WO2017146017A1 - Image-forming element and method for producing same - Google Patents

Image-forming element and method for producing same Download PDF

Info

Publication number
WO2017146017A1
WO2017146017A1 PCT/JP2017/006285 JP2017006285W WO2017146017A1 WO 2017146017 A1 WO2017146017 A1 WO 2017146017A1 JP 2017006285 W JP2017006285 W JP 2017006285W WO 2017146017 A1 WO2017146017 A1 WO 2017146017A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
main surface
reflective element
elements
reflecting
Prior art date
Application number
PCT/JP2017/006285
Other languages
French (fr)
Japanese (ja)
Inventor
将也 木下
藤井 雄一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018501688A priority Critical patent/JP6372630B2/en
Publication of WO2017146017A1 publication Critical patent/WO2017146017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to an imaging element used in an aerial image display device that can display an aerial image and a method for manufacturing the same. More specifically, the present invention relates to a real image of an object arranged at a spatial position on one main surface side. In particular, the present invention relates to an imaging element that forms an image at a spatial position on the principal surface side and a manufacturing method thereof.
  • an element generally called a two-plane corner reflector array element As an imaging element used in an aerial image display device, an element generally called a two-plane corner reflector array element has been used.
  • a two-sided corner reflector array element two flat reflection elements in which a plurality of reflectors are laminated via a transparent body in a direction perpendicular to the main surface are used, and these two reflection elements are laminated on each other.
  • the layers are stacked in the thickness direction so that the directions are orthogonal to each other.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-128456
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-128456
  • tiling is a technique in which a plurality of small unit reflective elements are arranged in a plane and these end portions are connected to each other to form one large composite reflective element.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2011-90117
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2013-101230
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2013-167670.
  • a polishing process is generally performed so that a pair of main surfaces of the unit reflection surface is flattened.
  • the thickness will be different, and this will prevent the pair of principal surfaces of the composite reflective element from being ideally flat.
  • the above-described steps not only cause cracks and chipping in the imaging element, but also cause injury to the fingers during handling. Cause problems.
  • the present invention has been made to solve the above-described problems, and can display a high-definition aerial image, and is difficult to be damaged and hardly causes injury during handling, and its manufacture. It aims to provide a method.
  • An imaging element has a first main surface and a second main surface that are positioned relative to each other in the thickness direction, and a real image of an object disposed at a spatial position on the first main surface side is the second main surface.
  • An image is formed at a spatial position on the main surface side, and is a flat plate-like first reflecting element arranged on the first main surface side and a flat plate-like second reflection arranged on the second main surface side.
  • the first reflective element includes a plurality of first reflectors arranged in parallel to each other so as to be aligned along a first direction orthogonal to the thickness direction, and an adjacent first of the plurality of first reflectors.
  • a plurality of first transparent bodies filling between the reflectors.
  • the second reflecting element includes a plurality of second reflectors arranged in parallel to each other so as to be aligned along a second direction orthogonal to both the thickness direction and the first direction, and the plurality of second reflectors. And a plurality of second transparent bodies filling between adjacent second reflectors.
  • the first reflecting element has an inner main surface that faces the second reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the first main surface.
  • the second reflecting element has an inner main surface that faces the first reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the second main surface.
  • the second reflective element is composed of a composite reflective element including a plurality of flat unit reflective elements arranged side by side in a plane and a joint that joins end portions of the plurality of unit reflective elements. Yes.
  • the flatness of the outer main surface of the second reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the second reflective element made of the composite reflective element.
  • flatness means what is called “maximum inclined flatness”, and all the points on the surface are in two planes parallel to the representative plane of the surface. In addition, the distance between the two planes when the distance between the two planes is minimized.
  • a least square plane is obtained from all measurement points within a specified measurement range, and the length between two planes parallel to the least square plane and passing through the positive and negative peak points is calculated. The method to ask is mentioned. Further, high flatness means that the distance between the two surfaces is small, and low flatness means that the distance between the two surfaces is large.
  • An imaging element manufacturing method is a manufacturing method for manufacturing the imaging element according to the present invention described above, the step of forming the first reflective element, and the first A step of forming the second reflective element by connecting ends of the plurality of unit reflective elements in a state where the plurality of unit reflective elements to be two reflective elements are arranged in a plane on a surface plate; In the step of forming the second reflective element, the first reflective element and the second reflective element are such that the main surface on the side arranged in contact with the surface plate becomes the outer main surface of the second reflective element. And overlapping and fixing.
  • An imaging element manufacturing method is a manufacturing method for manufacturing the above-described imaging element according to the present invention, wherein the plurality of unit reflection elements are the first reflection elements. Are arranged in a plane on the surface plate, and the ends of the plurality of unit reflection elements are joined together to form the first reflection element, and the plurality of the second reflection elements.
  • the step of forming the second reflective element by joining the end portions of the plurality of unit reflective elements in a state where the unit reflective elements are arranged in a plane on the surface plate, and the first reflective element is formed.
  • the main surface on the side disposed in contact with the surface plate in the step of forming the second reflective element is the main surface on the side disposed in contact with the surface plate, and on the side disposed in contact with the surface plate in the step of forming the second reflective element.
  • the main surface is the above So that the outer principal surface of the reflective element, and a step of fixing by superimposing and the first reflecting element and the second reflective element.
  • an imaging element that can display a high-definition aerial image and is less likely to be damaged and hardly cause injury during handling, and a method for manufacturing the same.
  • FIG. It is a schematic plan view of the imaging element in the embodiment of the present invention. It is a schematic cross section of the imaging element shown in FIG. It is a schematic cross section of the imaging element shown in FIG. It is a conceptual diagram which shows the mechanism in which an aerial image
  • FIG. 1 is a schematic plan view of an imaging element according to an embodiment of the present invention.
  • 2 is a schematic cross-sectional view of the imaging element shown in FIG. 1 taken along the line II-II shown in FIG. 1
  • FIG. 3 is a sectional view of the imaging element shown in FIG. It is a schematic cross section along a line.
  • the imaging element (generally referred to as “two-sided corner reflector array element” or “micromirror array element”) 1 has a substantially flat plate shape as a whole.
  • the 1st reflective element 10, the 2nd reflective element 20, and the translucent adhesive layer 30 are provided.
  • the first reflective element 10 is made of a flat plate-like member having an outer main surface 10a and an inner main surface 10b that are positioned in the thickness direction, and has a square shape when viewed along the thickness direction.
  • the first reflecting element 10 is composed of a composite reflecting element in which a plurality of unit reflecting elements are connected.
  • the first reflecting element 10 includes nine unit reflecting elements 10A to 10I having the same dimensions except for the thickness. It is out.
  • Each of the unit reflecting elements 10A to 10I has a substantially flat plate shape, and has a square shape when viewed along the thickness direction. 2 and 3, the thicknesses of the unit reflecting elements 10A to 10D and 10G are equally described for the sake of drawing.
  • the first reflecting element 10 includes the nine unit reflecting elements 10A to 10I arranged in a plane in 3 rows and 3 columns, and a plane located between the nine unit reflecting elements 10A to 10I.
  • An adhesive layer 13 as a joint portion in the form of a lattice, and by joining the end portions of adjacent unit reflective elements among the nine unit reflective elements 10A to 10I by the adhesive layer 13, It is formed as a composite reflecting element that is enlarged as a whole.
  • Each of the unit reflecting elements 10A to 10I constituting the first reflecting element 10 is composed of a plurality of first reflectors 11 and a plurality of first transparent bodies 12.
  • the plurality of first reflectors 11 and the plurality of first transparent bodies 12 constituting each of the unit reflection elements 10A to 10I are alternately stacked in a first direction (left-right direction in FIG. 1) orthogonal to the thickness direction. Has been.
  • the stacking direction of the plurality of first reflectors 11 and the plurality of first transparent bodies 12 in the unit reflecting elements 10A to 10I is such that the first reflector 11 and the first transparent body 12 as a whole in the first reflector 10 are the same. All are arranged so as to face the same direction so as to have continuity. Thereby, in the 1st reflective element 10, the some 1st reflector 11 and the some 1st transparent body 12 are alternately laminated
  • the first reflector 11 positioned inside each of the unit reflecting elements 10A to 10I includes a pair of reflecting films 11a (see FIG. 5) and an adhesive layer 11b (see FIG. 5) positioned between the pair of reflecting films 11a. ).
  • the pair of reflective films 11a and the adhesive layer 11b are arranged side by side along the first direction, and the pair of reflective films 11a are joined by being in direct contact with both side surfaces of the adhesive layer 11b.
  • the first reflector 11 is made of a pair of reflection films 11a (FIG. 5). And an adhesive layer 13 (see FIG. 5) located between the pair of reflective films 11a.
  • the pair of reflective films 11 a and the adhesive layer 13 are arranged side by side along the first direction, and the pair of reflective films 11 a are joined by being in direct contact with both side surfaces of the adhesive layer 13.
  • the plurality of first reflectors 11 are arranged in parallel to each other, and each of them extends along a second direction (vertical direction in FIG. 1) orthogonal to both the thickness direction and the first direction. ing.
  • the plurality of first transparent bodies 12 are arranged in parallel to each other so as to fill the space between the adjacent first reflectors 11, and each of them extends along the second direction.
  • the pair of reflective films 11a are made of, for example, a metal such as aluminum or silver, and the adhesive layer 11b and the adhesive layer 13 are made of, for example, a cured product of an epoxy adhesive.
  • the 1st transparent body 12 is comprised, for example with glass or transparent resin.
  • the width, which is the size of each reflective film 11a in the first direction is, for example, about 50 [nm] or more and 200 [nm] or less, and the individual adhesive layers 11b and the individual adhesive layers 13 in the first direction.
  • the width as the size is, for example, about 5 [ ⁇ m] or more and 30 [ ⁇ m] or less. Therefore, the width, which is the size of each first reflector 11 in the first direction, is approximately the same as the width of each individual adhesive layer 11 b and the width of each individual adhesive layer 13.
  • size in the said 1st direction of each 1st transparent body 12 is about 300 [micrometers] or more and 2000 [micrometers] or less, for example.
  • the cross-sectional shape orthogonal to the extending direction of each of the plurality of first reflectors 11 and each of the plurality of first transparent bodies 12 is a rectangular shape.
  • the plurality of first reflectors 11 and the plurality of first transparent bodies 12 are arranged in close contact with each other in the first direction, so that the first reflective element 10 has a flat plate shape as described above. have.
  • the thickness of the 1st reflective element 10 is about 900 [micrometers] or more and 6000 [micrometers] or less, for example.
  • the length of one side perpendicular to the thickness direction of each of the unit reflecting elements 10A to 10I is about 10 [cm] to 50 [cm]. Therefore, the length of one side perpendicular to the thickness direction of the first reflecting element 10 in the present embodiment in which nine unit reflecting elements 10A to 10I are tiled is, for example, about 30 [cm] to 150 [cm]. It is.
  • the first reflective element 10 has a plurality of reflective surfaces therein.
  • Each of the plurality of reflective surfaces is on the surface of the first reflector 11 in the portion facing the adjacent first transparent body 12 (that is, the surface of the portion of the reflective film 11a facing the first transparent body 12). Accordingly, two reflecting surfaces facing in opposite directions are formed for each first reflector 11.
  • the second reflecting element 20 is formed of a flat plate-like member having an outer main surface 20a and an inner main surface 20b that are positioned opposite to each other in the thickness direction, and has substantially the same thickness as the first reflecting element 10 and is seen along the thickness direction. In this case, it has a square shape having the same size as the first reflective element 10.
  • the second reflecting element 20 is composed of a composite reflecting element in which a plurality of unit reflecting elements are connected.
  • the second reflecting element 20 includes nine unit reflecting elements 20A to 20I having the same dimensions except for the thickness. It is out.
  • Each of the unit reflection elements 20A to 20I has a substantially flat plate shape, and has a square shape having the same size as the unit reflection elements 10A to 10I described above when viewed along the thickness direction. ing. 2 and 3, the thicknesses of the unit reflecting elements 20A to 20D and 20G are equally described for the convenience of drawing.
  • the second reflecting element 20 includes the nine unit reflecting elements 20A to 20I arranged in a plane in three rows and three columns, and a plane located between the nine unit reflecting elements 20A to 20I.
  • An adhesive layer 23 as a joint portion in the form of a lattice, and the end portions of the adjacent unit reflective elements among the nine unit reflective elements 10A to 10I are joined by the adhesive layer 23, It is formed as a composite reflecting element that is enlarged as a whole.
  • Each of the unit reflecting elements 20A to 20I constituting the second reflecting element 20 includes a plurality of second reflectors 21 and a plurality of second transparent bodies 22.
  • the plurality of second reflectors 21 and the plurality of second transparent bodies 22 constituting each of the unit reflection elements 20A to 20I are alternately stacked in the second direction (vertical direction in FIG. 1).
  • the stacking direction of the plurality of second reflectors 21 and the plurality of second transparent bodies 22 in the unit reflecting elements 20A to 20I is such that the second reflector 21 and the second transparent body 22 as a whole in the second reflecting element 20 are. All are arranged so as to face the same direction so as to have continuity. Thereby, in the 2nd reflective element 20, the several 2nd reflector 21 and the some 2nd transparent body 22 are alternately laminated
  • the second reflector 21 located inside each of the unit reflection elements 20A to 20I includes a pair of reflection films 21a (see FIG. 6) and an adhesive layer 21b (see FIG. 6) located between the pair of reflection films 21a. ).
  • the pair of reflective films 21a and the adhesive layer 21b are arranged side by side along the second direction, and the pair of reflective films 21a are joined by being in direct contact with both side surfaces of the adhesive layer 21b.
  • the second reflector 21 is a pair of seams located at the portion sandwiched by the unit reflection elements in the second direction (vertical direction in FIG. 1).
  • the reflection film 21a (see FIG. 6) and the adhesive layer 23 (see FIG. 6) positioned between the pair of reflection films 21a.
  • the pair of reflective films 21 a and the adhesive layer 23 are arranged side by side along the second direction, and the pair of reflective films 21 a are joined by being in direct contact with both side surfaces of the adhesive layer 23.
  • the plurality of second reflectors 21 are arranged in parallel to each other, and each of them extends along the first direction.
  • the plurality of second transparent bodies 22 are arranged in parallel to each other so as to fill the space between the adjacent second reflectors 21, and each of them extends along the first direction.
  • the pair of reflective films 21a is made of, for example, a metal such as aluminum or silver
  • the adhesive layer 21b and the adhesive layer 23 are made of, for example, a cured product of an epoxy adhesive.
  • the 2nd transparent body 22 is comprised, for example with glass or transparent resin.
  • each reflective film 21a in the second direction is, for example, about 50 [nm] to 200 [nm]
  • the individual adhesive layers 21b and the individual adhesive layers 23 in the second direction are, for example, about 50 nm to 200 nm.
  • the width as the size is, for example, about 5 [ ⁇ m] or more and 30 [ ⁇ m] or less.
  • the width of each second reflector 21 in the second direction is approximately the same as the width of each individual adhesive layer 21b and the width of each individual adhesive layer 23.
  • size in the said 2nd direction of each 2nd transparent body 22 is about 300 [micrometers] or more and 2000 [micrometers] or less, for example.
  • the cross-sectional shape orthogonal to the extending direction of each of the plurality of second reflectors 21 and each of the plurality of second transparent bodies 22 is a rectangular shape. Accordingly, the plurality of second reflectors 21 and the plurality of second transparent bodies 22 are arranged in close contact with each other in the second direction, so that the second reflective element 20 has a flat plate shape as described above. have.
  • the second reflective element 20 has a plurality of reflective surfaces therein.
  • Each of the plurality of reflective surfaces is on the surface of the second reflector 21 in the portion facing the adjacent second transparent body 22 (that is, the surface of the portion of the reflective film 21a facing the second transparent body 22).
  • two reflecting surfaces facing in opposite directions are formed for each second reflector 21.
  • the first reflective element 10 and the second reflective element 20 made of the composite reflective element having the configuration described above can be formed by the following method, for example.
  • a plurality of flat transparent members are prepared, and coating layers are formed on both main surfaces thereof.
  • a transparent member becomes the 1st transparent body 12 or the 2nd transparent body 22 mentioned above,
  • glass or transparent resin can be utilized suitably.
  • the coating layer is to be the pair of reflection films 11a of the first reflector 11 or the pair of reflection films 21a of the second reflector 21, and is made of, for example, an aluminum film or a silver film.
  • the coating film can be formed by sputtering, for example.
  • an epoxy adhesive is applied to one exposed surface (that is, the surface of one coating layer) of the transparent member whose both main surfaces are covered with the coating layer, and the transparent member is coated with the adhesive.
  • Another transparent member is superimposed on the adhesive to cure the adhesive.
  • the two transparent members that are overlaid are pasted together.
  • the cured adhesive becomes the adhesive layer 11b of the first reflector 11 or the adhesive layer 21b of the second reflector 21 described above.
  • a laminated body block is formed in which a plurality of transparent members whose both main surfaces are covered with a coating layer are laminated via an adhesive.
  • the laminate block is sequentially cut a plurality of times along a direction orthogonal to the lamination direction of the transparent member.
  • the member cut out from the laminated body block is thinly cut so that the outer shape of the member becomes a flat plate shape.
  • wire cutting can be used for cutting the laminated body block.
  • the cut surface of each member cut out after cutting is polished.
  • the polished members become unit reflecting elements 10A to 10I and 20A to 20I.
  • the polishing of the unit reflecting elements 10A to 10I and 20A to 20I after polishing is performed according to the state of the cut surfaces of the individual members so as to have as high flatness as possible. Is made. Therefore, the unit reflection elements 10A to 10I and 20A to 20I have different thicknesses.
  • the unit reflecting elements 10A to 10I manufactured through the above steps are arranged in a plane according to a predetermined rule, and these end portions are joined together. More specifically, the end portions of the unit reflecting elements 10A to 10I arranged side by side in a plane are joined together by, for example, an epoxy adhesive.
  • the cured adhesive is the adhesive layer 13 described above.
  • the unit reflecting elements 20A to 20I manufactured through the above steps are arranged in a plane according to a predetermined rule, and these end portions are joined together. More specifically, the end portions of the unit reflecting elements 20A to 20I arranged side by side in a plane are joined together by, for example, an epoxy adhesive.
  • the cured adhesive is the adhesive layer 23 described above.
  • the outer main surface 10a of the first reflecting element 10 and the second reflecting element 20 are joined in the connecting step of the unit reflecting elements 10A to 10I and 20A to 20I.
  • a device for increasing the flatness is provided. Details thereof will be described later.
  • first reflective element 10 and the second reflective element 20 made of the composite reflective element having the above-described configuration are formed.
  • the first reflective element 10 and the second reflective element 20 have the same structure, although their orientations are different after being assembled as the imaging element 1.
  • the first reflecting element 10 and the second reflecting element 20 are arranged so that the inner main surfaces 10 b and 20 b face each other, and thereby overlap each other in the thickness direction.
  • the first main surface 1a of the imaging element 1 is constituted by the outer main surface 10a of the first reflecting element 10
  • the second main surface of the imaging element 1 is formed by the outer main surface 20a of the second reflecting element 20. 1b is configured.
  • first reflecting element 10 and the second reflecting element 20 are disposed so as to be opposed to each other such that the first reflector 11 and the second reflector 21 included in each of the first reflecting element 10 and the second reflecting element 20 are orthogonal to each other.
  • a large number of minute corner reflectors are arranged in an array in the imaging element 1.
  • the first reflective element 10 and the second reflective element 20 are arranged with a distance in the thickness direction, and a space between the first reflective element 10 and the second reflective element 20 is formed by the translucent adhesive layer 30. Filled.
  • the translucent adhesive layer 30 is fixed by bonding the first reflective element 10 and the second reflective element 20 by filling the space described above.
  • the translucent adhesive layer 30 any kind of adhesive can be used as long as it has translucency.
  • an epoxy adhesive can be used.
  • the translucent adhesive layer 30 has a refractive index between the refractive index of the first transparent body 12 constituting the first reflective element 10 and the refractive index of the second transparent body 22 constituting the second reflective element 20.
  • An adhesive with a rate difference of 0.02 or less is used. In this way, unnecessary reflection, refraction, scattering, and the like can be suppressed from occurring at the interface between the translucent adhesive layer 30 and the first transparent body 12 and the second transparent body 22.
  • the adhesive used in the above-described uniting step of the unit reflecting elements 10A to 10I and 20A to 20I has a refractive index after curing of 0.02 between the refractive index of the light-transmitting adhesive layer 30. It is preferable to use the following difference. In this case, unnecessary reflection, refraction, scattering, or the like occurs at the interface between the adhesive layers 13 and 23 constituting the joints of the unit reflection elements 10A to 10I and 20A to 20I and the translucent adhesive layer 30. Can be suppressed. Therefore, particularly when the width of the adhesive layers 13 and 23 is larger than that of the adhesive layers 11b and 21b, the disturbance of light with respect to the light passing through the adhesive layers 13 and 23 can be effectively suppressed.
  • FIG. 4 is a conceptual diagram showing a mechanism for displaying an aerial image by using the imaging element shown in FIG. Next, with reference to FIG. 4, a mechanism that enables an aerial image to be displayed by using the imaging element 1 in the present embodiment will be described.
  • an object 100 as a projection object is formed at a spatial position on the first main surface 1 a side of the imaging element 1. Is placed.
  • the light emitted from the object 100 in different directions enters the first reflective element 10 via the first main surface 1a of the imaging element 1 (the outer main surface 10a of the first reflective element 10), and the light The light is reflected by the reflection surface of the first reflector 11 located in the traveling direction, and reaches the translucent adhesive layer 30 via the inner main surface 10 b of the first reflection element 10.
  • the light that has passed through the translucent adhesive layer 30 enters the inside of the second reflective element 20 via the inner main surface 20b of the second reflective element 20, and the second reflector 21 positioned in the traveling direction of the light.
  • the light is reflected by the reflecting surface and reaches the outside of the imaging element 1 via the second main surface 1b of the imaging element 1 (the outer main surface 20a of the second reflecting element 20).
  • the light emitted to the outside of the imaging element 1 is brought into a symmetrical position of the object 100 with respect to the plane on which the imaging element 1 is arranged by the retroreflection in the first reflecting element 10 and the second reflecting element 20 described above.
  • the real image 200 of the object 100 is imaged at a spatial position on the second principal surface 1 b side of the imaging element 1.
  • the object 100 when a liquid crystal display is arranged as the object 100, an image displayed on the liquid crystal display is displayed as an aerial image.
  • the object 100 is not limited to a liquid crystal display, and any object may be arranged regardless of two-dimensional or three-dimensional types.
  • FIG. 5 is an enlarged cross-sectional view of a region V shown in FIG. 2 of the imaging element shown in FIG. 1
  • FIG. 6 is an enlarged cross-sectional view of a region VI shown in FIG. 3 of the imaging element shown in FIG. is there.
  • a step is generated at the joint between the unit reflective elements 10A to 10I based on the difference in thickness of the unit reflective elements 10A to 10I. For example, as shown in FIG. 5, in the joint portion between the unit reflecting element 10A and the unit reflecting element 10B, the thickness T 10A of the unit reflecting element 10A is different from the thickness T 10B of the unit reflecting element 10B. There is a step in the part.
  • This step is the outer main surface 10a side of the first reflecting element 10, together appear as positional difference G 10a of the outer main surface and the outer principal surface of the unit reflective element 10B of the unit reflective element 10A in the thickness direction, the in the inner main surface 10b side of the first reflective element 10 appears as a positional difference G 10b of the inner main surface and the inner major surface of the unit reflective element 10B of the unit reflective element 10A in the thickness direction.
  • the flatness of the outer main surface 10a of the first reflecting element 10 made of a composite reflecting element is higher than the flatness of the inner main surface 10b. That is, the positional difference in the thickness direction between the outer principal surfaces of the unit reflecting elements 10A to 10I constituting the first reflecting element 10 is smaller than the positional difference in the thickness direction between the inner principal surfaces.
  • a step is generated at the joint between the unit reflecting elements 20A to 20I based on the difference in thickness of the unit reflecting elements 20A to 20I.
  • the thickness T 20A of the unit reflecting element 20A is different from the thickness T 20D of the unit reflecting element 20D.
  • This step is the outer main surface 20a side of the second reflecting element 20, together appear as positional difference G 20a of the outer main surface and the outer principal surface of the unit reflective element 20D of unit reflective element 20A in the thickness direction, the in the inner main surface 20b side of the second reflective element 20 appears as a positional difference G 20b of the inner main surface and the inner major surface of the unit reflective element 20B of the unit reflective element 20A in the thickness direction.
  • the flatness of the outer main surface 20a of the second reflecting element 20 made of a composite reflecting element is higher than the flatness of the inner main surface 20b. That is, the positional difference in the thickness direction between the outer principal surfaces of the unit reflecting elements 20A to 20I constituting the second reflecting element 20 is smaller than the positional difference in the thickness direction between the inner principal surfaces.
  • the imaging element 1 in the present embodiment on the inner main surface 10b side of the first reflecting element 10 and the inner main surface 20b side of the second reflecting element 20 where the translucent adhesive layer 30 is located, By absorbing the difference in thickness of the unit reflection elements 10A to 10I and the difference in thickness of the unit reflection elements 20A to 20I, the first main surface 1a and the second main surface 1b of the imaging element 1 are smoothed. Therefore, there is no large step on the first main surface 1a and the second main surface 1b.
  • the imaging element can be excellent in terms of prevention of damage and safety.
  • step difference (namely, the positional difference in the thickness direction of the outer side main surface of an adjacent unit reflective element) shall be 5 [micrometers] or less. If the level difference is within this range, the displayed aerial image is not greatly degraded, and is acceptable from the viewpoint of preventing breakage and safety.
  • the steps generated on the inner main surface 10b of the first reflecting element 10 and the inner main surface 20b of the second reflecting element are generally outside the outer main surface 10a of the first reflecting element 10 and the second reflecting element 20.
  • the translucent adhesive layer 30 is positioned so as to cover the step as described above. Therefore, the displayed aerial image is not greatly deteriorated.
  • the size of the step formed on the inner main surface 10b of the first reflecting element 10 and the inner main surface 20b of the second reflecting element 20 (that is, the positional difference between the inner main surfaces of adjacent unit reflecting elements in the thickness direction). ) Is 30 [ ⁇ m] or less. This is because the thickness of the translucent adhesive layer 30 is normally about 100 [ ⁇ m].
  • the size of the step exceeds 30 [ ⁇ m], the first reflective element 10 and the first reflective element 10 This is because it becomes an obstacle to sufficiently reduce the distance between the two reflecting elements 20.
  • FIG. 7A is a schematic perspective view showing a process of forming the first reflective element
  • FIG. 7B is a schematic cross-sectional view taken along the line VIIB-VIIB shown in FIG. 7A. is there.
  • FIG. 8A is a schematic perspective view showing the formation process of the second reflective element
  • FIG. 8B is a schematic cross-sectional view along the line VIIIB-VIIIB shown in FIG. 8A. is there.
  • FIG. 9A is a schematic perspective view showing the bonding process of the first reflective element and the second reflective element
  • FIG. 9B is a schematic cross-sectional view after bonding.
  • the surface plate 1000 is used in the process of forming the first reflecting element 10 by connecting the unit reflecting elements 10A to 10I described above. It is done.
  • the surface plate 1000 has a reference plane 1001 having high flatness.
  • unit reflecting elements 10A to 10I are arranged on the reference plane 1001 of the surface plate 1000 so as to be arranged in 3 rows and 3 columns.
  • the unit reflection elements 10A to 10I are arranged such that the stacking directions of the plurality of first reflectors 11 and the plurality of first transparent bodies 12 of the unit reflection elements 10A to 10I are all in the same direction.
  • a gap having a predetermined interval is provided between adjacent unit reflection elements.
  • an epoxy-based adhesive is poured along the gap (the gap indicated by the arrow P1 in FIG. 7B) between the adjacent unit reflecting elements, and then the adhesion is performed.
  • the agent is cured.
  • an adhesive layer 13 is formed between the adjacent unit reflection elements as a seam portion in a plan view lattice, thereby joining the ends of the adjacent unit reflection elements.
  • the nine unit reflecting elements 10A to 10I are integrated to form a single first reflecting element 10 as a composite reflecting element.
  • the lower surfaces of the nine unit reflecting elements 10A to 10I are joined while maintaining a high flatness following the reference plane 1001.
  • the flatness of the lower surface of the first reflective element 10 that is in contact with the surface plate 1000 is higher than the flatness of the upper surface of the first reflective element 10 that is not in contact with the surface plate 1000.
  • the surface plate 1000 is also used in the process of forming the second reflective element 20 by connecting the unit reflective elements 20A to 20I.
  • unit reflecting elements 20A to 20I are arranged on the reference plane 1001 of the surface plate 1000 in 3 rows and 3 columns.
  • the unit reflection elements 20A to 20I are arranged such that the stacking directions of the plurality of second reflectors 21 and the plurality of second transparent bodies 22 of the unit reflection elements 20A to 20I are all in the same direction.
  • a gap having a predetermined interval is provided between adjacent unit reflection elements.
  • an epoxy-based adhesive is poured along the gap described above (the gap indicated by the arrow P2 in FIG. 8B) between the adjacent unit reflecting elements, and then the adhesion is performed.
  • the agent is cured.
  • an adhesive layer 23 is formed between the adjacent unit reflection elements as a seam portion in a lattice pattern in plan view, whereby the ends of the adjacent unit reflection elements are joined to each other.
  • the nine unit reflecting elements 20A to 20I are integrated to form a single second reflecting element 20 as a composite reflecting element.
  • the state in which the lower surfaces of the nine unit reflecting elements 20A to 20I are in contact with the reference plane 1001 of the surface plate 1000 is maintained, so that the lower surfaces of the nine unit reflecting elements 20A to 20I
  • the nine unit reflection elements 20A to 20I are joined while maintaining a high flatness following the reference plane 1001.
  • the flatness of the lower surface of the second reflective element 20 in contact with the surface plate 1000 becomes higher than the flatness of the upper surface of the second reflective element 20 not in contact with the surface plate 1000.
  • the top and bottom of the second reflective element 20 are inverted, and the bottom surface of the second reflective element 20 after the inversion (that is, not touching the surface plate 1000 at the time of joining described above). And the lower surface of the second reflective element 20 after reversal, and the upper surface of the first reflective element 10 (that is, the surface that is not in contact with the surface plate 1000 at the time of joining).
  • the adhesive after curing becomes the translucent adhesive layer 30.
  • the main surface on the side disposed in contact with the surface plate 1000 in the step of forming the first reflective element 10 is the outer main surface 10a of the first reflective element 10.
  • the first reflective element 10 and the second reflective element 10 are arranged so that the main surface on the side arranged in contact with the surface plate 1000 becomes the outer main surface 20 a of the second reflective element 20.
  • the reflective element 20 is overlapped and fixed.
  • the first main surface 1 a configured by the outer main surface 10 a of the first reflecting element 10 and the outer main surface 20 a of the second reflecting element 20 are configured.
  • the imaging element 1 configured such that the two principal surfaces 1b have high flatness is manufactured.
  • the inventors determine how many steps are generated on the first main surface and the second main surface in the manufactured imaging element, This was confirmed by actually making a prototype.
  • borosilicate glass (refractive index 1.52) was used as the first transparent body and the second transparent body, and an aluminum film was used as the reflective film constituting the first reflector and the second reflector.
  • the unit reflection element a target with a target thickness of 1.5 [mm] and a size of 150 [mm] square is manufactured, and the pitch of the reflection surface is set to 500 [ ⁇ m] as a target value.
  • the width of the reflective film is about 100 [nm]. Further, the width of the adhesive layer as a joint portion for joining the unit reflecting elements to each other was set to 20 [ ⁇ m].
  • Epoxy adhesives (refractive index of 1.51) are used for the adhesive for joining the reflective films, the adhesive for joining the unit reflective elements, and the adhesive for joining the first reflective element and the second reflective element. ) was used.
  • the target value of the thickness of the adhesive for joining the first reflective element and the second reflective element (that is, the thickness of the translucent adhesive layer) is 100 [ ⁇ m].
  • the first reflective element and the second reflective element were formed using the above-described surface plate, and then the first reflective element and the second reflective element were further joined.
  • the imaging element When the size (height) of the maximum portion of the step formed on the first main surface of the imaging element thus manufactured (that is, the outer main surface of the first reflecting element) was measured, the imaging element was measured. This was 1 [ ⁇ m] in the thickness direction. On the other hand, when the size (height) of the maximum portion of the step formed on the second main surface of the imaging element thus manufactured (that is, the outer main surface of the second reflecting element) was measured, This was 3 [ ⁇ m] in the thickness direction of the image element.
  • the reason why the first main surface and the second main surface of these imaging elements are slightly stepped is that the unit imaging element after polishing is slightly warped. It is considered a thing.
  • the first principal surface 1a and the second principal surface 1b of the imaging element 1 are made to have very high flatness by applying the above-described manufacturing method of the imaging element 1 in the present embodiment. This can be said to be confirmed experimentally.
  • the imaging element has a first main surface and a second main surface that are positioned relative to each other in the thickness direction, and a real image of an object disposed at a spatial position on the first main surface side is on the second main surface side.
  • An image is formed at a spatial position, and includes a flat plate-like first reflective element arranged on the first main surface side and a flat plate-like second reflective element arranged on the second main surface side.
  • the first reflective element includes a plurality of first reflectors arranged in parallel to each other so as to be aligned along a first direction orthogonal to the thickness direction, and an adjacent first of the plurality of first reflectors.
  • a plurality of first transparent bodies filling between the reflectors.
  • the second reflecting element includes a plurality of second reflectors arranged in parallel to each other so as to be aligned along a second direction orthogonal to both the thickness direction and the first direction, and the plurality of second reflectors. And a plurality of second transparent bodies filling between adjacent second reflectors.
  • the first reflecting element has an inner main surface that faces the second reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the first main surface.
  • the second reflecting element has an inner main surface that faces the first reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the second main surface.
  • the second reflective element is composed of a composite reflective element including a plurality of flat unit reflective elements arranged side by side in a plane and a joint that joins end portions of the plurality of unit reflective elements. Yes.
  • the flatness of the outer main surface of the second reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the second reflective element made of the composite reflective element.
  • the size of the step along the thickness direction in the joint portion of the adjacent unit reflection elements is the first unit. It is preferable that it is 5 [micrometers] or less in the said outer main surface side of 2 reflective elements.
  • the size of the step along the thickness direction in the joint portion of the adjacent unit reflection elements is the first unit. It is preferable that it is 30 [micrometers] or less in the said inner main surface side of 2 reflective elements.
  • the first reflective element and the second reflective element are bonded via a translucent adhesive layer.
  • the difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the second transparent body is 0.02 or less. Preferably there is.
  • the joint portion included in the second reflective element may be formed of a light-transmitting adhesive layer.
  • the first reflective element and the first reflective element are included. It is preferable that the difference between the refractive index of the adhesive layer that joins the two reflective elements and the refractive index of the adhesive layer that constitutes the joint included in the second reflective element is 0.02 or less.
  • the first reflecting element includes a plurality of flat unit reflecting elements arranged in a plane, and a joint portion that joins ends of the plurality of unit reflecting elements.
  • the flatness of the outer main surface of the first reflective element made of the composite reflective element is the first reflective element made of the composite reflective element. It is preferable that the flatness of the inner main surface is higher.
  • the size of the step along the thickness direction in the joint portion of the adjacent unit reflecting elements is 5 [ ⁇ m] or less on the outer main surface side of the first reflecting element.
  • the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is 30 [ ⁇ m] or less on the inner main surface side of the first reflection element.
  • the first reflective element when the first reflective element is composed of a composite reflective element in addition to the second reflective element, the first reflective element and the second reflective element are translucent. It is preferable to be bonded via an adhesive layer.
  • the bonding for joining the first reflecting element and the second reflecting element is performed.
  • the difference between the refractive index of the layer and the refractive index of the first transparent body is 0.02 or less, and the refractive index of the adhesive layer that joins the first reflective element and the second reflective element;
  • the difference from the refractive index of the second transparent body is preferably 0.02 or less.
  • the joint portion and the second reflecting element included in the first reflecting element may be formed of a translucent adhesive layer, in which case the refraction of the adhesive layer joining the first reflective element and the second reflective element.
  • the difference between the refractive index and the refractive index of the adhesive layer constituting the seam portion included in the first reflective element is 0.02 or less, and the first reflective element and the second reflective element are joined
  • the difference between the refractive index of the adhesive layer and the refractive index of the adhesive layer constituting the joint part included in the second reflective element is preferably 0.02 or less.
  • An imaging element manufacturing method is a manufacturing method for manufacturing the above-described imaging element, the step of forming the first reflecting element, and the plurality of the second reflecting elements.
  • Forming the second reflective element by joining the end portions of the plurality of unit reflective elements in a state where the unit reflective elements are arranged in a plane on the surface plate, and the second reflective element is
  • the first reflective element and the second reflective element are overlapped and fixed so that the main surface on the side placed in contact with the surface plate becomes the outer main surface of the second reflective element.
  • An imaging element manufacturing method is a manufacturing method for manufacturing the imaging element described above, wherein the plurality of unit reflection elements to be the first reflection element are planar on a surface plate.
  • the end portions of the plurality of unit reflection elements are connected to each other in a state of being arranged side by side, and the step of forming the first reflection element and the plurality of unit reflection elements to be the second reflection element are arranged on a surface plate.
  • the step of forming the second reflection element and the step of forming the first reflection element are performed on the surface plate.
  • the main surface on the side where the contact is arranged becomes the outer main surface of the first reflecting element, and the main surface on the side arranged in contact with the surface plate in the step of forming the second reflecting element is the second reflecting surface.
  • the first main surface which is the main surface on the side where the object as the projection object is arranged, and the main surface on the side where the real image of the object is formed.
  • the imaging element in which both the second main surface and the second main surface are configured to have high flatness it is not always necessary to configure in this way, and at least the second main surface among them is not necessary. What is necessary is just to be comprised so that a surface may have high flatness. With this configuration, it is possible to suppress or prevent the occurrence of streak-like defects in the displayed aerial image, and it is possible to provide an imaging element that can display a high-quality aerial image.
  • SYMBOLS 1 Imaging element 1a 1st main surface, 1b 2nd main surface, 10 1st reflective element, 10A-10I unit reflective element, 10a outer main surface, 10b inner main surface, 11 1st reflector, 11a reflective film, 11b adhesive layer, 12 first transparent body, 13 adhesive layer, 20 second reflective element, 20A to 20I unit reflective element, 20a outer main surface, 20b inner main surface, 21 second reflector, 21a reflective film, 21b adhesive layer 22, second transparent body, 23 adhesive layer, 30 translucent adhesive layer, 100 object, 200 real image, 1000 surface plate, 1001 reference plane.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

An image-forming element (1) equipped with a first reflective element (10) positioned on a first principal surface (1a) side thereof, and also equipped with a second reflective element (20) positioned on a second principal surface (1b) side thereof, wherein an actual image of an object positioned in a spatial position on the first principal surface (1a) side is formed in a spatial position on the second principal surface (1b) side. The second reflective element (20) is configured as a composite reflective element that includes a plurality of unit reflective elements (20A-20I) arranged in a planar pattern, and a seam section (23) for joining the unit reflective elements. The outside principal surface (20a) that forms the second principal surface (1b) of the second reflective element (20) comprising the composite reflective element is flatter than the inside principal surface (20b) of the second reflective element (20).

Description

結像素子およびその製造方法Imaging element and manufacturing method thereof
 本発明は、空中映像を表示可能にする空中映像表示装置に用いられる結像素子およびその製造方法に関し、より特定的には、一方の主面側の空間位置に配置された物体の実像を他方の主面側の空間位置において結像させる結像素子およびその製造方法に関する。 The present invention relates to an imaging element used in an aerial image display device that can display an aerial image and a method for manufacturing the same. More specifically, the present invention relates to a real image of an object arranged at a spatial position on one main surface side. In particular, the present invention relates to an imaging element that forms an image at a spatial position on the principal surface side and a manufacturing method thereof.
 従来、空中映像表示装置に用いられる結像素子として、一般に2面コーナーリフレクタアレイ素子と称される素子が用いられている。2面コーナーリフレクタアレイ素子としては、複数の反射体が主面と直交する方向に透明体を介して積層されてなる平板状の反射素子を2つ使用し、これら2つの反射素子を互いの積層方向が直交するように厚み方向に重ね合わされてなるものが利用される場合がある。 Conventionally, as an imaging element used in an aerial image display device, an element generally called a two-plane corner reflector array element has been used. As a two-sided corner reflector array element, two flat reflection elements in which a plurality of reflectors are laminated via a transparent body in a direction perpendicular to the main surface are used, and these two reflection elements are laminated on each other. In some cases, the layers are stacked in the thickness direction so that the directions are orthogonal to each other.
 この種の2面コーナーリフレクタアレイ素子においては、たとえば国際公開第2009/131128号(特許文献1)や特開2012-128456号公報(特許文献2)等において開示されるように、2つの反射素子が透光性を有する接着剤を用いて接合されることが一般的である。 In this type of two-sided corner reflector array element, as disclosed in, for example, International Publication No. 2009/131128 (Patent Document 1), Japanese Patent Application Laid-Open No. 2012-128456 (Patent Document 2), and the like, Are generally joined using a light-transmitting adhesive.
 また、この種の2面コーナーリフレクタアレイ素子においては、一般にタイリングと称される技術を用いて2つの反射素子のそれぞれが大型化されることで大面積化される場合が多い。このタイリングとは、複数の小型の単位反射素子を面状に並べて配置し、これらの端部同士を相互に繋ぎ合わせることによって1つの大型の複合反射素子とする技術である。 Also, in this type of two-sided corner reflector array element, the area is often increased by increasing the size of each of the two reflecting elements using a technique generally referred to as tiling. This tiling is a technique in which a plurality of small unit reflective elements are arranged in a plane and these end portions are connected to each other to form one large composite reflective element.
 当該タイリングの詳細が具体的に開示された文献としては、たとえば特開2011-90117号公報(特許文献3)や特開2013-101230号公報(特許文献4)、特開2013-167670号公報(特許文献5)等がある。 References that specifically disclose details of the tiling include, for example, Japanese Patent Application Laid-Open No. 2011-90117 (Patent Document 3), Japanese Patent Application Laid-Open No. 2013-101230 (Patent Document 4), and Japanese Patent Application Laid-Open No. 2013-167670. (Patent Document 5).
国際公開第2009/131128号International Publication No. 2009/131128 特開2012-128456号公報JP 2012-128456 A 特開2011-90117号公報JP 2011-90117 A 特開2013-101230号公報JP2013-101230A 特開2013-167670号公報JP 2013-167670 A
 しかしながら、上記タイリングを適用した場合においては、その製造上の制約から、複数の単位反射素子を相互に繋ぎ合わせることで形成された複合反射素子の一対の主面を共に理想的な平面とすることは非常に困難である。 However, when the above tiling is applied, due to manufacturing restrictions, a pair of main surfaces of the composite reflective element formed by connecting a plurality of unit reflective elements to each other are both ideal planes. It is very difficult.
 たとえば、単位反射素子の製作の際に、当該単位反射面の一対の主面がより平坦になるように研磨加工が一般的に施されるが、当該研磨加工に伴って個々の単位反射素子の厚みは異なることとなってしまい、これが複合反射素子の一対の主面を共に理想的な平面とすることの妨げとなってしまう。 For example, when a unit reflection element is manufactured, a polishing process is generally performed so that a pair of main surfaces of the unit reflection surface is flattened. The thickness will be different, and this will prevent the pair of principal surfaces of the composite reflective element from being ideally flat.
 このように、厚みの異なる単位反射素子をタイリングによって繋ぎ合わせて複合反射素子とした場合には、隣り合う単位反射素子の継ぎ目部分において段差が発生することとなる。複合反射素子の主面にこのような段差が生じた場合には、当該段差部分が結像に際して不要な反射面として機能してしまうため、表示される空中映像にこれがスジ状の欠陥として現われてしまい、結果として表示品位の低下に繋がる問題を引き起こす。 As described above, when unit reflective elements having different thicknesses are connected by tiling to form a composite reflective element, a step is generated at the joint portion between adjacent unit reflective elements. When such a level difference occurs on the main surface of the composite reflective element, the level difference part functions as an unnecessary reflection surface during image formation, and this appears as a streak-like defect in the displayed aerial image. As a result, a problem that leads to deterioration of display quality is caused.
 また、上述した段差は、当該結像素子に割れや欠けが発生してしまう原因となるばかりでなく、ハンドリング時において手指を怪我してしまう原因ともなるため、破損防止や安全性の面においても問題を引き起こしてしまう。ここで、上述した段差の発生を抑制するために、単位反射素子の端面と主面とを結ぶ角部に面取り加工を施すことも可能ではあるが、そのように加工した場合には、映像の連続性が損なわれてしまうことになり、結果として表示品位の低下に繋がってしまう。 In addition, the above-described steps not only cause cracks and chipping in the imaging element, but also cause injury to the fingers during handling. Cause problems. Here, in order to suppress the occurrence of the above-described step, it is possible to chamfer the corner portion connecting the end surface and the main surface of the unit reflecting element. Continuity will be impaired, and as a result, display quality will be reduced.
 したがって、本発明は、上述した問題を解決すべくなされたものであり、高品位の空中映像を表示することができるとともに、破損し難くかつハンドリング時において怪我を誘発し難い結像素子およびその製造方法を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and can display a high-definition aerial image, and is difficult to be damaged and hardly causes injury during handling, and its manufacture. It aims to provide a method.
 本発明に基づく結像素子は、厚み方向において相対して位置する第1主面および第2主面を有し、上記第1主面側の空間位置に配置される物体の実像を上記第2主面側の空間位置において結像させるものであって、上記第1主面側に配置された平板状の第1反射素子と、上記第2主面側に配置された平板状の第2反射素子とを備えている。上記第1反射素子は、上記厚み方向に直交する第1方向に沿って並ぶように互いに平行に配置された複数の第1反射体と、上記複数の第1反射体のうちの隣り合う第1反射体間を充填する複数の第1透明体とを含んでいる。上記第2反射素子は、上記厚み方向および上記第1方向の双方に直交する第2方向に沿って並ぶように互いに平行に配置された複数の第2反射体と、上記複数の第2反射体のうちの隣り合う第2反射体間を充填する複数の第2透明体とを含んでいる。上記第1反射素子は、上記第2反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ上記第1主面を規定する外側主面とを有している。上記第2反射素子は、上記第1反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ上記第2主面を規定する外側主面とを有している。上記第2反射素子は、面状に並べて配置された平板状の複数の単位反射素子と、当該複数の単位反射素子の端部同士を繋ぎ合わせる継ぎ目部とを含む複合反射素子にて構成されている。上記複合反射素子からなる上記第2反射素子の上記外側主面の平面度は、上記複合反射素子からなる上記第2反射素子の上記内側主面の平面度よりも高い。 An imaging element according to the present invention has a first main surface and a second main surface that are positioned relative to each other in the thickness direction, and a real image of an object disposed at a spatial position on the first main surface side is the second main surface. An image is formed at a spatial position on the main surface side, and is a flat plate-like first reflecting element arranged on the first main surface side and a flat plate-like second reflection arranged on the second main surface side. Device. The first reflective element includes a plurality of first reflectors arranged in parallel to each other so as to be aligned along a first direction orthogonal to the thickness direction, and an adjacent first of the plurality of first reflectors. A plurality of first transparent bodies filling between the reflectors. The second reflecting element includes a plurality of second reflectors arranged in parallel to each other so as to be aligned along a second direction orthogonal to both the thickness direction and the first direction, and the plurality of second reflectors. And a plurality of second transparent bodies filling between adjacent second reflectors. The first reflecting element has an inner main surface that faces the second reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the first main surface. The second reflecting element has an inner main surface that faces the first reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the second main surface. The second reflective element is composed of a composite reflective element including a plurality of flat unit reflective elements arranged side by side in a plane and a joint that joins end portions of the plurality of unit reflective elements. Yes. The flatness of the outer main surface of the second reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the second reflective element made of the composite reflective element.
 なお、ここで言う「平面度」とは、いわゆる「最大傾斜式平面度」と称されるものを意味し、その面上の全ての点が面の代表平面に平行な2つの平面内にあるとともに、この2つの平面間の距離が最小となるときの当該2つの面間の距離を言う。この平面度の算出方法としては、指定された測定範囲内において全ての測定点から最小二乗平面を求め、その最小自乗平面に平行でかつ正負それぞれのピーク点を通る2つの平面間の長さを求める方法が挙げられる。また、平面度が高いとは、上記2つの面の間の距離が小さいことを言い、平面度が低いとは、上記2つの面の間の距離が大きいことを言う。 The term “flatness” as used herein means what is called “maximum inclined flatness”, and all the points on the surface are in two planes parallel to the representative plane of the surface. In addition, the distance between the two planes when the distance between the two planes is minimized. As a method of calculating the flatness, a least square plane is obtained from all measurement points within a specified measurement range, and the length between two planes parallel to the least square plane and passing through the positive and negative peak points is calculated. The method to ask is mentioned. Further, high flatness means that the distance between the two surfaces is small, and low flatness means that the distance between the two surfaces is large.
 本発明の第1の局面に基づく結像素子の製造方法は、上述した本発明に基づく結像素子を製造するための製造方法であって、上記第1反射素子を形成する工程と、上記第2反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第2反射素子を形成する工程と、上記第2反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第2反射素子の上記外側主面となるように、上記第1反射素子と上記第2反射素子とを重ね合わせて固定する工程とを備える。 An imaging element manufacturing method according to a first aspect of the present invention is a manufacturing method for manufacturing the imaging element according to the present invention described above, the step of forming the first reflective element, and the first A step of forming the second reflective element by connecting ends of the plurality of unit reflective elements in a state where the plurality of unit reflective elements to be two reflective elements are arranged in a plane on a surface plate; In the step of forming the second reflective element, the first reflective element and the second reflective element are such that the main surface on the side arranged in contact with the surface plate becomes the outer main surface of the second reflective element. And overlapping and fixing.
 本発明の第2の局面に基づく結像素子の製造方法は、上述した本発明に基づく結像素子を製造するための製造方法であって、上記第1反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第1反射素子を形成する工程と、上記第2反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第2反射素子を形成する工程と、上記第1反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第1反射素子の上記外側主面となるとともに、上記第2反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第2反射素子の上記外側主面となるように、上記第1反射素子と上記第2反射素子とを重ね合わせて固定する工程とを備える。 An imaging element manufacturing method according to a second aspect of the present invention is a manufacturing method for manufacturing the above-described imaging element according to the present invention, wherein the plurality of unit reflection elements are the first reflection elements. Are arranged in a plane on the surface plate, and the ends of the plurality of unit reflection elements are joined together to form the first reflection element, and the plurality of the second reflection elements The step of forming the second reflective element by joining the end portions of the plurality of unit reflective elements in a state where the unit reflective elements are arranged in a plane on the surface plate, and the first reflective element is formed. The main surface on the side disposed in contact with the surface plate in the step of forming the second reflective element is the main surface on the side disposed in contact with the surface plate, and on the side disposed in contact with the surface plate in the step of forming the second reflective element. The main surface is the above So that the outer principal surface of the reflective element, and a step of fixing by superimposing and the first reflecting element and the second reflective element.
 本発明によれば、高品位の空中映像を表示することができるとともに、破損し難くかつハンドリング時において怪我を誘発し難い結像素子およびその製造方法を提供することが可能になる。 According to the present invention, it is possible to provide an imaging element that can display a high-definition aerial image and is less likely to be damaged and hardly cause injury during handling, and a method for manufacturing the same.
本発明の実施の形態における結像素子の模式平面図である。It is a schematic plan view of the imaging element in the embodiment of the present invention. 図1に示す結像素子の模式断面図である。It is a schematic cross section of the imaging element shown in FIG. 図1に示す結像素子の模式断面図である。It is a schematic cross section of the imaging element shown in FIG. 図1に示す結像素子を用いることで空中映像が表示される仕組みを示す概念図である。It is a conceptual diagram which shows the mechanism in which an aerial image | video is displayed by using the imaging element shown in FIG. 図1に示す結像素子の要部の拡大断面図である。It is an expanded sectional view of the principal part of the imaging element shown in FIG. 図1に示す結像素子の要部の拡大断面図である。It is an expanded sectional view of the principal part of the imaging element shown in FIG. 本発明の実施の形態における結像素子の第1反射素子の形成工程を示す模式的な斜視図および断面図である。It is the typical perspective view and sectional view showing the formation process of the 1st reflective element of the image formation element in an embodiment of the invention. 本発明の実施の形態における結像素子の第2反射素子の形成工程を示す模式的な斜視図および断面図である。It is the typical perspective view and sectional drawing which show the formation process of the 2nd reflective element of the image formation element in embodiment of this invention. 本発明の実施の形態における結像素子の第1反射素子と第2反射素子との接合工程を示す模式的な斜視図および断面図である。It is the typical perspective view and sectional view showing the joining process of the 1st reflective element and the 2nd reflective element of the image formation element in an embodiment of the invention.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated.
 図1は、本発明の実施の形態における結像素子の模式平面図である。図2は、図1に示す結像素子の図1中に示すII-II線に沿った模式断面図であり、図3は、図1に示す結像素子の図1中に示すIII-III線に沿った模式断面図である。まず、これら図1ないし図3を参照して、本実施の形態における結像素子1の概略的な構成について説明する。 FIG. 1 is a schematic plan view of an imaging element according to an embodiment of the present invention. 2 is a schematic cross-sectional view of the imaging element shown in FIG. 1 taken along the line II-II shown in FIG. 1, and FIG. 3 is a sectional view of the imaging element shown in FIG. It is a schematic cross section along a line. First, with reference to these FIG. 1 thru | or FIG. 3, the schematic structure of the imaging element 1 in this Embodiment is demonstrated.
 図1ないし図3に示すように、結像素子(一般に「2面コーナーリフレクタアレイ素子」または「マイクロミラーアレイ素子」と称される)1は、全体として略平板状の形状を有しており、第1反射素子10と、第2反射素子20と、透光性接着層30とを備えている。 As shown in FIGS. 1 to 3, the imaging element (generally referred to as “two-sided corner reflector array element” or “micromirror array element”) 1 has a substantially flat plate shape as a whole. The 1st reflective element 10, the 2nd reflective element 20, and the translucent adhesive layer 30 are provided.
 第1反射素子10は、厚み方向において相対して位置する外側主面10aおよび内側主面10bを有する平板状の部材からなり、厚み方向に沿って見た場合に正方形形状を有している。 The first reflective element 10 is made of a flat plate-like member having an outer main surface 10a and an inner main surface 10b that are positioned in the thickness direction, and has a square shape when viewed along the thickness direction.
 第1反射素子10は、複数の単位反射素子を繋ぎ合わせた複合反射素子にて構成されており、本実施の形態においては、厚みを除いて同一寸法の9つの単位反射素子10A~10Iを含んでいる。単位反射素子10A~10Iの各々は、いずれも略平板状の形状を有しており、厚み方向に沿って見た場合に正方形形状を有している。なお、図2および図3においては、作図の都合上、単位反射素子10A~10D,10Gの厚みを同等に記載している。 The first reflecting element 10 is composed of a composite reflecting element in which a plurality of unit reflecting elements are connected. In the present embodiment, the first reflecting element 10 includes nine unit reflecting elements 10A to 10I having the same dimensions except for the thickness. It is out. Each of the unit reflecting elements 10A to 10I has a substantially flat plate shape, and has a square shape when viewed along the thickness direction. 2 and 3, the thicknesses of the unit reflecting elements 10A to 10D and 10G are equally described for the sake of drawing.
 より具体的には、第1反射素子10は、面状に3行3列に配置された上記9つの単位反射素子10A~10Iと、これら9つの単位反射素子10A~10Iの間に位置する平面視格子状の継ぎ目部としての接着層13とを有しており、9つの単位反射素子10A~10Iのうちの隣り合う単位反射素子同士の端部が上記接着層13によって接合されることにより、全体として大型化された複合反射素子として形成されている。 More specifically, the first reflecting element 10 includes the nine unit reflecting elements 10A to 10I arranged in a plane in 3 rows and 3 columns, and a plane located between the nine unit reflecting elements 10A to 10I. An adhesive layer 13 as a joint portion in the form of a lattice, and by joining the end portions of adjacent unit reflective elements among the nine unit reflective elements 10A to 10I by the adhesive layer 13, It is formed as a composite reflecting element that is enlarged as a whole.
 第1反射素子10を構成する単位反射素子10A~10Iの各々は、複数の第1反射体11と複数の第1透明体12とによって構成されている。単位反射素子10A~10Iの各々を構成するこれら複数の第1反射体11と複数の第1透明体12とは、上記厚み方向に直交する第1方向(図1において左右方向)において交互に積層されている。 Each of the unit reflecting elements 10A to 10I constituting the first reflecting element 10 is composed of a plurality of first reflectors 11 and a plurality of first transparent bodies 12. The plurality of first reflectors 11 and the plurality of first transparent bodies 12 constituting each of the unit reflection elements 10A to 10I are alternately stacked in a first direction (left-right direction in FIG. 1) orthogonal to the thickness direction. Has been.
 すなわち、単位反射素子10A~10Iにおける複数の第1反射体11と複数の第1透明体12との積層方向は、第1反射素子10において第1反射体11および第1透明体12が全体として連続性を有することとなるように、いずれも同一の方向を向くように配置されている。これにより、第1反射素子10においては、その全域において、複数の第1反射体11と複数の第1透明体12とが、上記第1方向において交互に積層されて位置することになる。なお、図1においては、第1反射体11を破線にて示している。 That is, the stacking direction of the plurality of first reflectors 11 and the plurality of first transparent bodies 12 in the unit reflecting elements 10A to 10I is such that the first reflector 11 and the first transparent body 12 as a whole in the first reflector 10 are the same. All are arranged so as to face the same direction so as to have continuity. Thereby, in the 1st reflective element 10, the some 1st reflector 11 and the some 1st transparent body 12 are alternately laminated | stacked and located in the said 1st direction in the whole region. In addition, in FIG. 1, the 1st reflector 11 is shown with the broken line.
 単位反射素子10A~10Iの各々の内部に位置する第1反射体11は、一対の反射膜11a(図5参照)と、これら一対の反射膜11aの間に位置する接着層11b(図5参照)とを含んでいる。一対の反射膜11aと接着層11bとは、上記第1方向に沿って並んで配置されており、一対の反射膜11aは、接着層11bの両側面に直接接することで接合されている。 The first reflector 11 positioned inside each of the unit reflecting elements 10A to 10I includes a pair of reflecting films 11a (see FIG. 5) and an adhesive layer 11b (see FIG. 5) positioned between the pair of reflecting films 11a. ). The pair of reflective films 11a and the adhesive layer 11b are arranged side by side along the first direction, and the pair of reflective films 11a are joined by being in direct contact with both side surfaces of the adhesive layer 11b.
 一方、単位反射素子10A~10Iの継ぎ目部のうち、上記第1方向において単位反射素子によって挟み込まれた部分に位置する継ぎ目部においては、第1反射体11が、一対の反射膜11a(図5参照)と、これら一対の反射膜11aの間に位置する接着層13(図5参照)とによって構成されることになる。一対の反射膜11aと接着層13とは、上記第1方向に沿って並んで配置されており、一対の反射膜11aは、接着層13の両側面に直接接することで接合されている。 On the other hand, among the joint portions of the unit reflection elements 10A to 10I, in the joint portion located at the portion sandwiched by the unit reflection elements in the first direction, the first reflector 11 is made of a pair of reflection films 11a (FIG. 5). And an adhesive layer 13 (see FIG. 5) located between the pair of reflective films 11a. The pair of reflective films 11 a and the adhesive layer 13 are arranged side by side along the first direction, and the pair of reflective films 11 a are joined by being in direct contact with both side surfaces of the adhesive layer 13.
 複数の第1反射体11は、互いに平行に配置されており、その各々は、上記厚み方向および上記第1方向の双方に直交する第2方向(図1において上下方向)に沿って延在している。複数の第1透明体12は、隣り合う第1反射体11間を充填するように互いに平行に配置されており、その各々は、上記第2方向に沿って延在している。 The plurality of first reflectors 11 are arranged in parallel to each other, and each of them extends along a second direction (vertical direction in FIG. 1) orthogonal to both the thickness direction and the first direction. ing. The plurality of first transparent bodies 12 are arranged in parallel to each other so as to fill the space between the adjacent first reflectors 11, and each of them extends along the second direction.
 一対の反射膜11aは、たとえばアルミニウムまたは銀等の金属にて構成されており、接着層11bおよび接着層13は、たとえばエポキシ系の接着剤の硬化物にて構成されている。また、第1透明体12は、たとえばガラスまたは透明樹脂にて構成されている。 The pair of reflective films 11a are made of, for example, a metal such as aluminum or silver, and the adhesive layer 11b and the adhesive layer 13 are made of, for example, a cured product of an epoxy adhesive. Moreover, the 1st transparent body 12 is comprised, for example with glass or transparent resin.
 個々の反射膜11aの上記第1方向における大きさである幅は、たとえば50[nm]以上200[nm]以下程度であり、個々の接着層11bおよび個々の接着層13の上記第1方向における大きさである幅は、たとえば5[μm]以上30[μm]以下程度である。したがって、個々の第1反射体11の上記第1方向における大きさである幅は、おおよそ個々の接着層11bの幅および個々の接着層13の幅と同じになる。また、個々の第1透明体12の上記第1方向における大きさである幅は、たとえば300[μm]以上2000[μm]以下程度である。 The width, which is the size of each reflective film 11a in the first direction, is, for example, about 50 [nm] or more and 200 [nm] or less, and the individual adhesive layers 11b and the individual adhesive layers 13 in the first direction. The width as the size is, for example, about 5 [μm] or more and 30 [μm] or less. Therefore, the width, which is the size of each first reflector 11 in the first direction, is approximately the same as the width of each individual adhesive layer 11 b and the width of each individual adhesive layer 13. Moreover, the width which is the magnitude | size in the said 1st direction of each 1st transparent body 12 is about 300 [micrometers] or more and 2000 [micrometers] or less, for example.
 ここで、複数の第1反射体11の各々および複数の第1透明体12の各々の延在方向(すなわち上記第2方向)に直交する断面形状は、矩形状である。これにより、複数の第1反射体11および複数の第1透明体12が、上記第1方向において互いに密着して配置されることにより、第1反射素子10は、上述したような平板状の形状を有している。 Here, the cross-sectional shape orthogonal to the extending direction of each of the plurality of first reflectors 11 and each of the plurality of first transparent bodies 12 (that is, the second direction) is a rectangular shape. Thus, the plurality of first reflectors 11 and the plurality of first transparent bodies 12 are arranged in close contact with each other in the first direction, so that the first reflective element 10 has a flat plate shape as described above. have.
 なお、第1反射素子10の厚みは、たとえば900[μm]以上6000[μm]以下程度である。また、単位反射素子10A~10Iの各々の厚み方向と直交する一辺の長さは、10[cm]以上50[cm]以下程度である。そのため、9つの単位反射素子10A~10Iがタイリングされてなる本実施の形態における第1反射素子10の厚み方向と直交する一辺の長さは、たとえば30[cm]以上150[cm]以下程度である。 In addition, the thickness of the 1st reflective element 10 is about 900 [micrometers] or more and 6000 [micrometers] or less, for example. The length of one side perpendicular to the thickness direction of each of the unit reflecting elements 10A to 10I is about 10 [cm] to 50 [cm]. Therefore, the length of one side perpendicular to the thickness direction of the first reflecting element 10 in the present embodiment in which nine unit reflecting elements 10A to 10I are tiled is, for example, about 30 [cm] to 150 [cm]. It is.
 上記構成を有することにより、第1反射素子10は、その内部に複数の反射面を有することになる。当該複数の反射面の各々は、隣接する第1透明体12に面する部分の第1反射体11の表面(すなわち、上述した反射膜11aの第1透明体12に面する部分の表面)にて構成されており、これにより個々の第1反射体11につき、互いに反対方向を向く2つの反射面が形成されることになる。 By having the above configuration, the first reflective element 10 has a plurality of reflective surfaces therein. Each of the plurality of reflective surfaces is on the surface of the first reflector 11 in the portion facing the adjacent first transparent body 12 (that is, the surface of the portion of the reflective film 11a facing the first transparent body 12). Accordingly, two reflecting surfaces facing in opposite directions are formed for each first reflector 11.
 第2反射素子20は、厚み方向において相対して位置する外側主面20aおよび内側主面20bを有する平板状の部材からなり、第1反射素子10とほぼ同じ厚みでかつ厚み方向に沿って見た場合に第1反射素子10と同じ大きさの正方形形状を有している。 The second reflecting element 20 is formed of a flat plate-like member having an outer main surface 20a and an inner main surface 20b that are positioned opposite to each other in the thickness direction, and has substantially the same thickness as the first reflecting element 10 and is seen along the thickness direction. In this case, it has a square shape having the same size as the first reflective element 10.
 第2反射素子20は、複数の単位反射素子を繋ぎ合わせた複合反射素子にて構成されており、本実施の形態においては、厚みを除いて同一寸法の9つの単位反射素子20A~20Iを含んでいる。単位反射素子20A~20Iの各々は、いずれも略平板状の形状を有しており、厚み方向に沿って見た場合に上述した単位反射素子10A~10Iと同じ大きさの正方形形状を有している。なお、図2および図3においては、作図の都合上、単位反射素子20A~20D,20Gの厚みを同等に記載している。 The second reflecting element 20 is composed of a composite reflecting element in which a plurality of unit reflecting elements are connected. In the present embodiment, the second reflecting element 20 includes nine unit reflecting elements 20A to 20I having the same dimensions except for the thickness. It is out. Each of the unit reflection elements 20A to 20I has a substantially flat plate shape, and has a square shape having the same size as the unit reflection elements 10A to 10I described above when viewed along the thickness direction. ing. 2 and 3, the thicknesses of the unit reflecting elements 20A to 20D and 20G are equally described for the convenience of drawing.
 より具体的には、第2反射素子20は、面状に3行3列に配置された上記9つの単位反射素子20A~20Iと、これら9つの単位反射素子20A~20Iの間に位置する平面視格子状の継ぎ目部としての接着層23とを有しており、9つの単位反射素子10A~10Iのうちの隣り合う単位反射素子同士の端部が上記接着層23によって接合されることにより、全体として大型化された複合反射素子として形成されている。 More specifically, the second reflecting element 20 includes the nine unit reflecting elements 20A to 20I arranged in a plane in three rows and three columns, and a plane located between the nine unit reflecting elements 20A to 20I. An adhesive layer 23 as a joint portion in the form of a lattice, and the end portions of the adjacent unit reflective elements among the nine unit reflective elements 10A to 10I are joined by the adhesive layer 23, It is formed as a composite reflecting element that is enlarged as a whole.
 第2反射素子20を構成する単位反射素子20A~20Iの各々は、複数の第2反射体21と複数の第2透明体22とによって構成されている。単位反射素子20A~20Iの各々を構成するこれら複数の第2反射体21と複数の第2透明体22とは、上記第2方向(図1において上下方向)において交互に積層されている。 Each of the unit reflecting elements 20A to 20I constituting the second reflecting element 20 includes a plurality of second reflectors 21 and a plurality of second transparent bodies 22. The plurality of second reflectors 21 and the plurality of second transparent bodies 22 constituting each of the unit reflection elements 20A to 20I are alternately stacked in the second direction (vertical direction in FIG. 1).
 すなわち、単位反射素子20A~20Iにおける複数の第2反射体21と複数の第2透明体22との積層方向は、第2反射素子20において第2反射体21および第2透明体22が全体として連続性を有することとなるように、いずれも同一の方向を向くように配置されている。これにより、第2反射素子20においては、その全域において、複数の第2反射体21と複数の第2透明体22とが、上記第2方向において交互に積層されて位置することになる。 That is, the stacking direction of the plurality of second reflectors 21 and the plurality of second transparent bodies 22 in the unit reflecting elements 20A to 20I is such that the second reflector 21 and the second transparent body 22 as a whole in the second reflecting element 20 are. All are arranged so as to face the same direction so as to have continuity. Thereby, in the 2nd reflective element 20, the several 2nd reflector 21 and the some 2nd transparent body 22 are alternately laminated | stacked and located in the said 2nd direction in the whole region.
 単位反射素子20A~20Iの各々の内部に位置する第2反射体21は、一対の反射膜21a(図6参照)と、これら一対の反射膜21aの間に位置する接着層21b(図6参照)とを含んでいる。一対の反射膜21aと接着層21bとは、上記第2方向に沿って並んで配置されており、一対の反射膜21aは、接着層21bの両側面に直接接することで接合されている。 The second reflector 21 located inside each of the unit reflection elements 20A to 20I includes a pair of reflection films 21a (see FIG. 6) and an adhesive layer 21b (see FIG. 6) located between the pair of reflection films 21a. ). The pair of reflective films 21a and the adhesive layer 21b are arranged side by side along the second direction, and the pair of reflective films 21a are joined by being in direct contact with both side surfaces of the adhesive layer 21b.
 一方、単位反射素子20A~20Iの継ぎ目部のうち、上記第2方向(図1において上下方向)において単位反射素子によって挟み込まれた部分に位置する継ぎ目部においては、第2反射体21が、一対の反射膜21a(図6参照)と、これら一対の反射膜21aの間に位置する接着層23(図6参照)とによって構成されることになる。一対の反射膜21aと接着層23とは、上記第2方向に沿って並んで配置されており、一対の反射膜21aは、接着層23の両側面に直接接することで接合されている。 On the other hand, among the joint portions of the unit reflection elements 20A to 20I, the second reflector 21 is a pair of seams located at the portion sandwiched by the unit reflection elements in the second direction (vertical direction in FIG. 1). The reflection film 21a (see FIG. 6) and the adhesive layer 23 (see FIG. 6) positioned between the pair of reflection films 21a. The pair of reflective films 21 a and the adhesive layer 23 are arranged side by side along the second direction, and the pair of reflective films 21 a are joined by being in direct contact with both side surfaces of the adhesive layer 23.
 複数の第2反射体21は、互いに平行に配置されており、その各々は、上記第1方向に沿って延在している。複数の第2透明体22は、隣り合う第2反射体21間を充填するように互いに平行に配置されており、その各々は、上記第1方向に沿って延在している。 The plurality of second reflectors 21 are arranged in parallel to each other, and each of them extends along the first direction. The plurality of second transparent bodies 22 are arranged in parallel to each other so as to fill the space between the adjacent second reflectors 21, and each of them extends along the first direction.
 一対の反射膜21aは、たとえばアルミニウムまたは銀等の金属にて構成されており、接着層21bおよび接着層23は、たとえばエポキシ系の接着剤の硬化物にて構成されている。また、第2透明体22は、たとえばガラスまたは透明樹脂にて構成されている。 The pair of reflective films 21a is made of, for example, a metal such as aluminum or silver, and the adhesive layer 21b and the adhesive layer 23 are made of, for example, a cured product of an epoxy adhesive. Moreover, the 2nd transparent body 22 is comprised, for example with glass or transparent resin.
 個々の反射膜21aの上記第2方向における大きさである幅は、たとえば50[nm]以上200[nm]以下程度であり、個々の接着層21bおよび個々の接着層23の上記第2方向における大きさである幅は、たとえば5[μm]以上30[μm]以下程度である。したがって、個々の第2反射体21の上記第2方向における大きさである幅は、おおよそ個々の接着層21bの幅および個々の接着層23の幅と同じになる。また、個々の第2透明体22の上記第2方向における大きさである幅は、たとえば300[μm]以上2000[μm]以下程度である。 The width of each reflective film 21a in the second direction is, for example, about 50 [nm] to 200 [nm], and the individual adhesive layers 21b and the individual adhesive layers 23 in the second direction are, for example, about 50 nm to 200 nm. The width as the size is, for example, about 5 [μm] or more and 30 [μm] or less. Accordingly, the width of each second reflector 21 in the second direction is approximately the same as the width of each individual adhesive layer 21b and the width of each individual adhesive layer 23. Moreover, the width which is the magnitude | size in the said 2nd direction of each 2nd transparent body 22 is about 300 [micrometers] or more and 2000 [micrometers] or less, for example.
 ここで、複数の第2反射体21の各々および複数の第2透明体22の各々の延在方向(すなわち上記第1方向)に直交する断面形状は、矩形状である。これにより、複数の第2反射体21および複数の第2透明体22が、上記第2方向において互いに密着して配置されることにより、第2反射素子20は、上述したような平板状の形状を有している。 Here, the cross-sectional shape orthogonal to the extending direction of each of the plurality of second reflectors 21 and each of the plurality of second transparent bodies 22 (that is, the first direction) is a rectangular shape. Accordingly, the plurality of second reflectors 21 and the plurality of second transparent bodies 22 are arranged in close contact with each other in the second direction, so that the second reflective element 20 has a flat plate shape as described above. have.
 上記構成を有することにより、第2反射素子20は、その内部に複数の反射面を有することになる。当該複数の反射面の各々は、隣接する第2透明体22に面する部分の第2反射体21の表面(すなわち、上述した反射膜21aの第2透明体22に面する部分の表面)にて構成されており、これにより個々の第2反射体21につき、互いに反対方向を向く2つの反射面が形成されることになる。 By having the above configuration, the second reflective element 20 has a plurality of reflective surfaces therein. Each of the plurality of reflective surfaces is on the surface of the second reflector 21 in the portion facing the adjacent second transparent body 22 (that is, the surface of the portion of the reflective film 21a facing the second transparent body 22). Thus, two reflecting surfaces facing in opposite directions are formed for each second reflector 21.
 以上において説明した構成の複合反射素子からなる第1反射素子10および第2反射素子20は、たとえば以下の方法によって形成することができる。 The first reflective element 10 and the second reflective element 20 made of the composite reflective element having the configuration described above can be formed by the following method, for example.
 まず、平板状の透明部材が複数準備され、それらの両主面にコーティング層が形成される。ここで、透明部材は、上述した第1透明体12または第2透明体22となるものであり、たとえばガラスまたは透明樹脂が好適に利用できる。また、コーティング層は、上述した第1反射体11の一対の反射膜11aまたは第2反射体21の一対の反射膜21aとなるものであり、たとえばアルミニウム膜または銀膜等にて構成される。当該コーティング膜は、たとえばスパッタリング等によって成膜可能である。 First, a plurality of flat transparent members are prepared, and coating layers are formed on both main surfaces thereof. Here, a transparent member becomes the 1st transparent body 12 or the 2nd transparent body 22 mentioned above, For example, glass or transparent resin can be utilized suitably. The coating layer is to be the pair of reflection films 11a of the first reflector 11 or the pair of reflection films 21a of the second reflector 21, and is made of, for example, an aluminum film or a silver film. The coating film can be formed by sputtering, for example.
 次に、コーティング層によって両主面が覆われてなる透明部材の一方の露出表面(すなわち一方のコーティング層の表面)にたとえばエポキシ系の接着剤が塗布され、当該接着剤が塗布された透明部材に他の透明部材が重ね合わされて接着剤が硬化させられる。これにより、重ね合わされた2枚の透明部材が、貼り合わされることになる。ここで、硬化後の接着剤は、上述した第1反射体11の接着層11bまたは第2反射体21の接着層21bとなるものである。 Next, for example, an epoxy adhesive is applied to one exposed surface (that is, the surface of one coating layer) of the transparent member whose both main surfaces are covered with the coating layer, and the transparent member is coated with the adhesive. Another transparent member is superimposed on the adhesive to cure the adhesive. As a result, the two transparent members that are overlaid are pasted together. Here, the cured adhesive becomes the adhesive layer 11b of the first reflector 11 or the adhesive layer 21b of the second reflector 21 described above.
 この貼り合わせ作業が必要回数分だけ繰り返されることにより、コーティング層によって両主面が覆われた複数の透明部材が接着剤を介して積層されてなる積層体ブロックが形成されることになる。 </ RTI> By repeating this laminating operation as many times as necessary, a laminated body block is formed in which a plurality of transparent members whose both main surfaces are covered with a coating layer are laminated via an adhesive.
 次に、積層体ブロックが、透明部材の積層方向と直交する方向に沿って複数回にわたって順次切断される。その際、積層体ブロックから切り出される部材の外形が平板状となるように薄く切断される。なお、積層体ブロックの切断には、たとえばワイヤーカットが利用できる。 Next, the laminate block is sequentially cut a plurality of times along a direction orthogonal to the lamination direction of the transparent member. At that time, the member cut out from the laminated body block is thinly cut so that the outer shape of the member becomes a flat plate shape. For example, wire cutting can be used for cutting the laminated body block.
 次に、切断後において切り出された各部材の切断面が研磨される。これにより、研磨後の各部材が、単位反射素子10A~10I,20A~20Iとなる。 Next, the cut surface of each member cut out after cutting is polished. As a result, the polished members become unit reflecting elements 10A to 10I and 20A to 20I.
 ここで、この研磨作業においては、研磨後の単位反射素子10A~10I,20A~20Iの表面が可能な限り高い平面度を有することとなるように個々の部材の切断面の状況に応じた研磨がなされる。そのため、単位反射素子10A~10I,20A~20Iは、それぞれ異なる厚みを有することになる。 Here, in this polishing operation, the polishing of the unit reflecting elements 10A to 10I and 20A to 20I after polishing is performed according to the state of the cut surfaces of the individual members so as to have as high flatness as possible. Is made. Therefore, the unit reflection elements 10A to 10I and 20A to 20I have different thicknesses.
 次に、上記の工程を経て製作された単位反射素子10A~10Iが、所定のルールに従って平面状に並べて配置され、さらにこれらの端部同士が繋ぎ合わされる。より具体的には、平面状に並べて配置された単位反射素子10A~10Iの端部同士が、たとえばエポキシ系の接着剤によって接合される。ここで、硬化後の接着剤は、上述した接着層13となるものである。 Next, the unit reflecting elements 10A to 10I manufactured through the above steps are arranged in a plane according to a predetermined rule, and these end portions are joined together. More specifically, the end portions of the unit reflecting elements 10A to 10I arranged side by side in a plane are joined together by, for example, an epoxy adhesive. Here, the cured adhesive is the adhesive layer 13 described above.
 また、上記の工程を経て製作された単位反射素子20A~20Iが、所定のルールに従って平面状に並べて配置され、さらにこれらの端部同士が繋ぎ合わされる。より具体的には、平面状に並べて配置された単位反射素子20A~20Iの端部同士が、たとえばエポキシ系の接着剤によって接合される。ここで、硬化後の接着剤は、上述した接着層23となるものである。 Further, the unit reflecting elements 20A to 20I manufactured through the above steps are arranged in a plane according to a predetermined rule, and these end portions are joined together. More specifically, the end portions of the unit reflecting elements 20A to 20I arranged side by side in a plane are joined together by, for example, an epoxy adhesive. Here, the cured adhesive is the adhesive layer 23 described above.
 なお、本実施の形態における結像素子1の製造に際しては、これら単位反射素子10A~10I,20A~20Iの繋ぎ合わせ工程において、第1反射素子10の外側主面10aおよび第2反射素子20の外側主面20aに可能な限り段差が形成されることがないよう、その平面度を高めるための工夫が施されることになるが、その詳細については後述することとする。 In manufacturing the imaging element 1 in the present embodiment, the outer main surface 10a of the first reflecting element 10 and the second reflecting element 20 are joined in the connecting step of the unit reflecting elements 10A to 10I and 20A to 20I. In order to prevent the steps from being formed on the outer main surface 20a as much as possible, a device for increasing the flatness is provided. Details thereof will be described later.
 以上により、上述した構成の複合反射素子からなる第1反射素子10および第2反射素子20が形成されることになる。なお、第1反射素子10と第2反射素子20とは、結像素子1として組付けられた後において向きこそ違うものの、その構造自体は同じである。 Thus, the first reflective element 10 and the second reflective element 20 made of the composite reflective element having the above-described configuration are formed. The first reflective element 10 and the second reflective element 20 have the same structure, although their orientations are different after being assembled as the imaging element 1.
 図2および図3に示すように、第1反射素子10および第2反射素子20は、互いの内側主面10b,20bが対向するように配置されており、これによって厚み方向において重ね合わされている。その結果、第1反射素子10の外側主面10aによって結像素子1の第1主面1aが構成されるとともに、第2反射素子20の外側主面20aによって結像素子1の第2主面1bが構成されることになる。 As shown in FIGS. 2 and 3, the first reflecting element 10 and the second reflecting element 20 are arranged so that the inner main surfaces 10 b and 20 b face each other, and thereby overlap each other in the thickness direction. . As a result, the first main surface 1a of the imaging element 1 is constituted by the outer main surface 10a of the first reflecting element 10, and the second main surface of the imaging element 1 is formed by the outer main surface 20a of the second reflecting element 20. 1b is configured.
 ここで、第1反射素子10と第2反射素子20とは、各々に含まれる第1反射体11と第2反射体21とが互いに直交するように重ね合わされて対向配置されている。これにより、結像素子1の内部において、多数の微小なコーナーリフレクタがアレイ状に配置されることになる。 Here, the first reflecting element 10 and the second reflecting element 20 are disposed so as to be opposed to each other such that the first reflector 11 and the second reflector 21 included in each of the first reflecting element 10 and the second reflecting element 20 are orthogonal to each other. As a result, a large number of minute corner reflectors are arranged in an array in the imaging element 1.
 第1反射素子10と第2反射素子20とは、厚み方向において距離をもって配置されており、これら第1反射素子10と第2反射素子20との間の空間は、透光性接着層30によって充填されている。この透光性接着層30は、上述した空間を充填することにより、第1反射素子10と第2反射素子20とを接合することで固定している。 The first reflective element 10 and the second reflective element 20 are arranged with a distance in the thickness direction, and a space between the first reflective element 10 and the second reflective element 20 is formed by the translucent adhesive layer 30. Filled. The translucent adhesive layer 30 is fixed by bonding the first reflective element 10 and the second reflective element 20 by filling the space described above.
 ここで、透光性接着層30としては、透光性を有するものであればどのような種類の接着剤を用いることもできるが、たとえばエポキシ系の接着剤を利用することができる。好ましくは、透光性接着層30としては、第1反射素子10を構成する第1透明体12の屈折率および第2反射素子20を構成する第2透明体22の屈折率との間の屈折率差が0.02以下となる接着剤を用いる。このようにすれば、透光性接着層30と第1透明体12および第2透明体22との界面において、不要な反射や屈折、散乱等が生じることを抑制することができる。 Here, as the translucent adhesive layer 30, any kind of adhesive can be used as long as it has translucency. For example, an epoxy adhesive can be used. Preferably, the translucent adhesive layer 30 has a refractive index between the refractive index of the first transparent body 12 constituting the first reflective element 10 and the refractive index of the second transparent body 22 constituting the second reflective element 20. An adhesive with a rate difference of 0.02 or less is used. In this way, unnecessary reflection, refraction, scattering, and the like can be suppressed from occurring at the interface between the translucent adhesive layer 30 and the first transparent body 12 and the second transparent body 22.
 また、上述した単位反射素子10A~10I,20A~20Iの繋ぎ合わせ工程において使用する接着剤としては、その硬化後の屈折率が、透光性接着層30の屈折率との間で0.02以下の差となるものを用いることが好ましい。このようにすれば、単位反射素子10A~10I,20A~20Iの継ぎ目部を構成する接着層13,23と、透光性接着層30との界面において、不要な反射や屈折、散乱等が生じることが抑制できる。そのため、特に接着層13,23の幅を接着層11b,21bよりも大きく構成する場合等において、当該接着層13,23を通過する光に対する光の乱れを効果的に抑制できることになる。 Further, the adhesive used in the above-described uniting step of the unit reflecting elements 10A to 10I and 20A to 20I has a refractive index after curing of 0.02 between the refractive index of the light-transmitting adhesive layer 30. It is preferable to use the following difference. In this case, unnecessary reflection, refraction, scattering, or the like occurs at the interface between the adhesive layers 13 and 23 constituting the joints of the unit reflection elements 10A to 10I and 20A to 20I and the translucent adhesive layer 30. Can be suppressed. Therefore, particularly when the width of the adhesive layers 13 and 23 is larger than that of the adhesive layers 11b and 21b, the disturbance of light with respect to the light passing through the adhesive layers 13 and 23 can be effectively suppressed.
 図4は、図1に示す結像素子を用いることで空中映像が表示される仕組みを示す概念図である。次に、この図4を参照して、本実施の形態における結像素子1を用いることで空中映像が表示可能になる仕組みについて説明する。 FIG. 4 is a conceptual diagram showing a mechanism for displaying an aerial image by using the imaging element shown in FIG. Next, with reference to FIG. 4, a mechanism that enables an aerial image to be displayed by using the imaging element 1 in the present embodiment will be described.
 図4に示すように、本実施の形態における結像素子1を用いて空中映像を表示させるためには、結像素子1の第1主面1a側の空間位置に被投影物としての物体100が配置される。 As shown in FIG. 4, in order to display an aerial image using the imaging element 1 in the present embodiment, an object 100 as a projection object is formed at a spatial position on the first main surface 1 a side of the imaging element 1. Is placed.
 物体100から異なる方向に出た光は、結像素子1の第1主面1a(第1反射素子10の外側主面10a)を介して第1反射素子10の内部に侵入し、当該光の進行方向に位置する第1反射体11の反射面によって反射され、第1反射素子10の内側主面10bを介して透光性接着層30に達する。 The light emitted from the object 100 in different directions enters the first reflective element 10 via the first main surface 1a of the imaging element 1 (the outer main surface 10a of the first reflective element 10), and the light The light is reflected by the reflection surface of the first reflector 11 located in the traveling direction, and reaches the translucent adhesive layer 30 via the inner main surface 10 b of the first reflection element 10.
 透光性接着層30を通過した光は、第2反射素子20の内側主面20bを介して第2反射素子20の内部に侵入し、当該光の進行方向に位置する第2反射体21の反射面によって反射され、結像素子1の第2主面1b(第2反射素子20の外側主面20a)を介して結像素子1の外部へと至る。 The light that has passed through the translucent adhesive layer 30 enters the inside of the second reflective element 20 via the inner main surface 20b of the second reflective element 20, and the second reflector 21 positioned in the traveling direction of the light. The light is reflected by the reflecting surface and reaches the outside of the imaging element 1 via the second main surface 1b of the imaging element 1 (the outer main surface 20a of the second reflecting element 20).
 結像素子1の外部へと出た光は、上述した第1反射素子10および第2反射素子20における再帰反射により、結像素子1が配置された平面を基準とした物体100の対称位置に集光することになり、これによって物体100の実像200が、結像素子1の第2主面1b側の空間位置において結像されることになる。 The light emitted to the outside of the imaging element 1 is brought into a symmetrical position of the object 100 with respect to the plane on which the imaging element 1 is arranged by the retroreflection in the first reflecting element 10 and the second reflecting element 20 described above. As a result, the real image 200 of the object 100 is imaged at a spatial position on the second principal surface 1 b side of the imaging element 1.
 なお、物体100としてたとえば液晶ディスプレイを配置した場合には、当該液晶ディスプレイに表示される画像が、空中映像として表示されることになる。物体100としては、液晶ディスプレイに当然に限られるものではなく、2次元および3次元の種別を問わず、どのようなものが配置されてもよい。 Note that, for example, when a liquid crystal display is arranged as the object 100, an image displayed on the liquid crystal display is displayed as an aerial image. Of course, the object 100 is not limited to a liquid crystal display, and any object may be arranged regardless of two-dimensional or three-dimensional types.
 図5は、図1に示す結像素子の図2中に示す領域Vの拡大断面図であり、図6は、図1に示す結像素子の図3中に示す領域VIの拡大断面図である。次に、これら図5および図6を参照して、本実施の形態における結像素子1の第1反射素子10および第2反射素子20の継ぎ目部近傍の形状について詳細に説明する。 5 is an enlarged cross-sectional view of a region V shown in FIG. 2 of the imaging element shown in FIG. 1, and FIG. 6 is an enlarged cross-sectional view of a region VI shown in FIG. 3 of the imaging element shown in FIG. is there. Next, with reference to FIGS. 5 and 6, the shape in the vicinity of the joint portion of the first reflecting element 10 and the second reflecting element 20 of the imaging element 1 in the present embodiment will be described in detail.
 第1反射素子10においては、上述した単位反射素子10A~10Iの厚みの相違に基づき、これら単位反射素子10A~10Iの継ぎ目部において段差が生じている。たとえば、図5に示すように、単位反射素子10Aと単位反射素子10Bとの継ぎ目部においては、単位反射素子10Aの厚みT10Aと、単位反射素子10Bの厚みT10Bとが異なることにより、当該部分において段差が生じている。 In the first reflective element 10, a step is generated at the joint between the unit reflective elements 10A to 10I based on the difference in thickness of the unit reflective elements 10A to 10I. For example, as shown in FIG. 5, in the joint portion between the unit reflecting element 10A and the unit reflecting element 10B, the thickness T 10A of the unit reflecting element 10A is different from the thickness T 10B of the unit reflecting element 10B. There is a step in the part.
 この段差は、第1反射素子10の外側主面10a側において、厚み方向における単位反射素子10Aの外側主面と単位反射素子10Bの外側主面との位置差G10aとなって現われるとともに、第1反射素子10の内側主面10b側において、厚み方向における単位反射素子10Aの内側主面と単位反射素子10Bの内側主面との位置差G10bとなって現われる。 This step is the outer main surface 10a side of the first reflecting element 10, together appear as positional difference G 10a of the outer main surface and the outer principal surface of the unit reflective element 10B of the unit reflective element 10A in the thickness direction, the in the inner main surface 10b side of the first reflective element 10 appears as a positional difference G 10b of the inner main surface and the inner major surface of the unit reflective element 10B of the unit reflective element 10A in the thickness direction.
 なお、ここでは、その図示は省略するが、第1反射素子10に含まれる他の継ぎ目部においても、隣り合う単位反射素子の外側主面同士および内側主面同士に上述した厚み方向における位置差が現われている。そのため、第1反射素子10の外側主面10aおよび内側主面10bは、微視的に見た場合に完全な平面とは言えず、微小な凹凸を有することになる。 In addition, although illustration is abbreviate | omitted here, also in the other seam part contained in the 1st reflective element 10, the positional difference in the thickness direction mentioned above between the outer principal surfaces of adjacent unit reflective elements, and inner principal surfaces. Appears. Therefore, the outer main surface 10a and the inner main surface 10b of the first reflective element 10 are not completely flat when viewed microscopically, and have minute irregularities.
 ここで、本実施の形態における結像素子1においては、複合反射素子からなる第1反射素子10の外側主面10aの平面度が、内側主面10bの平面度よりも高くなっている。すなわち、第1反射素子10を構成する単位反射素子10A~10Iの外側主面同士の上述した厚み方向における位置差が、内側主面同士の上述した厚み方向における位置差よりも小さくなっている。 Here, in the imaging element 1 according to the present embodiment, the flatness of the outer main surface 10a of the first reflecting element 10 made of a composite reflecting element is higher than the flatness of the inner main surface 10b. That is, the positional difference in the thickness direction between the outer principal surfaces of the unit reflecting elements 10A to 10I constituting the first reflecting element 10 is smaller than the positional difference in the thickness direction between the inner principal surfaces.
 これは、上述した単位反射素子10A~10Iの厚みの違いを第1反射素子10の内側主面10b側において主として吸収することによって実現できるものである。その結果、第1反射素子10の外側主面10aの平面度をより高くすることが可能になり、これによって結像素子1の第1主面1aに大きな段差が生じなくなる。また、場合によっては、理想的に当該段差がなくなることもあり得る。 This can be realized by mainly absorbing the difference in thickness of the unit reflecting elements 10A to 10I described above on the inner main surface 10b side of the first reflecting element 10. As a result, it is possible to further increase the flatness of the outer main surface 10a of the first reflecting element 10, thereby preventing a large step from occurring on the first main surface 1a of the imaging element 1. In some cases, the step may be ideally eliminated.
 一方、第2反射素子20においても、上述した単位反射素子20A~20Iの厚みの相違に基づき、これら単位反射素子20A~20Iの継ぎ目部において段差が生じている。たとえば、図6に示すように、単位反射素子20Aと単位反射素子20Dとの継ぎ目部においては、単位反射素子20Aの厚みT20Aと、単位反射素子20Dの厚みT20Dとが異なることにより、当該部分において段差が生じている。 On the other hand, in the second reflecting element 20, a step is generated at the joint between the unit reflecting elements 20A to 20I based on the difference in thickness of the unit reflecting elements 20A to 20I. For example, as shown in FIG. 6, in the joint portion between the unit reflecting element 20A and the unit reflecting element 20D, the thickness T 20A of the unit reflecting element 20A is different from the thickness T 20D of the unit reflecting element 20D. There is a step in the part.
 この段差は、第2反射素子20の外側主面20a側において、厚み方向における単位反射素子20Aの外側主面と単位反射素子20Dの外側主面との位置差G20aとなって現われるとともに、第2反射素子20の内側主面20b側において、厚み方向における単位反射素子20Aの内側主面と単位反射素子20Bの内側主面との位置差G20bとなって現われる。 This step is the outer main surface 20a side of the second reflecting element 20, together appear as positional difference G 20a of the outer main surface and the outer principal surface of the unit reflective element 20D of unit reflective element 20A in the thickness direction, the in the inner main surface 20b side of the second reflective element 20 appears as a positional difference G 20b of the inner main surface and the inner major surface of the unit reflective element 20B of the unit reflective element 20A in the thickness direction.
 なお、ここでは、その図示は省略するが、第2反射素子20に含まれる他の継ぎ目部においても、隣り合う単位反射素子の外側主面同士および内側主面同士に上述した厚み方向における位置差が現われている。そのため、第2反射素子20の外側主面20aおよび内側主面20bは、微視的に見た場合に完全な平面とは言えず、微小な凹凸を有することになる。 In addition, although illustration is abbreviate | omitted here, also in the other seam part contained in the 2nd reflective element 20, the positional difference in the thickness direction mentioned above between the outer main surfaces of adjacent unit reflective elements, and inner main surfaces. Appears. Therefore, the outer main surface 20a and the inner main surface 20b of the second reflecting element 20 are not completely flat when viewed microscopically, and have minute irregularities.
 ここで、本実施の形態における結像素子1においては、複合反射素子からなる第2反射素子20の外側主面20aの平面度が、内側主面20bの平面度よりも高くなっている。すなわち、第2反射素子20を構成する単位反射素子20A~20Iの外側主面同士の上述した厚み方向における位置差が、内側主面同士の上述した厚み方向における位置差よりも小さくなっている。 Here, in the imaging element 1 according to the present embodiment, the flatness of the outer main surface 20a of the second reflecting element 20 made of a composite reflecting element is higher than the flatness of the inner main surface 20b. That is, the positional difference in the thickness direction between the outer principal surfaces of the unit reflecting elements 20A to 20I constituting the second reflecting element 20 is smaller than the positional difference in the thickness direction between the inner principal surfaces.
 これは、上述した単位反射素子20A~20Iの厚みの違いを第2反射素子20の内側主面20b側において主として吸収することによって実現できるものである。その結果、第2反射素子20の外側主面20aの平面度をより高くすることが可能になり、これによって結像素子1の第2主面1bに大きな段差が生じなくなる。また、場合によっては、理想的に当該段差がなくなることもあり得る。 This can be realized by mainly absorbing the difference in thickness of the unit reflecting elements 20A to 20I described above on the inner main surface 20b side of the second reflecting element 20. As a result, it is possible to further increase the flatness of the outer main surface 20a of the second reflecting element 20, so that a large step does not occur on the second main surface 1b of the imaging element 1. In some cases, the step may be ideally eliminated.
 このように、本実施の形態における結像素子1においては、透光性接着層30が位置する第1反射素子10の内側主面10b側および第2反射素子20の内側主面20b側において、単位反射素子10A~10Iの厚みの違いおよび単位反射素子20A~20Iの厚みの違いを吸収することで、結像素子1の第1主面1aおよび第2主面1bの平滑化が図られているため、当該第1主面1aおよび第2主面1bに大きな段差が生じていない。 Thus, in the imaging element 1 in the present embodiment, on the inner main surface 10b side of the first reflecting element 10 and the inner main surface 20b side of the second reflecting element 20 where the translucent adhesive layer 30 is located, By absorbing the difference in thickness of the unit reflection elements 10A to 10I and the difference in thickness of the unit reflection elements 20A to 20I, the first main surface 1a and the second main surface 1b of the imaging element 1 are smoothed. Therefore, there is no large step on the first main surface 1a and the second main surface 1b.
 そのため、上記構成を採用することにより、表示される空中映像にスジ状の欠陥が生じることが抑制または防止することが可能になり、高品位の空中映像を表示することができる結像素子とすることができる。 Therefore, by adopting the above configuration, it is possible to suppress or prevent the occurrence of streak-like defects in the displayed aerial image, and an imaging element capable of displaying a high-quality aerial image is obtained. be able to.
 加えて、上記構成を採用することにより、上述した段差部に起因した割れや欠けの発生を抑制または防止することができるとともに、ハンドリング時における手指の怪我も防止することができる。したがって、破損防止や安全性の面においても優れた結像素子とすることができる。 In addition, by adopting the above-described configuration, it is possible to suppress or prevent the occurrence of cracks and chips due to the above-described stepped portions, and it is also possible to prevent finger injury during handling. Therefore, the imaging element can be excellent in terms of prevention of damage and safety.
 なお、結像素子1の第1主面1aおよび第2主面1b(すなわち第1反射素子10の外側主面10aおよび第2反射素子20の外側主面20a)に段差が生じている場合であっても、当該段差の大きさ(すなわち、隣り合う単位反射素子の外側主面の厚み方向における位置差)は、5[μm]以下とされていることが好ましい。この範囲の段差であれば、表示される空中映像に大きな劣化は生じず、また破損防止の観点や安全性の観点からも許容できるものとなる。 Note that there is a step in the first main surface 1a and the second main surface 1b of the imaging element 1 (that is, the outer main surface 10a of the first reflecting element 10 and the outer main surface 20a of the second reflecting element 20). Even if it exists, it is preferable that the magnitude | size of the said level | step difference (namely, the positional difference in the thickness direction of the outer side main surface of an adjacent unit reflective element) shall be 5 [micrometers] or less. If the level difference is within this range, the displayed aerial image is not greatly degraded, and is acceptable from the viewpoint of preventing breakage and safety.
 一方で、結果的に第1反射素子10の内側主面10bおよび第2反射素子の内側主面20bに生じる段差は、総じて第1反射素子10の外側主面10aおよび第2反射素子20の外側主面20aに生じる段差よりも大きいことにはなるが、上述したようにこれら段差を覆うように透光性接着層30が位置することにより、当該段差において不要な反射や屈折、散乱等が生じることが抑制できるため、表示される空中映像に大きな劣化は生じない。 On the other hand, as a result, the steps generated on the inner main surface 10b of the first reflecting element 10 and the inner main surface 20b of the second reflecting element are generally outside the outer main surface 10a of the first reflecting element 10 and the second reflecting element 20. Although it is larger than the step formed on the main surface 20a, unnecessary reflection, refraction, scattering, etc. occur at the step because the translucent adhesive layer 30 is positioned so as to cover the step as described above. Therefore, the displayed aerial image is not greatly deteriorated.
 なお、好ましくは、第1反射素子10の内側主面10bおよび第2反射素子20の内側主面20bに生じる段差の大きさ(すなわち、隣り合う単位反射素子の内側主面の厚み方向における位置差)は、30[μm]以下とされる。これは、通常、透光性接着層30の厚みが100[μm]程度とされるためであり、上記段差の大きさが30[μm]を超えた場合には、第1反射素子10と第2反射素子20との間の距離を十分に小さくするための障害となるためである。 Preferably, the size of the step formed on the inner main surface 10b of the first reflecting element 10 and the inner main surface 20b of the second reflecting element 20 (that is, the positional difference between the inner main surfaces of adjacent unit reflecting elements in the thickness direction). ) Is 30 [μm] or less. This is because the thickness of the translucent adhesive layer 30 is normally about 100 [μm]. When the size of the step exceeds 30 [μm], the first reflective element 10 and the first reflective element 10 This is because it becomes an obstacle to sufficiently reduce the distance between the two reflecting elements 20.
 図7ないし図9は、本実施の形態における結像素子1の製造方法を説明するための図である。図7(A)は、第1反射素子の形成工程を示す模式的な斜視図であり、図7(B)は、図7(A)中に示すVIIB-VIIB線に沿った模式断面図である。図8(A)は、第2反射素子の形成工程を示す模式的な斜視図であり、図8(B)は、図8(A)中に示すVIIIB-VIIIB線に沿った模式断面図である。また、図9(A)は、第1反射素子と第2反射素子との接合工程を示す模式的な斜視図であり、図9(B)は、接合後の模式断面図である。次に、これら図7ないし図9を参照して、本実施の形態における結像素子1の製造方法について説明する。なお、図7(B)、図8(B)および図9(B)においては、理解を容易とするために、単位反射素子の厚みの違いを大幅に誇張して図示している。 7 to 9 are views for explaining a method of manufacturing the imaging element 1 in the present embodiment. FIG. 7A is a schematic perspective view showing a process of forming the first reflective element, and FIG. 7B is a schematic cross-sectional view taken along the line VIIB-VIIB shown in FIG. 7A. is there. FIG. 8A is a schematic perspective view showing the formation process of the second reflective element, and FIG. 8B is a schematic cross-sectional view along the line VIIIB-VIIIB shown in FIG. 8A. is there. FIG. 9A is a schematic perspective view showing the bonding process of the first reflective element and the second reflective element, and FIG. 9B is a schematic cross-sectional view after bonding. Next, a method for manufacturing the imaging element 1 in the present embodiment will be described with reference to FIGS. In FIG. 7B, FIG. 8B, and FIG. 9B, the difference in thickness of the unit reflection elements is greatly exaggerated for easy understanding.
 図7に示すように、本実施の形態における結像素子1を製造するに際しては、上述した単位反射素子10A~10Iを繋ぎ合せて第1反射素子10を形成する工程において、定盤1000が用いられる。定盤1000は、高い平面度を有する基準平面1001を有している。 As shown in FIG. 7, when the imaging element 1 according to the present embodiment is manufactured, the surface plate 1000 is used in the process of forming the first reflecting element 10 by connecting the unit reflecting elements 10A to 10I described above. It is done. The surface plate 1000 has a reference plane 1001 having high flatness.
 まず、9つの単位反射素子10A~10Iが、定盤1000の基準平面1001上に3行3列にわたって並べて配置される。その際、単位反射素子10A~10Iの各々の複数の第1反射体11と複数の第1透明体12との積層方向がいずれも同一方向を向くように、これら単位反射素子10A~10Iが配置されるとともに、隣り合う単位反射素子間に所定の間隔の隙間が設けられるようにする。 First, nine unit reflecting elements 10A to 10I are arranged on the reference plane 1001 of the surface plate 1000 so as to be arranged in 3 rows and 3 columns. At this time, the unit reflection elements 10A to 10I are arranged such that the stacking directions of the plurality of first reflectors 11 and the plurality of first transparent bodies 12 of the unit reflection elements 10A to 10I are all in the same direction. In addition, a gap having a predetermined interval is provided between adjacent unit reflection elements.
 次に、この状態を維持しつつ、隣り合う単位反射素子間に上述した隙間(図7(B)において矢印P1にて示す隙間)に沿ってたとえばエポキシ系の接着剤が流し込まれ、その後当該接着剤が硬化される。これにより、隣り合う単位反射素子間には、平面視格子状の継ぎ目部としての接着層13が形成されることになり、これによって隣り合う単位反射素子の端部同士が接合される。以上により、9つの単位反射素子10A~10Iが一体化されて複合反射素子としての単一の第1反射素子10が形成される。 Next, while maintaining this state, for example, an epoxy-based adhesive is poured along the gap (the gap indicated by the arrow P1 in FIG. 7B) between the adjacent unit reflecting elements, and then the adhesion is performed. The agent is cured. As a result, an adhesive layer 13 is formed between the adjacent unit reflection elements as a seam portion in a plan view lattice, thereby joining the ends of the adjacent unit reflection elements. As described above, the nine unit reflecting elements 10A to 10I are integrated to form a single first reflecting element 10 as a composite reflecting element.
 ここで、当該接合に際しては、定盤1000の基準平面1001に9つの単位反射素子10A~10Iの下面が接触した状態が維持されることから、9つの単位反射素子10A~10Iの下面が、この基準平面1001に倣って高い平面度を有するように維持された状態のまま、これら9つの単位反射素子10A~10Iが接合される。これにより、定盤1000に接する第1反射素子10の下面の平面度が、定盤1000に接しない当該第1反射素子10の上面の平面度よりも高くなる。 Here, at the time of the joining, since the state where the lower surfaces of the nine unit reflecting elements 10A to 10I are in contact with the reference plane 1001 of the surface plate 1000 is maintained, the lower surfaces of the nine unit reflecting elements 10A to 10I These nine unit reflection elements 10A to 10I are joined while maintaining a high flatness following the reference plane 1001. Thereby, the flatness of the lower surface of the first reflective element 10 that is in contact with the surface plate 1000 is higher than the flatness of the upper surface of the first reflective element 10 that is not in contact with the surface plate 1000.
 一方、図8に示すように、単位反射素子20A~20Iを繋ぎ合せて第2反射素子20を形成する工程においても、定盤1000が用いられる。 On the other hand, as shown in FIG. 8, the surface plate 1000 is also used in the process of forming the second reflective element 20 by connecting the unit reflective elements 20A to 20I.
 具体的には、9つの単位反射素子20A~20Iが、定盤1000の基準平面1001上に3行3列にわたって並べて配置される。その際、単位反射素子20A~20Iの各々の複数の第2反射体21と複数の第2透明体22との積層方向がいずれも同一方向を向くように、これら単位反射素子20A~20Iが配置されるとともに、隣り合う単位反射素子間に所定の間隔の隙間が設けられるようにする。 Specifically, nine unit reflecting elements 20A to 20I are arranged on the reference plane 1001 of the surface plate 1000 in 3 rows and 3 columns. At this time, the unit reflection elements 20A to 20I are arranged such that the stacking directions of the plurality of second reflectors 21 and the plurality of second transparent bodies 22 of the unit reflection elements 20A to 20I are all in the same direction. In addition, a gap having a predetermined interval is provided between adjacent unit reflection elements.
 次に、この状態を維持しつつ、隣り合う単位反射素子間に上述した隙間(図8(B)において矢印P2にて示す隙間)に沿ってたとえばエポキシ系の接着剤が流し込まれ、その後当該接着剤が硬化される。これにより、隣り合う単位反射素子間には、平面視格子状の継ぎ目部としての接着層23が形成されることになり、これによって隣り合う単位反射素子の端部同士が接合される。以上により、9つの単位反射素子20A~20Iが一体化されて複合反射素子としての単一の第2反射素子20が形成される。 Next, while maintaining this state, for example, an epoxy-based adhesive is poured along the gap described above (the gap indicated by the arrow P2 in FIG. 8B) between the adjacent unit reflecting elements, and then the adhesion is performed. The agent is cured. As a result, an adhesive layer 23 is formed between the adjacent unit reflection elements as a seam portion in a lattice pattern in plan view, whereby the ends of the adjacent unit reflection elements are joined to each other. As described above, the nine unit reflecting elements 20A to 20I are integrated to form a single second reflecting element 20 as a composite reflecting element.
 ここで、当該接合に際しては、定盤1000の基準平面1001に9つの単位反射素子20A~20Iの下面が接触した状態が維持されることから、9つの単位反射素子20A~20Iの下面が、この基準平面1001に倣って高い平面度を有するように維持された状態のまま、これら9つの単位反射素子20A~20Iが接合される。これにより、定盤1000に接する第2反射素子20の下面の平面度が、定盤1000に接しない当該第2反射素子20の上面の平面度よりも高くなる。 Here, at the time of the joining, the state in which the lower surfaces of the nine unit reflecting elements 20A to 20I are in contact with the reference plane 1001 of the surface plate 1000 is maintained, so that the lower surfaces of the nine unit reflecting elements 20A to 20I The nine unit reflection elements 20A to 20I are joined while maintaining a high flatness following the reference plane 1001. Thereby, the flatness of the lower surface of the second reflective element 20 in contact with the surface plate 1000 becomes higher than the flatness of the upper surface of the second reflective element 20 not in contact with the surface plate 1000.
 次に、図9(A)に示すように、第2反射素子20の上下が反転され、反転後の第2反射素子20の下面(すなわち、上述した接合時において定盤1000に接していなかった方の面)が、第1反射素子10の上面(すなわち、上述した接合時において定盤1000に接していなかった方の面)に対向するとともに、これら反転後の第2反射素子20の下面と第1反射素子10の上面との間に所定の大きさの隙間が形成された状態とし、この状態を維持しつつ、上記隙間にたとえばエポキシ系の接着剤を流し込んでこれを硬化させることで、第1反射素子10と第2反射素子20とを接合する。ここで、硬化後の当該接着剤は、透光性接着層30となる。 Next, as shown in FIG. 9A, the top and bottom of the second reflective element 20 are inverted, and the bottom surface of the second reflective element 20 after the inversion (that is, not touching the surface plate 1000 at the time of joining described above). And the lower surface of the second reflective element 20 after reversal, and the upper surface of the first reflective element 10 (that is, the surface that is not in contact with the surface plate 1000 at the time of joining). A state where a gap of a predetermined size is formed between the upper surface of the first reflecting element 10 and maintaining this state, for example, by pouring an epoxy adhesive into the gap and curing it, The first reflective element 10 and the second reflective element 20 are joined. Here, the adhesive after curing becomes the translucent adhesive layer 30.
 すなわち、本実施の形態における結像素子1の製造方法においては、第1反射素子10を形成する工程において定盤1000に接触配置された側の主面が第1反射素子10の外側主面10aとなるとともに、第2反射素子20を形成する工程において定盤1000に接触配置された側の主面が第2反射素子20の外側主面20aとなるように、第1反射素子10と第2反射素子20とが重ね合わされて固定される。 In other words, in the method of manufacturing the imaging element 1 in the present embodiment, the main surface on the side disposed in contact with the surface plate 1000 in the step of forming the first reflective element 10 is the outer main surface 10a of the first reflective element 10. In addition, in the step of forming the second reflective element 20, the first reflective element 10 and the second reflective element 10 are arranged so that the main surface on the side arranged in contact with the surface plate 1000 becomes the outer main surface 20 a of the second reflective element 20. The reflective element 20 is overlapped and fixed.
 以上により、図9(B)に示すように、第1反射素子10の外側主面10aにて構成される第1主面1aおよび第2反射素子20の外側主面20aにて構成される第2主面1bが、いずれも高い平面度を有するように構成された結像素子1が製造されることになる。 As described above, as shown in FIG. 9B, the first main surface 1 a configured by the outer main surface 10 a of the first reflecting element 10 and the outer main surface 20 a of the second reflecting element 20 are configured. The imaging element 1 configured such that the two principal surfaces 1b have high flatness is manufactured.
 ここで、本発明者らは、上述した製造方法に従って結像素子を製造した場合に、製造後の結像素子において第1主面および第2主面にそれぞれどの程度の段差が生じるかを、実際に試作を行なうことによって確認した。 Here, when the imaging element is manufactured according to the above-described manufacturing method, the inventors determine how many steps are generated on the first main surface and the second main surface in the manufactured imaging element, This was confirmed by actually making a prototype.
 当該製造に際しては、第1透明体および第2透明体としてホウケイ酸ガラス(屈折率1.52)を用い、第1反射体および第2反射体を構成する反射膜としてアルミニウム膜を用いた。単位反射素子としては、厚みの狙い値が1.5[mm]で、大きさが150[mm]角のものを製作することとし、反射面のピッチは、狙い値で500[μm]とした。なお、反射膜の幅は、おおよそ100[nm]程度である。また、単位反射素子同士を接合する継ぎ目部としての接着層の幅は、20[μm]とした。 In the production, borosilicate glass (refractive index 1.52) was used as the first transparent body and the second transparent body, and an aluminum film was used as the reflective film constituting the first reflector and the second reflector. As the unit reflection element, a target with a target thickness of 1.5 [mm] and a size of 150 [mm] square is manufactured, and the pitch of the reflection surface is set to 500 [μm] as a target value. . The width of the reflective film is about 100 [nm]. Further, the width of the adhesive layer as a joint portion for joining the unit reflecting elements to each other was set to 20 [μm].
 反射膜同士を接合する接着剤、単位反射素子同士を接合する接着剤、および、第1反射素子と第2反射素子とを接合する接着剤には、エポキシ系の接着剤(屈折率1.51)を用いた。なお、第1反射素子と第2反射素子とを接合する接着剤の厚み(すなわち、透光性接着層の厚み)は、その狙い値が100[μm]である。 Epoxy adhesives (refractive index of 1.51) are used for the adhesive for joining the reflective films, the adhesive for joining the unit reflective elements, and the adhesive for joining the first reflective element and the second reflective element. ) Was used. The target value of the thickness of the adhesive for joining the first reflective element and the second reflective element (that is, the thickness of the translucent adhesive layer) is 100 [μm].
 上記条件に基づいて、第1反射素子を構成することとなる9つの単位反射素子を製作し、その各々の中心部での厚みを測定したところ、最大のものでその厚みが1.522[mm]であり、最小のものでその厚みが1.491[mm]であった。一方で、第2反射素子を構成することとなる9つの単位反射素子を製作し、その各々の中心部での厚みを測定したところ、最大のものでその厚みが1.519[mm]であり、最小のものでその厚みが1.489[mm]であった。 Based on the above conditions, nine unit reflecting elements constituting the first reflecting element were manufactured, and the thickness at the center of each unit was measured. The maximum thickness was 1.522 [mm. It was the smallest and its thickness was 1.491 [mm]. On the other hand, nine unit reflecting elements that constitute the second reflecting element were manufactured, and the thickness at the center of each unit was measured. The maximum thickness was 1.519 [mm]. The minimum thickness was 1.490 [mm].
 これらを用いて、上述した定盤を使用しての第1反射素子の形成および第2反射素子の形成を行ない、その後、当該第1反射素子と第2反射素子の接合をさらに行なった。 Using these, the first reflective element and the second reflective element were formed using the above-described surface plate, and then the first reflective element and the second reflective element were further joined.
 このようにして製造された結像素子の第1主面(すなわち、第1反射素子の外側主面)に形成された段差の最大部分の大きさ(高さ)を測定したところ、結像素子の厚み方向において、これが1[μm]であった。一方、このようにして製造された結像素子の第2主面(すなわち、第2反射素子の外側主面)に形成された段差の最大部分の大きさ(高さ)を測定したところ、結像素子の厚み方向において、これが3[μm]であった。 When the size (height) of the maximum portion of the step formed on the first main surface of the imaging element thus manufactured (that is, the outer main surface of the first reflecting element) was measured, the imaging element was measured. This was 1 [μm] in the thickness direction. On the other hand, when the size (height) of the maximum portion of the step formed on the second main surface of the imaging element thus manufactured (that is, the outer main surface of the second reflecting element) was measured, This was 3 [μm] in the thickness direction of the image element.
 なお、これら結像素子の第1主面および第2主面に僅かに段差が生じている理由は、研磨後の単位結像素子において、僅かに反りが発生していることが影響しているものと考察される。 The reason why the first main surface and the second main surface of these imaging elements are slightly stepped is that the unit imaging element after polishing is slightly warped. It is considered a thing.
 以上の結果より、上述した本実施の形態における結像素子1の製造方法を適用することにより、結像素子1の第1主面1aおよび第2主面1bを非常に高い平面度とすることができることが、実験的にも確認されたと言える。 From the above results, the first principal surface 1a and the second principal surface 1b of the imaging element 1 are made to have very high flatness by applying the above-described manufacturing method of the imaging element 1 in the present embodiment. This can be said to be confirmed experimentally.
 ここで、上述した本発明の実施の形態において開示した特徴的な構成を要約すると、以下のとおりとなる。 Here, the characteristic configuration disclosed in the above-described embodiment of the present invention is summarized as follows.
 結像素子は、厚み方向において相対して位置する第1主面および第2主面を有し、上記第1主面側の空間位置に配置される物体の実像を上記第2主面側の空間位置において結像させるものであって、上記第1主面側に配置された平板状の第1反射素子と、上記第2主面側に配置された平板状の第2反射素子とを備えている。上記第1反射素子は、上記厚み方向に直交する第1方向に沿って並ぶように互いに平行に配置された複数の第1反射体と、上記複数の第1反射体のうちの隣り合う第1反射体間を充填する複数の第1透明体とを含んでいる。上記第2反射素子は、上記厚み方向および上記第1方向の双方に直交する第2方向に沿って並ぶように互いに平行に配置された複数の第2反射体と、上記複数の第2反射体のうちの隣り合う第2反射体間を充填する複数の第2透明体とを含んでいる。上記第1反射素子は、上記第2反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ上記第1主面を規定する外側主面とを有している。上記第2反射素子は、上記第1反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ上記第2主面を規定する外側主面とを有している。上記第2反射素子は、面状に並べて配置された平板状の複数の単位反射素子と、当該複数の単位反射素子の端部同士を繋ぎ合わせる継ぎ目部とを含む複合反射素子にて構成されている。上記複合反射素子からなる上記第2反射素子の上記外側主面の平面度は、上記複合反射素子からなる上記第2反射素子の上記内側主面の平面度よりも高い。 The imaging element has a first main surface and a second main surface that are positioned relative to each other in the thickness direction, and a real image of an object disposed at a spatial position on the first main surface side is on the second main surface side. An image is formed at a spatial position, and includes a flat plate-like first reflective element arranged on the first main surface side and a flat plate-like second reflective element arranged on the second main surface side. ing. The first reflective element includes a plurality of first reflectors arranged in parallel to each other so as to be aligned along a first direction orthogonal to the thickness direction, and an adjacent first of the plurality of first reflectors. A plurality of first transparent bodies filling between the reflectors. The second reflecting element includes a plurality of second reflectors arranged in parallel to each other so as to be aligned along a second direction orthogonal to both the thickness direction and the first direction, and the plurality of second reflectors. And a plurality of second transparent bodies filling between adjacent second reflectors. The first reflecting element has an inner main surface that faces the second reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the first main surface. The second reflecting element has an inner main surface that faces the first reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the second main surface. The second reflective element is composed of a composite reflective element including a plurality of flat unit reflective elements arranged side by side in a plane and a joint that joins end portions of the plurality of unit reflective elements. Yes. The flatness of the outer main surface of the second reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the second reflective element made of the composite reflective element.
 上記結像素子にあっては、上記第2反射素子に含まれる上記複数の単位反射素子のうち、隣り合う単位反射素子の上記継ぎ目部における上記厚み方向に沿った段差の大きさが、上記第2反射素子の上記外側主面側において5[μm]以下であることが好ましい。 In the imaging element, among the plurality of unit reflection elements included in the second reflection element, the size of the step along the thickness direction in the joint portion of the adjacent unit reflection elements is the first unit. It is preferable that it is 5 [micrometers] or less in the said outer main surface side of 2 reflective elements.
 上記結像素子にあっては、上記第2反射素子に含まれる上記複数の単位反射素子のうち、隣り合う単位反射素子の上記継ぎ目部における上記厚み方向に沿った段差の大きさが、上記第2反射素子の上記内側主面側において30[μm]以下であることが好ましい。 In the imaging element, among the plurality of unit reflection elements included in the second reflection element, the size of the step along the thickness direction in the joint portion of the adjacent unit reflection elements is the first unit. It is preferable that it is 30 [micrometers] or less in the said inner main surface side of 2 reflective elements.
 上記結像素子にあっては、上記第1反射素子と上記第2反射素子とが、透光性の接着層を介して接合されていることが好ましい。 In the imaging element, it is preferable that the first reflective element and the second reflective element are bonded via a translucent adhesive layer.
 上記結像素子にあっては、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第2透明体の屈折率との差が、0.02以下であることが好ましい。 In the imaging element, the difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the second transparent body is 0.02 or less. Preferably there is.
 上記結像素子にあっては、上記第2反射素子に含まれる上記継ぎ目部が、透光性の接着層にて構成されていてもよく、その場合には、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第2反射素子に含まれる上記継ぎ目部を構成する上記接着層の屈折率との差が、0.02以下であることが好ましい。 In the imaging element, the joint portion included in the second reflective element may be formed of a light-transmitting adhesive layer. In that case, the first reflective element and the first reflective element are included. It is preferable that the difference between the refractive index of the adhesive layer that joins the two reflective elements and the refractive index of the adhesive layer that constitutes the joint included in the second reflective element is 0.02 or less.
 上記結像素子にあっては、上記第1反射素子が、面状に並べて配置された平板状の複数の単位反射素子と、当該複数の単位反射素子の端部同士を繋ぎ合わせる継ぎ目部とを含む複合反射素子にて構成されていてもよく、その場合には、上記複合反射素子からなる上記第1反射素子の上記外側主面の平面度が、上記複合反射素子からなる上記第1反射素子の上記内側主面の平面度よりも高いことが好ましい。 In the imaging element, the first reflecting element includes a plurality of flat unit reflecting elements arranged in a plane, and a joint portion that joins ends of the plurality of unit reflecting elements. In this case, the flatness of the outer main surface of the first reflective element made of the composite reflective element is the first reflective element made of the composite reflective element. It is preferable that the flatness of the inner main surface is higher.
 上記結像素子において、上記第2反射素子に加えて上記第1反射素子が複合反射素子にて構成されている場合には、上記第1反射素子に含まれる上記複数の単位反射素子のうち、隣り合う単位反射素子の上記継ぎ目部における上記厚み方向に沿った段差の大きさが、上記第1反射素子の上記外側主面側において5[μm]以下であることが好ましい。 In the imaging element, in the case where the first reflective element is composed of a composite reflective element in addition to the second reflective element, among the plurality of unit reflective elements included in the first reflective element, It is preferable that the size of the step along the thickness direction in the joint portion of the adjacent unit reflecting elements is 5 [μm] or less on the outer main surface side of the first reflecting element.
 上記結像素子において、上記第2反射素子に加えて上記第1反射素子が複合反射素子にて構成されている場合には、上記第1反射素子に含まれる上記複数の単位反射素子のうち、隣り合う単位反射素子の上記継ぎ目部における上記厚み方向に沿った段差の大きさが、上記第1反射素子の上記内側主面側において30[μm]以下であることが好ましい。 In the imaging element, in the case where the first reflective element is composed of a composite reflective element in addition to the second reflective element, among the plurality of unit reflective elements included in the first reflective element, It is preferable that the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is 30 [μm] or less on the inner main surface side of the first reflection element.
 上記結像素子において、上記第2反射素子に加えて上記第1反射素子が複合反射素子にて構成されている場合には、上記第1反射素子と上記第2反射素子とが、透光性の接着層を介して接合されていることが好ましい。 In the imaging element, when the first reflective element is composed of a composite reflective element in addition to the second reflective element, the first reflective element and the second reflective element are translucent. It is preferable to be bonded via an adhesive layer.
 上記結像素子において、上記第2反射素子に加えて上記第1反射素子が複合反射素子にて構成されている場合には、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第1透明体の屈折率との差が、0.02以下であるとともに、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第2透明体の屈折率との差が、0.02以下であることが好ましい。 In the imaging element, in the case where the first reflecting element is composed of a composite reflecting element in addition to the second reflecting element, the bonding for joining the first reflecting element and the second reflecting element is performed. The difference between the refractive index of the layer and the refractive index of the first transparent body is 0.02 or less, and the refractive index of the adhesive layer that joins the first reflective element and the second reflective element; The difference from the refractive index of the second transparent body is preferably 0.02 or less.
 上記結像素子において、上記第2反射素子に加えて上記第1反射素子が複合反射素子にて構成されている場合には、上記第1反射素子に含まれる上記継ぎ目部および上記第2反射素子に含まれる上記継ぎ目部が、いずれも透光性の接着層にて構成されていてもよく、その場合には、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第1反射素子に含まれる上記継ぎ目部を構成する上記接着層の屈折率との差が、0.02以下であるとともに、上記第1反射素子と上記第2反射素子とを接合する上記接着層の屈折率と、上記第2反射素子に含まれる上記継ぎ目部を構成する上記接着層の屈折率との差が、0.02以下であることが好ましい。 In the imaging element, when the first reflecting element is composed of a composite reflecting element in addition to the second reflecting element, the joint portion and the second reflecting element included in the first reflecting element The seam portion included in each may be formed of a translucent adhesive layer, in which case the refraction of the adhesive layer joining the first reflective element and the second reflective element The difference between the refractive index and the refractive index of the adhesive layer constituting the seam portion included in the first reflective element is 0.02 or less, and the first reflective element and the second reflective element are joined The difference between the refractive index of the adhesive layer and the refractive index of the adhesive layer constituting the joint part included in the second reflective element is preferably 0.02 or less.
 第1の局面に基づく結像素子の製造方法は、上述した結像素子を製造するための製造方法であって、上記第1反射素子を形成する工程と、上記第2反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第2反射素子を形成する工程と、上記第2反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第2反射素子の上記外側主面となるように、上記第1反射素子と上記第2反射素子とを重ね合わせて固定する工程とを備える。 An imaging element manufacturing method according to a first aspect is a manufacturing method for manufacturing the above-described imaging element, the step of forming the first reflecting element, and the plurality of the second reflecting elements. Forming the second reflective element by joining the end portions of the plurality of unit reflective elements in a state where the unit reflective elements are arranged in a plane on the surface plate, and the second reflective element is In the forming step, the first reflective element and the second reflective element are overlapped and fixed so that the main surface on the side placed in contact with the surface plate becomes the outer main surface of the second reflective element. A process.
 第2の局面に基づく結像素子の製造方法は、上述した結像素子を製造するための製造方法であって、上記第1反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第1反射素子を形成する工程と、上記第2反射素子となる上記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、上記第2反射素子を形成する工程と、上記第1反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第1反射素子の上記外側主面となるとともに、上記第2反射素子を形成する工程において上記定盤に接触配置された側の主面が上記第2反射素子の上記外側主面となるように、上記第1反射素子と上記第2反射素子とを重ね合わせて固定する工程とを備える。 An imaging element manufacturing method according to a second aspect is a manufacturing method for manufacturing the imaging element described above, wherein the plurality of unit reflection elements to be the first reflection element are planar on a surface plate. The end portions of the plurality of unit reflection elements are connected to each other in a state of being arranged side by side, and the step of forming the first reflection element and the plurality of unit reflection elements to be the second reflection element are arranged on a surface plate. In the state in which the end portions of the plurality of unit reflection elements are connected to each other in a state of being arranged in a plane, the step of forming the second reflection element and the step of forming the first reflection element are performed on the surface plate. The main surface on the side where the contact is arranged becomes the outer main surface of the first reflecting element, and the main surface on the side arranged in contact with the surface plate in the step of forming the second reflecting element is the second reflecting surface. The main outside of the element As a, and a step of fixing by superimposing and the first reflecting element and the second reflective element.
 なお、上述した本発明の実施の形態においては、被投影物としての物体が配置される側の主面である第1主面と、当該物体の実像が結像される側の主面である第2主面との双方が、高い平面度を有するように構成されてなる結像素子を例示して説明を行なったが、必ずしもこのように構成する必要はなく、少なくともこのうちの第2主面が高い平面度を有するように構成されていればよい。このように構成すれば、表示される空中映像にスジ状の欠陥が生じることが抑制または防止可能になり、高品位の空中映像を表示することができる結像素子とできる。 In the embodiment of the present invention described above, the first main surface, which is the main surface on the side where the object as the projection object is arranged, and the main surface on the side where the real image of the object is formed. Although the description has been made by exemplifying the imaging element in which both the second main surface and the second main surface are configured to have high flatness, it is not always necessary to configure in this way, and at least the second main surface among them is not necessary. What is necessary is just to be comprised so that a surface may have high flatness. With this configuration, it is possible to suppress or prevent the occurrence of streak-like defects in the displayed aerial image, and it is possible to provide an imaging element that can display a high-quality aerial image.
 このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Thus, the above-described embodiment disclosed herein is illustrative in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 結像素子、1a 第1主面、1b 第2主面、10 第1反射素子、10A~10I 単位反射素子、10a 外側主面、10b 内側主面、11 第1反射体、11a 反射膜、11b 接着層、12 第1透明体、13 接着層、20 第2反射素子、20A~20I 単位反射素子、20a 外側主面、20b 内側主面、21 第2反射体、21a 反射膜、21b 接着層、22 第2透明体、23 接着層、30 透光性接着層、100 物体、200 実像、1000 定盤、1001 基準平面。 DESCRIPTION OF SYMBOLS 1 Imaging element, 1a 1st main surface, 1b 2nd main surface, 10 1st reflective element, 10A-10I unit reflective element, 10a outer main surface, 10b inner main surface, 11 1st reflector, 11a reflective film, 11b adhesive layer, 12 first transparent body, 13 adhesive layer, 20 second reflective element, 20A to 20I unit reflective element, 20a outer main surface, 20b inner main surface, 21 second reflector, 21a reflective film, 21b adhesive layer 22, second transparent body, 23 adhesive layer, 30 translucent adhesive layer, 100 object, 200 real image, 1000 surface plate, 1001 reference plane.

Claims (14)

  1.  厚み方向において相対して位置する第1主面および第2主面を有し、前記第1主面側の空間位置に配置される物体の実像を前記第2主面側の空間位置において結像させる結像素子であって、
     前記第1主面側に配置された平板状の第1反射素子と、
     前記第2主面側に配置された平板状の第2反射素子とを備え、
     前記第1反射素子は、前記厚み方向に直交する第1方向に沿って並ぶように互いに平行に配置された複数の第1反射体と、前記複数の第1反射体のうちの隣り合う第1反射体間を充填する複数の第1透明体とを含み、
     前記第2反射素子は、前記厚み方向および前記第1方向の双方に直交する第2方向に沿って並ぶように互いに平行に配置された複数の第2反射体と、前記複数の第2反射体のうちの隣り合う第2反射体間を充填する複数の第2透明体とを含み、
     前記第1反射素子は、前記第2反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ前記第1主面を規定する外側主面とを有し、
     前記第2反射素子は、前記第1反射素子に対向する内側主面と、当該内側主面と相対して位置しかつ前記第2主面を規定する外側主面とを有し、
     前記第2反射素子が、面状に並べて配置された平板状の複数の単位反射素子と、当該複数の単位反射素子の端部同士を繋ぎ合わせる継ぎ目部とを含む複合反射素子からなり、
     前記複合反射素子からなる前記第2反射素子の前記外側主面の平面度が、前記複合反射素子からなる前記第2反射素子の前記内側主面の平面度よりも高い、結像素子。
    A real image of an object having a first main surface and a second main surface positioned relative to each other in the thickness direction and disposed at a spatial position on the first main surface side is formed at a spatial position on the second main surface side An imaging element to cause
    A flat plate-like first reflecting element disposed on the first main surface side;
    A flat plate-like second reflective element disposed on the second main surface side,
    The first reflecting element includes a plurality of first reflectors arranged in parallel to each other so as to be aligned along a first direction orthogonal to the thickness direction, and an adjacent first of the plurality of first reflectors. A plurality of first transparent bodies filling between the reflectors,
    The second reflective element includes a plurality of second reflectors arranged in parallel to each other so as to be aligned along a second direction orthogonal to both the thickness direction and the first direction, and the plurality of second reflectors A plurality of second transparent bodies filling between adjacent second reflectors,
    The first reflecting element has an inner main surface that faces the second reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the first main surface;
    The second reflecting element has an inner main surface that faces the first reflecting element, and an outer main surface that is positioned opposite to the inner main surface and that defines the second main surface;
    The second reflective element comprises a composite reflective element including a plurality of flat unit reflective elements arranged side by side and a joint that joins ends of the plurality of unit reflective elements,
    The imaging element, wherein the flatness of the outer main surface of the second reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the second reflective element made of the composite reflective element.
  2.  前記第2反射素子に含まれる前記複数の単位反射素子のうち、隣り合う単位反射素子の前記継ぎ目部における前記厚み方向に沿った段差の大きさが、前記第2反射素子の前記外側主面側において5[μm]以下である、請求項1に記載の結像素子。 Among the plurality of unit reflection elements included in the second reflection element, the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is the outer main surface side of the second reflection element. The imaging element according to claim 1, which is 5 [μm] or less.
  3.  前記第2反射素子に含まれる前記複数の単位反射素子のうち、隣り合う単位反射素子の前記継ぎ目部における前記厚み方向に沿った段差の大きさが、前記第2反射素子の前記内側主面側において30[μm]以下である、請求項1または2に記載の結像素子。 Among the plurality of unit reflection elements included in the second reflection element, the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is the inner main surface side of the second reflection element. The imaging element according to claim 1, wherein the imaging element is 30 [μm] or less.
  4.  前記第1反射素子と前記第2反射素子とが、透光性の接着層を介して接合されている、請求項1から3のいずれかに記載の結像素子。 The imaging element according to any one of claims 1 to 3, wherein the first reflective element and the second reflective element are joined together through a translucent adhesive layer.
  5.  前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第2透明体の屈折率との差が、0.02以下である、請求項4に記載の結像素子。 The connection according to claim 4, wherein a difference between a refractive index of the adhesive layer that joins the first reflective element and the second reflective element and a refractive index of the second transparent body is 0.02 or less. Image element.
  6.  前記第2反射素子に含まれる前記継ぎ目部が、透光性の接着層にて構成され、
     前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第2反射素子に含まれる前記継ぎ目部を構成する前記接着層の屈折率との差が、0.02以下である、請求項5に記載の結像素子。
    The seam part included in the second reflective element is composed of a translucent adhesive layer,
    The difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the adhesive layer that forms the joint included in the second reflective element is 0. The imaging element according to claim 5, which is 02 or less.
  7.  前記第1反射素子が、面状に並べて配置された平板状の複数の単位反射素子と、当該複数の単位反射素子の端部同士を繋ぎ合わせる継ぎ目部とを含む複合反射素子からなり、
     前記複合反射素子からなる前記第1反射素子の前記外側主面の平面度が、前記複合反射素子からなる前記第1反射素子の前記内側主面の平面度よりも高い、請求項1から3のいずれかに記載の結像素子。
    The first reflective element is composed of a composite reflective element including a plurality of flat unit reflective elements arranged side by side and a joint that joins end portions of the plurality of unit reflective elements.
    The flatness of the outer main surface of the first reflective element made of the composite reflective element is higher than the flatness of the inner main surface of the first reflective element made of the composite reflective element. The imaging element according to any one of the above.
  8.  前記第1反射素子に含まれる前記複数の単位反射素子のうち、隣り合う単位反射素子の前記継ぎ目部における前記厚み方向に沿った段差の大きさが、前記第1反射素子の前記外側主面側において5[μm]以下である、請求項7に記載の結像素子。 Of the plurality of unit reflection elements included in the first reflection element, the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is the outer main surface side of the first reflection element. The imaging element according to claim 7, which is 5 μm or less.
  9.  前記第1反射素子に含まれる前記複数の単位反射素子のうち、隣り合う単位反射素子の前記継ぎ目部における前記厚み方向に沿った段差の大きさが、前記第1反射素子の前記内側主面側において30[μm]以下である、請求項7または8に記載の結像素子。 Among the plurality of unit reflection elements included in the first reflection element, the size of the step along the thickness direction in the joint portion of adjacent unit reflection elements is the inner main surface side of the first reflection element. The imaging element according to claim 7, wherein the imaging element is 30 μm or less.
  10.  前記第1反射素子と前記第2反射素子とが、透光性の接着層を介して接合されている、請求項7から9のいずれかに記載の結像素子。 The imaging element according to any one of claims 7 to 9, wherein the first reflective element and the second reflective element are joined together through a translucent adhesive layer.
  11.  前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第1透明体の屈折率との差が、0.02以下であり、
     前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第2透明体の屈折率との差が、0.02以下である、請求項10に記載の結像素子。
    The difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the first transparent body is 0.02 or less,
    The connection according to claim 10, wherein a difference between a refractive index of the adhesive layer that joins the first reflective element and the second reflective element and a refractive index of the second transparent body is 0.02 or less. Image element.
  12.  前記第1反射素子に含まれる前記継ぎ目部および前記第2反射素子に含まれる前記継ぎ目部が、いずれも透光性の接着層にて構成され、
     前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第1反射素子に含まれる前記継ぎ目部を構成する前記接着層の屈折率との差が、0.02以下であり、
     前記第1反射素子と前記第2反射素子とを接合する前記接着層の屈折率と、前記第2反射素子に含まれる前記継ぎ目部を構成する前記接着層の屈折率との差が、0.02以下である、請求項11に記載の結像素子。
    The seam part included in the first reflective element and the seam part included in the second reflective element are both composed of a translucent adhesive layer,
    The difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the adhesive layer that constitutes the joint included in the first reflective element is 0. 02 or less,
    The difference between the refractive index of the adhesive layer that joins the first reflective element and the second reflective element and the refractive index of the adhesive layer that forms the joint included in the second reflective element is 0. The imaging element according to claim 11, which is 02 or less.
  13.  請求項1から6のいずれかに記載の結像素子を製造するための製造方法であって、
     前記第1反射素子を形成する工程と、
     前記第2反射素子となる前記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、前記第2反射素子を形成する工程と、
     前記第2反射素子を形成する工程において前記定盤に接触配置された側の主面が前記第2反射素子の前記外側主面となるように、前記第1反射素子と前記第2反射素子とを重ね合わせて固定する工程とを備えた、結像素子の製造方法。
    A manufacturing method for manufacturing the imaging element according to claim 1,
    Forming the first reflective element;
    The second reflective elements are formed by connecting the end portions of the plurality of unit reflective elements in a state where the plurality of unit reflective elements to be the second reflective elements are arranged in a plane on a surface plate. Process,
    In the step of forming the second reflecting element, the first reflecting element and the second reflecting element are arranged such that the main surface on the side arranged in contact with the surface plate becomes the outer main surface of the second reflecting element. A method for manufacturing an imaging element, comprising the step of superimposing and fixing.
  14.  請求項7から12のいずれかに記載の結像素子を製造するための製造方法であって、
     前記第1反射素子となる前記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、前記第1反射素子を形成する工程と、
     前記第2反射素子となる前記複数の単位反射素子を定盤上において面状に並べて配置した状態で当該複数の単位反射素子の端部同士を繋ぎ合わせることにより、前記第2反射素子を形成する工程と、
     前記第1反射素子を形成する工程において前記定盤に接触配置された側の主面が前記第1反射素子の前記外側主面となるとともに、前記第2反射素子を形成する工程において前記定盤に接触配置された側の主面が前記第2反射素子の前記外側主面となるように、前記第1反射素子と前記第2反射素子とを重ね合わせて固定する工程とを備えた、結像素子の製造方法。
    A manufacturing method for manufacturing the imaging element according to any one of claims 7 to 12,
    The first reflecting elements are formed by connecting the end portions of the plurality of unit reflecting elements in a state where the plurality of unit reflecting elements to be the first reflecting elements are arranged in a plane on a surface plate. Process,
    The second reflective elements are formed by connecting the end portions of the plurality of unit reflective elements in a state where the plurality of unit reflective elements to be the second reflective elements are arranged in a plane on a surface plate. Process,
    In the step of forming the first reflective element, the main surface on the side arranged in contact with the surface plate becomes the outer main surface of the first reflective element, and in the step of forming the second reflective element, the surface plate And a step of superimposing and fixing the first reflective element and the second reflective element so that the main surface on the side disposed in contact with the second reflective element is the outer main surface of the second reflective element. Manufacturing method of image element.
PCT/JP2017/006285 2016-02-26 2017-02-21 Image-forming element and method for producing same WO2017146017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501688A JP6372630B2 (en) 2016-02-26 2017-02-21 Imaging element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036133 2016-02-26
JP2016036133 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146017A1 true WO2017146017A1 (en) 2017-08-31

Family

ID=59685167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006285 WO2017146017A1 (en) 2016-02-26 2017-02-21 Image-forming element and method for producing same

Country Status (2)

Country Link
JP (1) JP6372630B2 (en)
WO (1) WO2017146017A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122085A1 (en) * 2012-02-14 2013-08-22 シャープ株式会社 Reflective imaging element and optical system
WO2013175626A1 (en) * 2012-05-25 2013-11-28 パイオニア株式会社 Reflective plane-symmetrical image-formation element, spatial video image display device, and method for manufacturing reflective plane-symmetrical image-formation element
WO2013179405A1 (en) * 2012-05-30 2013-12-05 パイオニア株式会社 Method for manufacturing reflective plane-symmetrical image-formation element, reflective plane-symmetrical image-formation element, and space image display device provided with reflective plane-symmetrical image-formation element
US20140253880A1 (en) * 2013-03-07 2014-09-11 Seiko Epson Corporation Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122085A1 (en) * 2012-02-14 2013-08-22 シャープ株式会社 Reflective imaging element and optical system
WO2013175626A1 (en) * 2012-05-25 2013-11-28 パイオニア株式会社 Reflective plane-symmetrical image-formation element, spatial video image display device, and method for manufacturing reflective plane-symmetrical image-formation element
WO2013179405A1 (en) * 2012-05-30 2013-12-05 パイオニア株式会社 Method for manufacturing reflective plane-symmetrical image-formation element, reflective plane-symmetrical image-formation element, and space image display device provided with reflective plane-symmetrical image-formation element
US20140253880A1 (en) * 2013-03-07 2014-09-11 Seiko Epson Corporation Display device

Also Published As

Publication number Publication date
JPWO2017146017A1 (en) 2018-08-02
JP6372630B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017043456A1 (en) Method for manufacturing optical control panel, optical control panel, optical imaging device, and spatial image forming system
WO2012133403A1 (en) Reflective imaging element, method of manufacturing reflective imaging element and optical system
JP6104904B2 (en) Method for manufacturing reflection-type plane-symmetric imaging element, reflection-type plane-symmetric imaging element, and spatial image display device including the reflection-type plane-symmetric imaging element
JP2020506409A (en) Light guide device with optical blocking end and method of manufacturing the same
KR100823751B1 (en) Optical product and method for manufacturing the optical product
KR20140051164A (en) Optical guidance device and method of manufacturing such a device
JP6446335B2 (en) Imaging optical element and manufacturing method thereof
JP6654446B2 (en) Aerial image display device and aerial image display device
JP6574910B2 (en) Reflective aerial imaging element
JP2017173527A (en) Aerial video display device
WO2014024677A1 (en) Size-altering optical image forming device and manufacturing method therefor
WO2017175671A1 (en) Imaging element
JP6394829B2 (en) Imaging element
JP6372630B2 (en) Imaging element and manufacturing method thereof
JP2016180785A (en) Reflection type aerial image formation element and manufacturing method thereof
JP6569463B2 (en) Method for manufacturing imaging optical element
WO2016132984A1 (en) Optical element, reflective aerial image forming element using same, and manufacturing methods therefor
JP5904436B2 (en) Method for manufacturing a large reflective plane-symmetric imaging element
TW201518784A (en) Display device, optical device thereof and manufacturing method of optical device
JP5860143B2 (en) Reflective plane-symmetric imaging element, spatial image display device, and manufacturing method of reflective plane-symmetric imaging element
JP2017194535A (en) Method of manufacturing imaging element
JPWO2020031140A5 (en)
JP5345455B2 (en) Multilayer lens, laminated wafer lens, and manufacturing method thereof
JP2019053163A (en) 2-sided corner reflector array and manufacturing method therefor
JP2017181853A (en) Method for manufacturing imaging element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756455

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756455

Country of ref document: EP

Kind code of ref document: A1