WO2017145842A1 - Adhesion prevention film for medical devices and medical device - Google Patents

Adhesion prevention film for medical devices and medical device Download PDF

Info

Publication number
WO2017145842A1
WO2017145842A1 PCT/JP2017/005156 JP2017005156W WO2017145842A1 WO 2017145842 A1 WO2017145842 A1 WO 2017145842A1 JP 2017005156 W JP2017005156 W JP 2017005156W WO 2017145842 A1 WO2017145842 A1 WO 2017145842A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive particles
medical device
preventing film
adhesion preventing
layer
Prior art date
Application number
PCT/JP2017/005156
Other languages
French (fr)
Japanese (ja)
Inventor
由 村野
卓矢 藤原
武司 出口
広明 葛西
航平 白水
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016207295A external-priority patent/JP6804931B2/en
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201780012095.0A priority Critical patent/CN108697462B/en
Priority to DE112017000918.9T priority patent/DE112017000918T5/en
Publication of WO2017145842A1 publication Critical patent/WO2017145842A1/en
Priority to US16/105,285 priority patent/US11596719B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to an adhesion preventing film for medical devices and a medical device.
  • This application claims priority based on Japanese Patent Application No. 2016-031151 filed in Japan on February 22, 2016 and Japanese Patent Application No. 2016-207295 filed in Japan on October 21, 2016. Is hereby incorporated by reference.
  • an anti-adhesion film may be coated on the surface of the medical instrument.
  • the biological material adheres firmly to the surface of the medical device due to denaturation of protein components and the like of the biological material at high temperatures. For this reason, in the medical instrument which discharge
  • a silica continuous film layer as a first layer, a silica particle discontinuous layer as a second layer, An adhesion preventing film using a silicone layer as a third layer is known.
  • the conventional techniques as described above have the following problems. Since the adhesion preventing film described in Patent Document 1 does not have electrical conductivity, it is not a technique that can be employed in medical devices that require electrical conductivity such as a high-frequency treatment instrument. As a technique for imparting conductivity to an adhesion preventing film, an adhesion preventing film for a probe pin for conducting a current inspection of an integrated circuit chip of a semiconductor wafer is known.
  • the present invention has been made in view of the above-described problems, and can be applied to medical devices that can improve the adhesion prevention performance of biological materials even when used in medical devices that emit high-frequency power to biological materials.
  • An object is to provide a protective film.
  • An object of this invention is to provide the medical device which can improve the adhesion prevention performance of a biological substance.
  • the adhesion preventing film for medical devices is a single layer or multilayer adhesion preventing film formed on the surface of the medical device, and the continuous use temperature is 200 ° C. or more and a plurality of resins.
  • An outermost layer having conductive particles is provided, and irregularities are formed on the surface of the outermost layer by exposing a part of the plurality of conductive particles from the resin.
  • the “continuous use temperature” of the resin is defined as the thermal deformation temperature of the resin under a load of 0.45 MPa in accordance with ISO-75.
  • the “resin having a continuous use temperature of 200 ° C. or higher” is a resin having a heat distortion temperature of 200 ° C. or higher.
  • the resin is a silicone resin, furan resin, polyamide resin, allyl resin, polyimide resin, PEEK (polyether ether ketone).
  • the resin may be a silicone resin.
  • the plurality of conductive particles include at least two conductive particles having different median diameters. Groups may be included.
  • the size of the unevenness on the surface of the outermost layer is a maximum height Rz. It may be 0.3 ⁇ m or more.
  • the plurality of conductive particles have a median diameter of 1 ⁇ m or more and 20 ⁇ m or less.
  • 1 electroconductive particle group and the 2nd electroconductive particle group whose median diameter is 0.01 micrometer or more and 0.5 micrometer or less may be included.
  • the first conductive particle group includes a particulate base material made of a nonconductor, and the base material.
  • Composite particles having a metal layer laminated on the surface may be included.
  • the plurality of conductive particles include a particulate base material made of a non-conductor, and And a composite particle having a metal layer laminated on the surface of the substrate.
  • the plurality of conductive particles are silver, platinum, copper, nickel, and gold.
  • One or more metals selected from the group consisting of may be included.
  • the lower layer side of the outermost layer is mainly composed of silica, and A lowermost layer that is in close contact with the surface may be provided.
  • the medical device adhesion preventing film according to any one of the first to tenth aspects is provided.
  • the biological material adhesion preventing performance can be improved even when used in a medical device that emits high-frequency power to the biological material. According to the medical device in the eleventh aspect, it is possible to improve the adhesion prevention performance of biological substances.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of an adhesion preventing film for a medical device according to the first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of an adhesion preventing film for a medical device according to the first embodiment of the present invention.
  • each drawing is a schematic diagram, the shape and dimension are exaggerated (the following drawings are also the same).
  • FIG. 1 is a cross-sectional view illustrating a structure near the surface of a gripping part that grips a living body in a medical device.
  • the gripping unit shown in FIG. 1 has a configuration for applying a high frequency to a living body gripped by the gripping unit.
  • a non-insulating (conductive) adhesion prevention film 2 (adhesion prevention film for medical equipment, outermost layer) is formed on the medical device surface portion 1 near the surface of the gripping portion.
  • the adhesion preventing film 2 of this embodiment will be described.
  • the adhesion preventing film 2 constitutes a non-insulating part in the medical device.
  • the adhesion preventing film 2 is a single layer.
  • the adhesion preventing film 2 is laminated on the surface 1 a of the medical device surface portion 1.
  • the direction toward the surface 1a is downward, and from the surface 1a toward the surface 2a opposite to the surface 1a (surface of the outermost layer).
  • the direction will be described as an upward direction.
  • terms such as lower side, lower side, upper side, and upper side may be used.
  • FIG. 1 is an enlarged view, a state in which an adhesion preventing film 2 is formed on the entire surface 1a is illustrated.
  • the portion where the anti-adhesion film 2 is formed may be only a portion requiring a non-insulating portion.
  • the shape of the surface 1a is not particularly limited as long as the adhesion preventing film 2 can be adhered.
  • the surface 1a may be a flat surface or a curved surface.
  • the surface 1a may be a rough surface.
  • the rough surface means an arithmetic mean roughness Ra, which is a surface on which uneven shapes such as 0.1 ⁇ m or more and 2.0 ⁇ m or less are formed.
  • the arithmetic average roughness Ra may be measured, for example, with a laser microscope.
  • a rough surface having such a surface roughness can be formed, for example, by performing a roughing process using a blast process.
  • the adhesion preventing film 2 includes silicone 4, a plurality of first conductive particles 5A (first conductive particle group) and a plurality of second conductive particles 5B (second conductive particle group). Consists of. Silicone 4 is a base resin in the adhesion preventing film 2.
  • the plurality of first conductive particles 5 ⁇ / b> A and the plurality of second conductive particles 5 ⁇ / b> B are conductive particle groups dispersed in the silicone 4.
  • the silicone 4 is in close contact with the surface 1 a of the medical device surface portion 1. Silicone 4 holds each first conductive particle 5A and each second conductive particle 5B.
  • the type of silicone resin that forms silicone 4 is not particularly limited as long as the continuous use temperature is 200 ° C. or higher.
  • the continuous use temperature of the resin is defined by the thermal deformation temperature of the resin at a load of 0.45 MPa in accordance with ISO-75.
  • a silicone resin SILRES (registered trademark) series for electronics (trade name; manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) may be used.
  • the base resin used for the adhesion preventing film 2 is not limited to the silicone resin as long as it has a high heat resistance.
  • the base resin in the adhesion preventing film 2 various resins having a continuous use temperature of 200 ° C. or higher may be used.
  • the base resin may include one or more resins selected from the group consisting of silicone resin, furan resin, polyamide resin, allyl resin, polyimide resin, PEEK resin, and epoxy resin, for example.
  • the plurality of first conductive particles 5 ⁇ / b> A and the plurality of second conductive particles 5 ⁇ / b> B impart conductivity to the adhesion preventing film 2.
  • a part of the plurality of first conductive particles 5A and the plurality of second conductive particles 5B are exposed to the outside from the surface 4a of the silicone 4 so that the surface 2a of the adhesion preventing film 2 has an uneven shape.
  • the median diameter of the group is different from each other.
  • the median diameter of the first conductive particle group is larger than the median diameter of the second conductive particle group.
  • the second conductive particle 5B can easily enter the gap between the first conductive particles 5A. .
  • the second conductive particles 5B that have entered the gap between the adjacent first conductive particles 5A or between the first conductive particles 5A and the surface 1a are in contact with the first conductive particles 5A or the surface 1a. It becomes easy to touch.
  • the contact area between the conductors in the adhesion preventing film 2 and the conductive path increase.
  • the second conductive particles 5B When the second conductive particles 5B come into contact with the surface 1a, the contact area between the surface 1a and the conductor and the contact between the surface 1a and the conductive path inside the adhesion preventing film 2 increase. For this reason, the electrical conductivity between the 1st electroconductive particle 5A in the adhesion prevention film 2, the 2nd electroconductive particle 5B, and the surface 1a improves. As a result, the volume resistivity in the adhesion preventing film 2 is lowered. Furthermore, when the second conductive particles 5B enter the gaps between the adjacent first conductive particles 5A or between the first conductive particles 5A and the surface 1a, the first conductive particles 5A are firmly fixed. Supported by For this reason, the stability of the position of the first conductive particles 5A is improved.
  • the median diameter of the first conductive particle group may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the median diameter of the second conductive particle group may be 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the median diameter means the 50% particle diameter (D50) in the volume-based cumulative particle size distribution.
  • a light scattering particle size analyzer is used as a means for measuring the particle size distribution. Specifically, depending on the distribution range of the particle size to be measured, for example, a microtrack particle size analyzer using a laser diffraction / scattering method, a nanotrack particle size analyzer using a dynamic light scattering method, and the like are appropriately used.
  • the material of the first conductive particles 5A and the second conductive particles 5B is not particularly limited as long as the material has biocompatibility and can obtain the conductivity necessary for the non-insulating part.
  • the first conductive particles 5A and the second conductive particles 5B may be metal particles.
  • the first conductive particles 5A and the second conductive particles 5B may be particles in which a metal coating is applied to the surface of the non-conductive particles.
  • the metal used for the first conductive particles 5A and the second conductive particles 5B may be the same metal or different metals. Examples of metal materials that can be used for the first conductive particles 5A and the second conductive particles 5B include silver, platinum, copper, nickel, gold, and the like.
  • the first conductive particles 5A and the second conductive particles 5B are both composed of gold particles.
  • the gold particles are particularly suitable as the metal material used for the first conductive particles 5A or the second conductive particles 5B in that they are excellent in biocompatibility and electrical conductivity.
  • the blending amount of the first conductive particles 5A and the second conductive particles 5B in the adhesion preventing film 2 satisfies the impedance necessary for the non-insulating part of the medical device and the cut or sealed biological material is peeled off.
  • An appropriate value may be used so as to facilitate the process.
  • the blending amount of the first conductive particles 5A increases, the uneven shape on the surface 2a is governed by the protruding amount of the first conductive particles 5A, so that the unevenness on the surface 2a increases. For this reason, the adhesiveness of a biological substance falls. Biological substances are easily peeled off.
  • the amount of the first conductive particles 5A increases, the amount of the second conductive particles 5B relatively decreases.
  • the second conductive particles 5B interposed between the first conductive particles 5A and between the first conductive particles 5A and the surface 1a are reduced.
  • the conductivity in the adhesion preventing film 2 is lowered.
  • the conductivity of the adhesion preventing film 2 is improved by the second conductive particles 5B.
  • the uneven shape of the surface 2a is governed by the protruding amount of the second conductive particles 5B, the unevenness on the surface 2a is reduced.
  • the surface 2a approaches a smooth plane. For this reason, the adhesiveness between the biological material and the surface 2a is increased, and the biological material is hardly peeled off.
  • the peeling performance due to such uneven shape is determined by the size of the maximum height Rz of the uneven shape.
  • the size of the unevenness of the surface 2a may be 0.3 ⁇ m or more at the maximum height Rz.
  • a coating material for forming the adhesion preventing film 2 is prepared.
  • the paint is prepared by mixing the silicone resin to be the silicone 4, the solvent for dissolving the silicone resin, the first conductive particles 5A, and the second conductive particles 5B. Thereafter, the paint is applied to the surface 1 a of the medical device surface portion 1.
  • the coating method is not particularly limited, and an appropriate coating method is used according to the shape of the medical device surface portion 1 and the like.
  • examples of the coating method include spin coating, screen printing, ink jet method, flexographic printing, spray coating, gravure printing, hot stamping, dip coating, and the like.
  • the surface 1a may be roughened by roughening the surface 1a before coating.
  • the coating layer is heated and dried.
  • the solvent is volatilized, the silicone resin is solidified.
  • the layer thickness of the coating layer is reduced and a layer film of silicone 4 is formed.
  • a part of the upper first conductive particles 5A and the second conductive particles 5B are exposed to the outside from the surface 4a.
  • the first conductive particles 5A and the second conductive particles 5B facing the surface 1a are in contact with the surface 1a.
  • the adhesion preventing film 2 is manufactured.
  • the adhesion preventing film 2 of the present embodiment is fixed on the surface 1 a by the silicone 4 being in close contact with the surface 1 a of the medical device surface portion 1.
  • first conductive particles 5 ⁇ / b> A and second conductive particles 5 ⁇ / b> B are dispersed in the silicone 4 while being in contact with each other.
  • the first conductive particles 5A and the second conductive particles 5B are held by the solidified silicone 4 and their relative positions are fixed.
  • the first conductive particles 5A and the second conductive particles 5B facing the surface 1a are in contact with the surface 1a.
  • the medical device surface portion 1 and the first conductive particles 5A and the second conductive particles 5B on the surface of the adhesion preventing film 2 are electrically connected. It has conductivity.
  • a biological material formed by denaturing a living tissue that contacts the non-insulating part is likely to adhere.
  • an uneven shape is formed by gold particles on the surface 2a of the adhesion preventing film 2 which is a non-insulating part in the medical device of the present embodiment.
  • the adhesive force of the biological substance on the surface 2a of the adhesion preventing film 2 is lower than that in the case where the biological material adheres uniformly to the entire surface such as a smooth surface. Therefore, even if a biological substance adheres to the surface 2a, it is easily peeled off by a small external force.
  • the first conductive particles 5A and the second conductive particles 5B are exposed on the surface 2a to form irregularities. Even if it is used in a medical device that emits high frequency power, it is possible to improve the adhesion preventing performance of biological substances.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a medical device adhesion preventing film according to a second embodiment of the present invention.
  • the non-insulating portion of the medical device is provided with an adhesion prevention film 7 (adhesion prevention film for medical equipment) that is a multilayer film, instead of the adhesion prevention film 2 in the first embodiment.
  • the adhesion preventing film 7 is composed of two layers of a first layer 6 (lowermost layer) and a second layer 3 (outermost layer).
  • the first layer 6 is laminated on the surface 1 a of the medical device surface portion 1.
  • the second layer 3 is stacked on the upper surface 6 a of the first layer 6.
  • the first layer 6 is provided in order to improve the adhesion of the adhesion preventing film 7 to the surface 1a.
  • the first layer 6 As a material of the first layer 6, an appropriate material having excellent adhesion with the second layer 3 and the surface 1a is used.
  • a silica layer mainly composed of silica is employed as the first layer 6.
  • a coating agent such as Olam (registered trademark) glass coat series (trade name; manufactured by Art Breed Co., Ltd.) may be used.
  • the layer thickness of the 1st layer 6 can be made into an appropriate layer thickness as needed, such as adhesion strength and durability.
  • the layer thickness of the first layer 6 may be not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • the second layer 3 is configured in the same manner as the adhesion preventing film 2 of the first embodiment.
  • the base resin of the second layer 3 in this embodiment is silicone 4.
  • the base resin of the second layer 3 may be replaced with a resin other than a silicone resin having a continuous use temperature of 200 ° C. or higher.
  • the second layer 3 is formed after the first layer 6 is formed on the surface 1 a of the medical device surface portion 1.
  • a coating liquid containing silica in a solvent is coated on the surface 1 a of the medical device surface portion 1 and then dried by heating. Similar to the first embodiment, when the surface 1a is roughened, the thickness of the first layer 6 is sufficiently reduced as compared with the unevenness amount of the first layer 6 by roughening the thickness of the first layer 6. An uneven shape can also be formed on the upper surface 6a.
  • the second layer 3 is formed in the same manner as the adhesion preventing film 2 of the first embodiment except that the second layer 3 is formed on the first layer 6.
  • the second layer 3 similar to the adhesion preventing film 2 of the first embodiment is provided. Even when used in a medical device that emits high-frequency power, it is possible to improve the performance of preventing the adhesion of biological substances. Furthermore, according to the adhesion preventing film 7, the first layer 6 is formed between the second layer 3 and the surface 1 a of the medical device surface portion 1. Since the 1st layer 6 consists of a silica layer, adhesiveness with the metal medical equipment surface part 1 is favorable.
  • the adhesiveness with the silicone 4, the 1st electroconductive particle 5A, and the 2nd electroconductive particle 5B of the 2nd layer 3 is also favorable.
  • the adhesion strength of the second layer 3 can be improved as compared with the case where the second layer 3 is formed directly on the surface 1a.
  • membrane 7, durability and reliability of a medical device can be improved more.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a medical device adhesion preventing film according to a third embodiment of the present invention.
  • the adhesion preventing film 12 (adhesion preventing film for medical devices) of the present embodiment includes first conductive particles 15A instead of the first conductive particles 5A in the adhesion preventing film 2 of the first embodiment. .
  • the entirety of the first conductive particles 15A constitutes a first conductive particle group.
  • the median diameter of the first conductive particle group in the present embodiment is the same as the median diameter of the first conductive particle group in the first embodiment.
  • the first conductive particles 15A are composite particles having a particulate base material 15a made of a nonconductor and a metal layer 15b laminated on the surface of the base material 15a.
  • the material of the base material 15a is not limited as long as it is a nonconductor. It is more preferable that the material of the base material 15a has a good heat insulating property.
  • the base material 15a may have a hollow structure.
  • the hollow structure may be a spherical shell structure or a porous structure. When the base material 15a has a hollow structure, the heat insulation in the first conductive particles 15A is improved as compared with the case where the base material 15a is solid.
  • the base material 15a for example, glass, silica, alumina, zirconia and the like can be used.
  • the base material 15a hollow silica-based particles, hollow glass spheres, or the like may be used.
  • Specific examples of the hollow glass sphere include 3M (registered trademark) Glass Bubbles (trade name; manufactured by 3M).
  • the content of the first conductive particles 15A in the adhesion preventing film 12 is such an amount that the unevenness of the surface 2a is 0.3 ⁇ m or more at the maximum height Rz. May be.
  • Examples of the metal material used for the metal layer 15b include silver, platinum, copper, nickel, gold, and the like, similar to the first conductive particles 5A in the first embodiment.
  • the metal material used for the metal layer 15b may be the same as or different from the metal material used for the second conductive particles 5B.
  • the layer thickness of the metal layer 15 b is not particularly limited as long as necessary conductivity and durability can be secured in the adhesion preventing film 12. For example, since the specific surface area of the sphere is inversely proportional to the size of the diameter, the layer thickness of the metal layer 15b is selected to become thinner (thicker) as the particle size of the base material 15a becomes smaller (larger). Also good.
  • the metal layer 15b may be laminated on the base material 15a by an appropriate coating. Examples of the coating method that can be used to form the metal layer 15b include electroless plating, PVD (Physical Vapor Deposition), and CVD (Chemical Vapor Deposition). Examples of PVD include sputtering and vapor deposition.
  • the adhesion preventing film 12 having such a configuration is formed on the medical device surface portion 1 in the same manner as the adhesion preventing film 2 in the first embodiment.
  • the adhesion preventing film 12 is the same as that of the first embodiment except that the first conductive particles 15A are used in place of the first conductive particles 5A of the adhesion preventing film 2 of the first embodiment.
  • the same structure as the prevention film 2 is provided.
  • the adhesion preventing film 12 of the present embodiment as in the first embodiment, the adhesion preventing performance of the biological material can be improved even when used in a medical device that emits high-frequency power to the biological material. Can do. Since the metal layer 15b is laminated on the surface of the base material 15a, the first conductive particle 15A in the present embodiment uses metal compared to the first conductive particle 5A in the first embodiment. The amount is reduced.
  • the nonconductor used for the base material 15a is less expensive than the metal material.
  • the first conductive particles 15A have the same diameter as the first conductive particles 5A, the amount of expensive metal material used in the first conductive particles 15A is reduced compared to the first conductive particles 5A. The For this reason, the component cost of the first conductive particles 15A is reduced.
  • an expensive material such as gold or platinum is used as the base material 15a, the effect of reducing the component cost is increased.
  • the first conductive particles 15A are composed of a composite of a metal material and a non-conductive material, the thermal conductivity of the first conductive particles 15A is lower than that of metal particles having the same diameter. . For this reason, the heat insulation of the adhesion preventing film 12 is improved by containing the first conductive particles 15 ⁇ / b> A in the adhesion preventing film 12. For example, when the adhesion preventing film 12 is used on the surface of an electrode part of a medical device that releases high-frequency power to a biological tissue (biological material), the electrode part becomes high temperature due to Joule heat caused by the high-frequency power.
  • the first electroconductive particle 15A is contained on the surface of the medical device that comes into contact with the living body, so that the adhesion preventing film 12 having higher heat insulation than the case where only the metal particles are contained is formed. Has been. For this reason, the adhesion preventing film 12 prevents the living tissue from being excessively denatured by the good heat insulating performance of the adhesion preventing film 12. As a result, the adhesion preventing performance of the adhesion preventing film 12 is further improved.
  • FIG. 4 is a schematic configuration diagram showing an example of a medical device according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • a high-frequency knife 100 according to this embodiment shown in FIG. 4 is an example of a medical device according to this embodiment.
  • the high-frequency knife 100 is a medical treatment instrument that performs a treatment on a biological tissue (biological material) by applying a high-frequency voltage.
  • the high-frequency knife 100 can, for example, cut and excise a living tissue, coagulate (hemostasis) the living tissue, or cauterize.
  • the high-frequency knife 100 includes a rod-shaped grasping portion 102 for an operator to hold by hand, and an electrode portion 101 protruding from the tip of the grasping portion 102.
  • the electrode unit 101 applies a high-frequency voltage while being brought into contact with a living tissue that is an object to be treated. As shown in FIG. 5, the electrode unit 101 includes a metal electrode body 101A and an adhesion preventing film 101B (adhesion preventing film for medical devices).
  • the outer shape of the electrode body 101 ⁇ / b> A is a rectangular piece having a rounded corner at the tip in the protruding direction.
  • the outer shape of the electrode body 101 ⁇ / b> A is a flat shape whose thickness decreases toward the outer edge in a cross section orthogonal to the protruding direction.
  • the cross-sectional shape of the electrode main body 101A at the distal end in the protruding direction is similarly reduced in thickness toward the outer edge.
  • the electrode main body 101 ⁇ / b> A is electrically connected to the high-frequency power source 103 by wiring connected to the base end held by the grip portion 102.
  • the high frequency power source 103 is electrically connected to a counter electrode plate 106 to be attached to the object to be treated.
  • the adhesion preventing film 101B is a thin film provided so as to cover the electrode body surface 101a.
  • the outer surface of the adhesion preventing film 101B constitutes the electrode surface 101b of the electrode portion 101.
  • an abdomen 101d formed in a loosely curved or planar shape as a whole is formed on the side of the electrode surface 101b excluding the blade 101c.
  • the abdomen 101d is mainly used for holding the object to be treated and performing treatment such as coagulation or cauterization.
  • the material of the electrode body 101A an appropriate metal material having conductivity such as a metal or an alloy is used.
  • the electrode body 101A may be made of an aluminum alloy, stainless steel, or the like.
  • the adhesion preventing film 101B has the same structure as any one of the adhesion preventing films 2, 7, and 12 in the first to third embodiments.
  • the electrode main body 101A in the present embodiment corresponds to the medical device surface portion 1 in the first to third embodiments.
  • the treatment using the high frequency knife 100 is performed, for example, in a state where the patient is wearing the counter electrode plate 106 and a high frequency voltage is applied to the electrode unit 101 by the high frequency power source 103.
  • the operator brings the blade 101c or the abdominal part 101d of the electrode part 101 into contact with a body to be treated such as a patient's part to be treated while a high frequency voltage is applied to the electrode part 101.
  • the electrode part 101 is covered with an adhesion preventing film 101B.
  • the first and second conductive particle groups are dispersed inside the adhesion preventing film 101B. Part of the first and second conductive particle groups is exposed on the electrode surface 101b.
  • the first and second conductive particles are in contact with each other and a part is in contact with the electrode body surface 101a, thereby forming a conductive path continuous in the thickness direction of the adhesion preventing film 101B. Yes.
  • a concavo-convex shape is formed by exposing a part of the first and second conductive particles from the silicone 4 to which living tissue is difficult to adhere.
  • the water in the living tissue of the body to be treated rapidly evaporates.
  • the living tissue is coagulated in the vicinity of the abdomen 101d.
  • hemostasis or cauterization of the living tissue becomes possible.
  • the operator moves the electrode unit 101 away from the body to be treated. Since the electrode surface 101b in contact with the living tissue is formed by the adhesion preventing film 101B, the living tissue is easily peeled from the electrode surface 101b when the electrode portion 101 is separated.
  • the high frequency knife 100 the living tissue hardly adheres to the electrode surface 101b. For this reason, according to the high frequency knife 100, the fall of the treatment performance during treatment can be prevented. Furthermore, according to the high frequency knife 100, the durability of the electrode unit 101 is ensured even when the electrode unit 101 is repeatedly used.
  • the adhesion preventing film 101B is provided on the surface of the electrode part 101, the adhesion preventing performance of biological substances can be improved.
  • the outermost layer includes the first conductive particle group and the second conductive particle group.
  • the plurality of conductive particle groups are not limited to two groups.
  • the plurality of conductive particle groups may be three or more groups.
  • the conductive particle group may be only one group as long as the necessary uneven shape and conductivity are obtained according to the purpose of use of the medical device in which the adhesion preventing film for medical devices is used.
  • the first layer 6 is made of a silica layer containing silica as a main component.
  • the material of the first layer 6 is not limited to the silica layer.
  • an appropriate material may be used according to the material of the medical device surface portion 1 and the second layer 3.
  • the adhesion preventing film 7 is a multilayer film having a two-layer structure
  • the adhesion preventing film for medical devices may be a multilayer film having three or more layers.
  • the medical device adhesion preventing film can include an intermediate layer between the lowermost layer and the outermost layer. For this reason, even when there is no material having good adhesion on both the base material and the outermost layer of the grip part of the medical device, the medical device adhesion preventing film is more firmly fixed by sandwiching an appropriate intermediate layer.
  • the materials of the lowermost layer and the intermediate layer are not limited to materials having a uniform component.
  • the lowermost layer and the intermediate layer may be composed of an inclined layer in which the composition ratio of components changes in the layer thickness direction.
  • the first conductive particle group has a particulate base material made of a nonconductor, and a metal layer laminated on the surface of the base material.
  • the composite particles having the above are included.
  • the composite particles may be included only in the second conductive particle group.
  • composite particles may be included in the first and second conductive particle groups.
  • a composite particle may be contained in at least 1 group among 3 or more electroconductive particle groups. In this case, in order to efficiently reduce the component cost and improve the heat insulation, the composite particles may be contained only in the conductive particle group having the largest median diameter.
  • Examples 1 to 5 of the adhesion preventing film 2 of the first embodiment and Example 6 of the adhesion preventing film 7 of the second embodiment will be described together with Comparative Examples 1 and 2.
  • [Table 1] and [Table 2] below show the composition and evaluation results of the outermost layer-forming coating material for forming the medical device adhesion preventing film of each Example and each Comparative Example. However, in [Table 1], the notation of the reference numerals of the respective members is omitted.
  • Example 1 is an example of the adhesion preventing film 2.
  • the adhesion preventing film 2 of Example 1 was manufactured as follows. An aluminum substrate was used as the substrate on which the adhesion preventing film 2 was formed. Outermost layer in which 10 parts by weight of silicone resin, 30 parts by weight of first conductive particles, 30 parts by weight of second conductive particles, and 30 parts by weight of solvent are mixed to form adhesion preventing film 2 A forming paint was prepared.
  • silicone resin SILRES (registered trademark) MPF 52 E (trade name; manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) was used.
  • a gold particle group (first conductive particle group) having a median diameter of 5 ⁇ m was used as the first conductive particles 5A.
  • a gold particle group (second conductive particle group) having a median diameter of 50 nm was used as the second conductive particle 5B.
  • a laser diffraction / scattering microtrack particle size analyzer is used to measure the first conductive particles, and a dynamic light scattering method is used to measure the second conductive particles.
  • a nanotrack particle size analyzer was used.
  • Xylene was used as the solvent.
  • This outermost layer-forming coating material was coated on an aluminum substrate by dip coating and dried at a temperature of 200 ° C. for 1 hour. Thereby, the adhesion preventing film 2 having a thickness of 5.0 ⁇ m was formed.
  • the maximum height Rz of the surface 2a of the adhesion preventing film 2 was 3.5 ⁇ m as measured by a laser microscope OLS-3500 (trade name; manufactured by Olympus Corporation).
  • Examples 2 to 5 In Examples 2 to 5, as shown in [Table 1], except that the median diameter of at least one of the first conductive particles 5A and the second conductive particles 5B is different from that in Example 1 above, The configuration was the same as in Example 1. In Examples 2 to 4, the median diameters of the second conductive particles 5B were all 50 nm, and the median diameters of the first conductive particles 5A were 1 ⁇ m, 5 ⁇ m, and 20 ⁇ m, respectively. Example 5 was configured in the same manner as in Example 1 except that the median diameter of the second conductive particles 5B was 500 nm.
  • the maximum height Rz of the surface 2a of the adhesion preventing film 2 of Examples 2 to 5 was measured in the same manner as in Example 1 above, and was 0.7 ⁇ m, 3.0 ⁇ m, 15.1 ⁇ m, and 3.3 ⁇ m, respectively. Met.
  • Example 6 is an example of the adhesion preventing film 7.
  • a silica layer was provided as the first layer 6.
  • the second layer 3 was configured in the same manner as the adhesion preventing film 2 of Example 3 above.
  • the adhesion preventing film 7 of Example 6 was manufactured as follows. First, Olam (registered trademark) 60 (trade name; manufactured by Art Breed Co., Ltd.) was applied to the surface of the same aluminum substrate as in Example 1 by spin coating. Thereafter, the coating film was dried at 200 ° C. for 1 hour. As a result, a silica layer having a layer thickness of 1.0 ⁇ m was formed.
  • the outermost layer-forming coating material for forming the second layer 3 was coated on the silica layer in the same manner as in Example 1 above.
  • the coating film of the outermost layer-forming paint was dried for 1 hour at a temperature of 200 ° C. Thereby, the second layer 3 having a layer thickness of about 4.6 ⁇ m was formed.
  • the maximum height Rz of the surface 2a of the adhesion preventing film 7 of Example 6 was 3.6 ⁇ m as measured in the same manner as in Example 1 above.
  • the medical device adhesion preventing film of Comparative Example 1 is provided with 60 parts by weight of gold particles having a median diameter of 10 ⁇ m instead of the first conductive particles 5A in Example 1.
  • the second conductive particles 5B are omitted.
  • the adhesion preventing film for medical device of Comparative Example 2 is provided with 60 parts by weight of gold particles having a median diameter of 50 nm instead of the second conductive particles 5B in Example 1, and the first conductive particles 5A are Removed and configured.
  • the maximum height Rz of the surface 2a of the adhesion preventing film for medical devices of Comparative Examples 1 and 2 was measured in the same manner as in Example 1 and was 7.5 ⁇ m and 0.2 ⁇ m, respectively.
  • the test sample was heated at 200 ° C. by a hot plate, and horse blood was dripped thereon as a biological material. Thereafter, a tape peeling test by a cross-cut method based on JIS K5600-5-6 was performed on the test sample.
  • the peeled state of horse blood solidified in the test sample after the test was evaluated based on the classification of Table 1 described in JIS K5600-5-6. When the peeled state corresponds to “Category 5”, it was evaluated that there was no adhesion (shown as “good” in [Table 2]).
  • the volume resistivity of the test sample was measured. When the volume resistivity is 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, the electrical conductivity is good (indicated as “Good” in [Table 1]), and the volume resistivity is 1.0 ⁇ 10 8 ⁇ ⁇ cm. When exceeded, the conductivity was evaluated as poor (indicated in Table 2 as x (no good)).
  • the surface material of the anti-adhesion film for medical devices of each test sample is the same, the difference between them is the difference in the uneven shape of the surface formed by the first conductive particles and the second conductive particles. to cause.
  • the first conductive particles 5A having a median diameter of 1 ⁇ m or more and 20 ⁇ m or less were included, the uneven shape on the surface of the adhesion preventing film for medical devices was described above.
  • the maximum height Rz was 0.7 ⁇ m to 15.1 ⁇ m.
  • Comparative Example 1 since the second conductive particles 5B are not included, conduction occurs only at the contact point between the first conductive particles 5A or the contact point between the first conductive particle 5A and the aluminum substrate. . As a result, in Comparative Example 1, the substantial contact area is smaller than those in Examples 1 to 6 and Comparative Example 2, and thus it is considered that the electrical resistance is increased.
  • Examples 7 and 8 of the adhesion preventing film 12 of the third embodiment and Examples 9 and 10 of the adhesion preventing film obtained by combining the second and third embodiments will be described.
  • Table 3 shows the composition of the outermost layer-forming paint for forming the medical device adhesion preventing films of Examples 7 to 10. However, in [Table 3], the notation of the reference numerals of the respective members is omitted.
  • Examples 7 and 8 are examples of the adhesion preventing film 12.
  • Example 7 was configured in the same manner as Example 1 except that the first conductive particles 15A were used instead of the first conductive particles of Example 1 above. Hollow silica and gold were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively. The layer thickness of the metal layer 15b was 0.5 ⁇ m. The median diameter of the first conductive particles 15A in this example was 20 ⁇ m.
  • Example 8 is configured in the same manner as Example 7 except that the material and median diameter of the second conductive particles 5B are changed and the material of the first conductive particles 15A is changed. It was done. Platinum was used as the material of the second conductive particles 5B in this example.
  • the median diameter of the second conductive particles 5B of this example was 500 nm.
  • the maximum height Rz of the surface 12a of the adhesion preventing film 12 in Examples 7 and 8 was measured in the same manner as in Example 1, they were 16.5 ⁇ m and 14.1 ⁇ m, respectively.
  • the ninth and tenth embodiments include the first layer 6 similar to the sixth embodiment.
  • Example 9 instead of the second layer 3 in Example 6, the same configuration as that of the adhesion preventing film 12 in Example 8 except that the material and median diameter of the first conductive particles 15A were changed.
  • the layer film is provided. Zirconia and platinum were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively.
  • the layer thickness of the metal layer 15b was 0.05 ⁇ m.
  • the median diameter of the first conductive particles 15A in this example was 1 ⁇ m.
  • Example 10 is the same as the adhesion preventing film 12 of Example 7 except that the material and median diameter of the first conductive particles 15A are changed in place of the second layer 3 of Example 6 above.
  • the layer film is provided.
  • Alumina and gold were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively.
  • the thickness of the metal layer 15b was 0.03 ⁇ m.
  • the median diameter of the first conductive particles 15A in this example was 1 ⁇ m.
  • the maximum height Rz of the surface of the outermost layer in Examples 9 and 10 was measured in the same manner as in Example 1, they were 0.31 ⁇ m and 0.53 ⁇ m, respectively.
  • the adhesion evaluation is “no adhesion” (“ ⁇ ” in [Table 4]), and the conductivity evaluation is “good” ([Table 4] “ ⁇ ”). For this reason, even when the first conductive particles 15A are conductive only on the surface layer by the metal layer 15b, it can be seen that good conductivity was obtained by combining with the second conductive particles 5B. .
  • the surface temperature of the aluminum plate used for each test sample on the side opposite to the hot plate was 200 ° C. after heating for 1 minute. For this reason, when the temperature after 1 minute of a test sample is less than 200 degreeC, it can be said that the heat insulation effect by an adhesion prevention film has appeared.
  • the heat insulation evaluation when the temperature after 1 minute of the test sample is 20 ° C. or more lower than the equilibrium temperature (200 ° C.) of the aluminum plate, the heat insulation is evaluated as “very good” ( ⁇ (very good)). It was done. When the temperature after 1 minute of the test sample was lower than the equilibrium temperature of the aluminum plate by 5 ° C. or more and less than 20 ° C., the heat insulation was evaluated as “good” ( ⁇ (good)). When the temperature after 1 minute of the test sample was lower than the equilibrium temperature of the aluminum plate by 0 ° C. or more and less than 5 ° C., the heat insulating property was evaluated as “poor” ( ⁇ (no good)).
  • the first conductive particle is a first conductive particle in which a thin metal layer 15b is laminated on a non-conductive base material 15a that has poor thermal conductivity as compared with a metal material. 15A. Therefore, it is considered that Examples 7 to 10 have very good heat insulating properties.
  • the temperature after 1 minute of Example 10 with the least heat insulation in Examples 7 to 10 was 8 minutes higher than the temperature after 1 minute of Examples 1 and 3 with the highest heat insulation among Examples 1 to 6. °C was also low.
  • Example 7 was 30 ° C. lower than the equilibrium temperature of the aluminum plate. This reason is considered to be because the heat insulation effect by the hollow structure of the hollow silica used as the base material 15a was added.
  • the anti-adhesion film for a medical device and the anti-adhesion performance of the biological material that can improve the anti-adhesion performance of the biological material even when used in a medical device that emits high-frequency power to the biological material.
  • a medical device that can be improved can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Vascular Medicine (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Forests & Forestry (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Laminated Bodies (AREA)

Abstract

This adhesion prevention film for medical devices is a single-layer or multilayer adhesion prevention film that is formed on the surface of a medical device. This adhesion prevention film for medical devices comprises an outermost layer that contains a plurality of conductive particles and a resin having a continuously usable temperature of 200°C or higher. The surface of the outermost layer is provided with recesses and projections by having parts of the plurality of conductive particles exposed from the resin.

Description

医療機器用付着防止膜および医療機器Anti-adhesion film for medical device and medical device
 本発明は、医療機器用付着防止膜および医療機器に関する。
 本願は、2016年2月22日に日本に出願された特願2016-031151号および2016年10月21日に日本に出願された特願2016-207295号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an adhesion preventing film for medical devices and a medical device.
This application claims priority based on Japanese Patent Application No. 2016-031151 filed in Japan on February 22, 2016 and Japanese Patent Application No. 2016-207295 filed in Japan on October 21, 2016. Is hereby incorporated by reference.
 医療用器具の表面に生体物質等が付着することを抑止するため、医療用器具の表面に付着防止膜がコーティングされる場合がある。しかし、例えば、生体物質に高周波電力を放出する医療用器具においては、生体物質のタンパク質成分等が高温で変性することによって医療用器具の表面に生体物質が強固に付着する。このため、生体物質に高周波電力を放出する医療用器具においては、付着防止性能をさらに向上することが強く求められている。
 例えば、粘着テープ等の粘着性被切断物を切断する刃物の技術分野においては、特許文献1に記載されたように、第1層にシリカ連続皮膜層、第2層にシリカ粒子不連続層、第3層にシリコーン層が用いられた付着防止膜が知られている。
In order to prevent the attachment of a biological substance or the like on the surface of the medical instrument, an anti-adhesion film may be coated on the surface of the medical instrument. However, for example, in a medical device that releases high-frequency power to a biological material, the biological material adheres firmly to the surface of the medical device due to denaturation of protein components and the like of the biological material at high temperatures. For this reason, in the medical instrument which discharge | releases high frequency electric power to a biological material, it is calculated | required to improve the adhesion prevention performance further.
For example, in the technical field of a blade that cuts an adhesive workpiece such as an adhesive tape, as described in Patent Document 1, a silica continuous film layer as a first layer, a silica particle discontinuous layer as a second layer, An adhesion preventing film using a silicone layer as a third layer is known.
特開2013-018112号公報JP2013-018112A
 しかしながら、上記のような従来技術には、以下のような問題がある。
 特許文献1に記載の付着防止膜は、導電性を有しないため、例えば高周波処置具のような導電性が要求される医療機器に採用できる技術ではない。
 付着防止膜に導電性を付与する技術として、半導体ウェハの集積回路チップの通電検査するためのプローブピンの付着防止膜が知られている。
However, the conventional techniques as described above have the following problems.
Since the adhesion preventing film described in Patent Document 1 does not have electrical conductivity, it is not a technique that can be employed in medical devices that require electrical conductivity such as a high-frequency treatment instrument.
As a technique for imparting conductivity to an adhesion preventing film, an adhesion preventing film for a probe pin for conducting a current inspection of an integrated circuit chip of a semiconductor wafer is known.
 本発明は、上記のような問題に鑑みてなされたものであり、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる医療機器用付着防止膜を提供することを目的とする。本発明は、生体物質の付着防止性能を向上することができる医療機器を提供することを目的とする。 The present invention has been made in view of the above-described problems, and can be applied to medical devices that can improve the adhesion prevention performance of biological materials even when used in medical devices that emit high-frequency power to biological materials. An object is to provide a protective film. An object of this invention is to provide the medical device which can improve the adhesion prevention performance of a biological substance.
 本発明の第1の態様における医療機器用付着防止膜によれば、医療機器の表面に形成された単層または多層の付着防止膜であって、連続使用温度が200℃以上の樹脂と複数の導電性粒子とを有する最外層を備え、前記最外層の表面に、前記樹脂から前記複数の導電性粒子の一部が露出することによって凹凸が形成されている。
 ここで、樹脂の「連続使用温度」は、ISO-75に準拠した0.45MPa荷重での樹脂の熱変形温度で定義される。「連続使用温度200℃以上の樹脂」とは、上述の熱変形温度が200℃以上の樹脂である。
According to the adhesion preventing film for medical devices according to the first aspect of the present invention, it is a single layer or multilayer adhesion preventing film formed on the surface of the medical device, and the continuous use temperature is 200 ° C. or more and a plurality of resins. An outermost layer having conductive particles is provided, and irregularities are formed on the surface of the outermost layer by exposing a part of the plurality of conductive particles from the resin.
Here, the “continuous use temperature” of the resin is defined as the thermal deformation temperature of the resin under a load of 0.45 MPa in accordance with ISO-75. The “resin having a continuous use temperature of 200 ° C. or higher” is a resin having a heat distortion temperature of 200 ° C. or higher.
 本発明の第2の態様における医療機器用付着防止膜によれば、上記第1の態様において、前記樹脂は、シリコーン樹脂、フラン樹脂、ポリアミド樹脂、アリル樹脂、ポリイミド樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、エポキシ樹脂、より成る群より、選択された1つ以上の樹脂を含んでもよい。 According to the adhesion preventing film for medical devices according to the second aspect of the present invention, in the first aspect, the resin is a silicone resin, furan resin, polyamide resin, allyl resin, polyimide resin, PEEK (polyether ether ketone). ) One or more resins selected from the group consisting of resins, epoxy resins.
 本発明の第3の態様における医療機器用付着防止膜によれば、上記第1の態様において、前記樹脂は、シリコーン樹脂であってもよい。 According to the medical device adhesion preventing film in the third aspect of the present invention, in the first aspect, the resin may be a silicone resin.
 本発明の第4の態様における医療機器用付着防止膜によれば、上記第1~第3のいずれか1つの態様において、前記複数の導電性粒子は、メディアン径が異なる少なくとも2つの導電性粒子群を含んでもよい。 According to the adhesion preventing film for a medical device in the fourth aspect of the present invention, in any one of the first to third aspects, the plurality of conductive particles include at least two conductive particles having different median diameters. Groups may be included.
 本発明の第5の態様における上記医療機器用付着防止膜によれば、上記第1~第4のいずれか1つの態様において、前記最外層の表面における凹凸の大きさは、最大高さRzで0.3μm以上であってもよい。 According to the adhesion preventing film for a medical device according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the size of the unevenness on the surface of the outermost layer is a maximum height Rz. It may be 0.3 μm or more.
 本発明の第6の態様における医療機器用付着防止膜によれば、上記第1~第5のいずれか1つの態様において、前記複数の導電性粒子は、メディアン径が1μm以上20μm以下である第1の導電性粒子群と、メディアン径が0.01μm以上0.5μm以下である第2の導電性粒子群と、を含んでもよい。 According to the adhesion preventing film for a medical device according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the plurality of conductive particles have a median diameter of 1 μm or more and 20 μm or less. 1 electroconductive particle group and the 2nd electroconductive particle group whose median diameter is 0.01 micrometer or more and 0.5 micrometer or less may be included.
 本発明の第7の態様における医療機器用付着防止膜によれば、上記第6の態様において、前記第1の導電性粒子群は、不導体からなる粒子状の基材と、前記基材の表面に積層された金属層と、を有する複合粒子を含んでもよい。 According to the adhesion preventing film for a medical device according to the seventh aspect of the present invention, in the sixth aspect, the first conductive particle group includes a particulate base material made of a nonconductor, and the base material. Composite particles having a metal layer laminated on the surface may be included.
 本発明の第8の態様における医療機器用付着防止膜によれば、上記第1~第6のいずれか1つの態様において、前記複数の導電性粒子は、不導体からなる粒子状の基材と、前記基材の表面に積層された金属層と、を有する複合粒子を含んでもよい。 According to the adhesion preventing film for a medical device in the eighth aspect of the present invention, in any one of the first to sixth aspects, the plurality of conductive particles include a particulate base material made of a non-conductor, and And a composite particle having a metal layer laminated on the surface of the substrate.
 本発明の第9の態様における医療機器用付着防止膜によれば、上記第1~第6のいずれか1つの態様において、前記複数の導電性粒子は、銀、白金、銅、ニッケル、および金より成る群より、選択された1つ以上の金属を含んでもよい。 According to the adhesion preventing film for a medical device according to the ninth aspect of the present invention, in any one of the first to sixth aspects, the plurality of conductive particles are silver, platinum, copper, nickel, and gold. One or more metals selected from the group consisting of may be included.
 本発明の第10の態様における医療機器用付着防止膜によれば、上記第1~第8のいずれか1つの態様において、前記最外層よりも下層側に、シリカを主成分とし前記医療機器の表面に密着する最下層を備えてもよい。 According to the adhesion preventing film for a medical device according to the tenth aspect of the present invention, in any one of the first to eighth aspects, the lower layer side of the outermost layer is mainly composed of silica, and A lowermost layer that is in close contact with the surface may be provided.
 本発明の第11の態様における医療機器によれば、上記第1~第10のいずれか1つの態様における医療機器用付着防止膜を備える。 According to the medical device of the eleventh aspect of the present invention, the medical device adhesion preventing film according to any one of the first to tenth aspects is provided.
 上記第1~第10の態様における医療機器用付着防止膜によれば、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる。
 上記第11の態様における医療機器によれば、生体物質の付着防止性能を向上することができる。
According to the medical device adhesion preventing film in the first to tenth aspects, the biological material adhesion preventing performance can be improved even when used in a medical device that emits high-frequency power to the biological material.
According to the medical device in the eleventh aspect, it is possible to improve the adhesion prevention performance of biological substances.
本発明の第1の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of the adhesion prevention film for medical devices of the 1st Embodiment of this invention. 本発明の第2の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of the adhesion prevention film for medical devices of the 2nd Embodiment of this invention. 本発明の第3の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of the adhesion prevention film for medical devices of the 3rd Embodiment of this invention. 本発明の第4の実施形態の医療機器の一例を示す模式的な構成図である。It is a typical block diagram which shows an example of the medical device of the 4th Embodiment of this invention. 図4におけるA-A断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG.
 以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.
[第1の実施形態]
 本発明の第1の実施形態の医療機器用付着防止膜について説明する。
 図1は、本発明の第1の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。
 なお、各図面は、模式図のため形状や寸法は誇張されている(以下の図面も同じ)。
[First Embodiment]
The adhesion prevention film for medical devices according to the first embodiment of the present invention will be described.
FIG. 1 is a schematic cross-sectional view showing a configuration example of an adhesion preventing film for a medical device according to the first embodiment of the present invention.
In addition, since each drawing is a schematic diagram, the shape and dimension are exaggerated (the following drawings are also the same).
 図1は、医療機器において生体を把持する把持部の表面近くの構造を説明する断面図である。図1に示す把持部は、把持部が把持した生体に高周波を印加する構成を有する。医療機器において把持部の表面付近における医療機器表面部1には、非絶縁性(導電性)の付着防止膜2(医療機器用付着防止膜、最外層)が形成されている。
 本実施形態の付着防止膜2について説明する。付着防止膜2は、医療機器における非絶縁部を構成する。本実施形態では、付着防止膜2は単層である。
 付着防止膜2は、医療機器表面部1の表面1a上に積層されている。以下では、誤解のおそれがない場合には、付着防止膜2の膜厚方向において、表面1aに向かう方向を下方向、表面1aから表面1aと反対側の表面2a(最外層の表面)に向かう方向を上方向として説明する。このような上下方向に対応して、下側、下部、上側、上部などの用語が用いられる場合がある。
 図1は拡大図のため、表面1a全体に付着防止膜2が形成されている様子が描かれている。しかし、付着防止膜2が形成される部位は、非絶縁部が必要な部分のみでもよい。
 表面1aの形状は、付着防止膜2が密着できれば、特に限定されない。例えば、表面1aは平面でもよいし湾曲面でもよい。付着防止膜2が表面1aに対してより強固に密着するためには、表面1aは粗面であってもよい。
 ここで、粗面とは、算術平均粗さRaで、0.1μm以上2.0μm以下のような凹凸形状が形成された面を意味する。算術平均粗さRaは、例えば、レーザ顕微鏡で測定されてもよい。このような表面粗さを有する粗面は、例えば、ブラスト処理を用いた粗し加工が施されることによって形成可能である。
FIG. 1 is a cross-sectional view illustrating a structure near the surface of a gripping part that grips a living body in a medical device. The gripping unit shown in FIG. 1 has a configuration for applying a high frequency to a living body gripped by the gripping unit. In the medical device, a non-insulating (conductive) adhesion prevention film 2 (adhesion prevention film for medical equipment, outermost layer) is formed on the medical device surface portion 1 near the surface of the gripping portion.
The adhesion preventing film 2 of this embodiment will be described. The adhesion preventing film 2 constitutes a non-insulating part in the medical device. In the present embodiment, the adhesion preventing film 2 is a single layer.
The adhesion preventing film 2 is laminated on the surface 1 a of the medical device surface portion 1. Below, when there is no possibility of misunderstanding, in the film thickness direction of the adhesion preventing film 2, the direction toward the surface 1a is downward, and from the surface 1a toward the surface 2a opposite to the surface 1a (surface of the outermost layer). The direction will be described as an upward direction. Corresponding to such vertical direction, terms such as lower side, lower side, upper side, and upper side may be used.
Since FIG. 1 is an enlarged view, a state in which an adhesion preventing film 2 is formed on the entire surface 1a is illustrated. However, the portion where the anti-adhesion film 2 is formed may be only a portion requiring a non-insulating portion.
The shape of the surface 1a is not particularly limited as long as the adhesion preventing film 2 can be adhered. For example, the surface 1a may be a flat surface or a curved surface. In order for the adhesion preventing film 2 to adhere more firmly to the surface 1a, the surface 1a may be a rough surface.
Here, the rough surface means an arithmetic mean roughness Ra, which is a surface on which uneven shapes such as 0.1 μm or more and 2.0 μm or less are formed. The arithmetic average roughness Ra may be measured, for example, with a laser microscope. A rough surface having such a surface roughness can be formed, for example, by performing a roughing process using a blast process.
 付着防止膜2は、シリコーン4と、複数の第1の導電性粒子5A(第1の導電性粒子群)および複数の第2の導電性粒子5B(第2の導電性粒子群)とを含んで構成される。シリコーン4は、付着防止膜2におけるベース樹脂である。複数の第1の導電性粒子5Aおよび複数の第2の導電性粒子5Bは、それぞれシリコーン4に分散された導電性粒子群である。 The adhesion preventing film 2 includes silicone 4, a plurality of first conductive particles 5A (first conductive particle group) and a plurality of second conductive particles 5B (second conductive particle group). Consists of. Silicone 4 is a base resin in the adhesion preventing film 2. The plurality of first conductive particles 5 </ b> A and the plurality of second conductive particles 5 </ b> B are conductive particle groups dispersed in the silicone 4.
 シリコーン4は、医療機器表面部1の表面1aに密着している。シリコーン4は、各第1の導電性粒子5Aおよび各第2の導電性粒子5Bを保持する。シリコーン4を形成するシリコーン樹脂の種類は、連続使用温度が200℃以上であれば、特に限定されない。樹脂の連続使用温度は、ISO-75に準拠した0.45MPa荷重での樹脂の熱変形温度で定義される。
 シリコーン樹脂としては、例えば、エレクトロニクス用シリコーンレジンSILRES(登録商標)シリーズ(商品名;旭化成ワッカーシリコーン株式会社製)などが用いられてもよい。
The silicone 4 is in close contact with the surface 1 a of the medical device surface portion 1. Silicone 4 holds each first conductive particle 5A and each second conductive particle 5B. The type of silicone resin that forms silicone 4 is not particularly limited as long as the continuous use temperature is 200 ° C. or higher. The continuous use temperature of the resin is defined by the thermal deformation temperature of the resin at a load of 0.45 MPa in accordance with ISO-75.
As the silicone resin, for example, a silicone resin SILRES (registered trademark) series for electronics (trade name; manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) may be used.
 付着防止膜2では、ベース樹脂として、高耐熱性を有するシリコーン樹脂が用いられているため、非絶縁部から高周波を印加する医療機器用付着防止膜として特に良好な性能が得られる。ただし、付着防止膜2に用いるベース樹脂は、高耐熱性を有する樹脂であれば、シリコーン樹脂には限定されない。
 例えば、付着防止膜2におけるベース樹脂は、連続使用温度が200℃以上である種々の樹脂が用いられてもよい。ベース樹脂は、例えば、シリコーン樹脂、フラン樹脂、ポリアミド樹脂、アリル樹脂、ポリイミド樹脂、PEEK樹脂、エポキシ樹脂、より成る群より、選択された1つ以上の樹脂を含んでもよい。
In the adhesion preventing film 2, since a silicone resin having high heat resistance is used as the base resin, particularly good performance can be obtained as a medical apparatus adhesion preventing film that applies a high frequency from a non-insulating part. However, the base resin used for the adhesion preventing film 2 is not limited to the silicone resin as long as it has a high heat resistance.
For example, as the base resin in the adhesion preventing film 2, various resins having a continuous use temperature of 200 ° C. or higher may be used. The base resin may include one or more resins selected from the group consisting of silicone resin, furan resin, polyamide resin, allyl resin, polyimide resin, PEEK resin, and epoxy resin, for example.
 複数の第1の導電性粒子5Aおよび複数の第2の導電性粒子5Bは,付着防止膜2に導電性を付与する。複数の第1の導電性粒子5Aおよび複数の第2の導電性粒子5Bのうちの一部は,シリコーン4の表面4aから外部に露出することによって、付着防止膜2の表面2aに凹凸形状を形成する。
 ただし、複数の第1の導電性粒子5Aの全体で構成された第1の導電性粒子群のメディアン径と、複数の第2の導電性粒子5Bの全体で構成された第2の導電性粒子群のメディアン径とは互いに異なる。本実施形態では、第1の導電性粒子群のメディアン径は、第2の導電性粒子群のメディアン径よりも大きい。
 第1の導電性粒子群のメディアン径が第2の導電性粒子群のメディアン径よりも大きいことによって、第1の導電性粒子5A同士の隙間に、第2の導電性粒子5Bが入り込み易くなる。隣り合う第1の導電性粒子5A同士あるいは第1の導電性粒子5Aと表面1aとの間の隙間に進入した第2の導電性粒子5Bは、第1の導電性粒子5Aあるいは表面1aと当接しやすくなる。第2の導電性粒子5Bが第1の導電性粒子5Aと当接することによって、付着防止膜2の内部における導電体同士の接触面積と、導電路とが増加する。第2の導電性粒子5Bが表面1aと当接することによって、表面1aと導電体との接触面積と、表面1aと付着防止膜2の内部の導電路との接触が増加する。このため、付着防止膜2中の第1の導電性粒子5Aおよび第2の導電性粒子5Bと表面1aとの間の導電性が向上する。この結果、付着防止膜2における体積抵抗率が低下する。
 さらに、隣り合う第1の導電性粒子5A同士あるいは第1の導電性粒子5Aと表面1aとの間の隙間に、第2の導電性粒子5Bが進入すると、第1の導電性粒子5Aが堅固に支持される。このため、第1の導電性粒子5Aの位置の安定性が向上する。
The plurality of first conductive particles 5 </ b> A and the plurality of second conductive particles 5 </ b> B impart conductivity to the adhesion preventing film 2. A part of the plurality of first conductive particles 5A and the plurality of second conductive particles 5B are exposed to the outside from the surface 4a of the silicone 4 so that the surface 2a of the adhesion preventing film 2 has an uneven shape. Form.
However, the median diameter of the first conductive particle group constituted by the whole of the plurality of first conductive particles 5A and the second conductive particle constituted by the whole of the plurality of second conductive particles 5B. The median diameter of the group is different from each other. In the present embodiment, the median diameter of the first conductive particle group is larger than the median diameter of the second conductive particle group.
When the median diameter of the first conductive particle group is larger than the median diameter of the second conductive particle group, the second conductive particle 5B can easily enter the gap between the first conductive particles 5A. . The second conductive particles 5B that have entered the gap between the adjacent first conductive particles 5A or between the first conductive particles 5A and the surface 1a are in contact with the first conductive particles 5A or the surface 1a. It becomes easy to touch. When the second conductive particles 5B come into contact with the first conductive particles 5A, the contact area between the conductors in the adhesion preventing film 2 and the conductive path increase. When the second conductive particles 5B come into contact with the surface 1a, the contact area between the surface 1a and the conductor and the contact between the surface 1a and the conductive path inside the adhesion preventing film 2 increase. For this reason, the electrical conductivity between the 1st electroconductive particle 5A in the adhesion prevention film 2, the 2nd electroconductive particle 5B, and the surface 1a improves. As a result, the volume resistivity in the adhesion preventing film 2 is lowered.
Furthermore, when the second conductive particles 5B enter the gaps between the adjacent first conductive particles 5A or between the first conductive particles 5A and the surface 1a, the first conductive particles 5A are firmly fixed. Supported by For this reason, the stability of the position of the first conductive particles 5A is improved.
 例えば、第1の導電性粒子群のメディアン径は、1μm以上20μm以下でもよい。例えば、第2の導電性粒子群のメディアン径は、0.01μm以上0.5μm以下でもよい。
 ここで、メディアン径は、体積基準累積粒度分布における50%粒子径(D50)の意味である。
 粒度分布の測定手段としては、光散乱式の粒度分析装置が用いられる。具体的には、測定対象の粒度の分布範囲に応じて、例えば、レーザー回折・散乱式によるマイクロトラック粒度分析装置、動的光散乱式によるナノトラック粒度分析装置などが適宜使い分けられる。
For example, the median diameter of the first conductive particle group may be 1 μm or more and 20 μm or less. For example, the median diameter of the second conductive particle group may be 0.01 μm or more and 0.5 μm or less.
Here, the median diameter means the 50% particle diameter (D50) in the volume-based cumulative particle size distribution.
As a means for measuring the particle size distribution, a light scattering particle size analyzer is used. Specifically, depending on the distribution range of the particle size to be measured, for example, a microtrack particle size analyzer using a laser diffraction / scattering method, a nanotrack particle size analyzer using a dynamic light scattering method, and the like are appropriately used.
 第1の導電性粒子5Aおよび第2の導電性粒子5Bの材質は、生体適合性を有し、非絶縁部に必要な導電性が得られる材質であれば特に限定されない。第1の導電性粒子5Aおよび第2の導電性粒子5Bは、金属粒子であってもよい。第1の導電性粒子5Aおよび第2の導電性粒子5Bは、不導体粒子の表面に金属コーティングを施された粒子でもよい。
 第1の導電性粒子5Aおよび第2の導電性粒子5Bに用いる金属は、同一金属でもよいし、異種金属でもよい。
 第1の導電性粒子5Aおよび第2の導電性粒子5Bにそれぞれ用いることができる金属材料の例としては、銀、白金、銅、ニッケル、金などが挙げられる。
 本実施形態では、第1の導電性粒子5Aおよび第2の導電性粒子5Bは、いずれも金粒子で構成されている。金粒子は、生体適合性および電気導電率に優れる点で、第1の導電性粒子5Aあるいは第2の導電性粒子5Bに用いる金属材料として、特に好適である。
The material of the first conductive particles 5A and the second conductive particles 5B is not particularly limited as long as the material has biocompatibility and can obtain the conductivity necessary for the non-insulating part. The first conductive particles 5A and the second conductive particles 5B may be metal particles. The first conductive particles 5A and the second conductive particles 5B may be particles in which a metal coating is applied to the surface of the non-conductive particles.
The metal used for the first conductive particles 5A and the second conductive particles 5B may be the same metal or different metals.
Examples of metal materials that can be used for the first conductive particles 5A and the second conductive particles 5B include silver, platinum, copper, nickel, gold, and the like.
In the present embodiment, the first conductive particles 5A and the second conductive particles 5B are both composed of gold particles. The gold particles are particularly suitable as the metal material used for the first conductive particles 5A or the second conductive particles 5B in that they are excellent in biocompatibility and electrical conductivity.
 付着防止膜2における第1の導電性粒子5Aおよび第2の導電性粒子5Bの配合量は、医療機器の非絶縁部に必要なインピーダンスを満足するとともに、切断または封止された生体物質が剥がれやすくなるような適宜値が用いられてもよい。
 例えば、第1の導電性粒子5Aの配合量が多くなると、表面2aにおける凹凸形状が、第1の導電性粒子5Aの突出量によって支配されるため、表面2aにおける凹凸が大きくなる。このため、生体物質の密着性が低下する。生体物質は剥離しやすくなる。一方、第1の導電性粒子5Aの配合量が多くなると、第2の導電性粒子5Bの配合量は相対的に減少する。このため、第1の導電性粒子5A同士および第1の導電性粒子5Aと表面1aとの間に介在する第2の導電性粒子5Bが減る。付着防止膜2における導電性は低下する。
 反対に、第2の導電性粒子5Bの配合量が多くなると、第2の導電性粒子5Bによって付着防止膜2の導電性は向上する。しかしながら、表面2aの凹凸形状は、第2の導電性粒子5Bの突出量によって支配されるため、表面2aにおける凹凸は小さくなる。表面2aは、滑らかな平面に近づく。このため、生体物質と表面2aとの密着性が高まって生体物質が剥離しにくくなる。
 このような凹凸形状による剥離性能は、凹凸形状の最大高さRzの大きさによって決まってくる。
 例えば、表面2aの凹凸の大きさは、最大高さRzで0.3μm以上であってもよい。
The blending amount of the first conductive particles 5A and the second conductive particles 5B in the adhesion preventing film 2 satisfies the impedance necessary for the non-insulating part of the medical device and the cut or sealed biological material is peeled off. An appropriate value may be used so as to facilitate the process.
For example, when the blending amount of the first conductive particles 5A increases, the uneven shape on the surface 2a is governed by the protruding amount of the first conductive particles 5A, so that the unevenness on the surface 2a increases. For this reason, the adhesiveness of a biological substance falls. Biological substances are easily peeled off. On the other hand, when the amount of the first conductive particles 5A increases, the amount of the second conductive particles 5B relatively decreases. For this reason, the second conductive particles 5B interposed between the first conductive particles 5A and between the first conductive particles 5A and the surface 1a are reduced. The conductivity in the adhesion preventing film 2 is lowered.
On the contrary, when the blending amount of the second conductive particles 5B increases, the conductivity of the adhesion preventing film 2 is improved by the second conductive particles 5B. However, since the uneven shape of the surface 2a is governed by the protruding amount of the second conductive particles 5B, the unevenness on the surface 2a is reduced. The surface 2a approaches a smooth plane. For this reason, the adhesiveness between the biological material and the surface 2a is increased, and the biological material is hardly peeled off.
The peeling performance due to such uneven shape is determined by the size of the maximum height Rz of the uneven shape.
For example, the size of the unevenness of the surface 2a may be 0.3 μm or more at the maximum height Rz.
 このような構成の付着防止膜2を形成するには、まず、付着防止膜2を形成するための塗料が調製される。塗料は、シリコーン4となるシリコーン樹脂、シリコーン樹脂を溶かす溶剤、第1の導電性粒子5A、および第2の導電性粒子5Bが混合されることによって調製される。この後、塗料が医療機器表面部1における表面1aに塗膜される。
 塗膜方法は、特に限定されず、医療機器表面部1の形状などに応じて適宜の塗膜方法が用いられる。例えば、塗膜方法の例としては、スピンコート、スクリーン印刷、インクジェット法、フレキソ印刷、スプレー塗膜、グラビア印刷、ホットスタンプ、ディップコート等が挙げられる。
 ただし必要であれば、塗膜する前に、表面1aに粗し加工を行って、表面1aが粗面化されてもよい。
 塗膜後に、塗膜層の加熱乾燥が行われる。溶剤が揮発すると、シリコーン樹脂が固化する。塗膜層の層厚が減少してシリコーン4の層膜が形成される。この結果、上部の第1の導電性粒子5Aおよび第2の導電性粒子5Bの一部が、表面4aから外部に露出する。表面1aに対向する第1の導電性粒子5Aおよび第2の導電性粒子5Bは、表面1aに当接する。
 以上で、付着防止膜2が製造される。
In order to form the adhesion preventing film 2 having such a configuration, first, a coating material for forming the adhesion preventing film 2 is prepared. The paint is prepared by mixing the silicone resin to be the silicone 4, the solvent for dissolving the silicone resin, the first conductive particles 5A, and the second conductive particles 5B. Thereafter, the paint is applied to the surface 1 a of the medical device surface portion 1.
The coating method is not particularly limited, and an appropriate coating method is used according to the shape of the medical device surface portion 1 and the like. For example, examples of the coating method include spin coating, screen printing, ink jet method, flexographic printing, spray coating, gravure printing, hot stamping, dip coating, and the like.
However, if necessary, the surface 1a may be roughened by roughening the surface 1a before coating.
After the coating, the coating layer is heated and dried. When the solvent is volatilized, the silicone resin is solidified. The layer thickness of the coating layer is reduced and a layer film of silicone 4 is formed. As a result, a part of the upper first conductive particles 5A and the second conductive particles 5B are exposed to the outside from the surface 4a. The first conductive particles 5A and the second conductive particles 5B facing the surface 1a are in contact with the surface 1a.
Thus, the adhesion preventing film 2 is manufactured.
 図1に示すように、本実施形態の付着防止膜2は、シリコーン4が医療機器表面部1の表面1aと密着することによって表面1a上に固着されている。
 付着防止膜2の内部には、多くの第1の導電性粒子5Aと第2の導電性粒子5Bとが互いに接触した状態で、シリコーン4に分散されている。第1の導電性粒子5Aおよび第2の導電性粒子5Bは、固化したシリコーン4に保持されて、互いの相対位置が固定されている。
 表面1aと付着防止膜2との境界では、表面1aに対向する第1の導電性粒子5Aおよび第2の導電性粒子5Bが、表面1aと当接している。
 シリコーン4の表面4aからは、第1の導電性粒子5Aおよび第2の導電性粒子5Bの一部が露出している。このため、付着防止膜2の表面2aには、第1の導電性粒子5Aおよび第2の導電性粒子5Bによる凹凸形状が形成されている。
As shown in FIG. 1, the adhesion preventing film 2 of the present embodiment is fixed on the surface 1 a by the silicone 4 being in close contact with the surface 1 a of the medical device surface portion 1.
Inside the adhesion preventing film 2, many first conductive particles 5 </ b> A and second conductive particles 5 </ b> B are dispersed in the silicone 4 while being in contact with each other. The first conductive particles 5A and the second conductive particles 5B are held by the solidified silicone 4 and their relative positions are fixed.
At the boundary between the surface 1a and the adhesion preventing film 2, the first conductive particles 5A and the second conductive particles 5B facing the surface 1a are in contact with the surface 1a.
From the surface 4a of the silicone 4, a part of the first conductive particles 5A and the second conductive particles 5B are exposed. For this reason, the uneven | corrugated shape by the 1st electroconductive particle 5A and the 2nd electroconductive particle 5B is formed in the surface 2a of the adhesion prevention film 2. FIG.
 このような構成によって、医療機器表面部1と付着防止膜2の表面の第1の導電性粒子5Aおよび第2の導電性粒子5Bとは導通しているため、付着防止膜2は、全体として導電性を有する。 With this configuration, the medical device surface portion 1 and the first conductive particles 5A and the second conductive particles 5B on the surface of the adhesion preventing film 2 are electrically connected. It has conductivity.
 非絶縁部を有する医療機器では、非絶縁部から高周波電力を放出する際に、非絶縁部に接触する生体組織が変性して形成される生体物質が付着しやすい。
 しかし、本実施形態の医療機器における非絶縁部である付着防止膜2の表面2aには、金粒子によって凹凸形状が形成されている。このため、付着防止膜2の表面2aにおける生体物質の付着力は、平滑面のように全面に均一に密着する場合に比べて低い。したがって、表面2aに生体物質が付着しても小さな外力によって容易に剥離される。
In a medical device having a non-insulating part, when a high-frequency power is released from the non-insulating part, a biological material formed by denaturing a living tissue that contacts the non-insulating part is likely to adhere.
However, an uneven shape is formed by gold particles on the surface 2a of the adhesion preventing film 2 which is a non-insulating part in the medical device of the present embodiment. For this reason, the adhesive force of the biological substance on the surface 2a of the adhesion preventing film 2 is lower than that in the case where the biological material adheres uniformly to the entire surface such as a smooth surface. Therefore, even if a biological substance adheres to the surface 2a, it is easily peeled off by a small external force.
 以上説明したように、本実施形態の付着防止膜2によれば、表面2aに第1の導電性粒子5Aおよび第2の導電性粒子5Bが露出して凹凸が形成されているため、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる。 As described above, according to the adhesion preventing film 2 of the present embodiment, the first conductive particles 5A and the second conductive particles 5B are exposed on the surface 2a to form irregularities. Even if it is used in a medical device that emits high frequency power, it is possible to improve the adhesion preventing performance of biological substances.
[第2の実施形態]
 次に、本発明の第2の実施形態の医療機器用付着防止膜について説明する。
 図2は、本発明の第2の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。
[Second Embodiment]
Next, the adhesion prevention film for medical devices according to the second embodiment of the present invention will be described.
FIG. 2 is a schematic cross-sectional view showing a configuration example of a medical device adhesion preventing film according to a second embodiment of the present invention.
 図2に断面構成を示すように、医療機器の非絶縁部は、上記第1の実施形態における付着防止膜2に代えて、多層膜である付着防止膜7(医療機器用付着防止膜)を備える。
 付着防止膜7は、第1層6(最下層)と、第2層3(最外層)と、の2層で構成される。第1層6は、医療機器表面部1の表面1a上に積層されている。第2層3は、第1層6の上面6aに積層されている。
 第1層6は、表面1aに対する付着防止膜7の密着性を向上するために設けられている。
 第1層6の材質としては、第2層3および表面1aとの密着性に優れる適宜の材質が用いられる。本実施形態では、後述する第2層3のベース樹脂がシリコーン樹脂からなるため、第1層6として、シリカを主成分とするシリカ層が採用されている。シリカ層を形成するには、例えば、Olam(登録商標)ガラスコートシリーズ(商品名;アートブリード株式会社製)などのコート剤が用いられてもよい。
 第1層6の層厚は、密着強度、耐久性などの必要に応じて適宜の層厚にすることができる。例えば、第1層6の層厚は、0.1μm以上10μm以下であってもよい。
As shown in the cross-sectional configuration of FIG. 2, the non-insulating portion of the medical device is provided with an adhesion prevention film 7 (adhesion prevention film for medical equipment) that is a multilayer film, instead of the adhesion prevention film 2 in the first embodiment. Prepare.
The adhesion preventing film 7 is composed of two layers of a first layer 6 (lowermost layer) and a second layer 3 (outermost layer). The first layer 6 is laminated on the surface 1 a of the medical device surface portion 1. The second layer 3 is stacked on the upper surface 6 a of the first layer 6.
The first layer 6 is provided in order to improve the adhesion of the adhesion preventing film 7 to the surface 1a.
As a material of the first layer 6, an appropriate material having excellent adhesion with the second layer 3 and the surface 1a is used. In the present embodiment, since the base resin of the second layer 3 described later is made of a silicone resin, a silica layer mainly composed of silica is employed as the first layer 6. In order to form the silica layer, for example, a coating agent such as Olam (registered trademark) glass coat series (trade name; manufactured by Art Breed Co., Ltd.) may be used.
The layer thickness of the 1st layer 6 can be made into an appropriate layer thickness as needed, such as adhesion strength and durability. For example, the layer thickness of the first layer 6 may be not less than 0.1 μm and not more than 10 μm.
 第2層3は、本実施形態では、上記第1の実施形態の付着防止膜2と同様に構成される。このため、本実施形態における第2層3のベース樹脂はシリコーン4である。
 ただし、上記第1の実施形態と同様、第2層3のベース樹脂は、連続使用温度が200℃以上のシリコーン樹脂以外の樹脂に置換されてもよい。
In the present embodiment, the second layer 3 is configured in the same manner as the adhesion preventing film 2 of the first embodiment. For this reason, the base resin of the second layer 3 in this embodiment is silicone 4.
However, as in the first embodiment, the base resin of the second layer 3 may be replaced with a resin other than a silicone resin having a continuous use temperature of 200 ° C. or higher.
 このような構成の付着防止膜7を形成するには、医療機器表面部1の表面1a上に第1層6が形成された後、第2層3が形成される。
 第1層6を形成するには、例えば、シリカを溶剤中に含むコート液が医療機器表面部1の表面1aに塗膜された後、加熱乾燥が行われる。
 上記第1の実施形態と同様に、表面1aに粗し加工を施す場合には、第1層6の層厚を粗し加工の凹凸量に比べて十分薄くすることによって、第1層6の上面6aにも凹凸形状を形成することができる。
 第2層3は、第1層6上に形成される点を除いては、上記第1の実施形態の付着防止膜2と同様にして形成される。
In order to form the adhesion preventing film 7 having such a configuration, the second layer 3 is formed after the first layer 6 is formed on the surface 1 a of the medical device surface portion 1.
In order to form the first layer 6, for example, a coating liquid containing silica in a solvent is coated on the surface 1 a of the medical device surface portion 1 and then dried by heating.
Similar to the first embodiment, when the surface 1a is roughened, the thickness of the first layer 6 is sufficiently reduced as compared with the unevenness amount of the first layer 6 by roughening the thickness of the first layer 6. An uneven shape can also be formed on the upper surface 6a.
The second layer 3 is formed in the same manner as the adhesion preventing film 2 of the first embodiment except that the second layer 3 is formed on the first layer 6.
 本実施形態の付着防止膜7によれば、最外層として、上記第1の実施形態の付着防止膜2と同様の第2層3を備えるため、上記第1の実施形態と同様、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる。
 さらに付着防止膜7によれば、第2層3と医療機器表面部1の表面1aとの間に第1層6が形成されている。第1層6はシリカ層からなるため、金属製の医療機器表面部1との密着性が良好である。第1層6はシリカ層からなるため、第2層3のシリコーン4、第1の導電性粒子5Aおよび第2の導電性粒子5Bとの密着性も良好である。
 このため、付着防止膜7によれば、表面1a上に直に第2層3を形成する場合に比べて、第2層3の密着強度を向上することができる。このため、付着防止膜7によれば、医療機器の耐久性、信頼性をより向上することができる。
According to the adhesion preventing film 7 of the present embodiment, as the outermost layer, the second layer 3 similar to the adhesion preventing film 2 of the first embodiment is provided. Even when used in a medical device that emits high-frequency power, it is possible to improve the performance of preventing the adhesion of biological substances.
Furthermore, according to the adhesion preventing film 7, the first layer 6 is formed between the second layer 3 and the surface 1 a of the medical device surface portion 1. Since the 1st layer 6 consists of a silica layer, adhesiveness with the metal medical equipment surface part 1 is favorable. Since the 1st layer 6 consists of a silica layer, the adhesiveness with the silicone 4, the 1st electroconductive particle 5A, and the 2nd electroconductive particle 5B of the 2nd layer 3 is also favorable.
For this reason, according to the adhesion preventing film 7, the adhesion strength of the second layer 3 can be improved as compared with the case where the second layer 3 is formed directly on the surface 1a. For this reason, according to the adhesion prevention film | membrane 7, durability and reliability of a medical device can be improved more.
[第3の実施形態]
 次に、本発明の第3の実施形態の医療機器用付着防止膜について説明する。
 図3は、本発明の第3の実施形態の医療機器用付着防止膜の構成例を示す模式的な断面図である。
[Third Embodiment]
Next, the adhesion prevention film for medical devices of the 3rd Embodiment of this invention is demonstrated.
FIG. 3 is a schematic cross-sectional view showing a configuration example of a medical device adhesion preventing film according to a third embodiment of the present invention.
 本実施形態の付着防止膜12(医療機器用付着防止膜)は、上記第1の実施形態の付着防止膜2における第1の導電性粒子5Aに代えて、第1の導電性粒子15Aを備える。第1の導電性粒子15Aの全体は、第1の導電性粒子群を構成する。本実施形態における第1の導電性粒子群のメディアン径は、上記第1の実施形態における第1の導電性粒子群のメディアン径と同様である。
 以下、上記第1の実施形態と異なる点を中心に説明する。
The adhesion preventing film 12 (adhesion preventing film for medical devices) of the present embodiment includes first conductive particles 15A instead of the first conductive particles 5A in the adhesion preventing film 2 of the first embodiment. . The entirety of the first conductive particles 15A constitutes a first conductive particle group. The median diameter of the first conductive particle group in the present embodiment is the same as the median diameter of the first conductive particle group in the first embodiment.
Hereinafter, a description will be given centering on differences from the first embodiment.
 第1の導電性粒子15Aは、不導体からなる粒子状の基材15aと、基材15aの表面に積層された金属層15bとを有する複合粒子である。
 基材15aの材質は、不導体であれば限定されない。基材15aの材質は良好な断熱性を有することがより好ましい。基材15aは、中空構造を有していてもよい。中空構造は、球殻構造でもよいし多孔質構造でもよい。基材15aが中空構造を有する場合、基材15aが中実体である場合に比べて、第1の導電性粒子15Aにおける断熱性が向上する。
 基材15aの材質としては、例えば、ガラス、シリカ、アルミナ、ジルコニアなどが使用できる。基材15aとしては、中空シリカ系粒子、中空ガラス球などが用いられてもよい。中空ガラス球の具体例としては、例えば、3M(登録商標)グラスバブルズ(商品名;3M社製)等が挙げられる。
 付着防止膜12における第1の導電性粒子15Aの含有量は、上記第1の実施形態と同様、表面2aの凹凸の大きさが最大高さRzで0.3μm以上となるような量であってもよい。
The first conductive particles 15A are composite particles having a particulate base material 15a made of a nonconductor and a metal layer 15b laminated on the surface of the base material 15a.
The material of the base material 15a is not limited as long as it is a nonconductor. It is more preferable that the material of the base material 15a has a good heat insulating property. The base material 15a may have a hollow structure. The hollow structure may be a spherical shell structure or a porous structure. When the base material 15a has a hollow structure, the heat insulation in the first conductive particles 15A is improved as compared with the case where the base material 15a is solid.
As a material of the base material 15a, for example, glass, silica, alumina, zirconia and the like can be used. As the base material 15a, hollow silica-based particles, hollow glass spheres, or the like may be used. Specific examples of the hollow glass sphere include 3M (registered trademark) Glass Bubbles (trade name; manufactured by 3M).
Similar to the first embodiment, the content of the first conductive particles 15A in the adhesion preventing film 12 is such an amount that the unevenness of the surface 2a is 0.3 μm or more at the maximum height Rz. May be.
 金属層15bに用いられる金属材料としては、上記第1の実施形態における第1の導電性粒子5Aと同様、例えば、銀、白金、銅、ニッケル、金等が挙げられる。金属層15bに用いられる金属材料は、第2の導電性粒子5Bに用いられる金属材料と同じでもよいし、異なっていてもよい。 Examples of the metal material used for the metal layer 15b include silver, platinum, copper, nickel, gold, and the like, similar to the first conductive particles 5A in the first embodiment. The metal material used for the metal layer 15b may be the same as or different from the metal material used for the second conductive particles 5B.
 金属層15bの層厚は、付着防止膜12において必要な導電性および耐久性が確保できれば、特に限定されない。例えば、球体の比表面積は直径の大きさに反比例するため、金属層15bの層厚は、基材15aの粒子径が小さく(大きく)なるにつれて、より薄く(より厚く)なるように選ばれてもよい。
 金属層15bは、適宜のコーティングによって基材15aに積層されてもよい。金属層15bの形成に用いることができるコーティング方法としては、例えば、無電解メッキ、PVD(Physical Vapor Deposition)、CVD(Chemical Vapor Deposition)などが挙げられる。PVDの例としては、例えば、スパッタ、蒸着などが挙げられる。
The layer thickness of the metal layer 15 b is not particularly limited as long as necessary conductivity and durability can be secured in the adhesion preventing film 12. For example, since the specific surface area of the sphere is inversely proportional to the size of the diameter, the layer thickness of the metal layer 15b is selected to become thinner (thicker) as the particle size of the base material 15a becomes smaller (larger). Also good.
The metal layer 15b may be laminated on the base material 15a by an appropriate coating. Examples of the coating method that can be used to form the metal layer 15b include electroless plating, PVD (Physical Vapor Deposition), and CVD (Chemical Vapor Deposition). Examples of PVD include sputtering and vapor deposition.
 このような構成の付着防止膜12は、上記第1の実施形態における付着防止膜2と同様にして、医療機器表面部1上に形成される。 The adhesion preventing film 12 having such a configuration is formed on the medical device surface portion 1 in the same manner as the adhesion preventing film 2 in the first embodiment.
 付着防止膜12は、上記第1の実施形態の付着防止膜2の第1の導電性粒子5Aに代えて、第1の導電性粒子15Aが用いられる以外は、上記第1の実施形態の付着防止膜2と同様に構成される。このため、本実施形態の付着防止膜12によれば、上記第1の実施形態と同様、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる。
 本実施形態における第1の導電性粒子15Aは、金属層15bが基材15aの表面に積層されているため、上記第1の実施形態における第1の導電性粒子5Aに比べて、金属の使用量が低減される。基材15aに用いられる不導体は、金属材料に比べて安価である。第1の導電性粒子15Aが第1の導電性粒子5Aと同径の場合、第1の導電性粒子15Aにおいては第1の導電性粒子5Aに比べて高価な金属材料の使用量が低減される。このため、第1の導電性粒子15Aの部品コストが低減される。特に、基材15aとして金、白金などのように高価な材料が用いられる場合には、部品コストの低減効果が大きくなる。
The adhesion preventing film 12 is the same as that of the first embodiment except that the first conductive particles 15A are used in place of the first conductive particles 5A of the adhesion preventing film 2 of the first embodiment. The same structure as the prevention film 2 is provided. For this reason, according to the adhesion preventing film 12 of the present embodiment, as in the first embodiment, the adhesion preventing performance of the biological material can be improved even when used in a medical device that emits high-frequency power to the biological material. Can do.
Since the metal layer 15b is laminated on the surface of the base material 15a, the first conductive particle 15A in the present embodiment uses metal compared to the first conductive particle 5A in the first embodiment. The amount is reduced. The nonconductor used for the base material 15a is less expensive than the metal material. When the first conductive particles 15A have the same diameter as the first conductive particles 5A, the amount of expensive metal material used in the first conductive particles 15A is reduced compared to the first conductive particles 5A. The For this reason, the component cost of the first conductive particles 15A is reduced. In particular, when an expensive material such as gold or platinum is used as the base material 15a, the effect of reducing the component cost is increased.
 さらに、本実施形態では、第1の導電性粒子15Aが金属材料と不導体材料との複合体からなるため、第1の導電性粒子15Aの熱伝導率が同径の金属粒子よりも低下する。このため、第1の導電性粒子15Aが付着防止膜12に含有されることで、付着防止膜12の断熱性が向上する。
 例えば、付着防止膜12が高周波電力を生体組織(生体物質)に放出する医療機器の電極部の表面に用いられる場合、高周波電力に起因するジュール熱で電極部が高温になる。電極部自体が高温になると、電極部の表面に接触する生体組織が過剰に変性されることによっても、電極部に生体組織が付着しやすくなるおそれがある。
 しかし本実施形態では、生体と接触する医療機器の表面に、第1の導電性粒子15Aが含有されることによって、金属粒子のみが含有された場合よりも断熱性の高い付着防止膜12が形成されている。このため、付着防止膜12によれば、付着防止膜12の良好な断熱性能によって生体組織が過剰に変性されることが防止される。この結果、付着防止膜12の付着防止性能がさらに向上する。
Furthermore, in this embodiment, since the first conductive particles 15A are composed of a composite of a metal material and a non-conductive material, the thermal conductivity of the first conductive particles 15A is lower than that of metal particles having the same diameter. . For this reason, the heat insulation of the adhesion preventing film 12 is improved by containing the first conductive particles 15 </ b> A in the adhesion preventing film 12.
For example, when the adhesion preventing film 12 is used on the surface of an electrode part of a medical device that releases high-frequency power to a biological tissue (biological material), the electrode part becomes high temperature due to Joule heat caused by the high-frequency power. When the electrode part itself becomes high temperature, the biological tissue that contacts the surface of the electrode part may be excessively denatured, and the biological tissue may easily adhere to the electrode part.
However, in the present embodiment, the first electroconductive particle 15A is contained on the surface of the medical device that comes into contact with the living body, so that the adhesion preventing film 12 having higher heat insulation than the case where only the metal particles are contained is formed. Has been. For this reason, the adhesion preventing film 12 prevents the living tissue from being excessively denatured by the good heat insulating performance of the adhesion preventing film 12. As a result, the adhesion preventing performance of the adhesion preventing film 12 is further improved.
[第4の実施形態]
 次に、本発明の第4の実施形態の医療機器について説明する。
 図4は、本発明の第4の実施形態の医療機器の一例を示す模式的な構成図である。図5は、図4におけるA-A断面図である。
[Fourth Embodiment]
Next, a medical device according to a fourth embodiment of the present invention will be described.
FIG. 4 is a schematic configuration diagram showing an example of a medical device according to the fourth embodiment of the present invention. FIG. 5 is a cross-sectional view taken along the line AA in FIG.
 図4に示す本実施形態の高周波ナイフ100は、本実施形態の医療機器の一例である。
 高周波ナイフ100は、高周波電圧を印加することで、生体組織(生体物質)に対する処置を行う医療用処置具である。高周波ナイフ100は、例えば、生体組織を切開、切除したり、生体組織を凝固(止血)したり、焼灼したりすることができる。
 高周波ナイフ100は、術者が手で持つための棒状の把持部102と、把持部102の先端から突出された電極部101とを備える。
A high-frequency knife 100 according to this embodiment shown in FIG. 4 is an example of a medical device according to this embodiment.
The high-frequency knife 100 is a medical treatment instrument that performs a treatment on a biological tissue (biological material) by applying a high-frequency voltage. The high-frequency knife 100 can, for example, cut and excise a living tissue, coagulate (hemostasis) the living tissue, or cauterize.
The high-frequency knife 100 includes a rod-shaped grasping portion 102 for an operator to hold by hand, and an electrode portion 101 protruding from the tip of the grasping portion 102.
 電極部101は、被処置体である生体組織に当接させて高周波電圧を印加する。図5に示すように、電極部101は、金属製の電極本体101Aと、付着防止膜101B(医療機器用付着防止膜)とを備える。 The electrode unit 101 applies a high-frequency voltage while being brought into contact with a living tissue that is an object to be treated. As shown in FIG. 5, the electrode unit 101 includes a metal electrode body 101A and an adhesion preventing film 101B (adhesion preventing film for medical devices).
 図4に示すように、電極本体101Aの外形は、突出方向の先端の角部に丸みを有する矩形片状である。図5に示すように、電極本体101Aの外形は、突出方向に直交する断面では、外縁に向かって厚さが薄くなっていく扁平形状である。特に図示しないが、突出方向の先端部における電極本体101Aの断面形状も同様に、外縁に向かって厚さが薄くなっている。
 図4に示すように、電極本体101Aは、把持部102に保持された基端部に接続された配線によって高周波電源103に電気的に接続されている。高周波電源103には、被処置体に装着する対極板106が電気的に接続されている。
As shown in FIG. 4, the outer shape of the electrode body 101 </ b> A is a rectangular piece having a rounded corner at the tip in the protruding direction. As shown in FIG. 5, the outer shape of the electrode body 101 </ b> A is a flat shape whose thickness decreases toward the outer edge in a cross section orthogonal to the protruding direction. Although not particularly illustrated, the cross-sectional shape of the electrode main body 101A at the distal end in the protruding direction is similarly reduced in thickness toward the outer edge.
As shown in FIG. 4, the electrode main body 101 </ b> A is electrically connected to the high-frequency power source 103 by wiring connected to the base end held by the grip portion 102. The high frequency power source 103 is electrically connected to a counter electrode plate 106 to be attached to the object to be treated.
 図5に示すように、付着防止膜101Bは、電極本体表面101aを被覆するように設けられた薄膜である。付着防止膜101Bの外表面は、電極部101の電極表面101bを構成している。
 刃部101cを除く電極表面101bの側部には、全体として緩い湾曲形状もしくは平面形状に形成された腹部101dが形成されている。腹部101dは、主として被処置体を押さえて凝固や焼灼などの処置を行うために使用される。
As shown in FIG. 5, the adhesion preventing film 101B is a thin film provided so as to cover the electrode body surface 101a. The outer surface of the adhesion preventing film 101B constitutes the electrode surface 101b of the electrode portion 101.
On the side of the electrode surface 101b excluding the blade 101c, an abdomen 101d formed in a loosely curved or planar shape as a whole is formed. The abdomen 101d is mainly used for holding the object to be treated and performing treatment such as coagulation or cauterization.
 電極本体101Aの材質としては、金属、合金などの導電性を有する適宜の金属材料が用いられる。例えば、電極本体101Aの材質は、アルミニウム合金、ステンレス鋼などが用いられてもよい。 As the material of the electrode body 101A, an appropriate metal material having conductivity such as a metal or an alloy is used. For example, the electrode body 101A may be made of an aluminum alloy, stainless steel, or the like.
 付着防止膜101Bは、上記第1~第3の実施形態における付着防止膜2、7、12のうちのいずれかと同様の構成が用いられる。本実施形態における電極本体101Aは、上記第1~第3の実施形態における医療機器表面部1に相当する。 The adhesion preventing film 101B has the same structure as any one of the adhesion preventing films 2, 7, and 12 in the first to third embodiments. The electrode main body 101A in the present embodiment corresponds to the medical device surface portion 1 in the first to third embodiments.
 次に、このような構成の高周波ナイフ100の作用について説明する。
 高周波ナイフ100を用いた処置は、例えば、患者に対極板106を装着するとともに高周波電源103によって電極部101に高周波電圧を印加した状態で行われる。術者は、電極部101に高周波電圧を印加した状態で、患者の被処置部などの被処置体に電極部101の刃部101cまたは腹部101dを接触させる。
 電極部101は付着防止膜101Bに覆われている。付着防止膜101Bの内部には、第1および第2の導電性粒子群が分散されている。第1および第2の導電性粒子群の一部は電極表面101bに露出している。付着防止膜101Bの内部において第1および第2の導電性粒子が互いに接触しかつ一部が電極本体表面101aに当接することによって、付着防止膜101Bの厚さ方向に連なる導電路が形成されている。
 付着防止膜101Bの電極表面101bには、生体組織が付着しにくいシリコーン4から第1および第2の導電性粒子の一部が露出することによって、凹凸形状が形成されている。
Next, the operation of the high-frequency knife 100 having such a configuration will be described.
The treatment using the high frequency knife 100 is performed, for example, in a state where the patient is wearing the counter electrode plate 106 and a high frequency voltage is applied to the electrode unit 101 by the high frequency power source 103. The operator brings the blade 101c or the abdominal part 101d of the electrode part 101 into contact with a body to be treated such as a patient's part to be treated while a high frequency voltage is applied to the electrode part 101.
The electrode part 101 is covered with an adhesion preventing film 101B. The first and second conductive particle groups are dispersed inside the adhesion preventing film 101B. Part of the first and second conductive particle groups is exposed on the electrode surface 101b. Inside the adhesion preventing film 101B, the first and second conductive particles are in contact with each other and a part is in contact with the electrode body surface 101a, thereby forming a conductive path continuous in the thickness direction of the adhesion preventing film 101B. Yes.
On the electrode surface 101b of the adhesion preventing film 101B, a concavo-convex shape is formed by exposing a part of the first and second conductive particles from the silicone 4 to which living tissue is difficult to adhere.
 電極部101と対極板106との間に高周波電圧が印加されると、付着防止膜101Bを介して高周波電流が発生する。電極部101と生体組織との接触部では、電極表面101bにおいて露出する第1および第2の導電性粒子から電流密度の大きい電流が生体組織に流れることによって、ジュール熱が発生する。これにより被処置体の生体組織の水分が急速に蒸発し、刃部101cで生体組織が破断される。このため、電極部101が生体組織に対して移動されることによって生体組織の切開、切除が可能となる。
 腹部101dを被処置体に押し当てた状態で高周波電流が流されると、被処置体の生体組織の水分が急速に蒸発する。腹部101dの近傍では生体組織が凝固させられる。このため、腹部101dが被処置体に押し当てられることにより止血や生体組織の焼灼が可能となる。
 必要な処置が終了すると、術者は、電極部101を被処置体から離間させる。生体組織と接触している電極表面101bは付着防止膜101Bによって形成されているため、電極部101を離間する際に、電極表面101bから生体組織が容易に剥離する。
 この結果、高周波ナイフ100では、生体組織は電極表面101bにほとんど付着しない。このため、高周波ナイフ100によれば、処置中の処置性能の低下が防止できる。さらに、高周波ナイフ100によれば、電極部101が繰り返し使用されても電極部101の耐久性が確保される。
When a high frequency voltage is applied between the electrode unit 101 and the counter electrode plate 106, a high frequency current is generated through the adhesion preventing film 101B. At the contact portion between the electrode portion 101 and the living tissue, Joule heat is generated by flowing a current having a large current density from the first and second conductive particles exposed on the electrode surface 101b to the living tissue. Thereby, the water | moisture content of the biological tissue of a to-be-treated body evaporates rapidly, and a biological tissue is fractured | ruptured by the blade part 101c. For this reason, the incision and excision of the living tissue can be performed by moving the electrode unit 101 with respect to the living tissue.
When a high-frequency current is applied in a state where the abdomen 101d is pressed against the body to be treated, the water in the living tissue of the body to be treated rapidly evaporates. The living tissue is coagulated in the vicinity of the abdomen 101d. For this reason, when the abdomen 101d is pressed against the body to be treated, hemostasis or cauterization of the living tissue becomes possible.
When the necessary treatment is completed, the operator moves the electrode unit 101 away from the body to be treated. Since the electrode surface 101b in contact with the living tissue is formed by the adhesion preventing film 101B, the living tissue is easily peeled from the electrode surface 101b when the electrode portion 101 is separated.
As a result, in the high frequency knife 100, the living tissue hardly adheres to the electrode surface 101b. For this reason, according to the high frequency knife 100, the fall of the treatment performance during treatment can be prevented. Furthermore, according to the high frequency knife 100, the durability of the electrode unit 101 is ensured even when the electrode unit 101 is repeatedly used.
 以上説明したように、高周波ナイフ100によれば、付着防止膜101Bを電極部101の表面に備えるため、生体物質の付着防止性能を向上することができる。 As described above, according to the high-frequency knife 100, since the adhesion preventing film 101B is provided on the surface of the electrode part 101, the adhesion preventing performance of biological substances can be improved.
 なお、上記各実施形態の説明では、最外層が、第1の導電性粒子群および第2の導電性粒子群とからなる場合の例で説明した。しかし、複数の導電性粒子群は、2群には限定されない。複数の導電性粒子群は3群以上であってもよい。
 医療機器用付着防止膜が用いられる医療機器の使用目的に応じて必要な凹凸形状と導電性とが得られれば、導電性粒子群は1群のみでもよい。
In the description of each of the above embodiments, an example in which the outermost layer includes the first conductive particle group and the second conductive particle group has been described. However, the plurality of conductive particle groups are not limited to two groups. The plurality of conductive particle groups may be three or more groups.
The conductive particle group may be only one group as long as the necessary uneven shape and conductivity are obtained according to the purpose of use of the medical device in which the adhesion preventing film for medical devices is used.
 上記第2の実施形態の説明では、第1層6がシリカを主成分とするシリカ層からなる場合の例で説明した。しかし、第1層6の材質は、シリカ層には限定されない。第1層6の材質としては、医療機器表面部1および第2層3の材質に応じて適宜の材質が用いられてよい。 In the description of the second embodiment, an example in which the first layer 6 is made of a silica layer containing silica as a main component has been described. However, the material of the first layer 6 is not limited to the silica layer. As a material of the first layer 6, an appropriate material may be used according to the material of the medical device surface portion 1 and the second layer 3.
 上記第2の実施形態の説明では、付着防止膜7が2層構成の多層膜の場合の例で説明した。しかし、医療機器用付着防止膜は、3層以上の多層膜でもよい。この場合、医療機器用付着防止膜は、最下層と最外層との間に、中間層を備えることができる。このため、医療機器の把持部の基材および最外層にともに良好な密着性を有する材料がない場合にも、医療機器用付着防止膜は、適宜の中間層を挟むことによってより強固に固定される。
 最下層および中間層の材質は、均一成分を有する材質には限定されない。例えば、最下層および中間層は、層厚方向に成分の組成比が変化する傾斜層で構成されてもよい。
In the description of the second embodiment, an example in which the adhesion preventing film 7 is a multilayer film having a two-layer structure has been described. However, the adhesion preventing film for medical devices may be a multilayer film having three or more layers. In this case, the medical device adhesion preventing film can include an intermediate layer between the lowermost layer and the outermost layer. For this reason, even when there is no material having good adhesion on both the base material and the outermost layer of the grip part of the medical device, the medical device adhesion preventing film is more firmly fixed by sandwiching an appropriate intermediate layer. The
The materials of the lowermost layer and the intermediate layer are not limited to materials having a uniform component. For example, the lowermost layer and the intermediate layer may be composed of an inclined layer in which the composition ratio of components changes in the layer thickness direction.
 上記第3の実施形態の説明では、複数の導電性粒子群のうち、第1の導電性粒子群のみに、不導体からなる粒子状の基材と、基材の表面に積層された金属層とを有する複合粒子が含まれる場合の例で説明した。しかし、上記第3の実施形態において第2の導電性粒子群のみに複合粒子が含まれていてもよい。上記第3の実施形態において第1および第2の導電性粒子群に複合粒子が含まれていてもよい。
 医療機器用付着防止膜に3以上の導電性粒子群が含まれる場合、3以上の導電性粒子群のうち少なくとも1群に複合粒子が含まれていてもよい。この場合、効率的に部品コスト低減および断熱性向上を図るために、メディアン径が最も大きい導電性粒子群のみに複合粒子が含まれていてもよい。
In the description of the third embodiment, among the plurality of conductive particle groups, only the first conductive particle group has a particulate base material made of a nonconductor, and a metal layer laminated on the surface of the base material. As described above, the composite particles having the above are included. However, in the third embodiment, the composite particles may be included only in the second conductive particle group. In the third embodiment, composite particles may be included in the first and second conductive particle groups.
When 3 or more electroconductive particle groups are contained in the adhesion prevention film | membrane for medical devices, a composite particle may be contained in at least 1 group among 3 or more electroconductive particle groups. In this case, in order to efficiently reduce the component cost and improve the heat insulation, the composite particles may be contained only in the conductive particle group having the largest median diameter.
 次に、上述した第1~第3の実施形態の医療機器用付着防止膜の実施例について、比較例とともに説明する。
 まず、第1の実施形態の付着防止膜2の実施例1~5と第2の実施形態の付着防止膜7の実施例6について、比較例1、2とともに説明する。
 下記[表1]、[表2]に、各実施例、各比較例の医療機器用付着防止膜を形成する最外層形成用塗料の配合組成と、評価結果とを示す。ただし、[表1]では各部材の符号の表記は省略されている。
Next, examples of the adhesion preventing film for medical devices according to the first to third embodiments will be described together with comparative examples.
First, Examples 1 to 5 of the adhesion preventing film 2 of the first embodiment and Example 6 of the adhesion preventing film 7 of the second embodiment will be described together with Comparative Examples 1 and 2.
[Table 1] and [Table 2] below show the composition and evaluation results of the outermost layer-forming coating material for forming the medical device adhesion preventing film of each Example and each Comparative Example. However, in [Table 1], the notation of the reference numerals of the respective members is omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 実施例1は、付着防止膜2の実施例である。実施例1の付着防止膜2は、以下のようにして製造された。
 付着防止膜2を形成する基板として、アルミニウム基板が用いられた。
 付着防止膜2を形成するため、10重量部のシリコーン樹脂、30重量部の第1の導電性粒子、30重量部の第2の導電性粒子、および30重量部の溶剤が混合された最外層形成用塗料が調製された。
 シリコーン樹脂としては、SILRES(登録商標) MPF 52 E(商品名;旭化成ワッカーシリコーン株式会社製)が用いられた。第1の導電性粒子5Aとしては、メディアン径が5μmの金粒子群(第1の導電性粒子群)が用いられた。第2の導電性粒子5Bとしては、メディアン径が50nmの金粒子群(第2の導電性粒子群)が用いられた。ここで、粒度分布の測定手段としては、第1の導電性粒子の測定にはレーザー回折・散乱式によるマイクロトラック粒度分析装置が、第2の導電性粒子の測定には動的光散乱式によるナノトラック粒度分析装置が使用された。溶剤としては、キシレンが用いられた。
 この最外層形成用塗料は、アルミニウム基板上に、ディップコートによって、塗膜され、200℃の温度条件で1時間乾燥された。これにより、膜厚5.0μmの付着防止膜2が成膜された。
 付着防止膜2の表面2aの最大高さRzは、レーザー顕微鏡OLS-3500(商品名;オリンパス社製)によって測定されたところ、3.5μmであった。
[Example 1]
Example 1 is an example of the adhesion preventing film 2. The adhesion preventing film 2 of Example 1 was manufactured as follows.
An aluminum substrate was used as the substrate on which the adhesion preventing film 2 was formed.
Outermost layer in which 10 parts by weight of silicone resin, 30 parts by weight of first conductive particles, 30 parts by weight of second conductive particles, and 30 parts by weight of solvent are mixed to form adhesion preventing film 2 A forming paint was prepared.
As the silicone resin, SILRES (registered trademark) MPF 52 E (trade name; manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) was used. A gold particle group (first conductive particle group) having a median diameter of 5 μm was used as the first conductive particles 5A. As the second conductive particle 5B, a gold particle group (second conductive particle group) having a median diameter of 50 nm was used. Here, as a means for measuring the particle size distribution, a laser diffraction / scattering microtrack particle size analyzer is used to measure the first conductive particles, and a dynamic light scattering method is used to measure the second conductive particles. A nanotrack particle size analyzer was used. Xylene was used as the solvent.
This outermost layer-forming coating material was coated on an aluminum substrate by dip coating and dried at a temperature of 200 ° C. for 1 hour. Thereby, the adhesion preventing film 2 having a thickness of 5.0 μm was formed.
The maximum height Rz of the surface 2a of the adhesion preventing film 2 was 3.5 μm as measured by a laser microscope OLS-3500 (trade name; manufactured by Olympus Corporation).
[実施例2~5]
 実施例2~5は、[表1]に示すように、第1の導電性粒子5Aおよび第2の導電性粒子5Bのうち少なくとも一方のメディアン径が上記実施例1と異なる点を除いて、実施例1と同様に構成された。
 実施例2~4では、第2の導電性粒子5Bのメディアン径はいずれも50nmとされ、第1の導電性粒子5Aのメディアン径は、それぞれ、1μm、5μm、20μmとされた。
 実施例5は、第2の導電性粒子5Bのメディアン径が500nmとされた点を除いて、上記実施例1と同様に構成された。
 実施例2~5の付着防止膜2の表面2aの最大高さRzは、上記実施例1と同様にして測定されたところ、それぞれ、0.7μm、3.0μm、15.1μm、3.3μmであった。
[Examples 2 to 5]
In Examples 2 to 5, as shown in [Table 1], except that the median diameter of at least one of the first conductive particles 5A and the second conductive particles 5B is different from that in Example 1 above, The configuration was the same as in Example 1.
In Examples 2 to 4, the median diameters of the second conductive particles 5B were all 50 nm, and the median diameters of the first conductive particles 5A were 1 μm, 5 μm, and 20 μm, respectively.
Example 5 was configured in the same manner as in Example 1 except that the median diameter of the second conductive particles 5B was 500 nm.
The maximum height Rz of the surface 2a of the adhesion preventing film 2 of Examples 2 to 5 was measured in the same manner as in Example 1 above, and was 0.7 μm, 3.0 μm, 15.1 μm, and 3.3 μm, respectively. Met.
[実施例6]
 実施例6は、付着防止膜7の実施例である。実施例6は、第1層6としてシリカ層を備えた。実施例6において、第2層3は、上記実施例3の付着防止膜2と同様に構成された。
 実施例6の付着防止膜7は、以下のようにして製造された。
 まず、実施例1と同様のアルミニウム基板の表面に、Olam(登録商標) 60(商品名;アートブリード株式会社製)がスピンコートによって塗布された。この後、塗膜は200℃で1時間乾燥された。これにより、層厚1.0μmのシリカ層が形成された。この後、シリカ層上に、第2層3を形成するための最外層形成用塗料が上記実施例1と同様にして塗膜された。最外層形成用塗料の塗膜は、200℃の温度条件で1時間乾燥された。これにより、層厚約4.6μmの第2層3が成膜された。
 実施例6の付着防止膜7の表面2aの最大高さRzは、上記実施例1と同様にして測定されたところ、3.6μmであった。
[Example 6]
Example 6 is an example of the adhesion preventing film 7. In Example 6, a silica layer was provided as the first layer 6. In Example 6, the second layer 3 was configured in the same manner as the adhesion preventing film 2 of Example 3 above.
The adhesion preventing film 7 of Example 6 was manufactured as follows.
First, Olam (registered trademark) 60 (trade name; manufactured by Art Breed Co., Ltd.) was applied to the surface of the same aluminum substrate as in Example 1 by spin coating. Thereafter, the coating film was dried at 200 ° C. for 1 hour. As a result, a silica layer having a layer thickness of 1.0 μm was formed. Thereafter, the outermost layer-forming coating material for forming the second layer 3 was coated on the silica layer in the same manner as in Example 1 above. The coating film of the outermost layer-forming paint was dried for 1 hour at a temperature of 200 ° C. Thereby, the second layer 3 having a layer thickness of about 4.6 μm was formed.
The maximum height Rz of the surface 2a of the adhesion preventing film 7 of Example 6 was 3.6 μm as measured in the same manner as in Example 1 above.
[比較例1、2]
 [表1]に示すように、比較例1の医療機器用付着防止膜は、上記実施例1において、第1の導電性粒子5Aに代えて、メディアン径が10μmの金粒子を60重量部備え、第2の導電性粒子5Bを削除して構成された。
 比較例2の医療機器用付着防止膜は、上記実施例1において、第2の導電性粒子5Bに代えて、メディアン径が50nmの金粒子を60重量部備え、第1の導電性粒子5Aを削除して構成された。
 比較例1、2の医療機器用付着防止膜の表面2aの最大高さRzは、上記実施例1と同様にして測定されたところ、それぞれ、7.5μm、0.2μmであった。
[Comparative Examples 1 and 2]
As shown in [Table 1], the medical device adhesion preventing film of Comparative Example 1 is provided with 60 parts by weight of gold particles having a median diameter of 10 μm instead of the first conductive particles 5A in Example 1. The second conductive particles 5B are omitted.
The adhesion preventing film for medical device of Comparative Example 2 is provided with 60 parts by weight of gold particles having a median diameter of 50 nm instead of the second conductive particles 5B in Example 1, and the first conductive particles 5A are Removed and configured.
The maximum height Rz of the surface 2a of the adhesion preventing film for medical devices of Comparative Examples 1 and 2 was measured in the same manner as in Example 1 and was 7.5 μm and 0.2 μm, respectively.
[評価方法]
 上記実施例1~6、比較例1、2の医療機器用付着防止膜を供試サンプルとして、付着性評価と導電性評価とが行われた。[表2]に付着性評価と導電性評価との評価結果が示されている。
[Evaluation methods]
Adhesion evaluation and conductivity evaluation were performed using the medical device adhesion preventing films of Examples 1 to 6 and Comparative Examples 1 and 2 as test samples. [Table 2] shows the evaluation results of adhesion evaluation and conductivity evaluation.
 付着性評価を行うため、供試サンプルがホットプレートによって200℃で加熱され、その上に生体物質として馬の血液がたらされた。この後、供試サンプルに対して、JIS K5600-5-6に基づくクロスカット法によるテープ剥離試験が実施された。
 付着性評価では、試験後の供試サンプルにおける馬の血液の固化物の剥がれ状態がJIS K5600-5-6に記載の表1の分類に基づいて評価された。剥がれ状態が「分類5」に該当する場合には、付着なし([表2]には○(good)と記載)と評価された。剥がれ状態が「分類0~4」の場合には、付着あり([表1]には×(no good)と記載)と評価された。
 なお、実施例1~6、比較例1、2の各供試サンプルにおいて、医療機器用付着防止膜の一部または全部が馬の血液の固化物とともに剥がれることはなかった。
In order to perform the adhesion evaluation, the test sample was heated at 200 ° C. by a hot plate, and horse blood was dripped thereon as a biological material. Thereafter, a tape peeling test by a cross-cut method based on JIS K5600-5-6 was performed on the test sample.
In the adhesion evaluation, the peeled state of horse blood solidified in the test sample after the test was evaluated based on the classification of Table 1 described in JIS K5600-5-6. When the peeled state corresponds to “Category 5”, it was evaluated that there was no adhesion (shown as “good” in [Table 2]). When the peeled state was “Class 0 to 4”, it was evaluated that there was adhesion (indicated in Table 1 as x (no good)).
In each of the test samples of Examples 1 to 6 and Comparative Examples 1 and 2, part or all of the medical device anti-adhesion film was not peeled off along with the solidified blood of the horse.
 導電性評価としては、供試サンプルの体積抵抗率の測定が実施された。
 体積抵抗率が1.0×10Ω・cm以下の場合、導電性が良好([表1]には○(good)と記載)、体積抵抗率が1.0×10Ω・cmを超えた場合、導電性が不良([表2]には×(no good)と記載)と評価された。
As the electrical conductivity evaluation, the volume resistivity of the test sample was measured.
When the volume resistivity is 1.0 × 10 8 Ω · cm or less, the electrical conductivity is good (indicated as “Good” in [Table 1]), and the volume resistivity is 1.0 × 10 8 Ω · cm. When exceeded, the conductivity was evaluated as poor (indicated in Table 2 as x (no good)).
[評価結果]
 [表2]に示す付着性評価の評価結果によれば、実施例1~6、比較例1の医療機器用付着防止膜においては、加熱状態で変性した馬の血液が付着しても、テープ剥離試験後、「付着なし」と評価される状態になった。このため、生体物質の付着防止性能が良好であることが分かる。
 これに対して、第1の導電性粒子5Aを含まない比較例2では、「付着あり」と評価され、生体物質の付着防止性能が劣ることが分かる。
 各供試サンプルの医療機器用付着防止膜の表面の材質は共通であるため、これらの相違は、第1の導電性粒子および第2の導電性粒子によって形成される表面の凹凸形状の相違に起因する。
 実施例1~6、比較例1では、いずれも、メディアン径が1μm以上20μm以下の第1の導電性粒子5Aを含んでいたため、医療機器用付着防止膜の表面の凹凸形状は、上述したように、最大高さRzが0.7μmから15.1μmであった。
 これに対して、比較例2における第2の導電性粒子5Bのメディアン径は50nmであったため、第2の導電性粒子5Bが表面に露出しただけでは、医療機器用付着防止膜の表面の凹凸形状に最大高さRzが0.2μmであった。このように比較例2の付着防止膜は、平面に近い滑らかな表面を有するため生体物質との密着が強固になったと考えられる。
[Evaluation results]
According to the evaluation results of the adhesion evaluation shown in [Table 2], in the anti-adhesion films for medical devices of Examples 1 to 6 and Comparative Example 1, even if the blood of horse denatured in the heated state adheres, the tape After the peel test, it was evaluated as “no adhesion”. For this reason, it turns out that the adhesion prevention performance of a biological substance is favorable.
On the other hand, in Comparative Example 2 that does not include the first conductive particles 5A, it is evaluated as “attached”, and it can be seen that the anti-adhesion performance of the biological material is inferior.
Since the surface material of the anti-adhesion film for medical devices of each test sample is the same, the difference between them is the difference in the uneven shape of the surface formed by the first conductive particles and the second conductive particles. to cause.
In each of Examples 1 to 6 and Comparative Example 1, since the first conductive particles 5A having a median diameter of 1 μm or more and 20 μm or less were included, the uneven shape on the surface of the adhesion preventing film for medical devices was described above. Thus, the maximum height Rz was 0.7 μm to 15.1 μm.
On the other hand, since the median diameter of the second conductive particles 5B in Comparative Example 2 was 50 nm, the unevenness on the surface of the anti-adhesion film for medical devices was obtained only by exposing the second conductive particles 5B to the surface. The maximum height Rz of the shape was 0.2 μm. Thus, since the adhesion preventing film of Comparative Example 2 has a smooth surface close to a flat surface, it is considered that the adhesion with the biological material is strengthened.
 [表2]に示す導電性評価の評価結果によれば、実施例1~6、比較例2の医療機器用付着防止膜においては、導電性が良好であった。
 これに対して、第2の導電性粒子5Bを含まない比較例1では、導電性が不良であった。
 第1の導電性粒子5Aと第2の導電性粒子5Bとが混在する実施例1~6では、第1の導電性粒子5A同士が当接する。さらに、実施例1~6では、第1の導電性粒子5A同士あるいは第1の導電性粒子5Aとアルミニウム基板との隙間にも、小径の第2の導電性粒子5Bが進入する。このため、これらの隙間に第2の導電性粒子5Bが充填されることによって、導電性が向上したと考えられる。
 比較例1では、第2の導電性粒子5Bが含まれないため、第1の導電性粒子5A同士の接触点、あるいは第1の導電性粒子5Aとアルミニウム基板との接触点のみで導通が起こる。この結果、比較例1においては、実質的な接触面積が実施例1~6、比較例2に比べて小さいため、電気抵抗が大きくなると考えられる。
According to the evaluation results of the conductivity evaluation shown in [Table 2], the adhesion preventing films for medical devices of Examples 1 to 6 and Comparative Example 2 had good conductivity.
On the other hand, in Comparative Example 1 not including the second conductive particles 5B, the conductivity was poor.
In Examples 1 to 6 in which the first conductive particles 5A and the second conductive particles 5B are mixed, the first conductive particles 5A come into contact with each other. Further, in Examples 1 to 6, the second conductive particles 5B having a small diameter enter the gaps between the first conductive particles 5A or between the first conductive particles 5A and the aluminum substrate. For this reason, it is considered that the conductivity is improved by filling the gaps with the second conductive particles 5B.
In Comparative Example 1, since the second conductive particles 5B are not included, conduction occurs only at the contact point between the first conductive particles 5A or the contact point between the first conductive particle 5A and the aluminum substrate. . As a result, in Comparative Example 1, the substantial contact area is smaller than those in Examples 1 to 6 and Comparative Example 2, and thus it is considered that the electrical resistance is increased.
 次に、第3の実施形態の付着防止膜12の実施例7、8と、第2および第3の実施形態を組み合わせた付着防止膜の実施例9,10と、について説明する。
 下記[表3]に、実施例7~10の医療機器用付着防止膜を形成する最外層形成用塗料の配合組成を示す。ただし、[表3]では各部材の符号の表記は省略されている。
Next, Examples 7 and 8 of the adhesion preventing film 12 of the third embodiment and Examples 9 and 10 of the adhesion preventing film obtained by combining the second and third embodiments will be described.
Table 3 below shows the composition of the outermost layer-forming paint for forming the medical device adhesion preventing films of Examples 7 to 10. However, in [Table 3], the notation of the reference numerals of the respective members is omitted.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例7、8]
 実施例7、8は、付着防止膜12の実施例である。
 実施例7は、上記実施例1の第1の導電性粒子に代えて、第1の導電性粒子15Aが用いられた点を除いて、実施例1と同様に構成された。
 本実施例における第1の導電性粒子15Aの基材15a、金属層15bには、それぞれ、中空シリカ、金が用いられた。金属層15bの層厚は0.5μmとされた。本実施例における第1の導電性粒子15Aのメディアン径は20μmであった。
 実施例8は、第2の導電性粒子5Bの材質およびメディアン径が変更された点と、第1の導電性粒子15Aの材質が変更された点とを除いて、実施例7と同様に構成された。
 本実施例における第2の導電性粒子5Bの材質は白金が用いられた。本実施例の第2の導電性粒子5Bのメディアン径は500nmであった。
 実施例7、8における付着防止膜12の表面12aの最大高さRzが上記実施例1と同様にして測定されたところ、それぞれ、16.5μm、14.1μmであった。
[Examples 7 and 8]
Examples 7 and 8 are examples of the adhesion preventing film 12.
Example 7 was configured in the same manner as Example 1 except that the first conductive particles 15A were used instead of the first conductive particles of Example 1 above.
Hollow silica and gold were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively. The layer thickness of the metal layer 15b was 0.5 μm. The median diameter of the first conductive particles 15A in this example was 20 μm.
Example 8 is configured in the same manner as Example 7 except that the material and median diameter of the second conductive particles 5B are changed and the material of the first conductive particles 15A is changed. It was done.
Platinum was used as the material of the second conductive particles 5B in this example. The median diameter of the second conductive particles 5B of this example was 500 nm.
When the maximum height Rz of the surface 12a of the adhesion preventing film 12 in Examples 7 and 8 was measured in the same manner as in Example 1, they were 16.5 μm and 14.1 μm, respectively.
[実施例9、10]
 実施例9、10は、上記実施例6と同様の第1層6を備える。
 実施例9は、上記実施例6の第2層3に代えて、第1の導電性粒子15Aの材質およびメディアン径が変更された点を除いて実施例8の付着防止膜12と同様の構成の層膜を備える。本実施例における第1の導電性粒子15Aの基材15a、金属層15bには、それぞれ、ジルコニア、白金が用いられた。金属層15bの層厚は0.05μmとされた。本実施例における第1の導電性粒子15Aのメディアン径は1μmであった。
 実施例10は、上記実施例6の第2層3に代えて、第1の導電性粒子15Aの材質およびメディアン径が変更された点を除いて実施例7の付着防止膜12と同様の構成の層膜を備える。本実施例における第1の導電性粒子15Aの基材15a、金属層15bには、それぞれ、アルミナ、金が用いられた。金属層15bの層厚は0.03μmとされた。本実施例における第1の導電性粒子15Aのメディアン径は1μmであった。
 実施例9、10における最外層の表面の最大高さRzが上記実施例1と同様にして測定されたところ、それぞれ、0.31μm、0.53μmであった。
[Examples 9 and 10]
The ninth and tenth embodiments include the first layer 6 similar to the sixth embodiment.
In Example 9, instead of the second layer 3 in Example 6, the same configuration as that of the adhesion preventing film 12 in Example 8 except that the material and median diameter of the first conductive particles 15A were changed. The layer film is provided. Zirconia and platinum were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively. The layer thickness of the metal layer 15b was 0.05 μm. The median diameter of the first conductive particles 15A in this example was 1 μm.
Example 10 is the same as the adhesion preventing film 12 of Example 7 except that the material and median diameter of the first conductive particles 15A are changed in place of the second layer 3 of Example 6 above. The layer film is provided. Alumina and gold were used for the base material 15a and the metal layer 15b of the first conductive particles 15A in this example, respectively. The thickness of the metal layer 15b was 0.03 μm. The median diameter of the first conductive particles 15A in this example was 1 μm.
When the maximum height Rz of the surface of the outermost layer in Examples 9 and 10 was measured in the same manner as in Example 1, they were 0.31 μm and 0.53 μm, respectively.
[評価結果]
 実施例7~10を用いて上記実施例1~6と同様の付着性評価と導電性評価とが行われた。各評価結果について、下記[表4]に示す。[表4]における「付着性」、「導電性」の各評価結果を示す記号の意味は、[表2]における記号の意味と同様である。
[Evaluation results]
The same adhesion evaluation and conductivity evaluation as in Examples 1 to 6 were performed using Examples 7 to 10. Each evaluation result is shown in [Table 4] below. The meanings of the symbols indicating the evaluation results of “adhesiveness” and “conductivity” in [Table 4] are the same as the meanings of the symbols in [Table 2].
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [表4]に示されたように、いずれも実施例も、付着性評価が「付着なし」([表4]では「○」)、導電性評価が「良好」([表4]では「○」)であった。
 このため、第1の導電性粒子15Aが、金属層15bによって表層のみが導電性を有する場合でも、第2の導電性粒子5Bと組み合わされることにより、良好な導電性が得られたことが分かる。
As shown in [Table 4], in all of the examples, the adhesion evaluation is “no adhesion” (“◯” in [Table 4]), and the conductivity evaluation is “good” ([Table 4] “ ○ ”).
For this reason, even when the first conductive particles 15A are conductive only on the surface layer by the metal layer 15b, it can be seen that good conductivity was obtained by combining with the second conductive particles 5B. .
[断熱性評価]
 次に、各実施形態の膜構成における断熱性評価について説明する。
 各実施例の断熱性を評価するため、断熱性評価用の供試サンプルが作製された。この断熱性評価用の供試サンプルは、板厚3mmのアルミニウム板の表面に、上述した各実施例の付着防止膜が成膜された。ただし、断熱性の相違を精度よく測定するため、断熱性評価用の供試サンプルの膜厚は、25μm±5μmとされた。
 各供試サンプルは、200℃に加熱されたホットプレート上において、ホットプレートと各供試サンプルのアルミニウム板とが接触するように配置された。各供試サンプルは、少なくとも1分間加熱された。加熱開始から1分後の膜表面の温度が微小表面用表面温度計によって測定された。この1分後温度は、下記[表5]に示されている。
[Insulation evaluation]
Next, the heat insulation evaluation in the film configuration of each embodiment will be described.
In order to evaluate the heat insulation of each Example, a test sample for heat insulation evaluation was produced. In the test sample for thermal insulation evaluation, the adhesion preventing film of each of the above-described examples was formed on the surface of an aluminum plate having a thickness of 3 mm. However, in order to accurately measure the difference in heat insulation, the film thickness of the test sample for heat insulation evaluation was set to 25 μm ± 5 μm.
Each sample was placed on a hot plate heated to 200 ° C. so that the hot plate and the aluminum plate of each sample were in contact. Each sample sample was heated for at least 1 minute. The temperature of the film surface 1 minute after the start of heating was measured with a surface thermometer for a micro surface. The temperature after 1 minute is shown in [Table 5] below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各供試サンプルに用いられたアルミニウム板におけるホットプレートと反対側の表面温度は、1分間の加熱後に200℃になった。このため、供試サンプルの1分後温度が200℃未満の場合、付着防止膜による断熱効果が現れていると言える。 The surface temperature of the aluminum plate used for each test sample on the side opposite to the hot plate was 200 ° C. after heating for 1 minute. For this reason, when the temperature after 1 minute of a test sample is less than 200 degreeC, it can be said that the heat insulation effect by an adhesion prevention film has appeared.
 断熱性評価としては、供試サンプルの1分後温度が、アルミニウム板の平衡温度(200℃)よりも20℃以上低い場合、断熱性が「非常に良好」(◎(very good))と評価された。供試サンプルの1分後温度が、アルミニウム板の平衡温度よりも5℃以上20℃未満だけ低い場合、断熱性が「良好」(○(good))と評価された。供試サンプルの1分後温度が、アルミニウム板の平衡温度よりも0℃以上5℃未満だけ低い場合、断熱性が「不良」(×(no good))と評価された。 As the heat insulation evaluation, when the temperature after 1 minute of the test sample is 20 ° C. or more lower than the equilibrium temperature (200 ° C.) of the aluminum plate, the heat insulation is evaluated as “very good” (◎ (very good)). It was done. When the temperature after 1 minute of the test sample was lower than the equilibrium temperature of the aluminum plate by 5 ° C. or more and less than 20 ° C., the heat insulation was evaluated as “good” (◯ (good)). When the temperature after 1 minute of the test sample was lower than the equilibrium temperature of the aluminum plate by 0 ° C. or more and less than 5 ° C., the heat insulating property was evaluated as “poor” (× (no good)).
[断熱性評価結果]
 [表5]に示されたように、実施例1~6の1分後温度は、それぞれ、188℃、192℃、188℃、191℃、192℃、190℃だった。実施例1~6の断熱性は「良好」([表5]には「○」と記載)と判定された。
 実施例7~10の1分後温度は、それぞれ、170℃、178℃、176℃、180℃だった。実施例7~10の断熱性は「非常に良好」([表5]には「◎」と記載)と判定された。
 実施例7~10においては、第1の導電性粒子が、金属材料に比べて熱伝導性がよくない不導体の基材15aに薄層の金属層15bが積層された第1の導電性粒子15Aによって構成された。このため、実施例7~10は、断熱性が非常に良好になったと考えられる。実施例7~10中では最も断熱性が劣る実施例10の1分後温度でも、実施例1~6の中で最も断熱性が高かった実施例1、3の1分後温度よりも、8℃も低くなっていた。
 特に、実施例7は、アルミニウム板の平衡温度よりも30℃も低くなった。この理由は、基材15aとして用いられた中空シリカの中空構造による断熱効果が加わったためであると考えられる。
[Insulation evaluation results]
As shown in [Table 5], the temperatures after 1 minute of Examples 1 to 6 were 188 ° C., 192 ° C., 188 ° C., 191 ° C., 192 ° C., and 190 ° C., respectively. The heat insulating properties of Examples 1 to 6 were determined to be “good” (described as “◯” in [Table 5]).
The temperatures after 1 minute of Examples 7 to 10 were 170 ° C., 178 ° C., 176 ° C., and 180 ° C., respectively. The heat insulating properties of Examples 7 to 10 were determined to be “very good” (described as “◎” in [Table 5]).
In Examples 7 to 10, the first conductive particle is a first conductive particle in which a thin metal layer 15b is laminated on a non-conductive base material 15a that has poor thermal conductivity as compared with a metal material. 15A. Therefore, it is considered that Examples 7 to 10 have very good heat insulating properties. The temperature after 1 minute of Example 10 with the least heat insulation in Examples 7 to 10 was 8 minutes higher than the temperature after 1 minute of Examples 1 and 3 with the highest heat insulation among Examples 1 to 6. ℃ was also low.
In particular, Example 7 was 30 ° C. lower than the equilibrium temperature of the aluminum plate. This reason is considered to be because the heat insulation effect by the hollow structure of the hollow silica used as the base material 15a was added.
 以上、本発明の好ましい各実施形態を、各実施例とともに説明したが、本発明はこれら各実施形態、各実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
As mentioned above, although each preferred embodiment of the present invention was described with each example, the present invention is not limited to these each embodiment and each example. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
 上記各実施形態によれば、生体物質に高周波電力を放出するような医療機器に用いても生体物質の付着防止性能を向上することができる医療機器用付着防止膜および生体物質の付着防止性能を向上することができる医療機器を提供できる。 According to each of the above embodiments, the anti-adhesion film for a medical device and the anti-adhesion performance of the biological material that can improve the anti-adhesion performance of the biological material even when used in a medical device that emits high-frequency power to the biological material. A medical device that can be improved can be provided.
 1  医療機器表面部
 1a  表面
 2、12  付着防止膜(医療機器用付着防止膜、最外層)
 2a、12a  表面(最外層の表面)
 3  第2層(最外層)
 4  シリコーン
 5A、15A  第1の導電性粒子
 5B  第2の導電性粒子
 6  第1層(最下層)
 7、101B  付着防止膜(医療機器用付着防止膜)
 15a  基材
 15b  金属層
 100  高周波ナイフ(医療機器)
 101  電極部
 101a  電極本体表面
 101A  電極本体
 101b  電極表面
DESCRIPTION OF SYMBOLS 1 Medical device surface part 1a Surface 2, 12 Adhesion prevention film (Adhesion prevention film for medical devices, outermost layer)
2a, 12a surface (surface of outermost layer)
3 Second layer (outermost layer)
4 Silicone 5A, 15A First conductive particles 5B Second conductive particles 6 First layer (lowermost layer)
7, 101B Adhesion prevention film (adhesion prevention film for medical equipment)
15a Base material 15b Metal layer 100 High frequency knife (medical equipment)
101 electrode part 101a electrode body surface 101A electrode body 101b electrode surface

Claims (11)

  1.  医療機器の表面に形成された単層または多層の付着防止膜であって、
     連続使用温度が200℃以上の樹脂と複数の導電性粒子とを有する最外層を備え、
     前記最外層の表面に、前記樹脂から前記複数の導電性粒子の一部が露出することによって凹凸が形成されている、
    医療機器用付着防止膜。
    A single-layer or multi-layer anti-adhesion film formed on the surface of a medical device,
    Comprising an outermost layer having a resin having a continuous use temperature of 200 ° C. or more and a plurality of conductive particles;
    On the surface of the outermost layer, irregularities are formed by exposing a part of the plurality of conductive particles from the resin.
    Anti-adhesion film for medical devices.
  2.  前記樹脂は、
     シリコーン樹脂、フラン樹脂、ポリアミド樹脂、アリル樹脂、ポリイミド樹脂、PEEK樹脂、エポキシ樹脂、より成る群より、選択された1つ以上の樹脂を含む、
    請求項1に記載の医療機器用付着防止膜。
    The resin is
    Including one or more resins selected from the group consisting of silicone resin, furan resin, polyamide resin, allyl resin, polyimide resin, PEEK resin, epoxy resin,
    The medical device adhesion preventing film according to claim 1.
  3.  前記樹脂は、
     シリコーン樹脂である、
    請求項1に記載の医療機器用付着防止膜。
    The resin is
    Silicone resin,
    The medical device adhesion preventing film according to claim 1.
  4.  前記複数の導電性粒子は、
     メディアン径が異なる少なくとも2つの導電性粒子群を含む、
    請求項1~3のいずれか1項に記載の医療機器用付着防止膜。
    The plurality of conductive particles are:
    Including at least two groups of conductive particles having different median diameters,
    The medical device adhesion preventing film according to any one of claims 1 to 3.
  5.  前記最外層の表面における凹凸の大きさは、
     最大高さRzで0.3μm以上である、
    請求項1~4のいずれか1項に記載の医療機器用付着防止膜。
    The size of the irregularities on the surface of the outermost layer is
    The maximum height Rz is 0.3 μm or more.
    The medical device adhesion preventing film according to any one of claims 1 to 4.
  6.  前記複数の導電性粒子は、
     メディアン径が1μm以上20μm以下である第1の導電性粒子群と、
     メディアン径が0.01μm以上0.5μm以下である第2の導電性粒子群と、
    を含む、請求項1~5のいずれか1項に記載の医療機器用付着防止膜。
    The plurality of conductive particles are:
    A first conductive particle group having a median diameter of 1 μm or more and 20 μm or less;
    A second conductive particle group having a median diameter of 0.01 μm or more and 0.5 μm or less;
    The medical device adhesion-preventing film according to any one of claims 1 to 5, comprising
  7.  前記第1の導電性粒子群は、
     不導体からなる粒子状の基材と、前記基材の表面に積層された金属層と、を有する複合粒子を含む、
    請求項6に記載の医療機器用付着防止膜。
    The first conductive particle group includes:
    Including composite particles having a particulate base material made of a non-conductor and a metal layer laminated on the surface of the base material,
    The medical device adhesion preventing film according to claim 6.
  8.  前記複数の導電性粒子は、
     不導体からなる粒子状の基材と、前記基材の表面に積層された金属層と、を有する複合粒子を含む、
    請求項1~6のいずれか1項に記載の医療機器用付着防止膜。
    The plurality of conductive particles are:
    Including composite particles having a particulate base material made of a non-conductor and a metal layer laminated on the surface of the base material,
    The medical device adhesion preventing film according to any one of claims 1 to 6.
  9.  前記複数の導電性粒子は、
     銀、白金、銅、ニッケル、および金より成る群より、選択された1つ以上の金属を含む、
    請求項1~8のいずれか1項に記載の医療機器用付着防止膜。
    The plurality of conductive particles are:
    Including one or more metals selected from the group consisting of silver, platinum, copper, nickel, and gold;
    The medical device adhesion preventing film according to any one of claims 1 to 8.
  10.  前記最外層よりも下層側に、シリカを主成分とし前記医療機器の表面に密着する最下層を備える、
    請求項1~9のいずれか1項に記載の医療機器用付着防止膜。
    On the lower layer side than the outermost layer, comprising a lowermost layer that adheres to the surface of the medical device with silica as a main component,
    The medical device adhesion preventing film according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の医療機器用付着防止膜を備える、医療機器。 A medical device comprising the medical device adhesion preventing film according to any one of claims 1 to 10.
PCT/JP2017/005156 2016-02-22 2017-02-13 Adhesion prevention film for medical devices and medical device WO2017145842A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780012095.0A CN108697462B (en) 2016-02-22 2017-02-13 Anti-adhesion film for medical device and medical device
DE112017000918.9T DE112017000918T5 (en) 2016-02-22 2017-02-13 Adhesive prevention layer for medical devices and medical device
US16/105,285 US11596719B2 (en) 2016-02-22 2018-08-20 Adhesion prevention film for medical devices and medical device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016031151 2016-02-22
JP2016-031151 2016-02-22
JP2016-207295 2016-10-21
JP2016207295A JP6804931B2 (en) 2016-02-22 2016-10-21 Anti-adhesion membrane for medical devices and medical devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/105,285 Continuation US11596719B2 (en) 2016-02-22 2018-08-20 Adhesion prevention film for medical devices and medical device

Publications (1)

Publication Number Publication Date
WO2017145842A1 true WO2017145842A1 (en) 2017-08-31

Family

ID=59685090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005156 WO2017145842A1 (en) 2016-02-22 2017-02-13 Adhesion prevention film for medical devices and medical device

Country Status (1)

Country Link
WO (1) WO2017145842A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088306A1 (en) * 2016-11-11 2018-05-17 オリンパス株式会社 Conductive adhesion preventing film for medical use and medical device
WO2019078089A1 (en) * 2017-10-20 2019-04-25 オリンパス株式会社 Electrode for high frequency medical device and high frequency medical device
WO2019078275A1 (en) * 2017-10-18 2019-04-25 オリンパス株式会社 Electrode for high-frequency medical equipment and high-frequency medical equipment
WO2019082765A1 (en) * 2017-10-25 2019-05-02 オリンパス株式会社 Electrode for high-frequency medical equipment and high-frequency medical equipment
WO2021053996A1 (en) * 2019-09-17 2021-03-25 テルモ株式会社 Medical instrument and method for manufacturing medical instrument
WO2021059780A1 (en) * 2019-09-26 2021-04-01 テルモ株式会社 Medical appliance and method for producing same
JPWO2022202560A1 (en) * 2021-03-26 2022-09-29

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691743A (en) * 1979-12-12 1981-07-24 Corning Glass Works Nonsticky electroconductive film and method
JPH1095448A (en) * 1996-09-18 1998-04-14 Dainippon Printing Co Ltd Lid material for carrier tape
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
JP2006288425A (en) * 2005-04-05 2006-10-26 Johnson & Johnson Kk Bipolar tweezers
JP2010284439A (en) * 2009-06-15 2010-12-24 Olympus Corp Electrode for medical device and medical treatment tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691743A (en) * 1979-12-12 1981-07-24 Corning Glass Works Nonsticky electroconductive film and method
JPH1095448A (en) * 1996-09-18 1998-04-14 Dainippon Printing Co Ltd Lid material for carrier tape
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
JP2006288425A (en) * 2005-04-05 2006-10-26 Johnson & Johnson Kk Bipolar tweezers
JP2010284439A (en) * 2009-06-15 2010-12-24 Olympus Corp Electrode for medical device and medical treatment tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088306A1 (en) * 2016-11-11 2018-05-17 オリンパス株式会社 Conductive adhesion preventing film for medical use and medical device
WO2019078275A1 (en) * 2017-10-18 2019-04-25 オリンパス株式会社 Electrode for high-frequency medical equipment and high-frequency medical equipment
JP2019072332A (en) * 2017-10-18 2019-05-16 オリンパス株式会社 Electrode for high frequency medical treatment device and high frequency medical treatment device
WO2019078089A1 (en) * 2017-10-20 2019-04-25 オリンパス株式会社 Electrode for high frequency medical device and high frequency medical device
JP2019076218A (en) * 2017-10-20 2019-05-23 オリンパス株式会社 Electrode for high frequency medical equipment and high frequency medical equipment
WO2019082765A1 (en) * 2017-10-25 2019-05-02 オリンパス株式会社 Electrode for high-frequency medical equipment and high-frequency medical equipment
JP2019076494A (en) * 2017-10-25 2019-05-23 オリンパス株式会社 Electrode for high frequency medical equipment and high frequency medical equipment
WO2021053996A1 (en) * 2019-09-17 2021-03-25 テルモ株式会社 Medical instrument and method for manufacturing medical instrument
WO2021059780A1 (en) * 2019-09-26 2021-04-01 テルモ株式会社 Medical appliance and method for producing same
JPWO2022202560A1 (en) * 2021-03-26 2022-09-29
JP7289993B2 (en) 2021-03-26 2023-06-12 タツタ電線株式会社 conductive adhesive layer

Similar Documents

Publication Publication Date Title
WO2017145842A1 (en) Adhesion prevention film for medical devices and medical device
JP6804931B2 (en) Anti-adhesion membrane for medical devices and medical devices
US11219480B2 (en) Apparatus, system and method for excision of soft tissue
US20190192212A1 (en) Conductive adhesion preventing film for medical use and medical device
JP4391440B2 (en) Bipolar tweezers
US6685704B2 (en) Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US10966780B2 (en) Electrosurgical instrument having a coated electrode
JPWO2018061124A1 (en) Treatment tool
US20200164115A1 (en) Electrode for high-frequency medical device and high-frequency medical device
US10357273B2 (en) Medical device and coating material
JP7179575B2 (en) Electrodes for medical devices and medical devices used for high-frequency treatment
US20210077175A1 (en) Hemostatic Surgical Blade, System and Method of Blade Manufacture and Method of Use
US20200205880A1 (en) Electrode for high frequency medical device and high frequency medical device
US20240016537A1 (en) Electrode for high-frequency medical device and medical device
JPH0912982A (en) Adhesive sheet
CN109922749B (en) Medical device
CN114141429B (en) Epidermis electrode and preparation method and application thereof
JP6856492B2 (en) Electrodes for high frequency medical devices and high frequency medical devices
WO2020183679A1 (en) Treatment instrument
TWI526191B (en) Electrosurgical instrument and the manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000918

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756283

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756283

Country of ref document: EP

Kind code of ref document: A1