WO2012102190A1 - Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument - Google Patents

Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument Download PDF

Info

Publication number
WO2012102190A1
WO2012102190A1 PCT/JP2012/051167 JP2012051167W WO2012102190A1 WO 2012102190 A1 WO2012102190 A1 WO 2012102190A1 JP 2012051167 W JP2012051167 W JP 2012051167W WO 2012102190 A1 WO2012102190 A1 WO 2012102190A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
capacitive element
capacitor
element body
stress
Prior art date
Application number
PCT/JP2012/051167
Other languages
French (fr)
Japanese (ja)
Inventor
則孝 佐藤
管野 正喜
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2012102190A1 publication Critical patent/WO2012102190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/013Dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a capacitive element and a resonance circuit including the capacitive element, and more particularly to a capacitive element capable of controlling a stress generated in the capacitive element during use and increasing a capacitance, a method of manufacturing the capacitive element, and a capacitance thereof
  • the present invention relates to a resonant circuit using an element.
  • the present invention relates to a communication system, a wireless charging system, a power supply device, and an electronic device using the capacitor.
  • Patent Document 1 a multilayer ceramic capacitor in which external electrodes are formed on a multilayer dielectric element body in which dielectric layers and internal electrode layers are alternately stacked has been proposed.
  • Patent Document 1 the obtained electrostatic capacity is improved by utilizing the fact that the dielectric constant is improved by the residual stress applied as a result of the manufacturing process inside the multilayer dielectric element body constituting the multilayer ceramic capacitor. It is described. As described above, since the residual stress is eventually applied to the multilayer dielectric element body in the multilayer ceramic capacitor, the dielectric constant can be improved, so that further miniaturization is possible.
  • the present disclosure provides a capacitive element that can ensure a capacitance value with high accuracy, a capacitive element that can increase capacitance by applying a control voltage, and a method for manufacturing the capacitive element.
  • a resonance circuit, a communication system, a wireless charging system, a power supply device, and an electronic device using these capacitive elements are provided.
  • the capacitive element of the present disclosure includes a capacitive element body that includes a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Further, a stress control unit is provided for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body.
  • the stress generated in the dielectric layer of the capacitive element body can be controlled by the stress control unit, and the capacitance of the capacitive element body can be increased. Thereby, the electrostatic capacitance of the capacitive element body can be controlled.
  • a capacitive paste is formed by applying a conductive paste on a dielectric sheet to be a dielectric layer so as to have a desired electrode shape, and the periphery of the capacitive element electrode is embedded.
  • the method includes a step of forming a laminated body that becomes a capacitive element body by laminating a plurality of dielectric sheets on which capacitive element electrodes are formed.
  • the method includes a step of bonding the capacitor element body to a stress control unit that controls the stress generated in the dielectric layer of the capacitor element body and increases the capacitance of the capacitor element body.
  • the periphery of the capacitive element electrode is reinforced by forming the dielectric material film.
  • the resonance circuit includes a resonance capacitor and a resonance coil connected to the resonance capacitor.
  • the resonant capacitor includes a capacitive element body including a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer.
  • the resonant capacitor includes a stress control unit that controls the stress generated in the dielectric layer of the capacitive element body and increases the capacitance of the capacitive element body.
  • the communication system includes a transmission device and a reception device.
  • the transmission device includes a first resonance capacitor and a first resonance coil connected to the first resonance capacitor.
  • the first resonance coil includes a first capacitor composed of a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer.
  • An element body is provided.
  • a first stress control unit is provided that controls the stress generated in the first dielectric layer of the first capacitive element body and increases the capacitance of the first capacitive element body.
  • the receiving device includes a second resonance capacitor and a second resonance coil connected to the second resonance capacitor.
  • the second resonance coil includes a second capacitor composed of at least one pair of second capacitor elements that sandwich the second dielectric layer and the second dielectric layer and generate a desired electric field in the second dielectric layer.
  • An element body is provided.
  • a second stress control unit is provided for controlling the stress generated in the second dielectric layer of the second capacitive element body and increasing the capacitance of the second capacitive element body.
  • the wireless charging system of the present disclosure includes a power feeding device and a power receiving device.
  • the power feeding device includes a first resonance capacitor and a first resonance coil connected to the first resonance capacitor.
  • the first resonance coil includes a first capacitor composed of a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer.
  • An element body is provided.
  • a first stress control unit is provided that controls the stress generated in the first dielectric layer of the first capacitive element body and increases the capacitance of the first capacitive element body.
  • the power receiving device includes a second resonance capacitor and a second resonance coil connected to the second resonance capacitor.
  • the second resonance coil includes a second capacitor composed of at least one pair of second capacitor elements that sandwich the second dielectric layer and the second dielectric layer and generate a desired electric field in the second dielectric layer.
  • An element body is provided.
  • a second stress control unit is provided for controlling the stress generated in the second dielectric layer of the second capacitive element body and increasing the capacitance of the second capacitive element body.
  • the power supply device of the present disclosure includes a variable impedance configured to include a power supply unit and a resonant capacitor including a capacitive element.
  • the capacitive element includes a capacitive element body that includes a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Furthermore, the stress control part which controls the stress which generate
  • the electronic device of the present disclosure includes a resonance capacitor and a resonance coil to which the resonance coil is connected.
  • the resonant capacitor includes a capacitive element body including a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Further, a stress control unit is provided for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body.
  • the present disclosure it is possible to obtain a capacitive element whose capacitance value is accurately controlled. Moreover, the electrostatic capacity of the capacitive element body can be increased by applying stress to the capacitive element body by the stress control unit. The performance of the resonance circuit can be improved by using these capacitive elements in the resonance circuit.
  • a and B are a circuit configuration and an equivalent circuit diagram of a variable capacitance element according to the first embodiment of the present disclosure. It is the figure which showed the change rate of the electrostatic capacitance Cac obtained by the variable capacitance element main body when applying changing the 1st control voltage V1 and the 2nd control voltage V2. It is the figure which showed the change rate of the electrostatic capacitance Cac of a variable capacitive element main body when the 2nd control voltage V2 is hold
  • variable capacitance element when the first control voltage V1 and the second control voltage V2 are opposite in polarity, and the absolute values of the first control voltage V1 and the second control voltage V2 are increased while changing the polarity. It is the figure which showed the change rate of the electrostatic capacitance Cac of a main body. The rate of change of the capacitance Cac of the variable capacitance element body when the first control voltage V1 is alternately changed to 0V and 60V and the second control voltage V2 is alternately changed to 0V and ⁇ 60V is shown. It is a figure. FIG.
  • FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body when the polarities of the first control voltage V1 and the second control voltage V2 are the same and are alternately changed to 60V and ⁇ 60V.
  • FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are reversed in polarity and are alternately changed between 60V and ⁇ 60V. It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when the 2nd control voltage V2 is 60V and the 1st control voltage V1 is changed to 0V and 60V alternately.
  • FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is 60V and the second control voltage V2 is alternately changed to ⁇ 60V and 60V. It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when the 1st control voltage V1 is 60V and the 2nd control voltage V2 is changed to 0V and 60V alternately.
  • the circuit structure concerning the modification 1 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 2 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 3 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 4 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 5 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 6 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 7 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • the circuit structure concerning the modification 8 of the variable capacitance element concerning a 1st embodiment of this indication is shown.
  • a to C are process diagrams illustrating a conventional method for manufacturing a variable capacitance element.
  • FIG. 6 is a schematic cross-sectional configuration diagram of a variable capacitance element according to a second embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional configuration diagram of a variable capacitance element according to a third embodiment of the present disclosure. It is a block block diagram of the receiving system circuit part of the non-contact IC card using the resonance circuit which concerns on 4th Embodiment of this indication. It is a schematic block diagram of the communication system which concerns on 5th Embodiment of this indication. It is a schematic block diagram of the wireless charging system which concerns on 6th Embodiment of this indication. It is a schematic block diagram of the power supply device which concerns on 7th Embodiment of this indication. It is a schematic cross-sectional block diagram of the variable capacitance element for a principle explanation.
  • First Embodiment An Example of Applying the Present Disclosure to a Variable Capacitance Element 1-1 Principle 1-2 Configuration of Variable Capacitance Element 1-3 Measurement Experiment of Capacitance of Variable Capacitance Element 1-4 Manufacturing method 2.
  • Second Embodiment An example when the present disclosure is applied to a variable capacitance element 3.
  • Third Embodiment An example when the present disclosure is applied to a variable capacitance element. 4.
  • Fourth embodiment an example of an electronic device including the variable capacitance element of the present disclosure
  • Fifth embodiment an example of a communication system including the variable capacitance element of the present disclosure.
  • Sixth Embodiment An example of a wireless charging system including the variable capacitance element of the present disclosure.
  • Seventh Embodiment An example of a power supply device including the variable capacitance element of the present disclosure
  • FIG. 28 shows a schematic cross-sectional configuration of a conventional variable capacitance element for explaining the principle.
  • a variable capacitance element 100 shown in FIG. 28 includes a dielectric layer 103 and at least a pair of electrodes 101 and 102 that are sandwiched by the dielectric layer 103.
  • One electrode 101 is connected to one external terminal 104, and the other electrode 102 is connected to the other external terminal 105.
  • the dielectric layer 103 is made of a ferroelectric material, and the capacitance changes as the polarization state changes according to the control voltage applied from the outside.
  • a sintered material of a ferroelectric material is often used as the ferroelectric material constituting the dielectric layer 103.
  • barium titanate when barium titanate is used as a specific substance, it is known that its crystal state is changed by an electric field generated in the dielectric layer 103.
  • the crystal structure of barium titanate will be explained. Although the stable crystal structure varies depending on the temperature, for the sake of easy explanation, the following description will be made only at room temperature. It is known that barium titanate is stable in tetragonal crystal, and the tetragonal crystal has spontaneous polarization in the C-axis direction.
  • the sintered product of barium titanate is polycrystalline, and spontaneous polarization does not appear outside. The reason is as follows.
  • the spontaneous polarization region becomes a collective region composed of a plurality of small regions of several tetragonal crystals existing so that the polarizations cancel each other through the cubic crystal.
  • the micro regions exist also in the adjacent collective region, in an arrangement parallel to and orthogonal to the C-axis direction of the main tetragonal crystal in the collective area.
  • polarization does not appear to the outside as a whole of the sintered barium titanate.
  • the so-called C-axis lattice constant which is the polarization direction of tetragonal crystal, is longer than the lattice constant of the original cubic C-axis.
  • variable capacitance element 100 shown in FIG. 28 for example, when a sintered material of barium titanate is used as the ferroelectric material constituting the dielectric layer 103, the crystal state is changed depending on the electric field generated in the dielectric layer 103. How it changes will be described. There are a plurality of patterns in how the crystal state changes, and it is known that it depends on the strength and application time of the electric field, the reversal of the direction of the electric field, and the period (frequency) of the reversal.
  • the typical pattern of how the crystal state changes is as follows. First, an electric field in the dielectric layer is applied. Then, a very narrow region plane (domain) between a small region of a tetragonal crystal having a spontaneous polarization parallel to (and nearly parallel to) the electric field direction and a small region of a tetragonal crystal having a spontaneous polarization in the 90-degree direction adjacent thereto. The crystal type changes continuously as if the wall were moving. Then, the tetragonal microregions with the spontaneous polarization (and near parallel) spontaneously erode the tetragonal microregions with the spontaneous polarization in the 90-degree direction. That is, a large amount of polarization is arranged in the electric field direction. At this time, when the two minute regions are viewed together, they expand in the direction of the electric field and contract in the direction perpendicular to the direction of the electric field.
  • variable capacitance element 100 since a dedicated control terminal for controlling the capacitance is not configured, the control voltage for changing the capacitance and the signal voltage (alternating current) are between the same electrodes (see FIG. 28). 28, it is applied to the electrode 101 and the electrode 102). For this reason, the sum of the control voltage and the signal voltage is applied to the dielectric layer 103. Then, the crystal state of barium titanate constituting the dielectric layer 103 changes in accordance with the direction of the electric field generated in the dielectric layer 103, and the barium titanate expands or contracts back to the original state. A phenomenon of contraction occurs. As a result, the entire dielectric layer 103 expands or contracts back in the direction of the electric field, and further contracts from the original state.
  • an electrostatic force (Coulomb force) is generated between the pair of electrodes 101 and 102 that generate an electric field in the dielectric layer 103 as indicated by arrows A and B.
  • the electric field (electrode) acts to compress the dielectric layer 103 by this Coulomb force.
  • the present inventors have also obtained the knowledge that the coulomb force works to inhibit the elongation of barium titanate.
  • the polarization domains are aligned in the direction of the electric field, and the capacitance changes.
  • the Coulomb force inhibits the dislocation of the barium titanate crystal state and prevents the polarization domains from being aligned, thereby reducing the capacitance variable rate.
  • variable capacitance element 100 shown in FIG. 28 when the signal voltage (alternating current) applied to the dielectric layer 103 is particularly larger than the control voltage, the capacitance variable ratio due to the control voltage is reduced, and the dielectric loss is large. There was a problem of becoming. These phenomena are also considered because the electric field (electrode) brings compressive stress to the dielectric layer 103 due to Coulomb force acting between the electrodes.
  • the present inventors when configuring a variable capacitance element, use a configuration that can reduce or increase the stress on the dielectric layer, thereby improving the capacitance variable rate, reducing the dielectric loss, We thought that capacity could be stabilized.
  • FIG. 1 is a schematic cross-sectional configuration diagram of a variable capacitance element 1 of the present embodiment.
  • 2A is a circuit configuration of the variable capacitance element 1 of the present embodiment, and
  • FIG. 2B is an equivalent circuit diagram of the variable capacitance element 1 of the present embodiment.
  • variable capacitance element 1 of the present embodiment is composed of a variable capacitance element main body 2 and stress control units 6 and 7 that are provided on the upper and lower sides thereof.
  • the variable capacitance element body 2 includes a dielectric layer 4, first and second variable capacitance element electrodes 5 a and 5 b formed by alternately laminating a plurality of layers with the dielectric layer 4 interposed therebetween, and first and second Signal terminals 3a and 3b.
  • the first and second variable capacitance element electrodes 5 a and 5 b are formed of rectangular plate-like members, and are alternately stacked via the dielectric layers 4.
  • the end portion of the first variable capacitance element electrode 5 a is formed so as to be exposed from one side surface of the dielectric layer 4.
  • the end portion of the second variable capacitance element electrode 5 b is formed so as to be exposed from the other side surface facing one side surface of the dielectric layer 4.
  • the first signal terminal 3 a is formed on one side surface of the dielectric layer 4 and is electrically connected to the end portion of the first variable capacitance element electrode 5 a exposed on the side surface of the dielectric layer 4.
  • the second signal terminal 3 b is formed on the other side surface of the dielectric layer 4 and is electrically connected to the end of the second variable capacitance element electrode 5 b exposed on the side surface of the dielectric layer 4. ing.
  • the dielectric layer 4 is formed of a dielectric material whose dielectric constant is changed by applying a voltage between the first and second variable capacitance element electrodes 5a and 5b sandwiching the dielectric layer 4.
  • a ferroelectric material having a relative dielectric constant exceeding 1000.
  • a ferroelectric material that causes ion polarization is a ferroelectric material that is made of an ionic crystal material and is electrically polarized by the displacement of positive and negative ion atoms.
  • a ferroelectric material that generates ionic polarization is represented by the chemical formula ABO 3 (O is an oxygen element) and has a perovskite structure, where A and B are two predetermined elements. Examples of such a ferroelectric material include barium titanate (BaTiO 3 ), potassium niobate (KNbO 3 ), lead titanate (PbTiO 3 ), and the like.
  • PZT lead zirconate titanate obtained by mixing lead zirconate (PbZrO 3 ) with lead titanate (PbTiO 3 ) may be used as a material for forming the dielectric layer 4.
  • a ferroelectric material that generates electronic polarization may be used as the material for forming the dielectric layer 4.
  • this ferroelectric material an electric dipole moment is generated in a portion biased to a positive charge and a portion biased to a negative charge, and polarization occurs.
  • a rare earth iron oxide having a ferroelectric property by forming polarization by forming a charge surface of Fe 2+ and a charge surface of Fe 3+ has been reported.
  • the rare earth element is RE and the iron group element is TM
  • the material represented by the molecular formula (RE) ⁇ (TM) 2 ⁇ O 4 (O: oxygen element) has a high dielectric constant. It has been reported.
  • rare earth elements include Y, Er, Yb, and Lu (particularly Y and heavy rare earth elements), and examples of iron group elements include Fe, Co, and Ni (particularly Fe).
  • iron group elements include Fe, Co, and Ni (particularly Fe).
  • (RE) ⁇ (TM) 2 ⁇ O 4 include ErFe 2 O 4 , LuFe 2 O 4 , and YFe 2 O 4 .
  • variable capacitor element body 2 As shown in FIGS. 2A and 2B, by applying a desired signal voltage from the signal voltage power supply AC to the first signal terminal 3a and the second signal terminal 3b, the adjacent first In addition, a capacitance Cac is obtained between the second variable capacitance element electrodes 5a and 5b.
  • the stress control units 6 and 7 include first and second stress control electrodes 9a and 9b, and first and second control terminals, which are alternately stacked in layers with the dielectric layer 10 for stress control unit interposed therebetween. 8a and 8b.
  • the first and second stress control electrodes 9a and 9b are formed of rectangular plate-like members, and are alternately stacked with the stress control portion dielectric layers 10 interposed therebetween.
  • the end portion of the first stress control electrode is formed so as to be exposed from one side surface of the stress control portion dielectric layer 10.
  • the end portion of the second stress control electrode 9b is formed so as to be exposed from the other side surface opposed to one side surface of the stress control unit dielectric layer 10.
  • the first control terminal 8a is formed on one side surface of the stress control unit dielectric layer 10, and is electrically connected to the end portion of the first stress control electrode 9a exposed on the side surface of the stress control unit dielectric layer 10. It is connected.
  • the second control terminal 8 b is formed on the other side surface of the stress control unit dielectric layer 10, and the end of the second stress control electrode 9 b exposed on the side surface of the stress control unit dielectric layer 10. It is electrically connected to the part.
  • the stress controllers 6 and 7 are configured to sandwich the variable capacitor element body 2 in the thickness direction of the dielectric layer 4 of the variable capacitor element body 2 (the direction in which the electric field is generated). Further, the first and second stress control electrodes 9a and 9b are for the stress control unit while substantially maintaining a parallel relationship with the first and second variable capacitance element electrodes 5a and 5b constituting the variable capacitance element body 2.
  • the dielectric layers 10 are alternately stacked.
  • the thickness of the stress control portion dielectric layer 10 (the distance between the first stress control electrode 9 a and the second stress control electrode 9 b) and the thickness of the dielectric layer 4 (first variable).
  • the distance between the capacitive element electrode 5a and the second variable capacitive element electrode 5b) is the same.
  • the present invention is not limited to this and may be different.
  • the thickness (distance between the first stress control electrode 9a and the second stress control electrode 9b) of each dielectric layer for stress control unit 10 shown in FIG. 1 may be different.
  • the same material as the forming material of the dielectric layer 4 constituting the variable capacitance element body 2 can be used.
  • Such a substance may be selected from specific examples of a material for forming the dielectric layer 4 constituting the variable capacitance element body 2 or may be selected from generally used dielectric materials.
  • the dielectric material that is generally used, paper, polyethylene terephthalate, polypropylene, polyphenylene sulfide, polystyrene, TiO 2, MgTiO 2, SrMgTiO 2, Al 2 O 3, Ta 2 O 5, and the like.
  • a metal material such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is used as in the electrode constituting the variable capacitance element body 2. it can.
  • variable capacitance element 1 having such a configuration, as shown in FIGS. 2A and 2B, in the upper layer stress control section 6, the first control terminal 8a and the second control terminal 8b are connected to the first stress control first.
  • the first control voltage V1 is applied by the control voltage power source DC1.
  • the second control voltage V2 is applied to the first control terminal 8a and the second control terminal 8b by the second control voltage power source DC2 for stress control.
  • a Coulomb force is generated between the first stress control electrode 9a and the second stress control electrode 9b, and in the first and second stress control electrodes 9a and 9b other than the outermost electrode, the surface of the electrode On the side and the back side, Coulomb forces are generated in the opposite directions.
  • the polarization state in the dielectric layer 4 can be easily changed between the first and second variable capacitor element electrodes 5a and 5b of the variable capacitor element body 2 in accordance with the signal voltage.
  • the capacitance Cac of the dielectric layer 4 can be increased as compared with the case where the control voltage is not applied to the stress controllers 6 and 7. That is, the dislocation of the crystal structure in the dielectric layer 4 becomes easier as compared with the conventional one in which no control voltage is applied. For this reason, the loss (dielectric loss) at the time of dislocation of the crystal structure of the dielectric material in the dielectric layer 4 is also smaller than that of the conventional one.
  • variable capacitance element 1 of the present embodiment by applying a control voltage to the stress control units 6 and 7, it is possible to bring a tensile stress to the variable capacitance element body 2, and thereby, the variable capacitance element The capacitance Cac of the main body 2 can be increased.
  • variable capacitance element 1 the length between the terminals is 3.2 mm, the width of the side surface where each terminal is formed is 1.6 mm, and the dielectric layer 4 and the stress control unit dielectric layer 10 in the thickness direction.
  • the height was 1.6 mm.
  • the thickness of the variable capacitor element body 2 was set to about 0.15 mm, and the distance between the variable capacitor element body 2 and the upper and lower stress control units 6 and 7 was set to 0.10 mm.
  • the capacitance C1 of the upper layer stress control unit 6 portion was 3.25 ⁇ F
  • the capacitance C2 of the lower layer stress control unit 7 portion was 3.14 ⁇ F.
  • the capacitance Cac of the variable capacitance element body 2 when no control voltage was applied to the stress controllers 6 and 7 was 1.35 ⁇ F.
  • these electrostatic capacitances were measured according to a measuring instrument and measurement conditions described later.
  • the first control terminal 8a is connected to one terminal of the first control voltage power source DC1 via the current limiting resistor R1a to perform the second control.
  • terminal 8b is connected to the other terminal of the first control voltage supply DC1 through the current limiting resistor R 1b.
  • the first control terminal 8a is connected to one terminal of the second control voltage supply DC2 through the current limiting resistor R 2a, the second control terminal 8b current limit through a resistor R 2b is connected to the other terminal of the second control voltage supply DC2.
  • the signal voltage power supply AC is connected to the variable capacitance element body 2
  • only the first control voltage power supply DC1 or the second control voltage power supply DC2 is connected to the stress controllers 6 and 7. Is connected. That is, in the variable capacitance element 1, the AC terminal and the DC terminal are provided independently.
  • the stress controllers 6 and 7 and the variable capacitor element body 2 are electrically independent.
  • the upper layer stress control unit 6 supplies the first control voltage V1 supplied from the first control voltage power source DC1 to the first and second stress control electrodes 9a and 9b, A capacitance C1 is obtained.
  • the second control voltage V2 supplied from the second control voltage power source DC2 is supplied to the first and second stress control electrodes 9a and 9b, and the capacitance C2 is obtained. It is done.
  • a signal voltage power supply AC is connected between the first and second signal terminals 3 a and 3 b of the variable capacitance element body 2.
  • the electrostatic capacity Cac is measured by causing a desired signal current (alternating current) to flow from the signal voltage power source AC to the variable capacitance element body 2.
  • an impedance analyzer model number 4294A manufactured by Agilent Technologies is used as a capacitance measuring device which also serves as a signal voltage power supply AC, and Yokogawa is used as the first control voltage power supply DC1 and the second control voltage power supply DC2.
  • An electric source measure unit model number GS610 was used.
  • the frequency transmitted from the signal voltage power supply AC was 1 kHz
  • the amplitude was 500 mVrms
  • each current limiting resistance R 1a , R 1b , R 2a , R 2b was 510 k ⁇ .
  • FIG. 3 is a graph showing the rate of change of the capacitance Cac obtained in the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are applied while being changed.
  • the horizontal axis indicates time
  • the vertical axis indicates first and second control voltages V1 and V2 applied between the first and second control terminals 8a and 8b, and the variable capacitance element body 2 at that time.
  • the rate of change of the capacitance Cac obtained in (1) is shown.
  • the change rate of the capacitance Cac is based on the capacitance measured at the start of measurement, that is, at time zero.
  • the first and second signal terminals 3a and 3b are increased by increasing the absolute values of the first control voltage V1 and the second control voltage V2. It can be seen that the capacitance Cac obtained between the two increases. That is, increasing the control voltage applied to the stress controllers 6 and 7 increases the capacitance Cac of the variable capacitance element body 2.
  • FIG. 4 shows the rate of change of the capacitance Cac of the variable capacitance element body 2 when the second control voltage V2 is held at 0 V and only the first control voltage V1 is changed in the circuit configuration of FIG. 2B.
  • FIG. 5 shows that in the circuit configuration of FIG. 2B, the first control voltage V1 and the second control voltage V2 are opposite in polarity, and the absolute values of the first control voltage V1 and the second control voltage V2 are changed in polarity. It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when it enlarged, however. It can be seen that when the absolute values of the first control voltage V1 and the second control voltage V2 are gradually changed from 0, the capacitance Cac of the variable capacitance element body 2 also increases.
  • the capacitance Cac of the variable capacitance element body 2 gradually increases from the moment when the polarities are changed, and after a certain time has elapsed. Stabilize.
  • FIG. 6 shows the variable capacitance when the first control voltage V1 is alternately changed to 0V and 60V and the second control voltage V2 is alternately changed to 0V and ⁇ 60V in the circuit configuration of FIG. 2B.
  • FIG. 5 is a diagram showing a rate of change of capacitance Cac of the element body 2. That is, the first control voltage V1 and the second control voltage V2 have opposite polarities. Also in this case, when the absolute values of the first control voltage V1 and the second control voltage V2 are 60V, the capacitance Cac of the variable capacitance element body 2 increases, and the first control voltage V1 and the second control voltage V2 When the control voltage V2 was set to 0V, the change rate of the capacitance Cac was about 0%.
  • FIG. 7 shows a change in the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are alternately changed to 60 V and ⁇ 60 V in the circuit configuration of FIG. 2B. It is the figure which showed the rate. Although the rate of increase of the capacitance Cac of the variable capacitance element body 2 at the moment when the polarities of the first control voltage V1 and the second control voltage V2 change, it decreases after a certain time has elapsed.
  • FIG. 8 shows the static capacitance of the variable capacitor element body 2 when the first control voltage V1 and the second control voltage V2 have opposite polarities in the circuit configuration of FIG. 2B and are alternately changed to 60V and ⁇ 60V, respectively. It is a figure showing change rate of electric capacity Cac. Although the increasing rate of the capacitance Cac of the variable capacitance element body 2 at the moment when the polarities of the first control voltage V1 and the second control voltage V2 change, the capacitance Cac is stabilized after a certain time has elapsed. Further, under the conditions of FIG. 8, the increasing rate of the capacitance Cac of the variable capacitance element body 2 is higher than that of FIG.
  • FIG. 9 shows the capacitance Cac of the variable capacitance element body 2 when the second control voltage V2 is set to 60V and the first control voltage V1 is alternately changed between 0V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the rate of change.
  • both the first and second control voltages V1 and V2 are 60V
  • FIG. 10 shows the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is set to 60V and the second control voltage V2 is alternately changed between 0V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the rate of change.
  • the capacitance Cac increases even when the first control voltage V1 is 60V and the second control voltage V2 is 60V. ing.
  • FIG. 11 shows the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is set to 60V and the second control voltage V2 is alternately changed to ⁇ 60V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the change rate. It can be seen that the electrostatic capacitance Cac of the variable capacitance element body 2 increases in the same manner when the second control voltage V2 is 60V or ⁇ 60V. 9 and 11, it can be seen that each of the Coulomb forces generated in the upper and lower stress controllers 6 and 7 affects the rate of change of the capacitance Cac of the variable capacitance element body 2. It can also be seen that the upper layer stress control unit 6 has a greater influence on the variable capacitance element body 2 than the lower layer stress control unit 7.
  • the capacitance Cac of the variable capacitance element body 2 increases as the absolute values of the first control voltage V1 and the second control voltage V2 are increased. I understood it. That is, the tensile stress due to the Coulomb force generated between the first stress control electrode 9 a and the second stress control electrode 9 b in the stress control units 6 and 7 has an effect of increasing the capacitance Cac of the variable capacitance element body 2. Proven to connect.
  • control voltage may be applied only to the stress control units 6 and 7 formed above and below, and the first and second signal terminals 3a and 3b in the variable capacitance element body 2 are applied to the first and second signal terminals 3a and 3b. Only the signal voltage is applied.
  • the capacitance Cac of the variable capacitance element body 2 can be increased without directly applying a control voltage to the variable capacitance element body 2, and the signal ( AC) voltage and control (DC) voltage can be completely separated.
  • FIG. 12 shows a circuit configuration according to Modification 1 of the variable capacitance element 1 of the present embodiment.
  • the control terminal 8b is connected to the other terminal of the first control voltage power supply DC1 through the current limiting resistor Rb .
  • the first control terminal 8a of the underlying stress control unit 7 is connected between the second control terminal 8b and the current limiting resistor R b of the upper layer of the stress control unit 6, the second control voltage supply DC2 Is connected between the current limiting resistor Rb and the first control voltage power supply DC1.
  • the second control terminal 8b in the lower layer of stress control unit 7 is connected to the other terminal of the second control voltage supply DC2 through the current limiting resistor R c.
  • FIG. 13 shows a circuit configuration according to Modification 2 of the variable capacitance element 1 of the present embodiment.
  • the second modification connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a, a second control terminal 8b Is connected to the other terminal of the first control voltage power supply DC1 via the current limiting resistor Rb .
  • the lower layer of stress control unit 7 connects the first control terminal 8a, to one terminal of the second control voltage supply DC2 through the current limiting resistor R c.
  • the second control terminal 8b of the lower layer of the stress control unit 7 is connected between the first control terminal 8a and the current limiting resistor R a of the upper layer of the stress control unit 6, the second control voltage supply DC2 Is connected between the current limiting resistor Ra and one terminal of the first control voltage power source DC1.
  • FIG. 14 shows a circuit configuration according to Modification 3 of the variable capacitance element 1 of the present embodiment.
  • Modification 3 connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a, a second control terminal 8b Is connected to the other terminal of the first control voltage power supply DC1 via the current limiting resistor Rb .
  • the first control terminal 8a of the underlying stress control unit 7 is connected between the first control terminal 8a and the current limiting resistor R a of the upper layer of the stress control unit 6, the second control voltage supply DC2 one terminal of is connected between the current limiting resistor R a first control voltage source DC1.
  • FIG. 15 shows a circuit configuration according to Modification 4 of the variable capacitance element 1 of the present embodiment.
  • Modification 4 connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a.
  • the first control terminal 8a of the lower layer stress control unit 7 is connected to one terminal of the second control voltage power source DC2 via the current limiting resistor Rb
  • the second control terminal 8b is connected to the current limiting resistor Rb.
  • a resistor R c is connected to the other terminal of the second control voltage supply DC2.
  • the second control terminal 8b in the upper layer of stress control unit 6 is connected between the second control terminal 8b and the current limiting resistor R c of the lower stress control unit 7, the first control voltage supply DC1 Is connected between the current limiting resistor Rc and the second control voltage power supply DC2.
  • FIG. 16 shows a circuit configuration according to Modification 5 of the variable capacitance element 1 of the present embodiment.
  • Modification 5 is configured to connect the second control terminal 8b of the first control terminal 8a and a lower stress control unit 7 of the upper layer of stress control unit 6 to each other, the control voltage source through a current limiting resistor R a Connect to one terminal of DC.
  • the second control terminal 8b of the upper layer stress control unit 6 and the first control terminal 8a of the lower layer stress control unit 7 are connected to each other, and the other of the control voltage power source DC is connected via the current limiting resistor Rb . Connect to the terminal.
  • FIG. 17 shows a circuit configuration according to Modification 6 of the variable capacitance element 1 of the present embodiment.
  • Modification 6 is configured to connect the second control terminal 8b of the first control terminal 8a and a lower stress control unit 7 of the upper layer of stress control unit 6 to each other, the control voltage source through a current limiting resistor R a Connect to one terminal of DC. Further, the second control terminal 8b of the upper layer stress control unit 6 and the first control terminal 8a of the lower layer stress control unit 7 are connected to each other, and the other of the control voltage power source DC is connected via the current limiting resistor Rb . Connect to the terminal.
  • FIG. 18 shows a circuit configuration according to Modification 7 of the variable capacitance element 1 of the present embodiment.
  • the first control terminal 8a of the upper stress control unit 6 is connected to one terminal of the control voltage source DC through the current limiting resistor R a, of the underlying stress control unit 7 second
  • the control terminal 8b is connected to the other terminal of the control voltage power supply DC through the current limiting resistor Rb .
  • the second control terminal 8 b of the upper layer stress control unit 6 and the first control terminal 8 a of the lower layer stress control unit 7 are connected.
  • FIG. 19 shows a circuit configuration according to Modification 8 of the variable capacitance element 1 of the present embodiment.
  • Modification 8 the first control terminal 8a of the upper stress control unit 6 is connected to one terminal of the control voltage source DC through the current limiting resistor R a, of the underlying stress control unit 7 first
  • the control terminal 8a is connected to the other terminal of the control voltage power source DC through the current limiting resistor Rb .
  • the second control terminal 8b of the upper layer stress control unit 6 and the second control terminal 8b of the lower layer stress control unit 7 are connected.
  • variable voltage element 1 can be changed by applying a control voltage to the stress control units 6 and 7.
  • the capacitance Cac of the capacitive element body 2 can be increased.
  • the conventional capacitive element that changes the capacitance according to the control voltage has a characteristic that the capacitance decreases by applying the control voltage.
  • the electrostatic capacity can be increased by applying the control voltage, the range of applications as a variable capacitance element can be expanded.
  • a dielectric sheet 20 made of a desired dielectric material is prepared.
  • the dielectric sheet 20 constitutes the dielectric layer 4 in the variable capacitance element body 2, and the dielectric layer 10 for the stress control part in the stress control parts 6 and 7.
  • These dielectric sheets 20 can be formed by forming a pasty dielectric material, for example, on a PET (polyethylene terephthalate) film to a desired thickness.
  • a mask is prepared in which regions corresponding to the formation regions of the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b constituting the variable capacitance element body 2 are opened. To do.
  • a conductive paste in which a metal powder such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is pasted is controlled, and the conductive paste 21 is passed through the respective masks prepared in the previous stage, and then the dielectric sheet 20. Apply on top (silk printing, etc.).
  • the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed on one surface of the dielectric sheet 20, respectively.
  • each dielectric sheet 20 on which the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed Laminate in the desired order by aligning the orientation of the printed surface. Further, dielectric sheets 20 on which no electrodes are printed are laminated on the upper and lower sides of this laminated body, and are subjected to pressure bonding.
  • the pressure-bonded member is fired at a high temperature in a reducing atmosphere to integrate the dielectric sheet 20 and the electrodes formed of the conductive paste 21.
  • the variable capacitance element 1 is formed in this way.
  • the total thickness after sintering becomes thinner than the total thickness at the central portion of the capacitive element.
  • the mechanical strength is low, there is a problem that even if the stress control units 6 and 7 are configured, the tensile stress applied to the variable capacitance element body 2 cannot be sufficiently exhibited.
  • variable capacitance element of the present embodiment capable of maintaining the mechanical strength
  • FIGS. 21A to 21D show cross sections in which the electrodes are not exposed at the end portions.
  • a dielectric sheet 20 made of a desired dielectric material is prepared.
  • the dielectric sheet 20 constitutes the dielectric layer 4 in the variable capacitance element body 2, and the dielectric layer 10 for the stress control part in the stress control parts 6 and 7.
  • These dielectric sheets 20 can be formed by forming a pasty dielectric material, for example, on a PET (polyethylene terephthalate) film to a desired thickness.
  • a mask is prepared in which regions corresponding to regions where the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed are opened.
  • a conductive paste in which a metal powder such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is made into a paste is prepared, and the conductive paste 21 is passed through the respective masks prepared in the previous stage through the dielectric sheet 20. Apply on top (silk printing, etc.).
  • the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed on one surface of the dielectric sheet 20, respectively.
  • a dielectric material film 22 is formed around the conductive paste 21 so as to embed the periphery of the conductive paste 21 constituting each electrode formed on the dielectric sheet 20.
  • the width of the end portion where the conductive paste 21 is not formed is 10% to 20% of the entire width, and the portion is filled with the dielectric material film 22. Then, the surface of the dielectric material film 22 and the surface of the conductive paste 21 are made substantially the same.
  • each dielectric sheet 20 on which each electrode is formed is laminated in a desired order with the orientation of the surface on which each electrode is printed aligned.
  • a plurality of first and second stress control electrodes 9a and 9b are alternately stacked.
  • a plurality of first and second variable capacitance element electrodes 5a and 5b are alternately stacked.
  • a plurality of first and second stress control electrodes 9a and 9b are alternately laminated, and dielectric sheets 20 on which no electrodes are printed are laminated on the upper and lower sides of the laminated body, followed by pressure bonding.
  • the pressure-bonded member is fired at a high temperature in a reducing atmosphere, and the dielectric sheet 20 and each electrode formed of the conductive paste 21 are integrated.
  • the variable capacitance element 1 is formed in this way.
  • variable capacitance element of this embodiment since the periphery of the conductive paste 21 formed on the dielectric sheet 20 is embedded with the dielectric material film 22, when the plurality of dielectric sheets 20 are stacked and fired, It is possible to prevent the periphery of the variable capacitance element 1 from being thinned. Thereby, the mechanical strength around the variable capacitance element 1 can be increased. For this reason, the tensile stress due to the Coulomb force generated in the stress control units 6 and 7 can be sufficiently transmitted to the variable capacitance element body 2.
  • 21A to 21C show cross sections in which the electrodes are not exposed at the end portions, but in the cross sections in which the stacked electrodes are alternately exposed on the opposite side surfaces, the dielectric material is not formed in the portion where the conductive paste 21 is not formed.
  • a film 22 is formed.
  • FIG. 22 is a schematic configuration diagram of the variable capacitance element 24 of the present embodiment.
  • parts corresponding to those in FIG. This embodiment is an example in which the thickness w1 of the dielectric layer 4 of the variable capacitance element body 2 and the thickness w2 of the stress control unit dielectric layer 10 in the stress control units 6 and 7 are different.
  • the thickness (distance between the first and second stress control electrodes 9a and 9b) w2 of the stress control unit dielectric layer 10 in the stress control units 6 and 7 is set to the dielectric layer of the variable capacitance element body 2. 4 (the distance between the first and second variable capacitance element electrodes 5a and 5b) w1.
  • the electric field strength at the stress control units 6 and 7 is increased, and a larger stress can be generated.
  • the tensile stress applied to the variable capacitance element main body 2 increases, and when a control voltage is applied to the stress control units 6 and 7, the capacitance Cac of the variable capacitance element main body 2 is more likely to increase.
  • FIG. 23 is a schematic configuration diagram of the variable capacitance element 25 of the present embodiment.
  • parts corresponding to those in FIG. This embodiment is an example in which the material of the dielectric layer 26 of the variable capacitance element body 2 is different from the material of the stress control unit dielectric layer 27 in the stress control units 6 and 7.
  • the dielectric layer 27 for the stress control unit a material that is easily compressed and contracted in the electric field direction by applying a voltage to the first and second stress control electrodes 9a and 9b is used.
  • a material having a condition that the elastic modulus of the dielectric layer 26 of the variable capacitance element body 2 is larger than the elastic modulus of the stress control unit dielectric layer 27 in the stress control units 6 and 7 can be used.
  • a material in which the Poisson's ratio of the dielectric layer 26 of the variable capacitance element body 2 is smaller than the Poisson's ratio of the stress control unit dielectric layer 27 in the stress control units 6 and 7 can be used.
  • variable capacitance element 25 of the present embodiment is formed by the steps shown in FIGS. 21A to 21D, and portions corresponding to the dielectric material film 22 of FIGS. 21A to 21D in the stress control units 6 and 7 are formed.
  • the material may have a larger elastic modulus than the stress control part dielectric layer 27.
  • the portions surrounding the first and second stress control electrodes 9a and 9b in the stress control portions 6 and 7 are filled with a material having a large elastic modulus, so that the dielectric material film 22 formed in the surroundings is formed. Play the role of a beam. Thereby, tensile stress can be more effectively generated in the variable capacitor element body 2.
  • the material of the dielectric layer other than the stress control unit dielectric layer 27 sandwiched between the first and second stress control electrodes 9a and 9b is used as the stress control unit dielectric layer. It is good also as a material which has an elastic modulus larger than the elastic modulus of 27.
  • a material that contracts in the electric field direction for example, PZT
  • PZT a material that contracts in the electric field direction
  • variable capacitance element having high mechanical strength can be obtained by using the manufacturing method shown in FIGS. 21A to 21D.
  • the dielectric material film 22 formed around the first and second stress control electrodes 9a and 9b serves as a beam, so that a larger tensile stress can be applied to the variable capacitor element body 2. Can be generated.
  • variable capacitive element electrode constituting the variable capacitive element body is configured to be laminated in plural layers.
  • the variable capacitive element body sandwiches the dielectric layer. It is sufficient that at least one pair of variable capacitance element electrodes is configured. That is, the number of electrodes of the variable capacitance element body can be variously changed as long as a desired capacitance can be obtained.
  • the stress control unit is configured by sandwiching the variable capacitance element body.
  • the stress control is performed only in one direction of the variable capacitance element body. It is good also as an example which comprises a part.
  • the capacitance of the variable capacitance element body can be increased by applying the control voltage.
  • the variable capacitor element electrode and the stress control electrode are stacked.
  • the stress control unit may be provided on the side surface of the variable capacitor element body in the direction orthogonal to the stacking direction of the variable capacitor element electrode. .
  • the stress control unit is configured by laminating a plurality of first and second stress control electrodes through the dielectric layer for the stress control unit.
  • the configuration is not limited as long as a tensile stress can be applied to the capacitive element body.
  • the stress control unit it is possible to configure the stress control unit with a piezoelectric element or the like.
  • the stress control unit is configured by a piezoelectric element, the electrostatic capacity of the capacitive element body can be increased by applying tensile stress to the dielectric layer of the capacitive element body by the piezoelectric element.
  • a tensile stress may be applied to the dielectric layer of the capacitor element body using magnetic force.
  • the present disclosure is not limited to the above-described embodiments, and various changes and combinations are possible.
  • a ferroelectric material is used as a material for forming the dielectric layer of the capacitive element body, and the variable capacitive element is used.
  • the capacitance of the capacitive element body is applied with voltage.
  • the present disclosure can also be applied to a capacitor element that does not change depending on the case. In this case, the capacitance of the capacitive element body can be changed by controlling the stress control voltage. Therefore, the entire capacitive element has a function as a variable capacitive element.
  • the stress control unit in a capacitive element whose capacitance does not change due to the application of voltage, it becomes possible to match the capacitance values among a plurality of capacitive elements. Thereby, when such a capacitive element is used for the circuit of an electronic device, the dispersion
  • a ferroelectric material is used as a material for forming the dielectric layer of the capacitor element body, and the ferroelectric material has a characteristic of expanding in the electric field direction when a voltage is applied.
  • the present disclosure can be adapted to and applied to a dielectric material having a characteristic of contracting in the electric field direction when a voltage is applied. That is, when using, for example, the above-described PZT (lead zirconate titanate) for the capacitor element body, by applying a control voltage to the stress control unit to apply compressive stress to the capacitor element body, Capacitance can be increased.
  • the stress control unit may be extended in the electric field direction of the capacitive element body by applying a control voltage to the stress control unit.
  • the capacitance C (F) of the capacitive element suitable for the present disclosure also depends on the frequency f (Hz) to be used.
  • the present embodiment is an example in which the capacitive element of the present disclosure is applied to a resonance circuit, and particularly shows an example in which the variable capacitive element 1 in the first embodiment is applied. Moreover, in this embodiment, the example which used the resonance circuit for the non-contact IC card is shown.
  • FIG. 24 is a block configuration diagram of a reception system circuit unit of the non-contact IC card 50 using the resonance circuit of the present embodiment.
  • a signal transmission system (modulation system) circuit unit is omitted.
  • the configuration of the transmission system circuit unit is the same as that of a conventional non-contact IC card or the like. Also, in FIG. 24, parts corresponding to those in FIG.
  • the non-contact IC card includes a receiving unit 71 (antenna), a rectifying unit 72, and a signal processing unit 73 as shown in FIG.
  • the receiving unit 71 is constituted by a resonance circuit including a resonance coil 74 and a resonance capacitor 75, and receives a signal transmitted from the R / W (not shown) of the non-contact IC card 50 by this resonance circuit.
  • the resonance coil 74 is divided into an inductance component 74a (L) and a resistance component 74b (r: about several ohms).
  • a capacitor 75a having a capacitance Co and a variable capacitance element body 2 whose capacitance Cv changes according to the voltage value (reception voltage value) of the received signal are connected in parallel. That is, in the present embodiment, the variable capacitance element body 2 is connected in parallel to a conventional antenna (a resonance circuit including a resonance coil 74 and a capacitor 75a).
  • the variable capacitance element body 2 is configured to be incorporated in the variable capacitance element 1 having the stress control units 6 and 7, as shown in FIG.
  • the capacitor 75a a capacitor formed of a paraelectric material is used as in the conventional antenna.
  • the capacitor 75a made of a paraelectric material has a low relative dielectric constant, and its capacitance hardly changes regardless of the type of input voltage (AC or DC) and its voltage value. Therefore, the capacitor 75a has a very stable characteristic with respect to the input signal.
  • a capacitor formed of a paraelectric material having high stability with respect to such an input signal is used.
  • the capacitor Co is appropriately adjusted by trimming the electrode pattern of the capacitor 75a.
  • the rectifier 72 is constituted by a half-wave rectifier circuit including a rectifier diode 76 and a rectifier capacitor 77, and rectifies and outputs the AC voltage received by the receiver 71 to a DC voltage.
  • the signal processing unit 73 is mainly composed of an integrated circuit (LSI: Large Scale Integration) of semiconductor elements, and demodulates the AC signal received by the receiving unit 71.
  • the LSI in the signal processing unit 73 is driven by a DC voltage supplied from the rectifying unit 72. Note that the same LSI as a conventional non-contact IC card can be used.
  • variable capacitance element used in the receiving unit is configured by the stress control unit, the capacitance is not only controlled by the control voltage applied to the variable resonance capacitor itself but also by the control voltage applied to the stress control unit. Can be controlled. For this reason, a large variable width can be obtained with a lower voltage.
  • burden of change on the resonance capacitor can be reduced by the increase in the variable width, if the dielectric of the resonance capacitor is thickened, the withstand voltage is improved and a larger AC voltage can be handled.
  • variable capacitor of the first embodiment is used as the variable capacitor of the resonance circuit.
  • variable capacitor of the second embodiment or the third embodiment may be used.
  • circuit configuration for driving the variable capacitance element 1 the configuration shown in FIGS. 2A and 2B is applied, but the circuit configuration of FIGS. 12 to 19 may be applied.
  • variable capacitance element of the present disclosure shown in the first to third embodiments can be applied to various electronic devices.
  • the variable capacitance element of the present disclosure can be incorporated and used in a communication system, a wireless charging system including a power feeding device and a power receiving device, a power supply device, and the like.
  • a communication system, a wireless charging system, and a power supply device configured using the variable capacitance element of the present disclosure are shown, and electronic devices using them are exemplified.
  • FIG. 25 illustrates a schematic configuration diagram of a communication system according to the fifth embodiment of the present disclosure.
  • the communication system 200 according to the present embodiment includes a transmission device 201 and a reception device 202 that perform non-contact communication.
  • the communication system 200 of the present embodiment is a communication system that combines a non-contact IC card standard represented by Felica (registered trademark) and a near field communication (NFC) standard, for example. That is, the receiving device 202 constituting the communication system 200 of this embodiment corresponds to the non-contact IC card 50 shown in the fourth embodiment.
  • the signal processing unit 73 of the non-contact IC card 50 The configuration is described in more detail.
  • the wiring related to power supply is indicated by a broken-line arrow.
  • the transmission device 201 has a reader / writer function for reading and writing data without contact with the reception device 202, and includes a primary side antenna unit (transmission side antenna unit) 203, a transmission side system control unit 209, a modulation circuit 207, A demodulation circuit 208 is provided. Furthermore, the transmission apparatus 201 of this embodiment includes a transmission signal unit 205, a variable impedance matching unit 204, and a transmission / reception control unit 206.
  • the primary antenna unit 203 has the same configuration as that of the receiving unit 71 shown in the fourth embodiment. That is, although not shown, the primary side antenna unit 203 is configured by a resonance circuit including a resonance coil and a resonance capacitor, and the resonance capacitor includes the variable capacitance element shown in the first to third embodiments. It is said that.
  • the primary antenna unit 203 radiates a transmission signal having a desired frequency by the resonance circuit and receives a response signal from the receiving device 202 described later.
  • the transmission-side system control unit 209 generates control signals for various controls according to external commands and built-in programs, controls the modulation circuit 207 and the transmission / reception control unit 206, and generates transmission data corresponding to the commands. And supplied to the modulation circuit 207.
  • the transmission-side system control unit 209 performs predetermined processing based on the response data demodulated by the demodulation circuit 208.
  • the modulation circuit 207 modulates the transmission data input from the transmission-side system control unit 209 and sends the modulated transmission data to the transmission signal unit 205.
  • the demodulation circuit 208 acquires the response signal received by the primary antenna unit 203 via the variable impedance matching unit 204, and demodulates the response signal. Then, the demodulation circuit 208 supplies the demodulated response data to the transmission side system control unit 209.
  • the transmission signal unit 205 modulates a carrier signal having a desired frequency (13.56 MHz) with the transmission data output from the modulation circuit 207, and sends the modulated carrier signal to the variable impedance matching unit 204.
  • the variable impedance matching unit 204 is a circuit that performs impedance matching between the transmission signal unit 205 and the primary antenna unit 203. Although not shown in FIG. 25, the variable impedance matching unit 204 shown in the first to third embodiments is used. It is a circuit including the disclosed variable capacitance element.
  • the transmission / reception control unit 206 monitors the communication state such as the transmission voltage and transmission current of the carrier signal transmitted from the transmission signal unit 205 to the variable impedance matching unit 204 and controls the variable impedance matching unit 204 and the primary antenna unit 203. . At this time, the transmission / reception control unit 206 optimizes the impedance matching between the transmission signal unit 205 and the primary side antenna unit 203 and the resonance frequency of the primary side antenna unit 203. Specifically, the impedance and the resonance frequency are adjusted by controlling the capacitances of the variable capacitance elements (not shown) of the present disclosure constituting the variable impedance matching unit 204 and the primary antenna unit 203 by the transmission / reception control unit 206. .
  • the receiving device 202 constitutes a non-contact IC card that is a data carrier.
  • the receiving device 202 includes a secondary side antenna unit (reception side antenna unit) 210, a rectification unit 211, a constant voltage unit 212, a reception control unit 213, a demodulation circuit 217, a reception side system control unit 214, a modulation circuit 216, and a battery 215.
  • a secondary side antenna unit reception side antenna unit
  • the secondary antenna unit 210 has the same configuration as that of the receiving unit 71 shown in the fourth embodiment. That is, although not shown, the secondary side antenna unit 210 includes a resonance circuit including a resonance coil and a resonance capacitor, and the resonance capacitor is the one disclosed in the first to third embodiments. The variable capacitance element is provided.
  • the secondary antenna unit 210 is a part that communicates with the transmission device 201 by electromagnetic coupling, receives a magnetic field generated by the primary antenna unit of the transmission device 201, and receives a transmission signal from the transmission device 201.
  • the rectifying unit 211 is configured by a half-wave rectifier circuit including, for example, a rectifying diode and a rectifying capacitor, and rectifies and outputs AC power received by the secondary antenna unit 210 to DC power.
  • the constant voltage unit 212 performs voltage fluctuation (data component) suppression processing and stabilization processing on the electrical signal supplied from the rectifying unit 211, and outputs the processed DC power.
  • the DC power output via the rectifying unit 211 and the constant voltage unit 212 is used as a power source for operating the IC in the receiving device 202.
  • the reception control unit 213 determines the size of the reception signal, the voltage / current phase, and the like, and controls the resonance characteristics of the secondary antenna unit 210 to optimize the resonance frequency during reception. Specifically, the resonance frequency is adjusted by controlling the capacitance of the variable capacitance element (not shown) of the present disclosure constituting the secondary antenna unit 210 by the reception control unit 213.
  • the demodulation circuit 217 demodulates the reception signal received by the secondary side antenna unit 210 and sends the demodulated signal to the reception side system control unit 214. Based on the signal demodulated by the demodulation circuit 217, the reception-side system control unit 214 determines the contents thereof, performs necessary processing, and controls the modulation circuit 216 and the reception control unit 213.
  • the modulation circuit 216 modulates the reception carrier according to the result (contents of the demodulated signal) determined by the reception-side system control unit 214, and thereby transmits a response signal transmitted from the secondary-side antenna unit 210 to the primary-side antenna unit 203 Generate.
  • the battery 215 supplies power to the receiving system control unit 214.
  • the battery 215 is charged by connecting to the external power source 219.
  • the receiving device 202 according to the present embodiment has a built-in battery to which power is supplied from the external power source 219, and thus can supply more stable power than the power output through the constant voltage unit 212. Stable operation is possible.
  • the resonance circuits of the primary side antenna unit 203 and the secondary side antenna unit 210 have the same carrier frequency (13. 56 MHz).
  • variable capacity element of this indication is used for primary side antenna part 203, secondary side antenna part 210, and variable impedance matching part 204, and the capacity can be increased or decreased. Thereby, it is possible to optimize the characteristics by keeping the resonance frequency and the impedance matching characteristics optimal.
  • variable capacitance element of the present disclosure is incorporated in the resonance capacitor of the resonance circuit that constitutes the primary side antenna unit 203 and the secondary side antenna unit 210, the respective resonance frequencies can always be maintained optimally. For this reason, even if the reception resonance frequency and / or the transmission resonance frequency is shifted due to various factors, the shift of the resonance frequency can be easily adjusted in its own device, and stable communication characteristics can be obtained.
  • FIG. 26 is a schematic configuration diagram of the wireless charging system 220 of the present embodiment.
  • the wireless charging system 220 of the present embodiment is a device for supplying power (charging) wirelessly (contactlessly), and electromagnetic induction, magnetic field resonance, etc. can be applied as a wireless system.
  • the transmission device 201 constitutes a power supply device that supplies power to a desired electronic device in a contactless manner
  • the reception device 221 is supplied with power as represented by a portable device.
  • the power receiving apparatus is configured.
  • the receiving device 221 is configured such that the constant voltage unit 212 of the receiving device 202 in the communication system 200 according to the fifth embodiment is a charge control unit 218.
  • the charging control unit 218 supplies the electric signal supplied from the rectifying unit 211 to the battery 215 to charge the battery 215, and supplies the electric signal to the reception control unit 213 as power for operating the reception control unit 213.
  • the charging control unit 218 monitors the charging status and outputs the monitoring result to the receiving-side system control unit 214.
  • the charging control unit 218 can be charged by connecting an external power source 219 from the outside.
  • an electromagnetic wave for power transmission is radiated from the primary side antenna unit (feeding side antenna unit) 203 based on a signal generated by the transmission side system control unit 209, and the electromagnetic wave is transmitted to the secondary side. It is received by the side antenna unit (power receiving side antenna unit) 210. Then, the signal received by the secondary antenna unit 210 is converted into DC power by the rectifying unit 211, and the DC power is charged to the battery 215 via the charging control unit 218.
  • the signal transmitted from the transmitter 201 side is received by the secondary antenna unit 210, and the received signal is demodulated by the demodulation circuit 217. Then, the content of the demodulated data is judged by the reception side system control unit 214, and a response is made by modulating the reception carrier by the modulation circuit 216 according to the result.
  • This series of recognition processes can avoid power transmission to out-of-system devices and metals. In order to perform charging for a long time, such recognition processing is performed intermittently as appropriate to ensure safety, and when it is determined that the recognition processing is correct, the transmission signal is not modulated for power transmission. Output.
  • the charging status is monitored by the charging control unit 218 of the receiving device 221 as described above, via the receiving-side system control unit 214 so as to obtain an optimal charging current.
  • Information on the charging status is sent to the transmitting device 201.
  • the information returned from the receiving device 221 is demodulated by the demodulating circuit 208 of the transmitting device 201, and then the content is judged, and the transmitting side system control unit 209 executes necessary processing.
  • variable capacitance element of the present disclosure is incorporated in the variable impedance matching unit 204, the primary antenna unit 203, and the secondary antenna unit 210, and the same effects as those of the fifth embodiment are obtained. be able to.
  • FIG. 27 is a schematic configuration diagram showing the power supply device 230 of the present embodiment.
  • a power supply device that steps down the voltage (AC 100 V) of the commercial power supply 236 via a power transformer 235 that is a power supply unit will be described as an example.
  • the power supply device 230 of this embodiment includes a power supply transformer 235, a variable impedance 231, a rectifier circuit 232, an error amplifier 234, a constant voltage circuit 233, a first reference voltage power supply 239, and a second reference voltage power supply 238.
  • the power transformer 235 includes a primary transformer 235a and a secondary transformer 235b.
  • One end of the AC 100V commercial power source 236 is connected to one end of the primary side transformer 235a, and the other end of the commercial power source 236 is connected to the other end of the primary side transformer 235a.
  • a variable impedance 231 is connected to one end of the secondary transformer 235b, and a rectifier circuit 232 is connected to the other end.
  • the power transformer 235 steps down the voltage of the commercial power source 236 at a rate corresponding to the turn ratio between the primary transformer 235a and the secondary transformer 235b.
  • variable impedance 231 includes the variable capacitance element of the present disclosure shown in the first to third embodiments.
  • the variable impedance 231 includes the secondary transformer 235b, the rectifier circuit 232, It is connected to the error amplifier 234.
  • the variable impedance 231 increases or decreases the AC voltage input from the secondary transformer 235 b by increasing or decreasing the capacitance of the variable capacitance element to change the impedance, and supplies the increased or decreased AC voltage to the rectifier circuit 232.
  • the rectifier circuit 232 is configured by a half-wave rectifier circuit including, for example, a rectifier diode and a rectifier capacitor.
  • the variable impedance 231 is connected to the anode side of the rectifier diode, and the terminal on the opposite side to the connection side of the variable impedance 231 of the secondary transformer 235b is connected to the cathode side.
  • the output terminal of the rectifier circuit 232 is connected to the constant voltage circuit 233 and to the error amplifier 234.
  • the rectifier circuit 232 rectifies the AC voltage input from the variable impedance 231 into a DC voltage and supplies the DC voltage to the error amplifier 234 and the constant voltage circuit 233.
  • the constant voltage circuit 233 is connected to the rectifier circuit 232.
  • the first reference voltage power source 239 is connected to the other terminal of the constant voltage circuit 233, and the other terminal is connected to the load 237.
  • the constant voltage circuit 233 compares the reference voltage V ref 1 supplied from the first reference voltage power source 239 with the DC voltage input from the rectifier circuit 232 and supplies a constant DC voltage to the load 237.
  • the error amplifier 234 is connected to the second reference voltage power source 238, the rectifier circuit 232, and the variable impedance 231.
  • the error amplifier 234 controls the impedance of the variable impedance 231 by comparing the DC voltage rectified by the rectifier circuit 232 with the reference voltage V ref 2 supplied from the second reference voltage power source 238.
  • the reference voltage V ref 2 supplied from the second reference voltage power source 238 is set to be about 2V higher than the reference voltage V ref 1 supplied from the first reference voltage power source 239.
  • the voltage stepped down at a ratio corresponding to the turn ratio of the primary transformer 235a and the secondary transformer 235b of the power transformer 235 is rectified, and the load is reduced by the voltage drop type constant voltage circuit 233.
  • a constant voltage can be provided to 237.
  • the voltage output from the rectifier circuit 232 changes due to the increase / decrease of the load current or the voltage change of the primary transformer 235a.
  • the impedance is lowered, the voltage of the commercial power supply 236 is increased, and the AC voltage of the secondary transformer 235b is raised. If so, increase the impedance.
  • the AC voltage input to the rectifier circuit 232 can be stabilized, and the input power of the constant voltage circuit 233 can be controlled stably.
  • the voltage drop type constant voltage circuit 233 stabilizes the voltage by increasing or decreasing its own voltage drop so that the reference voltage V ref 1 and the voltage applied to the load 237 are the same. I am trying. This voltage drop accounts for most of the power loss in the constant voltage circuit 233 constituting the power supply device 230. Therefore, ideally, the loss can be minimized if the input voltage of the constant voltage circuit 233 can be controlled to be the minimum operating voltage of the constant voltage circuit 233.
  • variable impedance 231 including the variable capacitance element of the present disclosure described above is inserted between the secondary-side transformer 235b and the rectifier circuit 232, and the impedance is changed by increasing or decreasing the capacitance of the variable capacitance element.
  • AC voltage can be increased or decreased.
  • the input voltage value of the constant voltage circuit 233 can be controlled to be a value near the minimum operating voltage of the constant voltage circuit 233, and the power loss in the constant voltage circuit 233 can be reduced.
  • the voltage is stabilized by a variable resistor, so that power loss occurs.
  • the voltage drop is caused by changing the capacitance of the variable capacitance element configured in the variable impedance 231, no resistance component occurs and no power loss occurs.
  • the power supply device 230 using the commercial power supply 236 and the power transformer 235 has been described as an example, but the same configuration can be adopted when considered as a SW power supply (switch power supply).
  • SW power supply switch power supply
  • the input is a switching frequency of 100 KHz
  • the same circuit can be configured.
  • the output voltage is one system.
  • transformer output terminals it can be used as a plurality of power supply systems.
  • a communication system and a wireless charging system may be combined.
  • electronic devices include a mobile phone, a smartphone, a tablet PC (Personal Computer), a notebook PC, a remote controller, a wireless speaker, a camcorder, and a digital Examples include cameras, Walkman (registered trademark), and 3D glasses.
  • a communication system and a power supply device may be combined. Examples of such electronic devices include a tablet PC, a notebook PC, a desktop PC, a printer, a projector, a liquid crystal TV (Television), a refrigerator, a DVD (Digital Versatile Disk).
  • a wireless charging system and a power supply device may be combined.
  • Examples of such an electronic device include a notebook PC, a portable TV, a radio, a radio cassette recorder, an electric toothbrush, an electric shaver, an iron, and an electric vehicle. It is done.
  • a communication system, a wireless charging system, and a power supply device may be combined. Examples of such electronic devices include notebook PCs, portable TVs, radios, radio cassette recorders, and electric vehicles.
  • a control unit for controlling each device may be provided for each device, and a plurality of control units that can be used in common among the devices are configured integrally. May be.
  • variable capacitance element of the present disclosure is incorporated in the communication system, the wireless charging system, and the power supply device, the reliability of the product is improved.
  • variable capacitance elements shown in the first to third embodiments are incorporated in the respective devices. However, according to the first to third embodiments. It is good also as a structure incorporating the element which combined the variable capacity element, and can change suitably.
  • this indication can take the following structures.
  • a capacitive element body composed of a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer;
  • a capacitive element configured to control a stress generated in the dielectric layer of the capacitive element body and increase a capacitance of the capacitive element body.
  • the stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer, The capacitive element according to (1), wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
  • the said stress control part is laminated
  • the capacitive element as described in (1) or (2).
  • the two stress control units stacked with the capacitive element body sandwiched therebetween are connected to different control voltage power sources, respectively, and control voltages supplied from the corresponding control voltage power sources are supplied to the two stress control units.
  • the two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite.
  • (12) The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via one control voltage power source, and the electric field directions in the two stress control units are the same or opposite.
  • a capacitor element electrode is formed by applying a conductive paste on a dielectric sheet to be a dielectric layer so as to have a desired electrode shape, and a dielectric material is formed on the dielectric sheet so as to embed the periphery of the capacitor element electrode.
  • Forming a film Forming a laminated body to be a capacitive element body by laminating a plurality of dielectric sheets on which the capacitive element electrodes are formed; and A step of firing the laminated body to form a capacitive element body in which a plurality of capacitive element electrodes are laminated via a dielectric layer; Forming a stress control unit for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body by bonding to the capacitive element body.
  • the stress control unit forms a stress control electrode by applying a conductive paste on the dielectric sheet to be a dielectric layer for the stress control unit to form a desired electrode shape, and embeds the periphery of the stress control electrode.
  • Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body
  • a resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
  • a resonance circuit comprising: a resonance coil connected to the resonance capacitor.
  • the stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer, The resonant circuit according to (15), wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
  • the two stress control units stacked with the capacitive element body interposed therebetween are connected to different control voltage power sources, and the two stress control units have independent control voltages supplied from the corresponding control voltage power sources.
  • the two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control
  • a receiving system comprising: a receiving-side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured
  • a wireless charging system comprising: a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
  • a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
  • a power supply unit Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body
  • a variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
  • An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor;
  • An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
  • a power supply unit Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body
  • a variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body;
  • an electronic device including a control unit that controls the capacitance of the capacitive element.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
  • a third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer;
  • a third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body;
  • a power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
  • a fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer;
  • a fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capac
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor; A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body.
  • a power supply device including a variable impedance configured to include a third resonant capacitor including a configured third capacitive element, and a capacitance of each of the first capacitive element, the second capacitive element, and the third capacitive element
  • An electronic device including a control unit for controlling.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor; A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body.
  • a power supply device including a variable impedance configured to include a third resonance capacitor including a third capacitance element configured;
  • An electronic device comprising: a control unit that controls a capacitance of each of the first capacitive element, the second capacitive element, and the third capacitive element.
  • a first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer;
  • a first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body;
  • a transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
  • a second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer;
  • a second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body.
  • a receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
  • a third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer;
  • a third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body;
  • a power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
  • a fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer;
  • a fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capac
  • An electronic device comprising: a control unit that controls the capacitance of each of the first capacitive element, the second capacitive element, the third capacitive element, the fourth capacitive element, and the fifth capacitive element.
  • Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body
  • a resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
  • An electronic device comprising: a resonance coil connected to the resonance capacitor.
  • SYMBOLS 1 Variable capacitance element, 2 ... Variable capacitance element main body, 3a ... 1st signal terminal, 3b ... 2nd signal terminal, 4 ... Dielectric layer, 5a ... 1st 1 variable capacitance element electrode, 5b ... second variable capacitance element electrode, 6 ... stress control unit, 7 ... stress control unit, 8a ... first control terminal, 8b ... first 2 control terminals, 9a ... first stress control electrode, 9b ... second stress control electrode, 10 ... dielectric layer for stress control part, 20 ... dielectric sheet, 21 ...
  • Conductive paste 22: Dielectric material film
  • 24 Variable capacitance element
  • 26 Dielectric layer
  • 27 Dielectric layer for stress control unit
  • 50 Non-contact IC card
  • 71 ... Receiving unit 72 ... Rectifying unit 73
  • Signal processing unit 74 ... Resonance coil
  • 75 ... resonant capacitor
  • 75a ... capacitor
  • 76 ... rectifying diode
  • 77 ... rectifying capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)
  • Micromachines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

[Problem] To provide a capacitance element with which an electrostatic capacitance can be accurately ensured, and a variable-capacitance element with which a capacitance variability ratio can be adequately ensured; and also to provide a resonance circuit, a communication system, a wireless charging system, a power supply device, and an electronic instrument in which the capacitance elements are used. [Solution] This capacitance element (variable-capacitance element (1)) is provided with a capacitance element body (2) configured from a dielectric layer (4) and at least one pair of capacitance element electrodes (5a, 5b) that sandwich the dielectric layer (4) and generate a desired electric field on the dielectric layer (4). The capacitance element is also provided with stress controllers (6, 7) for controlling stress generated in the dielectric layer (4) of the capacitance element body (2) and increasing the electrostatic capacitance of the capacitance element body (2).

Description

容量素子、容量素子の製造方法、共振回路、通信システム、ワイヤレス充電システム、電源装置及び電子機器Capacitor element, method for manufacturing capacitor element, resonance circuit, communication system, wireless charging system, power supply device and electronic device
 本発明は、容量素子及びそれを備える共振回路に関し、特に、使用時において容量素子内に発生する応力を制御し静電容量を増加させることのできる容量素子、容量素子の製造方法、及びその容量素子を用いた共振回路に関する。また、その容量素子を用いた通信システム、ワイヤレス充電システム、電源装置及び電子機器に関する。 The present invention relates to a capacitive element and a resonance circuit including the capacitive element, and more particularly to a capacitive element capable of controlling a stress generated in the capacitive element during use and increasing a capacitance, a method of manufacturing the capacitive element, and a capacitance thereof The present invention relates to a resonant circuit using an element. In addition, the present invention relates to a communication system, a wireless charging system, a power supply device, and an electronic device using the capacitor.
 近年、電子機器の小型化、高信頼性化に伴い、その電子機器に用いられる電子部品として、小型化された容量素子の開発が求められている。そして、容量素子の小型化、及び高容量化を可能とするために、誘電体層と内部電極層とが交互に積層された積層誘電体素子本体に外部電極を形成した積層セラミックコンデンサが提案されている(特許文献1)。 In recent years, with the miniaturization and high reliability of electronic devices, development of miniaturized capacitive elements has been demanded as electronic components used in the electronic devices. Then, in order to enable a reduction in size and increase in capacitance, a multilayer ceramic capacitor in which external electrodes are formed on a multilayer dielectric element body in which dielectric layers and internal electrode layers are alternately stacked has been proposed. (Patent Document 1).
 特許文献1では、積層セラミックコンデンサを構成する積層誘電体素子本体内部において、その製造過程に結果的に付与される残留応力によって誘電率が向上することを利用し、取得静電容量の向上を図ることが記載されている。そして、このように、積層セラミックコンデンサにおいて積層誘電体素子本体に残留応力が結果的に付与されることで誘電率の向上が図られるので、より一層の小型化が可能とされている。 In Patent Document 1, the obtained electrostatic capacity is improved by utilizing the fact that the dielectric constant is improved by the residual stress applied as a result of the manufacturing process inside the multilayer dielectric element body constituting the multilayer ceramic capacitor. It is described. As described above, since the residual stress is eventually applied to the multilayer dielectric element body in the multilayer ceramic capacitor, the dielectric constant can be improved, so that further miniaturization is possible.
WO2005/050679号公報WO2005 / 050679 publication
 ところで、使用する容量素子毎に静電容量のバラツキがある場合、電子機器の性能を精度よく確保できないという問題がある。このため、容量素子の使用時において、静電容量を合わせこみたいという要望がある。
 また、近年、印加される制御電圧に応じて静電容量が変化する誘電体層を用いた容量素子(可変容量素子)が開発されているが、従来の可変容量素子は、制御電圧の印加によって、静電容量が減少する特性であった。
By the way, when there is variation in capacitance for each capacitor element to be used, there is a problem that the performance of the electronic device cannot be ensured with high accuracy. For this reason, when using a capacitive element, there is a desire to match the capacitance.
In recent years, capacitive elements (variable capacitive elements) using a dielectric layer whose electrostatic capacitance changes according to the applied control voltage have been developed. The capacitance was reduced.
 上述の点に鑑み、本開示は、静電容量の値を精度良く確保できる容量素子、及び、制御電圧を印加することで、静電容量を増加することのできる容量素子、及びその製造方法を提供する。また、これらの容量素子を用いた共振回路、通信システム、ワイヤレス充電システム、電源装置及び電子機器を提供する。 In view of the above points, the present disclosure provides a capacitive element that can ensure a capacitance value with high accuracy, a capacitive element that can increase capacitance by applying a control voltage, and a method for manufacturing the capacitive element. provide. In addition, a resonance circuit, a communication system, a wireless charging system, a power supply device, and an electronic device using these capacitive elements are provided.
 本開示の容量素子は、誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体を備える。また、容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させる応力制御部を備える。 The capacitive element of the present disclosure includes a capacitive element body that includes a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Further, a stress control unit is provided for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body.
 本開示の容量素子では、応力制御部により容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させることができる。これにより、容量素子本体の静電容量を制御することができる。 In the capacitive element of the present disclosure, the stress generated in the dielectric layer of the capacitive element body can be controlled by the stress control unit, and the capacitance of the capacitive element body can be increased. Thereby, the electrostatic capacitance of the capacitive element body can be controlled.
 本開示の容量素子の製造方法は、誘電体層となる誘電体シート上に所望の電極形状となるように導電ペーストを塗布して容量素子電極を形成し、容量素子電極の周囲を埋め込むように誘電体シート上部に誘電体材料膜を形成する工程を有する。また、容量素子電極が形成された誘電体シートを複数層積層することにより、容量素子本体となる積層体を形成する工程を有する。また、積層体を焼成処理することにより、複数の容量素子電極が誘電体層を介して積層された容量素子本体を形成する工程を有する。また、容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させる応力制御部を容量素子本体に接合して形成する工程を有する。 In the method of manufacturing a capacitive element according to the present disclosure, a capacitive paste is formed by applying a conductive paste on a dielectric sheet to be a dielectric layer so as to have a desired electrode shape, and the periphery of the capacitive element electrode is embedded. Forming a dielectric material film on the dielectric sheet; In addition, the method includes a step of forming a laminated body that becomes a capacitive element body by laminating a plurality of dielectric sheets on which capacitive element electrodes are formed. In addition, there is a step of forming a capacitive element body in which a plurality of capacitive element electrodes are laminated via a dielectric layer by firing the laminate. In addition, the method includes a step of bonding the capacitor element body to a stress control unit that controls the stress generated in the dielectric layer of the capacitor element body and increases the capacitance of the capacitor element body.
 本開示の容量素子の製造方法によれば、誘電体材料膜を形成することにより、容量素子電極の周囲が補強される。これにより、容量素子電極が形成された誘電体シートを積層した焼成処理した際に、容量素子電極が形成されていない部分の誘電体層の厚みが薄くなることがない。 According to the capacitive element manufacturing method of the present disclosure, the periphery of the capacitive element electrode is reinforced by forming the dielectric material film. As a result, when the dielectric sheet on which the capacitive element electrode is formed is laminated and fired, the thickness of the dielectric layer in the part where the capacitive element electrode is not formed is not reduced.
 本開示の共振回路は、共振コンデンサと、共振コンデンサに接続された共振コイルとを有して構成されている。共振コンデンサは、誘電体層と誘電体層を挟持して誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体とを備える。また、共振コンデンサは、容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させる応力制御部を備える。 The resonance circuit according to the present disclosure includes a resonance capacitor and a resonance coil connected to the resonance capacitor. The resonant capacitor includes a capacitive element body including a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. The resonant capacitor includes a stress control unit that controls the stress generated in the dielectric layer of the capacitive element body and increases the capacitance of the capacitive element body.
 本開示の通信システムは、送信装置と受信装置とを備える。送信装置は、第1共振コンデンサと、第1共振コンデンサに接続された第1共振コイルとを備える。第1共振コイルは、第1誘電体層と第1誘電体層を挟持して第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体を備える。さらに、第1容量素子本体の第1誘電体層に発生する応力を制御し、第1容量素子本体の静電容量を増加させる第1応力制御部を備える。受信装置は、第2共振コンデンサと、第2共振コンデンサに接続された第2共振コイルとを備える。第2共振コイルは、第2誘電体層と第2誘電体層を挟持して第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体を備える。さらに、第2容量素子本体の第2誘電体層に発生する応力を制御し、第2容量素子本体の静電容量を増加させる第2応力制御部を備える。 The communication system according to the present disclosure includes a transmission device and a reception device. The transmission device includes a first resonance capacitor and a first resonance coil connected to the first resonance capacitor. The first resonance coil includes a first capacitor composed of a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer. An element body is provided. Furthermore, a first stress control unit is provided that controls the stress generated in the first dielectric layer of the first capacitive element body and increases the capacitance of the first capacitive element body. The receiving device includes a second resonance capacitor and a second resonance coil connected to the second resonance capacitor. The second resonance coil includes a second capacitor composed of at least one pair of second capacitor elements that sandwich the second dielectric layer and the second dielectric layer and generate a desired electric field in the second dielectric layer. An element body is provided. Further, a second stress control unit is provided for controlling the stress generated in the second dielectric layer of the second capacitive element body and increasing the capacitance of the second capacitive element body.
 本開示のワイヤレス充電システムは、給電装置と受電装置とを備える。給電装置は、第1共振コンデンサと、第1共振コンデンサに接続された第1共振コイルとを備える。第1共振コイルは、第1誘電体層と第1誘電体層を挟持して第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体を備える。さらに、第1容量素子本体の第1誘電体層に発生する応力を制御し、第1容量素子本体の静電容量を増加させる第1応力制御部を備える。受電装置は、第2共振コンデンサと、第2共振コンデンサに接続された第2共振コイルとを備える。第2共振コイルは、第2誘電体層と第2誘電体層を挟持して第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体を備える。さらに、第2容量素子本体の第2誘電体層に発生する応力を制御し、第2容量素子本体の静電容量を増加させる第2応力制御部を備える。 The wireless charging system of the present disclosure includes a power feeding device and a power receiving device. The power feeding device includes a first resonance capacitor and a first resonance coil connected to the first resonance capacitor. The first resonance coil includes a first capacitor composed of a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer. An element body is provided. Furthermore, a first stress control unit is provided that controls the stress generated in the first dielectric layer of the first capacitive element body and increases the capacitance of the first capacitive element body. The power receiving device includes a second resonance capacitor and a second resonance coil connected to the second resonance capacitor. The second resonance coil includes a second capacitor composed of at least one pair of second capacitor elements that sandwich the second dielectric layer and the second dielectric layer and generate a desired electric field in the second dielectric layer. An element body is provided. Further, a second stress control unit is provided for controlling the stress generated in the second dielectric layer of the second capacitive element body and increasing the capacitance of the second capacitive element body.
 本開示の電源装置は、電源供給部と、容量素子を含む共振コンデンサを含んで構成された可変インピーダンスを備える。容量素子は、誘電体層と誘電体層を挟持して誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体を備える。さらに、容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させる応力制御部を備える。 The power supply device of the present disclosure includes a variable impedance configured to include a power supply unit and a resonant capacitor including a capacitive element. The capacitive element includes a capacitive element body that includes a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Furthermore, the stress control part which controls the stress which generate | occur | produces in the dielectric material layer of a capacitive element main body, and increases the electrostatic capacitance of a capacitive element main body is provided.
 本開示の電子機器は、共振コンデンサと、共振コイルの接続された共振コイルとを含んで構成される。共振コンデンサは、誘電体層と誘電体層を挟持して誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体とを備える。また、容量素子本体の誘電体層に発生する応力を制御し、容量素子本体の静電容量を増加させる応力制御部を備える。 The electronic device of the present disclosure includes a resonance capacitor and a resonance coil to which the resonance coil is connected. The resonant capacitor includes a capacitive element body including a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer. Further, a stress control unit is provided for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body.
 本開示によれば、静電容量の値が精度良く制御された容量素子を得ることができる。また、応力制御部によって容量素子本体に応力を与えることで、容量素子本体の静電容量を増加させることができる。そして、共振回路にこれらの容量素子を用いることにより、共振回路の性能を向上させることができる。 According to the present disclosure, it is possible to obtain a capacitive element whose capacitance value is accurately controlled. Moreover, the electrostatic capacity of the capacitive element body can be increased by applying stress to the capacitive element body by the stress control unit. The performance of the resonance circuit can be improved by using these capacitive elements in the resonance circuit.
本開示の第1の実施形態に係る可変容量素子の概略断面構成図である。1 is a schematic cross-sectional configuration diagram of a variable capacitance element according to a first embodiment of the present disclosure. A、B 本開示の第1の実施形態に係る可変容量素子の回路構成と、等価回路図である。A and B are a circuit configuration and an equivalent circuit diagram of a variable capacitance element according to the first embodiment of the present disclosure. 第1の制御電圧V1及び第2の制御電圧V2を変化させながら印加したときの、可変容量素子本体で得られる静電容量Cacの変化率を示した図である。It is the figure which showed the change rate of the electrostatic capacitance Cac obtained by the variable capacitance element main body when applying changing the 1st control voltage V1 and the 2nd control voltage V2. 第2の制御電圧V2を0Vに保持し、第1の制御電圧V1のみを変化させた時の可変容量素子本体の静電容量Cacの変化率を示した図である。It is the figure which showed the change rate of the electrostatic capacitance Cac of a variable capacitive element main body when the 2nd control voltage V2 is hold | maintained at 0V and only the 1st control voltage V1 is changed. 第1の制御電圧V1と第2の制御電圧V2を逆極性とし、第1の制御電圧V1及び第2の制御電圧V2の絶対値を、極性を変えながら大きくしていったときの可変容量素子本体の静電容量Cacの変化率を示した図である。The variable capacitance element when the first control voltage V1 and the second control voltage V2 are opposite in polarity, and the absolute values of the first control voltage V1 and the second control voltage V2 are increased while changing the polarity. It is the figure which showed the change rate of the electrostatic capacitance Cac of a main body. 第1の制御電圧V1を0Vと60Vに交互に変化させると共に、第2の制御電圧V2を0Vと-60Vに交互に変化させたときの可変容量素子本体の静電容量Cacの変化率を示した図である。The rate of change of the capacitance Cac of the variable capacitance element body when the first control voltage V1 is alternately changed to 0V and 60V and the second control voltage V2 is alternately changed to 0V and −60V is shown. It is a figure. 第1の制御電圧V1と第2の制御電圧V2の極性を同じとし、60Vと-60Vに交互に変化させたときの可変容量素子本体の静電容量Cacの変化率を示した図である。FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body when the polarities of the first control voltage V1 and the second control voltage V2 are the same and are alternately changed to 60V and −60V. 第1の制御電圧V1と第2の制御電圧V2を逆極性とし、60Vと-60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are reversed in polarity and are alternately changed between 60V and −60V. 第2の制御電圧V2を60Vとし、第1の制御電圧V1を0Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when the 2nd control voltage V2 is 60V and the 1st control voltage V1 is changed to 0V and 60V alternately. 第1の制御電圧V1を60Vとし、第2の制御電圧V2を-60Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。FIG. 6 is a diagram showing the rate of change of the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is 60V and the second control voltage V2 is alternately changed to −60V and 60V. 第1の制御電圧V1を60Vとし、第2の制御電圧V2を0Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when the 1st control voltage V1 is 60V and the 2nd control voltage V2 is changed to 0V and 60V alternately. 本開示の第1の実施形態に係る可変容量素子の、変形例1に係る回路構成を示す。The circuit structure concerning the modification 1 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例2に係る回路構成を示す。The circuit structure concerning the modification 2 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例3に係る回路構成を示す。The circuit structure concerning the modification 3 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例4に係る回路構成を示す。The circuit structure concerning the modification 4 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例5に係る回路構成を示す。The circuit structure concerning the modification 5 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例6に係る回路構成を示す。The circuit structure concerning the modification 6 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例7に係る回路構成を示す。The circuit structure concerning the modification 7 of the variable capacitance element concerning a 1st embodiment of this indication is shown. 本開示の第1の実施形態に係る可変容量素子の、変形例8に係る回路構成を示す。The circuit structure concerning the modification 8 of the variable capacitance element concerning a 1st embodiment of this indication is shown. A~C 従来の可変容量素子の製造方法を示す工程図である。A to C are process diagrams illustrating a conventional method for manufacturing a variable capacitance element. A~D 本開示の第1の実施形態に係る可変容量素子の製造方法を示す工程図である。A to D are process diagrams illustrating a method for manufacturing the variable capacitor according to the first embodiment of the present disclosure. 本開示の第2の実施形態に係る可変容量素子の概略断面構成図である。FIG. 6 is a schematic cross-sectional configuration diagram of a variable capacitance element according to a second embodiment of the present disclosure. 本開示の第3の実施形態に係る可変容量素子の概略断面構成図である。FIG. 6 is a schematic cross-sectional configuration diagram of a variable capacitance element according to a third embodiment of the present disclosure. 本開示の第4の実施形態に係る共振回路を用いた非接触ICカードの受信系回路部のブロック構成図である。It is a block block diagram of the receiving system circuit part of the non-contact IC card using the resonance circuit which concerns on 4th Embodiment of this indication. 本開示の第5の実施形態に係る通信システムの概略構成図である。It is a schematic block diagram of the communication system which concerns on 5th Embodiment of this indication. 本開示の第6の実施形態に係るワイヤレス充電システムの概略構成図である。It is a schematic block diagram of the wireless charging system which concerns on 6th Embodiment of this indication. 本開示の第7の実施形態に係る電源装置の概略構成図である。It is a schematic block diagram of the power supply device which concerns on 7th Embodiment of this indication. 原理説明の為の可変容量素子の概略断面構成図である。It is a schematic cross-sectional block diagram of the variable capacitance element for a principle explanation.
 以下に、本開示の実施形態に係る容量素子及びそれを備える電子機器の一例を、図面を参照しながら説明する。本開示の実施形態は以下の順で説明する。なお、本開示は以下の例に限定されるものではない。
1.第1の実施形態:本開示を可変容量素子に適用した場合の一例
 1-1 原理
 1-2 可変容量素子の構成
 1-3 可変容量素子の静電容量の測定実験
 1-4 可変容量素子の製造方法
2.第2の実施形態:本開示を可変容量素子に適用した場合の一例
3.第3の実施形態:本開示を可変容量素子に適用した場合の一例
4.第4の実施形態:本開示の可変容量素子を備える電子機器の一例
5.第5の実施形態:本開示の可変容量素子を備える通信システムの一例
6.第6の実施形態:本開示の可変容量素子を備えるワイヤレス充電システムの一例
7.第7の実施形態:本開示の可変容量素子を備える電源装置の一例
Hereinafter, an example of a capacitive element according to an embodiment of the present disclosure and an electronic apparatus including the same will be described with reference to the drawings. Embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples.
1. First Embodiment: An Example of Applying the Present Disclosure to a Variable Capacitance Element 1-1 Principle 1-2 Configuration of Variable Capacitance Element 1-3 Measurement Experiment of Capacitance of Variable Capacitance Element 1-4 Manufacturing method 2. Second Embodiment: An example when the present disclosure is applied to a variable capacitance element 3. Third Embodiment: An example when the present disclosure is applied to a variable capacitance element. 4. Fourth embodiment: an example of an electronic device including the variable capacitance element of the present disclosure Fifth embodiment: an example of a communication system including the variable capacitance element of the present disclosure. Sixth Embodiment: An example of a wireless charging system including the variable capacitance element of the present disclosure. Seventh Embodiment: An example of a power supply device including the variable capacitance element of the present disclosure
 〈1.第1の実施形態:可変容量素子〉
 [1-1 原理]
 まず、本開示の第1の実施形態に係る可変容量素子を説明する前に、本実施形態の可変容量素子の理解を容易にするために、図28を用いて本実施形態の原理を説明する。
<1. First Embodiment: Variable Capacitance Element>
[1-1 Principle]
First, before describing the variable capacitance element according to the first embodiment of the present disclosure, the principle of the present embodiment will be described with reference to FIG. 28 in order to facilitate understanding of the variable capacitance element of the present embodiment. .
 図28に、原理説明の為の従来の可変容量素子の概略断面構成を示す。図28に示す可変容量素子100は、誘電体層103と、その誘電体層103を挟んで構成される少なくとも一対の電極101、102とから構成されている。また、一方の電極101は、一方の外部端子104に接続されており、他方の電極102は、他方の外部端子105に接続されている。この可変容量素子100では、誘電体層103は強誘電体材料で構成されており、外部から印加される制御電圧に応じて分極状態が変化することにより容量が変化する。 FIG. 28 shows a schematic cross-sectional configuration of a conventional variable capacitance element for explaining the principle. A variable capacitance element 100 shown in FIG. 28 includes a dielectric layer 103 and at least a pair of electrodes 101 and 102 that are sandwiched by the dielectric layer 103. One electrode 101 is connected to one external terminal 104, and the other electrode 102 is connected to the other external terminal 105. In the variable capacitance element 100, the dielectric layer 103 is made of a ferroelectric material, and the capacitance changes as the polarization state changes according to the control voltage applied from the outside.
 図28に示す可変容量素子100では、一般的に、誘電体層103を構成する強誘電体材料として、強誘電体材料の焼結物を用いることが多い。そして、具体的な物質として例えばチタン酸バリウムを用いる場合、誘電体層103に発生する電界によりその結晶状態が変化することが知られている。その変化を説明する前に、チタン酸バリウムの結晶構造について説明する。温度によっても安定な結晶構造が違うが、ここでは説明を容易にするため、以降は室温での場合のみとする。チタン酸バリウムは正方晶が安定であり、その正方晶はC軸方向に自発分極を有していることが知られている。チタン酸バリウムの焼結物は多結晶であり、自発分極が外部に現れない。この理由を次に記す。 In the variable capacitance element 100 shown in FIG. 28, generally, a sintered material of a ferroelectric material is often used as the ferroelectric material constituting the dielectric layer 103. And, for example, when barium titanate is used as a specific substance, it is known that its crystal state is changed by an electric field generated in the dielectric layer 103. Before explaining the change, the crystal structure of barium titanate will be explained. Although the stable crystal structure varies depending on the temperature, for the sake of easy explanation, the following description will be made only at room temperature. It is known that barium titanate is stable in tetragonal crystal, and the tetragonal crystal has spontaneous polarization in the C-axis direction. The sintered product of barium titanate is polycrystalline, and spontaneous polarization does not appear outside. The reason is as follows.
 チタン酸バリウムの焼結物では、自発分極のある正方晶の微小領域に接して(自発分極方向に対して平行に並ぶ側面)、自発分極の直交方向にごく薄い厚みの範囲で自発分極の無い立方晶が存在する。さらにその立方晶が介在してその立方晶に接して先の自発分極領域の方向とは逆向きの自発分極となる正方晶の別の微小領域が存在する。また、微小領域の立方晶のC軸方向の末端領域には、そのC軸に対して45度方向にごく薄い厚みの範囲で立方晶が存在し介在して微小領域の立方晶とは互いに90度(直交)の向きとなって、自発分極を有する立方晶の別の微小領域も存在することがある。 In the sintered product of barium titanate, there is no spontaneous polarization in the range of very thin thickness in the direction perpendicular to the spontaneous polarization, in contact with the small area of the tetragonal crystal with spontaneous polarization (side surface parallel to the spontaneous polarization direction) There are cubic crystals. In addition, there is another small region of tetragonal crystal in which the cubic crystal is interposed and is in contact with the cubic crystal and has spontaneous polarization opposite to the direction of the spontaneous polarization region. In addition, cubic crystals exist in a very thin thickness range in the direction of 45 degrees with respect to the C-axis in the end region in the C-axis direction of the small region cubic crystal, and the cubic crystal in the small region is 90 to each other. There may also be other microregions of cubic crystals with a degree (orthogonal) orientation and spontaneous polarization.
 さらには、立方晶を介して自発分極領域が互いに分極を打ち消し合うように存在するいくつかの正方晶の複数の微小領域から構成される集団領域となる。また先の説明のように微小領域は、隣り合う集団領域においても、集団領域の主たる正方晶のC軸方向に対して、平行の配置および直交の配置でも存在する。
 以上の理由により、チタン酸バリウムの焼結物の全体としては、分極が外部へ現われない。なお、この場合、正方晶の分極方向である、いわゆるC軸の格子定数は、元の立方晶のC軸の格子定数よりも長いことも知られている。
Furthermore, the spontaneous polarization region becomes a collective region composed of a plurality of small regions of several tetragonal crystals existing so that the polarizations cancel each other through the cubic crystal. In addition, as described above, the micro regions exist also in the adjacent collective region, in an arrangement parallel to and orthogonal to the C-axis direction of the main tetragonal crystal in the collective area.
For the above reasons, polarization does not appear to the outside as a whole of the sintered barium titanate. In this case, it is also known that the so-called C-axis lattice constant, which is the polarization direction of tetragonal crystal, is longer than the lattice constant of the original cubic C-axis.
 では、図28に示す可変容量素子100において、誘電体層103を構成する強誘電体材料として例えばチタン酸バリウムの焼結物を用いる場合、誘電体層103に発生する電界によりその結晶状態がどのように変化するかについて説明する。結晶状態の変化の仕方には複数のパターンがあり、電界の強度と印加時間、および、電界の向きの反転と反転の周期(周波数)などにも依存することが知られている。 In the variable capacitance element 100 shown in FIG. 28, for example, when a sintered material of barium titanate is used as the ferroelectric material constituting the dielectric layer 103, the crystal state is changed depending on the electric field generated in the dielectric layer 103. How it changes will be described. There are a plurality of patterns in how the crystal state changes, and it is known that it depends on the strength and application time of the electric field, the reversal of the direction of the electric field, and the period (frequency) of the reversal.
 代表的な結晶状態の変化の仕方のパターンは次の通りである。まず、誘電体層にある電界が印加される。すると、その電界方向に平行(および平行に近い)な自発分極のある正方晶の微小領域と、それに近接する90度方向の自発分極のある正方晶の微小領域の間のごく狭い領域面(ドメイン壁)があたかも移動するよう結晶型の変化が連続して起こる。そして、平行(および平行に近い)自発分極のある正方晶の微小領域が、90度方向の自発分極のある正方晶の微小領域を侵食するようになる。すなわち、分極が電界方向に多く配列することになる。このとき、2つの微小領域をまとめて見ると、電界方向に対しては伸長し、電界方向に対して直交方向には収縮することになる。 The typical pattern of how the crystal state changes is as follows. First, an electric field in the dielectric layer is applied. Then, a very narrow region plane (domain) between a small region of a tetragonal crystal having a spontaneous polarization parallel to (and nearly parallel to) the electric field direction and a small region of a tetragonal crystal having a spontaneous polarization in the 90-degree direction adjacent thereto. The crystal type changes continuously as if the wall were moving. Then, the tetragonal microregions with the spontaneous polarization (and near parallel) spontaneously erode the tetragonal microregions with the spontaneous polarization in the 90-degree direction. That is, a large amount of polarization is arranged in the electric field direction. At this time, when the two minute regions are viewed together, they expand in the direction of the electric field and contract in the direction perpendicular to the direction of the electric field.
 また、電界強度が大きく、時間が長く印加される場合、電界方向に平行および平行に近い集団領域において、集団領域内部でやはり正方晶のごく狭い領域面(ドメイン壁)が移動し、逆向きの微小領域を侵食するようにして分極が電界方向に多く配列するようになる。そして、逆向きの微小領域にしてみれば、周囲から侵食されるようになり、最終的には逆向きの微小領域が消失する。もちろん、立方晶領域も消失する。この際に、その1つの集団領域をまとめて見ると、電界方向に対して直交方向は伸長も収縮も無いことになる。また、立方晶領域が消失して正方晶に変化した分だけ、電界方向に対してはやや伸長することになる。 In addition, when the electric field strength is large and the time is applied for a long time, in the collective region parallel to and parallel to the electric field direction, a very narrow region plane (domain wall) of the tetragonal crystal moves in the collective region, and the reverse direction A large amount of polarization is arranged in the direction of the electric field so as to erode a minute region. And if it tries to make a reverse micro area | region, it will come to be eroded from the circumference | surroundings and finally a reverse micro area | region will lose | disappear. Of course, the cubic region also disappears. At this time, when one collective region is viewed together, the direction orthogonal to the electric field direction is neither expanded nor contracted. In addition, the amount of elongation in the electric field direction is slightly increased by the amount of the cubic crystal region disappeared and changed to tetragonal crystal.
 また、印加された電界に対し、先に説明のような正方晶のごく狭い領域面(ドメイン壁)の移動を伴わず、全体の分極が反転することが知られている。
 このようなチタン酸バリウムの結晶状態の変化、又は分極方向の変化に応じて、高誘電率が得られる。また、いわゆるドメインクランピングと呼ばれる直流バイアス電圧印加によって、重畳される交流電圧による交流電界に対して分極反転がしにくくなることになり、その直流バイアス電圧によって、静電容量を変化させる制御を行うこともできる。
 このような考察を元に、本発明者等は、印加電界によるチタン酸バリウムの伸長を、促進あるいは阻害することで、チタン酸バリウムの分極状態や、誘電率、さらには静電容量を制御できるのではないかという知見を得た。
In addition, it is known that the entire polarization is reversed without the movement of a very narrow region plane (domain wall) of tetragonal crystal as described above with respect to the applied electric field.
A high dielectric constant can be obtained in accordance with such a change in the crystalline state of barium titanate or a change in the polarization direction. In addition, by applying a DC bias voltage called so-called domain clamping, it becomes difficult to reverse the polarity of the AC electric field caused by the superimposed AC voltage, and control is performed to change the capacitance by the DC bias voltage. You can also
Based on such considerations, the present inventors can control the polarization state, dielectric constant, and electrostatic capacity of barium titanate by promoting or inhibiting the extension of barium titanate by the applied electric field. The knowledge that it might be.
 図28に示すような可変容量素子100では、容量を制御するための専用の制御端子が構成されていないので、容量を変化させる制御電圧と、信号電圧(交流)とが同一の電極間(図28では、電極101と電極102)に印加される。このため、誘電体層103には制御電圧及び信号電圧の総和が印加される。そして、誘電体層103に発生する電界方向に応じて誘電体層103を構成するチタン酸バリウムの結晶状態が変化し、チタン酸バリウムが伸長、あるいは元に戻る収縮、さらには元の状態よりも収縮する現象が生じる。これにより、誘電体層103全体が、電界方向に伸長、あるいは元に戻る収縮、さらには元の状態からより収縮することになる。 In the variable capacitance element 100 as shown in FIG. 28, since a dedicated control terminal for controlling the capacitance is not configured, the control voltage for changing the capacitance and the signal voltage (alternating current) are between the same electrodes (see FIG. 28). 28, it is applied to the electrode 101 and the electrode 102). For this reason, the sum of the control voltage and the signal voltage is applied to the dielectric layer 103. Then, the crystal state of barium titanate constituting the dielectric layer 103 changes in accordance with the direction of the electric field generated in the dielectric layer 103, and the barium titanate expands or contracts back to the original state. A phenomenon of contraction occurs. As a result, the entire dielectric layer 103 expands or contracts back in the direction of the electric field, and further contracts from the original state.
 そして、このとき、誘電体層103に電界を生成させる一対の電極101,102間では、矢印A,Bに示すように、静電力(クーロン力)が発生する。そして、このクーロン力により、電界(電極)が誘電体層103を圧縮するように働く。 At this time, an electrostatic force (Coulomb force) is generated between the pair of electrodes 101 and 102 that generate an electric field in the dielectric layer 103 as indicated by arrows A and B. The electric field (electrode) acts to compress the dielectric layer 103 by this Coulomb force.
 このような考察を元に、本発明者等は、チタン酸バリウムの伸長を、クーロン力が阻害するように働いているのではないかという知見も得た。 Based on these considerations, the present inventors have also obtained the knowledge that the coulomb force works to inhibit the elongation of barium titanate.
 制御電圧がチタン酸バリウムで構成される誘電体層103に印加されることにより、その電界方向に分極ドメインがそろい、容量が変化する。しかし、上述の理由により、クーロン力がチタン酸バリウムの結晶状態の転位を阻害し、分極ドメインが揃うことを阻害することにより、静電容量の可変率が低下するものと考えられる。 When a control voltage is applied to the dielectric layer 103 composed of barium titanate, the polarization domains are aligned in the direction of the electric field, and the capacitance changes. However, for the reasons described above, it is considered that the Coulomb force inhibits the dislocation of the barium titanate crystal state and prevents the polarization domains from being aligned, thereby reducing the capacitance variable rate.
 図28に示す可変容量素子100では、誘電体層103に印加される信号電圧(交流)がとりわけ制御電圧よりも大きい場合、制御電圧による容量可変率が低下してしまうことや、誘電損失が大きくなるという問題があった。これらの現象も、電極間に働くクーロン力により、電界(電極)が誘電体層103に圧縮応力をもたらすためと考えられる In the variable capacitance element 100 shown in FIG. 28, when the signal voltage (alternating current) applied to the dielectric layer 103 is particularly larger than the control voltage, the capacitance variable ratio due to the control voltage is reduced, and the dielectric loss is large. There was a problem of becoming. These phenomena are also considered because the electric field (electrode) brings compressive stress to the dielectric layer 103 due to Coulomb force acting between the electrodes.
 そこで、本発明者等は、可変容量素子を構成する場合には、誘電体層に係る応力を低減あるいは増加させることのできる構成を用いることにより、容量可変率の向上や、誘電損失の低減や容量の安定化なども図られると考えた。 Therefore, the present inventors, when configuring a variable capacitance element, use a configuration that can reduce or increase the stress on the dielectric layer, thereby improving the capacitance variable rate, reducing the dielectric loss, We thought that capacity could be stabilized.
 [1-2 可変容量素子の構成]
 上述の原理をふまえ、第1の実施形態に係る可変容量素子について説明する。図1は、本実施形態の可変容量素子1の概略断面構成図である。図2Aは、本実施形態の可変容量素子1の回路構成であり、図2Bは、本実施形態の可変容量素子1の等価回路図である。 
[1-2 Configuration of variable capacitance element]
Based on the above principle, the variable capacitance element according to the first embodiment will be described. FIG. 1 is a schematic cross-sectional configuration diagram of a variable capacitance element 1 of the present embodiment. 2A is a circuit configuration of the variable capacitance element 1 of the present embodiment, and FIG. 2B is an equivalent circuit diagram of the variable capacitance element 1 of the present embodiment.
 図1に示すように、本実施形態の可変容量素子1は、可変容量素子本体2と、その上下に積層して設けられた応力制御部6、7とで構成されている。可変容量素子本体2は、誘電体層4と、誘電体層4を挟んで交互に複数層積層して形成された第1及び第2の可変容量素子電極5a、5bと、第1及び第2の信号端子3a、3bで構成されている。 As shown in FIG. 1, the variable capacitance element 1 of the present embodiment is composed of a variable capacitance element main body 2 and stress control units 6 and 7 that are provided on the upper and lower sides thereof. The variable capacitance element body 2 includes a dielectric layer 4, first and second variable capacitance element electrodes 5 a and 5 b formed by alternately laminating a plurality of layers with the dielectric layer 4 interposed therebetween, and first and second Signal terminals 3a and 3b.
 第1及び第2の可変容量素子電極5a、5bは矩形形状からなる板状の部材で構成されており、誘電体層4を介して交互に積層されている。第1の可変容量素子電極5aの端部は、誘電体層4の一方の側面から露出するように形成されている。一方、第2の可変容量素子電極5bの端部は、誘電体層4の一方の側面に対向する他方の側面から露出するように形成されている。第1の信号端子3aは誘電体層4の一方の側面に形成され、誘電体層4の側面に露出した第1の可変容量素子電極5aの端部に電気的に接続されている。また、第2の信号端子3bは、誘電体層4の他方の側面に形成されており、誘電体層4の側面に露出した第2の可変容量素子電極5bの端部に電気的に接続されている。 The first and second variable capacitance element electrodes 5 a and 5 b are formed of rectangular plate-like members, and are alternately stacked via the dielectric layers 4. The end portion of the first variable capacitance element electrode 5 a is formed so as to be exposed from one side surface of the dielectric layer 4. On the other hand, the end portion of the second variable capacitance element electrode 5 b is formed so as to be exposed from the other side surface facing one side surface of the dielectric layer 4. The first signal terminal 3 a is formed on one side surface of the dielectric layer 4 and is electrically connected to the end portion of the first variable capacitance element electrode 5 a exposed on the side surface of the dielectric layer 4. The second signal terminal 3 b is formed on the other side surface of the dielectric layer 4 and is electrically connected to the end of the second variable capacitance element electrode 5 b exposed on the side surface of the dielectric layer 4. ing.
 第1及び第2の可変容量素子電極5a、5bの形成材料としては、Pt、Pb、Pb/Ag、Ni、Ni合金等の金属材料を用いることができる。また、誘電体層4は、誘電体層4を挟持する第1及び第2の可変容量素子電極5a、5b間に電圧が印加されることにより、誘電率が変化する誘電体材料で形成され、例えば、比誘電率が1000を超えるような強誘電体材料で形成される。 As a material for forming the first and second variable capacitance element electrodes 5a and 5b, a metal material such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like can be used. The dielectric layer 4 is formed of a dielectric material whose dielectric constant is changed by applying a voltage between the first and second variable capacitance element electrodes 5a and 5b sandwiching the dielectric layer 4. For example, it is made of a ferroelectric material having a relative dielectric constant exceeding 1000.
 誘電体層4の材料としては、具体的には、イオン分極を生じる誘電体材料を用いることができる。イオン分極を生じる強誘電体材料は、イオン結晶材料からなり、プラスのイオンとマイナスのイオンの原子が変位することで電気的に分極する強誘電体材料である。このイオン分極を生じる強誘電体材料は、一般に、所定の2つの元素をA及びBとすると、化学式ABO(Oは酸素元素)で表され、ペロブスカイト構造を有する。このような強誘電体材料としては、例えば、チタン酸バリウム(BaTiO)、ニオブ酸カリウム(KNbO)、チタン酸鉛(PbTiO)等があげられる。また、誘電体層4の形成材料として、チタン酸鉛(PbTiO)にジルコン酸鉛(PbZrO)を混ぜ合わせたPZT(チタン酸ジルコン酸鉛)を用いてもよい。 As a material for the dielectric layer 4, specifically, a dielectric material that causes ion polarization can be used. A ferroelectric material that causes ion polarization is a ferroelectric material that is made of an ionic crystal material and is electrically polarized by the displacement of positive and negative ion atoms. In general, a ferroelectric material that generates ionic polarization is represented by the chemical formula ABO 3 (O is an oxygen element) and has a perovskite structure, where A and B are two predetermined elements. Examples of such a ferroelectric material include barium titanate (BaTiO 3 ), potassium niobate (KNbO 3 ), lead titanate (PbTiO 3 ), and the like. Moreover, PZT (lead zirconate titanate) obtained by mixing lead zirconate (PbZrO 3 ) with lead titanate (PbTiO 3 ) may be used as a material for forming the dielectric layer 4.
 また、誘電体層4の形成材料として電子分極を生じる強誘電体材料を用いてもよい。この強誘電体材料では、プラスの電荷に偏った部分と、マイナスの電荷に偏った部分とに分かれて電気双極子モーメントが生じ、分極が生じる。そのような材料として、従来、Fe2+の電荷面と、Fe3+の電荷面の形成により、分極を形成して強誘電体的特性を示す希土類鉄酸化物が報告されている。この系においては、希土類元素をREとし、鉄族元素をTMとしたときに、分子式(RE)・(TM)・O(O:酸素元素)で表される材料が高誘電率を有することが報告されている。なお、希土類元素としては、例えば、Y、Er、Yb、Lu(特にYと重希土類元素)が挙げられ、鉄族元素としては、例えば、Fe、Co、Ni(特にFe)が挙げられる。また、(RE)・(TM)・Oとしては、例えば、ErFe、LuFe、YFeが挙げられる。 Further, a ferroelectric material that generates electronic polarization may be used as the material for forming the dielectric layer 4. In this ferroelectric material, an electric dipole moment is generated in a portion biased to a positive charge and a portion biased to a negative charge, and polarization occurs. As such a material, a rare earth iron oxide having a ferroelectric property by forming polarization by forming a charge surface of Fe 2+ and a charge surface of Fe 3+ has been reported. In this system, when the rare earth element is RE and the iron group element is TM, the material represented by the molecular formula (RE) · (TM) 2 · O 4 (O: oxygen element) has a high dielectric constant. It has been reported. Examples of rare earth elements include Y, Er, Yb, and Lu (particularly Y and heavy rare earth elements), and examples of iron group elements include Fe, Co, and Ni (particularly Fe). Examples of (RE) · (TM) 2 · O 4 include ErFe 2 O 4 , LuFe 2 O 4 , and YFe 2 O 4 .
 可変容量素子本体2では、図2A、図2Bに示すように、第1の信号端子3aと第2の信号端子3bに信号電圧電源ACより所望の信号電圧を印加することにより、隣接する第1及び第2の可変容量素子電極5a、5b間において静電容量Cacが得られる。 In the variable capacitor element body 2, as shown in FIGS. 2A and 2B, by applying a desired signal voltage from the signal voltage power supply AC to the first signal terminal 3a and the second signal terminal 3b, the adjacent first In addition, a capacitance Cac is obtained between the second variable capacitance element electrodes 5a and 5b.
 応力制御部6、7は、それぞれ、応力制御部用誘電体層10を挟んで交互に複数層積層された第1及び第2の応力制御電極9a、9bと、第1及び第2の制御端子8a、8bとで構成されている。第1及び第2の応力制御電極9a、9bは矩形形状からなる板状の部材で構成されており、応力制御部用誘電体層10を介して交互に積層されている。第1の応力制御電極の端部は、応力制御部用誘電体層10の一方の側面から露出するように形成されている。一方、第2の応力制御電極9bの端部は、応力制御部用誘電体層10の一方の側面に対向する他方の側面から露出するように形成されている。第1の制御端子8aは応力制御部用誘電体層10の一方の側面に形成され、応力制御部用誘電体層10の側面に露出した第1の応力制御電極9aの端部に電気的に接続されている。また、第2の制御端子8bは、応力制御部用誘電体層10の他方の側面に形成されており、応力制御部用誘電体層10の側面に露出した第2の応力制御電極9bの端部に電気的に接続されている。 The stress control units 6 and 7 include first and second stress control electrodes 9a and 9b, and first and second control terminals, which are alternately stacked in layers with the dielectric layer 10 for stress control unit interposed therebetween. 8a and 8b. The first and second stress control electrodes 9a and 9b are formed of rectangular plate-like members, and are alternately stacked with the stress control portion dielectric layers 10 interposed therebetween. The end portion of the first stress control electrode is formed so as to be exposed from one side surface of the stress control portion dielectric layer 10. On the other hand, the end portion of the second stress control electrode 9b is formed so as to be exposed from the other side surface opposed to one side surface of the stress control unit dielectric layer 10. The first control terminal 8a is formed on one side surface of the stress control unit dielectric layer 10, and is electrically connected to the end portion of the first stress control electrode 9a exposed on the side surface of the stress control unit dielectric layer 10. It is connected. The second control terminal 8 b is formed on the other side surface of the stress control unit dielectric layer 10, and the end of the second stress control electrode 9 b exposed on the side surface of the stress control unit dielectric layer 10. It is electrically connected to the part.
 応力制御部6、7は、可変容量素子本体2の誘電体層4の厚さ方向(電界が発生する方向)において、可変容量素子本体2を挟持するように構成されている。また、第1及び第2の応力制御電極9a、9bは、可変容量素子本体2を構成する第1及び第2の可変容量素子電極5a、5bと平行関係をほぼ保持しながら、応力制御部用誘電体層10を介して交互に積層されている。 The stress controllers 6 and 7 are configured to sandwich the variable capacitor element body 2 in the thickness direction of the dielectric layer 4 of the variable capacitor element body 2 (the direction in which the electric field is generated). Further, the first and second stress control electrodes 9a and 9b are for the stress control unit while substantially maintaining a parallel relationship with the first and second variable capacitance element electrodes 5a and 5b constituting the variable capacitance element body 2. The dielectric layers 10 are alternately stacked.
 また、図1では、応力制御部用誘電体層10の厚さ(第1の応力制御電極9aと第2の応力制御電極9bとの間隔)および誘電体層4の厚さ(第1の可変容量素子電極5aと第2の可変容量素子電極5bとの間隔)は同一として構成した。しかしながら、これに限られるものではなく、それぞれ異なってもよい。加えて、図1で示されるそれぞれの応力制御部用誘電体層10の厚さ(第1の応力制御電極9aと第2の応力制御電極9bとの間隔)も、異なっていてもよい。 In FIG. 1, the thickness of the stress control portion dielectric layer 10 (the distance between the first stress control electrode 9 a and the second stress control electrode 9 b) and the thickness of the dielectric layer 4 (first variable). The distance between the capacitive element electrode 5a and the second variable capacitive element electrode 5b) is the same. However, the present invention is not limited to this and may be different. In addition, the thickness (distance between the first stress control electrode 9a and the second stress control electrode 9b) of each dielectric layer for stress control unit 10 shown in FIG. 1 may be different.
 応力制御部6、7を構成する応力制御部用誘電体層10の形成材料は、可変容量素子本体2を構成する誘電体層4の形成材料と同様の材料を用いることができる。その他、可変容量素子本体2の誘電体層4よりも、硬い材料や、印加される応力制御用電圧(電界)に対する圧縮率の高い材料を用いることができる。このような物質は、可変容量素子本体2を構成する誘電体層4の形成材料の具体例から選んでも良く、一般的に用いられる誘電材料から選んでもよい。一般的に用いられている誘電材料としては、紙、ポリエチレンテレフタレート、ポリプロピレン、ポリフェニレンサルファイド、ポリスチレン、TiO、MgTiO、SrMgTiO、Al、Ta、等が挙げられる。 As a forming material of the stress control unit dielectric layer 10 constituting the stress control units 6 and 7, the same material as the forming material of the dielectric layer 4 constituting the variable capacitance element body 2 can be used. In addition, it is possible to use a material that is harder than the dielectric layer 4 of the variable capacitance element body 2 or a material having a higher compressibility with respect to an applied stress control voltage (electric field). Such a substance may be selected from specific examples of a material for forming the dielectric layer 4 constituting the variable capacitance element body 2 or may be selected from generally used dielectric materials. The dielectric material that is generally used, paper, polyethylene terephthalate, polypropylene, polyphenylene sulfide, polystyrene, TiO 2, MgTiO 2, SrMgTiO 2, Al 2 O 3, Ta 2 O 5, and the like.
 第1及び第2の応力制御電極9a、9bの形成材料としては、可変容量素子本体2を構成する電極と同様、Pt、Pb、Pb/Ag、Ni、Ni合金等の金属材料を用いることができる。 As a material for forming the first and second stress control electrodes 9a and 9b, a metal material such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is used as in the electrode constituting the variable capacitance element body 2. it can.
 このような構成の可変容量素子1において、図2A及び図2Bに示すように、上層の応力制御部6においては、第1の制御端子8a及び第2の制御端子8bに応力制御用の第1の制御電圧電源DC1により第1の制御電圧V1を印加する。一方、下層の応力制御部7においては、第1の制御端子8a及び第2の制御端子8bに応力制御用の第2の制御電圧電源DC2により第2の制御電圧V2を印加する。そうすると、第1の応力制御電極9aと第2の応力制御電極9bとの間にクーロン力が発生し、最外電極以外の第1、及び第2の応力制御電極9a,9bでは、電極の表面側と裏面側において、それぞれ反対側の方向に向かうクーロン力が発生する。このため、最外電極以外の第1及び第2の応力制御電極9a、9bに発生するクーロン力はそれぞれ打ち消されるが、応力制御部6、7の最外電極では、誘電体層4を引張する方向にクーロン力が発生している。したがって、上下に形成された応力制御部6、7により、可変容量素子本体2の誘電体層4には、引張応力が発生する。 In the variable capacitance element 1 having such a configuration, as shown in FIGS. 2A and 2B, in the upper layer stress control section 6, the first control terminal 8a and the second control terminal 8b are connected to the first stress control first. The first control voltage V1 is applied by the control voltage power source DC1. On the other hand, in the lower stress control unit 7, the second control voltage V2 is applied to the first control terminal 8a and the second control terminal 8b by the second control voltage power source DC2 for stress control. Then, a Coulomb force is generated between the first stress control electrode 9a and the second stress control electrode 9b, and in the first and second stress control electrodes 9a and 9b other than the outermost electrode, the surface of the electrode On the side and the back side, Coulomb forces are generated in the opposite directions. For this reason, although the Coulomb forces generated in the first and second stress control electrodes 9a and 9b other than the outermost electrode are canceled out, the outermost electrodes of the stress control portions 6 and 7 pull the dielectric layer 4. Coulomb force is generated in the direction. Therefore, tensile stress is generated in the dielectric layer 4 of the variable capacitance element body 2 by the stress control units 6 and 7 formed above and below.
 このような状態で、可変容量素子本体2の第1及び第2の可変容量素子電極5a、5b間では、信号電圧に応じた誘電体層4における分極状態の変化が容易となる。このため、誘電体層4の静電容量Cacを、応力制御部6、7に制御電圧を印加しない場合に比較して増大させることができる。すなわち、誘電体層4における結晶構造の転位が、制御電圧を印加しない従来のものと比べ容易になる。このため、誘電体層4における誘電体材料の結晶構造の転位の際の損失(誘電損失)も従来のものと比べ小さくなる。 In such a state, the polarization state in the dielectric layer 4 can be easily changed between the first and second variable capacitor element electrodes 5a and 5b of the variable capacitor element body 2 in accordance with the signal voltage. For this reason, the capacitance Cac of the dielectric layer 4 can be increased as compared with the case where the control voltage is not applied to the stress controllers 6 and 7. That is, the dislocation of the crystal structure in the dielectric layer 4 becomes easier as compared with the conventional one in which no control voltage is applied. For this reason, the loss (dielectric loss) at the time of dislocation of the crystal structure of the dielectric material in the dielectric layer 4 is also smaller than that of the conventional one.
 以上のように、本実施形態の可変容量素子1では、応力制御部6、7に制御電圧を印加することより、可変容量素子本体2に引張応力をもたらすことができ、これにより、可変容量素子本体2の静電容量Cacを増大させることができる。 As described above, in the variable capacitance element 1 of the present embodiment, by applying a control voltage to the stress control units 6 and 7, it is possible to bring a tensile stress to the variable capacitance element body 2, and thereby, the variable capacitance element The capacitance Cac of the main body 2 can be increased.
 [1-3 可変容量素子の静電容量の測定実験]
 次に、本実施形態の可変容量素子を用いた静電容量Cacの変化率の測定実験について説明する。測定実験では、可変容量素子本体2の誘電体層4及び、応力制御部6、7の応力制御部用誘電体層10にチタン酸バリウムを用い、各誘電体層4、及び応力制御部用誘電体層10の層厚を3μmとした。また、第1及び第2の可変容量素子電極5a、5bと第1及び第2の応力制御電極9a、9bをニッケルで構成し、各電極の層厚を1μmとした。そして、可変容量素子1において、それぞれの端子間長さを3.2mm、各端子が形成される側面の幅を1.6mm、誘電体層4及び応力制御部用誘電体層10の厚み方向の高さを1.6mmとした。また、可変容量素子本体2の厚みを約0.15mmとし、可変容量素子本体2と上下の応力制御部6及び7とのそれぞれの間隔を0.10mmとした。なお、このような構成において、上層の応力制御部6部分の静電容量C1は3.25μF、下層の応力制御部7部分の静電容量C2は3.14μFであった。また、応力制御部6及び7に制御電圧を印加しない場合の可変容量素子本体2の静電容量Cacは1.35μFであった。なお、これら静電容量は後述する測定器および測定条件に従って測定した。
[1-3 Measurement experiment of capacitance of variable capacitance element]
Next, an experiment for measuring the change rate of the capacitance Cac using the variable capacitance element of the present embodiment will be described. In the measurement experiment, barium titanate was used for the dielectric layer 4 of the variable capacitance element body 2 and the stress control unit dielectric layer 10 of the stress control units 6 and 7, and each dielectric layer 4 and the stress control unit dielectric. The layer thickness of the body layer 10 was 3 μm. The first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are made of nickel, and the layer thickness of each electrode is 1 μm. In the variable capacitance element 1, the length between the terminals is 3.2 mm, the width of the side surface where each terminal is formed is 1.6 mm, and the dielectric layer 4 and the stress control unit dielectric layer 10 in the thickness direction. The height was 1.6 mm. In addition, the thickness of the variable capacitor element body 2 was set to about 0.15 mm, and the distance between the variable capacitor element body 2 and the upper and lower stress control units 6 and 7 was set to 0.10 mm. In such a configuration, the capacitance C1 of the upper layer stress control unit 6 portion was 3.25 μF, and the capacitance C2 of the lower layer stress control unit 7 portion was 3.14 μF. Further, the capacitance Cac of the variable capacitance element body 2 when no control voltage was applied to the stress controllers 6 and 7 was 1.35 μF. In addition, these electrostatic capacitances were measured according to a measuring instrument and measurement conditions described later.
 この測定実験は、図2Bに示す等価回路を用いて行った。図2Bに示すように、上層の応力制御部6において、第1の制御端子8aは、電流制限抵抗R1aを介して第1の制御電圧電源DC1の一方の端子に接続し、第2の制御端子8bは電流制限抵抗R1bを介して第1の制御電圧電源DC1の他方の端子に接続する。また、下層の応力制御部7において、第1の制御端子8aは、電流制限抵抗R2aを介して第2の制御電圧電源DC2の一方の端子に接続し、第2の制御端子8bは電流制限抵抗R2bを介して第2の制御電圧電
源DC2の他方の端子に接続する。
This measurement experiment was performed using the equivalent circuit shown in FIG. 2B. As shown in FIG. 2B, in the upper-layer stress control unit 6, the first control terminal 8a is connected to one terminal of the first control voltage power source DC1 via the current limiting resistor R1a to perform the second control. terminal 8b is connected to the other terminal of the first control voltage supply DC1 through the current limiting resistor R 1b. Further, in the lower layer of stress control unit 7, the first control terminal 8a is connected to one terminal of the second control voltage supply DC2 through the current limiting resistor R 2a, the second control terminal 8b current limit through a resistor R 2b is connected to the other terminal of the second control voltage supply DC2.
 このように、本実施形態では、可変容量素子本体2には信号電圧電源ACのみが接続され、応力制御部6、7には、第1の制御電圧電源DC1又は第2の制御電圧電源DC2のみが接続されている。すなわち、可変容量素子1において、AC端子とDC端子とが独立して設けられている。そして、各応力制御部6、7と可変容量素子本体2とは、電気的に独立している。 As described above, in the present embodiment, only the signal voltage power supply AC is connected to the variable capacitance element body 2, and only the first control voltage power supply DC1 or the second control voltage power supply DC2 is connected to the stress controllers 6 and 7. Is connected. That is, in the variable capacitance element 1, the AC terminal and the DC terminal are provided independently. The stress controllers 6 and 7 and the variable capacitor element body 2 are electrically independent.
 そして、このような構成において、上層の応力制御部6では、第1の制御電圧電源DC1から供給される第1の制御電圧V1が第1及び第2の応力制御電極9a、9bに供給され、静電容量C1が得られる。また、下層の応力制御部7では、第2の制御電圧電源DC2から供給される第2の制御電圧V2が第1及び第2の応力制御電極9a、9bに供給され、静電容量C2が得られる。 In such a configuration, the upper layer stress control unit 6 supplies the first control voltage V1 supplied from the first control voltage power source DC1 to the first and second stress control electrodes 9a and 9b, A capacitance C1 is obtained. In the lower stress control unit 7, the second control voltage V2 supplied from the second control voltage power source DC2 is supplied to the first and second stress control electrodes 9a and 9b, and the capacitance C2 is obtained. It is done.
 一方、可変容量素子本体2の第1及び第2の信号端子3a、3b間には、信号電圧電源ACが接続されている。信号電圧電源ACより可変容量素子本体2に所望の信号電流(交流)を流すことにより、静電容量Cacが測定される。
 なお、この測定実験においては、信号電圧電源ACを兼ねて静電容量測定器としてアジレントテクノロジー製インピーダンスアナライザー型番4294Aを用い、第1の制御電圧電源DC1及び第2の制御電圧電源DC2として、横河電機製ソースメジャーユニット型番GS610を用いた。また、この測定実験では、信号電圧電源ACから発信される周波数を1kHz、振幅を500mVrmsとし、各電流制限抵抗R1a、R1b、R2a、R2bを510kΩとした。
On the other hand, a signal voltage power supply AC is connected between the first and second signal terminals 3 a and 3 b of the variable capacitance element body 2. The electrostatic capacity Cac is measured by causing a desired signal current (alternating current) to flow from the signal voltage power source AC to the variable capacitance element body 2.
In this measurement experiment, an impedance analyzer model number 4294A manufactured by Agilent Technologies is used as a capacitance measuring device which also serves as a signal voltage power supply AC, and Yokogawa is used as the first control voltage power supply DC1 and the second control voltage power supply DC2. An electric source measure unit model number GS610 was used. In this measurement experiment, the frequency transmitted from the signal voltage power supply AC was 1 kHz, the amplitude was 500 mVrms, and each current limiting resistance R 1a , R 1b , R 2a , R 2b was 510 kΩ.
 図3は、第1の制御電圧V1及び第2の制御電圧V2を変化させながら印加したときの、可変容量素子本体2で得られる静電容量Cacの変化率を示した図である。図3において、横軸は時間を示し、縦軸は第1及び第2の制御端子8a、8b間に印加する第1及び第2の制御電圧V1、V2と、そのときに可変容量素子本体2で得られた静電容量Cacの変化率を示す。静電容量Cacの変化率は、測定開始時すなわち時間ゼロで測定した静電容量を基準としている。 FIG. 3 is a graph showing the rate of change of the capacitance Cac obtained in the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are applied while being changed. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates first and second control voltages V1 and V2 applied between the first and second control terminals 8a and 8b, and the variable capacitance element body 2 at that time. The rate of change of the capacitance Cac obtained in (1) is shown. The change rate of the capacitance Cac is based on the capacitance measured at the start of measurement, that is, at time zero.
 図3に示すように、本実施形態の可変容量素子1では、第1の制御電圧V1及び第2の制御電圧V2の絶対値を大きくすることにより、第1及び第2の信号端子3a、3b間で得られる静電容量Cacが増大していることがわかる。すなわち、応力制御部6、7にかける制御電圧を大きくすることにより、可変容量素子本体2の静電容量Cacが増大する。 As shown in FIG. 3, in the variable capacitance element 1 of the present embodiment, the first and second signal terminals 3a and 3b are increased by increasing the absolute values of the first control voltage V1 and the second control voltage V2. It can be seen that the capacitance Cac obtained between the two increases. That is, increasing the control voltage applied to the stress controllers 6 and 7 increases the capacitance Cac of the variable capacitance element body 2.
 図4は、図2Bの回路構成において、第2の制御電圧V2を0Vに保持し、第1の制御電圧V1のみを変化させた時の可変容量素子本体2の静電容量Cacの変化率を示した図である。すなわち、下層の応力制御部7に制御電圧を印加せず、上層の応力制御部6のみに制御電圧を印加した場合における、可変容量素子本体2の静電容量Cacの変化率を測定したものである。 FIG. 4 shows the rate of change of the capacitance Cac of the variable capacitance element body 2 when the second control voltage V2 is held at 0 V and only the first control voltage V1 is changed in the circuit configuration of FIG. 2B. FIG. That is, the change rate of the capacitance Cac of the variable capacitance element body 2 is measured when no control voltage is applied to the lower stress control section 7 and only the upper stress control section 6 is applied. is there.
 第2の制御電圧V2を0Vにした場合には、図3に示す結果と比較し、可変容量素子本体2の静電容量Cacの増大率がおよそ半分になっていることがわかる。図3と図4の結果より、応力制御部6、7のそれぞれで発生した応力が、可変容量素子本体2における静電容量Cacの増大に寄与していることがわかる。 It can be seen that when the second control voltage V2 is set to 0 V, the increase rate of the capacitance Cac of the variable capacitance element body 2 is approximately halved compared to the result shown in FIG. From the results of FIGS. 3 and 4, it can be seen that the stress generated in each of the stress controllers 6 and 7 contributes to the increase in the capacitance Cac in the variable capacitance element body 2.
 図5は、図2Bの回路構成において、第1の制御電圧V1と第2の制御電圧V2を逆極性とし、第1の制御電圧V1及び第2の制御電圧V2の絶対値を、極性を変えながら大きくしていったときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第1の制御電圧V1及び第2の制御電圧V2の絶対値を0から徐々に大きく変化させた場合、可変容量素子本体2の静電容量Cacも増大することがわかる。ただし、第1の制御電圧V1及び第2の制御電圧V2の極性を変化させた場合、極性を変化させた瞬間から可変容量素子本体2の静電容量Cacは徐々に大きくなり、一定時間経過後に安定する。 FIG. 5 shows that in the circuit configuration of FIG. 2B, the first control voltage V1 and the second control voltage V2 are opposite in polarity, and the absolute values of the first control voltage V1 and the second control voltage V2 are changed in polarity. It is the figure which showed the change rate of the electrostatic capacitance Cac of the variable capacitance element main body 2 when it enlarged, however. It can be seen that when the absolute values of the first control voltage V1 and the second control voltage V2 are gradually changed from 0, the capacitance Cac of the variable capacitance element body 2 also increases. However, when the polarities of the first control voltage V1 and the second control voltage V2 are changed, the capacitance Cac of the variable capacitance element body 2 gradually increases from the moment when the polarities are changed, and after a certain time has elapsed. Stabilize.
 図6は、図2Bの回路構成において、第1の制御電圧V1を、0Vと60Vに交互に変化させると共に、第2の制御電圧V2を0Vと-60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。すなわち、第1の制御電圧V1と第2の制御電圧V2は、逆極性とした。この場合も、第1の制御電圧V1及び第2の制御電圧V2の絶対値を60Vとしたときに可変容量素子本体2の静電容量Cacが増大し、第1の制御電圧V1及び第2の制御電圧V2を0Vとした時に、静電容量Cacの変化率が0%付近となった。 FIG. 6 shows the variable capacitance when the first control voltage V1 is alternately changed to 0V and 60V and the second control voltage V2 is alternately changed to 0V and −60V in the circuit configuration of FIG. 2B. FIG. 5 is a diagram showing a rate of change of capacitance Cac of the element body 2. That is, the first control voltage V1 and the second control voltage V2 have opposite polarities. Also in this case, when the absolute values of the first control voltage V1 and the second control voltage V2 are 60V, the capacitance Cac of the variable capacitance element body 2 increases, and the first control voltage V1 and the second control voltage V2 When the control voltage V2 was set to 0V, the change rate of the capacitance Cac was about 0%.
 図7は、図2Bの回路構成において、第1の制御電圧V1及び第2の制御電圧V2を、60Vと-60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第1の制御電圧V1と第2の制御電圧V2の極性が変化した瞬間における可変容量素子本体2の静電容量Cacの増加率は下がるものの、一定時間経過後に安定する。 FIG. 7 shows a change in the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 and the second control voltage V2 are alternately changed to 60 V and −60 V in the circuit configuration of FIG. 2B. It is the figure which showed the rate. Although the rate of increase of the capacitance Cac of the variable capacitance element body 2 at the moment when the polarities of the first control voltage V1 and the second control voltage V2 change, it decreases after a certain time has elapsed.
 図8は、図2Bの回路構成において、第1の制御電圧V1と第2の制御電圧V2を逆極性とし、それぞれ、60Vと-60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第1の制御電圧V1と第2の制御電圧V2の極性が変化した瞬間における可変容量素子本体2の静電容量Cacの増加率が下がるものの、一定時間経過後に安定する。また、図8の条件では、図7に比較して、可変容量素子本体2の静電容量Cacの増加率が高くなっている。これは、上層の応力制御部6と下層の応力制御部7において応力制御電極の積層数が多少異なっていることや、応力制御電極(9a、9b)と可変容量素子電極(5a、5b)との間にも容量が形成されることに起因するものと考えられる。 FIG. 8 shows the static capacitance of the variable capacitor element body 2 when the first control voltage V1 and the second control voltage V2 have opposite polarities in the circuit configuration of FIG. 2B and are alternately changed to 60V and −60V, respectively. It is a figure showing change rate of electric capacity Cac. Although the increasing rate of the capacitance Cac of the variable capacitance element body 2 at the moment when the polarities of the first control voltage V1 and the second control voltage V2 change, the capacitance Cac is stabilized after a certain time has elapsed. Further, under the conditions of FIG. 8, the increasing rate of the capacitance Cac of the variable capacitance element body 2 is higher than that of FIG. This is because the number of stacked stress control electrodes in the upper layer stress control unit 6 and the lower layer stress control unit 7 is different, or the stress control electrodes (9a, 9b) and the variable capacitance element electrodes (5a, 5b) This is considered to be due to the formation of a capacitance between the two.
 図9は、図2Bの回路構成において、第2の制御電圧V2を60Vとし、第1の制御電圧V1を0Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第1及び第2の制御電圧V1、V2がどちらも60Vであるときは、第2の制御電圧V2のみが60Vである場合に比較して、可変容量素子本体2の静電容量Cacの増加率がおよそ2倍になっていることがわかる。 FIG. 9 shows the capacitance Cac of the variable capacitance element body 2 when the second control voltage V2 is set to 60V and the first control voltage V1 is alternately changed between 0V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the rate of change. When both the first and second control voltages V1 and V2 are 60V, the rate of increase of the capacitance Cac of the variable capacitance element body 2 compared to when only the second control voltage V2 is 60V It can be seen that is approximately doubled.
 図10は、図2Bの回路構成において、第1の制御電圧V1を60Vとし、第2の制御電圧V2を0Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第1及び第2の制御電圧V1、V2がどちらも60Vであるときも、第1の制御電圧V1が60Vで、第2の制御電圧V2が60Vであるときも、静電容量Cacは増加している。 FIG. 10 shows the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is set to 60V and the second control voltage V2 is alternately changed between 0V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the rate of change. When both the first and second control voltages V1 and V2 are 60V, the capacitance Cac increases even when the first control voltage V1 is 60V and the second control voltage V2 is 60V. ing.
 図11は、図2Bの回路構成において、第1の制御電圧V1を60Vとし、第2の制御電圧V2を-60Vと60Vに交互に変化させたときの可変容量素子本体2の静電容量Cacの変化率を示した図である。第2の制御電圧V2が60Vの場合も-60Vの場合も、可変容量素子本体2の静電容量Cacは同じように増加することがわかる。
 なお、図9及び図11より、上下の応力制御部6、7内で発生するクーロン力のそれぞれが、可変容量素子本体2の静電容量Cacの変化率に影響していることがわかる。また、上層の応力制御部6が可変容量素子本体2に与える影響が下層の応力制御部7の影響よりも大きいことがわかる。
FIG. 11 shows the capacitance Cac of the variable capacitance element body 2 when the first control voltage V1 is set to 60V and the second control voltage V2 is alternately changed to −60V and 60V in the circuit configuration of FIG. 2B. It is the figure which showed the change rate. It can be seen that the electrostatic capacitance Cac of the variable capacitance element body 2 increases in the same manner when the second control voltage V2 is 60V or −60V.
9 and 11, it can be seen that each of the Coulomb forces generated in the upper and lower stress controllers 6 and 7 affects the rate of change of the capacitance Cac of the variable capacitance element body 2. It can also be seen that the upper layer stress control unit 6 has a greater influence on the variable capacitance element body 2 than the lower layer stress control unit 7.
 以上のように、本実施形態の可変容量素子1では、第1の制御電圧V1及び第2の制御電圧V2の絶対値を大きくするにしたがって、可変容量素子本体2の静電容量Cacが増大することがわかった。すなわち、応力制御部6、7において第1の応力制御電極9a及び第2の応力制御電極9b間に発生したクーロン力による引張応力が、可変容量素子本体2の静電容量Cacを増大させる効果につながることが実証された。 As described above, in the variable capacitance element 1 of the present embodiment, the capacitance Cac of the variable capacitance element body 2 increases as the absolute values of the first control voltage V1 and the second control voltage V2 are increased. I understood it. That is, the tensile stress due to the Coulomb force generated between the first stress control electrode 9 a and the second stress control electrode 9 b in the stress control units 6 and 7 has an effect of increasing the capacitance Cac of the variable capacitance element body 2. Proven to connect.
 また、本実施形態によれば、制御電圧を印加するのは上下に形成された応力制御部6、7のみでよく、可変容量素子本体2における第1及び第2の信号端子3a、3bには信号電圧のみが印加される。このように、本実施形態では、可変容量素子本体2に、制御電圧を直接印加しなくとも、可変容量素子本体2の静電容量Cacを増大させることができ、可変容量素子1において、信号(AC)電圧と制御(DC)電圧とを完全に分離することが可能となる。 Further, according to the present embodiment, the control voltage may be applied only to the stress control units 6 and 7 formed above and below, and the first and second signal terminals 3a and 3b in the variable capacitance element body 2 are applied to the first and second signal terminals 3a and 3b. Only the signal voltage is applied. As described above, in the present embodiment, the capacitance Cac of the variable capacitance element body 2 can be increased without directly applying a control voltage to the variable capacitance element body 2, and the signal ( AC) voltage and control (DC) voltage can be completely separated.
 本実施形態の可変容量素子1の回路構成では、上層の応力制御部6と、下層の応力制御部7とを電気的に分離する構成としたが、接続された構成としてもよい。図12に、本実施形態の可変容量素子1の変形例1に係る回路構成を示す。 In the circuit configuration of the variable capacitance element 1 of the present embodiment, the upper layer stress control unit 6 and the lower layer stress control unit 7 are electrically separated from each other, but may be connected to each other. FIG. 12 shows a circuit configuration according to Modification 1 of the variable capacitance element 1 of the present embodiment.
 変形例1に係る回路構成では、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して第1の制御電圧電源DC1の一方の端子に接続し、第2の制御端子8bを、電流制限抵抗Rを介して第1の制御電圧電源DC1の他方の端子に接続する。また、下層の応力制御部7の第1の制御端子8aは、上層の応力制御部6の第2の制御端子8bと電流制限抵抗Rとの間に接続し、第2の制御電圧電源DC2の一方の端子を、電流制限抵抗Rと第1の制御電圧電源DC1の間に接続する。また、下層の応力制御部7における第2の制御端子8bは、電流制限抵抗Rを介して第2の制御電圧電源DC2の他方の端子に接続する。 In the circuit configuration according to the first modification, the first control terminal 8a of the upper stress control unit 6, connected to one terminal of the first control voltage supply DC1 through the current limiting resistor R a, of the second The control terminal 8b is connected to the other terminal of the first control voltage power supply DC1 through the current limiting resistor Rb . The first control terminal 8a of the underlying stress control unit 7 is connected between the second control terminal 8b and the current limiting resistor R b of the upper layer of the stress control unit 6, the second control voltage supply DC2 Is connected between the current limiting resistor Rb and the first control voltage power supply DC1. The second control terminal 8b in the lower layer of stress control unit 7 is connected to the other terminal of the second control voltage supply DC2 through the current limiting resistor R c.
 図13に、本実施形態の可変容量素子1の変形例2に係る回路構成を示す。変形例2においては、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して第1の制御電圧電源DC1の一方の端子に接続し、第2の制御端子8bを、電流制限抵抗Rを介して第1の制御電圧電源DC1の他方の端子に接続する。また、下層の応力制御部7では、第1の制御端子8aを、電流制限抵抗Rを介して第2の制御電圧電源DC2の一方の端子に接続する。そして、下層の応力制御部7の第2の制御端子8bを、上層の応力制御部6の第1の制御端子8aと電流制限抵抗Rとの間に接続し、第2の制御電圧電源DC2の他方の端子を、電流制限抵抗Rと第1の制御電圧電源DC1の一方の端子との間に接続する。 FIG. 13 shows a circuit configuration according to Modification 2 of the variable capacitance element 1 of the present embodiment. In the second modification connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a, a second control terminal 8b Is connected to the other terminal of the first control voltage power supply DC1 via the current limiting resistor Rb . Further, the lower layer of stress control unit 7, connects the first control terminal 8a, to one terminal of the second control voltage supply DC2 through the current limiting resistor R c. Then, the second control terminal 8b of the lower layer of the stress control unit 7, is connected between the first control terminal 8a and the current limiting resistor R a of the upper layer of the stress control unit 6, the second control voltage supply DC2 Is connected between the current limiting resistor Ra and one terminal of the first control voltage power source DC1.
 図14に、本実施形態の可変容量素子1の変形例3に係る回路構成を示す。変形例3においては、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して第1の制御電圧電源DC1の一方の端子に接続し、第2の制御端子8bを、電流制限抵抗Rを介して第1の制御電圧電源DC1の他方の端子に接続する。また、下層の応力制御部7の第1の制御端子8aを、上層の応力制御部6の第1の制御端子8aと電流制限抵抗Rとの間に接続し、第2の制御電圧電源DC2の一方の端子を、電流制限抵抗Rと第1の制御電圧電源DC1の間に接続する。そして、下層の応力制御部7の第2の制御端子8bを、電流制限抵抗Rを介して第2の制御電圧電源DC2の他方の端子に接続する。 FIG. 14 shows a circuit configuration according to Modification 3 of the variable capacitance element 1 of the present embodiment. In Modification 3, connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a, a second control terminal 8b Is connected to the other terminal of the first control voltage power supply DC1 via the current limiting resistor Rb . Further, the first control terminal 8a of the underlying stress control unit 7, is connected between the first control terminal 8a and the current limiting resistor R a of the upper layer of the stress control unit 6, the second control voltage supply DC2 one terminal of is connected between the current limiting resistor R a first control voltage source DC1. Then, to connect the second control terminal 8b of the lower layer of the stress control unit 7, to the other terminal of the second control voltage supply DC2 through the current limiting resistor R c.
 図15に、本実施形態の可変容量素子1の変形例4に係る回路構成を示す。変形例4においては、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して第1の制御電圧電源DC1の一方の端子に接続する。また、下層の応力制御部7の第1の制御端子8aを、電流制限抵抗Rを介して第2の制御電圧電源DC2の一方の端子に接続し、第2の制御端子8bを、電流制限抵抗Rを介して第2の制御電圧電源DC2の他方の端子に接続する。そして、上層の応力制御部6における第2の制御端子8bは、下層の応力制御部7の第2の制御端子8bと電流制限抵抗Rとの間に接続し、第1の制御電圧電源DC1の他方の端子は、電流制限抵抗Rと第2の制御電圧電源DC2との間に接続する。 FIG. 15 shows a circuit configuration according to Modification 4 of the variable capacitance element 1 of the present embodiment. In Modification 4, connects the first control terminal 8a of the upper stress control unit 6, to the terminal of the first control voltage supply DC1 through the current limiting resistor R a. In addition, the first control terminal 8a of the lower layer stress control unit 7 is connected to one terminal of the second control voltage power source DC2 via the current limiting resistor Rb , and the second control terminal 8b is connected to the current limiting resistor Rb. through a resistor R c is connected to the other terminal of the second control voltage supply DC2. Then, the second control terminal 8b in the upper layer of stress control unit 6 is connected between the second control terminal 8b and the current limiting resistor R c of the lower stress control unit 7, the first control voltage supply DC1 Is connected between the current limiting resistor Rc and the second control voltage power supply DC2.
 図16に、本実施形態の可変容量素子1の変形例5に係る回路構成を示す。変形例5においては、上層の応力制御部6の第1の制御端子8aと下層の応力制御部7の第2の制御端子8bを互いに接続すると共に、電流制限抵抗Rを介して制御電圧電源DCの一方の端子に接続する。また、上層の応力制御部6の第2の制御端子8bと下層の応力制御部7の第1の制御端子8aを互いに接続すると共に、電流制限抵抗Rを介して制御電圧電源DCの他方の端子に接続する。 FIG. 16 shows a circuit configuration according to Modification 5 of the variable capacitance element 1 of the present embodiment. Modification 5 is configured to connect the second control terminal 8b of the first control terminal 8a and a lower stress control unit 7 of the upper layer of stress control unit 6 to each other, the control voltage source through a current limiting resistor R a Connect to one terminal of DC. Further, the second control terminal 8b of the upper layer stress control unit 6 and the first control terminal 8a of the lower layer stress control unit 7 are connected to each other, and the other of the control voltage power source DC is connected via the current limiting resistor Rb . Connect to the terminal.
 図17に、本実施形態の可変容量素子1の変形例6に係る回路構成を示す。変形例6においては、上層の応力制御部6の第1の制御端子8aと下層の応力制御部7の第2の制御端子8bを互いに接続すると共に、電流制限抵抗Rを介して制御電圧電源DCの一方の端子に接続する。また、上層の応力制御部6の第2の制御端子8bと下層の応力制御部7の第1の制御端子8aを互いに接続すると共に、電流制限抵抗Rを介して制御電圧電源DCの他方の端子に接続する。 FIG. 17 shows a circuit configuration according to Modification 6 of the variable capacitance element 1 of the present embodiment. Modification 6 is configured to connect the second control terminal 8b of the first control terminal 8a and a lower stress control unit 7 of the upper layer of stress control unit 6 to each other, the control voltage source through a current limiting resistor R a Connect to one terminal of DC. Further, the second control terminal 8b of the upper layer stress control unit 6 and the first control terminal 8a of the lower layer stress control unit 7 are connected to each other, and the other of the control voltage power source DC is connected via the current limiting resistor Rb . Connect to the terminal.
 図18に、本実施形態の可変容量素子1の変形例7に係る回路構成を示す。変形例7においては、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して制御電圧電源DCの一方の端子に接続し、下層の応力制御部7の第2の制御端子8bを、電流制限抵抗Rを介して制御電圧電源DCの他方の端子に接続する。そして、上層の応力制御部6の第2の制御端子8bと、下層の応力制御部7の第1の制御端子8aとを接続する。 FIG. 18 shows a circuit configuration according to Modification 7 of the variable capacitance element 1 of the present embodiment. In the seventh modification, the first control terminal 8a of the upper stress control unit 6 is connected to one terminal of the control voltage source DC through the current limiting resistor R a, of the underlying stress control unit 7 second The control terminal 8b is connected to the other terminal of the control voltage power supply DC through the current limiting resistor Rb . Then, the second control terminal 8 b of the upper layer stress control unit 6 and the first control terminal 8 a of the lower layer stress control unit 7 are connected.
 図19に、本実施形態の可変容量素子1の変形例8に係る回路構成を示す。変形例8においては、上層の応力制御部6の第1の制御端子8aを、電流制限抵抗Rを介して制御電圧電源DCの一方の端子に接続し、下層の応力制御部7の第1の制御端子8aを、電流制限抵抗Rを介して制御電圧電源DCの他方の端子に接続する。そして、上層の応力制御部6の第2の制御端子8bと下層の応力制御部7の第2の制御端子8bとを接続する。 FIG. 19 shows a circuit configuration according to Modification 8 of the variable capacitance element 1 of the present embodiment. Modification 8, the first control terminal 8a of the upper stress control unit 6 is connected to one terminal of the control voltage source DC through the current limiting resistor R a, of the underlying stress control unit 7 first The control terminal 8a is connected to the other terminal of the control voltage power source DC through the current limiting resistor Rb . Then, the second control terminal 8b of the upper layer stress control unit 6 and the second control terminal 8b of the lower layer stress control unit 7 are connected.
 以上のように、本実施形態の可変容量素子1を駆動する回路構成は種々の変更が可能であり、いずれの変形例においても、応力制御部6、7に制御電圧を印加することにより、可変容量素子本体2の静電容量Cacを増加させることができる。 As described above, various modifications can be made to the circuit configuration for driving the variable capacitance element 1 of the present embodiment. In any of the modifications, the variable voltage element 1 can be changed by applying a control voltage to the stress control units 6 and 7. The capacitance Cac of the capacitive element body 2 can be increased.
 ところで、従来の、制御電圧に応じて静電容量を変化させる容量素子では、制御電圧を印加することにより、静電容量が減少する特性であった。本実施形態では、制御電圧を印加することにより静電容量が増加させることができるので、可変容量素子としての用途の幅を広げることが可能となる。 By the way, the conventional capacitive element that changes the capacitance according to the control voltage has a characteristic that the capacitance decreases by applying the control voltage. In this embodiment, since the electrostatic capacity can be increased by applying the control voltage, the range of applications as a variable capacitance element can be expanded.
 [1-4 可変容量素子の製造方法]
 次に、以上の構成を有する可変容量素子1の製造方法の一例を説明する。まず、図20A~図20Cを用いて、一般的な従来の容量素子の製造方法について説明する。図20Aに示すように、所望の誘電体材料からなる誘電体シート20を用意する。誘電体シート20は、可変容量素子本体2においては、誘電体層4を構成するものであり、応力制御部6、7では、応力制御部用誘電体層10を構成するものである。これらの誘電体シート20は、ペースト状にした誘電体材料を、例えば、PET(ポリエチレンテレフタレート)フィルム上に所望の厚さに形成することによって形成することができる。また、可変容量素子本体2を構成する第1及び第2の可変容量素子電極5a、5b、第1及び第2の応力制御電極9a、9bの形成領域に対応する領域が開口されたマスクを用意する。
[1-4 Method for Manufacturing Variable Capacitance Element]
Next, an example of a method for manufacturing the variable capacitance element 1 having the above configuration will be described. First, a general conventional method of manufacturing a capacitive element will be described with reference to FIGS. 20A to 20C. As shown in FIG. 20A, a dielectric sheet 20 made of a desired dielectric material is prepared. The dielectric sheet 20 constitutes the dielectric layer 4 in the variable capacitance element body 2, and the dielectric layer 10 for the stress control part in the stress control parts 6 and 7. These dielectric sheets 20 can be formed by forming a pasty dielectric material, for example, on a PET (polyethylene terephthalate) film to a desired thickness. Also, a mask is prepared in which regions corresponding to the formation regions of the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b constituting the variable capacitance element body 2 are opened. To do.
 次に、Pt、Pb、Pb/Ag、Ni、Ni合金等の金属粉末をペースト状にした導電ペーストを制御し、その導電ペースト21を、前段で用意したそれぞれのマスクを介して誘電体シート20上に塗布(シルク印刷等)する。これにより、誘電体シート20の一方の表面に、第1及び第2の可変容量素子電極5a、5b、第1及び第2の応力制御電極9a、9bがそれぞれ形成される。 Next, a conductive paste in which a metal powder such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is pasted is controlled, and the conductive paste 21 is passed through the respective masks prepared in the previous stage, and then the dielectric sheet 20. Apply on top (silk printing, etc.). As a result, the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed on one surface of the dielectric sheet 20, respectively.
 そして、図20Bに示すように、第1及び第2の可変容量素子電極5a、5b、第1及び第2の応力制御電極9a、9bが形成されたそれぞれの誘電体シート20を、各電極が印刷された面の向きを揃えて、所望の順番に積層する。さらに、この積層体の上下に電極が印刷されていない誘電体シート20を積層させて、圧着する。 Then, as shown in FIG. 20B, each dielectric sheet 20 on which the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed, Laminate in the desired order by aligning the orientation of the printed surface. Further, dielectric sheets 20 on which no electrodes are printed are laminated on the upper and lower sides of this laminated body, and are subjected to pressure bonding.
 そして、図20Cに示すように、圧着した部材を還元性の雰囲気中で高温焼成して、誘電体シート20と導電ペースト21で形成された各電極とを一体化する。本実施形態では、このようにして可変容量素子1を形成する。
 そうすると、容量素子の端部では、誘電体シート20上に電極が形成されていないため、焼結した後の全厚が、容量素子の中央部における全厚に比較して薄くなる。これにより、図20Cに示すように、容量素子の端部が薄くなり、機械的強度が低くなるという問題がある。本実施形態の可変容量素子1においては、機械的強度が低くなると、応力制御部6、7を構成しても、可変容量素子本体2にかかる引張応力を十分に発揮できないという問題がある。
Then, as shown in FIG. 20C, the pressure-bonded member is fired at a high temperature in a reducing atmosphere to integrate the dielectric sheet 20 and the electrodes formed of the conductive paste 21. In the present embodiment, the variable capacitance element 1 is formed in this way.
Then, since no electrode is formed on the dielectric sheet 20 at the end portion of the capacitive element, the total thickness after sintering becomes thinner than the total thickness at the central portion of the capacitive element. As a result, as shown in FIG. 20C, there is a problem that the end of the capacitive element becomes thin and the mechanical strength becomes low. In the variable capacitance element 1 of the present embodiment, when the mechanical strength is low, there is a problem that even if the stress control units 6 and 7 are configured, the tensile stress applied to the variable capacitance element body 2 cannot be sufficiently exhibited.
 そこで、図21A~図21Dを用いて、機械的強度を保持することのできる本実施形態の可変容量素子の製造方法について説明する。図21A~図21Dでは、電極が端部に露出されない断面を図示している。 Therefore, a manufacturing method of the variable capacitance element of the present embodiment capable of maintaining the mechanical strength will be described with reference to FIGS. 21A to 21D. 21A to 21D show cross sections in which the electrodes are not exposed at the end portions.
 まず、図21Aに示すように、所望の誘電体材料からなる誘電体シート20を用意する。誘電体シート20は、可変容量素子本体2においては、誘電体層4を構成するものであり、応力制御部6、7では、応力制御部用誘電体層10を構成するものである。これらの誘電体シート20は、ペースト状にした誘電体材料を、例えば、PET(ポリエチレンテレフタレート)フィルム上に所望の厚さに形成することによって形成することができる。また、第1及び第2の可変容量素子電極5a、5b、第1及び第2の応力制御電極9a、9bの形成領域に対応する領域が開口されたマスクを用意する。 First, as shown in FIG. 21A, a dielectric sheet 20 made of a desired dielectric material is prepared. The dielectric sheet 20 constitutes the dielectric layer 4 in the variable capacitance element body 2, and the dielectric layer 10 for the stress control part in the stress control parts 6 and 7. These dielectric sheets 20 can be formed by forming a pasty dielectric material, for example, on a PET (polyethylene terephthalate) film to a desired thickness. In addition, a mask is prepared in which regions corresponding to regions where the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed are opened.
 次に、Pt、Pb、Pb/Ag、Ni、Ni合金等の金属粉末をペースト状にした導電ペーストを調整し、その導電ペースト21を、前段で用意したそれぞれのマスクを介して誘電体シート20上に塗布(シルク印刷等)する。これにより、誘電体シート20の一方の表面に、第1及び第2の可変容量素子電極5a、5b、第1及び第2の応力制御電極9a、9bがそれぞれ形成される。 Next, a conductive paste in which a metal powder such as Pt, Pb, Pb / Ag, Ni, Ni alloy or the like is made into a paste is prepared, and the conductive paste 21 is passed through the respective masks prepared in the previous stage through the dielectric sheet 20. Apply on top (silk printing, etc.). As a result, the first and second variable capacitance element electrodes 5a and 5b and the first and second stress control electrodes 9a and 9b are formed on one surface of the dielectric sheet 20, respectively.
 次に、図21Bに示すように、誘電体シート20上に形成された各電極を構成する導電ペースト21の周囲を埋め込むように、導電ペースト21の周囲に誘電体材料膜22を形成する。ここで、誘電体シート20表面において、導電ペースト21が形成されない端部の幅は、全体の幅の10%~20%であり、その部分が誘電体材料膜22で埋められる。そして、誘電体材料膜22の表面と導電ペースト21の表面がほぼ同じとなるようにする。 Next, as shown in FIG. 21B, a dielectric material film 22 is formed around the conductive paste 21 so as to embed the periphery of the conductive paste 21 constituting each electrode formed on the dielectric sheet 20. Here, on the surface of the dielectric sheet 20, the width of the end portion where the conductive paste 21 is not formed is 10% to 20% of the entire width, and the portion is filled with the dielectric material film 22. Then, the surface of the dielectric material film 22 and the surface of the conductive paste 21 are made substantially the same.
 そして、図21Cに示すように、各電極が形成されたそれぞれの誘電体シート20を、各電極が印刷された面の向きを揃えて、所望の順番に積層する。本実施形態の可変容量素子1のように、応力制御部6、7で可変容量素子本体2を挟持する場合には、第1及び第2の応力制御電極9a、9bを交互に複数層積層した後、第1及び第2の可変容量素子電極5a、5bを交互に複数層積層する。そして、さらに、第1及び第2の応力制御電極9a、9bを交互に複数層積層し、この積層体の上下に電極が印刷されていない誘電体シート20を積層させて、圧着する。 Then, as shown in FIG. 21C, each dielectric sheet 20 on which each electrode is formed is laminated in a desired order with the orientation of the surface on which each electrode is printed aligned. When the variable capacitance element body 2 is sandwiched between the stress control units 6 and 7 as in the variable capacitance element 1 of the present embodiment, a plurality of first and second stress control electrodes 9a and 9b are alternately stacked. Thereafter, a plurality of first and second variable capacitance element electrodes 5a and 5b are alternately stacked. Further, a plurality of first and second stress control electrodes 9a and 9b are alternately laminated, and dielectric sheets 20 on which no electrodes are printed are laminated on the upper and lower sides of the laminated body, followed by pressure bonding.
 そして、図21Dに示すように、圧着した部材を還元性の雰囲気中で高温焼成して、誘電体シート20と導電ペースト21で形成された各電極とを一体化する。本実施形態では、このようにして可変容量素子1を形成する。 Then, as shown in FIG. 21D, the pressure-bonded member is fired at a high temperature in a reducing atmosphere, and the dielectric sheet 20 and each electrode formed of the conductive paste 21 are integrated. In the present embodiment, the variable capacitance element 1 is formed in this way.
 本実施形態の可変容量素子の製造方法では、誘電体シート20に形成された導電ペースト21の周囲が誘電体材料膜22によって埋め込まれるため、複数の誘電体シート20を重ねて焼成した場合に、可変容量素子1の周囲が薄くなるのを防ぐことができる。これにより、可変容量素子1の周辺の機械的強度を高めることができる。このため、応力制御部6、7において発生したクーロン力による引張応力を、可変容量素子本体2に十分に伝達することが可能となる。 In the manufacturing method of the variable capacitance element of this embodiment, since the periphery of the conductive paste 21 formed on the dielectric sheet 20 is embedded with the dielectric material film 22, when the plurality of dielectric sheets 20 are stacked and fired, It is possible to prevent the periphery of the variable capacitance element 1 from being thinned. Thereby, the mechanical strength around the variable capacitance element 1 can be increased. For this reason, the tensile stress due to the Coulomb force generated in the stress control units 6 and 7 can be sufficiently transmitted to the variable capacitance element body 2.
 図21A~図21Cでは、電極が端部に露出されない断面を図示しているが、積層される電極が対向する側面に交互に露出する断面においても、導電ペースト21が形成されない部分に誘電体材料膜22を成膜する。これにより、信号端子や制御端子が形成される側の周囲においても、可変容量素子1が薄くなるのを防ぐことができ、より効果的に引張応力を発生させることができる。 21A to 21C show cross sections in which the electrodes are not exposed at the end portions, but in the cross sections in which the stacked electrodes are alternately exposed on the opposite side surfaces, the dielectric material is not formed in the portion where the conductive paste 21 is not formed. A film 22 is formed. Thereby, it is possible to prevent the variable capacitance element 1 from being thin even around the side where the signal terminal and the control terminal are formed, and it is possible to generate tensile stress more effectively.
 〈2.第2の実施形態:可変容量素子〉
 次に、本開示の第2の実施形態に係る可変容量素子について説明する。図22は、本実施形態の可変容量素子24の概略構成図である。図22において、図1に対応する部分には同一符号を付し重複説明を省略する。本実施形態は、可変容量素子本体2の誘電体層4の厚みw1と、応力制御部6、7における応力制御部用誘電体層10の厚みw2が異なる例である。
<2. Second Embodiment: Variable Capacitance Element>
Next, a variable capacitance element according to the second embodiment of the present disclosure will be described. FIG. 22 is a schematic configuration diagram of the variable capacitance element 24 of the present embodiment. In FIG. 22, parts corresponding to those in FIG. This embodiment is an example in which the thickness w1 of the dielectric layer 4 of the variable capacitance element body 2 and the thickness w2 of the stress control unit dielectric layer 10 in the stress control units 6 and 7 are different.
 本実施形態では、応力制御部6、7における応力制御部用誘電体層10の厚み(第1及び第2の応力制御電極9a、9b間の距離)w2を可変容量素子本体2の誘電体層4の厚み(第1及び第2の可変容量素子電極5a、5b間の距離)w1よりも小さく形成している。これにより、応力制御部6、7での電界強度が高くなり、より大きな応力を発生させることが可能となる。その影響により、可変容量素子本体2にかかる引張応力が大きくなり、応力制御部6、7に制御電圧を印加した場合、可変容量素子本体2の静電容量Cacがより増大しやすくなる。 In the present embodiment, the thickness (distance between the first and second stress control electrodes 9a and 9b) w2 of the stress control unit dielectric layer 10 in the stress control units 6 and 7 is set to the dielectric layer of the variable capacitance element body 2. 4 (the distance between the first and second variable capacitance element electrodes 5a and 5b) w1. As a result, the electric field strength at the stress control units 6 and 7 is increased, and a larger stress can be generated. As a result, the tensile stress applied to the variable capacitance element main body 2 increases, and when a control voltage is applied to the stress control units 6 and 7, the capacitance Cac of the variable capacitance element main body 2 is more likely to increase.
 〈3.第3の実施形態:可変容量素子〉
 次に、本開示の第3の実施形態に係る可変容量素子について説明する。図23は、本実施形態の可変容量素子25の概略構成図である。図23において、図1に対応する部分には同一符号を付し、重複説明を省略する。本実施形態は、可変容量素子本体2の誘電体層26の材料と、応力制御部6、7における応力制御部用誘電体層27の材料を異ならせる例である。
<3. Third Embodiment: Variable Capacitance Element>
Next, a variable capacitance element according to the third embodiment of the present disclosure will be described. FIG. 23 is a schematic configuration diagram of the variable capacitance element 25 of the present embodiment. In FIG. 23, parts corresponding to those in FIG. This embodiment is an example in which the material of the dielectric layer 26 of the variable capacitance element body 2 is different from the material of the stress control unit dielectric layer 27 in the stress control units 6 and 7.
 本実施形態では、応力制御部用誘電体層27として、第1及び第2の応力制御電極9a、9bに電圧を印加することで、その電界方向に圧縮収縮しやすい材料を用いる例とする。例えば、可変容量素子本体2の誘電体層26の弾性率が、応力制御部6、7における応力制御部用誘電体層27の弾性率よりも大きい条件の材料を用いることができる。その他、可変容量素子本体2の誘電体層26のポアソン比が、応力制御部6、7における応力制御部用誘電体層27のポアソン比よりも小さい材料を用いることができる。このような条件の材料を用いることにより、より多くの引張応力を可変容量素子本体2に与えることができ、可変容量素子本体2の静電容量Cacをより多く増加させることができる。 In the present embodiment, as the dielectric layer 27 for the stress control unit, a material that is easily compressed and contracted in the electric field direction by applying a voltage to the first and second stress control electrodes 9a and 9b is used. For example, a material having a condition that the elastic modulus of the dielectric layer 26 of the variable capacitance element body 2 is larger than the elastic modulus of the stress control unit dielectric layer 27 in the stress control units 6 and 7 can be used. In addition, a material in which the Poisson's ratio of the dielectric layer 26 of the variable capacitance element body 2 is smaller than the Poisson's ratio of the stress control unit dielectric layer 27 in the stress control units 6 and 7 can be used. By using the material under such conditions, more tensile stress can be applied to the variable capacitance element body 2, and the capacitance Cac of the variable capacitance element body 2 can be increased more.
 また、本実施形態の可変容量素子25を、図21A~図21Dで示す工程で作成し、かつ、応力制御部6、7において、図21A~図21Dの誘電体材料膜22に対応する部分を、応力制御部用誘電体層27よりも弾性率の大きな材料で構成してもよい。このように、応力制御部6、7内において、第1及び第2の応力制御電極9a、9bを囲む部分を弾性率の大きな材料で埋め込むことにより、周囲に形成された誘電体材料膜22が梁の役割を果たす。これにより、可変容量素子本体2に、より効果的に引張応力を発生させることができる。なお、応力制御部6、7では、第1及び第2の応力制御電極9a、9bで挟持される応力制御部用誘電体層27以外の誘電体層の材料を、応力制御部用誘電体層27の弾性率よりも大きい弾性率を有する材料としてもよい。 In addition, the variable capacitance element 25 of the present embodiment is formed by the steps shown in FIGS. 21A to 21D, and portions corresponding to the dielectric material film 22 of FIGS. 21A to 21D in the stress control units 6 and 7 are formed. The material may have a larger elastic modulus than the stress control part dielectric layer 27. As described above, the portions surrounding the first and second stress control electrodes 9a and 9b in the stress control portions 6 and 7 are filled with a material having a large elastic modulus, so that the dielectric material film 22 formed in the surroundings is formed. Play the role of a beam. Thereby, tensile stress can be more effectively generated in the variable capacitor element body 2. In the stress control units 6 and 7, the material of the dielectric layer other than the stress control unit dielectric layer 27 sandwiched between the first and second stress control electrodes 9a and 9b is used as the stress control unit dielectric layer. It is good also as a material which has an elastic modulus larger than the elastic modulus of 27.
 その他、応力制御部6、7における応力制御部用誘電体層27として、その電界方向へ収縮する材料(例えばPZT)を用いるようにしてもよい。そうすることで、可変容量素子本体2により多くの引張応力を与えることができ、結果、小さな制御電圧で、可変容量素子本体2の静電容量Cacをより多く増加することができる。 In addition, as the dielectric layer 27 for the stress control unit in the stress control units 6 and 7, a material that contracts in the electric field direction (for example, PZT) may be used. By doing so, more tensile stress can be given to the variable capacitance element body 2, and as a result, the capacitance Cac of the variable capacitance element body 2 can be increased more with a small control voltage.
 上述した第1及び第2の実施形態に係る可変容量素子においても、図21A~図21Dに示した製造方法を用いて形成することにより、機械的強度の高い可変容量素子とすることができる。なお、この場合も、前述したように、第1及び第2の応力制御電極9a、9bを囲む部分を弾性率の大きな材料で埋め込むように、誘電体材料膜22の材料を選択するのが好ましい。このような材料を用いることで、第1及び第2の応力制御電極9a、9bの周囲に形成された誘電体材料膜22が梁の役割を果たすため、より大きな引張応力を可変容量素子本体2に発生させることができる。 Also in the variable capacitance elements according to the first and second embodiments described above, a variable capacitance element having high mechanical strength can be obtained by using the manufacturing method shown in FIGS. 21A to 21D. In this case as well, as described above, it is preferable to select the material of the dielectric material film 22 so that the portions surrounding the first and second stress control electrodes 9a and 9b are filled with a material having a large elastic modulus. . By using such a material, the dielectric material film 22 formed around the first and second stress control electrodes 9a and 9b serves as a beam, so that a larger tensile stress can be applied to the variable capacitor element body 2. Can be generated.
 上述した第1~第3の実施形態に係る可変容量素子では、可変容量素子本体を構成する可変容量素子電極は複数層積層された構成としていたが、可変容量素子本体は、誘電体層を挟持する少なくとも1対の可変容量素子電極が構成されていればよい。すなわち、可変容量素子本体の電極数は、所望の静電容量が得られる構成であれば、種々の変更が可能である。 In the variable capacitive elements according to the first to third embodiments described above, the variable capacitive element electrode constituting the variable capacitive element body is configured to be laminated in plural layers. However, the variable capacitive element body sandwiches the dielectric layer. It is sufficient that at least one pair of variable capacitance element electrodes is configured. That is, the number of electrodes of the variable capacitance element body can be variously changed as long as a desired capacitance can be obtained.
 また、上述した第1~第3の実施形態に係る可変容量素子では、可変容量素子本体を挟持して応力制御部を構成する例としたが、可変容量素子本体の一方の方向にのみ応力制御部を構成する例としてもよい。この場合も、図4で示したように、制御電圧を印加することで、可変容量素子本体の静電容量を増加させることができる。また、可変容量素子電極と、応力制御電極とを積層する構成としたが、応力制御部を、可変容量素子本体の、可変容量素子電極の積層方向と直交する方向の側面に設ける構成としてもよい。 In the variable capacitance elements according to the first to third embodiments described above, the stress control unit is configured by sandwiching the variable capacitance element body. However, the stress control is performed only in one direction of the variable capacitance element body. It is good also as an example which comprises a part. Also in this case, as shown in FIG. 4, the capacitance of the variable capacitance element body can be increased by applying the control voltage. In addition, the variable capacitor element electrode and the stress control electrode are stacked. However, the stress control unit may be provided on the side surface of the variable capacitor element body in the direction orthogonal to the stacking direction of the variable capacitor element electrode. .
 また、上述した第1~第3の実施形態では、応力制御部を、応力制御部用誘電体層を介して第1及び第2の応力制御電極を複数積層させた構成としたが、これに限られるものではなく、容量素子本体に引張応力を印加することのできる構成であればよい。例えば、応力制御部を圧電素子などで構成することも可能である。応力制御部を圧電素子で構成する場合には、その圧電素子によって容量素子本体の誘電体層に引張応力をかけることにより、容量素子本体の静電容量を増加させることができる。その他、磁力を用いて容量素子本体の誘電体層に引張応力を印加する構成としてよい。また、本開示は、上述した実施形態に限られるものではなく、種々の変更、組み合わせが可能である。 In the first to third embodiments described above, the stress control unit is configured by laminating a plurality of first and second stress control electrodes through the dielectric layer for the stress control unit. The configuration is not limited as long as a tensile stress can be applied to the capacitive element body. For example, it is possible to configure the stress control unit with a piezoelectric element or the like. When the stress control unit is configured by a piezoelectric element, the electrostatic capacity of the capacitive element body can be increased by applying tensile stress to the dielectric layer of the capacitive element body by the piezoelectric element. In addition, a tensile stress may be applied to the dielectric layer of the capacitor element body using magnetic force. Further, the present disclosure is not limited to the above-described embodiments, and various changes and combinations are possible.
 ところで、上述の第1~第3の実施形態では、容量素子本体の誘電体層の形成材料として強誘電体材料を用い可変容量素子とする例としたが、容量素子本体の容量が電圧の印加によって変化しない容量素子にも、本開示を適用することができる。この場合、応力制御用電圧を制御することで、容量素子本体の静電容量を変化させることができる。よって、容量素子全体としては、可変容量素子としての機能を有することになる。 In the first to third embodiments described above, a ferroelectric material is used as a material for forming the dielectric layer of the capacitive element body, and the variable capacitive element is used. However, the capacitance of the capacitive element body is applied with voltage. The present disclosure can also be applied to a capacitor element that does not change depending on the case. In this case, the capacitance of the capacitive element body can be changed by controlling the stress control voltage. Therefore, the entire capacitive element has a function as a variable capacitive element.
 また、容量が電圧の印加によって変化しない容量素子に応力制御部を構成することにより、複数の容量素子間で、静電容量の値を合わせこむことが可能となる。これにより、このような容量素子を電子機器の回路に用いた場合には、電子機器の性能のバラツキを抑えることができる。 In addition, by configuring the stress control unit in a capacitive element whose capacitance does not change due to the application of voltage, it becomes possible to match the capacitance values among a plurality of capacitive elements. Thereby, when such a capacitive element is used for the circuit of an electronic device, the dispersion | variation in the performance of an electronic device can be suppressed.
 また、上述の第1~第3の実施形態では、容量素子本体の誘電体層の形成材料として強誘電体材料を用い、その強誘電体材料は電圧を加えることで電界方向へ伸張する特性を有する場合を例としたが、電圧を加えることで電界方向へ収縮する特性を有する誘電体材料を用いる場合にも、本開示をその特性に適合させ適用することができる。すなわち、容量素子本体に例えば前述のPZT(チタン酸ジルコン酸鉛)を用いる場合は、応力制御部に制御電圧を与えることで容量素子本体へ圧縮応力を与える構成にすることで、容量素子本体の静電容量を増加させることができる。例えば、その圧縮応力を発生させるには、応力制御部に制御電圧を与えることで容量素子本体の電界方向へ応力制御部が伸張するようにすればよい。 In the first to third embodiments described above, a ferroelectric material is used as a material for forming the dielectric layer of the capacitor element body, and the ferroelectric material has a characteristic of expanding in the electric field direction when a voltage is applied. However, the present disclosure can be adapted to and applied to a dielectric material having a characteristic of contracting in the electric field direction when a voltage is applied. That is, when using, for example, the above-described PZT (lead zirconate titanate) for the capacitor element body, by applying a control voltage to the stress control unit to apply compressive stress to the capacitor element body, Capacitance can be increased. For example, in order to generate the compressive stress, the stress control unit may be extended in the electric field direction of the capacitive element body by applying a control voltage to the stress control unit.
 なお、本開示に好適な容量素子の容量C(F)は、使用する周波数f(Hz)にも依存する。本開示は、インピーダンスZ(オーム)(Z=1/2πfc)が2オーム以上、好ましくは15オーム以上、さらに好ましくは100オーム以上となる容量C(F)であるの容量素子に好適である。 Note that the capacitance C (F) of the capacitive element suitable for the present disclosure also depends on the frequency f (Hz) to be used. The present disclosure is suitable for a capacitor element having a capacitance C (F) in which the impedance Z (ohm) (Z = 1 / 2πfc) is 2 ohms or more, preferably 15 ohms or more, and more preferably 100 ohms or more.
 〈4.第4の実施形態:共振回路〉
 次に、本開示の第4の実施形態に係る共振回路について説明する。本実施形態は本開示の容量素子を共振回路に適用した例であり、特に、第1の実施形態における可変容量素子1を適用した例を示す。また、本実施形態では、共振回路を非接触ICカードに用いた例を示す。
<4. Fourth Embodiment: Resonant Circuit>
Next, a resonant circuit according to the fourth embodiment of the present disclosure will be described. The present embodiment is an example in which the capacitive element of the present disclosure is applied to a resonance circuit, and particularly shows an example in which the variable capacitive element 1 in the first embodiment is applied. Moreover, in this embodiment, the example which used the resonance circuit for the non-contact IC card is shown.
 図24は、本実施形態の共振回路を用いた非接触ICカード50の受信系回路部のブロック構成図である。なお、本実施形態では、説明を簡略化するために、信号の送信系(変調系)回路部は省略している。送信系回路部の構成は、従来の非接触ICカード等と同様の構成である。また、図24において、図2Bに対応する部分には同一符号を付し重複説明を省略する。 FIG. 24 is a block configuration diagram of a reception system circuit unit of the non-contact IC card 50 using the resonance circuit of the present embodiment. In this embodiment, in order to simplify the description, a signal transmission system (modulation system) circuit unit is omitted. The configuration of the transmission system circuit unit is the same as that of a conventional non-contact IC card or the like. Also, in FIG. 24, parts corresponding to those in FIG.
 非接触ICカードは、図24に示すように、受信部71(アンテナ)と、整流部72と、信号処理部73とを備える。 The non-contact IC card includes a receiving unit 71 (antenna), a rectifying unit 72, and a signal processing unit 73 as shown in FIG.
 受信部71は、共振コイル74及び共振コンデンサ75からなる共振回路で構成され、非接触ICカード50のR/W(不図示)から送信される信号をこの共振回路で受信する。なお、図24では、共振コイル74をそのインダクタンス成分74a(L)と抵抗成分74b(r:数オーム程度)とに分けて図示している。 The receiving unit 71 is constituted by a resonance circuit including a resonance coil 74 and a resonance capacitor 75, and receives a signal transmitted from the R / W (not shown) of the non-contact IC card 50 by this resonance circuit. In FIG. 24, the resonance coil 74 is divided into an inductance component 74a (L) and a resistance component 74b (r: about several ohms).
 共振コンデンサ75は、容量Coのコンデンサ75aと、受信信号の電圧値(受信電圧値)に応じて容量Cvが変化する可変容量素子本体2とが並列に接続されている。すなわち、本実施形態では、従来のアンテナ(共振コイル74とコンデンサ75aとからなる共振回路)に可変容量素子本体2を並列接続した構成となる。また、可変容量素子本体2は、図1に示すように、応力制御部6、7を有する可変容量素子1に組み込まれて構成されたものである。 In the resonant capacitor 75, a capacitor 75a having a capacitance Co and a variable capacitance element body 2 whose capacitance Cv changes according to the voltage value (reception voltage value) of the received signal are connected in parallel. That is, in the present embodiment, the variable capacitance element body 2 is connected in parallel to a conventional antenna (a resonance circuit including a resonance coil 74 and a capacitor 75a). The variable capacitance element body 2 is configured to be incorporated in the variable capacitance element 1 having the stress control units 6 and 7, as shown in FIG.
 コンデンサ75aは、従来のアンテナと同様に、常誘電体材料で形成されたコンデンサを用いる。常誘電体材料で形成されたコンデンサ75aは、比誘電率が低く、入力電圧の種類(交流または直流)及びその電圧値に関係なくその容量はほとんど変化しない。それゆえ、コンデンサ75aは、入力信号に対して非常に安定した特性を有する。従来のアンテナでは、アンテナの共振周波数がずれないようにするために、このような入力信号に対して安定性の高い常誘電体材料で形成されたコンデンサを用いる。 As the capacitor 75a, a capacitor formed of a paraelectric material is used as in the conventional antenna. The capacitor 75a made of a paraelectric material has a low relative dielectric constant, and its capacitance hardly changes regardless of the type of input voltage (AC or DC) and its voltage value. Therefore, the capacitor 75a has a very stable characteristic with respect to the input signal. In the conventional antenna, in order to prevent the resonance frequency of the antenna from shifting, a capacitor formed of a paraelectric material having high stability with respect to such an input signal is used.
 なお、実際の回路上では、共振コイル74のインダクタンス成分Lのばらつきや信号処理部73内の集積回路の入力端子の寄生容量などによる受信部71の容量変動(数pF程度)が存在し、その変動量は非接触ICカード50毎に異なる。それゆえ、本実施形態では、これらの影響を抑制(補正)するために、コンデンサ75aの電極パターンをトリミングして容量Coを適宜調整している。 In the actual circuit, there is a capacitance variation (about several pF) of the receiving unit 71 due to variations in the inductance component L of the resonance coil 74 and parasitic capacitance of the input terminal of the integrated circuit in the signal processing unit 73. The amount of change differs for each non-contact IC card 50. Therefore, in the present embodiment, in order to suppress (correct) these effects, the capacitor Co is appropriately adjusted by trimming the electrode pattern of the capacitor 75a.
 整流部72は、整流用ダイオード76と整流用コンデンサ77とからなる半波整流回路で構成され、受信部71で受信した交流電圧を直流電圧に整流して出力する。 The rectifier 72 is constituted by a half-wave rectifier circuit including a rectifier diode 76 and a rectifier capacitor 77, and rectifies and outputs the AC voltage received by the receiver 71 to a DC voltage.
 信号処理部73は、主に半導体素子の集積回路(LSI:Large Scale Integration)で構成され、受信部71で受信した交流信号を復調する。信号処理部73内のLSIは整流部72から供給される直流電圧により駆動される。なお、LSIとしては、従来の非接触ICカードと同様のものを用いることができる。 The signal processing unit 73 is mainly composed of an integrated circuit (LSI: Large Scale Integration) of semiconductor elements, and demodulates the AC signal received by the receiving unit 71. The LSI in the signal processing unit 73 is driven by a DC voltage supplied from the rectifying unit 72. Note that the same LSI as a conventional non-contact IC card can be used.
 本実施形態では、受信部に用いる可変容量素子は、応力制御部が構成されているために、可変の共振コンデンサそのものに印加される制御電圧だけでなく応力制御部に印加する制御電圧によっても容量を制御することが可能である。このため、より低い電圧で大きな可変幅を得られる。また可変幅が大きくなる分共振コンデンサへの変化負担を減らせるため共振コンデンサの誘電体を厚くすれば耐圧が向上しより大きなAC電圧を扱うことが可能となる。 In this embodiment, since the variable capacitance element used in the receiving unit is configured by the stress control unit, the capacitance is not only controlled by the control voltage applied to the variable resonance capacitor itself but also by the control voltage applied to the stress control unit. Can be controlled. For this reason, a large variable width can be obtained with a lower voltage. In addition, since the burden of change on the resonance capacitor can be reduced by the increase in the variable width, if the dielectric of the resonance capacitor is thickened, the withstand voltage is improved and a larger AC voltage can be handled.
 本実施形態では、共振回路の可変容量素子として、第1の実施形態の可変容量素子を用いる例としたが、第2の実施形態又は第3の実施形態の可変容量素子を用いる例としてもよい。さらに、可変容量素子1を駆動する回路構成として、図2A及び図2Bに示す構成を適用したが、図12~図19の回路構成を適用してもよい。 In the present embodiment, the variable capacitor of the first embodiment is used as the variable capacitor of the resonance circuit. However, the variable capacitor of the second embodiment or the third embodiment may be used. . Further, as the circuit configuration for driving the variable capacitance element 1, the configuration shown in FIGS. 2A and 2B is applied, but the circuit configuration of FIGS. 12 to 19 may be applied.
 ところで、第1~第3の実施形態で示した本開示の可変容量素子は、様々な電子機器に適用することが可能である。電子機器に適用する場合には、例えば、本開示の可変容量素子を、通信システム、給電装置及び受電装置からなるワイヤレス充電システム、電源装置等に組み込んで用いることができる。以下に、本開示の可変容量素子を用いて構成した通信システム、ワイヤレス充電システム、及び電源装置を示し、また、それらを用いた電子機器を例示する。 Incidentally, the variable capacitance element of the present disclosure shown in the first to third embodiments can be applied to various electronic devices. When applied to an electronic device, for example, the variable capacitance element of the present disclosure can be incorporated and used in a communication system, a wireless charging system including a power feeding device and a power receiving device, a power supply device, and the like. Hereinafter, a communication system, a wireless charging system, and a power supply device configured using the variable capacitance element of the present disclosure are shown, and electronic devices using them are exemplified.
 〈5.第5の実施形態:通信システム〉
 図25に、本開示の第5の実施形態に係る通信システムの概略構成図を示す。本実施形態の通信システム200は、互いに非接触で通信を行う送信装置201と受信装置202とから構成される。本実施形態の通信システム200は、例えば、Felica(登録商標)に代表されるような非接触ICカード規格と、近距離無線通信(NFC:Near Field Communication)規格とを組み合わせた通信システムである。すなわち、本実施形態の通信システム200を構成する受信装置202は、第4の実施形態に示した非接触ICカード50に相当し、本実施形態では、非接触ICカード50の信号処理部73の構成をより詳細に記載している。なお、図25では電力供給に関する配線は、破線矢印で示している。
<5. Fifth Embodiment: Communication System>
FIG. 25 illustrates a schematic configuration diagram of a communication system according to the fifth embodiment of the present disclosure. The communication system 200 according to the present embodiment includes a transmission device 201 and a reception device 202 that perform non-contact communication. The communication system 200 of the present embodiment is a communication system that combines a non-contact IC card standard represented by Felica (registered trademark) and a near field communication (NFC) standard, for example. That is, the receiving device 202 constituting the communication system 200 of this embodiment corresponds to the non-contact IC card 50 shown in the fourth embodiment. In this embodiment, the signal processing unit 73 of the non-contact IC card 50 The configuration is described in more detail. In FIG. 25, the wiring related to power supply is indicated by a broken-line arrow.
 まず、送信装置201について説明する。送信装置201は、受信装置202に対して非接触でデータを読み書きするリーダライタ機能を有するものであり、一次側アンテナ部(送信側アンテナ部)203、送信側システム制御部209、変調回路207、復調回路208を備える。さらに、本実施形態の送信装置201は、送信信号部205、可変インピーダンスマッチング部204、送受信制御部206を備える。 First, the transmission apparatus 201 will be described. The transmission device 201 has a reader / writer function for reading and writing data without contact with the reception device 202, and includes a primary side antenna unit (transmission side antenna unit) 203, a transmission side system control unit 209, a modulation circuit 207, A demodulation circuit 208 is provided. Furthermore, the transmission apparatus 201 of this embodiment includes a transmission signal unit 205, a variable impedance matching unit 204, and a transmission / reception control unit 206.
 一次側アンテナ部203は、第4の実施形態に示した受信部71と同様の構成を有している。すなわち、一次側アンテナ部203は、図示を省略するが、共振コイルと共振コンデンサとからなる共振回路で構成され、その共振コンデンサは第1~第3の実施形態に示した可変容量素子を備える構成とされている。一次側アンテナ部203では、共振回路により所望の周波数の送信信号を放射すると共に、後述する受信装置202からの応答信号を受信する。 The primary antenna unit 203 has the same configuration as that of the receiving unit 71 shown in the fourth embodiment. That is, although not shown, the primary side antenna unit 203 is configured by a resonance circuit including a resonance coil and a resonance capacitor, and the resonance capacitor includes the variable capacitance element shown in the first to third embodiments. It is said that. The primary antenna unit 203 radiates a transmission signal having a desired frequency by the resonance circuit and receives a response signal from the receiving device 202 described later.
 送信側システム制御部209は、外部からの指令や内蔵するプログラムにしたがって、各種制御用のコントロール信号を生成し、変調回路207及び送受信制御部206を制御するとともに、指令に対応した送信データを生成し変調回路207に供給する。また、送信側システム制御部209は、復調回路208で復調された応答データに基づいて所定の処理を行う。 The transmission-side system control unit 209 generates control signals for various controls according to external commands and built-in programs, controls the modulation circuit 207 and the transmission / reception control unit 206, and generates transmission data corresponding to the commands. And supplied to the modulation circuit 207. The transmission-side system control unit 209 performs predetermined processing based on the response data demodulated by the demodulation circuit 208.
 変調回路207は、送信側システム制御部209から入力された送信データを変調し、該変調した送信データを送信信号部205に送る。復調回路208は、一次側アンテナ部203で受信した応答信号を、可変インピーダンスマッチング部204を介して取得し、該応答信号を復調する。そして、復調回路208は、復調した応答データを送信側システム制御部209に供給する。 The modulation circuit 207 modulates the transmission data input from the transmission-side system control unit 209 and sends the modulated transmission data to the transmission signal unit 205. The demodulation circuit 208 acquires the response signal received by the primary antenna unit 203 via the variable impedance matching unit 204, and demodulates the response signal. Then, the demodulation circuit 208 supplies the demodulated response data to the transmission side system control unit 209.
 送信信号部205は、変調回路207から出力された送信データにより所望の周波数(13.56MHz)のキャリア信号を変調し、該変調したキャリア信号を可変インピーダンスマッチング部204に送出する。
 可変インピーダンスマッチング部204は、送信信号部205と一次側アンテナ部203との間でインピーダンスの整合を取る回路であり、図25には示さないが、第1~第3の実施形態で示した本開示の可変容量素子を含む回路である。
The transmission signal unit 205 modulates a carrier signal having a desired frequency (13.56 MHz) with the transmission data output from the modulation circuit 207, and sends the modulated carrier signal to the variable impedance matching unit 204.
The variable impedance matching unit 204 is a circuit that performs impedance matching between the transmission signal unit 205 and the primary antenna unit 203. Although not shown in FIG. 25, the variable impedance matching unit 204 shown in the first to third embodiments is used. It is a circuit including the disclosed variable capacitance element.
 送受信制御部206は、送信信号部205から可変インピーダンスマッチング部204に送出されるキャリア信号の送信電圧、送信電流などの通信状態をモニタリングし、可変インピーダンスマッチング部204及び一次側アンテナ部203を制御する。このとき、送受信制御部206は、送信信号部205と一次側アンテナ部203との間のインピーダンスマッチング及び一次側アンテナ部203の共振周波数を最適化する。具体的には、可変インピーダンスマッチング部204及び一次側アンテナ部203を構成する本開示の可変容量素子(図示せず)の容量を送受信制御部206によって制御することで、インピーダンスや共振周波数を調整する。 The transmission / reception control unit 206 monitors the communication state such as the transmission voltage and transmission current of the carrier signal transmitted from the transmission signal unit 205 to the variable impedance matching unit 204 and controls the variable impedance matching unit 204 and the primary antenna unit 203. . At this time, the transmission / reception control unit 206 optimizes the impedance matching between the transmission signal unit 205 and the primary side antenna unit 203 and the resonance frequency of the primary side antenna unit 203. Specifically, the impedance and the resonance frequency are adjusted by controlling the capacitances of the variable capacitance elements (not shown) of the present disclosure constituting the variable impedance matching unit 204 and the primary antenna unit 203 by the transmission / reception control unit 206. .
 次に、受信装置202について説明する。受信装置202は、データキャリアである非接触ICカードを構成するものである。受信装置202は、二次側アンテナ部(受信側アンテナ部)210、整流部211、定電圧部212、受信制御部213、復調回路217、受信側システム制御部214、変調回路216、バッテリ215を備える。 Next, the receiving device 202 will be described. The receiving device 202 constitutes a non-contact IC card that is a data carrier. The receiving device 202 includes a secondary side antenna unit (reception side antenna unit) 210, a rectification unit 211, a constant voltage unit 212, a reception control unit 213, a demodulation circuit 217, a reception side system control unit 214, a modulation circuit 216, and a battery 215. Prepare.
 二次側アンテナ部210は、第4の実施形態に示した受信部71と同様の構成を有している。すなわち、二次側アンテナ部210は、図示を省略するが、共振コイルと共振コンデンサとで構成される共振回路からなり、その共振コンデンサは、第1~第3の実施形態に示した本開示の可変容量素子を備える構成とされている。二次側アンテナ部210は、送信装置201と電磁結合により通信を行う部分であり、送信装置201の一次側アンテナ部が発生する磁界を受け、送信装置201からの送信信号を受信する。 The secondary antenna unit 210 has the same configuration as that of the receiving unit 71 shown in the fourth embodiment. That is, although not shown, the secondary side antenna unit 210 includes a resonance circuit including a resonance coil and a resonance capacitor, and the resonance capacitor is the one disclosed in the first to third embodiments. The variable capacitance element is provided. The secondary antenna unit 210 is a part that communicates with the transmission device 201 by electromagnetic coupling, receives a magnetic field generated by the primary antenna unit of the transmission device 201, and receives a transmission signal from the transmission device 201.
 整流部211は、例えば整流用ダイオードと整流用コンデンサとからなる半波整流回路で構成され、二次側アンテナ部210で受信した交流電力を直流電力に整流して出力する。
 定電圧部212は、整流部211から供給された電気信号に対して電圧変動(データ成分)の抑制処理及び安定化処理を施し、該処理された直流電力を出力する。整流部211及び定電圧部212を介して出力された直流電力は、受信装置202内のICを動作させるための電源として使用される。
The rectifying unit 211 is configured by a half-wave rectifier circuit including, for example, a rectifying diode and a rectifying capacitor, and rectifies and outputs AC power received by the secondary antenna unit 210 to DC power.
The constant voltage unit 212 performs voltage fluctuation (data component) suppression processing and stabilization processing on the electrical signal supplied from the rectifying unit 211, and outputs the processed DC power. The DC power output via the rectifying unit 211 and the constant voltage unit 212 is used as a power source for operating the IC in the receiving device 202.
 受信制御部213は、受信信号の大きさや、電圧/電流の位相などを判断し、二次側アンテナ部210の共振特性を制御することで受信時における共振周波数の最適化を行う。具体的には、二次側アンテナ部210を構成する本開示の可変容量素子(図示せず)の容量を受信制御部213によって制御することで共振周波数を調整する。 The reception control unit 213 determines the size of the reception signal, the voltage / current phase, and the like, and controls the resonance characteristics of the secondary antenna unit 210 to optimize the resonance frequency during reception. Specifically, the resonance frequency is adjusted by controlling the capacitance of the variable capacitance element (not shown) of the present disclosure constituting the secondary antenna unit 210 by the reception control unit 213.
 復調回路217は、二次側アンテナ部210で受信した受信信号を復調し、該復調した信号を受信側システム制御部214に送出する。
 受信側システム制御部214は、復調回路217で復調された信号に基づいて、その内容を判断して必要な処理を行い、変調回路216及び受信制御部213を制御する。
 変調回路216は、受信側システム制御部214で判断された結果(復調信号の内容)に従って受信キャリアを変調し、これにより、二次側アンテナ部210から一次側アンテナ部203に送信する応答信号を生成する。
The demodulation circuit 217 demodulates the reception signal received by the secondary side antenna unit 210 and sends the demodulated signal to the reception side system control unit 214.
Based on the signal demodulated by the demodulation circuit 217, the reception-side system control unit 214 determines the contents thereof, performs necessary processing, and controls the modulation circuit 216 and the reception control unit 213.
The modulation circuit 216 modulates the reception carrier according to the result (contents of the demodulated signal) determined by the reception-side system control unit 214, and thereby transmits a response signal transmitted from the secondary-side antenna unit 210 to the primary-side antenna unit 203 Generate.
 バッテリ215は、受信側システム制御部214に電力を供給する。このバッテリ215への充電は、外部電源219に接続することで行われる。このように、本実施形態の受信装置202では、外部電源219から電力が供給されるバッテリが内蔵されていることで、定電圧部212を介して出力される電力よりも安定した電力を供給でき、安定した動作が可能となる。 The battery 215 supplies power to the receiving system control unit 214. The battery 215 is charged by connecting to the external power source 219. As described above, the receiving device 202 according to the present embodiment has a built-in battery to which power is supplied from the external power source 219, and thus can supply more stable power than the power output through the constant voltage unit 212. Stable operation is possible.
 本実施形態の通信システム200では、送信装置201の一次側アンテナ部203及び受信装置202の二次側アンテナ部210間において、電磁結合を介して非接触でデータ通信を行う。それゆえ、本実施形態では、送信装置201及び受信装置202において効率良く通信を行うために、一次側アンテナ部203及び二次側アンテナ部210の共振回路が同じキャリア周波数(本実施形態では13.56MHz)で共振するように構成されている。 In the communication system 200 of the present embodiment, data communication is performed in a non-contact manner via electromagnetic coupling between the primary side antenna unit 203 of the transmission device 201 and the secondary side antenna unit 210 of the reception device 202. Therefore, in this embodiment, in order to perform efficient communication in the transmission device 201 and the reception device 202, the resonance circuits of the primary side antenna unit 203 and the secondary side antenna unit 210 have the same carrier frequency (13. 56 MHz).
 そして、本実施形態では、一次側アンテナ部203、二次側アンテナ部210、及び可変インピーダンスマッチング部204には本開示の可変容量素子を用いられており、その容量を増減させることができる。これにより、共振周波数及びインピーダンスマッチング特性の2つを最適に保つことで特性を最良にすることができる。 And in this embodiment, the variable capacity element of this indication is used for primary side antenna part 203, secondary side antenna part 210, and variable impedance matching part 204, and the capacity can be increased or decreased. Thereby, it is possible to optimize the characteristics by keeping the resonance frequency and the impedance matching characteristics optimal.
 また、一次側アンテナ部203及び二次側アンテナ部210を構成する共振回路の共振コンデンサに本開示の可変容量素子が組み込まれているため、それぞれの共振周波数は常に最適に保持することができる。このため、様々な要因により受信共振周波数及び/又は送信共振周波数がずれても、その共振周波数のずれを自身の装置内で容易に調整することができ、安定した通信特性を得ることができる。 In addition, since the variable capacitance element of the present disclosure is incorporated in the resonance capacitor of the resonance circuit that constitutes the primary side antenna unit 203 and the secondary side antenna unit 210, the respective resonance frequencies can always be maintained optimally. For this reason, even if the reception resonance frequency and / or the transmission resonance frequency is shifted due to various factors, the shift of the resonance frequency can be easily adjusted in its own device, and stable communication characteristics can be obtained.
 〈6.第6の実施形態:ワイヤレス充電システム〉
 次に、本開示の第6の実施形態に係るワイヤレス充電システムについて説明する。図26は、本実施形態のワイヤレス充電システム220の概略構成図である。本実施形態のワイヤレス充電システム220は、ワイヤレス(非接触)で給電(充電)を行うための装置であり、ワイヤレスの方式としては電磁誘導や磁界共鳴などが適応可能である。図26において、図25に対応する部分には同一符号を付し、重複説明を省略する。なお、本実施形態では、送信装置201は、所望の電子機器に非接触で電力を供給する給電装置を構成するものであり、受信装置221は、携帯機器に代表されるような給電される側の受電装置を構成するものである。
<6. Sixth Embodiment: Wireless Charging System>
Next, a wireless charging system according to the sixth embodiment of the present disclosure will be described. FIG. 26 is a schematic configuration diagram of the wireless charging system 220 of the present embodiment. The wireless charging system 220 of the present embodiment is a device for supplying power (charging) wirelessly (contactlessly), and electromagnetic induction, magnetic field resonance, etc. can be applied as a wireless system. In FIG. 26, parts corresponding to those in FIG. In the present embodiment, the transmission device 201 constitutes a power supply device that supplies power to a desired electronic device in a contactless manner, and the reception device 221 is supplied with power as represented by a portable device. The power receiving apparatus is configured.
 本実施形態では、受信装置221は、第5の実施形態に係る通信システム200における受信装置202の定電圧部212の部分が充電制御部218とされている。充電制御部218は、整流部211から供給された電気信号を、バッテリ215に供給してバッテリ215に充電すると共に、受信制御部213を動作させるための電力として受信制御部213に供給する。また、充電制御部218は、充電状況をモニタし、該モニタ結果を受信側システム制御部214に出力する。なお、本実施形態では、充電制御部218には外部から外部電源219を接続することによっても充電が可能とされている。 In the present embodiment, the receiving device 221 is configured such that the constant voltage unit 212 of the receiving device 202 in the communication system 200 according to the fifth embodiment is a charge control unit 218. The charging control unit 218 supplies the electric signal supplied from the rectifying unit 211 to the battery 215 to charge the battery 215, and supplies the electric signal to the reception control unit 213 as power for operating the reception control unit 213. In addition, the charging control unit 218 monitors the charging status and outputs the monitoring result to the receiving-side system control unit 214. In the present embodiment, the charging control unit 218 can be charged by connecting an external power source 219 from the outside.
 このようなワイヤレス充電システム220では、送信側システム制御部209で発生される信号に基づいて一次側アンテナ部(給電側アンテナ部)203から電力伝送の為の電磁波が放射され、その電磁波を二次側アンテナ部(受電側アンテナ部)210で受ける。そして、二次側アンテナ部210で受信した信号が整流部211で直流電力とされ、その直流電力が充電制御部218を介してバッテリ215に充電される。 In such a wireless charging system 220, an electromagnetic wave for power transmission is radiated from the primary side antenna unit (feeding side antenna unit) 203 based on a signal generated by the transmission side system control unit 209, and the electromagnetic wave is transmitted to the secondary side. It is received by the side antenna unit (power receiving side antenna unit) 210. Then, the signal received by the secondary antenna unit 210 is converted into DC power by the rectifying unit 211, and the DC power is charged to the battery 215 via the charging control unit 218.
 また、本実施形態のワイヤレス充電システム220においても、送信装置201側から送信された信号は二次側アンテナ部210で受信され、該受信信号は復調回路217により復調される。そして、復調されたデータの内容が受信側システム制御部214で判断され、その結果に従って変調回路216により受信キャリアを変調することで応答がなされる。この一連の認識処理により、方式外の機器や金属などへの電力伝送を回避することができる。長時間の充電を行うため、このような認識処理を適宜間欠で行って安全性を確保しており、認識処理において正しいと判断された場合には、送信信号は電力伝送のために無変調の出力となる。 Also in the wireless charging system 220 of the present embodiment, the signal transmitted from the transmitter 201 side is received by the secondary antenna unit 210, and the received signal is demodulated by the demodulation circuit 217. Then, the content of the demodulated data is judged by the reception side system control unit 214, and a response is made by modulating the reception carrier by the modulation circuit 216 according to the result. This series of recognition processes can avoid power transmission to out-of-system devices and metals. In order to perform charging for a long time, such recognition processing is performed intermittently as appropriate to ensure safety, and when it is determined that the recognition processing is correct, the transmission signal is not modulated for power transmission. Output.
 また、本実施形態のワイヤレス充電システム220では、充電状況は、上述のように、受信装置221の充電制御部218でモニタされ、最適な充電電流になるように受信側システム制御部214を介して送信装置201に充電状況の情報が送られる。受信装置221から返された情報は送信装置201の復調回路208により復調されたのち内容を判断され、送信側システム制御部209で必要な処理が実行される。 Further, in the wireless charging system 220 of the present embodiment, the charging status is monitored by the charging control unit 218 of the receiving device 221 as described above, via the receiving-side system control unit 214 so as to obtain an optimal charging current. Information on the charging status is sent to the transmitting device 201. The information returned from the receiving device 221 is demodulated by the demodulating circuit 208 of the transmitting device 201, and then the content is judged, and the transmitting side system control unit 209 executes necessary processing.
 その他、第5の実施形態に係る通信システムと同様の処理がなされる。そして、本実施形態においても、可変インピーダンスマッチング部204、一次側アンテナ部203及び二次側アンテナ部210に本開示の可変容量素子が組み込まれており、第5の実施形態と同様の効果を得ることができる。 Otherwise, the same processing as the communication system according to the fifth embodiment is performed. Also in this embodiment, the variable capacitance element of the present disclosure is incorporated in the variable impedance matching unit 204, the primary antenna unit 203, and the secondary antenna unit 210, and the same effects as those of the fifth embodiment are obtained. be able to.
 〈7.第7の実施形態:電源装置〉
 次に、本開示の第7の実施形態に係る電源装置について説明する。図27は、本実施形態の電源装置230を示す概略構成図である。本実施形態では、商用電源236の電圧(AC100V)を電源供給部である電源トランス235を介して降圧する電源装置を例に挙げ説明する。
<7. Seventh Embodiment: Power Supply Device>
Next, a power supply device according to a seventh embodiment of the present disclosure will be described. FIG. 27 is a schematic configuration diagram showing the power supply device 230 of the present embodiment. In the present embodiment, a power supply device that steps down the voltage (AC 100 V) of the commercial power supply 236 via a power transformer 235 that is a power supply unit will be described as an example.
 本実施形態の電源装置230は、電源トランス235、可変インピーダンス231、整流回路232、エラーアンプ234、定電圧回路233、第1基準電圧電源239、第2基準電圧電源238を備える。 The power supply device 230 of this embodiment includes a power supply transformer 235, a variable impedance 231, a rectifier circuit 232, an error amplifier 234, a constant voltage circuit 233, a first reference voltage power supply 239, and a second reference voltage power supply 238.
 電源トランス235は、一次側トランス235aと二次側トランス235bとを備える。一次側トランス235aの一端にはAC100Vの商用電源236の一端が接続され、一次側トランス235aの他端には商用電源236の他端が接続されている。また、二次側トランス235bの一端には可変インピーダンス231が接続されており、他端には整流回路232が接続されている。電源トランス235は、商用電源236の電圧を一次側トランス235aと二次側トランス235bとの巻き数比に対応する割合で降圧する。 The power transformer 235 includes a primary transformer 235a and a secondary transformer 235b. One end of the AC 100V commercial power source 236 is connected to one end of the primary side transformer 235a, and the other end of the commercial power source 236 is connected to the other end of the primary side transformer 235a. A variable impedance 231 is connected to one end of the secondary transformer 235b, and a rectifier circuit 232 is connected to the other end. The power transformer 235 steps down the voltage of the commercial power source 236 at a rate corresponding to the turn ratio between the primary transformer 235a and the secondary transformer 235b.
 可変インピーダンス231は、図示を省略するが、第1~第3の実施形態で示した本開示の可変容量素子を含んで構成されており、可変インピーダンス231は二次側トランス235b、整流回路232、エラーアンプ234に接続されている。可変インピーダンス231は、可変容量素子の容量を増減してインピーダンスを変化させることで二次側トランス235bから入力される交流電圧を増減させ、その増減された交流電圧を整流回路232に供給する。 Although not shown, the variable impedance 231 includes the variable capacitance element of the present disclosure shown in the first to third embodiments. The variable impedance 231 includes the secondary transformer 235b, the rectifier circuit 232, It is connected to the error amplifier 234. The variable impedance 231 increases or decreases the AC voltage input from the secondary transformer 235 b by increasing or decreasing the capacitance of the variable capacitance element to change the impedance, and supplies the increased or decreased AC voltage to the rectifier circuit 232.
 整流回路232は、例えば整流ダイオードと整流コンデンサとからなる半波整流回路で構成されている。整流回路232は、整流ダイオードのアノード側に可変インピーダンス231が接続され、カソード側に二次側トランス235bの可変インピーダンス231の接続側とは反対側の端子が接続されている。また、整流回路232の出力端子は定電圧回路233に接続されると共にエラーアンプ234に接続されている。整流回路232は、可変インピーダンス231から入力された交流電圧を直流電圧に整流してエラーアンプ234及び定電圧回路233に供給する。 The rectifier circuit 232 is configured by a half-wave rectifier circuit including, for example, a rectifier diode and a rectifier capacitor. In the rectifier circuit 232, the variable impedance 231 is connected to the anode side of the rectifier diode, and the terminal on the opposite side to the connection side of the variable impedance 231 of the secondary transformer 235b is connected to the cathode side. The output terminal of the rectifier circuit 232 is connected to the constant voltage circuit 233 and to the error amplifier 234. The rectifier circuit 232 rectifies the AC voltage input from the variable impedance 231 into a DC voltage and supplies the DC voltage to the error amplifier 234 and the constant voltage circuit 233.
 定電圧回路233は、整流回路232に接続されている。また、定電圧回路233の他の端子には第1基準電圧電源239が接続され、更に他の端子は負荷237に接続されている。定電圧回路233では、第1基準電圧電源239から供給される基準電圧Vref1と整流回路232から入力される直流電圧とを比較して、負荷237に一定な直流電圧を供給する。 The constant voltage circuit 233 is connected to the rectifier circuit 232. The first reference voltage power source 239 is connected to the other terminal of the constant voltage circuit 233, and the other terminal is connected to the load 237. The constant voltage circuit 233 compares the reference voltage V ref 1 supplied from the first reference voltage power source 239 with the DC voltage input from the rectifier circuit 232 and supplies a constant DC voltage to the load 237.
 エラーアンプ234は、第2基準電圧電源238、整流回路232、可変インピーダンス231に接続されている。エラーアンプ234は、整流回路232によって整流された直流電圧と、第2基準電圧電源238から供給される基準電圧Vref2とを比較することで、可変インピーダンス231のインピーダンスを制御している。通常、第2基準電圧電源238から供給される基準電圧Vref2は、第1基準電圧電源239から供給される基準電圧Vref1より2V程度高めに設定する。 The error amplifier 234 is connected to the second reference voltage power source 238, the rectifier circuit 232, and the variable impedance 231. The error amplifier 234 controls the impedance of the variable impedance 231 by comparing the DC voltage rectified by the rectifier circuit 232 with the reference voltage V ref 2 supplied from the second reference voltage power source 238. Usually, the reference voltage V ref 2 supplied from the second reference voltage power source 238 is set to be about 2V higher than the reference voltage V ref 1 supplied from the first reference voltage power source 239.
 本実施形態の電源装置230では、電源トランス235の一次側トランス235aと二次側トランス235bの巻き数比に対応する割合で降圧された電圧を整流し、電圧降下型の定電圧回路233により負荷237に一定の電圧を提供することができる。 In the power supply device 230 of the present embodiment, the voltage stepped down at a ratio corresponding to the turn ratio of the primary transformer 235a and the secondary transformer 235b of the power transformer 235 is rectified, and the load is reduced by the voltage drop type constant voltage circuit 233. A constant voltage can be provided to 237.
 ところで、このような電源装置230では、負荷電流の増減や一次側トランス235aの電圧変化により、整流回路232から出力される電圧が変化してしまう。これに対し、本実施形態では、負荷電流が大きく二次側トランス235bの交流電圧が下がった場合にはインピーダンスを下げ、商用電源236の電圧が大きくなり二次側トランス235bの交流電圧が上がった場合にはインピーダンスを上げる。これにより、整流回路232に入力される交流電圧を安定化させ、さらには定電圧回路233の入力電力も安定に制御することができる。 By the way, in such a power supply device 230, the voltage output from the rectifier circuit 232 changes due to the increase / decrease of the load current or the voltage change of the primary transformer 235a. In contrast, in the present embodiment, when the load current is large and the AC voltage of the secondary transformer 235b is lowered, the impedance is lowered, the voltage of the commercial power supply 236 is increased, and the AC voltage of the secondary transformer 235b is raised. If so, increase the impedance. As a result, the AC voltage input to the rectifier circuit 232 can be stabilized, and the input power of the constant voltage circuit 233 can be controlled stably.
 また、このような電源装置230では、電圧降下型の定電圧回路233は基準電圧Vref1と負荷237に加わる電圧とが同じになるように、自身の電圧降下を増減させて電圧の安定化を図っている。この電圧降下分が電源装置230を構成する定電圧回路233における電力ロスのほとんどを占めている。したがって、理想的には、定電圧回路233の入力電圧が定電圧回路233の最小動作電圧になるように制御することができればロスを最小化できることになる。 In such a power supply device 230, the voltage drop type constant voltage circuit 233 stabilizes the voltage by increasing or decreasing its own voltage drop so that the reference voltage V ref 1 and the voltage applied to the load 237 are the same. I am trying. This voltage drop accounts for most of the power loss in the constant voltage circuit 233 constituting the power supply device 230. Therefore, ideally, the loss can be minimized if the input voltage of the constant voltage circuit 233 can be controlled to be the minimum operating voltage of the constant voltage circuit 233.
 本実施形態では、二次側トランス235bと整流回路232との間に上述した本開示の可変容量素子を含む可変インピーダンス231を挿入し、可変容量素子の容量を増減させることでインピーダンスを変化させ、交流電圧を増減させることができる。これにより、定電圧回路233の入力電圧値を定電圧回路233の最小動作電圧付近の値になるように制御することができ、定電圧回路233における電力ロスを低減することができる。 In the present embodiment, the variable impedance 231 including the variable capacitance element of the present disclosure described above is inserted between the secondary-side transformer 235b and the rectifier circuit 232, and the impedance is changed by increasing or decreasing the capacitance of the variable capacitance element. AC voltage can be increased or decreased. Thereby, the input voltage value of the constant voltage circuit 233 can be controlled to be a value near the minimum operating voltage of the constant voltage circuit 233, and the power loss in the constant voltage circuit 233 can be reduced.
 また、従来の一般的な電圧降下型の定電圧回路では可変抵抗により電圧を安定化させているため電力ロスが発生していた。これに対し、本実施形態では可変インピーダンス231に構成される可変容量素子の容量を変化させて電圧降下を生じさせているため、抵抗成分が発生せず、電力ロスが発生しない。 Also, in the conventional general voltage drop type constant voltage circuit, the voltage is stabilized by a variable resistor, so that power loss occurs. On the other hand, in this embodiment, since the voltage drop is caused by changing the capacitance of the variable capacitance element configured in the variable impedance 231, no resistance component occurs and no power loss occurs.
 本実施形態では、商用電源236と電源トランス235とを用いた電源装置230を例に説明したが、SW電源(スイッチ電源)として考えた場合にも同様の構成を取ることができる。例えば、入力を100KHzのスイッチング周波数とすれば同じ回路が構成できる。また、本実施形態では、出力電圧は一系統としたが、トランス出力端子を複数とすれば、複数の電源系として用いることができる。 In the present embodiment, the power supply device 230 using the commercial power supply 236 and the power transformer 235 has been described as an example, but the same configuration can be adopted when considered as a SW power supply (switch power supply). For example, if the input is a switching frequency of 100 KHz, the same circuit can be configured. In this embodiment, the output voltage is one system. However, if there are a plurality of transformer output terminals, it can be used as a plurality of power supply systems.
 上述した通信システム、ワイヤレス充電システム、電源装置は、適宜組み合わせて様々な電子機器に適用させることができる。例えば、通信システムと、ワイヤレス充電システムとを組み合わせてもよく、このような電子機器としては、例えば、携帯電話、スマートフォン、タブレットPC(Personal Computer)、ノートPC、リモートコントローラー、ワイヤレススピーカー、カムコーダー、デジタルカメラ、ウォークマン(登録商標)、3Dメガネが挙げられる。また、通信システムと電源装置とを組み合わせてもよく、このような電子機器としては、例えば、タブレットPC、ノートPC、デスクトップPC、プリンター、プロジェクター、液晶TV(Television)、冷蔵庫、DVD(Digital Versatile Disk)/BD(Blu-ray Disk:登録商標)プレーヤー、DVD/BDレコーダー、電気自動車が挙げられる。また、ワイヤレス充電システムと電源装置とを組み合わせてもよく、このような電子機器としては、例えば、ノートPC、ポータブルTV、ラジオ、ラジオカセットレコーダー、電動歯ブラシ、電動ひげそり器、アイロン、電気自動車が挙げられる。また、通信システム、ワイヤレス充電システム及び電源装置を組み合わせてもよく、このような電子機器としては、例えばノートPC、ポータブルTV、ラジオ、ラジオカセットレコーダー、電気自動車が挙げられる。
 これら各装置を組み合わせる場合には、各装置を制御するための制御部は装置毎に設けてもよく、装置間で共通で用いることができる複数の制御部であれば、それらを一体的に構成してもよい。
The above-described communication system, wireless charging system, and power supply device can be applied to various electronic devices in an appropriate combination. For example, a communication system and a wireless charging system may be combined. Examples of such electronic devices include a mobile phone, a smartphone, a tablet PC (Personal Computer), a notebook PC, a remote controller, a wireless speaker, a camcorder, and a digital Examples include cameras, Walkman (registered trademark), and 3D glasses. A communication system and a power supply device may be combined. Examples of such electronic devices include a tablet PC, a notebook PC, a desktop PC, a printer, a projector, a liquid crystal TV (Television), a refrigerator, a DVD (Digital Versatile Disk). ) / BD (Blu-ray Disk: registered trademark) player, DVD / BD recorder, and electric vehicle. In addition, a wireless charging system and a power supply device may be combined. Examples of such an electronic device include a notebook PC, a portable TV, a radio, a radio cassette recorder, an electric toothbrush, an electric shaver, an iron, and an electric vehicle. It is done. In addition, a communication system, a wireless charging system, and a power supply device may be combined. Examples of such electronic devices include notebook PCs, portable TVs, radios, radio cassette recorders, and electric vehicles.
When combining these devices, a control unit for controlling each device may be provided for each device, and a plurality of control units that can be used in common among the devices are configured integrally. May be.
 そして、これらの電子機器では、通信システム、ワイヤレス充電システム、電源装置に、上述した本開示の可変容量素子が組み込まれているため、製品の信頼性が向上する。また、上述の第5~第7の実施形態では、それぞれの装置に、第1~第3の実施形態で示した可変容量素子を組み込む構成としたが、第1~第3の実施形態に係る可変容量素子を組み合わせた素子を組み込む構成としてもよく、適宜変更可能である。 And in these electronic devices, since the above-described variable capacitance element of the present disclosure is incorporated in the communication system, the wireless charging system, and the power supply device, the reliability of the product is improved. In the fifth to seventh embodiments described above, the variable capacitance elements shown in the first to third embodiments are incorporated in the respective devices. However, according to the first to third embodiments. It is good also as a structure incorporating the element which combined the variable capacity element, and can change suitably.
 また、本開示は、以下の構成をとることができる。
(1)
 誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、
 前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部と
 を有して構成される容量素子。
(2)
 前記応力制御部は、応力制御部用誘電体層と、前記応力制御部用誘電体層内に複数積層された応力制御電極とから構成され、
 前記応力制御電極に所望の制御電圧を印加することにより、前記容量素子本体の静電容量を増加させる
 (1)に記載の容量素子。
(3)
 前記応力制御部は、前記容量素子本体の誘電体層の厚さ方向に積層されている
 (1)又は(2)に記載の容量素子。
(4)
 前記応力制御部は、前記容量素子本体を挟持して前記容量素子本体の誘電体層の厚さ方向に積層されている
 (1)~(3)のいずれかに記載の容量素子。
(5)
 前記容量素子電極と前記応力制御電極は互いに平行に積層されている
 (2)~(4)のいずれかに記載の容量素子。
(6)
 前記誘電体層は制御電圧に応じて容量が変化する強誘電体材料で構成されている
 (2)~(5)のいずれかに記載の容量素子。
(7)
 前記応力制御電極は、前記容量素子電極と電気的に分離されている
 (2)~(6)のいずれかに記載の容量素子。
(8)
 前記容量素子本体では、誘電体層を介して、複数の容量素子電極が積層されている
 (1)~(7)のいずれかに記載の容量素子。
(9)
 前記応力制御部の応力制御用誘電体層の厚みは、前記容量素子本体の誘電体層の厚みよりも薄く構成されている
 (2)~(8)のいずれかに記載の容量素子。
(10)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、それぞれ異なる制御電圧電源に接続されており、前記2つの応力制御部には対応する制御電圧電源から供給される制御電圧が独立に印加される
 (4)~(9)のいずれかに記載の容量素子。
(11)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、2つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
 (4)~(10)のいずれかに記載の容量素子。
(12)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、1つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている (4)~(11)のいずれかに記載の容量素子。
(13)
 誘電体層となる誘電体シート上に所望の電極形状となるように導電ペーストを塗布して容量素子電極を形成し、前記容量素子電極の周囲を埋め込むように前記誘電体シート上部に誘電体材料膜を形成する工程と、
 前記容量素子電極が形成された誘電体シートを複数層積層することにより、容量素子本体となる積層体を形成する工程と、
 前記積層体を焼成処理することにより、複数の容量素子電極が誘電体層を介して積層された容量素子本体を形成する工程と、
 前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部を前記容量素子本体に接合して形成する工程と
 を含む容量素子の製造方法。
(14)
 前記応力制御部は、応力制御部用誘電体層となる誘電体シート上に所望の電極形状となるように導電ペーストを塗布して応力制御電極を形成し、前記応力制御電極の周囲を埋め込むように前記誘電体シート上部に誘電体材料膜を形成する工程と、前記応力制御電極が形成された誘電体シートを複数層積層することにより、応力制御部となる積層体を形成する工程と、で形成され、
 前記焼成処理は、前記応力制御部となる積層体と前記容量素子本体となる積層体とを積層した後に行うことにより、前記容量素子本体と前記応力制御部とを一体化する
 (13)に記載の容量素子の製造方法。
(15)
 誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサと、
 前記共振コンデンサに接続された共振コイルと
 を備える共振回路。
(16)
 前記応力制御部は、応力制御部用誘電体層と、前記応力制御部用誘電体層内に複数積層された応力制御電極とから構成され、
 前記応力制御電極に所望の制御電圧を印加することにより、前記容量素子本体の静電容量を増加させる
 (15)に記載の共振回路。
(17)
 前記応力制御部は、前記容量素子本体を挟持して前記容量素子本体の誘電体層の厚さ方向に積層されている
 (15)又は(16)に記載の共振回路。
(18)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、それぞれ異なる制御電圧電源に接続されており、前記2つの応力制御部は対応する制御電圧電源から供給される制御電圧が独立に印加される
 (17)に記載の共振回路。
(19)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、2つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
 (17)又は(18)に記載の共振回路。
(20)
 前記容量素子本体を挟持して積層されている2つの応力制御部は、1つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
 (17)又は(18)に記載の共振回路。
(21)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と
 を含む通信システム。
(22)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部
を備える受電装置と
 を含むワイヤレス充電システム。
(23)
 電源供給部と、
 誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサを含んで構成された可変インピーダンスと
 を含む電源装置。
(24)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
 前記第1容量素子及び前記第2容量素子の容量を制御する制御部と
 を含む電子機器。
(25)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部を備える受電装置と、
 前記第1容量素子及び前記第2容量素子の容量を制御する制御部と
 を含む電子機器。
(26)
 電源供給部と、
 誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサを含んで構成された可変インピーダンスと、
 前記容量素子の容量を制御する制御部と
 を含む電子機器。
(27)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
 第3誘電体層と前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極とで構成される第3容量素子本体と、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部とを有して構成される第3容量素子を含む第3共振コンデンサと、前記第3共振コンデンサに接続された第3共振コイルとを有する給電側アンテナ部を備える給電装置と、
 第4誘電体層と前記第4誘電体層を挟持して前記第4誘電体層に所望の電界を発生させる少なくとも1対の第4容量素子電極とで構成される第4容量素子本体と、前記第4容量素子本体の前記第4誘電体層に発生する応力を制御し、前記第4容量素子本体の静電容量を増加させる第4応力制御部とを有して構成される第4容量素子を含む第4共振コンデンサと、前記第4共振コンデンサに接続された第4共振コイルとを有する受電側アンテナ部を備える受電装置と、
 前記第1容量素子、前記第2容量素子、前記第3容量素子及び前記第4容量素子のそれぞれの容量を制御する制御部と
 を含む電子機器。
(28)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
 電源供給部と、第3誘電体層、及び、前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極で構成される第3容量素子本体、並びに、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部を有して構成される第3容量素子を含む第3共振コンデンサを含んで構成された可変インピーダンスとを含む電源装置と、 前記第1容量素子、前記第2容量素子及び前記第3容量素子のそれぞれの容量を制御する制御部と
 を含む電子機器。
(29)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部を備える受電装置と、
 電源供給部と、第3誘電体層、及び、前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極で構成される第3容量素子本体、並びに、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部を有して構成される第3容量素子を含む第3共振コンデンサとを含んで構成された可変インピーダンスとを含む電源装置と、
 前記第1容量素子、前記第2容量素子及び前記第3容量素子のそれぞれの容量を制御する制御部と
 を含む電子機器。
(30)
 第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
 第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
 第3誘電体層と前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極とで構成される第3容量素子本体と、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部とを有して構成される第3容量素子を含む第3共振コンデンサと、前記第3共振コンデンサに接続された第3共振コイルとを有する給電側アンテナ部を備える給電装置と、
 第4誘電体層と前記第4誘電体層を挟持して前記第4誘電体層に所望の電界を発生させる少なくとも1対の第4容量素子電極とで構成される第4容量素子本体と、前記第4容量素子本体の前記第4誘電体層に発生する応力を制御し、前記第4容量素子本体の静電容量を増加させる第4応力制御部とを有して構成される第4容量素子を含む第4共振コンデンサと、前記第4共振コンデンサに接続された第4共振コイルとを有する受電側アンテナ部を備える受電装置と、
 電源供給部と、第5誘電体層、及び、前記第5誘電体層を挟持して前記第5誘電体層に所望の電界を発生させる少なくとも1対の第5容量素子電極とで構成される第5容量素子本体、並びに、前記第5容量素子本体の前記第5誘電体層に発生する応力を制御し、前記第5容量素子本体の静電容量を増加させる第5応力制御部を有して構成される第5容量素子を含む第5共振コンデンサを含んで構成された可変インピーダンスとを含む電源装置と、
 前記第1容量素子、前記第2容量素子、前記第3容量素子、前記第4容量素子及び前記
第5容量素子のそれぞれの容量を制御する制御部と
 を含む電子機器。
(31)
 誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサと、
 前記共振コンデンサに接続された共振コイルと
 を備える電子機器。
Moreover, this indication can take the following structures.
(1)
A capacitive element body composed of a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer;
A capacitive element configured to control a stress generated in the dielectric layer of the capacitive element body and increase a capacitance of the capacitive element body.
(2)
The stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer,
The capacitive element according to (1), wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
(3)
The said stress control part is laminated | stacked on the thickness direction of the dielectric material layer of the said capacitive element main body. The capacitive element as described in (1) or (2).
(4)
The capacitive element according to any one of (1) to (3), wherein the stress control unit is stacked in a thickness direction of a dielectric layer of the capacitive element body with the capacitive element body interposed therebetween.
(5)
The capacitive element according to any one of (2) to (4), wherein the capacitive element electrode and the stress control electrode are stacked in parallel with each other.
(6)
The capacitor element according to any one of (2) to (5), wherein the dielectric layer is made of a ferroelectric material whose capacitance changes according to a control voltage.
(7)
The capacitive element according to any one of (2) to (6), wherein the stress control electrode is electrically separated from the capacitive element electrode.
(8)
The capacitive element according to any one of (1) to (7), wherein a plurality of capacitive element electrodes are laminated via a dielectric layer in the capacitive element body.
(9)
The capacitive element according to any one of (2) to (8), wherein a thickness of the stress control dielectric layer of the stress control unit is configured to be thinner than a thickness of the dielectric layer of the capacitive element body.
(10)
The two stress control units stacked with the capacitive element body sandwiched therebetween are connected to different control voltage power sources, respectively, and control voltages supplied from the corresponding control voltage power sources are supplied to the two stress control units. The capacitive element according to any one of (4) to (9), which is applied independently.
(11)
The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite. The capacitive element according to any one of (4) to (10).
(12)
The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via one control voltage power source, and the electric field directions in the two stress control units are the same or opposite. The capacitive element according to any one of (4) to (11).
(13)
A capacitor element electrode is formed by applying a conductive paste on a dielectric sheet to be a dielectric layer so as to have a desired electrode shape, and a dielectric material is formed on the dielectric sheet so as to embed the periphery of the capacitor element electrode. Forming a film;
Forming a laminated body to be a capacitive element body by laminating a plurality of dielectric sheets on which the capacitive element electrodes are formed; and
A step of firing the laminated body to form a capacitive element body in which a plurality of capacitive element electrodes are laminated via a dielectric layer;
Forming a stress control unit for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body by bonding to the capacitive element body. Method.
(14)
The stress control unit forms a stress control electrode by applying a conductive paste on the dielectric sheet to be a dielectric layer for the stress control unit to form a desired electrode shape, and embeds the periphery of the stress control electrode. A step of forming a dielectric material film on the dielectric sheet, and a step of forming a laminate that becomes a stress control unit by laminating a plurality of dielectric sheets on which the stress control electrodes are formed. Formed,
The firing process is performed after laminating a laminated body that becomes the stress control unit and a laminated body that becomes the capacitive element body, thereby integrating the capacitive element body and the stress control unit. Manufacturing method of capacitive element.
(15)
Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
A resonance circuit comprising: a resonance coil connected to the resonance capacitor.
(16)
The stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer,
The resonant circuit according to (15), wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
(17)
The resonance circuit according to (15) or (16), wherein the stress control unit is stacked in a thickness direction of a dielectric layer of the capacitive element body with the capacitive element body interposed therebetween.
(18)
The two stress control units stacked with the capacitive element body interposed therebetween are connected to different control voltage power sources, and the two stress control units have independent control voltages supplied from the corresponding control voltage power sources. The resonance circuit according to (17).
(19)
The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite. The resonance circuit according to (17) or (18).
(20)
The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via one control voltage power source, and the electric field directions in the two stress control units are the same or opposite. The resonance circuit according to (17) or (18).
(21)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving system comprising: a receiving-side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
(22)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A wireless charging system comprising: a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
(23)
A power supply unit;
Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body And a variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body.
(24)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
(25)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor;
An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
(26)
A power supply unit;
Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body;
And an electronic device including a control unit that controls the capacitance of the capacitive element.
(27)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
A third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer; A third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body; A power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
A fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer; A fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capacitance of the fourth capacitor element body; A power receiving device including a power receiving side antenna unit having a fourth resonant capacitor including an element and a fourth resonant coil connected to the fourth resonant capacitor;
An electronic device comprising: a control unit that controls the capacitance of each of the first capacitive element, the second capacitive element, the third capacitive element, and the fourth capacitive element.
(28)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body. A power supply device including a variable impedance configured to include a third resonant capacitor including a configured third capacitive element, and a capacitance of each of the first capacitive element, the second capacitive element, and the third capacitive element An electronic device including a control unit for controlling.
(29)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor;
A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body. A power supply device including a variable impedance configured to include a third resonance capacitor including a third capacitance element configured;
An electronic device comprising: a control unit that controls a capacitance of each of the first capacitive element, the second capacitive element, and the third capacitive element.
(30)
A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
A third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer; A third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body; A power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
A fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer; A fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capacitance of the fourth capacitor element body; A power receiving device including a power receiving side antenna unit having a fourth resonant capacitor including an element and a fourth resonant coil connected to the fourth resonant capacitor;
The power supply unit includes a fifth dielectric layer, and at least one pair of fifth capacitive element electrodes that sandwich the fifth dielectric layer and generate a desired electric field in the fifth dielectric layer. A fifth capacitive element main body, and a fifth stress control unit that controls a stress generated in the fifth dielectric layer of the fifth capacitive element main body and increases a capacitance of the fifth capacitive element main body. A power supply device including a variable impedance configured to include a fifth resonant capacitor including a fifth capacitive element configured as follows:
An electronic device comprising: a control unit that controls the capacitance of each of the first capacitive element, the second capacitive element, the third capacitive element, the fourth capacitive element, and the fifth capacitive element.
(31)
Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
An electronic device comprising: a resonance coil connected to the resonance capacitor.
 1・・・可変容量素子、2・・・可変容量素子本体、3a・・・第1の信号端子、3b・・・第2の信号端子、4・・・誘電体層、5a・・・第1の可変容量素子電極、5b・・・第2の可変容量素子電極、6・・・応力制御部、7・・・応力制御部、8a・・・第1の制御端子、8b・・・第2の制御端子、9a・・・第1の応力制御電極、9b・・・第2の応力制御電極、10・・・応力制御部用誘電体層、20・・・誘電体シート、21・・・導電ペースト、22・・・誘電体材料膜、24・・・可変容量素子、26・・・誘電体層、27・・・応力制御部用誘電体層、50・・・非接触ICカード、71・・・受信部、72・・・整流部、73・・・信号処理部、74・・・共振コイル、74a・・・インダクタンス成分、74b・・・抵抗成分、75・・・共振コンデンサ、75a・・・コンデンサ、76・・・整流用ダイオード、77・・・整流用コンデンサ
 
DESCRIPTION OF SYMBOLS 1 ... Variable capacitance element, 2 ... Variable capacitance element main body, 3a ... 1st signal terminal, 3b ... 2nd signal terminal, 4 ... Dielectric layer, 5a ... 1st 1 variable capacitance element electrode, 5b ... second variable capacitance element electrode, 6 ... stress control unit, 7 ... stress control unit, 8a ... first control terminal, 8b ... first 2 control terminals, 9a ... first stress control electrode, 9b ... second stress control electrode, 10 ... dielectric layer for stress control part, 20 ... dielectric sheet, 21 ... Conductive paste, 22: Dielectric material film, 24: Variable capacitance element, 26: Dielectric layer, 27: Dielectric layer for stress control unit, 50: Non-contact IC card, 71 ... Receiving unit 72 ... Rectifying unit 73 ... Signal processing unit 74 ... Resonance coil 74a ... Inductance component 74b - resistance component, 75 ... resonant capacitor, 75a ... capacitor, 76 ... rectifying diode, 77 ... rectifying capacitor

Claims (31)

  1.  誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、
     前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部と
     を有して構成される容量素子。
    A capacitive element body composed of a dielectric layer and at least one pair of capacitive element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer;
    A capacitive element configured to control a stress generated in the dielectric layer of the capacitive element body and increase a capacitance of the capacitive element body.
  2.  前記応力制御部は、応力制御部用誘電体層と、前記応力制御部用誘電体層内に複数積層された応力制御電極とから構成され、
     前記応力制御電極に所望の制御電圧を印加することにより、前記容量素子本体の静電容量を増加させる
     請求項1に記載の容量素子。
    The stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer,
    The capacitive element according to claim 1, wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
  3.  前記応力制御部は、前記容量素子本体の誘電体層の厚さ方向に積層されている
     請求項1記載の容量素子。
    The capacitive element according to claim 1, wherein the stress control unit is stacked in a thickness direction of a dielectric layer of the capacitive element body.
  4.  前記応力制御部は、前記容量素子本体を挟持して前記容量素子本体の誘電体層の厚さ方向に積層されている
     請求項1記載の容量素子。
    The capacitive element according to claim 1, wherein the stress control unit is stacked in a thickness direction of a dielectric layer of the capacitive element body with the capacitive element body interposed therebetween.
  5.  前記容量素子電極と前記応力制御電極は互いに平行に積層されている
     請求項2記載の容量素子。
    The capacitive element according to claim 2, wherein the capacitive element electrode and the stress control electrode are stacked in parallel with each other.
  6.  前記誘電体層は制御電圧に応じて容量が変化する強誘電体材料で構成されている
     請求項2記載の容量素子。
    The capacitive element according to claim 2, wherein the dielectric layer is made of a ferroelectric material whose capacitance changes according to a control voltage.
  7.  前記応力制御電極は、前記容量素子電極と電気的に分離されている
     請求項2に記載の容量素子。
    The capacitive element according to claim 2, wherein the stress control electrode is electrically separated from the capacitive element electrode.
  8.  前記容量素子本体では、誘電体層を介して、複数の容量素子電極が積層されている
     請求項1に記載の容量素子。
    The capacitive element according to claim 1, wherein in the capacitive element body, a plurality of capacitive element electrodes are laminated via a dielectric layer.
  9.  前記応力制御部の応力制御用誘電体層の厚みは、前記容量素子本体の誘電体層の厚みよりも薄く構成されている
     請求項2に記載の容量素子。
    The capacitive element according to claim 2, wherein a thickness of the stress control dielectric layer of the stress control unit is configured to be thinner than a thickness of the dielectric layer of the capacitive element body.
  10.  前記容量素子本体を挟持して積層されている2つの応力制御部は、それぞれ異なる制御電圧電源に接続されており、前記2つの応力制御部には対応する制御電圧電源から供給される制御電圧が独立に印加される
     請求項4に記載の容量素子。
    The two stress control units stacked with the capacitive element body sandwiched therebetween are connected to different control voltage power sources, respectively, and control voltages supplied from the corresponding control voltage power sources are supplied to the two stress control units. The capacitive element according to claim 4, which is applied independently.
  11.  前記容量素子本体を挟持して積層されている2つの応力制御部は、2つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
     請求項4に記載の容量素子。
    The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite. The capacitive element according to claim 4, wherein the capacitance element is in a direction.
  12.  前記容量素子本体を挟持して積層されている2つの応力制御部は、1つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
     請求項4に記載の容量素子。
    The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via one control voltage power source, and the electric field directions in the two stress control units are the same or opposite. The capacitive element according to claim 4, wherein the capacitance element is in a direction.
  13.  誘電体層となる誘電体シート上に所望の電極形状となるように導電ペーストを塗布して容量素子電極を形成し、前記容量素子電極の周囲を埋め込むように前記誘電体シート上部に誘電体材料膜を形成する工程と、
     前記容量素子電極が形成された誘電体シートを複数層積層することにより、容量素子本体となる積層体を形成する工程と、
     前記積層体を焼成処理することにより、複数の容量素子電極が誘電体層を介して積層された容量素子本体を形成する工程と、
     前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部を前記容量素子本体に接合して形成する工程と
     を含む容量素子の製造方法。
    A capacitor element electrode is formed by applying a conductive paste on a dielectric sheet to be a dielectric layer so as to have a desired electrode shape, and a dielectric material is formed on the dielectric sheet so as to embed the periphery of the capacitor element electrode. Forming a film;
    Forming a laminated body to be a capacitive element body by laminating a plurality of dielectric sheets on which the capacitive element electrodes are formed; and
    A step of firing the laminated body to form a capacitive element body in which a plurality of capacitive element electrodes are laminated via a dielectric layer;
    Forming a stress control unit for controlling the stress generated in the dielectric layer of the capacitive element body and increasing the capacitance of the capacitive element body by bonding to the capacitive element body. Method.
  14.  前記応力制御部は、応力制御部用誘電体層となる誘電体シート上に所望の電極形状となるように導電ペーストを塗布して応力制御電極を形成し、前記応力制御電極の周囲を埋め込むように前記誘電体シート上部に誘電体材料膜を形成する工程と、前記応力制御電極が形成された誘電体シートを複数層積層することにより、応力制御部となる積層体を形成する工程と、で形成され、
     前記焼成処理は、前記応力制御部となる積層体と前記容量素子本体となる積層体とを積層した後に行うことにより、前記容量素子本体と前記応力制御部とを一体化する
     請求項13に記載の容量素子の製造方法。
    The stress control unit forms a stress control electrode by applying a conductive paste on the dielectric sheet to be a dielectric layer for the stress control unit to form a desired electrode shape, and embeds the periphery of the stress control electrode. A step of forming a dielectric material film on the dielectric sheet, and a step of forming a laminate that becomes a stress control unit by laminating a plurality of dielectric sheets on which the stress control electrodes are formed. Formed,
    The said baking process integrates the said capacitive element main body and the said stress control part by performing after laminating | stacking the laminated body which becomes the said stress control part, and the laminated body which becomes the said capacitive element main body. Manufacturing method of capacitive element.
  15.  誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサと、
     前記共振コンデンサに接続された共振コイルと
     を備える共振回路。
    Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
    A resonance circuit comprising: a resonance coil connected to the resonance capacitor.
  16.  前記応力制御部は、応力制御部用誘電体層と、前記応力制御部用誘電体層内に複数積層された応力制御電極とから構成され、
     前記応力制御電極に所望の制御電圧を印加することにより、前記容量素子本体の静電容量を増加させる
     請求項15に記載の共振回路。
    The stress control unit includes a stress control unit dielectric layer and a plurality of stress control electrodes stacked in the stress control unit dielectric layer,
    The resonant circuit according to claim 15, wherein a capacitance of the capacitive element body is increased by applying a desired control voltage to the stress control electrode.
  17.  前記応力制御部は、前記容量素子本体を挟持して前記容量素子本体の誘電体層の厚さ方向に積層されている
     請求項15に記載の共振回路。
    The resonance circuit according to claim 15, wherein the stress control unit is stacked in a thickness direction of a dielectric layer of the capacitive element body with the capacitive element body interposed therebetween.
  18.  前記容量素子本体を挟持して積層されている2つの応力制御部は、それぞれ異なる制御電圧電源に接続されており、前記2つの応力制御部は対応する制御電圧電源から供給される制御電圧が独立に印加される
     請求項17に記載の共振回路。
    The two stress control units stacked with the capacitive element body interposed therebetween are connected to different control voltage power sources, and the two stress control units have independent control voltages supplied from the corresponding control voltage power sources. The resonance circuit according to claim 17, which is applied to the resonance circuit.
  19.  前記容量素子本体を挟持して積層されている2つの応力制御部は、2つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
     請求項17に記載の共振回路。
    The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via two control voltage power supplies, and the electric field directions in the two stress control units are the same or opposite. The resonance circuit according to claim 17, wherein the resonance circuit is a direction.
  20.  前記容量素子本体を挟持して積層されている2つの応力制御部は、1つの制御電圧電源を介して直列又は並列に接続されており、前記2つの応力制御部内における電界方向が同方向又は逆方向とされている
     請求項17に記載の共振回路。
    The two stress control units stacked with the capacitive element body interposed therebetween are connected in series or in parallel via one control voltage power source, and the electric field directions in the two stress control units are the same or opposite. The resonance circuit according to claim 17, wherein the resonance circuit is a direction.
  21.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と
     を含む通信システム。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving system comprising: a receiving-side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
  22.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部を備える受電装置と
     を含むワイヤレス充電システム。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A wireless charging system comprising: a power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor.
  23.  電源供給部と、
     誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサを含んで構成された可変インピーダンスと
     を含む電源装置。
    A power supply unit;
    Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body And a variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body.
  24.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
     前記第1容量素子及び前記第2容量素子の容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
    An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
  25.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部を備える受電装置と、
     前記第1容量素子及び前記第2容量素子の容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor;
    An electronic device comprising: a control unit that controls a capacitance of the first capacitive element and the second capacitive element.
  26.  電源供給部と、
     誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサを含んで構成された可変インピーダンスと、
     前記容量素子の容量を制御する制御部と
     を含む電子機器。
    A power supply unit;
    Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A variable impedance configured to include a resonant capacitor including a capacitive element that includes a stress control unit configured to control a stress to increase and increase a capacitance of the capacitive element body;
    And an electronic device including a control unit that controls the capacitance of the capacitive element.
  27.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
     第3誘電体層と前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極とで構成される第3容量素子本体と、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部とを有して構成される第3容量素子を含む第3共振コンデンサと、前記第3共振コンデンサに接続された第3共振コイルとを有する給電側アンテナ部を備える給電装置と、
     第4誘電体層と前記第4誘電体層を挟持して前記第4誘電体層に所望の電界を発生させる少なくとも1対の第4容量素子電極とで構成される第4容量素子本体と、前記第4容量素子本体の前記第4誘電体層に発生する応力を制御し、前記第4容量素子本体の静電容量を増加させる第4応力制御部とを有して構成される第4容量素子を含む第4共振コンデンサと、前記第4共振コンデンサに接続された第4共振コイルとを有する受電側アンテナ部を備える受電装置と、
     前記第1容量素子、前記第2容量素子、前記第3容量素子及び前記第4容量素子のそれぞれの容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
    A third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer; A third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body; A power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
    A fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer; A fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capacitance of the fourth capacitor element body; A power receiving device including a power receiving side antenna unit having a fourth resonant capacitor including an element and a fourth resonant coil connected to the fourth resonant capacitor;
    An electronic device comprising: a control unit that controls the capacitance of each of the first capacitive element, the second capacitive element, the third capacitive element, and the fourth capacitive element.
  28.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
     電源供給部と、第3誘電体層、及び、前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極で構成される第3容量素子本体、並びに、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部を有して構成される第3容量素子を含む第3共振コンデンサを含んで構成された可変インピーダンスとを含む電源装置と、 前記第1容量素子、前記第2容量素子及び前記第3容量素子のそれぞれの容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
    A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body. A power supply device including a variable impedance configured to include a third resonant capacitor including a configured third capacitive element, and each capacitance of the first capacitive element, the second capacitive element, and the third capacitive element An electronic device including a control unit for controlling.
  29.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する給電側アンテナ部を備える給電装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受電側アンテナ部を備える受電装置と、
     電源供給部と、第3誘電体層、及び、前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極で構成される第3容量素子本体、並びに、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部を有して構成される第3容量素子を含む第3共振コンデンサとを含んで構成された可変インピーダンスとを含む電源装置と、
     前記第1容量素子、前記第2容量素子及び前記第3容量素子のそれぞれの容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A power feeding device including a power feeding side antenna unit having a first resonant capacitor including an element and a first resonant coil connected to the first resonant capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A power receiving device including a power receiving side antenna unit having a second resonant capacitor including an element and a second resonant coil connected to the second resonant capacitor;
    A power supply section, a third dielectric layer, and at least one pair of third capacitive element electrodes sandwiching the third dielectric layer and generating a desired electric field in the third dielectric layer A third capacitive element main body, and a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitive element main body and increases a capacitance of the third capacitive element main body. A power supply device including a variable impedance configured to include a third resonance capacitor including a third capacitance element configured;
    An electronic device comprising: a control unit that controls a capacitance of each of the first capacitive element, the second capacitive element, and the third capacitive element.
  30.  第1誘電体層と前記第1誘電体層を挟持して前記第1誘電体層に所望の電界を発生させる少なくとも1対の第1容量素子電極とで構成される第1容量素子本体と、前記第1容量素子本体の前記第1誘電体層に発生する応力を制御し、前記第1容量素子本体の静電容量を増加させる第1応力制御部とを有して構成される第1容量素子を含む第1共振コンデンサと、前記第1共振コンデンサに接続された第1共振コイルとを有する送信側アンテナ部を備える送信装置と、
     第2誘電体層と前記第2誘電体層を挟持して前記第2誘電体層に所望の電界を発生させる少なくとも1対の第2容量素子電極とで構成される第2容量素子本体と、前記第2容量素子本体の前記第2誘電体層に発生する応力を制御し、前記第2容量素子本体の静電容量を増加させる第2応力制御部とを有して構成される第2容量素子を含む第2共振コンデンサと、前記第2共振コンデンサに接続された第2共振コイルとを有する受信側アンテナ部を備える受信装置と、
     第3誘電体層と前記第3誘電体層を挟持して前記第3誘電体層に所望の電界を発生させる少なくとも1対の第3容量素子電極とで構成される第3容量素子本体と、前記第3容量素子本体の前記第3誘電体層に発生する応力を制御し、前記第3容量素子本体の静電容量を増加させる第3応力制御部とを有して構成される第3容量素子を含む第3共振コンデンサと、前記第3共振コンデンサに接続された第3共振コイルとを有する給電側アンテナ部を備える給電装置と、
     第4誘電体層と前記第4誘電体層を挟持して前記第4誘電体層に所望の電界を発生させる少なくとも1対の第4容量素子電極とで構成される第4容量素子本体と、前記第4容量素子本体の前記第4誘電体層に発生する応力を制御し、前記第4容量素子本体の静電容量を増加させる第4応力制御部とを有して構成される第4容量素子を含む第4共振コンデンサと、前記第4共振コンデンサに接続された第4共振コイルとを有する受電側アンテナ部を備える受電装置と、
     電源供給部と、第5誘電体層、及び、前記第5誘電体層を挟持して前記第5誘電体層に所望の電界を発生させる少なくとも1対の第5容量素子電極とで構成される第5容量素子本体、並びに、前記第5容量素子本体の前記第5誘電体層に発生する応力を制御し、前記第5容量素子本体の静電容量を増加させる第5応力制御部を有して構成される第5容量素子を含む第5共振コンデンサを含んで構成された可変インピーダンスとを含む電源装置と、
     前記第1容量素子、前記第2容量素子、前記第3容量素子、前記第4容量素子及び前記第5容量素子のそれぞれの容量を制御する制御部と
     を含む電子機器。
    A first capacitive element body comprising a first dielectric layer and at least one pair of first capacitive element electrodes that sandwich the first dielectric layer and generate a desired electric field in the first dielectric layer; A first capacitor configured to include a first stress control unit configured to control a stress generated in the first dielectric layer of the first capacitor element body and to increase a capacitance of the first capacitor element body; A transmission device including a transmission-side antenna unit having a first resonance capacitor including an element and a first resonance coil connected to the first resonance capacitor;
    A second capacitive element body comprising a second dielectric layer and at least one pair of second capacitive element electrodes that sandwich the second dielectric layer and generate a desired electric field in the second dielectric layer; A second capacitor configured to include a second stress control unit configured to control a stress generated in the second dielectric layer of the second capacitor element body and increase a capacitance of the second capacitor element body. A receiving device including a receiving-side antenna unit having a second resonance capacitor including an element and a second resonance coil connected to the second resonance capacitor;
    A third capacitive element body comprising a third dielectric layer and at least one pair of third capacitive element electrodes that sandwich the third dielectric layer and generate a desired electric field in the third dielectric layer; A third capacitor configured to include a third stress control unit that controls a stress generated in the third dielectric layer of the third capacitor element body and increases a capacitance of the third capacitor element body; A power supply apparatus including a power supply side antenna unit having a third resonance capacitor including an element and a third resonance coil connected to the third resonance capacitor;
    A fourth capacitive element body comprising a fourth dielectric layer and at least one pair of fourth capacitive element electrodes that sandwich the fourth dielectric layer and generate a desired electric field in the fourth dielectric layer; A fourth capacitor configured to include a fourth stress control unit that controls a stress generated in the fourth dielectric layer of the fourth capacitor element body and increases a capacitance of the fourth capacitor element body; A power receiving device including a power receiving side antenna unit having a fourth resonant capacitor including an element and a fourth resonant coil connected to the fourth resonant capacitor;
    The power supply unit includes a fifth dielectric layer, and at least one pair of fifth capacitive element electrodes that sandwich the fifth dielectric layer and generate a desired electric field in the fifth dielectric layer. A fifth capacitive element main body, and a fifth stress control unit that controls a stress generated in the fifth dielectric layer of the fifth capacitive element main body and increases a capacitance of the fifth capacitive element main body. A power supply device including a variable impedance configured to include a fifth resonant capacitor including a fifth capacitive element configured as follows:
    An electronic device comprising: a control unit that controls the capacitance of each of the first capacitive element, the second capacitive element, the third capacitive element, the fourth capacitive element, and the fifth capacitive element.
  31.  誘電体層と誘電体層を挟持して前記誘電体層に所望の電界を発生させる少なくとも1対の容量素子電極とで構成される容量素子本体と、前記容量素子本体の前記誘電体層に発生する応力を制御し、前記容量素子本体の静電容量を増加させる応力制御部とを有して構成される容量素子を含む共振コンデンサと、
     前記共振コンデンサに接続された共振コイルと
     を備える電子機器。
    Capacitor element body composed of a dielectric layer and at least one pair of capacitor element electrodes that sandwich the dielectric layer and generate a desired electric field in the dielectric layer, and generated in the dielectric layer of the capacitor element body A resonance capacitor including a capacitive element configured to have a stress control unit that controls stress to increase and increases a capacitance of the capacitive element body;
    An electronic device comprising: a resonance coil connected to the resonance capacitor.
PCT/JP2012/051167 2011-01-27 2012-01-20 Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument WO2012102190A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-014927 2011-01-27
JP2011014927 2011-01-27
JP2011-230918 2011-10-20
JP2011230918A JP2012169589A (en) 2011-01-27 2011-10-20 Capacitive element, manufacturing method of capacitive element, resonance circuit, communication system, wireless charging system, power supply, and electronic device

Publications (1)

Publication Number Publication Date
WO2012102190A1 true WO2012102190A1 (en) 2012-08-02

Family

ID=46580759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051167 WO2012102190A1 (en) 2011-01-27 2012-01-20 Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument

Country Status (2)

Country Link
JP (1) JP2012169589A (en)
WO (1) WO2012102190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146082A1 (en) * 2016-02-22 2017-08-31 株式会社ExH Power supply system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412842B1 (en) 2012-12-12 2014-06-27 삼성전기주식회사 Multi-layered ceramic electronic component
KR101642638B1 (en) * 2014-08-08 2016-07-26 삼성전기주식회사 An electronic component, and a wireless power transmitter and a wireless power receiver including the same
US9973041B2 (en) 2014-08-08 2018-05-15 Samsung Electro-Mechanics Co., Ltd. Electronic component that operates stably over a range of temperatures and apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123494A (en) * 2005-10-27 2007-05-17 Kyocera Corp Variable capacitance capacitor
JP2008085081A (en) * 2006-09-27 2008-04-10 Kyocera Corp Variable capacitor
JP2010258402A (en) * 2008-09-26 2010-11-11 Sony Corp Capacitance element and resonance circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123494A (en) * 2005-10-27 2007-05-17 Kyocera Corp Variable capacitance capacitor
JP2008085081A (en) * 2006-09-27 2008-04-10 Kyocera Corp Variable capacitor
JP2010258402A (en) * 2008-09-26 2010-11-11 Sony Corp Capacitance element and resonance circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146082A1 (en) * 2016-02-22 2017-08-31 株式会社ExH Power supply system

Also Published As

Publication number Publication date
JP2012169589A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP4737253B2 (en) Contactless receiver
JP5076026B2 (en) Capacitance element and resonance circuit
US8884720B2 (en) Capacitance element and resonance circuit
TWI581286B (en) Capacitance components, fabricated circuits, resonant circuits, communication devices, communication systems, wireless charging systems, power supply units, and electronic devices
JP6319758B2 (en) Capacitance device, resonance circuit, and electronic equipment
CN101952917B (en) Variable-capacitance element, method for controlling variable-capacitance element, electronic device and communication mobile apparatus
WO2012102190A1 (en) Capacitance element, method for manufacturing capacitance element, resonance circuit, communication system, wireless charging system, power supply device, and electronic instrument
KR101709881B1 (en) Variable capacitance circuit, variable capacitance device, resonant circuit, amplifying circuit, and electronic apparatus
KR20120027091A (en) Electrostatic capacitance element, method of manufacturing electrostatic capacitance element, and resonance circuit
CN103890883A (en) Electrostatic capacitance element and resonance circuit
JP5085753B2 (en) Variable capacitance element and resonance circuit
KR20100113452A (en) Varactor element and electronic device
JP2014197698A (en) Capacitor array
JP2009016613A (en) Capacitor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739880

Country of ref document: EP

Kind code of ref document: A1