WO2017145334A1 - 電源および質量分析装置 - Google Patents
電源および質量分析装置 Download PDFInfo
- Publication number
- WO2017145334A1 WO2017145334A1 PCT/JP2016/055677 JP2016055677W WO2017145334A1 WO 2017145334 A1 WO2017145334 A1 WO 2017145334A1 JP 2016055677 W JP2016055677 W JP 2016055677W WO 2017145334 A1 WO2017145334 A1 WO 2017145334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- circuit
- switch
- output
- output terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
Definitions
- the present invention relates to a power source and a mass spectrometer.
- Patent Document 1 discloses a high-voltage power supply capable of switching between positive and negative polarities of an output voltage and a mass spectrometer using the same. Patent Document 1 describes that the polarity switching time can be set to 10 to 20 milliseconds.
- the polarity of the high voltage applied to the vaporized sample is switched depending on whether the ion of the vaporized sample is a positive ion or a negative ion.
- this switching time becomes long, the non-detection period of ions becomes long, and there is a problem that accurate analysis cannot be performed in the detection of quantitative values.
- an object of the present invention is to provide a technique capable of switching and outputting the polarity of a high voltage at a higher speed.
- a power supply according to the present invention includes a first switch circuit connected between a voltage source having a first polarity and an output terminal, a voltage source having a second polarity, and the output terminal.
- a second switch circuit connected between the output terminal, and the first switch circuit receives a first drive signal for controlling a voltage of the output terminal as a control terminal.
- a first switch element connected, a plurality of second switch elements cascode-connected between the first switch element and a voltage source of the first polarity, and the plurality of second switch elements A first voltage dividing circuit that divides and inputs a voltage between the voltage source of the first polarity and the output terminal to each of the control terminals, and the second switch circuit includes: A second drive signal for controlling the voltage of the output terminal is input to the control terminal; A third switch element connected to a voltage source of the second polarity, a plurality of fourth switch elements connected in cascode between the third switch element and the output terminal, and the plurality of second switch elements. And a second voltage dividing circuit for dividing and inputting a voltage between the voltage source of the second polarity and the output terminal at each control terminal of the four switch elements.
- the polarity of the high voltage can be switched at higher speed and output.
- the mass spectrometer measures the mass number of a sample in the form of molecules or ionic molecules. For example, in a liquid chromatograph mass spectrometer, a target sample is melted into a liquid, then ionized in a vaporized state, and the number of molecular ions separated through a mass selector called a mass filter or ion trap is detected. .
- the mass spectrometer measures the type and quantitative value (ratio) of molecules contained in the sample based on the number of detected molecular ions.
- FIG. 1 is a diagram illustrating a configuration example of a mass spectrometer using a power supply according to the first embodiment.
- the mass spectrometer shown in FIG. 1 is a mass spectrometer that analyzes a sample liquid eluted from a liquid chromatograph, for example.
- the mass spectrometer includes a control unit 1, power supplies 2 to 4, an ionization unit 5, a mass filter 6, a CD (Conversion Dynode) unit 7, a scintillator 8, and a photoelectron. And a detector 9.
- FIG. 1 shows ion molecules A1 and A2, secondary electrons A3, and photons A4 for explanation.
- the control unit 1 controls the entire apparatus.
- the control unit 1 outputs a control signal for switching the polarity of the voltage output from the power sources 2 and 4 to the power sources 2 and 4.
- the power source 2 outputs, for example, a high voltage of several kV to the ionization unit 5.
- the power supply 2 switches the polarity of the high voltage output to the ionization unit 5 according to the control signal output from the control unit 1.
- the power supply 3 outputs a voltage obtained by superimposing the high-frequency voltage and the DC voltage to the mass filter 6.
- the power source 4 outputs, for example, a high voltage of several kV to the CD unit 7.
- the power supply 4 switches the polarity of the high voltage output to the CD unit 7 according to the control signal output from the control unit 1.
- the sample solution to be mass analyzed is enclosed in the ionization unit 5.
- the ionization unit 5 ionizes atoms and molecules of the enclosed sample solution.
- the ionization unit 5 ionizes the sample into positive or negative ions by a high voltage having a different polarity supplied from the power supply 2.
- the ion molecules A1 ionized by the ionization unit 5 are sent to the mass filter 6.
- the mass filter 6 is applied with a voltage obtained by superimposing a high-frequency voltage and a DC voltage from the power source 3.
- the mass filter 6 forms an electric field by the applied voltage and allows only ions having a predetermined mass number to pass therethrough.
- the ion molecules A2 having a predetermined mass number that have passed through the mass filter 6 are sent to the CD section 7.
- the CD unit 7 is supplied with a high voltage from the power source 4.
- the CD unit 7 forms an electric field by a high voltage supplied from the power supply 4 and attracts ion molecules A2 having a predetermined mass number that have passed through the mass filter 6. For example, a high voltage having a polarity opposite to that of the ionic molecule A2 is applied to the CD portion 7 to attract the ionic molecule A2.
- the scintillator 8 generates photons A4 by the energy given by the secondary electrons A3.
- the photon A4 generated by the scintillator 8 is amplified by the photoelectron detector 9.
- the photoelectron detector 9 outputs a detection signal corresponding to the number of secondary electrons A3. That is, the photoelectron detector 9 outputs a detection signal corresponding to the number of ion molecules A2 that have passed through the mass filter 6 and reached the CD section 7.
- the control unit 1 of the mass spectrometer outputs a control signal for switching the polarity of the output voltage to the power sources 2 and 4 in accordance with the polarity of ions to be analyzed.
- the power supplies 2 and 4 switch the polarity of the high voltage to be output at high speed according to the control signal.
- the mass spectrometer can alternately perform positive ion detection and negative ion detection every short time, and can shorten the period during which ions cannot be detected.
- the mass spectrometer can create a good mass chromatogram or ion chromatogram.
- FIG. 2 is a circuit diagram of the power supply 2.
- the power supply 4 has a circuit similar to that shown in FIG. As shown in FIG. 2, the power supply 2 includes a timing control circuit 10, an oscillator 20, floating drive circuits 30 and 50, switch circuits 40 and 60, an output terminal T71, a resistor R71, and voltage sources V1 to V4. And terminals T11 to T13, terminals T31 to T36, terminals T41 to T43, terminals T51 to T56, and terminals T61 to T63.
- the output terminal T71 is connected to the ionization unit 5. Note that the output terminal of the power supply 4 is connected to the CD section 7.
- the control signal output from the control unit 1 is input to the terminal T11.
- the control signals are, for example, “H (High)” and “L (Low)” signals.
- the timing control circuit 10 When the “H” control signal is input to the terminal T11, the timing control circuit 10 outputs the “H” control signal to the terminal T12 and the “L” control signal to the terminal T13. Further, when an “L” control signal is input to the terminal T11, the timing control circuit 10 outputs an “H” control signal to the terminal T13 and outputs an “L” control signal to the terminal T12.
- the switch circuit 40 outputs the positive voltage of the voltage source V3 to the output terminal T71 when the “H” control signal is output to the terminal T12.
- the switch circuit 60 When the “H” control signal is output to the terminal T13, the switch circuit 60 outputs the negative voltage of the voltage source V4 to the output terminal T71.
- the timing control circuit 10 includes a delay device 11, an AND circuit Z11, and a NAND circuit Z12.
- the control signal of the control unit 1 is input to one end of the AND circuit Z11, and the control signal of the control unit 1 is input to the other end via the delay device 11.
- the AND circuit Z11 outputs a control signal of “H” with a delay of “ ⁇ T” by the delay unit 11 and delayed.
- an “L” control signal is output from the AND circuit Z11 at that timing.
- the control signal of the control unit 1 is input to one end of the NAND circuit Z12, and the control signal of the control unit 1 is input to the other end via the delay device 11.
- the NAND circuit Z12 outputs a control signal of “H” with a delay of “ ⁇ T” by the delay unit 11.
- an “L” control signal is output from the NAND circuit Z12 at that timing.
- the timing control circuit 10 when the control signal transitions from “L” to “H”, the timing control circuit 10 outputs the “H” control signal to the terminal T12 with a delay of time “ ⁇ T”. Further, when the control signal transitions from “H” to “L”, the timing control circuit 10 outputs the “H” control signal to the terminal T13 with a delay of time “ ⁇ T”. That is, as described below, the timing control circuit 10 controls “H” to be output to the terminals T12 and T13 so that the two switch circuits 40 and 60 are not turned on at the same time (including substantially the same, the same applies hereinafter). Shift the signal output timing.
- the oscillator 20 outputs an oscillation signal to the floating drive circuits 30 and 50 via the terminals T32 and T52.
- the oscillation signal is a clock signal of about several hundred kHz to 1 MHz, for example.
- the floating drive circuit 30 outputs a drive signal for turning on / off the switch circuit 40 between the terminals T35 and T36 in accordance with the control signal output to the terminal T31.
- the terminal T36 is connected to the output terminal T71.
- the output terminal T71 transitions between a positive high voltage from the voltage source V3 and a negative high voltage from the voltage source V4. Therefore, the floating drive circuit 30 electrically insulates the timing control circuit 10 and the switch circuit 40 using a transformer (magnetic coupling), and drives the switch circuit 40 in a floating (insulated) manner.
- the floating drive circuit 30 includes an AND circuit Z31, a transistor Tr31, capacitors C31 and C32, a transformer M31, and a diode D31.
- a control signal output from the timing control circuit 10 is input to one end of the AND circuit Z31 via a terminal T31.
- An oscillation signal output from the oscillator 20 is input to the other end of the AND circuit Z31 via the terminal T32.
- the AND circuit Z31 outputs the oscillation signal input to the other end to the gate of the transistor Tr31.
- the transistor Tr31 is, for example, an N-type MOS (Metal Oxide Semiconductor) transistor.
- the source of the transistor Tr31 is connected to the ground via the terminal T34, and the drain is connected to the voltage source V1 that supplies the voltage “VCC” via the primary side of the transformer M31 and the terminal T33.
- the transistor Tr31 is turned on / off according to the oscillation signal (clock signal) output from the AND circuit Z31, and thereby the primary side of the transformer M31 is turned on / off between the voltage source V1 and the ground.
- the capacitor C31 resonates with the primary winding of the transformer M31 during the off period of the transistor Tr31 and performs stable pseudo-resonance.
- a voltage (pulse waveform) having the same period as the oscillation signal output from the oscillator 20 is induced by on / off between the voltage source V1 on the primary side and the ground.
- the floating drive circuit 30 drives the switch circuit 40 in a floating manner by winding separation by the transformer M31.
- the voltage induced on the secondary side of the transformer M31 is smoothed by a smoothing circuit including a diode D31 and a capacitor C22.
- a floating drive signal corresponding to the control signal input to the terminal T31 is generated between the terminals T35 and T36.
- the floating drive circuit 30 outputs a drive signal for turning on a transistor Tr41 of the switch circuit 40 described later between the terminals T35 and T36.
- the floating drive circuit 30 does not output a drive signal for turning on the transistor Tr41 between the terminals T35 and T36.
- the voltage between the terminals T35 and T36 is greater than or equal to VG (threshold voltage) of the transistor Tr41.
- a driving signal having a voltage of 1 can be generated.
- the floating drive circuit 50 has the same configuration as the floating drive circuit 30, and a description thereof is omitted.
- the floating drive circuit 50 outputs a drive signal for turning on the switch circuit 60 between the terminals T55 and T56 when an “H” control signal is input to the terminal T51.
- the floating drive circuit 50 does not output a drive signal for turning on the switch circuit 60 between the terminals T55 and T56.
- the switch circuit 40 is connected between a voltage source V3 that outputs a positive voltage (VDD) and an output terminal T71.
- the switch circuit 40 outputs a positive high voltage of the voltage source V3 to the output terminal T71 in response to the drive signal output to the terminals T35 and T36.
- the switch circuit 40 is turned on when a drive signal having a voltage of VG or higher is output between the terminals T35 and T36. Thereby, the positive high voltage of the voltage source V3 is output to the output terminal T71.
- the voltage of the voltage source V3 is a positive high voltage of 1 kV to 10 kV, for example.
- the switch circuit 40 includes transistors Tr41 to Tr43, resistors R41 to R46, and diodes D41 to D43.
- the transistors Tr41 to Tr43 are, for example, N-type MOS transistors.
- the gate of the transistor Tr41 is connected to the terminal T35 via the terminal T41.
- the source of the transistor Tr41 is connected to the terminal T36 and the output terminal T71 via the terminal T43.
- the source of the transistor Tr41 is connected to a resistor R71 having one end connected to the ground via a terminal T43.
- the transistors Tr42 and Tr43 are cascode-connected between the transistor Tr41 and the voltage source V3.
- the source of the transistor Tr42 is connected to the drain of the transistor Tr41
- the source of the transistor Tr43 is connected to the drain of the transistor Tr42
- the drain of the transistor Tr43 is connected to the voltage source V3 via the terminal T42.
- Resistors R41 to R43 for dividing and inputting a voltage between the voltage source V3 and the output terminal T71 are connected to the gates of the transistors Tr42 and T43.
- the resistor R41 is connected between the gate of the transistor Tr42 and the source (output terminal T71) of the transistor Tr41.
- the resistor R42 is connected between the gate of the transistor Tr42 and the gate of the transistor Tr43.
- the resistor R43 is connected between the gate of the transistor Tr43 and the drain (voltage source V3) of the transistor Tr43.
- Resistors R44 to R46 are connected in parallel between the sources and drains of the transistors Tr41 to Tr42.
- the resistors R44 to R46 divide and apply the voltage between the voltage source V3 and the output terminal T71. With the resistors R44 to R46, the withstand voltages of the transistors Tr41 to Tr43 are equalized, and the transistors Tr41 to Tr43 can operate stably.
- Diodes D41 to D43 are connected between the gates and sources of the transistors Tr41 to Tr43.
- the diodes D41 to D43 are, for example, Zener diodes, and suppress overvoltage applied to the gates of the transistors Tr41 to Tr43.
- the bleeder current is fed back to the voltage source V3 through the resistor R71.
- the bleeder current from the voltage source V4 flows through the resistor R71, the terminal T63, the switch circuit 60, and the voltage source V4. Therefore, the terminal T43 and the terminal T63 are kept at zero potential, and the potential of the output terminal T71 is zero.
- the switch circuit 60 will be described.
- the switch circuit 60 is connected between a voltage source V4 that outputs a negative voltage ( ⁇ VEE) and an output terminal T71.
- the switch circuit 40 outputs a negative high voltage of the voltage source V4 to the output terminal T71 according to the drive signal output to the terminals T55 and T56.
- the switch circuit 60 is turned on when a drive signal having a voltage of VG or higher is output between the terminals T55 and T56. Thereby, the negative high voltage of the voltage source V4 is output to the output terminal T71.
- the voltage of the voltage source V4 is a negative high voltage of, for example, ⁇ 1 kV to ⁇ 10 kV.
- the switch circuit 60 includes transistors Tr61 to Tr63, resistors R61 to R66, and diodes D61 to D63.
- the transistors Tr61 to Tr63 are, for example, N-type MOS transistors.
- the gate of the transistor Tr61 is connected to the terminal T65 via the terminal T61.
- the source of the transistor Tr61 is connected to the terminal T56 and the voltage source V4 via the terminal T62.
- the transistors Tr62 and Tr63 are cascode-connected between the transistor Tr61 and the output terminal T71.
- the source of the transistor Tr62 is connected to the drain of the transistor Tr61
- the source of the transistor Tr63 is connected to the drain of the transistor Tr62
- the drain of the transistor Tr63 is connected to the output terminal T71 via the terminal T63.
- Resistors R61 to R63 for dividing and inputting a voltage between the voltage source V4 and the output terminal T71 are connected to the gates of the transistors Tr62 and T63.
- the resistor R61 is connected between the gate of the transistor Tr62 and the source (voltage source V4) of the transistor Tr61.
- the resistor R62 is connected between the gate of the transistor Tr62 and the gate of the transistor Tr63.
- the resistor R63 is connected between the gate of the transistor Tr63 and the drain (output terminal T71) of the transistor Tr63.
- Resistors R64 to R66 are connected in parallel between the sources and drains of the transistors Tr61 to Tr62.
- the resistors R64 to R66 divide and apply the voltage between the voltage source V4 and the output terminal T71. With the resistors R64 to R66, the withstand voltages of the transistors Tr61 to Tr63 are equalized, and the transistors Tr61 to Tr63 can operate stably.
- Diodes D61 to D63 are connected between the gates and sources of the transistors Tr61 to Tr63.
- the diodes D61 to D63 are, for example, Zener diodes, and suppress overvoltage applied to the gates of the transistors Tr61 to Tr63.
- the operation of the switch circuit 60 will be described.
- the voltage between the voltage source V4 and the output terminal T71 is divided by resistors R64 to R66 and applied to the sources of the transistors Tr61 to Tr63.
- the voltage between the voltage source V4 and the output terminal T71 is divided by resistors R61 to R63 and applied to the gates of the transistors Tr61 and Tr62. Therefore, when the potential difference between the terminal T61 and the terminal T62 is zero, that is, when the voltage of the drive signal output between the terminals T55 and T56 is zero, the transistors Tr61 to Tr63 are in the off state, Bleeder current is flowing.
- the bleeder current flows into the voltage source V4 and returns via the resistor R71.
- the bleeder current from the voltage source V3 flows through the resistor R71, the voltage source V3, the switch circuit 40, and the terminal T43. Therefore, the terminal T63 and the terminal T43 are kept at zero potential, and the potential of the output terminal T71 is zero.
- the transistors Tr61 to Tr63 are turned on in the order of the transistors Tr61, Tr62, and Tr63.
- the negative high voltage of the voltage source V4 is applied to the output terminal T71.
- the transistors Tr61 to Tr63 are turned off in the order of the transistors Tr61, Tr62, and Tr63, and the potential of the output terminal T71. Returns to zero.
- the switch circuit 40 is connected between the positive voltage source V3 and the output terminal T71, and the positive high voltage of the voltage source V3 is applied to the output terminal T71 by the plurality of cascode-connected transistors Tr41 to Tr43.
- the switch circuit 60 is connected between the negative voltage source V4 and the output terminal T71, and outputs a negative high voltage of the voltage source V4 to the output terminal T71 by a plurality of cascode-connected transistors Tr61 to Tr63. .
- the power supply 2 can switch the polarity of a high voltage at high speed.
- FIG. 3 is a timing chart for explaining an operation example of the power supply 2.
- the horizontal axis t shown in FIG. 3 indicates time.
- the waveform shown in (A) indicates a control signal input to the terminal T11 in FIG.
- the waveform shown in (B) indicates a control signal output from the delay device 11 of the timing control circuit 10.
- the control signal having the waveform shown in (A) and the control signal having the waveform shown in (B) are input to the AND circuit Z11 of the timing control circuit 10. Therefore, the AND circuit Z11 outputs a control signal having a waveform shown in (C) obtained by ANDing the waveform shown in (A) and the waveform shown in (B).
- the control signal having the waveform shown in (C) is output to the floating drive circuit 30.
- control signal having the waveform shown in (A) and the control signal having the waveform shown in (B) are input to the NAND circuit Z12 of the timing control circuit 10. Therefore, the NAND circuit Z12 outputs a control signal having the waveform shown in (D), which is the NAND of the waveform shown in (A) and the waveform shown in (B).
- the control signal having the waveform shown in (D) is output to the floating drive circuit 50.
- the waveform shown in (E) shows the waveform of the voltage output from the output terminal T71.
- a drive signal for turning on the switch circuit 40 is output from the floating drive circuit 30.
- the positive high voltage “VDD” of the voltage source V3 is output to the terminal T71.
- a drive signal for turning on the switch circuit 60 is output from the floating drive circuit 50.
- the negative high voltage “ ⁇ VEE” of the voltage source V4 is output to the output terminal T71.
- the ON / OFF transition time of the switch circuits 40 and 60 has a time difference due to the delay device 11 of the timing control circuit 10.
- the power supply 2 can charge / discharge the load connected to the output terminal T71 at high speed while preventing a through current due to the conduction between the voltage source V3 and the voltage source V4.
- the switch circuit 40 connected between the positive voltage source V3 and the output terminal T71 has the transistor Tr41 connected to the output terminal T71 to which the drive signal is input, the transistor Tr41, and the voltage source.
- R41 to R43 The switch circuit 60 connected between the negative voltage source V4 and the output terminal T71 has a cascode between the transistor Tr61 connected to the voltage source V4 to which the drive signal is input and between the transistor Tr61 and the output terminal T71.
- the transistors Tr62 and Tr63 connected to each other and a plurality of resistors R61 to R63 for dividing and inputting the voltage between the voltage source V4 and the output terminal T71 at the gates of the plurality of transistors Tr62 and Tr63, respectively.
- the power supply 2 can switch and output the polarity of a high voltage at higher speed.
- the power supply 2 can switch and output the high voltage of the voltage sources V3 and V4 at 0.5 msec.
- the power source 2 can be realized with a simple configuration, and the cost can be reduced.
- the mass spectrometer can perform quantitative analysis of positive and negative ions with high accuracy in a short time.
- resistors R44 to R46 are connected in parallel to the transistors Tr41 to Tr43, respectively, and resistors R64 to R66 are connected in parallel to the transistors Tr61 to Tr63.
- the withstand voltages of the transistors Tr41 to Tr43, Tr61 to Tr63 are equal, and the transistors Tr41 to Tr43, Tr61 to Tr63 can operate stably even with a transient change.
- the power source 2 includes floating drive circuits 30 and 50 that electrically insulate the switch circuits 40 and 60 and the timing control circuit 10 between the switch circuits 40 and 60 and the timing control circuit 10. As a result, the power source 2 drives the switch circuit 40 connected between the voltage source V3 and the output terminal T71 and the switch circuit 60 connected between the voltage source V4 and the output terminal T71 at high speed. Can do.
- the floating drive circuit has a plurality of transformers. As a result, the withstand voltage applied to each transformer is lowered so that it can cope with a higher voltage of the voltage source.
- FIG. 4 is a circuit diagram of the power supply 2 according to the second embodiment. 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Below, a different part from FIG. 2 is demonstrated.
- the power supply 2 has a floating drive circuit 80, resistors R81 and R82, terminals T81 to T87, a floating drive circuit 90, resistors R91 and R92, and terminals T91 to T97.
- the floating drive circuit 90 has the same configuration as the floating drive circuit 80, and the description thereof is omitted.
- the control signal and the oscillation signal are input to the terminals T81 and T82.
- the voltage of the voltage source V1 is input to the terminal T83.
- drive signals are output in the same manner as the terminals T35 and T36 in FIG.
- the floating drive circuit 80 includes an AND circuit Z81, a transistor Tr81, capacitors C81 and C82, transformers M81 and M82, and a diode D81.
- the primary side of AND circuit Z81, transistor Tr81, capacitor C81, and transformer M81 is the same as the primary side of AND circuit Z31, transistor Tr31, capacitor C31, and transformer M31 shown in FIG. To do.
- Transformers M81 and M82 are connected in series.
- the secondary side of the transformer M81 is connected to the primary side of the transformer M82.
- a voltage (pulse waveform) having the same period as the oscillation signal output from the oscillator 20 is induced on the secondary side of the transformer M82.
- the voltage induced on the secondary side of the transformer M82 is smoothed by a smoothing circuit including a diode D81 and a capacitor C82. As a result, a floating drive signal is generated between the terminals T86 and T87 in accordance with the control signal input to the terminal T81.
- the resistors R81 and R82 are connected in series between the output terminal T71 and the ground.
- One end on the secondary side of the transformer M81 and one end on the primary side of the transformer M82 are connected between the resistor R81 and the resistor R82 via a terminal T85.
- the potential at one end on the secondary side of the transformer M81 and the potential at one end on the primary side of the transformer M82 are held at the potential obtained by dividing the potential at the output terminal T71 by the resistors R81 and R82.
- the potential of the terminal T85 is held at an intermediate potential (1/2) of the potential of the output terminal T71, and the withstand voltages of the transformers M81 and M82 can be made equal.
- the example of the two transformers M81 and M82 connected in series has been described, but three or more transformers may be connected in series.
- the number of resistors connected in series between the output terminal T71 and the ground is increased in accordance with the number of transformers connected in series. Then, the connection point of each transformer is held at a potential divided by a plurality of resistors.
- the floating drive circuits 80 and 90 have a plurality of transformers M81 and M82 connected in series.
- the floating drive circuits 80 and 90 can drive the switch circuits 40 and 60 in a floating manner even when the voltage sources V3 and V4 that output a voltage having a larger absolute value are used.
- the floating drive circuits 80 and 90 are provided with a plurality of transformers and resistors, for example, even when the absolute values of the voltages of the voltage sources V3 and V4 exceed 10 kV. 60 can be driven in a floating manner.
- the floating drive circuit electrically insulates the timing control circuit and the switch circuit by the photocoupler.
- FIG. 5 is a circuit diagram of the power supply 2 according to the third embodiment. 5, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Below, a different part from FIG. 2 is demonstrated.
- the power supply 2 has a floating drive circuit 100, terminals T101 to T105, a floating drive circuit 110, and terminals T111 to T115.
- the floating drive circuit 110 has a configuration similar to that of the floating drive circuit 100, and a description thereof is omitted.
- a control signal is input to the terminal T101 in the same manner as the terminal T31 in FIG. Similarly to the terminal T33 in FIG. 2, the voltage of the voltage source V1 is input to the terminal T102.
- the drive signals are output from the terminals T104 and T105, similarly to the terminals T35 and T36 of FIG.
- the floating drive circuit 100 includes a transistor Tr101 and photocouplers PT101 to PT103.
- the transistor Tr101 is, for example, an N-type MOS transistor.
- the gate of the transistor Tr101 is connected to the terminal T101, and a control signal output from the timing control circuit 10 is input thereto.
- the drain of the transistor Tr101 is connected to one end of each light emitting side diode of the photocouplers PT101 to PT103.
- the source of the transistor Tr101 is connected to the ground via the terminal T103.
- each light emitting side diode of the photocouplers PT101 to PT103 is connected to a voltage source V1 via a terminal T102.
- the light receiving side diodes of the photocouplers PT101 to PT103 are connected in series. Both ends of the light receiving side diodes connected in series are connected to terminals T104 and T105.
- the transistor Tr101 When the “H” control signal is input to the terminal T101, the transistor Tr101 is turned on. As a result, the voltage of the voltage source V1 is applied to the light emitting diodes of the photocouplers PT101 to PT103, and the light emitting diodes of the photocouplers PT101 to PT103 emit light.
- the light-receiving side diodes of the photocouplers PT101 to PT103 are connected in series.
- a drive signal having a voltage of “3 Vpt” is output to the terminals T104 and T105.
- the output voltage per light receiving diode of the photocouplers PT101 to PT103 is “0.7 V”
- a drive signal of “2.1 V” is output to the terminals T104 and T105.
- the switch circuit 40 can be driven. Therefore, the number of photocouplers PT101 to PT103 is increased or decreased according to the VG of the transistors used in the switch circuit 40.
- the floating drive circuits 100 and 110 insulate the switch circuits 40 and 60 from the timing control circuit 10 by the plurality of photocouplers PT101 to PT103 in which the light receiving side diodes are connected in series. Thereby, the floating drive circuits 100 and 110 can output a drive signal having an appropriate voltage to the switch circuits 40 and 60.
- the light emitting diodes of the photocouplers PT101 to PT103 are connected in parallel, but may be connected in series according to the voltage of the voltage source V1.
- the light emitting side and the light receiving side may be configured as separate parts. In this case, a sufficient insulation distance is secured between the light emitting side and the light receiving side.
- the timing control circuit and the switch circuit are electrically insulated from each other by a photocoupler using a phototransistor on the light receiving side.
- FIG. 6 is a circuit diagram of the power supply 2 according to the fourth embodiment. 6, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Below, a different part from FIG. 2 is demonstrated.
- the power supply 2 has a floating drive circuit 120, terminals T121 to T126, a floating drive circuit 130, and terminals T131 to T136.
- the floating drive circuit 130 has the same configuration as the floating drive circuit 120, and a description thereof is omitted.
- the oscillation signal output from the oscillator 20 is input to the terminal T121.
- a control signal output from the timing control circuit 10 is input to the terminal T122.
- the drive signals are output from the terminals T125 and T126, similarly to the terminals T35 and T36 of FIG.
- the floating drive circuit 120 includes transistors Tr121 and Tr122, capacitors C121 and C122, a transformer M121, a diode D121, a resistor R121, an inverting circuit Z121, and a photocoupler PT121.
- the transistor Tr121 is, for example, an N-type MOS transistor.
- the oscillation signal of the oscillator 20 is input to the gate of the transistor Tr121 via the terminal T121.
- the drain of the transistor Tr121 is connected to one end on the primary side of the transformer M121.
- the source of the transistor Tr121 is connected to the ground via the terminal T124.
- the capacitor C121 connected between the source and drain of the transistor Tr121 resonates with the primary winding of the transformer M121 and performs stable pseudo-resonance during the off-period of the transistor Tr121.
- the other end of the primary side of the transformer M121 is connected to the voltage source V1 via the terminal T123.
- the secondary side of the transformer M121 is connected to terminals T125 and T126 via a smoothing circuit constituted by a diode D121 and a capacitor C122 and a resistor R121.
- a control signal is input to the inverting circuit Z121 via the terminal T122.
- the inverting circuit Z121 inverts the input control signal and outputs it to the gate of the transistor Tr122.
- the transistor Tr122 is, for example, an N-type MOS transistor.
- the drain of the transistor Tr122 is connected to one end of the light emitting side diode of the photocoupler PT121.
- the source of the transistor Tr122 is connected to the ground via the terminal T124.
- the other end of the light-emitting diode of the photocoupler PT121 is connected to the voltage source V1 via the terminal T123.
- the light-receiving side transistor of the photocoupler PT121 is connected to terminals T125 and T126.
- the transistor Tr121 is turned on / off according to an oscillation signal (clock signal) input to the gate.
- clock signal an oscillation signal
- the primary side of the transformer M121 is turned on / off between the voltage source V1 and the ground, and a voltage (pulse waveform) having the same cycle as the oscillation signal is induced on the secondary side of the transformer M121.
- the voltage induced on the secondary side of the transformer M121 (hereinafter sometimes referred to as VCC2) is smoothed by a smoothing circuit including a diode D121 and a capacitor C122.
- the “H” control signal is input to the inverting circuit Z121
- the “L” control signal is input to the gate of the transistor Tr122, and the transistor Tr122 is turned off.
- the transistor Tr122 is turned off, the current from the voltage source V1 does not flow through the light emitting side diode of the photocoupler PT121.
- the voltage VCC2 (drive signal) on the secondary side of the transformer M121 is output between the terminals T125 and T126 via the resistor R121.
- the floating drive circuits 120 and 130 include the transformer M121 that outputs the voltage based on the voltage source V1 to the secondary side according to the oscillation signal, and the secondary side of the transformer M121 according to the control signal. And a photocoupler PT121 that outputs the drive signal as a drive signal.
- the floating drive circuits 120 and 130 allow the voltages of the voltage sources V1 and V2, the winding ratio of the transformer M121, and the value of the resistor R121 according to the element characteristics (VG) of the transistors used in the switch circuits 40 and 60.
- the switch circuits 40 and 60 can be appropriately driven in a floating manner.
- a plurality of transformers may be connected in series as described in the second embodiment.
- the light-emitting side diode and the light-receiving side transistor of the photocoupler may be configured by individual components.
- the magnitude of the high voltage output to the output terminal can be changed.
- FIG. 7 is a circuit diagram of the power supply 2 according to the fifth embodiment. 7, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Below, a different part from FIG. 2 is demonstrated.
- the power supply 2 includes a terminal T141, a comparator Z141, amplifier circuits 150 and 170, floating drive circuits 160 and 180, terminals T161 to T165, terminals T181 to T185, and resistors R141 and R142. And have.
- the control signal output from the control unit 1 is input to the terminal T141.
- the control signal is output as a positive or negative voltage, and its magnitude can be changed.
- a control signal is input to the positive phase input of the comparator Z141 via the terminal T141.
- the voltage of the output terminal T71 divided by the resistors R141 and R142 is input to the negative phase input of the comparator Z141. That is, the voltage at the output terminal T71 is fed back to the comparator Z141 by the resistors R141 and R142.
- Comparator Z141 compares the voltages input to the positive phase input and the negative phase input, and outputs the comparison result to amplifier circuits 150 and 170 as a voltage.
- the amplifier circuit 150 includes an operational amplifier Z151, diodes D151 and D152, and a resistor R151.
- the output voltage of the comparator Z141 is input to the positive phase input of the operational amplifier Z151.
- the diode D152 is turned on, and the operational amplifier Z151 constitutes a voltage follower. Then, the output voltage of the comparator Z141 is output to the terminal T161.
- the comparison result of the comparator Z141 is a negative voltage
- the diode D152 is cut off, and the output voltage of the comparator Z141 is not output to the terminal T161.
- the floating drive circuit 160 includes a transistor Tr161, capacitors C161 and C162, a transformer M161, and a diode D161.
- the transistor Tr161 is, for example, an N-type MOS transistor.
- the source of the transistor Tr161 is connected to the ground via the terminal T163, and the drain is connected to one end on the primary side of the transformer M161.
- the transistor Tr161 is turned on / off in accordance with the oscillation signal input to the gate, whereby the primary side of the transformer M161 is turned on / off between the terminal T161 and the ground.
- the capacitor C161 resonates with the primary winding of the transformer M161 and performs stable quasi-resonance during the off period of the transistor Tr161.
- the other end of the primary side of the transformer M161 is connected to the output of a voltage follower (operational amplifier Z151) via a terminal T161.
- the secondary side of the transformer M161 is proportional to the magnitude of the output voltage of the voltage follower having the same period as the oscillation signal output from the oscillator 20 by turning on and off between the output of the voltage follower on the primary side and the ground. A voltage (pulse waveform) of the specified magnitude is induced.
- the voltage induced on the secondary side of the transformer M161 is smoothed by a smoothing circuit including a diode D161 and a capacitor C162. As a result, a drive signal for floatingly driving the switch circuit 40 is generated between the terminals T164 and T165.
- the amplifier circuit 170 includes an operational amplifier Z171, diodes D171 and D172, and resistors R171 and R172.
- the output voltage of the comparator Z141 is input to the negative phase input of the operational amplifier Z171 via the resistor R171.
- the operational amplifier Z151 constitutes an inverting amplifier having a gain determined by the ratio of the resistors R171 and R172.
- the inverted and amplified output voltage of the comparator Z141 is output to the terminal T181.
- the comparison result of the comparator Z141 is a positive voltage
- the output voltage of the operational amplifier Z151 is negative, the diode D172 is cut off, and the output voltage of the comparator Z141 is not output to the terminal T181.
- the floating drive circuit 180 is the same as the floating drive circuit 160, and the description thereof is omitted.
- a drive signal corresponding to the magnitude of the absolute value of the negative control signal input to the terminal T141 is generated between the terminals T184 and T185.
- the output voltage of the operational amplifier Z151 of the amplifier circuit 150 becomes positive, and the diode D152 is turned on.
- the operational amplifier Z151 constitutes a voltage follower, and “+ Vin” is output to the terminal T161.
- the transmission signal output from the oscillator 20 is input to the terminal T162, and the transistor Tr161 of the amplifier circuit 150 performs a switching operation. Since the primary side of the transformer M161 is repeatedly turned on and off at a voltage of “+ Vin”, a drive signal of a voltage “Vd” proportional to the magnitude of “+ Vin” is generated on the secondary side of the transformer M161. To do.
- the switch circuit 40 is turned on by the drive signal having the voltage “Vd”, and a positive voltage is generated at the output terminal T71.
- the output voltage “+ Vin” of the comparator Z141 is also output to the amplifier circuit 170, the output of the operational amplifier Z171 becomes a negative potential, the diode D172 is cut off, and the voltage at the terminal T181 remains zero. . For this reason, since the drive signal is not output from the floating drive circuit 180, the switch circuit 60 is turned off.
- the output voltage of the output terminal T71 is divided by the resistors R141 and R142 and input (feedback) to the negative phase input of the comparator Z141.
- the resistance ratio of the resistors R141 and R142 is 1000: 1 and the voltage of the voltage source V3 is 5.000V, the voltage of the resistor R142 rises from 0 and reaches a maximum of 5V.
- the output of the comparator Z141 becomes zero (a control signal of 1V is input to the terminal T141).
- the control unit 1 may output a 5 V control signal to the terminal T141.
- the operational amplifier Z171 operates as an inverting amplifier having a gain G determined by the ratio of the resistors R171 and R172, and a voltage of “+ Vin ⁇ G” is output to the terminal T181.
- the floating drive circuit 180 When a positive voltage “+ Vin ⁇ G” is output to the terminal T181, the floating drive circuit 180 outputs a drive signal having a positive voltage to the terminals T184 and T185.
- the switch circuit 60 is turned on by the drive signal, and a voltage is generated at the output terminal T71.
- the output voltage “ ⁇ Vin” of the comparator Z141 is also output to the amplifier circuit 150, the output of the operational amplifier Z151 becomes a negative potential, the diode D152 is cut off, and the voltage at the terminal T161 remains zero. Become. For this reason, since the drive signal is not output from the floating drive circuit 160, the switch circuit 40 is turned off.
- the output voltage of the output terminal T71 is divided by the resistors R141 and R142 and input (feedback) to the negative phase input of the comparator Z141.
- the resistance ratio of the resistors R141 and R142 is 1000: 1 and the voltage of the voltage source V4 is ⁇ 5.000V
- the voltage of the resistor R142 drops from 0 and reaches the minimum ⁇ 5V.
- the output of the comparator Z141 becomes zero (a control signal of -1V is input to the terminal T141).
- the control unit 1 may output a ⁇ 5V control signal to the terminal T141.
- the power source 2 can control the positive and negative high voltage outputs according to the voltage of the control signal input to the terminal T141.
- the power source 2 includes the comparator Z141 that compares the control signal and the feedback signal, the amplifier circuit 150 that detects and outputs the positive voltage of the comparator Z141, and the negative voltage of the comparator Z141.
- An amplifying circuit 170 that detects and inverts the output, a floating driving circuit 160 that insulates the amplifying circuit 150 and the switching circuit 40 from each other, outputs a driving signal that drives the switching circuit 40 based on the output from the amplifying circuit 150, and amplifies Based on the output of the amplifier circuit 170 that insulates the circuit 170 from the switch circuit 60, the voltage at the output terminal T71 is divided by the floating drive circuit 180 that outputs a drive signal for driving the switch circuit 60, and the comparator Z141.
- the power supply 2 can control the positive and negative high voltage outputs according to the voltage of the control signal input to the terminal T141.
- the mass spectrometer provided with the power source 2 can assemble algorithms for detecting various ion molecules.
- a first switch circuit connected between the voltage source of the first polarity and the output terminal; and a second switch circuit connected between the voltage source of the second polarity and the output terminal.
- a first switch element connected to the output terminal, to which a first drive signal for controlling a voltage of the output terminal is input to a control terminal; and
- a plurality of second switch elements cascode-connected between the switch element and the voltage source of the first polarity, and a voltage of the first polarity at each control terminal of the plurality of second switch elements
- a first voltage dividing circuit that divides and inputs a voltage between a source and the output terminal, and the second switch circuit controls a voltage of the output terminal to a control terminal.
- a third switch connected to the voltage source of the second polarity to which a drive signal is input.
- a plurality of fourth switch elements cascode-connected between the third switch element and the output terminal, and the control terminals of the plurality of fourth switch elements,
- a second voltage dividing circuit that divides and inputs a voltage between the voltage source having the polarity of the output and the output terminal;
- a mass analyzer that performs mass analysis of the sample by the voltage output from the output terminal,
- a mass spectrometer characterized by comprising:
- the mass spectrometer according to appendix 1 The mass analysis unit is a conversion dynode unit that attracts ions that have passed through a mass filter by a voltage output from the output terminal,
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Dc-Dc Converters (AREA)
Abstract
高電圧の極性をより高速に切り替え、出力する。 電源の第1のスイッチ回路は、制御端子に第1の駆動信号が入力される、出力端子と接続された第1のスイッチ素子と、第1のスイッチ素子と第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、複数の第2のスイッチ素子のそれぞれの制御端子に、第1の極性の電圧源と出力端子との間の電圧を分圧して入力する第1の分圧回路と、を有する。第2のスイッチ回路は、制御端子に第2の駆動信号が入力される、第2の極性の電圧源と接続された第3のスイッチ素子と、第3のスイッチ素子と出力端子との間にカスコード接続された複数の第4のスイッチ素子と、複数の第4のスイッチ素子のそれぞれの制御端子に、第2の極性の電圧源と出力端子との間の電圧を分圧して入力する第2の分圧回路と、を有する。
Description
本発明は、電源および質量分析装置に関するものである。
特許文献1には、出力電圧の正負の極性切り替えが可能な高電圧電源およびそれを用いた質量分析装置が開示されている。特許文献1では、極性の切替え時間を10~20m秒にすることができると記載されている。
質量分析装置では、例えば、気化された試料のイオンが、正イオンであるか負イオンであるかによって、気化された試料に印加する高電圧の極性を切り替える。この切り替え時間が長くなると、イオンの非検出期間が長くなり、定量値の検出において正確な分析が出来なくなるという問題がある。
そこで本発明は、高電圧の極性をより高速に切り替え、出力することができる技術を提供することを目的とする。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。上記課題を解決すべく、本発明に係る電源は、第1の極性の電圧源と出力端子との間に接続された第1のスイッチ回路と、第2の極性の電圧源と前記出力端子との間に接続された第2のスイッチ回路と、を有し、前記第1のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第1の駆動信号が入力される、前記出力端子と接続された第1のスイッチ素子と、前記第1のスイッチ素子と前記第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、前記複数の第2のスイッチ素子のそれぞれの制御端子に、前記第1の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第1の分圧回路と、を有し、前記第2のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第2の駆動信号が入力される、前記第2の極性の電圧源と接続された第3のスイッチ素子と、前記第3のスイッチ素子と前記出力端子との間にカスコード接続された複数の第4のスイッチ素子と、前記複数の第4のスイッチ素子のそれぞれの制御端子に、前記第2の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第2の分圧回路と、を有することを特徴とする。
本発明によれば、高電圧の極性をより高速に切り替え、出力することができる。上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる。
以下、本発明の実施の形態を、図面を参照して説明する。
質量分析装置は、試料を分子あるいはイオン分子などの形にして質量数を測定するものである。例えば、液体クロマトグラフ質量分析装置においては、対象試料を液体に溶融した後、気化した状態でイオン化し、マスフィルタまたはイオントラップと呼ばれる質量選別器を通って分離された分子イオンの数を検出する。質量分析装置は、検出した分子イオンの数に基づいて、試料中に含まれる分子の種類と定量値(割合)を測定する。
質量分析装置は、試料を分子あるいはイオン分子などの形にして質量数を測定するものである。例えば、液体クロマトグラフ質量分析装置においては、対象試料を液体に溶融した後、気化した状態でイオン化し、マスフィルタまたはイオントラップと呼ばれる質量選別器を通って分離された分子イオンの数を検出する。質量分析装置は、検出した分子イオンの数に基づいて、試料中に含まれる分子の種類と定量値(割合)を測定する。
[第1の実施の形態]
図1は、第1の実施の形態に係る電源を用いた質量分析装置の構成例を示した図である。図1に示す質量分析装置は、例えば、液体クロマトグラフから溶出する試料液を分析する質量分析装置である。図1に示すように、質量分析装置は、制御部1と、電源2~4と、イオン化部5と、マスフィルタ6と、CD(Conversion Dynode:コンバージョンダイノード)部7と、シンチレータ8と、光電子検出器9とを有している。なお、図1には、説明のため、イオン分子A1,A2と、2次電子A3と、フォトンA4とを示している。
図1は、第1の実施の形態に係る電源を用いた質量分析装置の構成例を示した図である。図1に示す質量分析装置は、例えば、液体クロマトグラフから溶出する試料液を分析する質量分析装置である。図1に示すように、質量分析装置は、制御部1と、電源2~4と、イオン化部5と、マスフィルタ6と、CD(Conversion Dynode:コンバージョンダイノード)部7と、シンチレータ8と、光電子検出器9とを有している。なお、図1には、説明のため、イオン分子A1,A2と、2次電子A3と、フォトンA4とを示している。
制御部1は、装置全体を制御している。制御部1は、電源2,4が出力する電圧の極性を切り替えるための制御信号を、電源2,4に出力している。
電源2は、例えば、数kVの高電圧をイオン化部5に出力する。電源2は、制御部1から出力される制御信号に応じて、イオン化部5に出力する高電圧の極性を切り替える。
電源3は、高周波電圧と直流電圧とを重畳した電圧をマスフィルタ6に出力する。
電源4は、例えば、数kVの高電圧をCD部7に出力する。電源4は、制御部1から出力される制御信号に応じて、CD部7に出力する高電圧の極性を切り替える。
イオン化部5には、質量分析される試料液が封入される。イオン化部5は、封入された試料液の原子や分子をイオン化する。イオン化部5は、電源2から供給される、極性の異なる高電圧によって、試料を正または負のイオンにイオン化する。イオン化部5によってイオン化されたイオン分子A1は、マスフィルタ6へ送られる。
マスフィルタ6には、電源3から、高周波電圧と直流電圧とを重畳した電圧が印加される。マスフィルタ6は、印加された電圧によって電場を形成し、所定質量数のイオンのみを通過させる。マスフィルタ6を通過した所定質量数のイオン分子A2は、CD部7へ送られる。
CD部7には、電源4から高電圧が供給されている。CD部7は、電源4から供給された高電圧によって電場を形成し、マスフィルタ6を通過した所定質量数のイオン分子A2を誘引する。例えば、CD部7には、イオン分子A2と逆極性の高電圧が印加され、イオン分子A2を誘引する。
CD部7へ誘引されたイオン分子A2は、CD部7が備えるCDに衝突し、CDは、2次電子A3を放出する。CD部7から放出された2次電子A3は、下方に進み、シンチレータ8にエネルギーを与える。
シンチレータ8は、2次電子A3によって与えられたエネルギーによって、フォトンA4を生成する。シンチレータ8で生成されたフォトンA4は、光電子検出器9で増幅される。
光電子検出器9は、2次電子A3の数に応じた検出信号を出力する。すなわち、光電子検出器9は、マスフィルタ6を通過してCD部7に到達した、イオン分子A2の数に応じた検出信号を出力する。
このように、質量分析装置の制御部1は、分析対象であるイオンの極性に応じて、電源2,4に対し、出力電圧の極性を切り替える制御信号を出力する。電源2,4は、以下で説明するように、制御信号に応じて、出力する高電圧の極性を高速に切り替える。これにより、質量分析装置は、例えば、正イオン検出と負イオン検出とを、短時間毎に交互に繰り返し行うことが可能となり、イオン検出できない期間を短くすることができる。そして、質量分析装置は、良好なマスクロマトグラムやイオンクロマトグラムを作成することができる。
図2は、電源2の回路図である。電源4は、図2と同様の回路を有しており、その説明を省略する。図2に示すように、電源2は、タイミング制御回路10と、発振器20と、フローティング駆動回路30,50と、スイッチ回路40,60と、出力端子T71と、抵抗R71と、電圧源V1~V4と、端子T11~T13と、端子T31~T36と、端子T41~T43と、端子T51~T56と、端子T61~T63とを有している。出力端子T71は、イオン化部5に接続されている。なお、電源4の出力端子は、CD部7に接続されている。
端子T11には、制御部1から出力される制御信号が入力される。制御信号は、例えば、「H(High)」および「L(Low)」の信号である。
タイミング制御回路10は、端子T11に「H」の制御信号が入力されると、端子T12に「H」の制御信号を出力し、端子T13に「L」の制御信号を出力する。また、タイミング制御回路10は、端子T11に「L」の制御信号が入力されると、端子T13に「H」の制御信号を出力し、端子T12に「L」の制御信号を出力する。なお、スイッチ回路40は、端子T12に「H」の制御信号が出力されたとき、電圧源V3の正の電圧を出力端子T71に出力する。スイッチ回路60は、端子T13に「H」の制御信号が出力されたとき、電圧源V4の負の電圧を出力端子T71に出力する。
タイミング制御回路10は、遅延器11と、AND回路Z11と、NAND回路Z12とを有している。
AND回路Z11の一端には、制御部1の制御信号が入力され、他端には、遅延器11を介して、制御部1の制御信号が入力される。これにより、制御部1の制御信号が「L」から「H」に切り替わったとき、AND回路Z11からは、遅延器11による遅延時間「ΔT」だけ遅れて、「H」の制御信号が出力される。これに対し、制御部1の制御信号が「H」から「L」に切り替わったときは、そのタイミングにおいて、AND回路Z11から「L」の制御信号が出力される。
NAND回路Z12の一端には、制御部1の制御信号が入力され、他端には、遅延器11を介して、制御部1の制御信号が入力される。これにより、制御部1の制御信号が「H」から「L」に切り替わったとき、NAND回路Z12からは、遅延器11による遅延時間「ΔT」だけ遅れて、「H」の制御信号が出力される。これに対し、制御部1の制御信号が「L」から「H」に切り替わったときは、そのタイミングにおいて、NAND回路Z12から「L」の制御信号が出力される。
つまり、タイミング制御回路10は、制御信号が「L」から「H」に遷移したとき、時間「ΔT」だけ遅れて、「H」の制御信号を端子T12に出力する。また、タイミング制御回路10は、制御信号が「H」から「L」に遷移したとき、時間「ΔT」だけ遅れて、「H」の制御信号を端子T13に出力する。すなわち、タイミング制御回路10は、以下で説明するが、2つのスイッチ回路40,60が同時(ほぼ同時を含む、以下同じ)にオンしないように、端子T12,T13に出力する「H」の制御信号の出力タイミングをずらす。
発振器20は、発振信号を、端子T32,T52を介して、フローティング駆動回路30,50に出力する。発振信号は、例えば、数100kHz~1MHz程度のクロック信号である。
フローティング駆動回路30は、端子T31に出力された制御信号に応じて、端子T35,T36間に、スイッチ回路40をオン・オフするための駆動信号を出力する。
端子T36は、出力端子T71と接続されている。出力端子T71は、後述するように、電圧源V3による正の高電圧と、電圧源V4による負の高電圧との間で遷移する。そこで、フローティング駆動回路30は、トランス(磁気的結合)を用いてタイミング制御回路10とスイッチ回路40とを電気的に絶縁し、スイッチ回路40をフローティング(絶縁)駆動する。
フローティング駆動回路30は、AND回路Z31と、トランジスタTr31と、コンデンサC31,C32と、トランスM31と、ダイオードD31とを有している。
AND回路Z31の一端には、端子T31を介して、タイミング制御回路10から出力される制御信号が入力される。AND回路Z31の他端には、端子T32を介して、発振器20から出力される発振信号が入力される。AND回路Z31は、一端に「H」の制御信号が入力されているとき、他端に入力されている発振信号を、トランジスタTr31のゲートに出力する。
トランジスタTr31は、例えば、N型のMOS(Metal Oxide Semiconductor)トランジスタである。トランジスタTr31のソースは、端子T34を介してグランドに接続され、ドレインは、トランスM31の1次側および端子T33を介して、電圧「VCC」を供給する電圧源V1に接続されている。トランジスタTr31は、AND回路Z31から出力される発振信号(クロック信号)に応じてオン・オフし、これにより、トランスM31の1次側は、電圧源V1とグランドとの間でオン・オフする。
コンデンサC31は、トランジスタTr31のオフ期間に、トランスM31の1次巻線と共振して安定した疑似共振を行う。
トランスM31の2次側は、1次側の電圧源V1とグランドとの間のオン・オフによって、発振器20から出力される発振信号と同一周期の電圧(パルス波形)が誘起される。これにより、フローティング駆動回路30は、トランスM31による巻線分離によって、スイッチ回路40をフローティング駆動する。
トランスM31の2次側に誘起された電圧は、ダイオードD31およびコンデンサC22によって構成される平滑回路で平滑化される。これにより、端子T35,T36間には、端子T31に入力された制御信号に応じた、フローティングされた駆動信号が発生する。例えば、端子T31に「H」の制御信号が入力されると、フローティング駆動回路30は、端子T35,T36間に、後述するスイッチ回路40のトランジスタTr41をオンする駆動信号を出力する。一方、端子T31に「L」の制御信号が入力されると、フローティング駆動回路30は、端子T35,T36間に、トランジスタTr41をオンする駆動信号を出力しない。
なお、電圧源V1の電圧と、トランスM31の1次側および2次側の巻線比とを適切に設計することにより、端子T35,T36の間には、トランジスタTr41のVG(閾値電圧)以上の電圧の駆動信号を発生させることができる。
フローティング駆動回路50は、フローティング駆動回路30と同様の構成を有しており、その説明を省略する。なお、フローティング駆動回路50は、端子T51に「H」の制御信号が入力されると、端子T55,T56間に、スイッチ回路60をオンする駆動信号を出力する。一方、端子T51に「L」の制御信号が入力されると、フローティング駆動回路50は、端子T55,T56間に、スイッチ回路60をオンする駆動信号を出力しない。
スイッチ回路40は、正の電圧(VDD)を出力する電圧源V3と、出力端子T71との間に接続されている。スイッチ回路40は、端子T35,T36に出力される駆動信号に応じて、電圧源V3の正の高電圧を出力端子T71に出力する。
例えば、スイッチ回路40は、端子T35,T36間に、VG以上の電圧の駆動信号が出力されるとオンする。これにより、電圧源V3の正の高電圧が、出力端子T71に出力される。電圧源V3の電圧は、例えば、1kV~10kVの正の高電圧である。
スイッチ回路40は、トランジスタTr41~Tr43と、抵抗R41~R46と、ダイオードD41~D43とを有している。トランジスタTr41~Tr43は、例えば、N型のMOSトランジスタである。
トランジスタTr41のゲートは、端子T41を介して、端子T35と接続されている。トランジスタTr41のソースは、端子T43を介して、端子T36および出力端子T71と接続されている。また、トランジスタTr41のソースは、端子T43を介して、一端がグランドに接続された抵抗R71と接続されている。
トランジスタTr42,Tr43は、トランジスタTr41と電圧源V3との間にカスコード接続されている。トランジスタTr42のソースは、トランジスタTr41のドレインと接続され、トランジスタTr43のソースは、トランジスタTr42のドレインと接続され、トランジスタTr43のドレインは、端子T42を介して、電圧源V3と接続されている。
トランジスタTr42,T43のゲートには、電圧源V3と出力端子T71との間の電圧を分圧して入力する抵抗R41~R43が接続されている。抵抗R41は、トランジスタTr42のゲートと、トランジスタTr41のソース(出力端子T71)との間に接続されている。抵抗R42は、トランジスタTr42のゲートと、トランジスタTr43のゲートとの間に接続されている。抵抗R43は、トランジスタTr43のゲートと、トランジスタTr43のドレイン(電圧源V3)との間に接続されている。
トランジスタTr41~Tr42のそれぞれのソースとドレインとの間には、抵抗R44~R46が並列に接続されている。抵抗R44~R46は、電圧源V3と出力端子T71との間の電圧を分圧して印加する。この抵抗R44~R46により、トランジスタTr41~Tr43のそれぞれの耐圧は平等となり、トランジスタTr41~Tr43は、安定して動作することができる。
トランジスタTr41~Tr43のそれぞれのゲートとソースとの間には、ダイオードD41~D43が接続されている。ダイオードD41~D43は、例えば、ツェナーダイオードであり、トランジスタTr41~Tr43のゲートにかかる過電圧を抑制する。
スイッチ回路40の動作について説明する。電圧源V3と出力端子T71との間の電圧は、抵抗R44~R46によって分圧され、トランジスタTr41~Tr43のぞれぞれのソースに印加されている。また、電圧源V3と出力端子T71との間の電圧は、抵抗R41~R43によって分圧され、トランジスタTr41,Tr42のそれぞれのゲートに印加されている。従って、端子T41と端子T43との間の電位差がゼロの場合、すなわち、端子T35,T36間に出力された駆動信号の電圧がゼロの場合、トランジスタTr41~Tr43は、オフの状態にあり、微小なブリーダ電流が流れている。
ブリーダ電流は、抵抗R71を介して、電圧源V3に帰還するが、同時に電圧源V4によるブリーダ電流が、抵抗R71、端子T63、スイッチ回路60、および電圧源V4を介して流れる。そのため、端子T43と端子T63はゼロ電位に保たれ、出力端子T71の電位はゼロである。
端子T41,T43間に、駆動信号(VG)が印加されると、トランジスタTr41はオンする。トランジスタTr41がオンすると、抵抗R44の両端は短絡状態となり、トランジスタTr42のソース電位が、トランジスタTr42のゲート電位より低くなる。トランジスタTr42のゲートとソースとの電位差がVGを超えると、トランジスタTr42はオンする。
トランジスタTr42がオンすると、抵抗R45の両端は短絡状態となり、トランジスタTr43のソース電位が、トランジスタTr43のゲート電位より低くなる。トランジスタTr43のゲートとソースとの電位差がVGを超えると、トランジスタTr43はオンする。
すなわち、端子T41,T43に駆動信号が出力されると、トランジスタTr41~Tr43は、トランジスタTr41,Tr42,Tr43の順にオンする。そして、出力端子T71には、電圧源V3の正の高電圧が印加される。一方、端子T41,T43に駆動信号が出力されなくなると(端子T41,T43間の電圧がゼロになると)、トランジスタTr41~Tr43は、トランジスタTr41,Tr42,Tr43の順にオフし、出力端子T71の電位はゼロに戻る。
スイッチ回路60について説明する。スイッチ回路60は、負の電圧(-VEE)を出力する電圧源V4と出力端子T71との間に接続されている。スイッチ回路40は、端子T55,T56に出力される駆動信号に応じて、電圧源V4の負の高電圧を出力端子T71に出力する。
例えば、スイッチ回路60は、端子T55,T56間に、VG以上の電圧の駆動信号が出力されるとオンする。これにより、電圧源V4の負の高電圧が、出力端子T71に出力される。電圧源V4の電圧は、例えば、-1kV~-10kVの負の高電圧である。
スイッチ回路60は、トランジスタTr61~Tr63と、抵抗R61~R66と、ダイオードD61~D63とを有している。トランジスタTr61~Tr63は、例えば、N型のMOSトランジスタである。
トランジスタTr61のゲートは、端子T61を介して、端子T65と接続されている。トランジスタTr61のソースは、端子T62を介して、端子T56および電圧源V4と接続されている。
トランジスタTr62,Tr63は、トランジスタTr61と出力端子T71との間にカスコード接続されている。トランジスタTr62のソースは、トランジスタTr61のドレインと接続され、トランジスタTr63のソースは、トランジスタTr62のドレインと接続され、トランジスタTr63のドレインは、端子T63を介して、出力端子T71と接続されている。
トランジスタTr62,T63のゲートには、電圧源V4と出力端子T71との間の電圧を分圧して入力する抵抗R61~R63が接続されている。抵抗R61は、トランジスタTr62のゲートと、トランジスタTr61のソース(電圧源V4)との間に接続されている。抵抗R62は、トランジスタTr62のゲートと、トランジスタTr63のゲートとの間に接続されている。抵抗R63は、トランジスタTr63のゲートと、トランジスタTr63のドレイン(出力端子T71)との間に接続されている。
トランジスタTr61~Tr62のそれぞれのソースとドレインとの間には、抵抗R64~R66が並列に接続されている。抵抗R64~R66は、電圧源V4と出力端子T71との間の電圧を分圧して印加する。この抵抗R64~R66により、トランジスタTr61~Tr63のそれぞれの耐圧は平等となり、トランジスタTr61~Tr63は、安定して動作することができる。
トランジスタTr61~Tr63のそれぞれのゲートとソースとの間には、ダイオードD61~D63が接続されている。ダイオードD61~D63は、例えば、ツェナーダイオードであり、トランジスタTr61~Tr63のゲートにかかる過電圧を抑制する。
スイッチ回路60の動作について説明する。電圧源V4と出力端子T71との間の電圧は、抵抗R64~R66によって分圧され、トランジスタTr61~Tr63のぞれぞれのソースに印加されている。また、電圧源V4と出力端子T71との間の電圧は、抵抗R61~R63によって分圧され、トランジスタTr61,Tr62のそれぞれのゲートに印加されている。従って、端子T61と端子T62との間の電位差がゼロの場合、すなわち、端子T55,T56間に出力された駆動信号の電圧がゼロの場合、トランジスタTr61~Tr63は、オフの状態にあり、微小なブリーダ電流が流れている。
ブリーダ電流は、電圧源V4に流入し、抵抗R71を介して帰還するが、同時に電圧源V3によるブリーダ電流が、抵抗R71、電圧源V3、スイッチ回路40、および端子T43を介して流れる。そのため、端子T63と端子T43はゼロ電位に保たれ、出力端子T71の電位はゼロである。
端子T61,T62間に、駆動信号(VG)が印加されると、トランジスタTr61はオンする。トランジスタTr61がオンすると、抵抗R64の両端は短絡状態となり、トランジスタTr62のソース電位が、トランジスタTr62のゲート電位より低くなる。トランジスタTr62のゲートとソースとの電位差がVGを超えると、トランジスタTr62はオンする。
トランジスタTr62がオンすると、抵抗R65の両端は短絡状態となり、トランジスタTr63のソース電位が、トランジスタTr63のゲート電位より低くなる。トランジスタTr63のゲートとソースとの電位差がVGを超えると、トランジスタTr63はオンする。
すなわち、端子T61,T62に駆動信号が出力されると、トランジスタTr61~Tr63は、トランジスタTr61,Tr62,Tr63の順にオンする。そして、出力端子T71には、電圧源V4の負の高電圧が印加される。一方、端子T61,T62に駆動信号が出力されなくなると(端子T61,T62間の電圧がゼロになると)、トランジスタTr61~Tr63は、トランジスタTr61,Tr62,Tr63の順にオフし、出力端子T71の電位はゼロに戻る。
このように、スイッチ回路40は、正の電圧源V3と出力端子T71との間に接続され、カスコード接続された複数のトランジスタTr41~Tr43によって、電圧源V3の正の高電圧を出力端子T71に出力する。また、スイッチ回路60は、負の電圧源V4と出力端子T71との間に接続され、カスコード接続された複数のトランジスタTr61~Tr63によって、電圧源V4の負の高電圧を出力端子T71に出力する。これにより、電源2は、高電圧の極性をより高速に切り替えることができる。
図3は、電源2の動作例を説明するタイミングチャートである。図3に示す横軸tは時間を示している。
(A)に示す波形は、図2の端子T11に入力される制御信号を示している。(B)に示す波形は、タイミング制御回路10の遅延器11から出力される制御信号を示している。
タイミング制御回路10のAND回路Z11には、(A)に示す波形の制御信号と、(B)に示す波形の制御信号とが入力される。従って、AND回路Z11からは、(A)に示す波形と、(B)に示す波形とのANDを取った、(C)に示す波形の制御信号が出力される。(C)に示す波形の制御信号は、フローティング駆動回路30に出力される。
また、タイミング制御回路10のNAND回路Z12には、(A)に示す波形の制御信号と、(B)に示す波形の制御信号とが入力される。従って、NAND回路Z12からは、(A)に示す波形と、(B)に示す波形とのNANDを取った、(D)に示す波形の制御信号が出力される。(D)に示す波形の制御信号は、フローティング駆動回路50に出力される。
(E)に示す波形は、出力端子T71から出力される電圧の波形を示している。(C)および(E)に示すように、フローティング駆動回路30に「H」の制御信号が入力されているとき、フローティング駆動回路30からは、スイッチ回路40をオンする駆動信号が出力され、出力端子T71には、電圧源V3の正の高電圧「VDD」が出力される。また、(D)および(E)に示すように、フローティング駆動回路50に「H」の制御信号が入力されているとき、フローティング駆動回路50からは、スイッチ回路60をオンする駆動信号が出力され、出力端子T71には、電圧源V4の負の高電圧「-VEE」が出力される。
図3の「ΔT」に示すように、スイッチ回路40,60のオン・オフの遷移時間は、タイミング制御回路10の遅延器11によって、時間差を持つ。これにより、電源2は、電圧源V3と電圧源V4とが導通することによる貫通電流を阻止しつつ、出力端子T71に接続される負荷への充放電を高速に行うことができる。
以上説明したように、正の電圧源V3と出力端子T71との間に接続されたスイッチ回路40は、駆動信号が入力される、出力端子T71と接続されたトランジスタTr41と、トランジスタTr41と電圧源V3との間にカスコード接続された複数のトランジスタTr42,Tr43と、複数のトランジスタTr42,Tr43のそれぞれのゲートに、電圧源V3と出力端子T71との間の電圧を分圧して入力する複数の抵抗R41~R43と、を有する。負の電圧源V4と出力端子T71との間に接続されたスイッチ回路60は、駆動信号が入力される、電圧源V4と接続されたトランジスタTr61と、トランジスタTr61と出力端子T71との間にカスコード接続されたトランジスタTr62,Tr63と、複数のトランジスタTr62,63のそれぞれのゲートに、電圧源V4と出力端子T71との間の電圧を分圧して入力する複数の抵抗R61~R63とを有する。これにより、電源2は、高電圧の極性をより高速に切り替え、出力することができる。例えば、電源2は、0.5msecで、電圧源V3,V4の高電圧を切り替え、出力することができる。また、電源2は、簡易な構成で実現でき、低コスト化を図ることができる。また、質量分析装置は、正負イオンの定量分析を高精度で短時間に行うことができる。
また、トランジスタTr41~Tr43のそれぞれには、抵抗R44~R46が並列に接続され、トランジスタTr61~Tr63のそれぞれには、抵抗R64~R66が並列に接続される。これにより、トランジスタTr41~Tr43,Tr61~Tr63の耐電圧は平等となり、トランジスタTr41~Tr43,Tr61~Tr63は、過渡的な変化に対しても安定して動作することができる。
また、電源2は、スイッチ回路40,60とタイミング制御回路10との間に、スイッチ回路40,60とタイミング制御回路10とを電気的に絶縁するフローティング駆動回路30,50を有する。これにより、電源2は、電圧源V3と出力端子T71との間に接続されたスイッチ回路40と、電圧源V4と出力端子T71との間に接続されたスイッチ回路60とを高速に駆動することができる。
[第2の実施の形態]
第2の実施の形態では、フローティング駆動回路は、複数のトランスを有する。これにより、それぞれのトランスにかかる絶縁耐圧を低くし、電圧源のさらなる高電圧に対応できるようにする。
第2の実施の形態では、フローティング駆動回路は、複数のトランスを有する。これにより、それぞれのトランスにかかる絶縁耐圧を低くし、電圧源のさらなる高電圧に対応できるようにする。
図4は、第2の実施の形態に係る電源2の回路図である。図4において、図2と同じものには同じ符号を付し、その説明を省略する。以下では、図2と異なる部分について説明する。
図4に示すように電源2は、フローティング駆動回路80と、抵抗R81,R82と、端子T81~T87と、フローティング駆動回路90と、抵抗R91,R92と、端子T91~T97とを有している。フローティング駆動回路90は、フローティング駆動回路80と同様の構成を有しており、その説明を省略する。
端子T81,T82には、図2の端子T31,T32と同様に、制御信号と発振信号とが入力される。端子T83には、図2の端子T33と同様に、電圧源V1の電圧が入力される。端子T86,T87からは、図2の端子T35,T36と同様に、駆動信号が出力される。
フローティング駆動回路80は、AND回路Z81と、トランジスタTr81と、コンデンサC81,C82と、トランスM81,M82と、ダイオードD81とを有している。AND回路Z81、トランジスタTr81、コンデンサC81、およびトランスM81の1次側は、図2に示したAND回路Z31、トランジスタTr31、コンデンサC31、およびトランスM31の1次側と同様であり、その説明を省略する。
トランスM81,M82は、直列に接続されている。トランスM81の2次側は、トランスM82の1次側に接続されている。これにより、トランスM82の2次側には、発振器20から出力される発振信号と同一周期の電圧(パルス波形)が誘起される。
トランスM82の2次側に誘起された電圧は、ダイオードD81およびコンデンサC82によって構成される平滑回路で平滑化される。これにより、端子T86,T87間には、端子T81に入力された制御信号に応じた、フローティングされた駆動信号が発生する。
抵抗R81,R82は、出力端子T71とグランドとの間に直列に接続されている。トランスM81の2次側の一端およびトランスM82の1次側の一端は、端子T85を介して、抵抗R81と抵抗R82との間に接続されている。これにより、トランスM81の2次側の一端の電位およびトランスM82の1次側の一端の電位は、出力端子T71の電位を、抵抗R81,R82によって分圧した電位に保持される。例えば、抵抗R81,R82の抵抗値を同じにすると、端子T85の電位は、出力端子T71の電位の中間電位(1/2)に保持され、トランスM81,M82の絶縁耐圧を平等にできる。
上記では、直列に接続された2つのトランスM81,M82の例について説明したが、3以上のトランスが直列に接続されてもよい。この場合、直列に接続するトランスの数に合わせて、出力端子T71とグランドとの間に直列に接続される抵抗の数を増やす。そして、各トランスの接続点を、複数の抵抗で分圧した電位で保持するようにする。
以上説明したように、フローティング駆動回路80,90は、直列に接続された複数のトランスM81,M82を有する。これにより、フローティング駆動回路80,90は、さらに絶対値の大きい電圧を出力する電圧源V3,V4が用いられても、スイッチ回路40,60をフローティング駆動することができる。例えば、フローティング駆動回路80,90は、例えば、電圧源V3,V4の電圧の絶対値が、10kVを超えるような場合であっても、トランスと抵抗とを複数個設けることにより、スイッチ回路40,60をフローティング駆動することができる。
[第3の実施の形態]
第3の実施の形態では、フローティング駆動回路は、フォトカプラによって、タイミング制御回路とスイッチ回路とを電気的に絶縁する。
第3の実施の形態では、フローティング駆動回路は、フォトカプラによって、タイミング制御回路とスイッチ回路とを電気的に絶縁する。
図5は、第3の実施の形態に係る電源2の回路図である。図5において、図2と同じものには同じ符号を付し、その説明を省略する。以下では、図2と異なる部分について説明する。
図5に示すように電源2は、フローティング駆動回路100と、端子T101~T105と、フローティング駆動回路110と、端子T111~T115とを有している。フローティング駆動回路110は、フローティング駆動回路100と同様の構成を有しており、その説明を省略する。
端子T101には、図2の端子T31と同様に、制御信号が入力される。端子T102には、図2の端子T33と同様に、電圧源V1の電圧が入力される。端子T104,T105からは、図2の端子T35,T36と同様に、駆動信号が出力される。
フローティング駆動回路100は、トランジスタTr101と、フォトカプラPT101~PT103とを有している。トランジスタTr101は、例えば、N型のMOSトランジスタである。
トランジスタTr101のゲートは、端子T101と接続され、タイミング制御回路10から出力される制御信号が入力される。トランジスタTr101のドレインは、フォトカプラPT101~PT103のそれぞれの発光側ダイオードの一端と接続されている。トランジスタTr101のソースは、端子T103を介して、グランドに接続されている。
フォトカプラPT101~PT103のそれぞれの発光側ダイオードの他端は、端子T102を介して、電圧源V1と接続されている。フォトカプラPT101~PT103の受光側ダイオードは、直列となるように接続されている。直列に接続された受光側ダイオードの両端は、端子T104,T105に接続されている。
端子T101に「H」の制御信号が入力されると、トランジスタTr101はオンする。これにより、フォトカプラPT101~PT103のそれぞれの発光側ダイオードには、電圧源V1の電圧が印加され、フォトカプラPT101~PT103の発光側ダイオードは発光する。
フォトカプラPT101~PT103の受光側ダイオードは直列に接続されており、1個当たりの出力電圧を「Vpt」とすると、端子T104,T105には、「3Vpt」の電圧の駆動信号が出力される。例えば、フォトカプラPT101~PT103の受光側ダイオードの1個当たりの出力電圧を「0.7V」とすると、端子T104,T105には、「2.1V」の駆動信号が出力される。
なお、端子T104,T105間の電圧差をVG以上とすれば、スイッチ回路40を駆動できる。従って、スイッチ回路40に使用するトランジスタのVGに応じて、フォトカプラPT101~PT103の数を増減させる。
以上説明したように、フローティング駆動回路100,110は、受光側ダイオードが直列に接続された複数のフォトカプラPT101~PT103によって、スイッチ回路40,60とタイミング制御回路10とを絶縁する。これにより、フローティング駆動回路100,110は、適切な電圧の駆動信号をスイッチ回路40,60に出力することができる。
なお、上記では、フォトカプラPT101~PT103の発光側ダイオードの接続は並列接続としているが、電圧源V1の電圧に応じて直列に接続してもよい。
また、発光側ダイオードと受光側ダイオードとを一体としたフォトカプラPT101~PT103ではなく、発光側と受光側を別部品で構成してもよい。この場合、発光側と受光側は、十分な絶縁距離を確保する。
[第4の実施の形態]
第4の実施の形態では、受光側にフォトトランジスタを用いたフォトカプラによって、タイミング制御回路とスイッチ回路とを電気的に絶縁する。
第4の実施の形態では、受光側にフォトトランジスタを用いたフォトカプラによって、タイミング制御回路とスイッチ回路とを電気的に絶縁する。
図6は、第4の実施の形態に係る電源2の回路図である。図6において、図2と同じものには同じ符号を付し、その説明を省略する。以下では、図2と異なる部分について説明する。
図6に示すように電源2は、フローティング駆動回路120と、端子T121~T126と、フローティング駆動回路130と、端子T131~T136とを有している。フローティング駆動回路130は、フローティング駆動回路120と同様の構成を有しており、その説明を省略する。
端子T121には、発振器20から出力される発振信号が入力される。端子T122には、タイミング制御回路10から出力される制御信号が入力される。端子T125,T126からは、図2の端子T35,T36と同様に、駆動信号が出力される。
フローティング駆動回路120は、トランジスタTr121,Tr122と、コンデンサC121,C122と、トランスM121と、ダイオードD121と、抵抗R121と、反転回路Z121と、フォトカプラPT121とを有している。
トランジスタTr121は、例えば、N型のMOSトランジスタである。トランジスタTr121のゲートには、端子T121を介して、発振器20の発振信号が入力される。トランジスタTr121のドレインは、トランスM121の1次側の一端と接続されている。トランジスタTr121のソースは、端子T124を介して、グランドに接続されている。トランジスタTr121のソースとドレインとの間に接続されたコンデンサC121は、トランジスタTr121のオフ期間に、トランスM121の1次巻線と共振して安定した疑似共振を行う。
トランスM121の1次側の他端は、端子T123を介して、電圧源V1と接続されている。トランスM121の2次側は、ダイオードD121とコンデンサC122とによって構成される平滑回路と抵抗R121とを介して、端子T125,T126と接続されている。
反転回路Z121には、端子T122を介して、制御信号が入力される。反転回路Z121は、入力された制御信号を反転して、トランジスタTr122のゲートに出力する。
トランジスタTr122は、例えば、N型のMOSトランジスタである。トランジスタTr122のドレインは、フォトカプラPT121の発光側ダイオードの一端と接続されている。トランジスタTr122のソースは、端子T124を介して、グランドと接続されている。
フォトカプラPT121の発光側ダイオードの他端は、端子T123を介して、電圧源V1と接続されている。フォトカプラPT121の受光側トランジスタは、端子T125,T126と接続されている。
トランジスタTr121は、ゲートに入力される発振信号(クロック信号)に応じてオン・オフする。これにより、トランスM121の1次側は、電圧源V1とグランドとの間でオン・オフし、トランスM121の2次側は、発振信号と同一周期の電圧(パルス波形)が誘起される。トランスM121の2次側に誘起された電圧(以下、VCC2と呼ぶことがある)は、ダイオードD121およびコンデンサC122によって構成される平滑回路で平滑化される。
反転回路Z121に、「H」の制御信号が入力された場合、トランジスタTr122のゲートには、「L」の制御信号が入力され、トランジスタTr122はオフする。トランジスタTr122がオフすると、フォトカプラPT121の発光側ダイオードには、電圧源V1による電流が流れないため、発光側ダイオードは発光せず、受光側トランジスタはオフする。これにより、端子T125,T126間には、抵抗R121を介して、トランスM121の2次側の電圧VCC2(駆動信号)が出力される。
一方、反転回路Z121に、「L」の制御信号が入力された場合、トランジスタTr122のゲートには、「H」の制御信号が入力され、トランジスタTr122はオンする。トランジスタTr122がオンすると、フォトカプラPT121の発光側ダイオードには、電圧源V1による電流が流れ、発光側ダイオードは発光し、受光側トランジスタはオンする。これにより、トランスM121の2次側の電圧VCC2(駆動信号)は、抵抗R121に電流を流して消費されるため、端子T125,T126間の電圧はほぼゼロとなる。
以上説明したように、フローティング駆動回路120,130は、発振信号に応じて、電圧源V1に基づく電圧を2次側に出力するするトランスM121と、制御信号に応じて、トランスM121の2次側の出力を制御し、駆動信号として出力するフォトカプラPT121とを有する。これにより、フローティング駆動回路120,130は、スイッチ回路40,60に用いられるトランジスタの素子特性(VG)に応じて、電圧源V1,V2の電圧、トランスM121の巻き線比、および抵抗R121の値を適切に選択または変更することにより、適切にスイッチ回路40,60をフローティング駆動することができる。
なお、電圧源V3,V4の電圧に応じて、フローティング駆動回路120,130の絶縁耐圧の向上を図るには、第2の実施の形態で説明したように、トランスを複数直列に接続すればよい。また、第3の実施の形態で説明したように、フォトカプラの発光側ダイオードと受光側トランジスタとを個別部品で構成すればよい。
[第5の実施の形態]
第5の実施の形態では、出力端子に出力する高電圧の大きさを変更できるようにする。
第5の実施の形態では、出力端子に出力する高電圧の大きさを変更できるようにする。
図7は、第5の実施の形態に係る電源2の回路図である。図7において、図2と同じものには同じ符号を付し、その説明を省略する。以下では、図2と異なる部分について説明する。
図7に示すように電源2は、端子T141と、比較器Z141と、増幅回路150,170と、フローティング駆動回路160,180と、端子T161~T165と、端子T181~T185と、抵抗R141,R142とを有している。
端子T141には、制御部1から出力される制御信号が入力される。制御信号は、正負の電圧で出力され、その大きさが変えられるようになっている。
比較器Z141の正相入力には、端子T141を介して、制御信号が入力される。比較器Z141の逆相入力には、抵抗R141,R142によって分圧された出力端子T71の電圧が入力される。すなわち、出力端子T71の電圧は、抵抗R141,R142によって、比較器Z141にフィードバックされる。比較器Z141は、正相入力および逆相入力に入力された電圧を比較し、比較結果を電圧として増幅回路150,170に出力する。
増幅回路150は、演算増幅器Z151と、ダイオードD151,D152と、抵抗R151とを有している。演算増幅器Z151の正相入力には、比較器Z141の出力電圧が入力される。比較器Z141の出力電圧が正の場合、ダイオードD152がオンし、演算増幅器Z151は、ボルテージフォロワを構成する。そして、比較器Z141の出力電圧が端子T161に出力される。一方、比較器Z141の比較結果が負の電圧の場合、ダイオードD152はカットオフ状態となり、端子T161には、比較器Z141の出力電圧が出力されない。
フローティング駆動回路160は、トランジスタTr161と、コンデンサC161,C162と、トランスM161と、ダイオードD161とを有している。
トランジスタTr161は、例えば、N型のMOSトランジスタである。トランジスタTr161のソースは、端子T163を介してグランドに接続され、ドレインは、トランスM161の1次側の一端に接続されている。トランジスタTr161は、ゲートに入力される発振信号に応じてオン・オフし、これにより、トランスM161の1次側は、端子T161とグランドとの間でオン・オフする。
コンデンサC161は、トランジスタTr161のオフ期間に、トランスM161の1次巻線と共振して安定した疑似共振を行う。
トランスM161の1次側の他端は、端子T161を介して、ボルテージフォロワ(演算増幅器Z151)の出力と接続されている。トランスM161の2次側は、1次側のボルテージフォロワの出力とグランドとの間のオン・オフによって、発振器20から出力される発振信号と同一周期の、ボルテージフォロワの出力電圧の大きさに比例した大きさの電圧(パルス波形)が誘起される。
トランスM161の2次側に誘起された電圧は、ダイオードD161およびコンデンサC162によって構成される平滑回路で平滑化される。これにより、端子T164,T165間には、スイッチ回路40をフローティング駆動する駆動信号が発生する。
増幅回路170は、演算増幅器Z171と、ダイオードD171,D172と、抵抗R171,R172とを有している。演算増幅器Z171の逆相入力には、比較器Z141の出力電圧が、抵抗R171を介して入力される。比較器Z141の出力電圧が負の場合、演算増幅器Z171の出力電圧は正となってダイオードD172がオンし、演算増幅器Z151は、抵抗R171,R172の比で決まる利得を持つ反転増幅器を構成する。そして、比較器Z141の反転増幅された出力電圧が端子T181に出力される。一方、比較器Z141の比較結果が正の電圧の場合、演算増幅器Z151の出力電圧は負となってダイオードD172はカットオフ状態となり、端子T181には、比較器Z141の出力電圧が出力されない。
フローティング駆動回路180は、フローティング駆動回路160と同様であり、その説明を省略する。なお、端子T184,T185間には、端子T141に入力された、負の制御信号の絶対値の大きさに応じた駆動信号が発生する。
電源2の動作について説明する。端子T141と出力端子T71の電圧はゼロであるとする。この状態から、端子T141に、例えば、1Vの制御信号が入力されると、比較器Z141の出力電圧は、正の電圧「+Vin」となる。
比較器Z141から、正の電圧「+Vin」が出力されると、増幅回路150の演算増幅器Z151の出力電圧は正となり、ダイオードD152がオンする。これにより、演算増幅器Z151は、ボルテージフォロワを構成し、端子T161には「+Vin」が出力される。
端子T162には、発振器20から出力された発信信号が入力されており、増幅回路150のトランジスタTr161はスイッチング動作する。トランスM161の1次側は、「+Vin」の電圧において、オン・オフが繰り返されるため、トランスM161の2次側には、「+Vin」の大きさに比例した電圧「Vd」の駆動信号が発生する。スイッチ回路40は、電圧「Vd」の駆動信号によってオンし、出力端子T71に正の電圧が発生する。
比較器Z141の出力電圧「+Vin」は、増幅回路170にも出力されるが、演算増幅器Z171の出力はマイナス電位となって、ダイオードD172はカットオフし、端子T181の電圧はゼロのままとなる。このため、フローティング駆動回路180から駆動信号は出力されないため、スイッチ回路60はオフとなる。
出力端子T71の出力電圧は、抵抗R141,R142によって分圧され、比較器Z141の逆相入力に入力(フィードバック)される。ここで、例えば、抵抗R141,R142の抵抗比を1000:1とし、電圧源V3の電圧を5.000Vとした場合、抵抗R142の電圧は0から上昇し、最大5Vに到達することになるが、1Vまで上昇した時点で、比較器Z141の出力はゼロとなる(端子T141には、1Vの制御信号が入力されている)。
比較器Z141の出力がゼロになると、増幅回路150の出力電圧はゼロとなり、スイッチ回路40がオフ方向に動作するフィードバック動作となる。これにより、出力端子T71の出力電圧は1.000Vで一定となる。なお、5.000Vの出力電圧を得たい場合には、制御部1は、端子T141に5Vの制御信号を出力すればよい。
次に、負の出力電圧を出力する場合の動作について説明する。端子T141に、例えば、-1Vの制御信号が入力されると、比較器Z141の出力電圧は、負の電圧「-Vin」となる。
比較器Z141から、負の電圧「-Vin」が出力されると、増幅回路170の演算増幅器Z171の出力電圧は正となり、ダイオードD172がオンする。演算増幅器Z171は、抵抗R171,R172の比で決まる利得Gを持つ反転増幅器の動作となり、端子T181には「+Vin×G」の電圧が出力される。
端子T181に正の電圧「+Vin×G」が出力されると、フローティング駆動回路180は、正の電圧の駆動信号を端子T184,T185に出力する。スイッチ回路60は、駆動信号によってオンし、出力端子T71に電圧が発生する。
比較器Z141の出力電圧「-Vin」は、増幅回路150にも出力されるが、演算増幅器Z151の出力はマイナス電位となって、ダイオードD152はカットオフし、端子T161の電圧はゼロのままとなる。このため、フローティング駆動回路160から駆動信号は出力されないため、スイッチ回路40はオフとなる。
出力端子T71の出力電圧は、抵抗R141,R142によって分圧され、比較器Z141の逆相入力に入力(フィードバック)される。ここで、例えば、抵抗R141,R142の抵抗比を1000:1とし、電圧源V4の電圧を-5.000Vとした場合、抵抗R142の電圧は0から下降し、最小-5Vに到達することになるが、-1Vまで下降した時点で、比較器Z141の出力はゼロとなる(端子T141には、-1Vの制御信号が入力されている)。
比較器Z141の出力がゼロになると、増幅回路170の出力電圧はゼロとなり、スイッチ回路60がオフ方向に動作するフィードバック動作となる。これにより、出力端子T71の出力電圧は-1.000Vで一定となる。なお、-5.000Vの出力電圧を得たい場合には、制御部1は、端子T141に-5Vの制御信号を出力すればよい。
このように、電源2は、端子T141に入力される制御信号の電圧に応じて、正負の高電圧出力をコントロールすることができる。
以上説明したように、電源2は、制御信号とフィードバック信号とを比較する比較器Z141と、比較器Z141の正の電圧を検出して出力する増幅回路150と、比較器Z141の負の電圧を検出して反転出力する増幅回路170と、増幅回路150とスイッチ回路40とを絶縁する、増幅回路150の出力に基づいて、スイッチ回路40を駆動する駆動信号を出力するフローティング駆動回路160と、増幅回路170とスイッチ回路60とを絶縁する、増幅回路170の出力に基づいて、スイッチ回路60を駆動する駆動信号を出力するフローティング駆動回路180と、出力端子T71の電圧を分圧して、比較器Z141にフィードバックする抵抗R141,R142とを有する。これにより、電源2は、端子T141に入力される制御信号の電圧に応じて、正負の高電圧出力をコントロールすることができる。また、電源2を備えた質量分析装置は、様々なイオン分子の検出のためのアルゴリズムを組み立てることができる。
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。さらに、各実施の形態を組み合わせることもできる。
また、図面等において示した各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
(付記1)
第1の極性の電圧源と出力端子との間に接続された第1のスイッチ回路と、第2の極性の電圧源と前記出力端子との間に接続された第2のスイッチ回路と、を有し、前記第1のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第1の駆動信号が入力される、前記出力端子と接続された第1のスイッチ素子と、前記第1のスイッチ素子と前記第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、前記複数の第2のスイッチ素子のそれぞれの制御端子に、前記第1の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第1の分圧回路と、を有し、前記第2のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第2の駆動信号が入力される、前記第2の極性の電圧源と接続された第3のスイッチ素子と、前記第3のスイッチ素子と前記出力端子との間にカスコード接続された複数の第4のスイッチ素子と、前記複数の第4のスイッチ素子のそれぞれの制御端子に、前記第2の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第2の分圧回路と、を有する電源と、
前記出力端子から出力される電圧によって、試料の質量分析を行う質量分析部と、
を有することを特徴とする質量分析装置。
第1の極性の電圧源と出力端子との間に接続された第1のスイッチ回路と、第2の極性の電圧源と前記出力端子との間に接続された第2のスイッチ回路と、を有し、前記第1のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第1の駆動信号が入力される、前記出力端子と接続された第1のスイッチ素子と、前記第1のスイッチ素子と前記第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、前記複数の第2のスイッチ素子のそれぞれの制御端子に、前記第1の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第1の分圧回路と、を有し、前記第2のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第2の駆動信号が入力される、前記第2の極性の電圧源と接続された第3のスイッチ素子と、前記第3のスイッチ素子と前記出力端子との間にカスコード接続された複数の第4のスイッチ素子と、前記複数の第4のスイッチ素子のそれぞれの制御端子に、前記第2の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第2の分圧回路と、を有する電源と、
前記出力端子から出力される電圧によって、試料の質量分析を行う質量分析部と、
を有することを特徴とする質量分析装置。
(付記2)
付記1に記載の質量分析装置であって、
前記質量分析部は、前記出力端子から出力される電圧によって、マスフィルタを通過したイオンを誘引するコンバージョンダイノード部、
を有することを特徴とする質量分析装置。
付記1に記載の質量分析装置であって、
前記質量分析部は、前記出力端子から出力される電圧によって、マスフィルタを通過したイオンを誘引するコンバージョンダイノード部、
を有することを特徴とする質量分析装置。
1…制御部、2~4…電源、5…イオン化部、6…マスフィルタ、7…CD部、8…シンチレータ、9…光電子検出器、10…タイミング制御回路、20…発振器、30,50…フローティング駆動回路、40,60…スイッチ回路、80,90,100,110,120,130…フローティング駆動回路、Z141…比較器、150,170…増幅回路、160,180…フローティング駆動回路。
Claims (10)
- 第1の極性の電圧源と出力端子との間に接続された第1のスイッチ回路と、
第2の極性の電圧源と前記出力端子との間に接続された第2のスイッチ回路と、
を有し、
前記第1のスイッチ回路は、
制御端子に前記出力端子の電圧を制御する第1の駆動信号が入力される、前記出力端子と接続された第1のスイッチ素子と、
前記第1のスイッチ素子と前記第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、
前記複数の第2のスイッチ素子のそれぞれの制御端子に、前記第1の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第1の分圧回路と、
を有し、
前記第2のスイッチ回路は、
制御端子に前記出力端子の電圧を制御する第2の駆動信号が入力される、前記第2の極性の電圧源と接続された第3のスイッチ素子と、
前記第3のスイッチ素子と前記出力端子との間にカスコード接続された複数の第4のスイッチ素子と、
前記複数の第4のスイッチ素子のそれぞれの制御端子に、前記第2の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第2の分圧回路と、
を有することを特徴とする電源。 - 請求項1に記載の電源であって、
前記複数の第2のスイッチ素子のそれぞれの制御端子間には、抵抗が接続され、
前記複数の第2のスイッチ素子のうち、前記第1のスイッチ素子と接続されたスイッチ素子の制御端子は、抵抗を介して前記出力端子と接続され、
前記複数の第2のスイッチ素子のうち、前記第1の極性の電圧源と接続されたスイッチ素子の制御端子は、抵抗を介して前記第1の極性の電圧源と接続され、
前記複数の第4のスイッチ素子のそれぞれの制御端子間には、抵抗が接続され、
前記複数の第2のスイッチ素子のうち、前記第3のスイッチ素子と接続されたスイッチ素子の制御端子は、抵抗を介して前記第2の極性の電圧源と接続され、
前記複数の第2のスイッチ素子のうち、前記出力端子と接続されたスイッチ素子の制御端子は、抵抗を介して前記出力端子と接続されている、
ことを特徴とする電源。 - 請求項1に記載の電源であって、
前記第1のスイッチ素子、前記複数の第2のスイッチ素子、前記第3のスイッチ素子、および前記複数の第4のスイッチ素子のそれぞれには、抵抗が並列に接続される、
を有することを特徴とする電源。 - 請求項1に記載の電源であって、
前記第1のスイッチ回路の前段に挿入され、前記第1のスイッチ回路を前段の回路と絶縁する、前記第1の駆動信号を出力する第1のフローティング駆動回路と、
前記第2のスイッチ回路の前段に挿入され、前記第2のスイッチ回路を前段の回路と絶縁する、前記第2の駆動信号を出力する第2のフローティング駆動回路と、
をさらに有することを特徴とする電源。 - 請求項4に記載の電源であって、
前記第1のフローティング駆動回路および前記第2のフローティング駆動回路は、直列に接続された複数のトランスによって、前記第1のスイッチ回路および前記第2のスイッチ回路を前段の回路と絶縁する、
をことを特徴とする電源。 - 請求項4に記載の電源であって、
前記第1のフローティング駆動回路および前記第2のフローティング駆動回路は、受光側ダイオードが直列に接続された複数のフォトカプラによって、前記第1のスイッチ回路および前記第2のスイッチ回路を前段の回路と絶縁する、
をことを特徴とする電源。 - 請求項4に記載の電源であって、
発振信号を生成する発振器、をさらに有し、
前記第1のフローティング駆動回路は、
前記発振信号に応じて、第1の電圧源に基づく電圧を2次側に出力する第1のトランスと、
第1の制御信号に応じて、前記第1のトランスの2次側の出力を制御し、前記第1の駆動信号として出力する第1のフォトカプラと、
を有し、
前記第2のフローティング駆動回路は、
前記発振信号に応じて、第2の電圧源に基づく電圧を2次側に出力する第2のトランスと、
第2の制御信号に応じて、前記第2のトランスの2次側の出力を制御し、前記第2の駆動信号として出力する第2のフォトカプラと、
を有することを特徴とする電源。 - 請求項1に記載の電源であって、
制御信号とフィードバック信号とを比較する比較器と、
前記比較器の正の電圧を検出して出力する第1の増幅回路と、
前記比較器の負の電圧を検出して反転出力する第2の増幅回路と、
前記第1の増幅回路と前記第1のスイッチ回路とを絶縁する、前記第1の増幅回路の出力に基づいて、前記第1の駆動信号を出力する第1のフローティング駆動回路と、
前記第2の増幅回路と前記第2のスイッチ回路とを絶縁する、前記第2の増幅回路の出力に基づいて、前記第2の駆動信号を出力する第2のフローティング駆動回路と、
前記出力端子の電圧を前記比較器にフィードバックするフィードバック回路と、
をさらに有することを特徴とする電源。 - 第1の極性の電圧源と出力端子との間に接続された第1のスイッチ回路と、第2の極性の電圧源と前記出力端子との間に接続された第2のスイッチ回路と、を有し、前記第1のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第1の駆動信号が入力される、前記出力端子と接続された第1のスイッチ素子と、前記第1のスイッチ素子と前記第1の極性の電圧源との間にカスコード接続された複数の第2のスイッチ素子と、前記複数の第2のスイッチ素子のそれぞれの制御端子に、前記第1の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第1の分圧回路と、を有し、前記第2のスイッチ回路は、制御端子に前記出力端子の電圧を制御する第2の駆動信号が入力される、前記第2の極性の電圧源と接続された第3のスイッチ素子と、前記第3のスイッチ素子と前記出力端子との間にカスコード接続された複数の第4のスイッチ素子と、前記複数の第4のスイッチ素子のそれぞれの制御端子に、前記第2の極性の電圧源と前記出力端子との間の電圧を分圧して入力する第2の分圧回路と、を有する電源と、
前記出力端子から出力される電圧によって、試料の質量分析を行う質量分析部と、
を有することを特徴とする質量分析装置。 - 請求項9に記載の質量分析装置であって、
前記質量分析部は、前記出力端子から出力される電圧によって、試料をイオン化するイオン化部、
を有することを特徴とする質量分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/055677 WO2017145334A1 (ja) | 2016-02-25 | 2016-02-25 | 電源および質量分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/055677 WO2017145334A1 (ja) | 2016-02-25 | 2016-02-25 | 電源および質量分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017145334A1 true WO2017145334A1 (ja) | 2017-08-31 |
Family
ID=59685964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/055677 WO2017145334A1 (ja) | 2016-02-25 | 2016-02-25 | 電源および質量分析装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017145334A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022171977A1 (en) * | 2021-02-11 | 2022-08-18 | Micromass Uk Limited | Power supply systems and methods |
EP4287238A4 (en) * | 2021-01-27 | 2024-10-16 | Hitachi High Tech Corp | HIGH VOLTAGE MODULE AND MASS SPECTROSCOPE USING IT |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5324765A (en) * | 1976-08-20 | 1978-03-07 | Nippon Chemical Ind | High dielectric strength switching circuit |
JPS58113117U (ja) * | 1982-01-27 | 1983-08-02 | 理化学研究所 | 高圧電源 |
JPS6260311A (ja) * | 1985-09-06 | 1987-03-17 | トムソン−セ−エスエフ | 電圧スイツチング装置 |
JPH06102739A (ja) * | 1992-09-21 | 1994-04-15 | Casio Comput Co Ltd | 高電圧出力装置 |
JP2013115482A (ja) * | 2011-11-25 | 2013-06-10 | Hitachi Kokusai Electric Inc | 電源回路 |
WO2014068780A1 (ja) * | 2012-11-05 | 2014-05-08 | 株式会社島津製作所 | 高電圧電源装置及び該電源装置を用いた質量分析装置 |
-
2016
- 2016-02-25 WO PCT/JP2016/055677 patent/WO2017145334A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5324765A (en) * | 1976-08-20 | 1978-03-07 | Nippon Chemical Ind | High dielectric strength switching circuit |
JPS58113117U (ja) * | 1982-01-27 | 1983-08-02 | 理化学研究所 | 高圧電源 |
JPS6260311A (ja) * | 1985-09-06 | 1987-03-17 | トムソン−セ−エスエフ | 電圧スイツチング装置 |
JPH06102739A (ja) * | 1992-09-21 | 1994-04-15 | Casio Comput Co Ltd | 高電圧出力装置 |
JP2013115482A (ja) * | 2011-11-25 | 2013-06-10 | Hitachi Kokusai Electric Inc | 電源回路 |
WO2014068780A1 (ja) * | 2012-11-05 | 2014-05-08 | 株式会社島津製作所 | 高電圧電源装置及び該電源装置を用いた質量分析装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4287238A4 (en) * | 2021-01-27 | 2024-10-16 | Hitachi High Tech Corp | HIGH VOLTAGE MODULE AND MASS SPECTROSCOPE USING IT |
WO2022171977A1 (en) * | 2021-02-11 | 2022-08-18 | Micromass Uk Limited | Power supply systems and methods |
GB2604732A (en) * | 2021-02-11 | 2022-09-14 | Micromass Ltd | Power supply systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9431226B2 (en) | High-voltage power unit and mass spectrometer using the power unit | |
US8248176B2 (en) | Current source circuit and delay circuit and oscillating circuit using the same | |
US8222846B2 (en) | Output circuit | |
US9390880B2 (en) | Method for driving multi electric field emission devices and multi electric field emission system | |
US20130163289A1 (en) | Power switching driving apparatus, and power factor correction device and power supply device having the same | |
US10229822B2 (en) | Mass spectrometer with high-voltage power source | |
CN106560986B (zh) | 一种斜率补偿电路及方法 | |
JP2009050118A (ja) | ゲート駆動回路の制御方法 | |
US10254781B2 (en) | Voltage source | |
US9831856B2 (en) | Electronic drive circuit and method | |
WO2017145334A1 (ja) | 電源および質量分析装置 | |
US10666137B2 (en) | Method and circuitry for sensing and controlling a current | |
US7898349B2 (en) | Triangular wave generating circuit, and charging and discharging control circuit | |
US7760003B2 (en) | Controllable resistive circuit for providing a continuous variable resistance | |
KR101701613B1 (ko) | 게이트 전위 제어 회로 | |
CN107769629B (zh) | 单线圈风扇马达的稳流驱动系统及其方法 | |
US10033309B2 (en) | Control apparatus for dynamically adjusting phase switching of the DC motor and method thereof | |
US8941418B2 (en) | Driving circuits with power MOS breakdown protection and driving methods thereof | |
JP5707357B2 (ja) | スイッチ回路、質量分析装置及びスイッチ回路の制御方法 | |
US20130249607A1 (en) | Bootstrapped switch circuit and driving method thereof | |
US20120299634A1 (en) | Semiconductor element driving circuit and semiconductor device | |
US20110199070A1 (en) | Current Mirror Arrangement and Method for Switching on a Current | |
JP2006333643A (ja) | 電圧駆動型トランジスタのゲート回路 | |
JP2009060684A (ja) | ループ技術を利用してモータの逆誘導起電力を制御する機構 | |
KR20150065380A (ko) | Nmos 하이 사이드 드라이버 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891491 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891491 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |