WO2017145559A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2017145559A1
WO2017145559A1 PCT/JP2017/000943 JP2017000943W WO2017145559A1 WO 2017145559 A1 WO2017145559 A1 WO 2017145559A1 JP 2017000943 W JP2017000943 W JP 2017000943W WO 2017145559 A1 WO2017145559 A1 WO 2017145559A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
diameter
oil
fuel
tight chamber
Prior art date
Application number
PCT/JP2017/000943
Other languages
French (fr)
Japanese (ja)
Inventor
宗尚 堀部
友基 藤野
淳 川村
鈴木 雅幸
里志 菅原
石塚 康治
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017000976.6T priority Critical patent/DE112017000976T5/en
Publication of WO2017145559A1 publication Critical patent/WO2017145559A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • This disclosure relates to a fuel injection device that injects fuel from an injection hole toward a combustion chamber.
  • the valve member is directly displaced by the driving force generated by the drive unit without using a part of the fuel for the displacement of the valve member for opening and closing the nozzle hole.
  • a so-called direct-acting fuel injection device is known.
  • a lever device is provided between the drive unit and the valve member. The lever device changes the direction of displacement by the drive unit by a mechanical lever arm, specifically, reverses 180 ° and transmits the result to the valve member.
  • An object of the present disclosure is to provide a fuel injection device that can reduce mechanical wear even when the valve member is directly displaced by a drive unit.
  • a fuel injection device is a fuel injection device that injects fuel from an injection hole, and a valve body in which a supply passage for supplying fuel to the injection hole and the fuel hole is formed, and the valve body By relative displacement, a valve member that opens and closes the nozzle hole, a drive unit that generates a driving force that displaces the valve member, and at least a part of an oil-tight chamber filled with fuel are partitioned, and the oil-tight chamber is driven by the driving force of the driving unit.
  • the driving force generated by the driving unit displaces the first piston member in the direction in which the fuel in the oil-tight chamber is compressed. Then, when the second piston is pushed by the fuel in the oil-tight chamber, the generated driving force of the driving unit is transmitted to the valve member after changing the acting direction.
  • the fuel injection device displaces the valve member directly by the driving unit by changing the direction of the driving force by the fuel, mechanical wear due to transmission of the driving force is It can be reduced.
  • FIG. 1 is a diagram showing an overall configuration of a fuel supply system to which a fuel injection device according to a first embodiment is applied
  • FIG. 2 is a longitudinal sectional view showing the fuel injection device according to the first embodiment
  • FIG. 3 is a longitudinal sectional view showing the operation of the displacement transmission mechanism
  • FIG. 4 is a time chart showing the correlation between the drive current input to the piezo stack and the displacement and injection rate of each component.
  • FIG. 5 is a longitudinal sectional view showing a fuel injection device according to the second embodiment
  • 6 is a cross-sectional view taken along the line VI-VI in FIG. 8 showing the configuration of the displacement transmission mechanism.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 8 showing the configuration of the displacement transmission mechanism.
  • FIG. 8 is a longitudinal sectional view showing the operation of the displacement transmission mechanism.
  • the fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment.
  • the fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100.
  • the fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
  • the feed pump 12 is, for example, a trochoid pump built in the supply pump 13.
  • the feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13.
  • the feed pump 12 may be separate from the supply pump 13.
  • the supply pump 13 is, for example, a plunger type pump that is driven by an output shaft of a diesel engine.
  • the supply pump 13 is connected to the common rail 14 by a first fuel pipe 13a.
  • the supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
  • the common rail 14 is connected to each fuel injection device 100 via the second fuel pipe 14a.
  • the common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure.
  • the common rail 14 is provided with a pressure reducing valve 14b.
  • the pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
  • the engine control device 17 includes a processor, a RAM, an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a rewritable nonvolatile storage medium, and a drive circuit for driving each fuel injection device 100.
  • the engine control device 17 is electrically connected to each fuel injection device 100 (see the broken line in FIG. 1).
  • the engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
  • the fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22.
  • the fuel injection device 100 directly injects fuel supplied through the second fuel pipe 14 a from the plurality of injection holes 44 toward the combustion chamber 22.
  • the fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 44.
  • the fuel injection device 100 includes a valve body 40, a nozzle needle 60, a drive unit 30, and a displacement transmission mechanism 70 having a large-diameter piston 80 and a small-diameter piston 90.
  • the valve body 40 is configured by combining a plurality of members formed of a metal material.
  • the valve body 40 is formed with an injection hole 44, a seat portion 45, a high-pressure channel 41, a return channel 43, and a drive unit accommodation chamber 47.
  • the injection hole 44 is formed at the distal end in the insertion direction of the valve body 40 inserted into the combustion chamber 22 (see FIG. 1).
  • the tip is formed in a conical or hemispherical shape.
  • a plurality of nozzle holes 44 are provided radially from the inside to the outside of the valve body 40.
  • High-pressure fuel is injected from each injection hole 44 toward the combustion chamber 22.
  • the high-pressure fuel is atomized by passing through the nozzle hole 44, and is easily mixed with air.
  • the seat portion 45 is formed in a conical shape inside the tip end portion of the valve body 40. The seat portion 45 faces the high-pressure channel 41 on the upstream side of the nozzle hole 44.
  • the high-pressure channel 41 supplies high-pressure fuel supplied from the common rail 14 to the injection hole 44 through the second fuel pipe 14a (see FIG. 1).
  • a piston accommodating chamber 42 is formed in the high-pressure channel 41.
  • the piston housing chamber 42 is a two-stage cylindrical space provided as a part of the high-pressure channel 41 and provided in the middle of the high-pressure channel 41.
  • the piston accommodating chamber 42 accommodates at least a part of the displacement transmission mechanism 70.
  • a large-diameter sliding wall portion 46a and a small-diameter sliding wall portion 46b are formed on the large-diameter and small-diameter inner peripheral walls that define the piston housing chamber 42, respectively.
  • the return channel 43 extends along the high-pressure channel 41 in the valve body 40.
  • the return flow path 43 is not injected from the injection hole 44, and leaks, for example, leaked fuel used for cooling the drive unit 30 to the surplus fuel pipe outside the fuel injection device 100.
  • the pressure of the fuel flowing through the return flow path 43 is lower than the pressure of the fuel in the high pressure flow path 41.
  • the high pressure region is indicated by a dark dot
  • the low pressure region is indicated by a thin dot.
  • the drive unit accommodation chamber 47 is a cylindrical space that houses the drive unit 30.
  • An insertion hole 48 is formed between the drive unit accommodation chamber 47 and the piston accommodation chamber 42. One end of the return flow path 43 is opened in the insertion hole 48. Through the insertion hole 48, a part of the fuel flowing through the high-pressure channel 41 is supplied to the drive unit accommodation chamber 47.
  • the drive unit accommodation chamber 47 is filled with fuel.
  • the nozzle needle 60 is formed in a cylindrical shape as a whole by a metal material.
  • the nozzle needle 60 is accommodated in the valve body 40 by being disposed in the high-pressure channel 41.
  • the nozzle needle 60 can be reciprocally displaced in the axial direction with respect to the valve body 40.
  • the nozzle needle 60 is formed with a flange portion 61 and a face portion 62.
  • the collar portion 61 is formed in a disk shape having a larger diameter than the main body portion of the nozzle needle 60.
  • the flange portion 61 is provided at an upper end portion located in the piston accommodating chamber 42 among both axial end portions of the nozzle needle 60.
  • a chamfered portion 64 is formed on the flange portion 61.
  • the chamfered portions 64 are formed in a rectangular flat shape on both sides of the flange portion 61 in the radial direction.
  • the chamfered portion 64 forms a flow path for circulating high-pressure fuel between the small diameter piston 90 and the flange portion 61.
  • a coiled needle spring 63 in which a metal wire is wound spirally is arranged in a compressed state.
  • the nozzle needle 60 is urged toward the nozzle hole side by a needle spring 63.
  • the face portion 62 is formed in a conical shape on the lower end surface facing the nozzle hole 44 among the axial end surfaces of the nozzle needle 60.
  • the nozzle needle 60 causes the face portion 62 to be separated from and seated on the seat portion 45 by relative displacement with respect to the valve body 40.
  • the face portion 62 forms a main valve portion 50 that opens and closes the nozzle hole 44 together with the seat portion 45.
  • the driving unit 30 includes a piezoelectric element laminate 31, a stress relaxation mechanism 32, and the like.
  • the piezoelectric element laminate 31 is a laminate in which, for example, layers called PZT (PbZrTiO 3) and thin electrode layers are alternately stacked.
  • the piezoelectric element laminate 31 receives an input drive signal output from the engine control device 17.
  • the piezoelectric element stacked body 31 expands and contracts along the axial direction of the drive unit accommodation chamber 47 due to a reverse piezoelectric effect that is a characteristic of the piezoelectric element, based on a voltage or current corresponding to the drive signal.
  • the piezoelectric element laminate 31 generates a driving force for driving the nozzle needle 60.
  • the stress relaxation mechanism 32 is a mechanism that transmits the expansion and contraction of the piezoelectric element laminate 31 to the displacement transmission mechanism 70 and relaxes the stress input to the piezoelectric element laminate 31.
  • the stress relaxation mechanism 32 includes a pressure piston 33, an output piston 34, a relaxation cylinder 35, a slit spring 36, and a relaxation spring 37.
  • the pressure piston 33 and the output piston 34 are formed in a columnar shape having substantially the same outer diameter.
  • the pressurizing piston 33 and the output piston 34 are arranged side by side in the axial direction.
  • the pressurizing piston 33 is in contact with the piezoelectric element laminate 31.
  • the movement of the piezoelectric element laminate 31 that expands and contracts is input to the pressure piston 33.
  • the output piston 34 faces the pressurizing piston 33 with the relaxation oil-tight chamber 35a interposed therebetween.
  • the output piston 34 is formed with a stroke portion 34 a that protrudes in a cylindrical shape toward the piston accommodation chamber 42.
  • the stroke portion 34 a is inserted through the insertion hole 48.
  • the front end surface of the stroke portion 34 a is in contact with the large diameter piston 80.
  • the relaxation cylinder 35 is formed in a cylindrical shape and is externally fitted to the pressure piston 33 and the output piston 34.
  • the relaxation cylinder 35 defines a relaxation oil tight chamber 35 a between the pressurizing piston 33 and the output piston 34.
  • the displacement of the pressurizing piston 33 is expanded in the axial direction and transmitted to the output piston 34 by the fuel filled in the relaxation oil tight chamber 35a.
  • Each of the slit spring 36 and the relaxation spring 37 is a metal spring that generates an elastic force in the axial direction.
  • the slit spring 36 urges the pressure piston 33 toward the piezoelectric element stack 31 with respect to the relaxation cylinder 35.
  • the relaxation spring 37 biases the output piston 34 toward the large-diameter piston 80 with respect to the relaxation cylinder 35.
  • the drive unit 30 transmits the expansion and contraction of the piezoelectric element laminate 31 to the output piston 34 via the fuel in the pressurizing piston 33 and the relaxation oil-tight chamber 35a, thereby reciprocating the stroke part 34a in the axial direction.
  • the drive current input to the drive unit 30 increases, the drive force input from the stroke portion 34a to the large-diameter piston 80, and thus the displacement amount of the stroke portion 34a and the large-diameter piston 80, increases.
  • the displacement transmission mechanism 70 is a mechanism that transmits the driving force of the driving unit 30 to the nozzle needle 60 by the large diameter piston 80 and the small diameter piston 90.
  • the displacement transmission mechanism 70 partitions the oil tight chamber 71 together with the valve body 40.
  • the oil tight chamber 71 is a flat annular space provided substantially coaxially with the large diameter piston 80 and the small diameter piston 90.
  • the oil-tight chamber 71 is filled with fuel that has entered between the large-diameter piston 80, the small-diameter piston 90, and the valve body 40.
  • the large-diameter piston 80 is made of a metal material and has a bottomed cylindrical shape.
  • the large-diameter piston 80 is restricted from rotating in the circumferential direction with respect to the valve body 40.
  • the outer diameter of the large-diameter piston 80 is substantially the same as the inner diameter of the cylindrical large-diameter sliding wall portion 46 a that defines the piston housing chamber 42.
  • the large-diameter piston 80 can be displaced in the axial direction along the large-diameter sliding wall portion 46a, and is displaced in a direction in which the fuel in the oil-tight chamber 71 is compressed by the driving force input from the driving unit 30.
  • the large-diameter piston 80 has a bottom wall portion 80a, a peripheral wall portion 80b, and an intermediate member 80c.
  • the operation of the stroke portion 34a is input to the bottom wall portion 80a through the intermediate member 80c.
  • the large-diameter piston 80 is pressed against the output piston 34 by the needle spring 63.
  • the large-diameter piston 80 can be displaced in the axial direction integrally with the stroke portion 34a.
  • a piston communication hole 84 is formed in the bottom wall portion 80a.
  • the piston communication hole 84 is a through hole that penetrates the bottom wall portion 80a in the plate thickness direction.
  • the piston communication hole 84 communicates the inside and outside of the expansion / contraction space 73 in the piston housing chamber 42.
  • a large-diameter pressure surface 81, a sliding outer peripheral wall portion 82, and a sliding inner peripheral wall portion 83 are formed on the peripheral wall portion 80b.
  • the large diameter pressing surface 81 is formed on the top surface of the peripheral wall portion 80b.
  • the large-diameter pressure surface 81 is a flat surface formed in an annular shape.
  • the large-diameter pressure surface 81 faces the oil-tight chamber 71 and partitions the oil-tight chamber 71.
  • the large-diameter pressurizing surface 81 pressurizes the fuel in the oil-tight chamber 71 by a driving force input from the driving unit 30 to the large-diameter piston 80.
  • the sliding outer peripheral wall portion 82 is formed on the outer peripheral surface of the peripheral wall portion 80b fitted inside the large diameter sliding wall portion 46a.
  • the sliding outer peripheral wall portion 82 maintains the oil tightness of the oil tight chamber 71 with the large diameter sliding wall portion 46a while allowing the large diameter piston 80 to slide with respect to the large diameter sliding wall portion 46a.
  • the sliding inner peripheral wall 83 is formed on the inner peripheral surface of the peripheral wall 80b in which the small diameter piston 90 is fitted.
  • the sliding inner peripheral wall 83 enables the small diameter piston 90 to slide with respect to the large diameter piston 80.
  • the sliding inner peripheral wall 83 forms an oil tightness of the oil tight chamber 71 with the small diameter piston 90.
  • the small diameter piston 90 is formed of a metal material in a two-stage cylindrical shape.
  • the small diameter piston 90 is restricted from rotating in the circumferential direction with respect to the large diameter piston 80 and the valve body 40.
  • the small diameter piston 90 can be displaced relative to the large diameter piston 80 in the axial direction.
  • the large-diameter piston 80 is displaced in the direction in which the fuel in the oil-tight chamber 71 is compressed by the driving force of the driving unit 30
  • the small-diameter piston 90 is pushed by the fuel in the oil-tight chamber 71 and is the direction opposite to the large-diameter piston 80. It is displaced to.
  • the displacement of the large-diameter piston 80 that is, the generated driving force of the driving unit 30 is inverted 180 ° by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90.
  • An expansion / contraction space 73 is formed between the small diameter piston 90 and the large diameter piston 80.
  • the expansion / contraction space 73 is a space defined in the piston accommodation chamber 42.
  • the small diameter piston 90 and the large diameter piston 80 are relatively displaced in opposite directions. Therefore, the expansion / contraction space 73 is expanded / contracted with the transmission of the driving force.
  • a needle insertion hole 98 that penetrates the small diameter piston 90 in the axial direction is formed in the center of the small diameter piston 90 in the radial direction.
  • the nozzle needle 60 is inserted through the needle insertion hole 98.
  • the small diameter piston 90 can be displaced in the axial direction along the sliding inner peripheral wall portion 83.
  • the small diameter piston 90 has an enlarged diameter portion 90a and an internal fitting portion 90b.
  • the outer diameter of the enlarged diameter portion 90 a is substantially the same as the inner diameter of the sliding inner peripheral wall portion 83.
  • a small-diameter pressure receiving surface 91, a large-diameter inner fitting wall portion 93, and a transmission surface 96 are formed in the enlarged diameter portion 90a.
  • the small diameter pressure receiving surface 91 is formed in a step portion provided between the outer peripheral surface of the enlarged diameter portion 90a and the outer peripheral surface of the inner fitting portion 90b.
  • the small diameter pressure receiving surface 91 is a flat surface formed in an annular shape.
  • the small diameter pressure receiving surface 91 faces the oil-tight chamber 71 and partitions the oil-tight chamber 71.
  • the small-diameter pressure receiving surface 91 receives a force in a direction in which the small-diameter piston 90 is pushed up toward the drive unit from the fuel in the oil tight chamber 71.
  • the area of the small diameter pressure receiving surface 91 is different from the area of the large diameter pressure surface 81.
  • the area of the large diameter pressure surface 81 is larger than the area of the small diameter pressure surface 91.
  • the displacement of the large-diameter piston 80 is expanded by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90 due to the correlation between the areas of the large-diameter pressure surface 81 and the small-diameter pressure receiving surface 91 described above.
  • the force with which the small diameter piston 90 pushes the nozzle needle 60 becomes weaker than the force with which the stroke portion 34 a pushes the large diameter piston 80.
  • the large-diameter inner fitting wall portion 93 is formed on the outer peripheral surface of the enlarged-diameter portion 90a fitted into the large-diameter piston 80.
  • the large-diameter inner fitting wall portion 93 allows the sliding inner peripheral wall portion 83 to slide.
  • the large-diameter inner fitting wall portion 93 maintains the oil tightness of the oil tight chamber 71 with the sliding inner peripheral wall portion 83.
  • the transmission surface 96 is formed on the upper surface of the small diameter piston 90 facing the bottom wall portion 80a.
  • the transmission surface 96 is formed in a flat annular shape substantially orthogonal to the axial direction of the small diameter piston 90.
  • the transmission surface 96 is in contact with the flange 61 urged by the needle spring 63.
  • the transmission surface 96 transmits a driving force in the valve opening direction to the nozzle needle 60.
  • the transmission surface 96 allows positional deviation of the flange 61 in the radial direction and the circumferential direction substantially orthogonal (crossing) to the valve opening direction.
  • a small diameter inner fitting wall portion 94 and a spring mounting surface 97 are formed in the inner fitting portion 90b.
  • the small-diameter inner fitting wall portion 94 is formed on the outer peripheral surface of the inner fitting portion 90b.
  • the small-diameter inner fitting wall portion 94 is fitted into a cylindrical small-diameter sliding wall portion 46 b that defines the piston housing chamber 42.
  • the small-diameter inner fitting wall portion 94 allows the small-diameter piston 90 to slide relative to the small-diameter sliding wall portion 46b.
  • the small-diameter inner fitting wall portion 94 maintains the oil-tightness of the oil-tight chamber 71 with the small-diameter sliding wall portion 46b.
  • the spring mounting surface 97 is formed on the top surface of the internal fitting portion 90b.
  • One end of the piston spring 99 in the axial direction is placed on the spring placement surface 97.
  • the piston spring 99 is formed in a coil shape in which a metal wire is wound spirally.
  • the piston spring 99 is disposed in a compressed state between the spring placement surface 97 and a stepped portion 46 c formed on the partition wall of the high-pressure channel 41.
  • the small diameter piston 90 and the nozzle needle 60 can be integrally displaced in the axial direction by the elastic forces of the piston spring 99 and the needle spring 63.
  • the piezoelectric element laminate 31 expands in the axial direction.
  • the lower end of the piezoelectric element laminate 31 is displaced in the direction of pushing down the pressure piston 33.
  • the displacement of the lower end of the piezoelectric element laminate 31 is transmitted to the large-diameter piston 80 via the stress relaxation mechanism 32.
  • the large-diameter piston 80 is displaced in the axial direction in synchronization with the movement of the lower end of the piezoelectric element laminate 31.
  • the fuel in the oil-tight chamber 71 Due to the displacement of the large-diameter piston 80, the fuel in the oil-tight chamber 71 is compressed by the large-diameter pressure surface 81. Therefore, the small diameter pressure receiving surface 91 of the small diameter piston 90 is pushed by the fuel in the oil tight chamber 71 and lifted. At this time, the volume of the oil-tight chamber 71 that is reduced by the large-diameter pressurizing surface 81 pushing away the fuel and the volume of the oil-tight chamber 71 that is increased by the fuel lifting the small-diameter pressure-receiving surface 91 are substantially the same.
  • the displacement amount of the small-diameter piston 90 along the axial direction is larger than the displacement amount of the large-diameter piston 80.
  • the displacement transmission mechanism 70 expands the displacement of the large-diameter piston 80 by the fuel in the oil-tight chamber 71 and transmits the displacement to the small-diameter piston 90 in accordance with Pascal's principle.
  • the displacement of the large-diameter piston 80 is inverted 180 ° by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90.
  • the small diameter piston 90 is displaced in the direction opposite to the large diameter piston 80 in synchronization with the movement of the large diameter piston 80.
  • the nozzle needle 60 is lifted in the valve opening direction by the driving force transmitted by the small diameter piston 90. As a result, the main valve portion 50 is opened, and fuel injection from the nozzle hole 44 is started.
  • the engine control device 17 can control the operating speed and the displacement amount of the piezoelectric element laminate 31 by the drive current applied to the piezoelectric element laminate 31. Therefore, when a drive current is further applied to the piezoelectric element stack 31 during one injection, the lower end of the piezoelectric element stack 31 further pushes down the large-diameter piston 80. As a result, the small-diameter piston 90 and the nozzle needle 60 are further displaced in the valve opening direction, resulting in an increase in the injection rate. As described above, according to the configuration of the fuel injection device 100, the engine control device 17 can arbitrarily change the fuel injection rate.
  • the driving force generated by the driving unit 30 displaces the large-diameter piston 80 in the direction in which the fuel in the oil-tight chamber 71 is compressed. Then, when the small-diameter piston 90 is pushed by the fuel in the oil-tight chamber 71, the generated driving force of the driving unit 30 is transmitted to the nozzle needle 60 after changing the direction in which it acts. As described above, even when the fuel injection device 100 directly displaces the nozzle needle 60 by the driving unit 30 by changing the direction of the driving force by the fuel, the mechanical force resulting from the transmission of the driving force is mechanical. Wear can be reduced.
  • the displacement generated by the drive unit 30 is expanded by the fuel filling the oil tight chamber 71 and transmitted to the small diameter piston 90 and the nozzle needle 60.
  • the displacement enlargement ratio of the displacement transmission mechanism 70 is determined by the area ratio of the large-diameter pressure surface 81 and the small-diameter pressure-receiving surface 91 based on the Pascal principle. Therefore, the magnification of displacement in the displacement transmission mechanism 70 can be adjusted by changing the area ratio in the design stage.
  • the fuel injection device 100 uses the displacement transmission mechanism 70 to change the driving force and the displacement generated by the piezoelectric element stack 31 to a valve opening force and a displacement that are suitable for opening the nozzle needle 60. Can be reliably converted.
  • the displacement transmission mechanism 70 expands the movement of the piezoelectric element laminate 31 by increasing the area of the large-diameter pressure surface 81 to be larger than the area of the small-diameter pressure-receiving surface 91. Communicating. According to the above, even if the piezoelectric element laminate 31 in which it is difficult to secure the displacement amount is used, the fuel injection device 100 directly drives the nozzle needle 60 by the expansion / contraction operation of the piezoelectric element laminate 31 to The part 50 can be opened and closed.
  • the transmission surface 96 of the first embodiment allows the positional deviation of the flange portion 61 in the radial direction. Therefore, the inclination of the nozzle needle 60 with respect to the small diameter piston 90 can be absorbed between the transmission surface 96 and the flange 61. With such a configuration, it is possible to prevent the occurrence of stress that causes the small-diameter piston 90 to be inclined and excessively wears the large-diameter inner fitting wall portion 93 and the small-diameter inner fitting wall portion 94.
  • the direction of displacement of the stroke portion 34 a and the large-diameter piston 80 is reversed by the fuel in the oil-tight chamber 71. Therefore, even if the piezoelectric element laminate 31 generates only a driving force in the direction of pushing down the large-diameter piston 80, the driving force in the direction of pulling up in the valve opening direction is input to the nozzle needle 60.
  • an expansion / contraction space 73 is formed between the large-diameter piston 80 and the small-diameter piston 90 that expands / contracts as the driving force is transmitted. It will be. Therefore, the large-diameter piston 80 is formed with a piston communication hole 84 that communicates the inside and outside of the expansion / contraction space 73.
  • the piston communication hole 84 can suppress the pressure fluctuation of the expansion / contraction space 73 due to the relative displacement of the large-diameter piston 80 and the small-diameter piston 90 by circulating the fuel. According to the above, the situation where the relative displacement of the large diameter piston 80 and the small diameter piston 90 is hindered by the fuel in the expansion / contraction space 73 is avoided.
  • the large-diameter piston 80 and the small-diameter piston 90 of the first embodiment form the oil-tightness of the oil-tight chamber 71 by the sliding inner peripheral wall portion 83 and the large-diameter inner fitting wall portion 93 provided respectively.
  • the size of the displacement transmission mechanism 70 can be kept small as long as no other member is interposed between the pistons 80 and 90. Therefore, it is possible to prevent the fuel injection device 100 from becoming large.
  • the rotation of the large-diameter piston 80 and the small-diameter piston 90 in the circumferential direction is restricted. According to the above configuration, wear caused by rotation of the oil-tight portions of the large-diameter piston 80 and the small-diameter piston 90 is reduced. In addition, according to the rotation restriction of the large-diameter piston 80, the position of the piston communication hole 84 is maintained near the opening of the high-pressure channel 41. Therefore, the high-pressure fuel supplied through the high-pressure channel 41 passes through the piston housing chamber 42 and smoothly flows in the vicinity of the injection hole 44.
  • the high-pressure channel 41 corresponds to the supply channel
  • the nozzle needle 60 corresponds to the valve member
  • the large-diameter piston 80 corresponds to the first piston member
  • the large-diameter pressure surface 81 is the first. It corresponds to one piston surface.
  • the piston communication hole 84 corresponds to the communication hole
  • the small diameter piston 90 corresponds to the second piston member
  • the small diameter pressure receiving surface 91 corresponds to the second piston surface
  • the large diameter internal fitting wall portion 93 is the sliding wall portion.
  • the transmission surface 96 corresponds to the transmission unit.
  • the second embodiment shown in FIGS. 5 to 8 is a modification of the first embodiment.
  • the displacement transmission mechanism 270 of the fuel injection device 200 according to the second embodiment includes a large-diameter piston plate 280, a plurality (four) of small-diameter pistons 290, and a partition plate 275.
  • the displacement transmission mechanism 270 is accommodated in a piston accommodation chamber 242 formed in a columnar shape in the valve body 240 of the second embodiment.
  • the large diameter piston plate 280 corresponds to the large diameter piston 80 of the first embodiment (see FIG. 2).
  • the large-diameter piston plate 280 can be displaced in the axial direction integrally with the stroke portion 34a.
  • the large-diameter piston plate 280 is displaced in the direction in which the fuel in the oil-tight chamber 271 is compressed by the driving force input from the driving unit 30.
  • the large diameter piston plate 280 includes a plate body 281 and a plurality (four) of large diameter piston rods 285.
  • the plate body 281 is formed of a metal material into a bottomed cylindrical shape having a bottom wall portion 281a and a peripheral wall portion 281b.
  • the bottom wall portion 281a is formed with a piston communication hole 84 that is substantially the same as in the first embodiment.
  • a piston mounting surface 283 is formed on the peripheral wall portion 281b in addition to the same sliding outer peripheral wall portion 82 as that of the first embodiment.
  • the piston mounting surface 283 is formed on the top surface of the peripheral wall portion 281b facing the partition plate 275.
  • the piston mounting surface 283 is a flat surface formed in an annular shape.
  • the piston mounting surface 283 is in contact with each end surface of the plurality of large diameter piston rods 285.
  • the piston mounting surface 283 presses each large-diameter piston rod 285 toward the oil-tight chamber 271 by the driving force input from the driving unit 30.
  • the large-diameter piston rod 285 is formed in a long and narrow cylindrical shape from a metal material.
  • the large-diameter piston rods 285 are arranged at equal intervals along the circumferential direction of the plate body 281 (see FIG. 6).
  • the large diameter piston rod 285 is inserted through a large diameter rod hole 278 provided in the partition plate 275.
  • the large-diameter piston rod 285 is formed with a large-diameter pressure surface 286, a large-diameter pressing surface 287, and a large-diameter rod outer peripheral wall 288.
  • the large-diameter pressure surface 286 is formed on the first end surface facing the oil-tight chamber 271 among both end surfaces of the large-diameter piston rod 285.
  • the large-diameter pressing surface 286 is a flat surface formed in a perfect circle shape.
  • the large diameter pressing surface 287 is formed on the second end surface in contact with the piston mounting surface 283 among the both end surfaces of the large diameter piston rod 285.
  • the large-diameter pressure surface 286 is a flat surface formed in a perfect circle shape like the large-diameter pressure surface 286.
  • the large diameter pressing surface 287 is pressed toward the oil-tight chamber 271 by the piston mounting surface 283.
  • the large-diameter pressing surface 287 is allowed to be displaced in the radial direction and the circumferential direction with respect to the piston mounting surface 283.
  • the large diameter rod outer peripheral wall 288 is formed on the outer peripheral surface of the large diameter piston rod 285.
  • the outer diameter of the large diameter rod outer peripheral wall 288 is approximately the same as the inner diameter of the large diameter rod hole 278.
  • the large-diameter rod outer peripheral wall 288 allows the large-diameter piston rod 285 to slide with respect to the partition plate 275.
  • the large-diameter rod outer peripheral wall 288 maintains the oil-tightness of the oil-tight chamber 271 with the large-diameter rod hole 278.
  • the small diameter piston 290 corresponds to the small diameter piston 90 (see FIG. 2) of the first embodiment.
  • the small-diameter piston 290 is a member that transmits to the nozzle needle 60 the displacement of the large-diameter piston rod 285 expanded and inverted by 180 ° by the fuel in the oil-tight chamber 271.
  • the small diameter piston 290 is inserted through a small diameter rod hole 279 provided in the partition plate 275.
  • the small diameter pistons 290 are arranged at equal intervals along the circumferential direction of the plate body 281 (see FIG. 6).
  • the small diameter piston 290 and the large diameter piston rod 285 are arranged along the radial direction of the plate body 281.
  • the small-diameter piston 290 is made of a metal material and has a long and narrow cylindrical shape.
  • the outer diameter of the small diameter piston 290 is smaller than the outer diameter of the large diameter piston rod 285.
  • the axial length of the small diameter piston 290 is substantially the same as the axial length of the large diameter piston rod 285.
  • the small diameter piston 290 is formed with a small diameter pressure receiving surface 291, a small diameter rod outer peripheral wall 293, and a small diameter transmission surface 296.
  • the small diameter pressure receiving surface 291 is formed on the first end surface facing the oil tight chamber 271 among the both end surfaces of the small diameter piston 290.
  • the small diameter pressure receiving surface 291 is a flat surface formed in a perfect circle.
  • the total area of the small diameter pressure receiving surfaces 291 that is the sum of the areas of the plurality of small diameter pressure receiving surfaces 291 is different from the total area of the large diameter pressing surfaces 286 that is the sum of the areas of the plurality of large diameter pressure receiving surfaces 286.
  • the total area of the large-diameter pressure surface 286 is larger than the total area of the small-diameter pressure-receiving surface 291.
  • the small diameter pressure receiving surface 291 receives a force for pushing up the small diameter piston 290 from the fuel in the oil tight chamber 271.
  • the small diameter rod outer peripheral wall 293 is formed on the outer peripheral surface of the small diameter piston 290.
  • the outer diameter of the small diameter rod outer peripheral wall 293 is approximately the same as the inner diameter of the small diameter rod hole 279.
  • the small diameter rod outer peripheral wall 293 allows the small diameter piston 290 to slide relative to the partition plate 275.
  • the small-diameter rod outer peripheral wall 293 maintains the oil-tightness of the oil-tight chamber 271 with the small-diameter rod hole 279.
  • the small diameter transmission surface 296 is formed on the second end surface of the small diameter piston 290 that faces the bottom wall portion 281a.
  • the small diameter transmission surface 296 is a perfect circular flat surface that is substantially orthogonal to the axial direction of the small diameter piston 290.
  • the small diameter transmission surface 296 transmits the driving force in the valve opening direction to the nozzle needle 60 while allowing the displacement of the flange 61 in the radial direction and the circumferential direction substantially orthogonal to the valve opening direction.
  • the partition plate 275 is formed in a disk shape from a metal material.
  • the partition plate 275 is accommodated in the valve body 240 and is fixed to the valve body 240.
  • a partition wall portion 276, a needle insertion hole 277, a large diameter rod hole 278, and a small diameter rod hole 279 are formed.
  • the partition wall 276 is an annular recess formed in the lower end surface of the partition plate 275 facing the nozzle hole side.
  • the partition wall 276 partitions a flat annular oil-tight chamber 271 together with the large-diameter pressurizing surface 286, the small-diameter pressure-receiving surface 291 and the bottom wall surface 242a of the piston housing chamber 242.
  • the oil tight chamber 271 is filled with fuel.
  • the needle insertion hole 277 is a through hole provided in the center of the partition plate 275 in the radial direction.
  • the nozzle needle 60 is inserted through the needle insertion hole 277.
  • the inner diameter of the needle insertion hole 277 is made larger than the outer diameter of the nozzle needle 60.
  • the fuel flows between the needle insertion hole 277 and the nozzle needle 60 and reaches the injection hole 44.
  • the large diameter rod hole 278 is a through hole penetrating the partition plate 275 in the axial direction.
  • a plurality of large-diameter rod holes 278 are formed at equal intervals along the circumferential direction of the partition plate 275 (see FIG. 7).
  • the large diameter rod hole 278 is fitted on the large diameter piston rod 285.
  • One end of the large-diameter rod hole 278 opens to the ceiling surface of the oil-tight chamber 271.
  • the inner peripheral wall of the large diameter rod hole 278 forms a large diameter outer fitting wall 278a.
  • the large-diameter outer fitting wall 278a forms the oil-tightness of the oil-tight chamber 271 with the large-diameter rod outer peripheral wall 288 while allowing the large-diameter piston rod 285 to slide.
  • the small diameter rod hole 279 is a through hole penetrating the partition plate 275 in the axial direction.
  • the small diameter rod hole 279 has a smaller diameter than the large diameter rod hole 278. Similar to the large diameter rod hole 278, a plurality of small diameter rod holes 279 are formed at equal intervals along the circumferential direction of the partition plate 275 (see FIG. 7).
  • the small diameter rod hole 279 is located inside the large diameter rod hole 278 in the radial direction. A predetermined interval is provided between the small diameter rod hole 279 and the large diameter rod hole 278 to ensure strength.
  • the small diameter rod hole 279 is fitted on the small diameter piston 290. One end of the small diameter rod hole 279 opens in the ceiling surface of the oil tight chamber 271.
  • the inner peripheral wall of the small diameter rod hole 279 forms a small diameter outer fitting wall 279a.
  • the small-diameter outer fitting wall 279a forms an oil-tight chamber between the small-diameter outer fitting wall 279a and allows the small-diameter piston 290 to slide.
  • the driving force generated by the expansion of the piezoelectric element laminate 31 is input to the large-diameter piston plate 280 via the stress relaxation mechanism 32, and the oil-tight chamber 271 is Fuel is compressed.
  • each small-diameter piston 290 pushes up each small-diameter pressure receiving surface 291 by the fuel in the oil-tight chamber 271 and displaces the nozzle needle 60 in the valve opening direction.
  • fuel injection from the injection hole 44 is started.
  • the engine control device 17 can change the mode of the injection rate during one injection by controlling the operating speed and the displacement amount of the piezoelectric element laminate 31.
  • the direction of the driving force is changed by the fuel in the oil-tight chamber 271. Therefore, the same effects as in the first embodiment can be obtained, and even with the direct-acting fuel injection device 200, mechanical wear associated with transmission of driving force can be reduced.
  • the sliding portion forming the oil tightness of the oil tight chamber 271 is provided independently on the cylindrical large diameter piston rod 285 and the small diameter piston 290.
  • the large diameter piston plate 280 corresponds to the first piston member, and the large diameter pressurizing surface 286 corresponds to the first piston surface.
  • the small diameter piston 290 corresponds to the second piston member, the small diameter pressure receiving surface 291 corresponds to the second piston surface, and the partition plate 275 corresponds to the partition member.
  • the large-diameter outer fitting wall 278a corresponds to the first sliding wall portion, the small-diameter outer fitting wall 279a corresponds to the second sliding wall portion, and the small-diameter transmission surface 296 corresponds to the transmission portion.
  • the sliding inner peripheral wall portion 83 and the large diameter inner fitting wall portion 93, the large diameter rod outer peripheral wall 288 and the large diameter outer fitting wall 278a, and the small diameter rod outer peripheral wall 293 and the small diameter outer fitting wall 279a are between It was formed oil-tight.
  • These oil-tight parts allow for the slow entry of high-pressure fuel from the high-pressure channel into the oil-tight chamber, while substantially preventing leakage from the oil-tight chamber to the high-pressure channel when driving force is transmitted. ing.
  • the driving force generated by the driving unit is inverted 180 ° by the fuel in the oil-tight chamber and transmitted from the large-diameter piston to the small-diameter piston.
  • the virtual axis that defines the displacement direction of the large-diameter piston may not be parallel to the virtual axis that defines the displacement direction of the small-diameter piston, and may be defined in a posture inclined with respect to the virtual axis of the small-diameter piston. Good.
  • the area or total area of the large-diameter pressure surface and the area or total area of the small-diameter pressure receiving surface were different from each other.
  • Each area accurately indicates a projected area obtained by projecting the pressure surface and the pressure receiving surface along the displacement axis onto a virtual plane substantially orthogonal to the displacement axis of each piston. If these projected areas are different, the displacement of the large-diameter piston is enlarged or reduced by the fuel and transmitted to the small-diameter piston.
  • the displacement transmission mechanism causes the displacement of the driving force to be weakened with the expansion of the stroke by making the area or total area of the large-diameter pressure surface larger than the area or total area of the small-diameter pressure receiving surface. , Was transmitted to the nozzle needle.
  • the displacement transmission mechanism transmits the displacement with increased driving force to the nozzle needle as the stroke is reduced by making the pressure area of the large diameter pressure surface smaller than the pressure area of the small diameter pressure surface.
  • the displacement transmission mechanism 70 may be configured to simply change the displacement direction without changing the stroke by equally defining the pressure area of the large diameter pressure surface and the pressure area of the small diameter pressure surface. .
  • the inclination of the nozzle needle is allowed by the configuration in which the small-diameter piston and the nozzle needle are formed of separate members.
  • the small diameter piston and the nozzle needle may be integrally formed.
  • An intermediate member for transmitting a driving force may be provided between the small diameter piston and the nozzle needle.
  • the structure corresponding to the first piston member and the second piston member may be one member such as the large diameter piston and the small diameter piston of the first embodiment, or the large diameter piston plate of the second embodiment. And a plurality of members such as small-diameter piston groups.
  • the displacement transmission mechanism of the above embodiment forms an oil tight chamber in cooperation with the valve body.
  • the oil tight chamber may be defined only by the components of the displacement transmission mechanism. Further, the volume and shape of the oil tight chamber may be changed as appropriate.
  • the characteristic portion of the present disclosure is applied to the fuel injection device that injects light oil as fuel.
  • the characteristic portion of the present disclosure injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether. It is applicable also to the fuel-injection apparatus which does.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection device that injects fuel from injection holes (44), and that is equipped with: a valve body (40, 240) in which the injection holes and a supply flow path (41) supplying fuel to these injection holes are formed; a valve member (60) that opens/closes the injection holes when displaced relative to the valve body; a drive unit (30) that generates driving force that displaces the valve member; a first piston member (80, 280) that partitions at least a portion of an oil-tight chamber (71, 271) filled with fuel and compresses the fuel in the oil-tight chamber by means of the driving force of the drive unit; and a second piston member (90, 290) that partitions at least a portion of the oil-tight chamber (71, 271) and is pressed by the fuel in the oil-tight chamber, thereby changing the direction of the driving force applied to the fuel in the oil-tight chamber and transmitting the driving force to the valve member.

Description

燃料噴射装置Fuel injection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年2月24日に出願された日本特許出願番号2016-33519号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-33519 filed on February 24, 2016, the contents of which are incorporated herein by reference.
 本開示は、燃焼室へ向けて噴孔から燃料を噴射する燃料噴射装置に関する。 This disclosure relates to a fuel injection device that injects fuel from an injection hole toward a combustion chamber.
 従来、例えば特許文献1に開示されているように、噴孔を開閉させるための弁部材の変位に燃料の一部を用いることなく、駆動部の発生させる駆動力によって弁部材を直接的に変位させる、いわゆる直動式の燃料噴射装置が知られている。加えて、特許文献1の燃料噴射装置では、駆動部と弁部材との間にレバー装置が設けられている。レバー装置は、駆動部による変位の方向を機械的なレバーアームによって変更し、具体的には180°反転して、弁部材に伝達する。 Conventionally, as disclosed in, for example, Patent Document 1, the valve member is directly displaced by the driving force generated by the drive unit without using a part of the fuel for the displacement of the valve member for opening and closing the nozzle hole. A so-called direct-acting fuel injection device is known. In addition, in the fuel injection device of Patent Document 1, a lever device is provided between the drive unit and the valve member. The lever device changes the direction of displacement by the drive unit by a mechanical lever arm, specifically, reverses 180 ° and transmits the result to the valve member.
米国特許出願公開第2009/0200406号明細書US Patent Application Publication No. 2009/0200406
 しかし、特許文献1の燃料噴射装置では、駆動部による駆動力の印加に伴い、レバーアームの支点は、強い力が集中した状態で支持部に対して摺動する。故に、レバー装置による変位量の縮小及び伝達が継続された場合、レバーアームの支点及びその支持部には、機械的な摩耗が不可避的に発生する。その結果、燃料噴射装置の噴射特性の経年変化が顕著となる虞があった。 However, in the fuel injection device disclosed in Patent Document 1, the fulcrum of the lever arm slides with respect to the support portion in a state where a strong force is concentrated as the driving force is applied by the driving portion. Therefore, when the reduction and transmission of the displacement amount by the lever device are continued, mechanical wear inevitably occurs at the fulcrum of the lever arm and its support portion. As a result, there is a possibility that the change over time in the injection characteristics of the fuel injection device becomes remarkable.
 本開示の目的は、駆動部によって直接的に弁部材を変位させる構成であっても、機械的な摩耗を低減可能な燃料噴射装置を提供することにある。 An object of the present disclosure is to provide a fuel injection device that can reduce mechanical wear even when the valve member is directly displaced by a drive unit.
 本開示の一態様による燃料噴射装置は、噴孔から燃料を噴射する燃料噴射装置であって、噴孔、この噴孔に燃料を供給する供給流路が形成された弁ボデーと、弁ボデーに対する相対変位により、噴孔を開閉させる弁部材と、弁部材を変位させる駆動力を発生する駆動部と、燃料によって満たされた油密室の少なくとも一部を区画し、駆動部の駆動力によって油密室の燃料を圧縮する第一ピストン部材と、油密室の少なくとも一部を区画し、油密室の燃料によって押されることにより、油密室の燃料に入力された駆動力の方向を変更して、弁部材に伝達する第二ピストン部材と、を備える。 A fuel injection device according to an aspect of the present disclosure is a fuel injection device that injects fuel from an injection hole, and a valve body in which a supply passage for supplying fuel to the injection hole and the fuel hole is formed, and the valve body By relative displacement, a valve member that opens and closes the nozzle hole, a drive unit that generates a driving force that displaces the valve member, and at least a part of an oil-tight chamber filled with fuel are partitioned, and the oil-tight chamber is driven by the driving force of the driving unit. A first piston member that compresses the fuel and a valve member that partitions at least a portion of the oil-tight chamber and is pushed by the fuel in the oil-tight chamber to change the direction of the driving force input to the fuel in the oil-tight chamber A second piston member that transmits to
 この態様では、駆動部の発生させた駆動力は、油密室の燃料を圧縮する方向に第一ピストン部材を変位させる。そして、第二ピストンが油密室の燃料に押されることにより、駆動部の発生駆動力は、作用する方向を変更されたうえで弁部材に伝達される。以上のように、燃料によって駆動力の方向が変更されることで、駆動部によって直接的に弁部材を変位させる燃料噴射装置であっても、駆動力の伝達に起因する機械的な摩耗は、低減可能となる。 In this aspect, the driving force generated by the driving unit displaces the first piston member in the direction in which the fuel in the oil-tight chamber is compressed. Then, when the second piston is pushed by the fuel in the oil-tight chamber, the generated driving force of the driving unit is transmitted to the valve member after changing the acting direction. As described above, even if the fuel injection device displaces the valve member directly by the driving unit by changing the direction of the driving force by the fuel, mechanical wear due to transmission of the driving force is It can be reduced.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第一実施形態による燃料噴射装置が適用される燃料供給システムの全体構成を示す図であり、 図2は、第一実施形態による燃料噴射装置を示す縦断面図であり、 図3は、変位伝達機構の作動を示す縦断面図であり、 図4は、ピエゾスタックに入力される駆動電流と、各構成の変位及び噴射率との相関を示すタイムチャートであり、 図5は、第二実施形態による燃料噴射装置を示す縦断面図であり、 図6は、変位伝達機構の構成を示す図8のVI-VI線断面図であり、 図7は、変位伝達機構の構成を示す図8のVII-VII線断面図であり、 図8は、変位伝達機構の作動を示す縦断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing an overall configuration of a fuel supply system to which a fuel injection device according to a first embodiment is applied, FIG. 2 is a longitudinal sectional view showing the fuel injection device according to the first embodiment, FIG. 3 is a longitudinal sectional view showing the operation of the displacement transmission mechanism, FIG. 4 is a time chart showing the correlation between the drive current input to the piezo stack and the displacement and injection rate of each component. FIG. 5 is a longitudinal sectional view showing a fuel injection device according to the second embodiment, 6 is a cross-sectional view taken along the line VI-VI in FIG. 8 showing the configuration of the displacement transmission mechanism. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 8 showing the configuration of the displacement transmission mechanism. FIG. 8 is a longitudinal sectional view showing the operation of the displacement transmission mechanism.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. Moreover, not only the combination of the configurations explicitly described in the description of each embodiment, but also the configuration of a plurality of embodiments can be partially combined even if they are not explicitly described, as long as there is no problem in the combination. And the combination where the structure described in several embodiment and the modification is not specified shall also be disclosed by the following description.
 (第一実施形態)
 図1に示す燃料供給システム10には、第一実施形態による燃料噴射装置100が用いられている。燃料供給システム10は、内燃機関であるディーゼル機関20の各燃焼室22に、燃料噴射装置100によって燃料を供給する。燃料供給システム10は、フィードポンプ(F/P)12、サプライポンプ13、コモンレール14、機関制御装置17、及び複数の燃料噴射装置100等から構成されている。
(First embodiment)
The fuel supply system 10 shown in FIG. 1 uses the fuel injection device 100 according to the first embodiment. The fuel supply system 10 supplies fuel to each combustion chamber 22 of a diesel engine 20 that is an internal combustion engine by a fuel injection device 100. The fuel supply system 10 includes a feed pump (F / P) 12, a supply pump 13, a common rail 14, an engine control device 17, a plurality of fuel injection devices 100, and the like.
 フィードポンプ12は、サプライポンプ13に内蔵された例えばトロコイド式のポンプである。フィードポンプ12は、燃料タンク内に貯留された燃料としての軽油をサプライポンプ13に圧送する。尚、フィードポンプ12は、サプライポンプ13と別体であってもよい。 The feed pump 12 is, for example, a trochoid pump built in the supply pump 13. The feed pump 12 pumps light oil as fuel stored in the fuel tank to the supply pump 13. The feed pump 12 may be separate from the supply pump 13.
 サプライポンプ13は、ディーゼル機関の出力軸によって駆動される例えばプランジャ式のポンプである。サプライポンプ13は、第一燃料配管13aによってコモンレール14と接続されている。サプライポンプ13は、フィードポンプ12から供給された燃料をさらに昇圧し、コモンレール14に供給する。 The supply pump 13 is, for example, a plunger type pump that is driven by an output shaft of a diesel engine. The supply pump 13 is connected to the common rail 14 by a first fuel pipe 13a. The supply pump 13 further boosts the fuel supplied from the feed pump 12 and supplies the fuel to the common rail 14.
 コモンレール14は、第二燃料配管14aを介して各燃料噴射装置100と接続されている。コモンレール14は、サプライポンプ13から供給される高圧の燃料を一時的に蓄え、圧力を保持したまま各燃料噴射装置100に分配する。コモンレール14には、減圧弁14bが設けられている。減圧弁14bは、コモンレール14において余剰となった燃料を、燃料タンクに繋がっている余剰燃料配管へ排出する。 The common rail 14 is connected to each fuel injection device 100 via the second fuel pipe 14a. The common rail 14 temporarily stores high-pressure fuel supplied from the supply pump 13 and distributes the fuel to each fuel injection device 100 while maintaining the pressure. The common rail 14 is provided with a pressure reducing valve 14b. The pressure reducing valve 14b discharges the surplus fuel in the common rail 14 to the surplus fuel pipe connected to the fuel tank.
 機関制御装置17は、プロセッサ、RAM、及び書き換え可能な不揮発性の記憶媒体を含むマイクロコンピュータ又はマイクロコントローラを主体に構成された演算回路と、各燃料噴射装置100を駆動する駆動回路とを含む。機関制御装置17は、各燃料噴射装置100と電気的に接続されている(図1 破線参照)。機関制御装置17は、ディーゼル機関20の稼動状態に応じて各燃料噴射装置100の作動を制御する。 The engine control device 17 includes a processor, a RAM, an arithmetic circuit mainly composed of a microcomputer or a microcontroller including a rewritable nonvolatile storage medium, and a drive circuit for driving each fuel injection device 100. The engine control device 17 is electrically connected to each fuel injection device 100 (see the broken line in FIG. 1). The engine control device 17 controls the operation of each fuel injection device 100 according to the operating state of the diesel engine 20.
 燃料噴射装置100は、燃焼室22を形成するヘッド部材21の挿入孔に挿入された状態で、ヘッド部材21に取り付けられている。燃料噴射装置100は、第二燃料配管14aを通じて供給される燃料を、複数の噴孔44から燃焼室22へ向けて直接的に噴射する。燃料噴射装置100は、噴孔44からの燃料の噴射を制御する弁機構を備えている。 The fuel injection device 100 is attached to the head member 21 in a state of being inserted into the insertion hole of the head member 21 that forms the combustion chamber 22. The fuel injection device 100 directly injects fuel supplied through the second fuel pipe 14 a from the plurality of injection holes 44 toward the combustion chamber 22. The fuel injection device 100 includes a valve mechanism that controls fuel injection from the injection hole 44.
 燃料噴射装置100は、図2に示すように、弁ボデー40、ノズルニードル60、駆動部30、並びに大径ピストン80及び小径ピストン90を有する変位伝達機構70を備えている。 As shown in FIG. 2, the fuel injection device 100 includes a valve body 40, a nozzle needle 60, a drive unit 30, and a displacement transmission mechanism 70 having a large-diameter piston 80 and a small-diameter piston 90.
 弁ボデー40は、金属材料よって形成された複数の部材を組み合わせることによって構成されている。弁ボデー40には、噴孔44、シート部45、高圧流路41、リターン流路43、及び駆動部収容室47が形成されている。 The valve body 40 is configured by combining a plurality of members formed of a metal material. The valve body 40 is formed with an injection hole 44, a seat portion 45, a high-pressure channel 41, a return channel 43, and a drive unit accommodation chamber 47.
 噴孔44は、燃焼室22(図1参照)へ挿入される弁ボデー40において、挿入方向の先端部に形成されている。先端部は、円錐状又は半球状に形成されている。噴孔44は、弁ボデー40の内側から外側に向けて放射状に複数設けられている。高圧の燃料は、各噴孔44から燃焼室22へ向けて噴射される。高圧の燃料は、噴孔44を通過することによって霧化され、空気と混合し易い状態となる。シート部45は、弁ボデー40の先端部の内側に、円錐状に形成されている。シート部45は、噴孔44の上流側において高圧流路41に臨んでいる。 The injection hole 44 is formed at the distal end in the insertion direction of the valve body 40 inserted into the combustion chamber 22 (see FIG. 1). The tip is formed in a conical or hemispherical shape. A plurality of nozzle holes 44 are provided radially from the inside to the outside of the valve body 40. High-pressure fuel is injected from each injection hole 44 toward the combustion chamber 22. The high-pressure fuel is atomized by passing through the nozzle hole 44, and is easily mixed with air. The seat portion 45 is formed in a conical shape inside the tip end portion of the valve body 40. The seat portion 45 faces the high-pressure channel 41 on the upstream side of the nozzle hole 44.
 高圧流路41は、第二燃料配管14a(図1参照)を通じてコモンレール14から供給される高圧の燃料を、噴孔44に供給する。高圧流路41には、ピストン収容室42が形成されている。ピストン収容室42は、高圧流路41の一部として、高圧流路41の中間に設けられた二段円柱状の空間である。ピストン収容室42には、変位伝達機構70の少なくとも一部が収容されている。ピストン収容室42を区画している大径及び小径の各内周壁には、大径摺動壁部46a及び小径摺動壁部46bがそれぞれ形成されている。 The high-pressure channel 41 supplies high-pressure fuel supplied from the common rail 14 to the injection hole 44 through the second fuel pipe 14a (see FIG. 1). A piston accommodating chamber 42 is formed in the high-pressure channel 41. The piston housing chamber 42 is a two-stage cylindrical space provided as a part of the high-pressure channel 41 and provided in the middle of the high-pressure channel 41. The piston accommodating chamber 42 accommodates at least a part of the displacement transmission mechanism 70. A large-diameter sliding wall portion 46a and a small-diameter sliding wall portion 46b are formed on the large-diameter and small-diameter inner peripheral walls that define the piston housing chamber 42, respectively.
 リターン流路43は、弁ボデー40内を高圧流路41に沿って延伸している。リターン流路43は、噴孔44から噴射されず、例えば駆動部30の冷却等に用いられたリーク燃料を、燃料噴射装置100の外部の余剰燃料配管に流出させる。リターン流路43を流通する燃料の圧力は、高圧流路41の燃料の圧力よりも低くなっている。尚、図1等では、高圧の領域を濃いドットで示し、低圧の領域を薄いドットで示す。 The return channel 43 extends along the high-pressure channel 41 in the valve body 40. The return flow path 43 is not injected from the injection hole 44, and leaks, for example, leaked fuel used for cooling the drive unit 30 to the surplus fuel pipe outside the fuel injection device 100. The pressure of the fuel flowing through the return flow path 43 is lower than the pressure of the fuel in the high pressure flow path 41. In FIG. 1 and the like, the high pressure region is indicated by a dark dot, and the low pressure region is indicated by a thin dot.
 駆動部収容室47は、駆動部30を収容する円柱状の空間である。駆動部収容室47とピストン収容室42との間には、挿通孔48が形成されている。挿通孔48には、リターン流路43の一端が開口している。挿通孔48を通じて、駆動部収容室47には高圧流路41を流通する燃料の一部が供給される。駆動部収容室47は、燃料によって満たされている。 The drive unit accommodation chamber 47 is a cylindrical space that houses the drive unit 30. An insertion hole 48 is formed between the drive unit accommodation chamber 47 and the piston accommodation chamber 42. One end of the return flow path 43 is opened in the insertion hole 48. Through the insertion hole 48, a part of the fuel flowing through the high-pressure channel 41 is supplied to the drive unit accommodation chamber 47. The drive unit accommodation chamber 47 is filled with fuel.
 ノズルニードル60は、金属材料によって全体として円柱状に形成されている。ノズルニードル60は、高圧流路41内に配置されることで、弁ボデー40に収容されている。ノズルニードル60は、弁ボデー40に対し、軸方向に往復変位可能である。ノズルニードル60には、鍔部61及びフェース部62が形成されている。 The nozzle needle 60 is formed in a cylindrical shape as a whole by a metal material. The nozzle needle 60 is accommodated in the valve body 40 by being disposed in the high-pressure channel 41. The nozzle needle 60 can be reciprocally displaced in the axial direction with respect to the valve body 40. The nozzle needle 60 is formed with a flange portion 61 and a face portion 62.
 鍔部61は、ノズルニードル60の本体部分よりも大径の円盤状に形成されている。鍔部61は、ノズルニードル60の軸方向の両端部のうちで、ピストン収容室42内に位置する上端部に設けられている。鍔部61には、面取部64が形成されている。面取部64は、鍔部61の径方向の両側に、矩形の平面状に形成されている。面取部64は、小径ピストン90と鍔部61との間に、高圧燃料を流通させる流路を形成している。鍔部61と大径ピストン80との間には、金属製の線材を螺旋状に巻設したコイル状のニードルスプリング63が押し縮められた状態で配置されている。ノズルニードル60は、ニードルスプリング63によって噴孔側へ向けて付勢されている。 The collar portion 61 is formed in a disk shape having a larger diameter than the main body portion of the nozzle needle 60. The flange portion 61 is provided at an upper end portion located in the piston accommodating chamber 42 among both axial end portions of the nozzle needle 60. A chamfered portion 64 is formed on the flange portion 61. The chamfered portions 64 are formed in a rectangular flat shape on both sides of the flange portion 61 in the radial direction. The chamfered portion 64 forms a flow path for circulating high-pressure fuel between the small diameter piston 90 and the flange portion 61. Between the flange 61 and the large-diameter piston 80, a coiled needle spring 63 in which a metal wire is wound spirally is arranged in a compressed state. The nozzle needle 60 is urged toward the nozzle hole side by a needle spring 63.
 フェース部62は、ノズルニードル60の軸方向の両端面のうちで、噴孔44と対向する下端面に円錐状に形成されている。ノズルニードル60は、弁ボデー40に対する相対変位により、フェース部62をシート部45に離着座させる。フェース部62は、シート部45と共に噴孔44を開閉する主弁部50を形成している。 The face portion 62 is formed in a conical shape on the lower end surface facing the nozzle hole 44 among the axial end surfaces of the nozzle needle 60. The nozzle needle 60 causes the face portion 62 to be separated from and seated on the seat portion 45 by relative displacement with respect to the valve body 40. The face portion 62 forms a main valve portion 50 that opens and closes the nozzle hole 44 together with the seat portion 45.
 駆動部30は、圧電素子積層体31及び応力緩和機構32等によって構成されている。圧電素子積層体31は、例えばPZT(PbZrTiO3)と呼ばれる層と薄い電極層が交互に積まれた積層体である。圧電素子積層体31には、機関制御装置17から出力された入力駆動信号が入力される。圧電素子積層体31は、駆動信号に応じた電圧又は電流に基づいて、ピエゾ素子の特性である逆圧電効果により、駆動部収容室47軸方向に沿って伸縮する。圧電素子積層体31は、ノズルニードル60を駆動するための駆動力を発生させる。 The driving unit 30 includes a piezoelectric element laminate 31, a stress relaxation mechanism 32, and the like. The piezoelectric element laminate 31 is a laminate in which, for example, layers called PZT (PbZrTiO 3) and thin electrode layers are alternately stacked. The piezoelectric element laminate 31 receives an input drive signal output from the engine control device 17. The piezoelectric element stacked body 31 expands and contracts along the axial direction of the drive unit accommodation chamber 47 due to a reverse piezoelectric effect that is a characteristic of the piezoelectric element, based on a voltage or current corresponding to the drive signal. The piezoelectric element laminate 31 generates a driving force for driving the nozzle needle 60.
 応力緩和機構32は、圧電素子積層体31の伸縮を変位伝達機構70に伝達すると共に、圧電素子積層体31に入力される応力を緩和する機構である。応力緩和機構32は、加圧ピストン33、出力ピストン34、緩和シリンダ35、スリットスプリング36、及び緩和スプリング37を有している。加圧ピストン33及び出力ピストン34は、外径が実質的に同一な円柱状に形成されている。加圧ピストン33及び出力ピストン34は、軸方向に並べて配置されている。 The stress relaxation mechanism 32 is a mechanism that transmits the expansion and contraction of the piezoelectric element laminate 31 to the displacement transmission mechanism 70 and relaxes the stress input to the piezoelectric element laminate 31. The stress relaxation mechanism 32 includes a pressure piston 33, an output piston 34, a relaxation cylinder 35, a slit spring 36, and a relaxation spring 37. The pressure piston 33 and the output piston 34 are formed in a columnar shape having substantially the same outer diameter. The pressurizing piston 33 and the output piston 34 are arranged side by side in the axial direction.
 加圧ピストン33は、圧電素子積層体31と接している。加圧ピストン33には、伸縮する圧電素子積層体31の動きが入力される。出力ピストン34は、緩和油密室35aを挟んで加圧ピストン33と対向している。出力ピストン34には、ピストン収容室42へ向かって円柱状に突出するストローク部34aが形成されている。ストローク部34aは、挿通孔48に挿通されている。ストローク部34aの先端面は、大径ピストン80に当接している。 The pressurizing piston 33 is in contact with the piezoelectric element laminate 31. The movement of the piezoelectric element laminate 31 that expands and contracts is input to the pressure piston 33. The output piston 34 faces the pressurizing piston 33 with the relaxation oil-tight chamber 35a interposed therebetween. The output piston 34 is formed with a stroke portion 34 a that protrudes in a cylindrical shape toward the piston accommodation chamber 42. The stroke portion 34 a is inserted through the insertion hole 48. The front end surface of the stroke portion 34 a is in contact with the large diameter piston 80.
 緩和シリンダ35は、円筒状に形成されており、加圧ピストン33及び出力ピストン34に外嵌されている。緩和シリンダ35は、加圧ピストン33と出力ピストン34との間に緩和油密室35aを区画している。緩和油密室35aに充填された燃料により、加圧ピストン33の変位は、軸方向に拡大されて出力ピストン34に伝達される。 The relaxation cylinder 35 is formed in a cylindrical shape and is externally fitted to the pressure piston 33 and the output piston 34. The relaxation cylinder 35 defines a relaxation oil tight chamber 35 a between the pressurizing piston 33 and the output piston 34. The displacement of the pressurizing piston 33 is expanded in the axial direction and transmitted to the output piston 34 by the fuel filled in the relaxation oil tight chamber 35a.
 スリットスプリング36及び緩和スプリング37はそれぞれ、軸方向に弾性力を発生させる金属ばねである。スリットスプリング36は、緩和シリンダ35に対して加圧ピストン33を圧電素子積層体31へ向けて付勢している。緩和スプリング37は、緩和シリンダ35に対して出力ピストン34を大径ピストン80へ向けて付勢している。 Each of the slit spring 36 and the relaxation spring 37 is a metal spring that generates an elastic force in the axial direction. The slit spring 36 urges the pressure piston 33 toward the piezoelectric element stack 31 with respect to the relaxation cylinder 35. The relaxation spring 37 biases the output piston 34 toward the large-diameter piston 80 with respect to the relaxation cylinder 35.
 以上の駆動部30は、圧電素子積層体31の伸縮を加圧ピストン33及び緩和油密室35aの燃料を介して出力ピストン34に伝達することで、ストローク部34aを軸方向に往復変位させる。駆動部30に入力される駆動電流が大きくなるほど、ストローク部34aから大径ピストン80に入力される駆動力、ひいてはストローク部34a及び大径ピストン80の変位量が大きくなる。 The drive unit 30 transmits the expansion and contraction of the piezoelectric element laminate 31 to the output piston 34 via the fuel in the pressurizing piston 33 and the relaxation oil-tight chamber 35a, thereby reciprocating the stroke part 34a in the axial direction. As the drive current input to the drive unit 30 increases, the drive force input from the stroke portion 34a to the large-diameter piston 80, and thus the displacement amount of the stroke portion 34a and the large-diameter piston 80, increases.
 変位伝達機構70は、大径ピストン80及び小径ピストン90によって駆動部30の駆動力をノズルニードル60に伝達する機構である。変位伝達機構70は、弁ボデー40と共に油密室71を区画している。油密室71は、大径ピストン80及び小径ピストン90と実質的に同軸に設けられた扁平な円環状の空間である。油密室71は、大径ピストン80、小径ピストン90、及び弁ボデー40の各間に浸入した燃料によって満たされている。 The displacement transmission mechanism 70 is a mechanism that transmits the driving force of the driving unit 30 to the nozzle needle 60 by the large diameter piston 80 and the small diameter piston 90. The displacement transmission mechanism 70 partitions the oil tight chamber 71 together with the valve body 40. The oil tight chamber 71 is a flat annular space provided substantially coaxially with the large diameter piston 80 and the small diameter piston 90. The oil-tight chamber 71 is filled with fuel that has entered between the large-diameter piston 80, the small-diameter piston 90, and the valve body 40.
 大径ピストン80は、金属材料により、有底の円筒状に形成されている。大径ピストン80は、弁ボデー40に対して、周方向の回転を規制されている。大径ピストン80の外径は、ピストン収容室42を区画する円筒状の大径摺動壁部46aの内径と実質的に同一である。大径ピストン80は、大径摺動壁部46aに沿って軸方向に変位可能であり、駆動部30から入力される駆動力により、油密室71の燃料を圧縮する方向に変位する。大径ピストン80は、底壁部80a、周壁部80b、及び中間部材80cを有している。 The large-diameter piston 80 is made of a metal material and has a bottomed cylindrical shape. The large-diameter piston 80 is restricted from rotating in the circumferential direction with respect to the valve body 40. The outer diameter of the large-diameter piston 80 is substantially the same as the inner diameter of the cylindrical large-diameter sliding wall portion 46 a that defines the piston housing chamber 42. The large-diameter piston 80 can be displaced in the axial direction along the large-diameter sliding wall portion 46a, and is displaced in a direction in which the fuel in the oil-tight chamber 71 is compressed by the driving force input from the driving unit 30. The large-diameter piston 80 has a bottom wall portion 80a, a peripheral wall portion 80b, and an intermediate member 80c.
 底壁部80aには、中間部材80cを介して、ストローク部34aの動作が入力される。加えて大径ピストン80は、ニードルスプリング63によって出力ピストン34へ押し付けられている。以上により、大径ピストン80は、ストローク部34aと一体的に、軸方向に変位可能となっている。底壁部80aには、ピストン連通孔84が形成されている。ピストン連通孔84は、底壁部80aを板厚方向に貫通する貫通孔である。ピストン連通孔84は、ピストン収容室42のうちで、拡縮空間73の内外を連通させている。 The operation of the stroke portion 34a is input to the bottom wall portion 80a through the intermediate member 80c. In addition, the large-diameter piston 80 is pressed against the output piston 34 by the needle spring 63. As described above, the large-diameter piston 80 can be displaced in the axial direction integrally with the stroke portion 34a. A piston communication hole 84 is formed in the bottom wall portion 80a. The piston communication hole 84 is a through hole that penetrates the bottom wall portion 80a in the plate thickness direction. The piston communication hole 84 communicates the inside and outside of the expansion / contraction space 73 in the piston housing chamber 42.
 周壁部80bには、大径加圧面81、摺動外周壁部82、及び摺動内周壁部83が形成されている。大径加圧面81は、周壁部80bの頂面に形成されている。大径加圧面81は、円環状に形成された平面である。大径加圧面81は、油密室71に臨み、油密室71を区画している。大径加圧面81は、駆動部30から大径ピストン80に入力される駆動力により、油密室71の燃料を加圧する。 A large-diameter pressure surface 81, a sliding outer peripheral wall portion 82, and a sliding inner peripheral wall portion 83 are formed on the peripheral wall portion 80b. The large diameter pressing surface 81 is formed on the top surface of the peripheral wall portion 80b. The large-diameter pressure surface 81 is a flat surface formed in an annular shape. The large-diameter pressure surface 81 faces the oil-tight chamber 71 and partitions the oil-tight chamber 71. The large-diameter pressurizing surface 81 pressurizes the fuel in the oil-tight chamber 71 by a driving force input from the driving unit 30 to the large-diameter piston 80.
 摺動外周壁部82は、大径摺動壁部46aに内嵌される周壁部80bの外周面に形成されている。摺動外周壁部82は、大径摺動壁部46aに対する大径ピストン80の摺動を許容しつつ、大径摺動壁部46aとの間で油密室71の油密を維持している。摺動内周壁部83は、小径ピストン90が内嵌される周壁部80bの内周面に形成されている。摺動内周壁部83は、大径ピストン80に対する小径ピストン90の摺動を可能にしている。摺動内周壁部83は、小径ピストン90との間で油密室71の油密を形成している。 The sliding outer peripheral wall portion 82 is formed on the outer peripheral surface of the peripheral wall portion 80b fitted inside the large diameter sliding wall portion 46a. The sliding outer peripheral wall portion 82 maintains the oil tightness of the oil tight chamber 71 with the large diameter sliding wall portion 46a while allowing the large diameter piston 80 to slide with respect to the large diameter sliding wall portion 46a. . The sliding inner peripheral wall 83 is formed on the inner peripheral surface of the peripheral wall 80b in which the small diameter piston 90 is fitted. The sliding inner peripheral wall 83 enables the small diameter piston 90 to slide with respect to the large diameter piston 80. The sliding inner peripheral wall 83 forms an oil tightness of the oil tight chamber 71 with the small diameter piston 90.
 小径ピストン90は、金属材料により、二段円柱状に形成されている。小径ピストン90は、大径ピストン80及び弁ボデー40に対して、周方向の回転を規制されている。小径ピストン90は、大径ピストン80に対して軸方向に相対変位可能である。駆動部30の駆動力によって大径ピストン80が油密室71の燃料を圧縮する方向に変位すると、小径ピストン90は、油密室71の燃料に押されて、大径ピストン80とは真逆の方向に変位する。このように、大径ピストン80の変位、即ち駆動部30の発生駆動力は、油密室71の燃料によって180°反転されて、小径ピストン90に伝達される。 The small diameter piston 90 is formed of a metal material in a two-stage cylindrical shape. The small diameter piston 90 is restricted from rotating in the circumferential direction with respect to the large diameter piston 80 and the valve body 40. The small diameter piston 90 can be displaced relative to the large diameter piston 80 in the axial direction. When the large-diameter piston 80 is displaced in the direction in which the fuel in the oil-tight chamber 71 is compressed by the driving force of the driving unit 30, the small-diameter piston 90 is pushed by the fuel in the oil-tight chamber 71 and is the direction opposite to the large-diameter piston 80. It is displaced to. As described above, the displacement of the large-diameter piston 80, that is, the generated driving force of the driving unit 30 is inverted 180 ° by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90.
 小径ピストン90と大径ピストン80との間には、拡縮空間73が形成されている。拡縮空間73は、ピストン収容室42内に区画された空間である。小径ピストン90及び大径ピストン80は、互いに反対方向に相対変位する。そのため拡縮空間73は、駆動力の伝達に伴って拡縮される。 An expansion / contraction space 73 is formed between the small diameter piston 90 and the large diameter piston 80. The expansion / contraction space 73 is a space defined in the piston accommodation chamber 42. The small diameter piston 90 and the large diameter piston 80 are relatively displaced in opposite directions. Therefore, the expansion / contraction space 73 is expanded / contracted with the transmission of the driving force.
 小径ピストン90の径方向の中央には、小径ピストン90を軸方向に貫通するニードル挿通孔98が形成されている。ニードル挿通孔98には、ノズルニードル60が挿通されている。小径ピストン90は、摺動内周壁部83に沿って軸方向に変位可能である。小径ピストン90は、拡径部90a及び内嵌部90bを有している。 A needle insertion hole 98 that penetrates the small diameter piston 90 in the axial direction is formed in the center of the small diameter piston 90 in the radial direction. The nozzle needle 60 is inserted through the needle insertion hole 98. The small diameter piston 90 can be displaced in the axial direction along the sliding inner peripheral wall portion 83. The small diameter piston 90 has an enlarged diameter portion 90a and an internal fitting portion 90b.
 拡径部90aの外径は、摺動内周壁部83の内径と実質的に同一である。拡径部90aには、小径受圧面91、大径内嵌壁部93、及び伝達面96が形成されている。小径受圧面91は、拡径部90aの外周面と内嵌部90bの外周面との間に設けられた段差部分に形成されている。小径受圧面91は、円環状に形成された平面である。小径受圧面91は、油密室71に臨み、油密室71を区画している。小径受圧面91は、小径ピストン90を駆動部側へ押し上げる方向の力を油密室71の燃料から受ける。小径受圧面91の面積は、大径加圧面81の面積と異なっている。第一実施形態では、大径加圧面81の面積は、小径受圧面91の面積よりも大きい。 The outer diameter of the enlarged diameter portion 90 a is substantially the same as the inner diameter of the sliding inner peripheral wall portion 83. A small-diameter pressure receiving surface 91, a large-diameter inner fitting wall portion 93, and a transmission surface 96 are formed in the enlarged diameter portion 90a. The small diameter pressure receiving surface 91 is formed in a step portion provided between the outer peripheral surface of the enlarged diameter portion 90a and the outer peripheral surface of the inner fitting portion 90b. The small diameter pressure receiving surface 91 is a flat surface formed in an annular shape. The small diameter pressure receiving surface 91 faces the oil-tight chamber 71 and partitions the oil-tight chamber 71. The small-diameter pressure receiving surface 91 receives a force in a direction in which the small-diameter piston 90 is pushed up toward the drive unit from the fuel in the oil tight chamber 71. The area of the small diameter pressure receiving surface 91 is different from the area of the large diameter pressure surface 81. In the first embodiment, the area of the large diameter pressure surface 81 is larger than the area of the small diameter pressure surface 91.
 以上の大径加圧面81及び小径受圧面91の各面積の相関により、大径ピストン80の変位は、油密室71の燃料によって拡大され、小径ピストン90に伝達される。一方で、ストロークの拡大により、小径ピストン90がノズルニードル60を押す力は、ストローク部34aが大径ピストン80を押す力よりも弱くなる。 The displacement of the large-diameter piston 80 is expanded by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90 due to the correlation between the areas of the large-diameter pressure surface 81 and the small-diameter pressure receiving surface 91 described above. On the other hand, due to the expansion of the stroke, the force with which the small diameter piston 90 pushes the nozzle needle 60 becomes weaker than the force with which the stroke portion 34 a pushes the large diameter piston 80.
 大径内嵌壁部93は、大径ピストン80に内嵌される拡径部90aの外周面に形成されている。大径内嵌壁部93は、摺動内周壁部83の摺動を許容している。大径内嵌壁部93は、摺動内周壁部83との間で油密室71の油密を維持している。 The large-diameter inner fitting wall portion 93 is formed on the outer peripheral surface of the enlarged-diameter portion 90a fitted into the large-diameter piston 80. The large-diameter inner fitting wall portion 93 allows the sliding inner peripheral wall portion 83 to slide. The large-diameter inner fitting wall portion 93 maintains the oil tightness of the oil tight chamber 71 with the sliding inner peripheral wall portion 83.
 伝達面96は、底壁部80aと対向する小径ピストン90の上面に形成されている。伝達面96は、小径ピストン90の軸方向と実質的に直交する平坦な円環状に形成されている。伝達面96には、ニードルスプリング63によって付勢された鍔部61が接触している。伝達面96は、開弁方向への駆動力をノズルニードル60に伝達する。伝達面96は、開弁方向と実質的に直交(交差)する径方向及び周方向への鍔部61の位置ずれを許容している。 The transmission surface 96 is formed on the upper surface of the small diameter piston 90 facing the bottom wall portion 80a. The transmission surface 96 is formed in a flat annular shape substantially orthogonal to the axial direction of the small diameter piston 90. The transmission surface 96 is in contact with the flange 61 urged by the needle spring 63. The transmission surface 96 transmits a driving force in the valve opening direction to the nozzle needle 60. The transmission surface 96 allows positional deviation of the flange 61 in the radial direction and the circumferential direction substantially orthogonal (crossing) to the valve opening direction.
 内嵌部90bには、小径内嵌壁部94及びスプリング載置面97が形成されている。小径内嵌壁部94は、内嵌部90bの外周面に形成されている。小径内嵌壁部94は、ピストン収容室42を区画する円筒状の小径摺動壁部46bに内嵌されている。小径内嵌壁部94は、小径摺動壁部46bに対する小径ピストン90の摺動を許容している。小径内嵌壁部94は、小径摺動壁部46bとの間で油密室71の油密を維持している。 A small diameter inner fitting wall portion 94 and a spring mounting surface 97 are formed in the inner fitting portion 90b. The small-diameter inner fitting wall portion 94 is formed on the outer peripheral surface of the inner fitting portion 90b. The small-diameter inner fitting wall portion 94 is fitted into a cylindrical small-diameter sliding wall portion 46 b that defines the piston housing chamber 42. The small-diameter inner fitting wall portion 94 allows the small-diameter piston 90 to slide relative to the small-diameter sliding wall portion 46b. The small-diameter inner fitting wall portion 94 maintains the oil-tightness of the oil-tight chamber 71 with the small-diameter sliding wall portion 46b.
 スプリング載置面97は、内嵌部90bの頂面に形成されている。スプリング載置面97には、ピストンスプリング99の軸方向の一端が載置されている。ピストンスプリング99は、金属製の線材を螺旋状に巻設したコイル状に形成されている。ピストンスプリング99は、スプリング載置面97と、高圧流路41の区画壁に形成された段差部46cとの間に押し縮められた状態で配置されている。ピストンスプリング99及びニードルスプリング63の各弾性力により、小径ピストン90及びノズルニードル60は、一体的に軸方向に変位可能となる。 The spring mounting surface 97 is formed on the top surface of the internal fitting portion 90b. One end of the piston spring 99 in the axial direction is placed on the spring placement surface 97. The piston spring 99 is formed in a coil shape in which a metal wire is wound spirally. The piston spring 99 is disposed in a compressed state between the spring placement surface 97 and a stepped portion 46 c formed on the partition wall of the high-pressure channel 41. The small diameter piston 90 and the nozzle needle 60 can be integrally displaced in the axial direction by the elastic forces of the piston spring 99 and the needle spring 63.
 以上の構成による燃料噴射装置100の噴射作動の詳細を、図3及び図4に基づいて順に説明する。 Details of the injection operation of the fuel injection device 100 configured as above will be described in order based on FIGS. 3 and 4.
 機関制御装置17から駆動部30に開弁方向の駆動電流の印加が開始されると、圧電素子積層体31は、軸方向に膨張する。これにより、圧電素子積層体31の下端が加圧ピストン33を押し下げる方向へ変位する。圧電素子積層体31の下端の変位は、応力緩和機構32を介して大径ピストン80に伝達される。大径ピストン80は、圧電素子積層体31の下端の動きに同期して、軸方向に変位する。 When application of a drive current in the valve opening direction is started from the engine control device 17 to the drive unit 30, the piezoelectric element laminate 31 expands in the axial direction. As a result, the lower end of the piezoelectric element laminate 31 is displaced in the direction of pushing down the pressure piston 33. The displacement of the lower end of the piezoelectric element laminate 31 is transmitted to the large-diameter piston 80 via the stress relaxation mechanism 32. The large-diameter piston 80 is displaced in the axial direction in synchronization with the movement of the lower end of the piezoelectric element laminate 31.
 大径ピストン80の変位により、油密室71の燃料は、大径加圧面81によって圧縮される。故に、小径ピストン90の小径受圧面91は、油密室71の燃料に押されて、持ち上げられる。このとき、大径加圧面81が燃料を押し退けることによって減少した油密室71の容積と、燃料が小径受圧面91を持ち上げることによって増加した油密室71の容積とは、実質的に同一となる。上述のように、大径加圧面81の面積が小径受圧面91の面積よりも広いため、軸方向に沿った小径ピストン90の変位量は、大径ピストン80の変位量よりも大きくなる。 Due to the displacement of the large-diameter piston 80, the fuel in the oil-tight chamber 71 is compressed by the large-diameter pressure surface 81. Therefore, the small diameter pressure receiving surface 91 of the small diameter piston 90 is pushed by the fuel in the oil tight chamber 71 and lifted. At this time, the volume of the oil-tight chamber 71 that is reduced by the large-diameter pressurizing surface 81 pushing away the fuel and the volume of the oil-tight chamber 71 that is increased by the fuel lifting the small-diameter pressure-receiving surface 91 are substantially the same. As described above, since the area of the large-diameter pressure surface 81 is larger than the area of the small-diameter pressure-receiving surface 91, the displacement amount of the small-diameter piston 90 along the axial direction is larger than the displacement amount of the large-diameter piston 80.
 以上のように、変位伝達機構70は、パスカルの原理に従い、大径ピストン80の変位を油密室71の燃料によって拡大し、小径ピストン90に伝達する。加えて、大径ピストン80の変位は、油密室71の燃料によって180°反転され、小径ピストン90に伝達される。こうして小径ピストン90は、大径ピストン80の動きに同期して、大径ピストン80とは逆方向に変位する。小径ピストン90によって伝達される駆動力により、ノズルニードル60が開弁方向に持ち上げられる。その結果、主弁部50が開弁されて、噴孔44からの燃料の噴射が開始される。 As described above, the displacement transmission mechanism 70 expands the displacement of the large-diameter piston 80 by the fuel in the oil-tight chamber 71 and transmits the displacement to the small-diameter piston 90 in accordance with Pascal's principle. In addition, the displacement of the large-diameter piston 80 is inverted 180 ° by the fuel in the oil-tight chamber 71 and transmitted to the small-diameter piston 90. Thus, the small diameter piston 90 is displaced in the direction opposite to the large diameter piston 80 in synchronization with the movement of the large diameter piston 80. The nozzle needle 60 is lifted in the valve opening direction by the driving force transmitted by the small diameter piston 90. As a result, the main valve portion 50 is opened, and fuel injection from the nozzle hole 44 is started.
 機関制御装置17は、圧電素子積層体31に印加する駆動電流により、圧電素子積層体31の作動速度及び変位量を制御可能である。故に、一回の噴射途中において、圧電素子積層体31への駆動電流のさらなる印加が行われると、圧電素子積層体31の下端は、大径ピストン80をさらに押し下げる。その結果、小径ピストン90及びノズルニードル60が開弁方向にさらに変位し、噴射率の増加が生じる。以上のように、燃料噴射装置100の構成によれば、機関制御装置17は、燃料の噴射率を任意に変更可能となる。 The engine control device 17 can control the operating speed and the displacement amount of the piezoelectric element laminate 31 by the drive current applied to the piezoelectric element laminate 31. Therefore, when a drive current is further applied to the piezoelectric element stack 31 during one injection, the lower end of the piezoelectric element stack 31 further pushes down the large-diameter piston 80. As a result, the small-diameter piston 90 and the nozzle needle 60 are further displaced in the valve opening direction, resulting in an increase in the injection rate. As described above, according to the configuration of the fuel injection device 100, the engine control device 17 can arbitrarily change the fuel injection rate.
 そして、機関制御装置17から駆動部30へ閉弁方向の駆動電流が印加されると、圧電素子積層体31の下端から応力緩和機構32に作用していた駆動力は、消失する。これにより、圧電素子積層体31の下端及び大径ピストン80等は、ニードルスプリング63の弾性力等によって一体的に上方へ持ち上げられる。加えて、小径ピストン90及びノズルニードル60も、ニードルスプリング63の弾性力及び燃料圧力等により、閉弁方向へ向けて一体的に変位し、主弁部50を閉弁させる。以上により、噴孔44からの燃料噴射は中断される。 Then, when a drive current in the valve closing direction is applied from the engine control device 17 to the drive unit 30, the drive force acting on the stress relaxation mechanism 32 from the lower end of the piezoelectric element laminate 31 disappears. Thereby, the lower end of the piezoelectric element laminated body 31, the large-diameter piston 80, and the like are integrally lifted upward by the elastic force of the needle spring 63 and the like. In addition, the small-diameter piston 90 and the nozzle needle 60 are also integrally displaced toward the valve closing direction by the elastic force of the needle spring 63, the fuel pressure, etc., and the main valve portion 50 is closed. Thus, fuel injection from the injection hole 44 is interrupted.
 ここまで説明した第一実施形態によれば、駆動部30の発生させた駆動力は、油密室71の燃料を圧縮する方向に大径ピストン80を変位させる。そして、小径ピストン90が油密室71の燃料に押されることにより、駆動部30の発生駆動力は、作用する方向を変更されたうえでノズルニードル60に伝達される。以上のように、燃料によって駆動力の方向が変更されることで、駆動部30によって直接的にノズルニードル60を変位させる燃料噴射装置100であっても、駆動力の伝達に起因する機械的な摩耗は、低減可能となる。 According to the first embodiment described so far, the driving force generated by the driving unit 30 displaces the large-diameter piston 80 in the direction in which the fuel in the oil-tight chamber 71 is compressed. Then, when the small-diameter piston 90 is pushed by the fuel in the oil-tight chamber 71, the generated driving force of the driving unit 30 is transmitted to the nozzle needle 60 after changing the direction in which it acts. As described above, even when the fuel injection device 100 directly displaces the nozzle needle 60 by the driving unit 30 by changing the direction of the driving force by the fuel, the mechanical force resulting from the transmission of the driving force is mechanical. Wear can be reduced.
 加えて第一実施形態では、駆動部30の生じさせた変位は、油密室71を満たす燃料によって拡大され、小径ピストン90及びノズルニードル60に伝達される。以上の構成であれば、燃料によって変位量の拡大が行われるため、変位量の変換及び伝達に伴う機械的な摩耗も、低減可能となる。 In addition, in the first embodiment, the displacement generated by the drive unit 30 is expanded by the fuel filling the oil tight chamber 71 and transmitted to the small diameter piston 90 and the nozzle needle 60. With the above configuration, since the displacement amount is increased by the fuel, mechanical wear associated with the displacement amount conversion and transmission can also be reduced.
 また第一実施形態では、パスカルの原理に基づき、大径加圧面81及び小径受圧面91の面積比によって、変位伝達機構70の変位の拡大率が決定される。故に、設計段階における面積比の変更により、変位伝達機構70における変位の拡大率が調整され得る。以上によれば、燃料噴射装置100は、圧電素子積層体31の発生させる駆動力及び変位量を、変位伝達機構70を用いて、ノズルニードル60の開弁に好適な開弁力及び変位量に確実に変換できる。 In the first embodiment, the displacement enlargement ratio of the displacement transmission mechanism 70 is determined by the area ratio of the large-diameter pressure surface 81 and the small-diameter pressure-receiving surface 91 based on the Pascal principle. Therefore, the magnification of displacement in the displacement transmission mechanism 70 can be adjusted by changing the area ratio in the design stage. As described above, the fuel injection device 100 uses the displacement transmission mechanism 70 to change the driving force and the displacement generated by the piezoelectric element stack 31 to a valve opening force and a displacement that are suitable for opening the nozzle needle 60. Can be reliably converted.
 さらに第一実施形態では、大径加圧面81の面積を小径受圧面91の面積よりも大きくすることで、変位伝達機構70は、圧電素子積層体31の動きを拡大して、ノズルニードル60に伝達している。以上によれば、変位量の確保が難しい圧電素子積層体31を用いていても、燃料噴射装置100は、圧電素子積層体31の伸縮動作によってノズルニードル60を直接的に駆動して、主弁部50を開閉できる。 Furthermore, in the first embodiment, the displacement transmission mechanism 70 expands the movement of the piezoelectric element laminate 31 by increasing the area of the large-diameter pressure surface 81 to be larger than the area of the small-diameter pressure-receiving surface 91. Communicating. According to the above, even if the piezoelectric element laminate 31 in which it is difficult to secure the displacement amount is used, the fuel injection device 100 directly drives the nozzle needle 60 by the expansion / contraction operation of the piezoelectric element laminate 31 to The part 50 can be opened and closed.
 加えて第一実施形態の伝達面96は、鍔部61の径方向への位置ずれを許容している。故に、小径ピストン90に対するノズルニードル60の傾きは、伝達面96と鍔部61との間で吸収され得る。こうした構成であれば、小径ピストン90を傾けて、大径内嵌壁部93及び小径内嵌壁部94等を過度に摩耗させてしまうような応力の発生は、防がれる。 In addition, the transmission surface 96 of the first embodiment allows the positional deviation of the flange portion 61 in the radial direction. Therefore, the inclination of the nozzle needle 60 with respect to the small diameter piston 90 can be absorbed between the transmission surface 96 and the flange 61. With such a configuration, it is possible to prevent the occurrence of stress that causes the small-diameter piston 90 to be inclined and excessively wears the large-diameter inner fitting wall portion 93 and the small-diameter inner fitting wall portion 94.
 また第一実施形態によれば、ストローク部34a及び大径ピストン80の変位の方向は、油密室71の燃料によって反転される。故に、圧電素子積層体31が大径ピストン80を押し下げる方向の駆動力しか発生させられなくても、ノズルニードル60には、開弁方向へ向けて引き上げる方向の駆動力が入力される。 Further, according to the first embodiment, the direction of displacement of the stroke portion 34 a and the large-diameter piston 80 is reversed by the fuel in the oil-tight chamber 71. Therefore, even if the piezoelectric element laminate 31 generates only a driving force in the direction of pushing down the large-diameter piston 80, the driving force in the direction of pulling up in the valve opening direction is input to the nozzle needle 60.
 さらに第一実施形態のように、油密室71の燃料によって変位方向が反転される構成では、大径ピストン80及び小径ピストン90の間に、駆動力の伝達に伴って拡縮する拡縮空間73が形成されてしまう。そのため、大径ピストン80には、拡縮空間73の内外を連通するピストン連通孔84が形成されている。ピストン連通孔84は、燃料を流通させることにより、大径ピストン80及び小径ピストン90の相対変位に起因した拡縮空間73の圧力変動を抑制し得る。以上によれば、拡縮空間73の燃料によって大径ピストン80及び小径ピストン90の相対変位が妨げられる事態は、回避される。 Further, in the configuration in which the displacement direction is reversed by the fuel in the oil-tight chamber 71 as in the first embodiment, an expansion / contraction space 73 is formed between the large-diameter piston 80 and the small-diameter piston 90 that expands / contracts as the driving force is transmitted. It will be. Therefore, the large-diameter piston 80 is formed with a piston communication hole 84 that communicates the inside and outside of the expansion / contraction space 73. The piston communication hole 84 can suppress the pressure fluctuation of the expansion / contraction space 73 due to the relative displacement of the large-diameter piston 80 and the small-diameter piston 90 by circulating the fuel. According to the above, the situation where the relative displacement of the large diameter piston 80 and the small diameter piston 90 is hindered by the fuel in the expansion / contraction space 73 is avoided.
 加えて第一実施形態の大径ピストン80及び小径ピストン90は、それぞれに設けられた摺動内周壁部83及び大径内嵌壁部93により、油密室71の油密を形成している。以上のように、各ピストン80,90の間に他の部材を介在させない構成であれば、変位伝達機構70の体格は、小さく維持され得る。したがって、燃料噴射装置100の大型化を防ぐことが可能になる。 In addition, the large-diameter piston 80 and the small-diameter piston 90 of the first embodiment form the oil-tightness of the oil-tight chamber 71 by the sliding inner peripheral wall portion 83 and the large-diameter inner fitting wall portion 93 provided respectively. As described above, the size of the displacement transmission mechanism 70 can be kept small as long as no other member is interposed between the pistons 80 and 90. Therefore, it is possible to prevent the fuel injection device 100 from becoming large.
 また第一実施形態では、大径ピストン80及び小径ピストン90の周方向への回転が規制されている。以上の構成によれば、大径ピストン80及び小径ピストン90の油密形成部分の回転に起因した摩耗は、低減される。加えて、大径ピストン80の回転規制によれば、ピストン連通孔84の位置は、高圧流路41の開口近傍に維持される。故に、高圧流路41を通じて供給される高圧燃料は、ピストン収容室42を通過して、円滑に噴孔44の近傍に流れる。 In the first embodiment, the rotation of the large-diameter piston 80 and the small-diameter piston 90 in the circumferential direction is restricted. According to the above configuration, wear caused by rotation of the oil-tight portions of the large-diameter piston 80 and the small-diameter piston 90 is reduced. In addition, according to the rotation restriction of the large-diameter piston 80, the position of the piston communication hole 84 is maintained near the opening of the high-pressure channel 41. Therefore, the high-pressure fuel supplied through the high-pressure channel 41 passes through the piston housing chamber 42 and smoothly flows in the vicinity of the injection hole 44.
 尚、第一実施形態において、高圧流路41が供給流路に相当し、ノズルニードル60が弁部材に相当し、大径ピストン80が第一ピストン部材に相当し、大径加圧面81が第一ピストン面に相当する。また、ピストン連通孔84が連通孔に相当し、小径ピストン90が第二ピストン部材に相当し、小径受圧面91が第二ピストン面に相当し、大径内嵌壁部93が摺動壁部に相当し、伝達面96が伝達部に相当する。 In the first embodiment, the high-pressure channel 41 corresponds to the supply channel, the nozzle needle 60 corresponds to the valve member, the large-diameter piston 80 corresponds to the first piston member, and the large-diameter pressure surface 81 is the first. It corresponds to one piston surface. The piston communication hole 84 corresponds to the communication hole, the small diameter piston 90 corresponds to the second piston member, the small diameter pressure receiving surface 91 corresponds to the second piston surface, and the large diameter internal fitting wall portion 93 is the sliding wall portion. The transmission surface 96 corresponds to the transmission unit.
 (第二実施形態)
 図5~図8に示す第二実施形態は、第一実施形態の変形例である。第二実施形態による燃料噴射装置200の変位伝達機構270は、大径ピストンプレート280、複数(四つ)の小径ピストン290、及び区画プレート275を備えている。変位伝達機構270は、第二実施形態の弁ボデー240において、円柱状に形成されたピストン収容室242に収容されている。
(Second embodiment)
The second embodiment shown in FIGS. 5 to 8 is a modification of the first embodiment. The displacement transmission mechanism 270 of the fuel injection device 200 according to the second embodiment includes a large-diameter piston plate 280, a plurality (four) of small-diameter pistons 290, and a partition plate 275. The displacement transmission mechanism 270 is accommodated in a piston accommodation chamber 242 formed in a columnar shape in the valve body 240 of the second embodiment.
 大径ピストンプレート280は、第一実施形態の大径ピストン80(図2参照)に相当する。大径ピストンプレート280は、ストローク部34aと一体的に軸方向に変位可能となっている。大径ピストンプレート280は、駆動部30から入力される駆動力により、油密室271の燃料を圧縮する方向に変位する。大径ピストンプレート280は、プレート本体281及び複数(四つ)の大径ピストンロッド285等によって構成されている。 The large diameter piston plate 280 corresponds to the large diameter piston 80 of the first embodiment (see FIG. 2). The large-diameter piston plate 280 can be displaced in the axial direction integrally with the stroke portion 34a. The large-diameter piston plate 280 is displaced in the direction in which the fuel in the oil-tight chamber 271 is compressed by the driving force input from the driving unit 30. The large diameter piston plate 280 includes a plate body 281 and a plurality (four) of large diameter piston rods 285.
 プレート本体281は、金属材料により、底壁部281a及び周壁部281bを有する有底の円筒状に形成されている。底壁部281aには、第一実施形態と実質同一のピストン連通孔84が形成されている。周壁部281bには、第一実施形態と実施同一の摺動外周壁部82に加えて、ピストン載置面283が形成されている。 The plate body 281 is formed of a metal material into a bottomed cylindrical shape having a bottom wall portion 281a and a peripheral wall portion 281b. The bottom wall portion 281a is formed with a piston communication hole 84 that is substantially the same as in the first embodiment. A piston mounting surface 283 is formed on the peripheral wall portion 281b in addition to the same sliding outer peripheral wall portion 82 as that of the first embodiment.
 ピストン載置面283は、区画プレート275と対向する周壁部281bの頂面に形成されている。ピストン載置面283は、円環状に形成された平面である。ピストン載置面283は、複数の大径ピストンロッド285の各端面と接している。ピストン載置面283は、駆動部30から入力される駆動力により、各大径ピストンロッド285を油密室271へ向けて押圧する。 The piston mounting surface 283 is formed on the top surface of the peripheral wall portion 281b facing the partition plate 275. The piston mounting surface 283 is a flat surface formed in an annular shape. The piston mounting surface 283 is in contact with each end surface of the plurality of large diameter piston rods 285. The piston mounting surface 283 presses each large-diameter piston rod 285 toward the oil-tight chamber 271 by the driving force input from the driving unit 30.
 大径ピストンロッド285は、金属材料により、細長い円柱状に形成されている。各大径ピストンロッド285は、プレート本体281の周方向に沿って互いに等間隔で配置されている(図6参照)。大径ピストンロッド285は、区画プレート275に設けられた大径ロッド孔278に挿通されている。大径ピストンロッド285には、大径加圧面286、大径押圧面287、及び大径ロッド外周壁288が形成されている。 The large-diameter piston rod 285 is formed in a long and narrow cylindrical shape from a metal material. The large-diameter piston rods 285 are arranged at equal intervals along the circumferential direction of the plate body 281 (see FIG. 6). The large diameter piston rod 285 is inserted through a large diameter rod hole 278 provided in the partition plate 275. The large-diameter piston rod 285 is formed with a large-diameter pressure surface 286, a large-diameter pressing surface 287, and a large-diameter rod outer peripheral wall 288.
 大径加圧面286は、大径ピストンロッド285の両端面のうちで、油密室271に臨む第一端面に形成されている。大径加圧面286は、真円状に形成された平面である。大径ピストンプレート280が駆動部30によって押し下げられることにより、大径加圧面286は、油密室271の燃料を加圧する。 The large-diameter pressure surface 286 is formed on the first end surface facing the oil-tight chamber 271 among both end surfaces of the large-diameter piston rod 285. The large-diameter pressing surface 286 is a flat surface formed in a perfect circle shape. When the large-diameter piston plate 280 is pushed down by the drive unit 30, the large-diameter pressurizing surface 286 pressurizes the fuel in the oil-tight chamber 271.
 大径押圧面287は、大径ピストンロッド285の両端面のうちで、ピストン載置面283と接する第二端面に形成されている。大径加圧面286は、大径加圧面286と同様に、真円状に形成された平面である。大径押圧面287は、ピストン載置面283により、油密室271へ向けて押圧される。大径押圧面287は、ピストン載置面283に対して、径方向及び周方向への位置ずれを許容されている。 The large diameter pressing surface 287 is formed on the second end surface in contact with the piston mounting surface 283 among the both end surfaces of the large diameter piston rod 285. The large-diameter pressure surface 286 is a flat surface formed in a perfect circle shape like the large-diameter pressure surface 286. The large diameter pressing surface 287 is pressed toward the oil-tight chamber 271 by the piston mounting surface 283. The large-diameter pressing surface 287 is allowed to be displaced in the radial direction and the circumferential direction with respect to the piston mounting surface 283.
 大径ロッド外周壁288は、大径ピストンロッド285の外周面に形成されている。大径ロッド外周壁288の外径は、大径ロッド孔278の内径と同程度である。大径ロッド外周壁288は、区画プレート275に対する大径ピストンロッド285の摺動を許容している。大径ロッド外周壁288は、大径ロッド孔278との間で油密室271の油密を維持している。 The large diameter rod outer peripheral wall 288 is formed on the outer peripheral surface of the large diameter piston rod 285. The outer diameter of the large diameter rod outer peripheral wall 288 is approximately the same as the inner diameter of the large diameter rod hole 278. The large-diameter rod outer peripheral wall 288 allows the large-diameter piston rod 285 to slide with respect to the partition plate 275. The large-diameter rod outer peripheral wall 288 maintains the oil-tightness of the oil-tight chamber 271 with the large-diameter rod hole 278.
 小径ピストン290は、第一実施形態の小径ピストン90(図2参照)に相当する。小径ピストン290は、油密室271の燃料によって拡大及び180°反転された大径ピストンロッド285の変位を、ノズルニードル60に伝達する部材である。小径ピストン290は、区画プレート275に設けられた小径ロッド孔279に挿通されている。各小径ピストン290は、プレート本体281の周方向に沿って互いに等間隔で配置されている(図6参照)。小径ピストン290及び大径ピストンロッド285は、プレート本体281の径方向に沿って並んでいる。 The small diameter piston 290 corresponds to the small diameter piston 90 (see FIG. 2) of the first embodiment. The small-diameter piston 290 is a member that transmits to the nozzle needle 60 the displacement of the large-diameter piston rod 285 expanded and inverted by 180 ° by the fuel in the oil-tight chamber 271. The small diameter piston 290 is inserted through a small diameter rod hole 279 provided in the partition plate 275. The small diameter pistons 290 are arranged at equal intervals along the circumferential direction of the plate body 281 (see FIG. 6). The small diameter piston 290 and the large diameter piston rod 285 are arranged along the radial direction of the plate body 281.
 小径ピストン290は、金属材料により、細長い円柱状に形成されている。小径ピストン290の外径は、大径ピストンロッド285の外径よりも小さい。小径ピストン290の軸方向の長さは、大径ピストンロッド285の軸方向の長さと実質同一である。小径ピストン290には、小径受圧面291、小径ロッド外周壁293、及び小径伝達面296が形成されている。 The small-diameter piston 290 is made of a metal material and has a long and narrow cylindrical shape. The outer diameter of the small diameter piston 290 is smaller than the outer diameter of the large diameter piston rod 285. The axial length of the small diameter piston 290 is substantially the same as the axial length of the large diameter piston rod 285. The small diameter piston 290 is formed with a small diameter pressure receiving surface 291, a small diameter rod outer peripheral wall 293, and a small diameter transmission surface 296.
 小径受圧面291は、小径ピストン290の両端面のうちで、油密室271に臨む第一端面に形成されている。小径受圧面291は、真円状に形成された平面である。複数の小径受圧面291の面積の総和である小径受圧面291の総面積は、複数の大径加圧面286の面積の総和である大径加圧面286の総面積と異なっている。第二実施形態では、大径加圧面286の総面積は、小径受圧面291の総面積よりも大きい。小径受圧面291は、小径ピストン290を押し上げる力を油密室271の燃料から受ける。 The small diameter pressure receiving surface 291 is formed on the first end surface facing the oil tight chamber 271 among the both end surfaces of the small diameter piston 290. The small diameter pressure receiving surface 291 is a flat surface formed in a perfect circle. The total area of the small diameter pressure receiving surfaces 291 that is the sum of the areas of the plurality of small diameter pressure receiving surfaces 291 is different from the total area of the large diameter pressing surfaces 286 that is the sum of the areas of the plurality of large diameter pressure receiving surfaces 286. In the second embodiment, the total area of the large-diameter pressure surface 286 is larger than the total area of the small-diameter pressure-receiving surface 291. The small diameter pressure receiving surface 291 receives a force for pushing up the small diameter piston 290 from the fuel in the oil tight chamber 271.
 小径ロッド外周壁293は、小径ピストン290の外周面に形成されている。小径ロッド外周壁293の外径は、小径ロッド孔279の内径と同程度である。小径ロッド外周壁293は、区画プレート275に対する小径ピストン290の摺動を許容している。小径ロッド外周壁293は、小径ロッド孔279との間で油密室271の油密を維持している。 The small diameter rod outer peripheral wall 293 is formed on the outer peripheral surface of the small diameter piston 290. The outer diameter of the small diameter rod outer peripheral wall 293 is approximately the same as the inner diameter of the small diameter rod hole 279. The small diameter rod outer peripheral wall 293 allows the small diameter piston 290 to slide relative to the partition plate 275. The small-diameter rod outer peripheral wall 293 maintains the oil-tightness of the oil-tight chamber 271 with the small-diameter rod hole 279.
 小径伝達面296は、小径ピストン290の両端面のうちで、底壁部281aと対向する第二端面に形成されている。小径伝達面296は、小径ピストン290の軸方向と実質的に直交する真円状の平坦面である。各小径伝達面296には、ノズルニードル60の鍔部61が載置されている。小径伝達面296は、開弁方向と実質的に直交する径方向及び周方向への鍔部61の位置ずれを許容しつつ、開弁方向の駆動力をノズルニードル60に伝達する。 The small diameter transmission surface 296 is formed on the second end surface of the small diameter piston 290 that faces the bottom wall portion 281a. The small diameter transmission surface 296 is a perfect circular flat surface that is substantially orthogonal to the axial direction of the small diameter piston 290. On each small diameter transmission surface 296, the flange portion 61 of the nozzle needle 60 is placed. The small diameter transmission surface 296 transmits the driving force in the valve opening direction to the nozzle needle 60 while allowing the displacement of the flange 61 in the radial direction and the circumferential direction substantially orthogonal to the valve opening direction.
 区画プレート275は、金属材料によって円盤状に形成されている。区画プレート275は、弁ボデー240に収容されており、弁ボデー240に固定されている。区画プレート275には、区画壁部276、ニードル挿通孔277、大径ロッド孔278、及び小径ロッド孔279が形成されている。 The partition plate 275 is formed in a disk shape from a metal material. The partition plate 275 is accommodated in the valve body 240 and is fixed to the valve body 240. In the partition plate 275, a partition wall portion 276, a needle insertion hole 277, a large diameter rod hole 278, and a small diameter rod hole 279 are formed.
 区画壁部276は、噴孔側を向く区画プレート275の下端面に形成された円環状の凹部である。区画壁部276は、大径加圧面286、小径受圧面291、及びピストン収容室242の底壁面242aと共に、扁平な円環状の油密室271を区画している。油密室271は、燃料によって満たされている。 The partition wall 276 is an annular recess formed in the lower end surface of the partition plate 275 facing the nozzle hole side. The partition wall 276 partitions a flat annular oil-tight chamber 271 together with the large-diameter pressurizing surface 286, the small-diameter pressure-receiving surface 291 and the bottom wall surface 242a of the piston housing chamber 242. The oil tight chamber 271 is filled with fuel.
 ニードル挿通孔277は、区画プレート275の径方向の中央に設けられた貫通孔である。ニードル挿通孔277には、ノズルニードル60が挿通されている。ニードル挿通孔277の内径は、ノズルニードル60の外径よりも大きくされている。燃料は、ニードル挿通孔277及びノズルニードル60の間を流通して、噴孔44に到達する。 The needle insertion hole 277 is a through hole provided in the center of the partition plate 275 in the radial direction. The nozzle needle 60 is inserted through the needle insertion hole 277. The inner diameter of the needle insertion hole 277 is made larger than the outer diameter of the nozzle needle 60. The fuel flows between the needle insertion hole 277 and the nozzle needle 60 and reaches the injection hole 44.
 大径ロッド孔278は、区画プレート275を軸方向に貫通する貫通孔である。大径ロッド孔278は、区画プレート275の周方向に沿って等間隔で複数形成されている(図7参照)。大径ロッド孔278は、大径ピストンロッド285に外嵌されている。大径ロッド孔278の一端は、油密室271の天井面に開口している。大径ロッド孔278の内周壁は、大径外嵌壁278aを形成している。大径外嵌壁278aは、大径ピストンロッド285の摺動を許容しつつ、大径ロッド外周壁288との間で油密室271の油密を形成している。 The large diameter rod hole 278 is a through hole penetrating the partition plate 275 in the axial direction. A plurality of large-diameter rod holes 278 are formed at equal intervals along the circumferential direction of the partition plate 275 (see FIG. 7). The large diameter rod hole 278 is fitted on the large diameter piston rod 285. One end of the large-diameter rod hole 278 opens to the ceiling surface of the oil-tight chamber 271. The inner peripheral wall of the large diameter rod hole 278 forms a large diameter outer fitting wall 278a. The large-diameter outer fitting wall 278a forms the oil-tightness of the oil-tight chamber 271 with the large-diameter rod outer peripheral wall 288 while allowing the large-diameter piston rod 285 to slide.
 小径ロッド孔279は、区画プレート275を軸方向に貫通する貫通孔である。小径ロッド孔279は、大径ロッド孔278よりも小径である。小径ロッド孔279は、大径ロッド孔278と同様に、区画プレート275の周方向に沿って等間隔で複数形成されている(図7参照)。小径ロッド孔279は、大径ロッド孔278の径方向の内側に位置している。小径ロッド孔279及び大径ロッド孔278の間には、強度確保のために所定の間隔が設けられている。小径ロッド孔279は、小径ピストン290に外嵌されている。小径ロッド孔279の一端は、油密室271の天井面に開口している。小径ロッド孔279の内周壁は、小径外嵌壁279aを形成している。小径外嵌壁279aは、小径ピストン290の摺動を許容しつつ、小径外嵌壁279aとの間で油密室の油密を形成している。 The small diameter rod hole 279 is a through hole penetrating the partition plate 275 in the axial direction. The small diameter rod hole 279 has a smaller diameter than the large diameter rod hole 278. Similar to the large diameter rod hole 278, a plurality of small diameter rod holes 279 are formed at equal intervals along the circumferential direction of the partition plate 275 (see FIG. 7). The small diameter rod hole 279 is located inside the large diameter rod hole 278 in the radial direction. A predetermined interval is provided between the small diameter rod hole 279 and the large diameter rod hole 278 to ensure strength. The small diameter rod hole 279 is fitted on the small diameter piston 290. One end of the small diameter rod hole 279 opens in the ceiling surface of the oil tight chamber 271. The inner peripheral wall of the small diameter rod hole 279 forms a small diameter outer fitting wall 279a. The small-diameter outer fitting wall 279a forms an oil-tight chamber between the small-diameter outer fitting wall 279a and allows the small-diameter piston 290 to slide.
 以上の構成による燃料噴射装置200では、圧電素子積層体31の膨張によって生じた駆動力が応力緩和機構32を介して大径ピストンプレート280に入力され、各大径加圧面286によって油密室271の燃料が圧縮される。その結果、各小径ピストン290は、油密室271の燃料によって各小径受圧面291を押し上げられ、ノズルニードル60を開弁方向に変位させる。以上により、噴孔44からの燃料噴射が開始される。このとき、大径加圧面286の総面積が小径受圧面291の総面積よりも広いため、大径ピストンプレート280の変位は、油密室271の燃料によって拡大され、小径ピストン290及びノズルニードル60に伝達される。 In the fuel injection device 200 having the above configuration, the driving force generated by the expansion of the piezoelectric element laminate 31 is input to the large-diameter piston plate 280 via the stress relaxation mechanism 32, and the oil-tight chamber 271 is Fuel is compressed. As a result, each small-diameter piston 290 pushes up each small-diameter pressure receiving surface 291 by the fuel in the oil-tight chamber 271 and displaces the nozzle needle 60 in the valve opening direction. Thus, fuel injection from the injection hole 44 is started. At this time, since the total area of the large-diameter pressure surface 286 is larger than the total area of the small-diameter pressure-receiving surface 291, the displacement of the large-diameter piston plate 280 is expanded by the fuel in the oil-tight chamber 271. Communicated.
 また、圧電素子積層体31の動作は、変位伝達機構270を介して直接的にノズルニードル60に伝達される。故に、機関制御装置17は、圧電素子積層体31の作動速度及び変位量を制御することにより、一回の噴射途中において、噴射率の態様を変化させることが可能となる。 Also, the operation of the piezoelectric element laminate 31 is directly transmitted to the nozzle needle 60 via the displacement transmission mechanism 270. Therefore, the engine control device 17 can change the mode of the injection rate during one injection by controlling the operating speed and the displacement amount of the piezoelectric element laminate 31.
 ここまで説明した第二実施形態でも、油密室271の燃料によって駆動力の方向が変更される。故に、第一実施形態と同様の効果を奏し、直動式の燃料噴射装置200であっても、駆動力の伝達に伴う機械的な摩耗は、低減可能となる。 Also in the second embodiment described so far, the direction of the driving force is changed by the fuel in the oil-tight chamber 271. Therefore, the same effects as in the first embodiment can be obtained, and even with the direct-acting fuel injection device 200, mechanical wear associated with transmission of driving force can be reduced.
 加えて第二実施形態では、油密室271の油密を形成する摺動部が、円柱状の大径ピストンロッド285及び小径ピストン290に独立して設けられている。こうした構成であれば、高い寸法精度が要求される大径ロッド外周壁288及び小径ロッド外周壁293の加工が比較的に容易となる。 In addition, in the second embodiment, the sliding portion forming the oil tightness of the oil tight chamber 271 is provided independently on the cylindrical large diameter piston rod 285 and the small diameter piston 290. With such a configuration, the machining of the large-diameter rod outer peripheral wall 288 and the small-diameter rod outer peripheral wall 293 requiring high dimensional accuracy is relatively easy.
 尚、第二実施形態において、大径ピストンプレート280が第一ピストン部材に相当し、大径加圧面286が第一ピストン面に相当する。また、小径ピストン290が第二ピストン部材に相当し、小径受圧面291が第二ピストン面に相当し、区画プレート275が区画部材に相当する。そして、大径外嵌壁278aが第一摺動壁部に相当し、小径外嵌壁279aが第二摺動壁部に相当し、小径伝達面296が伝達部に相当する。 In the second embodiment, the large diameter piston plate 280 corresponds to the first piston member, and the large diameter pressurizing surface 286 corresponds to the first piston surface. Further, the small diameter piston 290 corresponds to the second piston member, the small diameter pressure receiving surface 291 corresponds to the second piston surface, and the partition plate 275 corresponds to the partition member. The large-diameter outer fitting wall 278a corresponds to the first sliding wall portion, the small-diameter outer fitting wall 279a corresponds to the second sliding wall portion, and the small-diameter transmission surface 296 corresponds to the transmission portion.
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments have been described above, the present disclosure is not construed as being limited to the above-described embodiments, and can be applied to various embodiments and combinations without departing from the scope of the present disclosure. it can.
 上記実施形態において、摺動内周壁部83及び大径内嵌壁部93、大径ロッド外周壁288及び大径外嵌壁278a、並びに小径ロッド外周壁293及び小径外嵌壁279aの各間は、油密に形成されていた。こうした油密形成部分は、高圧流路から油密室への高圧燃料のゆっくりとした浸入を許容する一方で、駆動力の伝達時において、油密室から高圧流路への漏出を実質的に防止している。 In the above embodiment, the sliding inner peripheral wall portion 83 and the large diameter inner fitting wall portion 93, the large diameter rod outer peripheral wall 288 and the large diameter outer fitting wall 278a, and the small diameter rod outer peripheral wall 293 and the small diameter outer fitting wall 279a are between It was formed oil-tight. These oil-tight parts allow for the slow entry of high-pressure fuel from the high-pressure channel into the oil-tight chamber, while substantially preventing leakage from the oil-tight chamber to the high-pressure channel when driving force is transmitted. ing.
 上記実施形態では、駆動部の発生駆動力は、油密室の燃料によって180°反転されて、大径ピストンから小径ピストンに伝えられていた。しかし、大径ピストンの変位方向を規定する仮想軸線は、小径ピストンの変位方向を規定する仮想軸線と平行でなくてもよく、小径ピストンの仮想軸線に対して傾斜した姿勢に規定されていてもよい。 In the above embodiment, the driving force generated by the driving unit is inverted 180 ° by the fuel in the oil-tight chamber and transmitted from the large-diameter piston to the small-diameter piston. However, the virtual axis that defines the displacement direction of the large-diameter piston may not be parallel to the virtual axis that defines the displacement direction of the small-diameter piston, and may be defined in a posture inclined with respect to the virtual axis of the small-diameter piston. Good.
 上記実施形態では、大径加圧面の面積又は総面積と小径受圧面の面積又は総面積とは、互いに異なっていた。この各面積は、正確には、各ピストンの変位軸と実質的に直交する仮想平面に、加圧面及び受圧面を変位軸に沿って投影した投影面積を示している。これらの投影面積が異なっていれば、大径ピストンの変位は、燃料によって拡大又は縮小されて、小径ピストンに伝達される。 In the above embodiment, the area or total area of the large-diameter pressure surface and the area or total area of the small-diameter pressure receiving surface were different from each other. Each area accurately indicates a projected area obtained by projecting the pressure surface and the pressure receiving surface along the displacement axis onto a virtual plane substantially orthogonal to the displacement axis of each piston. If these projected areas are different, the displacement of the large-diameter piston is enlarged or reduced by the fuel and transmitted to the small-diameter piston.
 上記実施形態では、大径加圧面の面積又は総面積が小径受圧面の面積又は総面積よりも大きくされることにより、変位伝達機構は、ストロークの拡大に伴って駆動力の弱められた変位を、ノズルニードルに伝達していた。しかし、変位伝達機構は、大径加圧面の加圧面積が小径受圧面の受圧面積よりも小さくされることにより、ストロークの縮小に伴って駆動力の強められた変位を、ノズルニードルに伝達することも可能である。さらに、大径加圧面の加圧面積と小径受圧面の受圧面積を等しく規定することにより、変位伝達機構70は、ストロークの変更を行うことなく、単に変位方向を変更する構成であってもよい。 In the above-described embodiment, the displacement transmission mechanism causes the displacement of the driving force to be weakened with the expansion of the stroke by making the area or total area of the large-diameter pressure surface larger than the area or total area of the small-diameter pressure receiving surface. , Was transmitted to the nozzle needle. However, the displacement transmission mechanism transmits the displacement with increased driving force to the nozzle needle as the stroke is reduced by making the pressure area of the large diameter pressure surface smaller than the pressure area of the small diameter pressure surface. It is also possible. Furthermore, the displacement transmission mechanism 70 may be configured to simply change the displacement direction without changing the stroke by equally defining the pressure area of the large diameter pressure surface and the pressure area of the small diameter pressure surface. .
 上記実施形態では、小径ピストンとノズルニードルとが別々の部材で形成される構成により、ノズルニードルの傾きが許容されていた。しかし、小径ピストンとノズルニードルとが一体的に形成されていてもよい。また、小径ピストンとノズルニードルとの間に、駆動力を伝えるための中間部材が設けられていてもよい。さらに、第一ピストン部材及び第二ピストン部材に相当する構成は、第一実施形態の大径ピストン及び小径ピストンのような一つの部材であってもよく、又は第二実施形態の大径ピストンプレート及び小径ピストン群のような複数の部材であってもよい。 In the above embodiment, the inclination of the nozzle needle is allowed by the configuration in which the small-diameter piston and the nozzle needle are formed of separate members. However, the small diameter piston and the nozzle needle may be integrally formed. An intermediate member for transmitting a driving force may be provided between the small diameter piston and the nozzle needle. Furthermore, the structure corresponding to the first piston member and the second piston member may be one member such as the large diameter piston and the small diameter piston of the first embodiment, or the large diameter piston plate of the second embodiment. And a plurality of members such as small-diameter piston groups.
 上記実施形態の変位伝達機構は、弁ボデーと協働して油密室を形成していた。しかし、変位伝達機構の構成要素のみで、油密室が区画されていてもよい。また、油密室の容積及び形状は、適宜変更されてよい。 The displacement transmission mechanism of the above embodiment forms an oil tight chamber in cooperation with the valve body. However, the oil tight chamber may be defined only by the components of the displacement transmission mechanism. Further, the volume and shape of the oil tight chamber may be changed as appropriate.
 上記実施形態では、燃料として軽油を噴射する燃料噴射装置に本開示の特徴部分を適用した例を説明したが、本開示の特徴部分は、軽油以外の燃料、例えばジメチルエーテル等の液化ガス燃料を噴射する燃料噴射装置にも適用可能である。 In the above embodiment, the example in which the characteristic portion of the present disclosure is applied to the fuel injection device that injects light oil as fuel has been described. However, the characteristic portion of the present disclosure injects fuel other than light oil, for example, liquefied gas fuel such as dimethyl ether. It is applicable also to the fuel-injection apparatus which does.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  噴孔(44)から燃料を噴射する燃料噴射装置であって、
     前記噴孔、前記噴孔に燃料を供給する供給流路(41)が形成された弁ボデー(40,240)と、
     前記弁ボデーに対する相対変位により、前記噴孔を開閉させる弁部材(60)と、
     前記弁部材を変位させる駆動力を発生する駆動部(30)と、
     燃料によって満たされた油密室(71,271)の少なくとも一部を区画し、前記駆動部の駆動力によって前記油密室の燃料を圧縮する第一ピストン部材(80,280)と、
     前記油密室(71,271)の少なくとも一部を区画し、前記油密室の燃料によって押されることにより、前記油密室の燃料に入力された駆動力の方向を変更して、前記弁部材に伝達する第二ピストン部材(90,290)と、を備える燃料噴射装置。
    A fuel injection device for injecting fuel from an injection hole (44),
    A valve body (40, 240) in which a supply channel (41) for supplying fuel to the nozzle hole and the nozzle hole is formed;
    A valve member (60) for opening and closing the nozzle hole by relative displacement with respect to the valve body;
    A drive unit (30) for generating a drive force for displacing the valve member;
    A first piston member (80, 280) for partitioning at least a part of the oil-tight chamber (71, 271) filled with fuel and compressing the fuel in the oil-tight chamber by the driving force of the drive unit;
    At least a part of the oil tight chamber (71, 271) is partitioned, and when pushed by the fuel in the oil tight chamber, the direction of the driving force input to the fuel in the oil tight chamber is changed and transmitted to the valve member And a second piston member (90, 290).
  2.  前記第一ピストン部材の変位は、前記油密室の燃料によって実質的に180°反転され、前記第二ピストン部材に伝達される請求項1に記載の燃料噴射装置。 The fuel injection device according to claim 1, wherein the displacement of the first piston member is substantially inverted by 180 ° by the fuel in the oil-tight chamber and transmitted to the second piston member.
  3.  前記第一ピストン部材には、前記油密室に臨む第一ピストン面(81,286)が形成されており、
     前記第二ピストン部材には、前記油密室に臨み、前記第一ピストン面とは面積の異なる第二ピストン面(91,291)が形成されている請求項1又は2に記載の燃料噴射装置。
    The first piston member has a first piston surface (81,286) facing the oil tight chamber,
    3. The fuel injection device according to claim 1, wherein the second piston member has a second piston surface (91, 291) facing the oil-tight chamber and having a different area from the first piston surface.
  4.  前記第一ピストン面の面積は、前記第二ピストン面の面積よりも大きい請求項3に記載の燃料噴射装置。 The fuel injection device according to claim 3, wherein an area of the first piston surface is larger than an area of the second piston surface.
  5.  前記第二ピストン部材には、開弁方向への駆動力を前記弁部材に伝達する伝達部(96,296)が形成されており、
     前記伝達部は、前記開弁方向と交差する方向への前記弁部材の位置ずれを許容する請求項1~4のいずれか一項に記載の燃料噴射装置。
    The second piston member is formed with a transmission portion (96, 296) for transmitting a driving force in the valve opening direction to the valve member,
    The fuel injection device according to any one of claims 1 to 4, wherein the transmission unit allows a displacement of the valve member in a direction intersecting the valve opening direction.
  6.  前記弁ボデーには、前記第一ピストン部材及び前記第二ピストン部材を収容するピストン収容室(42,242)が前記供給流路の一部として形成されており、
     前記第一ピストン部材及び前記第二ピストン部材は、互いの変位によって拡縮される拡縮空間(73)を前記ピストン収容室内で区画しており、
     前記第一ピストン部材には、前記ピストン収容室のうちで、前記拡縮空間の内外を連通する連通孔(84)が形成されている請求項1~5のいずれか一項に記載の燃料噴射装置。
    In the valve body, piston housing chambers (42, 242) for housing the first piston member and the second piston member are formed as a part of the supply flow path,
    The first piston member and the second piston member define an expansion / contraction space (73) expanded / contracted by mutual displacement in the piston accommodating chamber,
    The fuel injection device according to any one of claims 1 to 5, wherein a communication hole (84) is formed in the first piston member to communicate the inside and outside of the expansion / contraction space in the piston housing chamber. .
  7.  前記第二ピストン部材には、前記第一ピストン部材の摺動を許容しつつ、前記第一ピストン部材との間で前記油密室の油密を維持する摺動壁部(93)が形成されている請求項1~6のいずれか一項に記載の燃料噴射装置。 The second piston member is formed with a sliding wall portion (93) that allows the first piston member to slide while maintaining oil tightness of the oil tight chamber with the first piston member. The fuel injection device according to any one of claims 1 to 6.
  8.  前記第一ピストン部材及び前記第二ピストン部材と共に前記油密室の少なくとも一部を区画する区画部材(275)、をさらに備え、
     前記区画部材には、前記第一ピストン部材の摺動を許容しつつ、前記第一ピストン部材との間で前記油密室の油密を維持する第一摺動壁部(278a)、及び前記第二ピストン部材の摺動を許容しつつ、前記第二ピストン部材との間で前記油密室の油密を維持する第二摺動壁部(279a)、が形成されている請求項1~6のいずれか一項に記載の燃料噴射装置。
    A partition member (275) for partitioning at least a part of the oil tight chamber together with the first piston member and the second piston member;
    The partition member includes a first sliding wall portion (278a) that maintains oil tightness of the oil tight chamber with the first piston member while allowing sliding of the first piston member, and the first The second sliding wall portion (279a) for maintaining oil tightness of the oil tight chamber with the second piston member while allowing sliding of the two piston members is formed. The fuel injection device according to any one of claims.
  9.  前記弁ボデーは、前記第一ピストン部材及び前記第二ピストン部材と共に前記油密室の少なくとも一部を区画する請求項1~8のいずれか一項に記載の燃料噴射装置。

     
    The fuel injection device according to any one of claims 1 to 8, wherein the valve body defines at least a part of the oil tight chamber together with the first piston member and the second piston member.

PCT/JP2017/000943 2016-02-24 2017-01-13 Fuel injection device WO2017145559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017000976.6T DE112017000976T5 (en) 2016-02-24 2017-01-13 Fuel injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033519 2016-02-24
JP2016033519A JP6458747B2 (en) 2016-02-24 2016-02-24 Fuel injection device

Publications (1)

Publication Number Publication Date
WO2017145559A1 true WO2017145559A1 (en) 2017-08-31

Family

ID=59686219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000943 WO2017145559A1 (en) 2016-02-24 2017-01-13 Fuel injection device

Country Status (3)

Country Link
JP (1) JP6458747B2 (en)
DE (1) DE112017000976T5 (en)
WO (1) WO2017145559A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200406A1 (en) * 2006-07-07 2009-08-13 Maximilian Kronberger Injection system and method for producing an injection system
JP2009250074A (en) * 2008-04-02 2009-10-29 Nippon Soken Inc Fuel injection valve
JP2009257309A (en) * 2008-03-27 2009-11-05 Denso Corp Injector
JP2010223196A (en) * 2009-03-25 2010-10-07 Denso Corp Fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383132B2 (en) * 2008-03-28 2014-01-08 株式会社デンソー Fuel pressure sensor mounting structure, fuel pressure detection system, fuel injection device, pressure detection device and pressure accumulation fuel injection device system used therefor
US9642568B2 (en) 2011-09-06 2017-05-09 Medtronic Minimed, Inc. Orthogonally redundant sensor systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200406A1 (en) * 2006-07-07 2009-08-13 Maximilian Kronberger Injection system and method for producing an injection system
JP2009257309A (en) * 2008-03-27 2009-11-05 Denso Corp Injector
JP2009250074A (en) * 2008-04-02 2009-10-29 Nippon Soken Inc Fuel injection valve
JP2010223196A (en) * 2009-03-25 2010-10-07 Denso Corp Fuel injection valve

Also Published As

Publication number Publication date
JP2017150391A (en) 2017-08-31
DE112017000976T5 (en) 2018-12-13
JP6458747B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP4333757B2 (en) Fuel injection valve
JP4551399B2 (en) Common rail fuel supply system
US8342424B2 (en) Fuel injection apparatus
JP2006233853A (en) Injector
JP2002322959A (en) Liquid control valve
US8100349B2 (en) Fuel injection device
WO2017145559A1 (en) Fuel injection device
JP6387985B2 (en) Fuel injection device
JP6172113B2 (en) Fuel injection valve
JP6145652B2 (en) Fuel injection valve
JP6384461B2 (en) Relief valve device and high-pressure pump using the same
US10808661B2 (en) Fuel injection device
JP6281296B2 (en) Fuel injection valve
JP7014637B2 (en) Fuel injection device
JP6926693B2 (en) Fuel injection device, control device and fuel injection system
JP6508146B2 (en) Fuel injection device
JP6828443B2 (en) Fuel injection device
JP6508147B2 (en) Fuel injection device
JP2016050562A (en) Fuel injection valve
JP6149766B2 (en) Fuel injection valve
JP2015090088A (en) Fuel injection valve
JP2016048039A (en) Fuel injection valve
JP2017160838A (en) Fuel injection valve
JP2004324443A (en) Injector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756001

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756001

Country of ref document: EP

Kind code of ref document: A1