技術を適用した電力供給システムであって、
     所定の波長の交流電源からの電力を送電する送電部と、
     受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
     を備え、
     前記送電部は、
     回転軸の周囲に配置された固定体と、前記固定体及び前記受電電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる送電電極と、を有し、
     前記受電部は、
     前記回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる受電電極とを有し、
     前記受電電極と前記送電電極とが、相互に入れ子状に対向配置されている、
     電力供給システム。
    A power supply system using electric field coupled power transmission technology,
    A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
    A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
    With
    The power transmission unit
    A fixed body disposed around a rotating shaft, and a power transmission electrode composed of a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the power receiving electrode,
    The power receiving unit
    The rotating shaft, and a power receiving electrode comprising a plurality of layers of flat plates electrically insulated from the rotating shaft,
    The power receiving electrode and the power transmitting electrode are arranged opposite to each other in a nested manner,
    Power supply system.
  7.  所定の波長の交流電源からの電力を送電する送電部と、
     受電電極を有し、前記送電部のうち前記受電電極と対向する部位を送電電極として、当該送電電極と当該受電電極とにより形成される複数の接合容量を介して前記送電部から電力を受電して負荷に供給する受電部と、
     を備える、電界結合電力伝送技術を適用した電力供給システムであって、
     回転軸と、前記回転軸と電気的に絶縁されている複数層の平板からなる第1電極と、
     前記回転軸の周囲に配置された固定体と、前記固定体及び前記第1電極と電気的に絶縁された状態で前記固定体に固定された複数層の平板からなる第2電極と、
     が相互に入れ子状に対向配置されており、
     前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記回転軸を回路の一部に含む場合には、前記第1電極群の一部が前記回転軸に接触した状態であっても、前記接合容量を介して前記負荷に電力が供給され、
     前記第1電極群が前記受電電極であり前記第2電極群が前記送電電極である場合であって、かつ前記固定体を回路の一部に含む場合には、前記第2電極群の一部が前記固定体に接触した状態であっても、前記接合容量を介して前記負荷に電力を供給され、
     前記第1電極が前記送電電極であり前記第2電極が前記受電電極である場合であっても、前記負荷に電力が供給される、
     電力供給システム。
    A power transmission unit for transmitting power from an AC power source of a predetermined wavelength;
    A power receiving electrode is provided, and a portion facing the power receiving electrode of the power transmitting unit is used as a power transmitting electrode to receive power from the power transmitting unit through a plurality of junction capacitors formed by the power transmitting electrode and the power receiving electrode. A power receiving unit that supplies power to the load,
    A power supply system to which electric field coupled power transmission technology is applied,
    A first electrode comprising a rotating shaft and a plurality of layers of flat plates electrically insulated from the rotating shaft;
    A fixed body arranged around the rotating shaft, and a second electrode comprising a plurality of layers of flat plates fixed to the fixed body in a state of being electrically insulated from the fixed body and the first electrode;
    Are placed opposite each other in a nested manner,
    When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the rotation axis is included in a part of the circuit, a part of the first electrode group Even in a state in which the rotating shaft is in contact with the load, power is supplied to the load through the junction capacitance,
    When the first electrode group is the power receiving electrode and the second electrode group is the power transmitting electrode, and the fixed body is included in a part of the circuit, a part of the second electrode group Even in a state where it is in contact with the fixed body, power is supplied to the load through the junction capacitance,
    Even if the first electrode is the power transmission electrode and the second electrode is the power reception electrode, power is supplied to the load.
    Power supply system.
  8.  前記送電電極と前記受電電極との間に流入された流体の存在によって、前記送電電極と前記受電電極とが離隔している、
     請求項1乃至7のうちいずれか1項に記載の電力供給システム。
    Due to the presence of fluid flowing between the power transmission electrode and the power reception electrode, the power transmission electrode and the power reception electrode are separated from each other,
    The power supply system according to any one of claims 1 to 7.
PCT/JP2017/006520 2016-02-22 2017-02-22 Power supply system WO2017146082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501725A JPWO2017146082A1 (en) 2016-02-22 2017-02-22 Power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031312 2016-02-22
JP2016-031312 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017146082A1 true WO2017146082A1 (en) 2017-08-31

Family

ID=59685309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006520 WO2017146082A1 (en) 2016-02-22 2017-02-22 Power supply system

Country Status (2)

Country Link
JP (1) JPWO2017146082A1 (en)
WO (1) WO2017146082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658994A (en) * 2017-11-13 2018-02-02 中车青岛四方机车车辆股份有限公司 A kind of radio energy transmission system
JP2019068581A (en) * 2017-09-29 2019-04-25 国立大学法人豊橋技術科学大学 Power transmission electrode device and wireless power supply system using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158642A (en) * 1978-06-06 1979-12-14 Ulvac Corp Feeder for high frequency large power to rotary electrode working in vacuum atmosphere
WO2012102190A1 (en) * 2011-01-27 2012-08-02 ソニー株式会社 Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument
WO2014208683A1 (en) * 2013-06-27 2014-12-31 昭和電工株式会社 Power transmitter, power supply device, power consumption device, power supply system and method for producing power transmitter
JP2015099880A (en) * 2013-11-20 2015-05-28 三星テクウィン株式会社Samsung Techwin Co., Ltd Work machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158642A (en) * 1978-06-06 1979-12-14 Ulvac Corp Feeder for high frequency large power to rotary electrode working in vacuum atmosphere
WO2012102190A1 (en) * 2011-01-27 2012-08-02 ソニー株式会社 Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument
WO2014208683A1 (en) * 2013-06-27 2014-12-31 昭和電工株式会社 Power transmitter, power supply device, power consumption device, power supply system and method for producing power transmitter
JP2015099880A (en) * 2013-11-20 2015-05-28 三星テクウィン株式会社Samsung Techwin Co., Ltd Work machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068581A (en) * 2017-09-29 2019-04-25 国立大学法人豊橋技術科学大学 Power transmission electrode device and wireless power supply system using the same
CN107658994A (en) * 2017-11-13 2018-02-02 中车青岛四方机车车辆股份有限公司 A kind of radio energy transmission system

Also Published As

Publication number Publication date
JPWO2017146082A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
TW200832860A (en) Non-contact type power feeder system for mobile object and protecting apparatus therefor
US9748802B2 (en) Contactless rotary joint
CN101681696B (en) Motor vehicle power cable
CN103492220B (en) The power transmission side device of resonance type noncontact feeding power system, resonance type noncontact feeding power system and car charging device
EP2690636A1 (en) Magnetic element for wireless power transmission and method for manufacturing same
JP6586460B2 (en) Power supply system
US10116150B2 (en) Conductive plate and electronic device having the same
WO2015146889A1 (en) Power reception system
JP2013184586A (en) Contactless power supply device
US9960638B2 (en) Wireless power transmission system
WO2017146082A1 (en) Power supply system
US20170063155A1 (en) Power Supply Device
JP7373709B2 (en) High frequency coil parts, coil parts for wireless power supply, wireless power supply device, and manufacturing method of frequency coil parts
JPWO2014132518A1 (en) Power transmission device and power reception device
JP5482967B1 (en) Wireless power transmission system
TWI397236B (en) Contactless power supply system
WO2012102008A1 (en) Coil unit used in noncontact electric-power-supplying system
CN206991926U (en) Circuit arrangement and electrical power transmission system
WO2021171961A1 (en) Sheet-shaped electrical conduction path
CN109835275A (en) Flat distribution structure
WO2019160162A1 (en) Power supply system and distribution method
US11387035B2 (en) Wireless charging coil
JP2015050261A (en) Antenna sheet for noncontact charger and charger using that sheet
JP6208592B2 (en) Power transmission communication transmission line
NL2019416B1 (en) Topology of a ferrite shield for inductive coils

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501725

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756520

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756520

Country of ref document: EP

Kind code of ref document: A1