WO2017145972A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2017145972A1
WO2017145972A1 PCT/JP2017/006068 JP2017006068W WO2017145972A1 WO 2017145972 A1 WO2017145972 A1 WO 2017145972A1 JP 2017006068 W JP2017006068 W JP 2017006068W WO 2017145972 A1 WO2017145972 A1 WO 2017145972A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
hologram
illuminated area
illuminated
along
Prior art date
Application number
PCT/JP2017/006068
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 西尾
牧夫 倉重
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016249894A external-priority patent/JP6344463B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US16/078,833 priority Critical patent/US10690932B2/en
Priority to EP17756410.1A priority patent/EP3421868A4/en
Priority to CN201780012675.XA priority patent/CN108700266B/en
Publication of WO2017145972A1 publication Critical patent/WO2017145972A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Definitions

  • the present disclosure relates to an illumination device that illuminates an illuminated area having a longitudinal direction.
  • an illumination device including a light source and a hologram element is known.
  • the hologram element can illuminate the road surface with a desired pattern by diffracting light from the light source.
  • a laser beam generated by a single light source is diffracted by a single hologram element.
  • JP2015-132707A does not discuss a device for preventing the area to be illuminated, that is, the edge of the illuminated area from becoming blurred.
  • the sharpness of the edge of the illuminated area is more noticeable when illuminating the illuminated area having a longitudinal direction, particularly when illuminating a line-shaped illuminated area.
  • the edge of the illuminated area tends to become more blurred.
  • the illuminated area can be illuminated brightly.
  • the illumination light from the illuminating device is directly viewed, there is a possibility of adversely affecting human eyes.
  • the present disclosure has been made in consideration of the above points, and an object of the present disclosure is to provide an illumination device that can safely illuminate an illuminated region having a longitudinal direction while sharpening the edge thereof. To do.
  • One aspect of the present disclosure is an illumination device that illuminates an illuminated region that extends in a first direction and extends in a second direction that intersects the first direction.
  • a light source A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region,
  • an illuminating device in which diffracted light from the first hologram element illuminates the entire area of the illuminated area and diffracted light from the second hologram element illuminates the entire area of the illuminated area.
  • the irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area.
  • the irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction may be the same.
  • the irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area.
  • the irradiation length along the first direction of the diffracted light from the second hologram element incident on the arbitrary position along the second direction may be the same.
  • the illumination device illuminates an illuminated area that extends in a first direction and extends in a second direction that intersects the first direction.
  • a light source A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region, In at least one of the first direction and the second direction of the illuminated area, the illumination range of the diffracted light from the first hologram element is aligned with the illumination range of the diffracted light from the second hologram element.
  • a lighting device is provided.
  • the first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed.
  • the irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area.
  • the irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction may be the same.
  • the first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed.
  • the irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area.
  • the irradiation length along the first direction of the diffracted light from the second hologram element that enters the arbitrary position along the second direction is the same as
  • the irradiation width along the second direction of the diffracted light from the first hologram element incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area.
  • the irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position may be the same.
  • the first hologram element includes a plurality of element holograms, Diffracted light from at least two element holograms among the plurality of element holograms may illuminate the entire area to be illuminated.
  • the second hologram element includes a plurality of element holograms, Diffracted light from at least two element holograms among the plurality of element holograms may illuminate the entire area to be illuminated.
  • the irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. It may be the same as the irradiation width along the second direction of the diffracted light from one other element hologram incident on the arbitrary position along the first direction.
  • the irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area. It may be the same as the irradiation length along the first direction of the diffracted light from one other element hologram element incident on the arbitrary position along the second direction.
  • the plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed,
  • the irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. It may be the same as the irradiation width along the second direction of the diffracted light from one other element hologram incident on the arbitrary position along the first direction.
  • the plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed,
  • the irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area.
  • the irradiation length along the first direction of the diffracted light from the other one element hologram incident on the arbitrary position along the second direction is the same,
  • the irradiation width along the second direction of the diffracted light from the one element hologram incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area. Further, the irradiation width along the second direction of the diffracted light from the other one element hologram incident on the arbitrary position may be the same.
  • the light source includes a first coherent light source and a second coherent light source, A first shaping optical system that shapes light from the first coherent light source and directs the light toward the first hologram element, and a second shaping optical system that shapes light from the second coherent light source and directs the light to the second hologram element And may be further provided.
  • an illumination device that illuminates an illuminated area having a first direction, A light source;
  • a diffractive optical element having a hologram element that diffracts light from the light source and directs it to the illuminated area, and
  • the hologram element includes a plurality of element holograms,
  • An illuminating device is provided in which diffracted light from at least two element holograms among the plurality of element holograms illuminates the entire area to be illuminated.
  • the light source includes a light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction, There may be further provided a shaping optical system for shaping the light spreading from the light emitting portion in the minor axis direction so as to spread in the second direction intersecting the first direction by the hologram element.
  • an illumination device that illuminates an illuminated area having a first direction, the light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction and emitting coherent light.
  • the light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction and emitting coherent light.
  • a light source A diffractive optical element having a hologram element that diffracts coherent light from the light source and directs it to the illuminated area
  • an illuminating device in which coherent light spreading in the minor axis direction from the light emitting unit is shaped by the hologram element so as to spread in a second direction intersecting the first direction.
  • a shaping optical system that shapes the coherent light from the light source and directs it to the hologram element,
  • the coherent light spreading in the minor axis direction from the light emitting unit may be shaped so as to spread in the second direction by the hologram element after being shaped by the shaping optical system.
  • the shaping optical system may include a collimating lens that shapes coherent light from the light source into parallel light.
  • the minor axis direction may be parallel to the second direction.
  • the diffractive optical element has a center line extending in the first direction through a center position in a second direction intersecting the first direction of the illuminated area, and the first line passing through a center position of the diffractive optical element.
  • the illuminated area may be illuminated so as to deviate from a projection line obtained by projecting an illumination light beam extending in the direction onto the illuminated area.
  • the light emitted from the light source is coherent light
  • the diffractive optical element is configured such that, of the coherent light incident on the diffractive optical element, zero-order light that has not been diffracted by the diffractive optical element and passes through the diffractive optical element is the first direction of the illuminated region.
  • the illuminated area may be illuminated so that it is incident on the farthest end side than the nearest end.
  • the light emitted from the light source and incident on the diffractive optical element may be diffused light that spreads more than parallel light.
  • FIG. 1 is a perspective view illustrating a lighting device for explaining an embodiment according to the present disclosure.
  • FIG. 2 is a diagram for explaining diffraction characteristics of the hologram element of the illumination device of FIG.
  • FIG. 2 shows the hologram element from the longitudinal direction of the illuminated area.
  • FIG. 3 is a diagram for explaining diffraction characteristics of element holograms included in the hologram element of the illumination device of FIG.
  • FIG. 3 shows the hologram element from the longitudinal direction of the illuminated area.
  • FIG. 4 is a diagram for explaining a method of adjusting the diffraction characteristics of the hologram element and the element hologram.
  • FIG. 5 is a diagram for explaining a method of adjusting the diffraction characteristics of the hologram element and the element hologram.
  • FIG. 6 is a perspective view corresponding to FIG. 1 for explaining a modification of the lighting device.
  • FIG. 7 is a diagram for explaining the relationship between the arrangement of a plurality of holograms having the same diffraction characteristics and the illumination area.
  • FIG. 8 is a diagram for explaining the relationship between the arrangement of a plurality of holograms having the same diffraction characteristics and the illumination area.
  • FIG. 9 is a diagram for explaining a modification of the lighting device.
  • the perspective view of the illuminating device which has a reflection type hologram element.
  • FIG. 1 is a perspective view schematically showing the overall configuration of the lighting device 10.
  • the illuminating device 10 illuminates the illuminated area Z extending in the first direction and extending in the second direction intersecting with the first direction.
  • the shape and size of the illuminated area Z are arbitrary, but typically, the illumination device 10 has an illuminated area Z having a longitudinal direction, for example, the ratio of the longitudinal direction to the lateral direction is 10 or more,
  • This is an apparatus for illuminating an illuminated area Z, typically a line-shaped illuminated area Z, in which this ratio is 100 or more.
  • This lighting device can be applied to vehicles such as automobiles and ships. In a vehicle, it is necessary to illuminate an area that extends forward in the direction of travel.
  • a headlight of an automatic person traveling at a high speed a so-called headlamp, brightly illuminates the road surface from the vicinity of the front of the automobile to the distance of the front.
  • a searchlight called a searchlight may be required to illuminate only a long and narrow area extending forward.
  • the illuminated region Z having the longitudinal direction dl in particular, the illuminated region Z having the longitudinal direction dl located in front of the illuminating device 10 and away from the illuminating device 10 is A device has been devised so that the edges can be clearly lit and can be illuminated safely.
  • the illuminating device 10 has a light source device 15 that projects light and a hologram element 40 that diffracts the light from the light source device 15 and directs it toward the illuminated region Z.
  • the light source device 15 includes a light source 20 and a shaping optical system 30 that shapes light emitted from the light source 20.
  • the light source device 15 has a plurality of light sources 20.
  • a laser light source that oscillates laser light can be used as the light source 20.
  • Laser light projected from the laser light source has excellent straightness and is suitable as light for illuminating the illuminated area Z with high accuracy.
  • the plurality of light sources 20 may be provided independently, or may be a light source module in which the plurality of light sources 20 are arranged side by side on a common substrate.
  • the plurality of light sources 20 include a first laser light source 20a that oscillates light in a red light emission wavelength region, a second laser light source 20b that oscillates light in a green light emission wavelength region, and light in a blue light emission wavelength region.
  • a third laser light source 20c that oscillates According to this example, it is possible to generate illumination lights of various colors including white illumination light by superimposing the three laser lights emitted from the plurality of light sources 20.
  • the light source device 15 is not limited to this example, and the light source device 15 may include two light sources 20 or four or more light sources 20 having different emission wavelength ranges. In order to increase the emission intensity, a plurality of light sources 20 may be provided for each emission wavelength region.
  • the shaping optical system 30 shapes the laser light emitted from the light source 20.
  • the shaping optical system 30 shapes the shape of the cross section perpendicular to the optical axis of the laser light and the three-dimensional shape of the laser light beam.
  • the shaping optical system 30 shapes the laser light emitted from the light source 20 into a widened parallel light beam.
  • the shaping optical system 30 includes a lens 31 and a collimating lens 32 in the order along the optical path of the laser light.
  • the lens 31 shapes the laser light emitted from the light source 20 into a divergent light beam.
  • the collimating lens 32 reshapes the divergent light beam generated by the lens 31 into a parallel light beam.
  • the light source device 15 includes a first shaping optical system 30a, a second shaping optical system 30b, and a third shaping optical system 30c corresponding to the first to third laser light sources 20c, respectively.
  • the first shaping optical system 30a includes a first lens 31a and a first collimating lens 32a
  • the second shaping optical system 30b includes a second lens 31b and a second collimating lens 32b, and a third shaping optical system 30c.
  • the hologram element 40 is a diffractive optical element that diffracts light from the light source device 15 and directs the light toward the illuminated area Z. Therefore, the illuminated area Z is illuminated by the diffracted light from the hologram element 40.
  • the illumination device 10 has a plurality of hologram elements 40. More specifically, the illumination device 10 includes a first hologram element 40a, a second hologram element 40b, and a third hologram element 40c. Each hologram element 40a, 40b, 40c is provided corresponding to each of the laser light sources 20a, 20b, 20c that oscillate laser light. According to this example, even when the laser light sources 20a, 20b, and 20c oscillate laser beams having different wavelength ranges, the hologram elements 40a, 40b, and 40c are lasers having different wavelength ranges generated by the corresponding laser beams. It becomes possible to diffract light with high efficiency.
  • the diffracted light diffracted by the hologram elements 40a, 40b, and 40c illuminates the entire illuminated area Z, respectively.
  • the diffracted light from the hologram elements 40a, 40b, and 40c illuminates only the entire illuminated area Z over the entire area, thereby causing uneven brightness and color in the illuminated area Z.
  • the unevenness can be effectively made inconspicuous.
  • the “entire area Z to be illuminated” refers not only to the case where the illumination ranges of the diffracted light diffracted by the hologram elements 40a, 40b, and 40c completely match, but also to the respective illumination ranges. It means that the deviation is within ⁇ 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
  • the plurality of hologram elements 40 are arranged in a first arrangement direction da that intersects the longitudinal direction dl of the illuminated area Z and is typically vertical.
  • the first arrangement direction da in which the plurality of hologram elements 40 are arranged is parallel to the normal direction nd to the surface pl as a flat surface on which the illuminated area Z is located.
  • the first arrangement direction da in which the plurality of hologram elements 40 are arranged is typically a vertical direction perpendicular to the horizontal direction.
  • the diffracted light from the plurality of hologram elements 40 arranged vertically above the ground and the water surface illuminates the horizontal plane pl such as the ground and the water surface and covers the horizontal plane pl.
  • An illumination area Z is formed.
  • the plurality of hologram elements 40 are arranged so as to be shifted in the vertical direction, for example.
  • the number of hologram elements 40 may be two or more, and the number is not limited.
  • the illuminated area Z has an illumination range extending in a first direction and a second direction intersecting with each other, the illuminated area
  • the illumination range of the diffracted light from the first hologram element is aligned with the illumination range of the diffracted light from the second hologram element in at least one of the first direction and the second direction.
  • each hologram element 40 is divided into a plurality of element holograms 45.
  • Each element hologram 45 is configured as a hologram recording medium on which an interference fringe pattern is recorded.
  • the traveling direction of the light diffracted by each element hologram 45 in other words, the traveling direction of the light diffused by each element hologram 45 can be controlled.
  • the light from the light source device 15 incident on each element hologram 45 is diffracted by the element hologram 45 to illuminate the entire illuminated area Z.
  • the diffracted light from each element hologram element 45 illuminates only the illuminated area Z over the entire area, thereby making the unevenness of brightness in the illuminated area Z effectively inconspicuous. be able to.
  • the first hologram element 40a includes a plurality of first element holograms 45a
  • the second hologram element 40b includes a plurality of second element holograms 45b
  • the third hologram element 40c includes a plurality of first element holograms 45a.
  • a three-element hologram 45c is included.
  • the plurality of element holograms 45 are arranged in a first arrangement direction da parallel to the arrangement direction of the plurality of hologram elements 40. That is, the plurality of element holograms 45 included in each hologram element 40 intersects the longitudinal direction dl of the illuminated area Z, typically in a vertical direction and onto the surface pl formed by the illuminated area Z.
  • each hologram element 40 the plurality of element holograms 45 are perpendicular to the longitudinal direction dl of the illuminated area Z and are typically perpendicular to the surface pl formed by the illuminated area Z. They are also arranged in a second arrangement direction db that is parallel to the line direction nd. In the illustrated example, the plurality of 45 are arranged in the vertical direction da and the horizontal direction db.
  • the illuminated area Z can be considered as the illuminated area of the near field illuminated by the hologram element 40.
  • This illuminated area Z can be expressed not only by the actual illuminated area (illumination range) but also by a diffusion angle range in an angular space after setting a certain coordinate axis, as will be described later.
  • the element hologram 45 can be produced, for example, using scattered light from a real scattering plate as object light. More specifically, when the hologram photosensitive material that is the base of the element hologram 45 is irradiated with reference light and object light made of coherent light having coherence with each other, interference fringes due to interference of these lights are generated on the hologram photosensitive material. Thus, the element hologram 45 is produced.
  • reference light laser light which is coherent light is used, and as object light, for example, scattered light from an isotropic scattering plate available at low cost is used.
  • the source light becomes the source of the object light used when the element hologram 45 is manufactured.
  • a reproduced image of the scattering plate is generated at the position of the scattering plate. If the scattering plate that is the source of the object light used when producing the element hologram 45 has a uniform surface scattering, the reproduced image of the scattering plate obtained by the element hologram 45 also has a uniform surface illumination. An area where a reproduced image of the scattering plate is generated can be set as an illuminated area Z.
  • each element hologram 45 should be reproduced in accordance with the planned wavelength and incident direction of the reproduction illumination light, instead of using the actual object light and the reference light. It is possible to design using a computer based on the shape and position of the image.
  • the element hologram 45 obtained in this way is also called a computer-generated hologram (CGH).
  • CGH computer-generated hologram
  • the illumination device 10 is used to illuminate an illuminated area Z having a certain size on the ground surface or water surface, it is difficult to generate object light, and a computer-generated hologram is converted into an element hologram 45. It is preferable to use as.
  • a Fourier transform hologram having the same diffusion angle characteristic at each point on each element hologram 45 may be formed by computer synthesis. Furthermore, an optical member such as a lens may be provided on the downstream side of the hologram element 40 so that the diffracted light enters the entire illuminated area Z.
  • the hologram element 40 can be used as a directional surface light source, so that it can be used on the light source surface to achieve the same illuminance distribution as compared with a conventional lamp light source (point light source). It is possible to reduce the brightness. As a result, even when a laser light source is used as the light source 20, it is possible to contribute to improving the safety of the laser light. Even if the laser light is directly viewed from within the illuminated area Z, the single point light source is directly viewed. Compared to the case, the risk of adverse effects on human eyes is reduced.
  • the advantage of configuring the hologram element with a plurality of element holograms 45 can sharpen the edge when illuminating the illuminated area Z, particularly the illuminated area Z within a finite distance, as will be described in detail later. Is a point. If the hologram element is a single Fourier type hologram, a blur corresponding to the size of the hologram area occurs in the illuminated area Z. In the present embodiment, it is possible to design the diffraction characteristics of each element hologram 45 in consideration of the positional relationship with the illuminated region Z, and the sharpness of the edge can be significantly improved.
  • speckle is recognized as a speckled pattern and can give physiological discomfort. Since the hologram element 40 includes a plurality of element holograms 45, speckle patterns generated corresponding to the diffracted light from the element holograms 45 are overlapped and averaged in the illuminated area Z and observed by the observer. It will be. As a result, speckles can be made inconspicuous in each element illuminated region Zp.
  • a specific form of the element hologram 45 may be a volume hologram recording medium using a photopolymer, a volume hologram recording medium of a type that records using a photosensitive medium containing a silver salt material, or a relief.
  • a type (embossed type) hologram recording medium may be used.
  • FIG. 7 and FIG. 8 are diagrams showing illumination areas Za and Zb by diffracted light from the first hologram 60a and the second hologram 60b having the same diffraction characteristics.
  • “same” means that the deviation of the diffraction characteristics of the first hologram 60a and the second hologram 60b is within ⁇ 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
  • the first hologram 60a and the second hologram 60b irradiate a horizontal plane such as the ground or a water surface with diffracted light and are held above the horizontal plane. That is, the diffracted light from the first hologram 60a and the second hologram 60b travels downward from the horizontal direction and is irradiated to the ground surface pl intended to form the illuminated region Z.
  • the holograms 60a and 60b are intended to diffract light into an illuminated region that is located forward and extends elongated forward. 7 and 8 show the illumination areas Za and Zb of the diffracted light in the holograms 60a and 60b from the normal direction to the surface pl irradiated with the diffracted light.
  • the first hologram 60a and the second hologram 60b are mutually aligned along a vertical direction that intersects the longitudinal direction dl of the originally intended illumination area. It is arranged at a position deviated from.
  • the arrangement direction of the first hologram 60a and the second hologram 60b is a direction intersecting the normal direction nd to the surface pl on which the illuminated region is formed, typically a horizontal direction. It matches.
  • the arrangement direction of the first hologram 60a and the second hologram 60b is parallel to the normal direction nd to the surface pl on which the illuminated region is formed, typically vertical. Match the direction.
  • the light beams emitted from the light source device 15 shown in FIG. 1 are incident on the holograms 60a and 60b. Therefore, in the example shown in FIG. 8, the first hologram 60a and the second hologram 60b are arranged so as to overlap in the depth direction of the paper surface, and the first and second light source devices 15 are arranged in the depth direction of the paper surface. They are placed one on top of the other.
  • the illumination area Za by the diffracted light in the first hologram 60a and the illumination area Zb by the diffracted light in the second hologram 60b are shifted in a direction parallel to the arrangement direction of the holograms 60a and 60b. Specifically, the illumination area Za illuminated by the diffracted light from the first hologram 60a and the illumination area Zb illuminated by the diffracted light from the second hologram 60b intersect with the longitudinal direction dl of the illumination area. Is shifted in the vertical width direction dw.
  • both edge portions Zy located on both edges in the width direction dw and extending in the longitudinal direction dl are two holograms 60a and 60b. Illuminated only by light emitted from one of the two.
  • the two holograms 60a and 60b are arranged so as to be shifted in the normal direction nd to the surface pl irradiated with the diffracted light. That is, the distances from the two holograms 60a and 60b to the surface pl irradiated with the diffracted light are different. Therefore, as shown in FIG. 8, the illumination area Za illuminated by the diffracted light from the first hologram 60a and the illumination area Zb illuminated by the diffracted light from the second hologram 60b are in the longitudinal direction dl and width of the illumination area. Deviation in both directions dw. Therefore, the peripheral portion Zz of the illuminated area Zx illuminated by the light emitted from the two holograms 60a and 60b is illuminated only by the light emitted from one of the two holograms 60a and 60b.
  • both edge portions Zy of FIG. 7 and the peripheral portion Zz of FIG. 8 are illuminated only by the diffracted light from one hologram 60, the wavelength regions of the light emitted from the two holograms 60a and 60b are the same. , It will be lit darker than the other parts. Further, when the wavelength ranges of the light emitted from the two holograms 60a and 60b are different, both edge portions Zy in FIG. 7 and the peripheral portion Zz in FIG. 8 are illuminated darkly in different colors compared to the other portions. become. That is, when the diffraction characteristics of the two holograms 60a and 60b are the same, the edge of the illuminated area Z is blurred due to a decrease in brightness or a color change.
  • the light traveling from the light source device 15 to each hologram element 40 is a parallel light beam as in the examples shown in FIGS.
  • the plurality of hologram elements 40 and the plurality of element holograms 45 are arranged so that the incident surfaces and the emission surfaces thereof are parallel to each other, and incident light on each hologram element 40 and each element hologram 45 is transmitted from the hologram element 40.
  • the light beams are parallel light beams along the normal direction and the normal direction of the element hologram 45.
  • the plurality of element holograms 45 included in each hologram element 40 first intersect with the longitudinal direction dl of the illuminated area Z, typically perpendicular, and the illuminated area Z forms. They are arranged in a second arrangement direction db that intersects the normal direction nd to the surface pl and is typically perpendicular and parallel.
  • the relative positional relationship between the element holograms 45 arranged in the second arrangement direction db is the same as the relative positional relationship between the holograms 60a and 60b shown in FIG.
  • a plurality of element holograms 45 included in one hologram element 40 are then crossed in the longitudinal direction dl of the illuminated area Z, typically perpendicular to the surface pl formed by the illuminated area Z.
  • first arrangement direction da that is parallel to the line direction nd.
  • element holograms 45 included in the different hologram elements 40 are also arranged in the first arrangement direction da.
  • the relative positional relationship between the element holograms 45 arranged in the first arrangement direction da is the same as the relative positional relationship between the holograms 60a and 60b shown in FIG.
  • each hologram element 40 illuminates the entire illuminated area Z.
  • the diffracted light from each element hologram 45 illuminates only the illuminated area Z over the entire area. In order to realize such illumination, the diffraction characteristics of each element hologram 45 are adjusted as described below.
  • the diffracted light from the element hologram 45 arranged shifted in the second arrangement direction db is the same as that described with reference to FIG.
  • the element hologram 45 is displaced in the second arrangement direction db, which is the arrangement direction of the element hologram 45, and is irradiated onto the surface pl formed by the illuminated region Z. Therefore, as shown in FIG. 4, the irradiation width along the width direction dw of the diffracted light from one element hologram 45s incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is perpendicular to the longitudinal direction dl.
  • FIG. 4 is a diagram showing the hologram element 40 and the illuminated region Z by observation from the normal direction nd to the irradiated surface pl that is irradiated with illumination light from the illumination device 10 and includes the illuminated region Z. It is.
  • the irradiation width iw “same” means that the deviation of the irradiation width iw is within ⁇ 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
  • the diffraction characteristics of the light traveling toward the position in the illuminated area Z that is separated from each element hologram 45 along the longitudinal direction dl by the distance R are adjusted according to the width of the illuminated area Z. To do.
  • the diffraction characteristics can also be adjusted using the diffusion angle distribution in the angular space.
  • the diffraction characteristic of the reference element hologram 45s is adjusted.
  • the diffusion angle characteristic of the reference element hologram 45 s toward the position separated by the distance R along the longitudinal direction dl is specified as follows by the coordinate system shown in FIG. 4.
  • the diffusion angle characteristic of the reference element hologram 45s is performed over the entire area along the longitudinal direction dl of the illuminated area Z.
  • the diffusion angle characteristic of the other element hologram 45k is also performed over the entire area along the longitudinal direction dl of the illuminated area Z.
  • the diffracted light from the element hologram 45 arranged so as to be shifted in the first arrangement direction da is described with reference to FIG. 8, assuming that the diffraction characteristics of the element hologram 45 are not adjusted and are the same. Thus, it is displaced in both the front direction seen from the element hologram 45 and the direction perpendicular to the front direction, that is, in the illustrated example, the length of the illuminated area Z on the surface pl on which the illuminated area Z is located. Irradiated with displacement in both the direction dl and the width direction dw.
  • the irradiation width iw along the width direction dw perpendicular to the longitudinal direction dl of the diffracted light from one element hologram 45s incident at an arbitrary position along the longitudinal direction dl of the illuminated area Z is Arranged in the first arrangement direction da so as to be the same as the irradiation width iw along the width direction dw of the diffracted light from the other element holograms 45t, 45n incident on the arbitrary position along the longitudinal direction dl.
  • the diffraction characteristic of the element hologram 45 is adjusted.
  • the irradiation length il along the longitudinal direction dl of the diffracted light from one element hologram 45s incident on an arbitrary position along the width direction dw of the illuminated region Z is expressed as follows.
  • the first length is set to be the same as the irradiation length il along the longitudinal direction dl of the diffracted light from the other one of the element holograms 45t and 45n incident on the arbitrary position along the width direction dw of the region Z.
  • the diffraction characteristics of the element holograms 45 arranged in the arrangement direction da are adjusted.
  • FIG. 5 is a diagram showing the hologram element 40 and the illuminated region Z on a plane parallel to both the normal direction nd to the irradiation surface pl formed by the illuminated region Z and the first arrangement direction da.
  • the same irradiation length il means that the deviation of the irradiation length il is within ⁇ 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
  • the diffraction characteristics of light traveling from the element hologram 45 arranged in the first arrangement direction da to an arbitrary position in the width direction dw are adjusted according to the length of the illuminated region Z.
  • the diffraction characteristics can also be adjusted using the diffusion angle distribution in the angular space.
  • the diffraction characteristic of the reference element hologram 45s is adjusted.
  • the diffusion angle characteristic of the reference element hologram 45 s directed to an arbitrary position in the width direction dw is specified as follows by the coordinate system shown in FIG. 5.
  • h in the equation is the distance along the first arrangement direction da from the irradiation surface pl where the illuminated region Z is formed to the reference element hologram 45, that is, the height of the position where the reference element hologram 45 is arranged. It corresponds to.
  • the diffusion angle characteristic of the other element hologram 45t included in the same first hologram element 40a as the reference element hologram 45s is changed from the diffusion angle characteristic of the reference element hologram 45s to the element hologram from the reference element hologram 45s.
  • This is determined in consideration of the shift amount b along the first arrangement direction da up to 45t. Specifically, it is determined as follows. Note that in this specification, the diffusion angle characteristics “same” means that the deviation of the diffusion angle characteristics is within ⁇ 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
  • the diffusion angle characteristic in the longitudinal direction dl of the reference element hologram 45s is performed over the entire area along the width direction dw of the illuminated area Z.
  • the diffusion angle characteristics of the other element holograms 45t and 45n are also performed over the entire area along the width direction dw of the illuminated area Z.
  • the diffracted light from each hologram element 40 illuminates only the illuminated area Z over the entire area.
  • the diffracted light from the hologram 45 illuminates only the illuminated area Z over the entire area.
  • each hologram element 40 is adjusted according to the difference in the arrangement position of the plurality of hologram elements 40.
  • the diffracted light from each hologram element 40 is Each of the illuminated areas Z is illuminated. Therefore, if the diffracted light from the plurality of hologram elements 40 is light in the same wavelength range, the illuminated area Z can be illuminated brightly. Further, if the diffracted light from the plurality of hologram elements 40 is light in different wavelength ranges, the illuminated area Z can be illuminated with a desired color by additive color mixing.
  • the diffracted light from each hologram element 40 illuminates the illuminated area Z, so that the light emission points are dispersed, which has an adverse effect on the human eye directly viewing the illumination device 10.
  • the degree can be reduced.
  • the diffracted light from each hologram element 40 illuminates the entire illuminated area Z, it is possible to effectively suppress uneven brightness and color unevenness in the vicinity of the edge of the illuminated area Z. it can. As a result, the illuminated area Z can be safely illuminated while its edges are clear.
  • the illuminated area Z having the longitudinal direction dl is illuminated by the diffracted light from the hologram element 40. Therefore, by adjusting the diffraction characteristics of the hologram element 40, the illumination device 10 can be used even when the illuminated area Z is located in front of the illumination device 10 and has a longitudinal direction dl in a direction away from the illumination device 10. It is possible to brightly illuminate a distant area away from the object with higher light irradiation intensity.
  • the illuminated area Z having the longitudinal direction dl for example, the illuminated area Z in which the ratio of the length in the longitudinal direction dl to the length in the width direction dw is 10 or more, and further this ratio is 100 or more, more typically In this case, it is possible to safely illuminate the line-shaped illuminated area Z while making the edge clear.
  • the plurality of hologram elements 40 are arranged in a first arrangement direction da that is perpendicular to the longitudinal direction dl of the illuminated area Z and is parallel to the normal direction nd to the surface pl on which the illuminated area Z is formed.
  • a method for adjusting the diffraction characteristics of the hologram elements 40 when arranged diffraction from one hologram element 40 incident at an arbitrary position along the width direction dw orthogonal to the longitudinal direction dl of the illuminated area Z
  • the irradiation length il along the longitudinal direction dl of the light is along the longitudinal direction dl of the diffracted light from the other hologram element 40 incident on the arbitrary position along the width direction dw of the illuminated area Z.
  • the irradiation width iw along the width direction dw of the diffracted light from one hologram element 40 incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is made equal to the irradiation length il.
  • irradiation width iw along the width direction dw of the diffracted light from one hologram element 40 other incident on the arbitrary position along the longitudinal direction dl in the illuminated area Z may be the same.
  • Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
  • the hologram element 40 includes a plurality of element holograms 45. Then, the diffraction characteristics of each element hologram 45 are adjusted according to the difference in arrangement position of the plurality of element holograms 45. As a result, the diffracted light from each element hologram 45 illuminates the entire illuminated area Z, respectively. To do. Therefore, uneven brightness in the vicinity of the edge of the illuminated area Z can be effectively suppressed. Thereby, it is possible to illuminate the illuminated area Z while making the edges clear. Further, one hologram element 40 has the same number of light emitting points as the number of element holograms 45, and the degree of adverse effects on the human eye that directly views the illumination device 10 can be reduced. In addition, since the diffracted light from each element hologram 45 is superimposed on the illuminated area Z, speckle can be effectively made inconspicuous even when laser light is used.
  • the illuminated area Z having the longitudinal direction dl is illuminated by the diffracted light from each element hologram 45. Therefore, by adjusting the diffraction characteristics of the element hologram 45, the illumination device 10 can be used even when the illuminated region Z is located in front of the illumination device 10 and has a longitudinal direction dl in a direction away from the illumination device 10. It is possible to brightly illuminate a distant area away from the object with higher light irradiation intensity. As a result, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically a line-shaped illuminated area Z, with sharp edges.
  • the plurality of element holograms 45 are arranged in a second arrangement direction db perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed.
  • a method of adjusting the diffraction characteristics of each element hologram 45 in the case where it is applied it is orthogonal to the longitudinal direction dl of the diffracted light from one element hologram 45 incident at an arbitrary position along the longitudinal direction dl of the illuminated area Z.
  • the irradiation width iw along the width direction dw is the irradiation width iw along the width direction dw of the diffracted light from the other one-element hologram 45 incident on the arbitrary position along the longitudinal direction dl of the illuminated region Z. And may be the same.
  • Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
  • the plurality of element holograms 45 are in a first arrangement direction da that is perpendicular to the longitudinal direction dl of the illuminated area Z and is parallel to the normal direction nd to the surface pl on which the illuminated area Z is formed.
  • a method of adjusting the diffraction characteristics of the element holograms 45 when arranged diffraction from one element hologram 45 incident on an arbitrary position along the width direction dw orthogonal to the longitudinal direction dl of the illuminated area Z
  • the irradiation length il along the longitudinal direction dl of the light is along the longitudinal direction dl of the diffracted light from the other element hologram 45 incident on the arbitrary position along the width direction dw of the illuminated region Z.
  • the irradiation width iw along the width direction dw of the diffracted light from one element hologram 45 incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is made equal to the irradiation length il. But And irradiation width iw along the width direction dw of the diffracted light from the other one element hologram 45 to be incident on the arbitrary position along the longitudinal direction dl in the illuminated area Z, it may be the same.
  • Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
  • the light source device 15 includes the light source 20 that generates the laser light and the shaping optical system 30 that shapes the light emitted from the light source 20.
  • the shaping optical system 30 converts the light from the light source 20 into a parallel light beam. Accordingly, a parallel light beam enters each element hologram 45 of the hologram element 40. According to this example, the design and manufacture of the hologram element 40 and the element hologram 45 can be facilitated. Further, the diffraction by the hologram element 40 enables the light to be directed to the entire area within the illuminated area Z with high accuracy.
  • the plurality of hologram elements 40 are normal to the surface pl that is perpendicular to the longitudinal direction dl of the illuminated area Z and on which the illuminated area Z is formed.
  • An example in which the elements are arranged in the first arrangement direction da that is parallel to the direction nd is shown. That is, the example in which the plurality of hologram elements 40 are arranged in the vertical direction when the illuminated region Z is provided on a horizontal surface such as the ground surface or the water surface is shown.
  • the present invention is not limited to this example, and a plurality of hologram elements 40 may be arranged as shown in FIG. In the example shown in FIG.
  • the plurality of hologram elements 40 are perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed. They are arranged in the direction, that is, in the second arrangement direction db described above. More specifically, when the illuminated area Z is provided on a horizontal plane such as the ground or the water surface, the plurality of hologram elements 40 may be arranged in the horizontal direction. Also in this example, the diffraction characteristic of each hologram element 40 is adjusted according to the difference in the arrangement position of the plurality of hologram elements 40, and as a result, the diffracted light from each hologram element is transmitted over the entire illuminated area Z. Can be illuminated. By adjusting the diffraction characteristics of the hologram element 40 in this way, the same effects as those of the above-described embodiment can be obtained.
  • the plurality of hologram elements 40 are arranged in a second arrangement direction db perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed.
  • a second arrangement direction db perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed.
  • the irradiation width iw along the light width direction dw may be the same.
  • Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
  • each hologram element 40 may be formed as a single hologram.
  • the diffracted light from each of the plurality of hologram elements 40 included in the illumination device 10 is incident on the entire illuminated area Z, thereby having a longitudinal direction. It is possible to safely illuminate an illumination area, typically a line-like illuminated area, with sharp edges.
  • the illumination device 10 includes a plurality of hologram elements 40
  • the present invention is not limited to this example, and the illumination device 10 may include only a single hologram element 40.
  • the hologram element 40 includes a plurality of element holograms 45, and the diffracted light from each element hologram 45 has a longitudinal direction by being incident on the entire illuminated area Z.
  • the illuminated area typically a line-shaped illuminated area, can be safely illuminated with sharp edges.
  • each of the first to third laser light sources 20a to 20c of the light source device 15 includes a first light emitting unit 151 having a major axis direction d1 and a minor axis direction d2 orthogonal thereto, You may have the 2 light emission part 152 and the 3rd light emission part 153.
  • FIG. 9 for convenience, the first to third laser light sources 20a to 20c, the first to third shaping optical systems 30a to 30c, and the first to third hologram elements 40a to 40c are collectively illustrated. Show.
  • the actual laser light sources 20a to 20c, shaping optical systems 30a to 30c and hologram elements 40a to 40c may be arranged in the vertical direction as shown in FIG. 1, or as shown in FIG. It may be arranged in the direction.
  • the major axis direction d1 of the light emitting units 151 to 153 is a direction in which the diffusion angle is maximized in the diffusion direction of the laser light emitted from the light emitting units 151 to 153. It can also be said that the major axis direction d1 is a direction parallel to the maximum diameter of the cross section of the laser beam orthogonal to the optical axis. In the illustrated example, the major axis direction d1 coincides with the vertical direction.
  • the minor axis direction d2 is a direction in which the diffusion angle is minimum among the diffusion directions of the laser light emitted from the light emitting units 151 to 153. It can also be said that the minor axis direction d2 is a direction parallel to the minimum diameter of the cross section of the laser beam orthogonal to the optical axis. In the illustrated example, the minor axis direction d2 coincides with the horizontal direction.
  • the light emitting units 151 to 153 are arranged at the same position in the short axis direction d2 with an interval in the long axis direction d1. That is, the laser light sources 20a to 20c are arranged in the casing 150 of the light source device 15 in such a posture that the short axis direction d2 of the light emitting units 151 to 153 is parallel to the width direction dw of the illuminated area Z, that is, the horizontal direction. ing.
  • the laser light L emitted from the light emitting portions 151 to 153 of the laser light sources 20a to 20c arranged in this way so as to spread in the short axis direction d2 is shaped by the shaping optical systems 30a to 30c, and then the hologram elements 40a to 40c. It is shaped to expand in the width direction dw at 40c.
  • the light emitting units 151 to 153 emit laser light diffused with a large diffusion angle in the width direction dw.
  • Laser light having a large diffusion angle is difficult to be collimated sufficiently by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c.
  • a burden is imposed on the shape of the hologram elements 40a to 40c, and the cost of the hologram elements 40a to 40c is increased.
  • the laser beam L can be emitted from the light emitting units 151 to 153 with a small diffusion angle in the width direction dw. Since the laser light L having a small diffusion angle can be sufficiently collimated by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c, the desired beam shape can be obtained without imposing a burden on the shape of the hologram elements 40a to 40c. Can be obtained.
  • the illumination light beam Z extends the illumination light beam in which the center line L1 extending in the longitudinal direction through the center position in the width direction orthogonal to the longitudinal direction of the illumination area extends in the longitudinal direction through the center position of the hologram element 40.
  • the above-mentioned center line L1 of the illuminated area Z may be displaced from the projection line L2.
  • the width in the short direction of the illuminated area Z is iw
  • the horizontal width of the hologram element 40 is a
  • the shortest distance from the hologram element 40 to the nearest position of the illuminated area Z R the distance between the first edge e1 in the longitudinal direction of the illuminated area Z and the first end line e2 that passes through the first horizontal end of the hologram element 40 and extends in the longitudinal direction of the illuminated area Z is x +
  • the distance between the second edge e3 in the longitudinal direction of the illuminated area Z and the second end line e4 extending in the longitudinal direction of the illuminated area Z through the second horizontal end of the hologram element 40 is represented by x- It is said.
  • the boundary position in the minor axis direction is p1 and p2 through an arbitrary position of the illuminated area Z
  • the angle formed by the position p1 and the first end line e2 is ⁇ 1 +, and the position p2 and the first end line.
  • the angle formed by e2 is ⁇ 1-
  • the angle formed by the position p1 and the second end line e4 is ⁇ 2 +
  • the angle formed by the position p2 and the second end line e4 is ⁇ 2-
  • the illuminated area Z in an arbitrary direction and position with respect to the hologram element 40 can be illuminated.
  • a part of the laser light incident on the hologram element 40 is not diffracted by the hologram element 40 and becomes zero-order light that is transmitted as it is.
  • the 0th-order light is irradiated onto the illuminated area Z
  • only the 0th-order light irradiation position in the illuminated area Z designed in advance has high illuminance specifically.
  • the position of the hologram element 40 as a reference, comparing the case where the zero-order light is irradiated on the nearest end side in the longitudinal direction of the illuminated area Z and the case where it is irradiated on the farthest end side, the nearest end side is irradiated.
  • the irradiation area of the 0th-order light becomes smaller, the illuminance per unit area becomes higher, and the irradiation position of the 0th-order light in the illuminated area Z becomes more conspicuous. Therefore, it is desirable to design the diffraction characteristics of the hologram element 40 so that the zero-order light is incident on the farthest end side with respect to the nearest end in the longitudinal direction of the illuminated region Z. Thereby, the dispersion
  • the laser light is collimated by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c and then incident on the hologram elements 40a to 40c.
  • the collimated laser light has a small incident area on the hologram elements 40a to 40c. Accordingly, the light intensity of the 0th order light is increased. Therefore, from the viewpoint of reducing the light intensity of the zeroth-order light, the diffused light in which the incident light to the hologram elements 40a to 40c is slightly spread is more desirable than the perfect parallel light.
  • the hologram elements 40a to 40c are formed on the plurality of element holograms 45.
  • the element holograms 45 are divided and have diffraction characteristics that illuminate the entire illuminated area Z, even if the incident light to the hologram elements 40a to 40c is diffused light, Since the incident angles of the laser beams incident on the element hologram 45 are considered to be almost the same, if the diffraction characteristics are designed so as to illuminate the entire illuminated area Z for each element hologram 45, the hologram elements 40a to 40c. As a whole, the illuminated area Z can be illuminated clearly.
  • transmissive hologram elements 40a to 40c are used as diffractive optical elements
  • reflective hologram elements 40a to 40c may be used as shown in FIG.
  • the reflection type hologram elements 40a to 40c since the traveling direction of the 0th-order light is different from the observation direction of the observer, a safety measure against the 0th-order light can be facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

[Problem] To provide a lighting device capable of safely lighting an area to be lighted having a first direction while making the edges thereof distinct. [Solution] A lighting device (10) for lighting an area to be lighted extending in a first direction and extending in a second direction perpendicular to the first direction is provided with a light source, a diffraction optical element comprising a first hologram element and a second hologram element for diffracting light from the light source toward the area to be lighted, wherein the diffracted light in the first hologram element lights the entirety of the area to be lighted and the diffracted light in the second hologram element lights the entirety of the area to be lighted.

Description

照明装置Lighting device
 本開示は、長手方向を有した被照明領域を照明する照明装置に関する。 The present disclosure relates to an illumination device that illuminates an illuminated area having a longitudinal direction.
 例えば、JP2015-132707Aに開示されているように、光源とホログラム素子とを含んだ照明装置が知られている。JP2015-132707Aに開示された照明装置では、ホログラム素子が光源からの光を回折することで、所望のパターンで路面を照明することができる。JP2015-132707Aに開示された照明装置では、単一の光源で生成されたレーザー光を単一のホログラム素子で回折している。 For example, as disclosed in JP2015-132707A, an illumination device including a light source and a hologram element is known. In the illumination device disclosed in JP2015-132707A, the hologram element can illuminate the road surface with a desired pattern by diffracting light from the light source. In the illumination device disclosed in JP2015-132707A, a laser beam generated by a single light source is diffracted by a single hologram element.
 しかしながら、JP2015-132707Aでは、照明されるべき領域、すなわち被照明領域のエッジが不鮮明となることを防止するための工夫について、検討がなされていない。被照明領域のエッジの鮮明さは、長手方向を有する被照明領域を照明する場合、とりわけライン状の被照明領域を照明する場合に、より顕著に感知されることになる。また、同一波長域又は異なる波長域の複数の光源を用いて被照明領域を照明する場合に、被照明領域のエッジがより不鮮明となりやすい。 However, JP2015-132707A does not discuss a device for preventing the area to be illuminated, that is, the edge of the illuminated area from becoming blurred. The sharpness of the edge of the illuminated area is more noticeable when illuminating the illuminated area having a longitudinal direction, particularly when illuminating a line-shaped illuminated area. In addition, when the illuminated area is illuminated using a plurality of light sources in the same wavelength range or different wavelength ranges, the edge of the illuminated area tends to become more blurred.
 さらに、レーザー光を照射する光源を用いた場合、被照明領域を明るく照明することができる。ただしその一方で、照明装置からの照明光を直視した場合に、人間の目に悪影響を与える虞がある。 Furthermore, when a light source that emits laser light is used, the illuminated area can be illuminated brightly. However, on the other hand, when the illumination light from the illuminating device is directly viewed, there is a possibility of adversely affecting human eyes.
 本開示は、以上の点を考慮してなされたものであって、長手方向を有する被照明領域を、そのエッジを鮮明としながら、安全に照明することができる照明装置を提供することを目的とする。 The present disclosure has been made in consideration of the above points, and an object of the present disclosure is to provide an illumination device that can safely illuminate an illuminated region having a longitudinal direction while sharpening the edge thereof. To do.
 本開示の一態様では、第1方向に延在するとともに、前記第1方向に交差する第2方向に延在する被照明領域を照明する照明装置であって、
 光源と、
 前記光源からの光を回折して前記被照明領域に向ける第1ホログラム素子及び第2ホログラム素子を有する回折光学素子と、を備え、
 前記第1ホログラム素子での回折光が前記被照明領域の全域を照明し且つ前記第2ホログラム素子での回折光が前記被照明領域の全域を照明する、照明装置が提供される。
One aspect of the present disclosure is an illumination device that illuminates an illuminated region that extends in a first direction and extends in a second direction that intersects the first direction.
A light source;
A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region,
There is provided an illuminating device in which diffracted light from the first hologram element illuminates the entire area of the illuminated area and diffracted light from the second hologram element illuminates the entire area of the illuminated area.
 前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。 The irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area. The irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction may be the same.
 前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっていてもよい。 The irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area. The irradiation length along the first direction of the diffracted light from the second hologram element incident on the arbitrary position along the second direction may be the same.
 本開示の他の一態様では、第1方向に延在するとともに、前記第1方向に交差する第2方向に延在する被照明領域を照明する照明装置であって、
 光源と、
 前記光源からの光を回折して前記被照明領域に向ける第1ホログラム素子及び第2ホログラム素子を有する回折光学素子と、を備え、
 前記被照明領域の前記第1方向と前記第2方向との少なくとも一方において、前記第1ホログラム素子からの回折光の照明範囲は、前記第2ホログラム素子からの回折光の照明範囲に揃っている、照明装置が提供される。
In another aspect of the present disclosure, the illumination device illuminates an illuminated area that extends in a first direction and extends in a second direction that intersects the first direction.
A light source;
A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region,
In at least one of the first direction and the second direction of the illuminated area, the illumination range of the diffracted light from the first hologram element is aligned with the illumination range of the diffracted light from the second hologram element. A lighting device is provided.
 前記第1ホログラム素子及び前記第2ホログラム素子は、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に交差する方向に、配列されており、
 前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。
The first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed. Has been
The irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area. The irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction may be the same.
 前記第1ホログラム素子及び前記第2ホログラム素子は、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に沿った方向に、配列されており、
 前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっており、
 前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。
The first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed. Has been
The irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area. The irradiation length along the first direction of the diffracted light from the second hologram element that enters the arbitrary position along the second direction is the same as
The irradiation width along the second direction of the diffracted light from the first hologram element incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area. Further, the irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position may be the same.
 前記第1ホログラム素子は、複数の要素ホログラムを含み、
 前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明してもよい。
The first hologram element includes a plurality of element holograms,
Diffracted light from at least two element holograms among the plurality of element holograms may illuminate the entire area to be illuminated.
 前記第2ホログラム素子は、複数の要素ホログラムを含み、
 前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明してもよい。
The second hologram element includes a plurality of element holograms,
Diffracted light from at least two element holograms among the plurality of element holograms may illuminate the entire area to be illuminated.
 前記被照明領域の前記第1方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。 The irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. It may be the same as the irradiation width along the second direction of the diffracted light from one other element hologram incident on the arbitrary position along the first direction.
 前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する他の一つの要素ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっていてもよい。 The irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area. It may be the same as the irradiation length along the first direction of the diffracted light from one other element hologram element incident on the arbitrary position along the second direction.
 前記複数の要素ホログラムは、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に交差する方向に、配列されており、
 前記被照明領域の前記第1方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。
The plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed,
The irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. It may be the same as the irradiation width along the second direction of the diffracted light from one other element hologram incident on the arbitrary position along the first direction.
 前記複数の要素ホログラムは、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に沿った方向に、配列されており、
 前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さと、同一となっており、
 前記被照明領域の前記第1方向に沿った任意の位置に入射する前記一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっていてもよい。
The plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed,
The irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area. The irradiation length along the first direction of the diffracted light from the other one element hologram incident on the arbitrary position along the second direction is the same,
The irradiation width along the second direction of the diffracted light from the one element hologram incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area. Further, the irradiation width along the second direction of the diffracted light from the other one element hologram incident on the arbitrary position may be the same.
 前記光源は、第1コヒーレント光源及び第2コヒーレント光源を有し、
 前記第1コヒーレント光源からの光を整形して前記第1ホログラム素子に向ける第1整形光学系と、前記第2コヒーレント光源からの光を整形して前記第2ホログラム素子に向ける第2整形光学系と、をさらに備えてもよい。
The light source includes a first coherent light source and a second coherent light source,
A first shaping optical system that shapes light from the first coherent light source and directs the light toward the first hologram element, and a second shaping optical system that shapes light from the second coherent light source and directs the light to the second hologram element And may be further provided.
 本開示の他の一態様では、第1方向を有した被照明領域を照明する照明装置であって、
 光源と、
 前記光源からの光を回折して前記被照明領域に向けるホログラム素子を有する回折光学素子と、を備え、
 前記ホログラム素子は、複数の要素ホログラムを含み、
 前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明する、照明装置が提供される。
In another aspect of the present disclosure, there is provided an illumination device that illuminates an illuminated area having a first direction,
A light source;
A diffractive optical element having a hologram element that diffracts light from the light source and directs it to the illuminated area, and
The hologram element includes a plurality of element holograms,
An illuminating device is provided in which diffracted light from at least two element holograms among the plurality of element holograms illuminates the entire area to be illuminated.
 前記光源は、長軸方向およびこれに交差する短軸方向を有する発光部を含み、
 前記発光部から前記短軸方向に拡がる光を、前記ホログラム素子で前記第1方向に交差する第2方向に拡がるように整形する整形光学系をさらに備えていてもよい。
The light source includes a light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction,
There may be further provided a shaping optical system for shaping the light spreading from the light emitting portion in the minor axis direction so as to spread in the second direction intersecting the first direction by the hologram element.
 本開示の他の一態様では、第1方向を有した被照明領域を照明する照明装置であって、 長軸方向およびこれに交差する短軸方向を有し、コヒーレント光を発光する発光部を含む光源と、
 前記光源からのコヒーレント光を回折して前記被照明領域に向けるホログラム素子を有する回折光学素子と、を備え、
 前記発光部から前記短軸方向に拡がるコヒーレント光が、前記ホログラム素子で前記第1方向に交差する第2方向に拡がるように整形される、照明装置が提供される。
In another aspect of the present disclosure, there is provided an illumination device that illuminates an illuminated area having a first direction, the light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction and emitting coherent light. Including a light source;
A diffractive optical element having a hologram element that diffracts coherent light from the light source and directs it to the illuminated area, and
There is provided an illuminating device in which coherent light spreading in the minor axis direction from the light emitting unit is shaped by the hologram element so as to spread in a second direction intersecting the first direction.
 前記光源からのコヒーレント光を整形して前記ホログラム素子に向ける整形光学系を備え、
 前記発光部から前記短軸方向に拡がるコヒーレント光が、前記整形光学系で整形された後に前記ホログラム素子で前記第2方向に拡がるように整形されてもよい。
A shaping optical system that shapes the coherent light from the light source and directs it to the hologram element,
The coherent light spreading in the minor axis direction from the light emitting unit may be shaped so as to spread in the second direction by the hologram element after being shaped by the shaping optical system.
 前記整形光学系は、前記光源からのコヒーレント光を平行光に整形するコリメートレンズを含んでもよい。 The shaping optical system may include a collimating lens that shapes coherent light from the light source into parallel light.
 前記短軸方向は、前記第2方向に平行であってもよい。 The minor axis direction may be parallel to the second direction.
 前記回折光学素子は、前記被照明領域の前記第1方向に交差する第2方向の中心位置を通って前記第1方向に延びる中心線と、前記回折光学素子の中心位置を通って前記第1方向に延びる照明光線を前記被照明領域上に投影した投影線と、がずれるように、前記被照明領域を照明してもよい。 The diffractive optical element has a center line extending in the first direction through a center position in a second direction intersecting the first direction of the illuminated area, and the first line passing through a center position of the diffractive optical element. The illuminated area may be illuminated so as to deviate from a projection line obtained by projecting an illumination light beam extending in the direction onto the illuminated area.
 前記光源から出射される光は、コヒーレント光であり、
 前記回折光学素子は、前記回折光学素子に入射された前記コヒーレント光のうち、前記回折光学素子で回折されずに前記回折光学素子を透過した0次光が、前記被照明領域の前記第1方向における最近端よりも最遠端側に入射されるように、前記被照明領域を照明してもよい。
The light emitted from the light source is coherent light,
The diffractive optical element is configured such that, of the coherent light incident on the diffractive optical element, zero-order light that has not been diffracted by the diffractive optical element and passes through the diffractive optical element is the first direction of the illuminated region. The illuminated area may be illuminated so that it is incident on the farthest end side than the nearest end.
 前記光源から出射されて前記回折光学素子に入射される光は、平行光よりも広がった拡散光であってもよい。 The light emitted from the light source and incident on the diffractive optical element may be diffused light that spreads more than parallel light.
 本開示によれば、長手方向を有する被照明領域を、そのエッジを鮮明としながら、安全に照明することができる。 According to the present disclosure, it is possible to safely illuminate the illuminated area having the longitudinal direction while clearing the edge.
図1は、本開示による一実施の形態を説明するための図であって、照明装置を示す斜視図である。FIG. 1 is a perspective view illustrating a lighting device for explaining an embodiment according to the present disclosure. 図2は、図1の照明装置のホログラム素子の回折特性を説明するための図である。図2は、被照明領域の長手方向からホログラム素子を示している。FIG. 2 is a diagram for explaining diffraction characteristics of the hologram element of the illumination device of FIG. FIG. 2 shows the hologram element from the longitudinal direction of the illuminated area. 図3は、図1の照明装置のホログラム素子に含まれる要素ホログラムの回折特性を説明するための図である。図3は、被照明領域の長手方向からホログラム素子を示している。FIG. 3 is a diagram for explaining diffraction characteristics of element holograms included in the hologram element of the illumination device of FIG. FIG. 3 shows the hologram element from the longitudinal direction of the illuminated area. 図4は、ホログラム素子及び要素ホログラムの回折特性の調整方法を説明するための図である。FIG. 4 is a diagram for explaining a method of adjusting the diffraction characteristics of the hologram element and the element hologram. 図5は、ホログラム素子及び要素ホログラムの回折特性の調整方法を説明するための図である。FIG. 5 is a diagram for explaining a method of adjusting the diffraction characteristics of the hologram element and the element hologram. 図6は、図1に対応する斜視図であって、照明装置の一変形例を説明するための図である。FIG. 6 is a perspective view corresponding to FIG. 1 for explaining a modification of the lighting device. 図7は、同一の回折特性を有した複数のホログラムの配列と照明領域との関係を説明するための図である。FIG. 7 is a diagram for explaining the relationship between the arrangement of a plurality of holograms having the same diffraction characteristics and the illumination area. 図8は、同一の回折特性を有した複数のホログラムの配列と照明領域との関係を説明するための図である。FIG. 8 is a diagram for explaining the relationship between the arrangement of a plurality of holograms having the same diffraction characteristics and the illumination area. 図9は、照明装置の一変形例を説明するための図である。FIG. 9 is a diagram for explaining a modification of the lighting device. 被照明領域の中心線と投影線がずれている例を示す図。The figure which shows the example which the centerline of the to-be-illuminated area | region and the projection line have shifted | deviated. 反射型のホログラム素子を有する照明装置の斜視図。The perspective view of the illuminating device which has a reflection type hologram element.
 以下、図面を参照して本開示の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual product.
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や、長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。 In addition, as used in this specification, the shape and geometric conditions and the degree thereof are specified. For example, terms such as “parallel”, “orthogonal”, “identical”, length and angle values, etc. are strictly Without being bound by any meaning, it should be interpreted including the extent to which similar functions can be expected.
 図1は、照明装置10の全体構成を模式的に示す斜視図である。照明装置10は、第1方向に延在するとともに、この第1方向に交差する第2方向に延在する被照明領域Zを照明するものである。被照明領域Zの形状およびサイズは任意であるが、典型的には、照明装置10は、長手方向を有した被照明領域Z、例えば、長手方向の短手方向に対する比が10以上、さらには、この比が100以上となる被照明領域Z、典型的にはライン状の被照明領域Zを、照明する装置である。この照明装置は、例えば、自動車や船等の乗り物に適用され得る。乗り物では、進行方向の前方に広がる領域を照明する必要がある。とりわけ、高速で走行する自動者の前照灯、いわゆるヘッドランプは、当該自動車の前方近傍から前方遠方までの路面を明るく照らすことが好ましい。また、サーチライトと呼ばれる探照灯においては、前方に広がる細長い領域のみを明るく照らすことが要求されることもある。ここで説明する照明装置10では、長手方向dlを有した被照明領域Z、とりわけ照明装置10の前方に位置し且つ照明装置10から離間する方向に長手方向dlを有する被照明領域Zを、そのエッジを鮮明としながら、安全に照明し得るようにするための工夫が、施されている。したがって、前照灯や探照灯への適用においては、照明することが適切ではない領域、例えば対向車線を照明することなく、所定の範囲内のみをそのエッジまで鮮明に照明することができる。また、コンピューターによる画像解析との組み合わせることで、被照明領域Z内に存在する異物や不審物等を高精度に検出することも可能となる。 FIG. 1 is a perspective view schematically showing the overall configuration of the lighting device 10. The illuminating device 10 illuminates the illuminated area Z extending in the first direction and extending in the second direction intersecting with the first direction. The shape and size of the illuminated area Z are arbitrary, but typically, the illumination device 10 has an illuminated area Z having a longitudinal direction, for example, the ratio of the longitudinal direction to the lateral direction is 10 or more, This is an apparatus for illuminating an illuminated area Z, typically a line-shaped illuminated area Z, in which this ratio is 100 or more. This lighting device can be applied to vehicles such as automobiles and ships. In a vehicle, it is necessary to illuminate an area that extends forward in the direction of travel. In particular, it is preferable that a headlight of an automatic person traveling at a high speed, a so-called headlamp, brightly illuminates the road surface from the vicinity of the front of the automobile to the distance of the front. Further, a searchlight called a searchlight may be required to illuminate only a long and narrow area extending forward. In the illuminating device 10 described here, the illuminated region Z having the longitudinal direction dl, in particular, the illuminated region Z having the longitudinal direction dl located in front of the illuminating device 10 and away from the illuminating device 10 is A device has been devised so that the edges can be clearly lit and can be illuminated safely. Therefore, in application to a headlamp or a search lamp, it is possible to clearly illuminate only a predetermined range to its edge without illuminating a region where illumination is not appropriate, for example, an oncoming lane. Further, by combining with image analysis by a computer, it becomes possible to detect a foreign object or a suspicious object existing in the illuminated area Z with high accuracy.
 図1に示すように、照明装置10は、光を投射する光源装置15と、光源装置15からの光を回折して被照明領域Zに向けるホログラム素子40と、を有している。光源装置15は、光源20と、光源20から射出した光を整形する整形光学系30と、を有している。 As shown in FIG. 1, the illuminating device 10 has a light source device 15 that projects light and a hologram element 40 that diffracts the light from the light source device 15 and directs it toward the illuminated region Z. The light source device 15 includes a light source 20 and a shaping optical system 30 that shapes light emitted from the light source 20.
 図1に示された例において、光源装置15は、複数の光源20を有している。光源20として、レーザー光を発振するレーザー光源を用いることができる。レーザー光源から投射されるレーザー光は、直進性に優れ、被照明領域Zを高精度に照明するための光として好適である。複数の光源20は、独立して設けられていてもよいし、共通の基板上に複数の光源20を並べて配置した光源モジュールであってもよい。複数の光源20は、一例として、赤色の発光波長域の光を発振する第1レーザー光源20aと、緑色の発光波長域の光を発振する第2レーザー光源20bと、青色の発光波長域の光を発振する第3レーザー光源20cと、を有している。この例によれば、複数の光源20で発光された三つのレーザー光を重ね合わせることで、白色の照明光を含む種々の色の照明光を生成することができる。ただし、この例に限られず、光源装置15は、発光波長域が互いに相違する二つの光源20又は四つ以上の光源20を有するようにしてもよい。また、発光強度を高めるために、発光波長域ごとに、複数個ずつの光源20が設けられていてもよい。 In the example shown in FIG. 1, the light source device 15 has a plurality of light sources 20. A laser light source that oscillates laser light can be used as the light source 20. Laser light projected from the laser light source has excellent straightness and is suitable as light for illuminating the illuminated area Z with high accuracy. The plurality of light sources 20 may be provided independently, or may be a light source module in which the plurality of light sources 20 are arranged side by side on a common substrate. As an example, the plurality of light sources 20 include a first laser light source 20a that oscillates light in a red light emission wavelength region, a second laser light source 20b that oscillates light in a green light emission wavelength region, and light in a blue light emission wavelength region. A third laser light source 20c that oscillates. According to this example, it is possible to generate illumination lights of various colors including white illumination light by superimposing the three laser lights emitted from the plurality of light sources 20. However, the light source device 15 is not limited to this example, and the light source device 15 may include two light sources 20 or four or more light sources 20 having different emission wavelength ranges. In order to increase the emission intensity, a plurality of light sources 20 may be provided for each emission wavelength region.
 次に、整形光学系30について説明する。整形光学系30は、光源20から射出したレーザー光を整形する。言い換えると、整形光学系30は、レーザー光の光軸に直交する断面での形状や、レーザー光の光束の立体的な形状を整形する。図示された例において、整形光学系30は、光源20から射出したレーザー光を拡幅した平行光束に整形する。図1に示すように、整形光学系30は、レーザー光の光路に沿った順で、レンズ31及びコリメートレンズ32を有している。レンズ31は、光源20から射出したレーザー光を発散光束に整形する。コリメートレンズ32は、レンズ31で生成された発散光束を、平行光束に整形し直す。 Next, the shaping optical system 30 will be described. The shaping optical system 30 shapes the laser light emitted from the light source 20. In other words, the shaping optical system 30 shapes the shape of the cross section perpendicular to the optical axis of the laser light and the three-dimensional shape of the laser light beam. In the illustrated example, the shaping optical system 30 shapes the laser light emitted from the light source 20 into a widened parallel light beam. As shown in FIG. 1, the shaping optical system 30 includes a lens 31 and a collimating lens 32 in the order along the optical path of the laser light. The lens 31 shapes the laser light emitted from the light source 20 into a divergent light beam. The collimating lens 32 reshapes the divergent light beam generated by the lens 31 into a parallel light beam.
 図示された例において、光源装置15は、第1~第3レーザー光源20cにそれぞれ対応して、第1整形光学系30a、第2整形光学系30b及び第3整形光学系30cを有している。第1整形光学系30aは、第1レンズ31a及び第1コリメートレンズ32aを有し、第2整形光学系30bは、第2レンズ31b及び第2コリメートレンズ32bを有し、第3整形光学系30cは、第3レンズ31c及び第3コリメートレンズ32cを有している。 In the illustrated example, the light source device 15 includes a first shaping optical system 30a, a second shaping optical system 30b, and a third shaping optical system 30c corresponding to the first to third laser light sources 20c, respectively. . The first shaping optical system 30a includes a first lens 31a and a first collimating lens 32a, and the second shaping optical system 30b includes a second lens 31b and a second collimating lens 32b, and a third shaping optical system 30c. Has a third lens 31c and a third collimating lens 32c.
 次に、ホログラム素子40について説明する。ホログラム素子40は、光源装置15からの光を回折して、被照明領域Zに向ける回折光学素子である。したがって、被照明領域Zは、ホログラム素子40での回折光によって、照明されることになる。 Next, the hologram element 40 will be described. The hologram element 40 is a diffractive optical element that diffracts light from the light source device 15 and directs the light toward the illuminated area Z. Therefore, the illuminated area Z is illuminated by the diffracted light from the hologram element 40.
 図示された例において、照明装置10は、複数のホログラム素子40を有している。より具体的には、照明装置10は、第1ホログラム素子40a、第2ホログラム素子40b及び第3ホログラム素子40cを有している。各ホログラム素子40a,40b,40cは、レーザー光を発振するレーザー光源20a,20b,20cのそれぞれに対応して設けられている。この例によれば、レーザー光源20a,20b,20cが異なる波長域のレーザー光を発振する場合にも、各ホログラム素子40a,40b,40cは、対応するレーザー光で生成された異なる波長域のレーザー光を高効率で回折することが可能となる。 In the illustrated example, the illumination device 10 has a plurality of hologram elements 40. More specifically, the illumination device 10 includes a first hologram element 40a, a second hologram element 40b, and a third hologram element 40c. Each hologram element 40a, 40b, 40c is provided corresponding to each of the laser light sources 20a, 20b, 20c that oscillate laser light. According to this example, even when the laser light sources 20a, 20b, and 20c oscillate laser beams having different wavelength ranges, the hologram elements 40a, 40b, and 40c are lasers having different wavelength ranges generated by the corresponding laser beams. It becomes possible to diffract light with high efficiency.
 図2に示すように、本実施の形態では、各ホログラム素子40a,40b,40cで回折された回折光が、それぞれ、被照明領域Zの全域を照明する。後述するように、各ホログラム素子40a,40b,40cからの回折光が、それぞれ、被照明領域Z内のみをその全域に亘って照明することで、被照明領域Z内における明るさのムラや色のムラを効果的に目立たなくすることができる。なお、本明細書において、「被照明領域Zの全域」とは、各ホログラム素子40a,40b,40cで回折された回折光の照明範囲が完全に一致する場合だけでなく、それぞれの照明範囲のずれが±20%以内であることを意味する。この数値範囲は、本発明者が作製した照明装置10のプロトタイプによる実験結果から導出されたものである。 As shown in FIG. 2, in the present embodiment, the diffracted light diffracted by the hologram elements 40a, 40b, and 40c illuminates the entire illuminated area Z, respectively. As will be described later, the diffracted light from the hologram elements 40a, 40b, and 40c illuminates only the entire illuminated area Z over the entire area, thereby causing uneven brightness and color in the illuminated area Z. The unevenness can be effectively made inconspicuous. In the present specification, the “entire area Z to be illuminated” refers not only to the case where the illumination ranges of the diffracted light diffracted by the hologram elements 40a, 40b, and 40c completely match, but also to the respective illumination ranges. It means that the deviation is within ± 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
 図1及び図2に示された例において、複数のホログラム素子40は、被照明領域Zの長手方向dlに交差する、典型的には垂直な第1配列方向daに配列されている。また、複数のホログラム素子40が配列された第1配列方向daは、被照明領域Zが位置する平坦面としての面plへの法線方向ndと平行になっている。とりわけ図示された例において、複数のホログラム素子40が配列された第1配列方向daは、典型的には水平方向に垂直な鉛直方向となっている。すなわち、図示された具体例では、地面や水面よりも鉛直方向上方に配置された複数のホログラム素子40からの回折光で、地面や水面等の水平面pl上を照明し、この水平面pl上に被照明領域Zが形成される。そして、複数のホログラム素子40は、例えば鉛直方向にずらして配置されている。複数のホログラム素子40は、2つ以上であればよく、数に制限はない。例えば、複数のホログラム素子40が第1ホログラム素子と第2ホログラム素子を有し、被照明領域Zが互いに交差する第1方向と第2方向とに延在する照明範囲を有する場合、被照明領域の第1方向と第2方向の少なくとも一方において、第1ホログラム素子からの回折光の照明範囲は、第2ホログラム素子からの回折光の照明範囲に揃っている。 In the example shown in FIGS. 1 and 2, the plurality of hologram elements 40 are arranged in a first arrangement direction da that intersects the longitudinal direction dl of the illuminated area Z and is typically vertical. The first arrangement direction da in which the plurality of hologram elements 40 are arranged is parallel to the normal direction nd to the surface pl as a flat surface on which the illuminated area Z is located. In particular, in the illustrated example, the first arrangement direction da in which the plurality of hologram elements 40 are arranged is typically a vertical direction perpendicular to the horizontal direction. That is, in the illustrated example, the diffracted light from the plurality of hologram elements 40 arranged vertically above the ground and the water surface illuminates the horizontal plane pl such as the ground and the water surface and covers the horizontal plane pl. An illumination area Z is formed. The plurality of hologram elements 40 are arranged so as to be shifted in the vertical direction, for example. The number of hologram elements 40 may be two or more, and the number is not limited. For example, when the plurality of hologram elements 40 includes a first hologram element and a second hologram element, and the illuminated area Z has an illumination range extending in a first direction and a second direction intersecting with each other, the illuminated area The illumination range of the diffracted light from the first hologram element is aligned with the illumination range of the diffracted light from the second hologram element in at least one of the first direction and the second direction.
 また、図3に示すように、各ホログラム素子40は、複数の要素ホログラム45に区分けされている。各要素ホログラム45は、干渉縞パターンを記録されたホログラム記録媒体として構成されている。干渉縞パターンを種々に調整することで、各要素ホログラム45で回折される光の進行方向、言い換えると、各要素ホログラム45で拡散される光の進行方向を、制御することができる。そして、図3に示すように、各要素ホログラム45に入射した光源装置15からの光は、当該要素ホログラム45で回折されて、それぞれ、被照明領域Zの全域を照明する。後述するように、各要素ホログラム素子45からの回折光が、それぞれ、被照明領域Z内のみを全域に亘って照明することで、被照明領域Z内における明るさのムラを効果的目立たなくすることができる。 Further, as shown in FIG. 3, each hologram element 40 is divided into a plurality of element holograms 45. Each element hologram 45 is configured as a hologram recording medium on which an interference fringe pattern is recorded. By adjusting the interference fringe pattern in various ways, the traveling direction of the light diffracted by each element hologram 45, in other words, the traveling direction of the light diffused by each element hologram 45 can be controlled. As shown in FIG. 3, the light from the light source device 15 incident on each element hologram 45 is diffracted by the element hologram 45 to illuminate the entire illuminated area Z. As will be described later, the diffracted light from each element hologram element 45 illuminates only the illuminated area Z over the entire area, thereby making the unevenness of brightness in the illuminated area Z effectively inconspicuous. be able to.
 図3に示された例において、第1ホログラム素子40aは複数の第1要素ホログラム45aを含み、第2ホログラム素子40bは複数の第2要素ホログラム45bを含み、第3ホログラム素子40cは複数の第3要素ホログラム45cを含んでいる。各ホログラム素子40において、複数の要素ホログラム45は、複数のホログラム素子40の配列方向と平行な第1配列方向daに配列されている。すなわち、各ホログラム素子40に含まれる複数の要素ホログラム45は、被照明領域Zの長手方向dlに交差する、典型的には垂直な方向であって且つ被照明領域Zが形成する面plへの法線方向ndに交差する、典型的には垂直な第1配列方向daに配列されている。また、各ホログラム素子40において、複数の要素ホログラム45は、被照明領域Zの長手方向dlに交差する、典型的には垂直な方向であって且つ被照明領域Zが形成する面plへの法線方向ndと平行である第2配列方向dbにも配列されている。図示された例において、複数の45は、鉛直方向da及び水平方向dbに配列されている。 In the example shown in FIG. 3, the first hologram element 40a includes a plurality of first element holograms 45a, the second hologram element 40b includes a plurality of second element holograms 45b, and the third hologram element 40c includes a plurality of first element holograms 45a. A three-element hologram 45c is included. In each hologram element 40, the plurality of element holograms 45 are arranged in a first arrangement direction da parallel to the arrangement direction of the plurality of hologram elements 40. That is, the plurality of element holograms 45 included in each hologram element 40 intersects the longitudinal direction dl of the illuminated area Z, typically in a vertical direction and onto the surface pl formed by the illuminated area Z. They are arranged in a first arrangement direction da that intersects the normal direction nd and is typically vertical. Further, in each hologram element 40, the plurality of element holograms 45 are perpendicular to the longitudinal direction dl of the illuminated area Z and are typically perpendicular to the surface pl formed by the illuminated area Z. They are also arranged in a second arrangement direction db that is parallel to the line direction nd. In the illustrated example, the plurality of 45 are arranged in the vertical direction da and the horizontal direction db.
 ここで、被照明領域Zは、ホログラム素子40によって照明されるニアフィールドの被照明領域と考えることができる。この被照明領域Zは、実際の被照射面積(照明範囲)だけでなく、後述するように、一定の座標軸を設定した上で角度空間における拡散角度範囲によっても表現することができる。 Here, the illuminated area Z can be considered as the illuminated area of the near field illuminated by the hologram element 40. This illuminated area Z can be expressed not only by the actual illuminated area (illumination range) but also by a diffusion angle range in an angular space after setting a certain coordinate axis, as will be described later.
 要素ホログラム45は、例えば実物の散乱板からの散乱光を物体光として用いて作製することができる。より具体的には、要素ホログラム45の母体であるホログラム感光材料に、互いに干渉性を有するコヒーレント光からなる参照光と物体光とを照射すると、これらの光の干渉による干渉縞がホログラム感光材料に形成されて、要素ホログラム45が作製される。参照光としては、コヒーレント光であるレーザー光が用いられ、物体光としては、例えば安価に入手可能な等方散乱板からの散乱光が用いられる。 The element hologram 45 can be produced, for example, using scattered light from a real scattering plate as object light. More specifically, when the hologram photosensitive material that is the base of the element hologram 45 is irradiated with reference light and object light made of coherent light having coherence with each other, interference fringes due to interference of these lights are generated on the hologram photosensitive material. Thus, the element hologram 45 is produced. As reference light, laser light which is coherent light is used, and as object light, for example, scattered light from an isotropic scattering plate available at low cost is used.
 要素ホログラム45を作製する際に用いた参照光の光路を逆向きに進むよう要素ホログラム45に向けてレーザー光を照射することで、要素ホログラム45を作製する際に用いた物体光の元となる散乱板の配置位置に、散乱板の再生像が生成される。要素ホログラム45を作製する際に用いた物体光の元となる散乱板が均一的な面散乱をしていれば、要素ホログラム45により得られる散乱板の再生像も、均一な面照明となり、この散乱板の再生像が生成される領域を被照明領域Zとすることができる。 By irradiating the element hologram 45 with a laser beam so that the optical path of the reference light used when the element hologram 45 is manufactured travels in the reverse direction, the source light becomes the source of the object light used when the element hologram 45 is manufactured. A reproduced image of the scattering plate is generated at the position of the scattering plate. If the scattering plate that is the source of the object light used when producing the element hologram 45 has a uniform surface scattering, the reproduced image of the scattering plate obtained by the element hologram 45 also has a uniform surface illumination. An area where a reproduced image of the scattering plate is generated can be set as an illuminated area Z.
 また、各要素ホログラム45に形成される複雑な干渉縞のパターンは、現実の物体光と参照光を用いて形成する代わりに、予定した再生照明光の波長や入射方向、並びに、再生されるべき像の形状や位置等に基づき計算機を用いて設計することが可能である。このようにして得られた要素ホログラム45は、計算機合成ホログラム(CGH:Computer Generated Hologram)とも呼ばれる。例えば、照明装置10が地面上や水面上の一定の大きさを有した被照明領域Zを照明することに用いられる場合、物体光を生成することが困難であり、計算機合成ホログラムを要素ホログラム45として用いることが好適である。 Further, the complex interference fringe pattern formed in each element hologram 45 should be reproduced in accordance with the planned wavelength and incident direction of the reproduction illumination light, instead of using the actual object light and the reference light. It is possible to design using a computer based on the shape and position of the image. The element hologram 45 obtained in this way is also called a computer-generated hologram (CGH). For example, when the illumination device 10 is used to illuminate an illuminated area Z having a certain size on the ground surface or water surface, it is difficult to generate object light, and a computer-generated hologram is converted into an element hologram 45. It is preferable to use as.
 また、各要素ホログラム45上の各点における拡散角度特性が同じであるフーリエ変換ホログラムを計算機合成により形成してもよい。さらに、ホログラム素子40の下流側にレンズなどの光学部材を設けて、回折光が被照明領域Zの全域に入射するように調整してもよい。 Further, a Fourier transform hologram having the same diffusion angle characteristic at each point on each element hologram 45 may be formed by computer synthesis. Furthermore, an optical member such as a lens may be provided on the downstream side of the hologram element 40 so that the diffracted light enters the entire illuminated area Z.
 ホログラム素子40を用いることによる利点の一つは、光源装置15からの光、例えばレーザー光の光エネルギー密度を拡散により低下できることである。また、その他の利点の一つは、要素ホログラム45が指向性の面光源として利用可能になるため、従来のランプ光源(点光源)と比較して、同じ照度分布を達成するための光源面上の輝度を低下できることである。これらにより、光源20としてレーザー光源を用いた場合でも、レーザー光の安全性向上に寄与することができ、被照明領域Z内からレーザー光を人間の目で直視しても、単一点光源を直視する場合に比べ、人間の目に悪影響を与えるおそれが少なくなる。 One of the advantages of using the hologram element 40 is that the light energy density of light from the light source device 15, for example, laser light, can be reduced by diffusion. Another advantage is that the element hologram 45 can be used as a directional surface light source, so that it can be used on the light source surface to achieve the same illuminance distribution as compared with a conventional lamp light source (point light source). It is possible to reduce the brightness. As a result, even when a laser light source is used as the light source 20, it is possible to contribute to improving the safety of the laser light. Even if the laser light is directly viewed from within the illuminated area Z, the single point light source is directly viewed. Compared to the case, the risk of adverse effects on human eyes is reduced.
 一方、ホログラム素子を複数の要素ホログラム45で構成することによる利点は、詳しくは後述するように、被照明領域Z、とりわけ有限距離内の被照明領域Zを照明する際に、エッジを鮮明にし得る点である。ホログラム素子が、単一のフーリエ型ホログラムであれば、ホログラムの面積の大きさに応じたぼけが被照明領域Zに生じる。本実施の形態では、被照明領域Zとの位置関係を考慮した上で各要素ホログラム45の回折特性を設計することが可能となり、エッジの鮮明さを格段に向上させることができる。すなわち、一つのホログラム素子40に、回折特性が異なる複数の要素ホログラム45を含むことで、エッジを鮮明にしながら被照明領域Zを照明することができる。なお、単一のフレネル型のホログラムを撮影で作製することには、物体光を用意することの困難さから制約が生じ、また、単一のフレネル型計算機合成ホログラムを作製することは、ホログラムの全域に亘って計算を行うことを意味し、計算量の観点から実質的な制約が生じる。 On the other hand, the advantage of configuring the hologram element with a plurality of element holograms 45 can sharpen the edge when illuminating the illuminated area Z, particularly the illuminated area Z within a finite distance, as will be described in detail later. Is a point. If the hologram element is a single Fourier type hologram, a blur corresponding to the size of the hologram area occurs in the illuminated area Z. In the present embodiment, it is possible to design the diffraction characteristics of each element hologram 45 in consideration of the positional relationship with the illuminated region Z, and the sharpness of the edge can be significantly improved. That is, by including a plurality of element holograms 45 having different diffraction characteristics in one hologram element 40, it is possible to illuminate the illuminated area Z while making the edges clear. Note that the production of a single Fresnel type hologram by photographing is limited due to the difficulty of preparing object light, and the production of a single Fresnel type computer-generated hologram requires This means that the calculation is performed over the entire area, and substantial restrictions arise from the viewpoint of the amount of calculation.
 さらに、レーザー光に代表されるコヒーレント光を用いた場合、例えばWO2012/034174に開示されているように、スペックルの発生という問題が生じる。スペックルは、斑点模様として認識され、生理的な不快感を与え得る。ホログラム素子40が複数の要素ホログラム45を含むことで、各要素ホログラム45からの回折光にそれぞれ対応して生成されたスペックルパターンが被照明領域Zにおいて重なり合って平均化し、観察者に観察されることになる。これにより、各要素被照明領域Zpにおいて、スペックルを目立ちにくくすることができる。 Furthermore, when coherent light typified by laser light is used, there is a problem of speckle generation as disclosed in, for example, WO2012 / 034174. Speckle is recognized as a speckled pattern and can give physiological discomfort. Since the hologram element 40 includes a plurality of element holograms 45, speckle patterns generated corresponding to the diffracted light from the element holograms 45 are overlapped and averaged in the illuminated area Z and observed by the observer. It will be. As a result, speckles can be made inconspicuous in each element illuminated region Zp.
 要素ホログラム45の具体的な形態としては、フォトポリマーを用いた体積型ホログラム記録媒体でもよいし、銀塩材料を含む感光媒体を利用して記録するタイプの体積型ホログラム記録媒体でもよいし、レリーフ型(エンボス型)のホログラム記録媒体でもよい。 A specific form of the element hologram 45 may be a volume hologram recording medium using a photopolymer, a volume hologram recording medium of a type that records using a photosensitive medium containing a silver salt material, or a relief. A type (embossed type) hologram recording medium may be used.
 次に、ホログラム素子40の回折特性について説明する。 Next, the diffraction characteristics of the hologram element 40 will be described.
 まず、図7及び図8を参照して、ホログラムの回折特性と、ホログラムからの回折光によって照明される照明領域との関係について説明する。ここで、図7及び図8は、同一の回折特性を有した第1ホログラム60a及び第2ホログラム60bからの回折光による照明領域Za,Zbを示す図である。なお、「同一」とは、第1ホログラム60aと第2ホログラム60bの回折特性のずれが±20%以内であることを意味する。この数値範囲は、本発明者が作製した照明装置10のプロトタイプによる実験結果から導出されたものである。この例では、第1ホログラム60a及び第2ホログラム60bは、地面や水面等の水平面に回折光を照射し、且つ、当該水平面よりも上方に保持されている。すなわち、第1ホログラム60a及び第2ホログラム60bからの回折光は、水平方向よりも下方に向けて進み、被照明領域Zが形成されることを意図された地面plに照射される。例えば図7及び図8に示された例は、図1~図6の例と同様に、自動車の前照灯で路面を照明することを想定している。ホログラム60a,60bは、要素ホログラム45と同様に、前方に位置し且つ前方に細長く延びる被照明領域に光を回折することを意図されている。図7及び図8は、回折光を照射される面plへの法線方向から、各ホログラム60a,60bでの回折光の照明領域Za,Zbが示されている。 First, the relationship between the diffraction characteristics of a hologram and the illumination area illuminated by the diffracted light from the hologram will be described with reference to FIGS. Here, FIG. 7 and FIG. 8 are diagrams showing illumination areas Za and Zb by diffracted light from the first hologram 60a and the second hologram 60b having the same diffraction characteristics. Note that “same” means that the deviation of the diffraction characteristics of the first hologram 60a and the second hologram 60b is within ± 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor. In this example, the first hologram 60a and the second hologram 60b irradiate a horizontal plane such as the ground or a water surface with diffracted light and are held above the horizontal plane. That is, the diffracted light from the first hologram 60a and the second hologram 60b travels downward from the horizontal direction and is irradiated to the ground surface pl intended to form the illuminated region Z. For example, in the examples shown in FIGS. 7 and 8, it is assumed that the road surface is illuminated by the headlight of the automobile, as in the examples of FIGS. Similar to the element hologram 45, the holograms 60a and 60b are intended to diffract light into an illuminated region that is located forward and extends elongated forward. 7 and 8 show the illumination areas Za and Zb of the diffracted light in the holograms 60a and 60b from the normal direction to the surface pl irradiated with the diffracted light.
 図7及び図8に示された例において、第1ホログラム60a及び第2ホログラム60bは、本来意図された被照明領域の長手方向dlに交差する、典型的には垂直な方向に沿って、互いからずれた位置に配置されている。とりわけ図7に示された例において、第1ホログラム60a及び第2ホログラム60bの配列方向は、被照明領域が形成される面plへの法線方向ndに交差する方向、典型的には水平方向に一致している。一方、図8に示された例において、第1ホログラム60a及び第2ホログラム60bの配列方向は、被照明領域が形成される面plへの法線方向ndと平行な方向、典型的には鉛直方向に一致している。また、各ホログラム60a,60bには、図1に示された光源装置15から射出した光束が入射する。したがって、図8に示された例では、紙面の奥行き方向に、第1ホログラム60a及び第2ホログラム60bが重ねて配置され、且つ、紙面の奥行き方向に、第1及び第2の光源装置15が重ねて配置されている。 In the example shown in FIGS. 7 and 8, the first hologram 60a and the second hologram 60b are mutually aligned along a vertical direction that intersects the longitudinal direction dl of the originally intended illumination area. It is arranged at a position deviated from. In particular, in the example shown in FIG. 7, the arrangement direction of the first hologram 60a and the second hologram 60b is a direction intersecting the normal direction nd to the surface pl on which the illuminated region is formed, typically a horizontal direction. It matches. On the other hand, in the example shown in FIG. 8, the arrangement direction of the first hologram 60a and the second hologram 60b is parallel to the normal direction nd to the surface pl on which the illuminated region is formed, typically vertical. Match the direction. Further, the light beams emitted from the light source device 15 shown in FIG. 1 are incident on the holograms 60a and 60b. Therefore, in the example shown in FIG. 8, the first hologram 60a and the second hologram 60b are arranged so as to overlap in the depth direction of the paper surface, and the first and second light source devices 15 are arranged in the depth direction of the paper surface. They are placed one on top of the other.
 図7に示された例において、第1ホログラム60aでの回折光による照明領域Zaと、第2ホログラム60bでの回折光による照明領域Zbは、ホログラム60a,60bの配列方向と平行な方向にずれる。具体的には、第1ホログラム60aからの回折光によって照明される照明領域Za及び第2ホログラム60bからの回折光によって照明される照明領域Zbは、照明領域の長手方向dlに交差する、典型的には垂直な幅方向dwにずれる。したがって、二つのホログラム60a,60bから出射した光によって照明される被照明領域Zxのうち、幅方向dwの両縁に位置し且つ長手方向dlに延びる両縁部分Zyは、二つのホログラム60a,60bのうちの一方から出射した光のみによって照明される。 In the example shown in FIG. 7, the illumination area Za by the diffracted light in the first hologram 60a and the illumination area Zb by the diffracted light in the second hologram 60b are shifted in a direction parallel to the arrangement direction of the holograms 60a and 60b. . Specifically, the illumination area Za illuminated by the diffracted light from the first hologram 60a and the illumination area Zb illuminated by the diffracted light from the second hologram 60b intersect with the longitudinal direction dl of the illumination area. Is shifted in the vertical width direction dw. Therefore, in the illuminated area Zx illuminated by the light emitted from the two holograms 60a and 60b, both edge portions Zy located on both edges in the width direction dw and extending in the longitudinal direction dl are two holograms 60a and 60b. Illuminated only by light emitted from one of the two.
 図8に示された例では、二つのホログラム60a,60bは、回折光を照射される面plへの法線方向ndにずれて配置されている。すなわち、二つのホログラム60a,60bから回折光を照射される面plまでの距離は異なっている。したがって、図8に示すように、第1ホログラム60aからの回折光によって照明される照明領域Za及び第2ホログラム60bからの回折光によって照明される照明領域Zbは、照明領域の長手方向dl及び幅方向dwの両方にずれる。したがって、二つのホログラム60a,60bから出射した光によって照明される被照明領域Zxの周縁部分Zzは、二つのホログラム60a,60bのうちの一方から出射した光のみによって照明される。 In the example shown in FIG. 8, the two holograms 60a and 60b are arranged so as to be shifted in the normal direction nd to the surface pl irradiated with the diffracted light. That is, the distances from the two holograms 60a and 60b to the surface pl irradiated with the diffracted light are different. Therefore, as shown in FIG. 8, the illumination area Za illuminated by the diffracted light from the first hologram 60a and the illumination area Zb illuminated by the diffracted light from the second hologram 60b are in the longitudinal direction dl and width of the illumination area. Deviation in both directions dw. Therefore, the peripheral portion Zz of the illuminated area Zx illuminated by the light emitted from the two holograms 60a and 60b is illuminated only by the light emitted from one of the two holograms 60a and 60b.
 一方のホログラム60からの回折光のみによって照明されるようになる図7の両縁部分Zy及び図8の周縁部分Zzは、二つのホログラム60a,60bから出射する光の波長域が同一である場合、その他の部分と比較して暗く照明されることになる。また、二つのホログラム60a,60bから出射する光の波長域が異なる場合、図7の両縁部分Zy及び図8の周縁部分Zzは、その他の部分と比較して異なる色で暗く照明されることになる。すなわち、二つのホログラム60a,60bの回折特性が同一である場合、被照明領域Zのエッジが、明るさの低下や色の変化によって、ぼやけてしまう。 When both edge portions Zy of FIG. 7 and the peripheral portion Zz of FIG. 8 are illuminated only by the diffracted light from one hologram 60, the wavelength regions of the light emitted from the two holograms 60a and 60b are the same. , It will be lit darker than the other parts. Further, when the wavelength ranges of the light emitted from the two holograms 60a and 60b are different, both edge portions Zy in FIG. 7 and the peripheral portion Zz in FIG. 8 are illuminated darkly in different colors compared to the other portions. become. That is, when the diffraction characteristics of the two holograms 60a and 60b are the same, the edge of the illuminated area Z is blurred due to a decrease in brightness or a color change.
 図1~図3に示された照明装置10において、光源装置15から各ホログラム素子40へ向かう光は、図7及び図8に示す例と同様に、平行光束となっている。複数のホログラム素子40及び複数の要素ホログラム45は、その入射面および出射面が互いに平行となるように配置され、且つ、各ホログラム素子40及び各要素ホログラム45への入射光は、ホログラム素子40の法線方向及び要素ホログラム45の法線方向に沿った平行光束となっている。 In the illumination device 10 shown in FIG. 1 to FIG. 3, the light traveling from the light source device 15 to each hologram element 40 is a parallel light beam as in the examples shown in FIGS. The plurality of hologram elements 40 and the plurality of element holograms 45 are arranged so that the incident surfaces and the emission surfaces thereof are parallel to each other, and incident light on each hologram element 40 and each element hologram 45 is transmitted from the hologram element 40. The light beams are parallel light beams along the normal direction and the normal direction of the element hologram 45.
 そして、図3に示すように、各ホログラム素子40に含まれる複数の要素ホログラム45は、まず、被照明領域Zの長手方向dlに交差、典型的には垂直であり且つ被照明領域Zがなす面plへの法線方向ndに交差する、典型的には垂直な平行である第2配列方向dbに配列されている。そして、第2配列方向dbに配列された要素ホログラム45の相対位置関係は、図7に示されたホログラム60a,60bの相対位置関係と同様となる。また、一つのホログラム素子40に含まれる複数の要素ホログラム45は、次に、被照明領域Zの長手方向dlに交差、典型的には垂直であり且つ被照明領域Zがなす面plへの法線方向ndと平行である第1配列方向daにも配列されている。加えて、複数のホログラム素子40が、第1配列方向daに配置されていることから、異なるホログラム素子40に含まれる要素ホログラム45も、第1配列方向daに配置されていることになる。そして、第1配列方向daに配列された要素ホログラム45の相対位置関係は、図8に示されたホログラム60a,60bの相対位置関係と同様となる。 As shown in FIG. 3, the plurality of element holograms 45 included in each hologram element 40 first intersect with the longitudinal direction dl of the illuminated area Z, typically perpendicular, and the illuminated area Z forms. They are arranged in a second arrangement direction db that intersects the normal direction nd to the surface pl and is typically perpendicular and parallel. The relative positional relationship between the element holograms 45 arranged in the second arrangement direction db is the same as the relative positional relationship between the holograms 60a and 60b shown in FIG. A plurality of element holograms 45 included in one hologram element 40 are then crossed in the longitudinal direction dl of the illuminated area Z, typically perpendicular to the surface pl formed by the illuminated area Z. They are also arranged in a first arrangement direction da that is parallel to the line direction nd. In addition, since the plurality of hologram elements 40 are arranged in the first arrangement direction da, the element holograms 45 included in the different hologram elements 40 are also arranged in the first arrangement direction da. The relative positional relationship between the element holograms 45 arranged in the first arrangement direction da is the same as the relative positional relationship between the holograms 60a and 60b shown in FIG.
 その一方で、図2に示すように、各ホログラム素子40での回折光が、それぞれ、被照明領域Zの全域を照明する。さらに、図示された例では、図3に示すように、各要素ホログラム45での回折光が、それぞれ、被照明領域Zのみをその全域に亘って照明する。このような照明を実現すべく、各要素ホログラム45の回折特性は、次に説明するように調整されている。 On the other hand, as shown in FIG. 2, the diffracted light from each hologram element 40 illuminates the entire illuminated area Z. Further, in the illustrated example, as shown in FIG. 3, the diffracted light from each element hologram 45 illuminates only the illuminated area Z over the entire area. In order to realize such illumination, the diffraction characteristics of each element hologram 45 are adjusted as described below.
 まず、第2配列方向dbにずらして配列された要素ホログラム45からの回折光は、要素ホログラム45の回折特性が特に調整されず互いに同一であると仮定すると、図7を参照して説明したように、当該要素ホログラム45の配列方向である第2配列方向dbに変位して、被照明領域Zがなす面pl上に照射される。そこで、図4に示すように、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つの要素ホログラム45sからの回折光の長手方向dlに直交する幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の一つの要素ホログラム45kからの回折光の幅方向dwに沿った照射幅iwと、同一となるように、第2配列方向dbに配列された要素ホログラム45の回折特性を調整する。この回折特性の調整は、被照明領域Zの長手方向に沿った全域に亘って行われる。なお、図4は、照明装置10から照明光を照射されて被照明領域Zを含むようになる照射面plへの法線方向ndからの観察により、ホログラム素子40及び被照明領域Zを示す図である。なお、本明細書において、照射幅iwが「同一」とは、照射幅iwのずれが±20%以内であることを意味する。この数値範囲は、本発明者が作製した照明装置10のプロトタイプによる実験結果から導出されたものである。 First, it is assumed that the diffracted light from the element hologram 45 arranged shifted in the second arrangement direction db is the same as that described with reference to FIG. Then, the element hologram 45 is displaced in the second arrangement direction db, which is the arrangement direction of the element hologram 45, and is irradiated onto the surface pl formed by the illuminated region Z. Therefore, as shown in FIG. 4, the irradiation width along the width direction dw of the diffracted light from one element hologram 45s incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is perpendicular to the longitudinal direction dl. iw is the same as the irradiation width iw along the width direction dw of the diffracted light from the other element hologram 45k incident on the arbitrary position along the longitudinal direction dl of the illuminated region Z. The diffraction characteristics of the element holograms 45 arranged in the second arrangement direction db are adjusted. The adjustment of the diffraction characteristics is performed over the entire area along the longitudinal direction of the illuminated area Z. FIG. 4 is a diagram showing the hologram element 40 and the illuminated region Z by observation from the normal direction nd to the irradiated surface pl that is irradiated with illumination light from the illumination device 10 and includes the illuminated region Z. It is. In this specification, the irradiation width iw “same” means that the deviation of the irradiation width iw is within ± 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
 図4に示された例において、各要素ホログラム45から長手方向dlに沿って距離Rだけ離間した被照明領域Z内の位置に向かう光の回折特性を、被照明領域Zの幅に応じて調整する。また、回折特性は、角度空間における拡散角度分布を用いて、調整され得る。まず、基準となる要素ホログラム45sの回折特性を調整する。例えば図4に示された例では、長手方向dlに沿って距離Rだけ離れた位置に向かう基準要素ホログラム45sの拡散角度特性は、図4に示された座標系によって、次のように特定される。
    tan(θ1+)=x/R
    tan(θ1-)=x/R
In the example shown in FIG. 4, the diffraction characteristics of the light traveling toward the position in the illuminated area Z that is separated from each element hologram 45 along the longitudinal direction dl by the distance R are adjusted according to the width of the illuminated area Z. To do. The diffraction characteristics can also be adjusted using the diffusion angle distribution in the angular space. First, the diffraction characteristic of the reference element hologram 45s is adjusted. For example, in the example shown in FIG. 4, the diffusion angle characteristic of the reference element hologram 45 s toward the position separated by the distance R along the longitudinal direction dl is specified as follows by the coordinate system shown in FIG. 4. The
tan (θ 1+ ) = x + / R
tan (θ 1 ) = x / R
 次に、他の要素ホログラム45kの拡散角度特性を、基準となる要素ホログラム45sの拡散角度特性と、基準要素ホログラム45sから当該要素ホログラム45kまでの第2配列方向dbに沿ったずれ量aと、を考慮して、決定する。具体的には、つぎのように決定される。
    tan(θ2+)=(x+a)/R
    tan(θ2-)=(x-a)/R
Next, the diffusion angle characteristics of the other element hologram 45k, the diffusion angle characteristics of the reference element hologram 45s, and the shift amount a along the second arrangement direction db from the reference element hologram 45s to the element hologram 45k, Determine in consideration of Specifically, it is determined as follows.
tan (θ 2+ ) = (x + + a) / R
tan (θ 2− ) = (x −a) / R
 基準要素ホログラム45sの拡散角度特性は、被照明領域Zの長手方向dlに沿った全域に亘って行われる。同様に、他の要素ホログラム45kの拡散角度特性も、被照明領域Zの長手方向dlに沿った全域に亘って行われる。 The diffusion angle characteristic of the reference element hologram 45s is performed over the entire area along the longitudinal direction dl of the illuminated area Z. Similarly, the diffusion angle characteristic of the other element hologram 45k is also performed over the entire area along the longitudinal direction dl of the illuminated area Z.
 次に、第1配列方向daにずらして配列された要素ホログラム45からの回折光は、要素ホログラム45の回折特性が特に調整されず互いに同一であると仮定すると、図8を参照して説明したように、要素ホログラム45から見た正面方向および当該正面方向に垂直な方向の両方に変位して、すなわち図示された例では、被照明領域Zが位置する面pl上において被照明領域Zの長手方向dl及び幅方向dwの両方に変位して照射される。そこで、第2配列方向dbにずらして配列された要素ホログラム45の回折特性の調整と同様にして、一具体例として図4を参照して説明した角度空間での回折特性の調整と同様にして、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つの要素ホログラム45sからの回折光の長手方向dlに直交する幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の要素ホログラム45t,45nからの回折光の幅方向dwに沿った照射幅iwと、同一となるように、第1配列方向daに配列された要素ホログラム45の回折特性を調整する。 Next, the diffracted light from the element hologram 45 arranged so as to be shifted in the first arrangement direction da is described with reference to FIG. 8, assuming that the diffraction characteristics of the element hologram 45 are not adjusted and are the same. Thus, it is displaced in both the front direction seen from the element hologram 45 and the direction perpendicular to the front direction, that is, in the illustrated example, the length of the illuminated area Z on the surface pl on which the illuminated area Z is located. Irradiated with displacement in both the direction dl and the width direction dw. Therefore, in the same manner as the adjustment of the diffraction characteristics of the element hologram 45 arranged in the second arrangement direction db, the same as the adjustment of the diffraction characteristics in the angle space described with reference to FIG. 4 as a specific example. The irradiation width iw along the width direction dw perpendicular to the longitudinal direction dl of the diffracted light from one element hologram 45s incident at an arbitrary position along the longitudinal direction dl of the illuminated area Z is Arranged in the first arrangement direction da so as to be the same as the irradiation width iw along the width direction dw of the diffracted light from the other element holograms 45t, 45n incident on the arbitrary position along the longitudinal direction dl. The diffraction characteristic of the element hologram 45 is adjusted.
 さらに、図5に示すように、被照明領域Zの幅方向dwに沿った任意の位置に入射する一つの要素ホログラム45sからの回折光の長手方向dlに沿った照射長さilが、被照明領域Zの幅方向dwに沿った前記任意の位置に入射する他の一つの要素ホログラム45t,45nからの回折光の長手方向dlに沿った照射長さilと、同一となるように、第1配列方向daに配列された要素ホログラム45の回折特性を調整する。なお、図5は、被照明領域Zがなす照射面plへの法線方向ndと第1配列方向daとの両方に平行な面で、ホログラム素子40及び被照明領域Zを示す図である。なお、本明細書において、照射長さilが「同一」とは、照射長さilのずれが±20%以内であることを意味する。この数値範囲は、本発明者が作製した照明装置10のプロトタイプによる実験結果から導出されたものである。 Further, as shown in FIG. 5, the irradiation length il along the longitudinal direction dl of the diffracted light from one element hologram 45s incident on an arbitrary position along the width direction dw of the illuminated region Z is expressed as follows. The first length is set to be the same as the irradiation length il along the longitudinal direction dl of the diffracted light from the other one of the element holograms 45t and 45n incident on the arbitrary position along the width direction dw of the region Z. The diffraction characteristics of the element holograms 45 arranged in the arrangement direction da are adjusted. FIG. 5 is a diagram showing the hologram element 40 and the illuminated region Z on a plane parallel to both the normal direction nd to the irradiation surface pl formed by the illuminated region Z and the first arrangement direction da. In the present specification, “the same irradiation length il” means that the deviation of the irradiation length il is within ± 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
 図5に示された例において、第1配列方向daに配列された要素ホログラム45から幅方向dwにおける任意の位置に向かう光の回折特性を、被照明領域Zの長さに応じて調整する。また、回折特性は、角度空間における拡散角度分布を用いて、調整され得る。まず、基準となる要素ホログラム45sの回折特性を調整する。例えば図5に示された例では、幅方向dwにおける任意の位置に向かう基準要素ホログラム45sの拡散角度特性は、図5に示された座標系によって、次のように特定される。
    tan(θ3+)=h/y
    tan(θ3-)=h/(y+il)
 なお、式中の「h」は、被照明領域Zが形成される照射面plから基準要素ホログラム45までの第1配列方向daに沿った距離、すなわち基準要素ホログラム45の配置された位置の高さに相当する。
In the example shown in FIG. 5, the diffraction characteristics of light traveling from the element hologram 45 arranged in the first arrangement direction da to an arbitrary position in the width direction dw are adjusted according to the length of the illuminated region Z. The diffraction characteristics can also be adjusted using the diffusion angle distribution in the angular space. First, the diffraction characteristic of the reference element hologram 45s is adjusted. For example, in the example shown in FIG. 5, the diffusion angle characteristic of the reference element hologram 45 s directed to an arbitrary position in the width direction dw is specified as follows by the coordinate system shown in FIG. 5.
tan (θ 3+ ) = h / y
tan (θ 3− ) = h / (y + il)
Note that “h” in the equation is the distance along the first arrangement direction da from the irradiation surface pl where the illuminated region Z is formed to the reference element hologram 45, that is, the height of the position where the reference element hologram 45 is arranged. It corresponds to.
 次に、基準要素ホログラム45sと同一の第1ホログラム素子40aに含まれた他の要素ホログラム45tの拡散角度特性を、基準となる要素ホログラム45sの拡散角度特性と、基準要素ホログラム45sから当該要素ホログラム45tまでの第1配列方向daに沿ったずれ量bと、を考慮して、決定する。具体的には、つぎのように決定される。なお、本明細書において、拡散角度特性が「同一」とは、拡散角度特性のずれが±20%以内であることを意味する。この数値範囲は、本発明者が作製した照明装置10のプロトタイプによる実験結果から導出されたものである。
    tan(θ4+)=(h-b)/y
    tan(θ4-)=(h-b)/(y+il)
Next, the diffusion angle characteristic of the other element hologram 45t included in the same first hologram element 40a as the reference element hologram 45s is changed from the diffusion angle characteristic of the reference element hologram 45s to the element hologram from the reference element hologram 45s. This is determined in consideration of the shift amount b along the first arrangement direction da up to 45t. Specifically, it is determined as follows. Note that in this specification, the diffusion angle characteristics “same” means that the deviation of the diffusion angle characteristics is within ± 20%. This numerical range is derived from the experimental results of a prototype of the lighting device 10 produced by the inventor.
tan (θ 4+ ) = (h−b) / y
tan (θ 4 − ) = (h−b) / (y + il)
 さらに、基準要素ホログラム45sと異なるホログラム素子40に含まれた他の要素ホログラム45nについても、同様に、拡散特性を決定することができる。すなわち、第3ホログラム素子40cに含まれた他の要素ホログラム45nの拡散角度特性を、基準となる要素ホログラム45sの拡散角度特性と、基準要素ホログラム45sから当該要素ホログラム45nまでの第1配列方向daに沿ったずれ量cと、を考慮して、決定することができる。具体的には、つぎのように決定される。
    tan(θ5+)=(h-c)/y
    tan(θ5-)=(h-c)/(y+il)
Further, the diffusion characteristics can be similarly determined for other element holograms 45n included in the hologram element 40 different from the reference element hologram 45s. That is, the diffusion angle characteristics of the other element hologram 45n included in the third hologram element 40c are the same as the diffusion angle characteristics of the reference element hologram 45s and the first arrangement direction da from the reference element hologram 45s to the element hologram 45n. It can be determined in consideration of the shift amount c along Specifically, it is determined as follows.
tan (θ 5+ ) = (h−c) / y
tan (θ 5-) = (h -c) / (y + il)
 基準要素ホログラム45sの長手方向dlへの拡散角度特性は、被照明領域Zの幅方向dwに沿った全域に亘って行われる。同様に、他の要素ホログラム45t,45nの拡散角度特性も、被照明領域Zの幅方向dwに沿った全域に亘って行われる。 The diffusion angle characteristic in the longitudinal direction dl of the reference element hologram 45s is performed over the entire area along the width direction dw of the illuminated area Z. Similarly, the diffusion angle characteristics of the other element holograms 45t and 45n are also performed over the entire area along the width direction dw of the illuminated area Z.
 以上のようにホログラム素子40及び要素ホログラム45の回折特性を調整することで、各ホログラム素子40からの回折光が、それぞれ、被照明領域Zのみをその全域に亘って照明し、また、各要素ホログラム45からの回折光が、それぞれ、被照明領域Zのみをその全域に亘って照明するようになる。 By adjusting the diffraction characteristics of the hologram element 40 and the element hologram 45 as described above, the diffracted light from each hologram element 40 illuminates only the illuminated area Z over the entire area. The diffracted light from the hologram 45 illuminates only the illuminated area Z over the entire area.
 以上に説明した本実施の形態によれば、複数のホログラム素子40の配置位置の相違に応じて各ホログラム素子40の回折特性が調整され、その結果として、各ホログラム素子40からの回折光が、それぞれ、被照明領域Zを照明するようになっている。したがって、複数のホログラム素子40からの回折光が同一波長域の光であれば、被照明領域Zを明るく照明することができる。また、複数のホログラム素子40からの回折光が異なる波長域の光であれば、加法混色による所望の色で被照明領域Zを照明することができる。そして本実施の形態では、各ホログラム素子40からの回折光が、それぞれ、被照明領域Zを照明するので、発光点が分散されることになり、照明装置10を直視した人間の目に対する悪影響の程度を小さくすることができる。加えて、各ホログラム素子40からの回折光が、それぞれ、被照明領域Zの全域を照明するので、被照明領域Zのエッジ近傍における明るさのムラや色のムラを効果的に抑制することができる。これらにより、被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 According to the present embodiment described above, the diffraction characteristics of each hologram element 40 are adjusted according to the difference in the arrangement position of the plurality of hologram elements 40. As a result, the diffracted light from each hologram element 40 is Each of the illuminated areas Z is illuminated. Therefore, if the diffracted light from the plurality of hologram elements 40 is light in the same wavelength range, the illuminated area Z can be illuminated brightly. Further, if the diffracted light from the plurality of hologram elements 40 is light in different wavelength ranges, the illuminated area Z can be illuminated with a desired color by additive color mixing. In the present embodiment, the diffracted light from each hologram element 40 illuminates the illuminated area Z, so that the light emission points are dispersed, which has an adverse effect on the human eye directly viewing the illumination device 10. The degree can be reduced. In addition, since the diffracted light from each hologram element 40 illuminates the entire illuminated area Z, it is possible to effectively suppress uneven brightness and color unevenness in the vicinity of the edge of the illuminated area Z. it can. As a result, the illuminated area Z can be safely illuminated while its edges are clear.
 また、本実施の形態では、ホログラム素子40での回折光により、長手方向dlを有する被照明領域Zを照明することになる。したがって、ホログラム素子40の回折特性を調整することで、被照明領域Zが照明装置10の前方に位置し且つ照明装置10から離間する方向に長手方向dlを有する場合であっても、照明装置10から離間した遠くの領域をより高い光照射強度で明るく照明することが可能となる。この結果、長手方向dlを有する被照明領域Z、例えば幅方向dwの長さに対する長手方向dlの長さの比が10以上、さらにはこの比が100以上となる被照明領域Z、さらに典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 Further, in the present embodiment, the illuminated area Z having the longitudinal direction dl is illuminated by the diffracted light from the hologram element 40. Therefore, by adjusting the diffraction characteristics of the hologram element 40, the illumination device 10 can be used even when the illuminated area Z is located in front of the illumination device 10 and has a longitudinal direction dl in a direction away from the illumination device 10. It is possible to brightly illuminate a distant area away from the object with higher light irradiation intensity. As a result, the illuminated area Z having the longitudinal direction dl, for example, the illuminated area Z in which the ratio of the length in the longitudinal direction dl to the length in the width direction dw is 10 or more, and further this ratio is 100 or more, more typically In this case, it is possible to safely illuminate the line-shaped illuminated area Z while making the edge clear.
 なお、複数のホログラム素子40が、被照明領域Zの長手方向dlに垂直な方向であって且つ被照明領域Zが形成される面plへの法線方向ndと平行な第1配列方向daに、配列されている場合における各ホログラム素子40の回折特性の調整方法として、被照明領域Zの長手方向dlに直交する幅方向dwに沿った任意の位置に入射する一つのホログラム素子40からの回折光の長手方向dlに沿った照射長さilが、被照明領域Zの幅方向dwに沿った前記任意の位置に入射する他の一つのホログラム素子40からの回折光の長手方向dlに沿った照射長さilと、同一となるようにし、さらに、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つのホログラム素子40からの回折光の幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の一つのホログラム素子40からの回折光の幅方向dwに沿った照射幅iwと、同一となるようにしてもよい。このような調整は、照明装置10を簡易小型化しながら実現することが可能である。したがって、照明装置10の簡易小型化を可能としながら、長手方向dlを有する被照明領域Z、典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 The plurality of hologram elements 40 are arranged in a first arrangement direction da that is perpendicular to the longitudinal direction dl of the illuminated area Z and is parallel to the normal direction nd to the surface pl on which the illuminated area Z is formed. As a method for adjusting the diffraction characteristics of the hologram elements 40 when arranged, diffraction from one hologram element 40 incident at an arbitrary position along the width direction dw orthogonal to the longitudinal direction dl of the illuminated area Z The irradiation length il along the longitudinal direction dl of the light is along the longitudinal direction dl of the diffracted light from the other hologram element 40 incident on the arbitrary position along the width direction dw of the illuminated area Z. Further, the irradiation width iw along the width direction dw of the diffracted light from one hologram element 40 incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is made equal to the irradiation length il. But And irradiation width iw along the width direction dw of the diffracted light from one hologram element 40 other incident on the arbitrary position along the longitudinal direction dl in the illuminated area Z, may be the same. Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
 また、本実施の形態によれば、ホログラム素子40が複数の要素ホログラム45を含んでいる。そして、複数の要素ホログラム45の配置位置の相違に応じて各要素ホログラム45の回折特性が調整され、その結果として、各要素ホログラム45からの回折光が、それぞれ、被照明領域Zの全域を照明する。したがって、被照明領域Zのエッジ近傍における明るさのムラを効果的に抑制することができる。これにより、被照明領域Zを、そのエッジを鮮明としながら、照明することができる。また、一つのホログラム素子40が、要素ホログラム45の数量と同数の発光点を有することになり、照明装置10を直視した人間の目に対する悪影響の程度を小さくすることができる。加えて、各要素ホログラム45からの回折光が被照明領域Zで重ね合わされることになるので、レーザー光を用いた場合においても、スペックルを効果的に目立たなくすることができる。 Further, according to the present embodiment, the hologram element 40 includes a plurality of element holograms 45. Then, the diffraction characteristics of each element hologram 45 are adjusted according to the difference in arrangement position of the plurality of element holograms 45. As a result, the diffracted light from each element hologram 45 illuminates the entire illuminated area Z, respectively. To do. Therefore, uneven brightness in the vicinity of the edge of the illuminated area Z can be effectively suppressed. Thereby, it is possible to illuminate the illuminated area Z while making the edges clear. Further, one hologram element 40 has the same number of light emitting points as the number of element holograms 45, and the degree of adverse effects on the human eye that directly views the illumination device 10 can be reduced. In addition, since the diffracted light from each element hologram 45 is superimposed on the illuminated area Z, speckle can be effectively made inconspicuous even when laser light is used.
 さらに、各要素ホログラム45での回折光により、長手方向dlを有する被照明領域Zを照明することになる。したがって、要素ホログラム45の回折特性を調整することで、被照明領域Zが照明装置10の前方に位置し且つ照明装置10から離間する方向に長手方向dlを有する場合であっても、照明装置10から離間した遠くの領域をより高い光照射強度で明るく照明することが可能となる。この結果、長手方向dlを有する被照明領域Z、典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 Further, the illuminated area Z having the longitudinal direction dl is illuminated by the diffracted light from each element hologram 45. Therefore, by adjusting the diffraction characteristics of the element hologram 45, the illumination device 10 can be used even when the illuminated region Z is located in front of the illumination device 10 and has a longitudinal direction dl in a direction away from the illumination device 10. It is possible to brightly illuminate a distant area away from the object with higher light irradiation intensity. As a result, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically a line-shaped illuminated area Z, with sharp edges.
 なお、複数の要素ホログラム45が、被照明領域Zの長手方向dlに垂直であって且つ被照明領域Zが形成される面plへの法線方向ndに垂直な第2配列方向dbに、配列されている場合における各要素ホログラム45の回折特性の調整方法として、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つの要素ホログラム45からの回折光の長手方向dlに直交する幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の一つ要素ホログラム45からの回折光の幅方向dwに沿った照射幅iwと、同一となるようにしてもよい。このような調整は、照明装置10を簡易小型化しながら実現することが可能である。したがって、照明装置10の簡易小型化を可能としながら、長手方向dlを有する被照明領域Z、典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 The plurality of element holograms 45 are arranged in a second arrangement direction db perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed. As a method of adjusting the diffraction characteristics of each element hologram 45 in the case where it is applied, it is orthogonal to the longitudinal direction dl of the diffracted light from one element hologram 45 incident at an arbitrary position along the longitudinal direction dl of the illuminated area Z. The irradiation width iw along the width direction dw is the irradiation width iw along the width direction dw of the diffracted light from the other one-element hologram 45 incident on the arbitrary position along the longitudinal direction dl of the illuminated region Z. And may be the same. Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
 また、複数の要素ホログラム45が、被照明領域Zの長手方向dlに垂直な方向であって且つ被照明領域Zが形成される面plへの法線方向ndと平行な第1配列方向daに、配列されている場合における各要素ホログラム45の回折特性の調整方法として、被照明領域Zの長手方向dlに直交する幅方向dwに沿った任意の位置に入射する一つの要素ホログラム45からの回折光の長手方向dlに沿った照射長さilが、被照明領域Zの幅方向dwに沿った前記任意の位置に入射する他の一つの要素ホログラム45からの回折光の長手方向dlに沿った照射長さilと、同一となるようにし、さらに、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つの要素ホログラム45からの回折光の幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の一つの要素ホログラム45からの回折光の幅方向dwに沿った照射幅iwと、同一となるようにしてもよい。このような調整は、照明装置10を簡易小型化しながら実現することが可能である。したがって、照明装置10の簡易小型化を可能としながら、長手方向dlを有する被照明領域Z、典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 In addition, the plurality of element holograms 45 are in a first arrangement direction da that is perpendicular to the longitudinal direction dl of the illuminated area Z and is parallel to the normal direction nd to the surface pl on which the illuminated area Z is formed. As a method of adjusting the diffraction characteristics of the element holograms 45 when arranged, diffraction from one element hologram 45 incident on an arbitrary position along the width direction dw orthogonal to the longitudinal direction dl of the illuminated area Z The irradiation length il along the longitudinal direction dl of the light is along the longitudinal direction dl of the diffracted light from the other element hologram 45 incident on the arbitrary position along the width direction dw of the illuminated region Z. Further, the irradiation width iw along the width direction dw of the diffracted light from one element hologram 45 incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z is made equal to the irradiation length il. But And irradiation width iw along the width direction dw of the diffracted light from the other one element hologram 45 to be incident on the arbitrary position along the longitudinal direction dl in the illuminated area Z, it may be the same. Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
 さらに、上述した一実施の形態において、光源装置15は、レーザー光を生成する光源20と、光源20から射出した光を整形する整形光学系30と、を有している。とりわけ図示された例において、整形光学系30は、光源20からの光を平行光束に変換する。したがって、ホログラム素子40の各要素ホログラム45に平行光束が入射することになる。この例によれば、ホログラム素子40及び要素ホログラム45の設計及び製作を容易化することができる。また、ホログラム素子40での回折によって、光を被照明領域Z内の全域に高精度に向けることが可能となる。 Furthermore, in the above-described embodiment, the light source device 15 includes the light source 20 that generates the laser light and the shaping optical system 30 that shapes the light emitted from the light source 20. In particular, in the illustrated example, the shaping optical system 30 converts the light from the light source 20 into a parallel light beam. Accordingly, a parallel light beam enters each element hologram 45 of the hologram element 40. According to this example, the design and manufacture of the hologram element 40 and the element hologram 45 can be facilitated. Further, the diffraction by the hologram element 40 enables the light to be directed to the entire area within the illuminated area Z with high accuracy.
 なお、上述した一実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いるとともに、重複する説明を省略する。 Note that various modifications can be made to the above-described embodiment. Hereinafter, an example of modification will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above-described embodiment are used for parts that can be configured in the same manner as in the above-described embodiment, and overlapping Description to be omitted is omitted.
 上述した一実施の形態において、図1に示すように、複数のホログラム素子40が、被照明領域Zの長手方向dlに垂直であって且つ被照明領域Zが形成される面plへの法線方向ndと平行となる第1配列方向daに、配列されている例を示した。すなわち、被照明領域Zが地面や水面等の水平面に設けられる場合、複数のホログラム素子40が鉛直方向に配列される例を示した。しかしながら、この例に限られず、複数のホログラム素子40が、図6に示すように配列されていてもよい。図6に示された例において、複数のホログラム素子40は、被照明領域Zの長手方向dlに垂直であって且つ被照明領域Zが形成される面plへの法線方向ndに垂直となる方向、すなわち上述した第2配列方向dbに、配列されている。より具体的には、被照明領域Zが地面や水面等の水平面に設けられる場合に、複数のホログラム素子40が水平方向に配列されるようにしてもよい。この例においても、複数のホログラム素子40の配置位置の相違に応じて各ホログラム素子40の回折特性が調整され、その結果として、各ホログラム素子からの回折光が、それぞれ、被照明領域Zの全域を照明することが可能となる。このようにホログラム素子40の回折特性を調整することで、上述した実施の形態と同様の作用効果を奏することができる。 In the above-described embodiment, as shown in FIG. 1, the plurality of hologram elements 40 are normal to the surface pl that is perpendicular to the longitudinal direction dl of the illuminated area Z and on which the illuminated area Z is formed. An example in which the elements are arranged in the first arrangement direction da that is parallel to the direction nd is shown. That is, the example in which the plurality of hologram elements 40 are arranged in the vertical direction when the illuminated region Z is provided on a horizontal surface such as the ground surface or the water surface is shown. However, the present invention is not limited to this example, and a plurality of hologram elements 40 may be arranged as shown in FIG. In the example shown in FIG. 6, the plurality of hologram elements 40 are perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed. They are arranged in the direction, that is, in the second arrangement direction db described above. More specifically, when the illuminated area Z is provided on a horizontal plane such as the ground or the water surface, the plurality of hologram elements 40 may be arranged in the horizontal direction. Also in this example, the diffraction characteristic of each hologram element 40 is adjusted according to the difference in the arrangement position of the plurality of hologram elements 40, and as a result, the diffracted light from each hologram element is transmitted over the entire illuminated area Z. Can be illuminated. By adjusting the diffraction characteristics of the hologram element 40 in this way, the same effects as those of the above-described embodiment can be obtained.
 なお、複数のホログラム素子40が、被照明領域Zの長手方向dlに垂直であって且つ被照明領域Zが形成される面plへの法線方向ndに垂直な第2配列方向dbに、配列されている場合における各ホログラム素子40の回折特性の調整方法として、図4を参照して説明したように、被照明領域Zの長手方向dlに沿った任意の位置に入射する一つのホログラム素子40からの回折光の長手方向dlに直交する幅方向dwに沿った照射幅iwが、被照明領域Zの長手方向dlに沿った前記任意の位置に入射する他の一つホログラム素子40からの回折光の幅方向dwに沿った照射幅iwと、同一となるようにしてもよい。このような調整は、照明装置10を簡易小型化しながら実現することが可能である。したがって、照明装置10の簡易小型化を可能としながら、長手方向dlを有する被照明領域Z、典型的にはライン状の被照明領域Zを、そのエッジを鮮明としながら、安全に照明することができる。 The plurality of hologram elements 40 are arranged in a second arrangement direction db perpendicular to the longitudinal direction dl of the illuminated area Z and perpendicular to the normal direction nd to the surface pl on which the illuminated area Z is formed. As described above with reference to FIG. 4, as a method for adjusting the diffraction characteristics of each hologram element 40 in the case where it is applied, one hologram element 40 that is incident on an arbitrary position along the longitudinal direction dl of the illuminated area Z. Diffraction from one other hologram element 40 in which the irradiation width iw along the width direction dw perpendicular to the longitudinal direction dl of the diffracted light from the incident light enters the arbitrary position along the longitudinal direction dl of the illuminated area Z The irradiation width iw along the light width direction dw may be the same. Such adjustment can be realized while the lighting device 10 is simply reduced in size. Accordingly, it is possible to safely illuminate the illuminated area Z having the longitudinal direction dl, typically the line-shaped illuminated area Z, while making the edges clear, while allowing the lighting device 10 to be simply reduced in size. it can.
 また、上述した一実施の形態において、ホログラム素子40が、複数の要素ホログラム45に区分けされている例について説明した。しかしながら、この例に限られず、各ホログラム素子40が、単一のホログラムとして形成されていてもよい。このような変形例においても、照明装置10に含まれた複数のホログラム素子40の各々からの回折光が、それぞれ、被照明領域Zの全域に入射するようにすることで、長手方向を有する被照明領域、典型的にはライン状の被照明領域を、そのエッジを鮮明としながら、安全に照明することができる。 In the embodiment described above, the example in which the hologram element 40 is divided into a plurality of element holograms 45 has been described. However, the present invention is not limited to this example, and each hologram element 40 may be formed as a single hologram. Also in such a modification, the diffracted light from each of the plurality of hologram elements 40 included in the illumination device 10 is incident on the entire illuminated area Z, thereby having a longitudinal direction. It is possible to safely illuminate an illumination area, typically a line-like illuminated area, with sharp edges.
 さらに、上述した一実施の形態において、照明装置10が複数のホログラム素子40を有する例を示したが、この例に限られず、照明装置10が単一のホログラム素子40のみを有するようにしてもよい。この例において、ホログラム素子40が、複数の要素ホログラム45を含んでおり、各要素ホログラム45からの回折光が、それぞれ、被照明領域Zの全域に入射するようにすることで、長手方向を有する被照明領域、典型的にはライン状の被照明領域を、そのエッジを鮮明としながら、安全に照明することができる。 Furthermore, in the above-described embodiment, an example in which the illumination device 10 includes a plurality of hologram elements 40 has been described. However, the present invention is not limited to this example, and the illumination device 10 may include only a single hologram element 40. Good. In this example, the hologram element 40 includes a plurality of element holograms 45, and the diffracted light from each element hologram 45 has a longitudinal direction by being incident on the entire illuminated area Z. The illuminated area, typically a line-shaped illuminated area, can be safely illuminated with sharp edges.
 さらに、上述した一実施の形態において、複数のホログラム素子40の各々に対して、それぞれ別個の光源装置15が用意されている例を示したが、これに限られない。光源20、整形光学系30及びレンズ31のうちのいずれか一つを、複数のホログラム素子40間で共用してもよい。 Furthermore, in the above-described embodiment, an example in which a separate light source device 15 is prepared for each of the plurality of hologram elements 40 has been described. However, the present invention is not limited to this. Any one of the light source 20, the shaping optical system 30, and the lens 31 may be shared among the plurality of hologram elements 40.
 さらに、図9に示すように、光源装置15の第1~第3レーザー光源20a~20cのそれぞれは、長軸方向d1およびこれに直交する短軸方向d2を有する第1発光部151と、第2発光部152と、第3発光部153とを有していてもよい。なお、図9では、便宜上、第1~第3レーザー光源20a~20c、第1~第3整形光学系30a~30cおよび第1~第3ホログラム素子40a~40cのそれぞれを1つにまとめて図示している。実際のレーザー光源20a~20c、整形光学系30a~30cおよびホログラム素子40a~40cは、図1に示したように鉛直方向に配列されていてもよく、または、図6に示したように、水平方向に配列されていてもよい。 Further, as shown in FIG. 9, each of the first to third laser light sources 20a to 20c of the light source device 15 includes a first light emitting unit 151 having a major axis direction d1 and a minor axis direction d2 orthogonal thereto, You may have the 2 light emission part 152 and the 3rd light emission part 153. FIG. In FIG. 9, for convenience, the first to third laser light sources 20a to 20c, the first to third shaping optical systems 30a to 30c, and the first to third hologram elements 40a to 40c are collectively illustrated. Show. The actual laser light sources 20a to 20c, shaping optical systems 30a to 30c and hologram elements 40a to 40c may be arranged in the vertical direction as shown in FIG. 1, or as shown in FIG. It may be arranged in the direction.
 ここで、発光部151~153の長軸方向d1とは、発光部151~153から発光されるレーザー光の拡散方向のうち拡散角度が最大となる方向である。長軸方向d1は、光軸に直交するレーザー光の断面の最大径に平行な方向ということもできる。図示されている例において、長軸方向d1は、鉛直方向に一致する。また、短軸方向d2とは、発光部151~153から発光されるレーザー光の拡散方向のうち拡散角度が最小となる方向である。短軸方向d2は、光軸に直交するレーザー光の断面の最小径に平行な方向ということもできる。図示されている例において、短軸方向d2は、水平方向に一致する。 Here, the major axis direction d1 of the light emitting units 151 to 153 is a direction in which the diffusion angle is maximized in the diffusion direction of the laser light emitted from the light emitting units 151 to 153. It can also be said that the major axis direction d1 is a direction parallel to the maximum diameter of the cross section of the laser beam orthogonal to the optical axis. In the illustrated example, the major axis direction d1 coincides with the vertical direction. Further, the minor axis direction d2 is a direction in which the diffusion angle is minimum among the diffusion directions of the laser light emitted from the light emitting units 151 to 153. It can also be said that the minor axis direction d2 is a direction parallel to the minimum diameter of the cross section of the laser beam orthogonal to the optical axis. In the illustrated example, the minor axis direction d2 coincides with the horizontal direction.
 発光部151~153は、短軸方向d2において同一の位置に、長軸方向d1に間隔を空けて配置されている。すなわち、レーザー光源20a~20cは、それらの発光部151~153の短軸方向d2が被照明領域Zの幅方向dwすなわち水平方向に平行となる姿勢で光源装置15の筐体150内に配置されている。 The light emitting units 151 to 153 are arranged at the same position in the short axis direction d2 with an interval in the long axis direction d1. That is, the laser light sources 20a to 20c are arranged in the casing 150 of the light source device 15 in such a posture that the short axis direction d2 of the light emitting units 151 to 153 is parallel to the width direction dw of the illuminated area Z, that is, the horizontal direction. ing.
 このように配置されたレーザー光源20a~20cの発光部151~153から短軸方向d2に拡がるように出射されたレーザー光Lは、整形光学系30a~30cで整形された後に、ホログラム素子40a~40cで幅方向dwに拡がるように整形される。 The laser light L emitted from the light emitting portions 151 to 153 of the laser light sources 20a to 20c arranged in this way so as to spread in the short axis direction d2 is shaped by the shaping optical systems 30a to 30c, and then the hologram elements 40a to 40c. It is shaped to expand in the width direction dw at 40c.
 もし、長軸方向d1が幅方向dwに平行な場合、発光部151~153は、幅方向dwに大きい拡散角度で拡散したレーザー光を出射する。拡散角度が大きいレーザー光は、整形光学系30a~30cのコリメートレンズ32a~32cで十分に平行化することが困難である。平行化が不十分なレーザー光をホログラム素子40a~40cで所期のビーム形状を有する回折光に整形しようとする場合、ホログラム素子40a~40cの形状に負担がかかり、ホログラム素子40a~40cのコストが上昇や寸法精度の悪化を招く虞がある。 If the long axis direction d1 is parallel to the width direction dw, the light emitting units 151 to 153 emit laser light diffused with a large diffusion angle in the width direction dw. Laser light having a large diffusion angle is difficult to be collimated sufficiently by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c. When trying to shape laser light that is insufficiently collimated into diffracted light having an intended beam shape by the hologram elements 40a to 40c, a burden is imposed on the shape of the hologram elements 40a to 40c, and the cost of the hologram elements 40a to 40c is increased. However, there is a risk of increasing the dimensional accuracy.
 これに対して、図9に示される例によれば、発光部151~153から幅方向dwに小さい拡散角度でレーザー光Lを出射できる。拡散角度が小さいレーザー光Lは、整形光学系30a~30cのコリメートレンズ32a~32cで十分に平行化することができるので、ホログラム素子40a~40cの形状に負担をかけずに所期のビーム形状を有する回折光を得ることができる。 On the other hand, according to the example shown in FIG. 9, the laser beam L can be emitted from the light emitting units 151 to 153 with a small diffusion angle in the width direction dw. Since the laser light L having a small diffusion angle can be sufficiently collimated by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c, the desired beam shape can be obtained without imposing a burden on the shape of the hologram elements 40a to 40c. Can be obtained.
 したがって、図9に示される例によれば、路面上にエッジが明確なライン状の光を確実かつ低コストで照明できる。 Therefore, according to the example shown in FIG. 9, it is possible to illuminate the line-shaped light with clear edges on the road surface reliably and at low cost.
 上述した図4は、照明領域の長手方向に直交する幅方向の中心位置を通って長手方向に延びる中心線L1がホログラム素子40の中心位置を通って長手方向に延びる照明光線を被照明領域Zのある面に投影した投影線L2と一致している例を示したが、図10に示すように、被照明領域Zの上述した中心線L1が投影線L2からずれていてもよい。 In FIG. 4 described above, the illumination light beam Z extends the illumination light beam in which the center line L1 extending in the longitudinal direction through the center position in the width direction orthogonal to the longitudinal direction of the illumination area extends in the longitudinal direction through the center position of the hologram element 40. Although the example which corresponds with the projection line L2 projected on a certain surface was shown, as shown in FIG. 10, the above-mentioned center line L1 of the illuminated area Z may be displaced from the projection line L2.
 図10では、図4と同様に、被照明領域Zの短手方向の幅をiw、ホログラム素子40の水平方向の幅をa、ホログラム素子40から被照明領域Zの最近接位置までの最短距離をR、被照明領域Zの長手方向の第1エッジe1とホログラム素子40の水平方向の第1端部を通過して被照明領域Zの長手方向に延びる第1端線e2との距離をx+、被照明領域Zの長手方向の第2エッジe3とホログラム素子40の水平方向の第2端部を通過して被照明領域Zの長手方向に延びる第2端線e4との距離をx-としている。また、被照明領域Zの任意の位置を通って短軸方向の境界位置をp1とp2としたときに、位置p1と第1端線e2との為す角度をθ1+、位置p2と第1端線e2との為す角度をθ1-、位置p1と第2端線e4との為す角度をθ2+、位置p2と第2端線e4との為す角度をθ2-とすると、以下の式が成り立つ。 In FIG. 10, as in FIG. 4, the width in the short direction of the illuminated area Z is iw, the horizontal width of the hologram element 40 is a, and the shortest distance from the hologram element 40 to the nearest position of the illuminated area Z R, the distance between the first edge e1 in the longitudinal direction of the illuminated area Z and the first end line e2 that passes through the first horizontal end of the hologram element 40 and extends in the longitudinal direction of the illuminated area Z is x +, The distance between the second edge e3 in the longitudinal direction of the illuminated area Z and the second end line e4 extending in the longitudinal direction of the illuminated area Z through the second horizontal end of the hologram element 40 is represented by x- It is said. Further, when the boundary position in the minor axis direction is p1 and p2 through an arbitrary position of the illuminated area Z, the angle formed by the position p1 and the first end line e2 is θ1 +, and the position p2 and the first end line. When the angle formed by e2 is θ1-, the angle formed by the position p1 and the second end line e4 is θ2 +, and the angle formed by the position p2 and the second end line e4 is θ2-, the following expression is established.
    tan(θ1+)=x/R
    tan(θ1-)=(x―iw)/R
    tan(θ2+)=(x+a)/R
    tan(θ2-)=x-/R
tan (θ 1+ ) = x + / R
tan (θ 1-) = (x + -iw) / R
tan (θ 2+ ) = (x + + a) / R
tan (θ 2− ) = x / R
 このように、上記の式を満たすように、ホログラム素子40の回折特性を設計することにより、ホログラム素子40に対して任意の方向および位置にある被照明領域Zを照明することができる。 Thus, by designing the diffraction characteristics of the hologram element 40 so as to satisfy the above formula, the illuminated area Z in an arbitrary direction and position with respect to the hologram element 40 can be illuminated.
 ホログラム素子40に入射されたレーザー光の一部は、ホログラム素子40で回折されることなく、そのまま透過する0次光となる。0次光が被照明領域Zに照射される場合、予め設計された被照明領域Z内の0次光照射位置だけが特異的に照度が高くなってしまう。ホログラム素子40の位置を基準として、0次光が被照明領域Zの長手方向における最近端側に照射される場合と最遠端側に照射される場合とを比較すると、最近端側に照射される場合の方が0次光の照射面積が小さくなって、単位面積当たりの照度が高くなり、被照明領域Zにおける0次光の照射位置が目立ちやすくなる。そこで、0次光が被照明領域Zの長手方向における最近端よりも最遠端側に入射されるように、ホログラム素子40の回折特性を設計するのが望ましい。これにより、被照明領域Zの全域での光強度すなわち照度のばらつきを抑制できる。 A part of the laser light incident on the hologram element 40 is not diffracted by the hologram element 40 and becomes zero-order light that is transmitted as it is. When the 0th-order light is irradiated onto the illuminated area Z, only the 0th-order light irradiation position in the illuminated area Z designed in advance has high illuminance specifically. Using the position of the hologram element 40 as a reference, comparing the case where the zero-order light is irradiated on the nearest end side in the longitudinal direction of the illuminated area Z and the case where it is irradiated on the farthest end side, the nearest end side is irradiated. In this case, the irradiation area of the 0th-order light becomes smaller, the illuminance per unit area becomes higher, and the irradiation position of the 0th-order light in the illuminated area Z becomes more conspicuous. Therefore, it is desirable to design the diffraction characteristics of the hologram element 40 so that the zero-order light is incident on the farthest end side with respect to the nearest end in the longitudinal direction of the illuminated region Z. Thereby, the dispersion | variation in the light intensity, ie, illumination intensity, in the whole illuminated area Z can be suppressed.
 図1等では、整形光学系30a~30cのコリメートレンズ32a~32cにてレーザー光を平行化した後にホログラム素子40a~40cに入射している。被照明領域Zのボケを抑制するには、ホログラム素子40a~40cへの入射光を平行化するのが望ましいが、平行化されたレーザ光は、ホログラム素子40a~40cへの入射面積が小さいため、その分、0次光の光強度が大きくなる。よって、0次光の光強度を弱める観点からは、ホログラム素子40a~40cへの入射光が完全な平行光よりもわずかに広がった拡散光の方が望ましい。拡散光がホログラム素子40a~40cに入射されると、被照明領域Zのボケ量が増大するおそれがあるが、図3等で説明したように、ホログラム素子40a~40cが複数の要素ホログラム45に区分けされていて、各要素ホログラム45が被照明領域Zの全域を照明するような回折特性を持っている場合には、ホログラム素子40a~40cへの入射光が拡散光であったとしても、各要素ホログラム45内に入射されるレーザー光の入射角度はほとんど同じと考えられるため、各要素ホログラム45ごとに被照明領域Zの全域を照明するように回折特性を設計すれば、ホログラム素子40a~40cの全体として、被照明領域Zを鮮明に照明することができる。 In FIG. 1 and the like, the laser light is collimated by the collimating lenses 32a to 32c of the shaping optical systems 30a to 30c and then incident on the hologram elements 40a to 40c. In order to suppress the blur of the illuminated area Z, it is desirable to collimate the incident light on the hologram elements 40a to 40c. However, the collimated laser light has a small incident area on the hologram elements 40a to 40c. Accordingly, the light intensity of the 0th order light is increased. Therefore, from the viewpoint of reducing the light intensity of the zeroth-order light, the diffused light in which the incident light to the hologram elements 40a to 40c is slightly spread is more desirable than the perfect parallel light. If diffused light is incident on the hologram elements 40a to 40c, the amount of blur in the illuminated area Z may increase. However, as described with reference to FIG. 3 and the like, the hologram elements 40a to 40c are formed on the plurality of element holograms 45. In the case where the element holograms 45 are divided and have diffraction characteristics that illuminate the entire illuminated area Z, even if the incident light to the hologram elements 40a to 40c is diffused light, Since the incident angles of the laser beams incident on the element hologram 45 are considered to be almost the same, if the diffraction characteristics are designed so as to illuminate the entire illuminated area Z for each element hologram 45, the hologram elements 40a to 40c. As a whole, the illuminated area Z can be illuminated clearly.
 図1等では、回折光学素子として、透過型のホログラム素子40a~40cを用いる例を示したが、図11に示すように反射型のホログラム素子40a~40cを用いてもよい。反射型のホログラム素子40a~40cであれば、0次光の進行方向が観察者の観察方向と異なるため、0次光に対する安全対策が容易になりうる。 In FIG. 1 and the like, an example in which transmissive hologram elements 40a to 40c are used as diffractive optical elements has been shown, but reflective hologram elements 40a to 40c may be used as shown in FIG. With the reflection type hologram elements 40a to 40c, since the traveling direction of the 0th-order light is different from the observation direction of the observer, a safety measure against the 0th-order light can be facilitated.
 なお、以上において上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 In addition, although the some modification with respect to embodiment mentioned above was demonstrated above, naturally, it is also possible to apply combining several modifications suitably.

Claims (22)

  1.  第1方向に延在するとともに、前記第1方向に交差する第2方向に延在する被照明領域を照明する照明装置であって、
     光源と、
     前記光源からの光を回折して前記被照明領域に向ける第1ホログラム素子及び第2ホログラム素子を有する回折光学素子と、を備え、
     前記第1ホログラム素子での回折光が前記被照明領域の全域を照明し且つ前記第2ホログラム素子での回折光が前記被照明領域の全域を照明する、照明装置。
    An illumination device that illuminates an illuminated area that extends in a first direction and extends in a second direction that intersects the first direction,
    A light source;
    A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region,
    The illuminating device, wherein the diffracted light from the first hologram element illuminates the entire area of the illuminated area, and the diffracted light from the second hologram element illuminates the entire area of the illuminated area.
  2.  前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項1に記載の照明装置。 The irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area. 2. The illumination device according to claim 1, wherein the illumination width is the same as an irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction.
  3.  前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっている、請求項1又は2に記載の照明装置。 The irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area. The irradiation length along the first direction of the diffracted light from the second hologram element incident on the arbitrary position along the second direction is the same as the irradiation length along the first direction. Lighting device.
  4.  第1方向に延在するとともに、前記第1方向に交差する第2方向に延在する被照明領域を照明する照明装置であって、
     光源と、
     前記光源からの光を回折して前記被照明領域に向ける第1ホログラム素子及び第2ホログラム素子を有する回折光学素子と、を備え、
     前記被照明領域の前記第1方向と前記第2方向との少なくとも一方において、前記第1ホログラム素子からの回折光の照明範囲は、前記第2ホログラム素子からの回折光の照明範囲に揃っている、照明装置。
    An illumination device that illuminates an illuminated area that extends in a first direction and extends in a second direction that intersects the first direction,
    A light source;
    A diffractive optical element having a first hologram element and a second hologram element for diffracting light from the light source and directing the light toward the illuminated region,
    In at least one of the first direction and the second direction of the illuminated area, the illumination range of the diffracted light from the first hologram element is aligned with the illumination range of the diffracted light from the second hologram element. , Lighting equipment.
  5.  前記第1ホログラム素子及び前記第2ホログラム素子は、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に交差する方向に、配列されており、
     前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項1~4のいずれか一項に記載の照明装置。
    The first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed. Has been
    The irradiation width along the second direction intersecting the first direction of the diffracted light from the first hologram element that enters the arbitrary position along the first direction of the illuminated area is the width of the illuminated area. The irradiation width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position along the first direction is the same as any one of claims 1 to 4. The lighting device according to item.
  6.  前記第1ホログラム素子及び前記第2ホログラム素子は、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に沿った方向に、配列されており、
     前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっており、
     前記被照明領域の前記第1方向に沿った任意の位置に入射する前記第1ホログラム素子からの回折光の前記第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する前記第2ホログラム素子からの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項1~5のいずれか一項に記載の照明装置。
    The first hologram element and the second hologram element are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed. Has been
    The irradiation length along the first direction of the diffracted light from the first hologram element incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the illumination area. The irradiation length along the first direction of the diffracted light from the second hologram element that enters the arbitrary position along the second direction is the same as
    The irradiation width along the second direction of the diffracted light from the first hologram element incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area. The illumination device according to any one of claims 1 to 5, wherein the illumination width along the second direction of the diffracted light from the second hologram element incident on the arbitrary position is the same. .
  7.  前記第1ホログラム素子は、複数の要素ホログラムを含み、
     前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明する、請求項1~6のいずれか一項に記載の照明装置。
    The first hologram element includes a plurality of element holograms,
    The illuminating device according to any one of claims 1 to 6, wherein diffracted light from at least two element holograms among the plurality of element holograms illuminates the entire area to be illuminated.
  8.  前記第2ホログラム素子は、複数の要素ホログラムを含み、
     前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明する、請求項1~7のいずれか一項に記載の照明装置。
    The second hologram element includes a plurality of element holograms,
    The illuminating device according to any one of claims 1 to 7, wherein diffracted light from at least two or more element holograms of the plurality of element holograms illuminates the entire area to be illuminated.
  9.  前記被照明領域の前記第1方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項7又は8に記載の照明装置。 The irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. The illumination according to claim 7 or 8, wherein the illumination width is the same as the irradiation width along the second direction of the diffracted light from another element hologram incident on the arbitrary position along the first direction. apparatus.
  10.  前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する他の一つの要素ホログラム素子からの回折光の前記第1方向に沿った照射長さと、同一となっている、請求項7~9のいずれか一項に記載の照明装置。 The irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area. 10. The irradiation length along the first direction of the diffracted light from the other one element hologram element incident on the arbitrary position along the second direction is the same as the irradiation length along the first direction. The lighting device according to claim 1.
  11.  前記複数の要素ホログラムは、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に交差する方向に、配列されており、
     前記被照明領域の前記第1方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に交差する第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項7~10のいずれか一項に記載の照明装置。
    The plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and a direction intersecting a normal direction to a surface on which the illuminated area is formed,
    The irradiation width along the second direction intersecting the first direction of diffracted light from one element hologram incident on an arbitrary position along the first direction of the illuminated region is the irradiation width of the illuminated region. 11. The irradiation width along the second direction of the diffracted light from another element hologram incident on the arbitrary position along the first direction is the same as the irradiation width along the second direction. The lighting device according to item.
  12.  前記複数の要素ホログラムは、前記被照明領域の第1方向に交差する方向であって且つ前記被照明領域が形成される面への法線方向に沿った方向に、配列されており、
     前記被照明領域の前記第1方向に交差する第2方向に沿った任意の位置に入射する一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さは、前記被照明領域の前記第2方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第1方向に沿った照射長さと、同一となっており、
     前記被照明領域の前記第1方向に沿った任意の位置に入射する前記一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅は、前記被照明領域の前記第1方向に沿った前記任意の位置に入射する他の一つの要素ホログラムからの回折光の前記第2方向に沿った照射幅と、同一となっている、請求項7~11のいずれか一項に記載の照明装置。
    The plurality of element holograms are arranged in a direction intersecting a first direction of the illuminated area and along a normal direction to a surface on which the illuminated area is formed,
    The irradiation length along the first direction of the diffracted light from one element hologram incident on an arbitrary position along the second direction intersecting the first direction of the illuminated area is the length of the illuminated area. The irradiation length along the first direction of the diffracted light from the other one element hologram incident on the arbitrary position along the second direction is the same,
    The irradiation width along the second direction of the diffracted light from the one element hologram incident on an arbitrary position along the first direction of the illuminated area is along the first direction of the illuminated area. The illumination according to any one of claims 7 to 11, wherein the illumination width is the same as the irradiation width along the second direction of the diffracted light from another element hologram incident on the arbitrary position. apparatus.
  13.  前記光源は、第1コヒーレント光源及び第2コヒーレント光源を有し、
     前記第1コヒーレント光源からの光を整形して前記第1ホログラム素子に向ける第1整形光学系と、前記第2コヒーレント光源からの光を整形して前記第2ホログラム素子に向ける第2整形光学系と、をさらに備える、請求項1~12のいずれか一項に記載の照明装置。
    The light source includes a first coherent light source and a second coherent light source,
    A first shaping optical system that shapes light from the first coherent light source and directs the light toward the first hologram element, and a second shaping optical system that shapes light from the second coherent light source and directs the light to the second hologram element The lighting device according to any one of claims 1 to 12, further comprising:
  14.  第1方向を有した被照明領域を照明する照明装置であって、
     光源と、
     前記光源からの光を回折して前記被照明領域に向けるホログラム素子を有する回折光学素子と、を備え、
     前記ホログラム素子は、複数の要素ホログラムを含み、
     前記複数の要素ホログラムのうち少なくとも2以上の要素ホログラムからの回折光は、前記被照明領域の全域を照明する、照明装置。
    An illumination device for illuminating an illuminated area having a first direction,
    A light source;
    A diffractive optical element having a hologram element that diffracts light from the light source and directs it to the illuminated area, and
    The hologram element includes a plurality of element holograms,
    The illuminating device, wherein diffracted light from at least two element holograms among the plurality of element holograms illuminates the entire area to be illuminated.
  15.  前記光源は、長軸方向およびこれに交差する短軸方向を有する発光部を含み、
     前記発光部から前記短軸方向に拡がる光を、前記ホログラム素子で前記第1方向に交差する第2方向に拡がるように整形する整形光学系をさらに備える、請求項1~14のいずれか一項に記載の照明装置。
    The light source includes a light emitting unit having a major axis direction and a minor axis direction intersecting the major axis direction,
    The shaping optical system according to any one of claims 1 to 14, further comprising a shaping optical system that shapes light spreading in the minor axis direction from the light emitting unit so as to spread in a second direction intersecting the first direction by the hologram element. The lighting device described in 1.
  16.  第1方向を有した被照明領域を照明する照明装置であって、
     長軸方向およびこれに交差する短軸方向を有し、コヒーレント光を発光する発光部を含む光源と、
     前記光源からのコヒーレント光を回折して前記被照明領域に向けるホログラム素子を有する回折光学素子と、を備え、
     前記発光部から前記短軸方向に拡がるコヒーレント光が、前記ホログラム素子で前記第1方向に交差する第2方向に拡がるように整形される、照明装置。
    An illumination device for illuminating an illuminated area having a first direction,
    A light source having a major axis direction and a minor axis direction intersecting the major axis direction and including a light emitting unit that emits coherent light;
    A diffractive optical element having a hologram element that diffracts coherent light from the light source and directs it to the illuminated area, and
    The illuminating device shaped so that the coherent light spreading in the minor axis direction from the light emitting unit spreads in the second direction intersecting the first direction by the hologram element.
  17.  前記光源からのコヒーレント光を整形して前記ホログラム素子に向ける整形光学系を備え、
     前記発光部から前記短軸方向に拡がるコヒーレント光が、前記整形光学系で整形された後に前記ホログラム素子で前記第2方向に拡がるように整形される、請求項16に記載の照明装置。
    A shaping optical system that shapes the coherent light from the light source and directs it to the hologram element,
    The illumination device according to claim 16, wherein coherent light spreading in the minor axis direction from the light emitting unit is shaped so as to spread in the second direction by the hologram element after being shaped by the shaping optical system.
  18.  前記整形光学系は、前記光源からのコヒーレント光を平行光に整形するコリメートレンズを含む、請求項16又は17に記載の照明装置。 The illumination device according to claim 16 or 17, wherein the shaping optical system includes a collimator lens that shapes coherent light from the light source into parallel light.
  19.  前記短軸方向は、前記第2方向に平行である、請求項16~18のいずれか一項に記載の照明装置。 The lighting device according to any one of claims 16 to 18, wherein the minor axis direction is parallel to the second direction.
  20.  前記回折光学素子は、前記被照明領域の前記第1方向に交差する第2方向の中心位置を通って前記第1方向に延びる中心線と、前記回折光学素子の中心位置を通って前記第1方向に延びる照明光線を前記被照明領域上に投影した投影線と、がずれるように、前記被照明領域を照明する、請求項1乃至19のいずれか一項に記載の照明装置。 The diffractive optical element has a center line extending in the first direction through a center position in a second direction intersecting the first direction of the illuminated area, and the first line passing through a center position of the diffractive optical element. The illuminating device according to any one of claims 1 to 19, wherein the illuminating region is illuminated such that a projection line obtained by projecting an illumination light beam extending in a direction onto the illuminating region deviates.
  21.  前記光源から出射される光は、コヒーレント光であり、
     前記回折光学素子は、前記回折光学素子に入射された前記コヒーレント光のうち、前記回折光学素子で回折されずに前記回折光学素子を透過した0次光が、前記被照明領域の前記第1方向における最近端よりも最遠端側に入射されるように、前記被照明領域を照明する、請求項1乃至20のいずれか一項に記載の照明装置。
    The light emitted from the light source is coherent light,
    The diffractive optical element is configured such that, of the coherent light incident on the diffractive optical element, zero-order light that has not been diffracted by the diffractive optical element and passes through the diffractive optical element is the first direction of the illuminated region. The illuminating device according to any one of claims 1 to 20, wherein the illuminated area is illuminated so that the light is incident on the farthest end side than the nearest end.
  22.  前記光源から出射されて前記回折光学素子に入射される光は、平行光よりも広がった拡散光である、請求項1乃至21のいずれか一項に記載の照明装置。 The illuminating device according to any one of claims 1 to 21, wherein light emitted from the light source and incident on the diffractive optical element is diffused light that spreads more than parallel light.
PCT/JP2017/006068 2016-02-24 2017-02-20 Lighting device WO2017145972A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/078,833 US10690932B2 (en) 2016-02-24 2017-02-20 Lighting device
EP17756410.1A EP3421868A4 (en) 2016-02-24 2017-02-20 Lighting device
CN201780012675.XA CN108700266B (en) 2016-02-24 2017-02-20 Lighting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016033224 2016-02-24
JP2016-033224 2016-02-24
JP2016147678 2016-07-27
JP2016-147678 2016-07-27
JP2016249894A JP6344463B2 (en) 2016-02-24 2016-12-22 Lighting device
JP2016-249894 2016-12-22

Publications (1)

Publication Number Publication Date
WO2017145972A1 true WO2017145972A1 (en) 2017-08-31

Family

ID=59686150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006068 WO2017145972A1 (en) 2016-02-24 2017-02-20 Lighting device

Country Status (1)

Country Link
WO (1) WO2017145972A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053887A (en) * 2017-09-14 2019-04-04 大日本印刷株式会社 Luminaire
JP2019057433A (en) * 2017-09-21 2019-04-11 大日本印刷株式会社 Lighting device
JP2020017526A (en) * 2018-02-09 2020-01-30 大日本印刷株式会社 Lighting device, and design method and design device for lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same
JP2004184821A (en) * 2002-12-05 2004-07-02 Seiko Epson Corp Method for manufacturing hologram element, hologram element, illumination apparatus and projection type display apparatus
WO2005073798A1 (en) * 2004-01-29 2005-08-11 Matsushita Electric Industrial Co., Ltd. Light source device, and two-dimensional image display unit
WO2012034174A1 (en) 2010-09-14 2012-03-22 Dynamic Digital Depth Research Pty Ltd A method for enhancing depth maps
JP2015132707A (en) 2014-01-14 2015-07-23 大日本印刷株式会社 Display device and vehicle having display device mounted thereon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same
JP2004184821A (en) * 2002-12-05 2004-07-02 Seiko Epson Corp Method for manufacturing hologram element, hologram element, illumination apparatus and projection type display apparatus
WO2005073798A1 (en) * 2004-01-29 2005-08-11 Matsushita Electric Industrial Co., Ltd. Light source device, and two-dimensional image display unit
WO2012034174A1 (en) 2010-09-14 2012-03-22 Dynamic Digital Depth Research Pty Ltd A method for enhancing depth maps
JP2015132707A (en) 2014-01-14 2015-07-23 大日本印刷株式会社 Display device and vehicle having display device mounted thereon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053887A (en) * 2017-09-14 2019-04-04 大日本印刷株式会社 Luminaire
JP2019057433A (en) * 2017-09-21 2019-04-11 大日本印刷株式会社 Lighting device
JP2020017526A (en) * 2018-02-09 2020-01-30 大日本印刷株式会社 Lighting device, and design method and design device for lighting device
JP7261393B2 (en) 2018-02-09 2023-04-20 大日本印刷株式会社 Lighting device, lighting device design method and design device

Similar Documents

Publication Publication Date Title
JP6803009B2 (en) Lighting device
JP6471842B2 (en) Lighting device
JP7022394B2 (en) Lighting equipment
US11092305B2 (en) Illumination device
US11359785B2 (en) Illumination device
WO2017145972A1 (en) Lighting device
JP6569958B2 (en) Lighting device
JP6850424B2 (en) Light source device and lighting device
JP7092086B2 (en) Lighting equipment for mobiles and mobiles
JP6936978B2 (en) Lighting equipment, manufacturing method of lighting equipment, lighting method
JP7011787B2 (en) Lighting equipment
JP6146680B2 (en) Lighting device
JP7131153B2 (en) Lighting devices and lighting units
JP7249510B2 (en) lighting equipment
JP2018163851A (en) Lighting device
JP2020013793A (en) Luminaire
JP2019148711A (en) Method of designing diffraction characteristic of diffraction optical element, and illumination device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756410

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756410

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756410

Country of ref document: EP

Kind code of ref document: A1