WO2017145212A1 - Thin battery - Google Patents

Thin battery Download PDF

Info

Publication number
WO2017145212A1
WO2017145212A1 PCT/JP2016/005231 JP2016005231W WO2017145212A1 WO 2017145212 A1 WO2017145212 A1 WO 2017145212A1 JP 2016005231 W JP2016005231 W JP 2016005231W WO 2017145212 A1 WO2017145212 A1 WO 2017145212A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode
spacer
current collector
Prior art date
Application number
PCT/JP2016/005231
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 浅野
智博 植田
陽子 佐野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018501405A priority Critical patent/JPWO2017145212A1/en
Publication of WO2017145212A1 publication Critical patent/WO2017145212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin battery including a sheet-like electrode group.
  • a power source for small electronic devices such as bio-applied devices, mobile phones, audio recording / playback devices, watches, video and still image cameras, liquid crystal displays, calculators, IC cards, temperature sensors, hearing aids, pressure-sensitive buzzers, etc.
  • Thin batteries are used. Such a thin battery is required to have flexibility. For example, a thin battery mounted on a biological sticking type device or a wearable portable terminal is required to be deformed so as to follow the movement of the living body.
  • Patent Document 1 proposes that in a thin electrochemical device, a tab is formed on a current collector plate, and a lead drawn out of the exterior body is connected to the tab. Further, it has been proposed that a tab is sandwiched with a fixture together with a lead, and is further sandwiched with a seal portion of an exterior body.
  • the inside of the outer package of the thin battery is decompressed in a state where the electrode group and the non-aqueous electrolyte are accommodated.
  • Patent Document 2 proposes to arrange a spacer in the exterior body in order to suppress wrinkles and distortion in the exterior body.
  • a thin battery includes a sheet-like electrode group, a nonaqueous electrolyte impregnated in the electrode group, and an exterior body that hermetically stores the electrode group and the nonaqueous electrolyte.
  • the electrode group includes a sheet-like first electrode, a sheet-like second electrode, and a separator disposed between the first electrode and the second electrode.
  • the second active material includes a first active material layer attached to the surfaces of the current collector sheet and the first current collector sheet, and the second electrode is attached to the surfaces of the second current collector sheet and the second current collector sheet. Including layers.
  • the first current collector sheet includes a first tab extending in a first direction from a part of one side of the first current collector sheet, and a first lead drawn out of the exterior body is connected to the first tab.
  • the second current collector sheet includes a second tab extending in a first direction from a part of one side of the second current collector sheet, and a second lead drawn out of the exterior body by the second tab Is connected.
  • the exterior body has a sealing margin for sandwiching the first lead and the second lead, and a line is formed between the sealing margin and the end portion on the sealing margin side of the first active material layer and the second active material layer.
  • the first spacer is formed between the sealing margin and the spacer, and the spacer and the end of the first active material layer and the second active material layer on the sealing margin side A second gap is formed between them.
  • the first gap is formed between the sealing margin and the line-shaped spacer
  • the second gap is formed between the spacer and the end portion on the sealing margin side of the active material layer. Therefore, the exterior body is curved along the spacer, and the unfolded length when the exterior body is stretched becomes long. Thereby, a margin for absorbing expansion and contraction is generated in the exterior body. Therefore, when the thin battery is bent, cracks are unlikely to occur at the stepped portion where the thickness of the electrode group changes.
  • FIG. 1 is a plan view in which a part of an outer package of a thin battery according to an embodiment of the present invention is cut away.
  • FIG. 2 is a longitudinal sectional view of a main part of the thin battery.
  • FIG. 3 is a conceptual diagram showing a state of the exterior body when the thin battery is bent.
  • a thin battery includes a sheet-like electrode group, a nonaqueous electrolyte impregnated in the electrode group, and an exterior body that hermetically stores the electrode group and the nonaqueous electrolyte.
  • the electrode group includes a sheet-like first electrode, a sheet-like second electrode, and a separator disposed between the first electrode and the second electrode.
  • the first electrode includes a first current collector sheet and a first active material layer attached to the first current collector sheet.
  • the second electrode includes a second current collector sheet and a second active material layer attached to the second current collector sheet.
  • the first current collector sheet has a first tab extending in a first direction from a part of one side of the first current collector sheet, and the second current collector sheet is one side of the second current collector sheet.
  • a second tab extending in a first direction from a portion of the first tab.
  • a first lead that is pulled out in the first direction is connected to the first tab, and a second lead that is pulled out in the first direction is connected to the second tab. Yes.
  • the exterior body has a sealing margin for sandwiching the first lead and the second lead, and a line is formed between the sealing margin and the end portion on the sealing margin side of the first active material layer and the second active material layer.
  • Shaped spacers are arranged.
  • a first gap is formed between the sealing margin and the spacer.
  • a second gap is formed between the spacer and the end portion on the sealing margin side of the first active material layer and the second active material layer.
  • the sealing allowance of the outer package is, for example, when the outer package is formed by bonding the peripheral portions of two film materials, or the peripheral portions other than the folds are bonded by folding one film material.
  • the peripheral part when forming an exterior body For example, if the outer shape of the exterior body is a rectangle or a shape close to a rectangle, the peripheral edge along one of the four sides serves as a sealing margin for sandwiching the first lead and the second lead.
  • the end portion on the sealing margin side of the first active material layer and the second active material layer means the entire end portion including the first active material layer and the second active material layer.
  • the end of the protruding active material layer is the entire end.
  • the exterior body includes a first portion that faces the first active material layer and the second active material layer, a region of the first current collector sheet that does not have the first active material layer, and a second current collector sheet. It has the 2nd site
  • the inside of the outer package of the thin battery is depressurized while the electrode group and the nonaqueous electrolyte are accommodated.
  • part of an exterior body curves along a spacer.
  • deployment length when an exterior body is extended becomes long.
  • the second part of the curved exterior body expands to absorb the stress. Therefore, the crack of the exterior body at the step portion of the electrode group is less likely to occur. Especially, the crack of an exterior body tends to generate
  • the second part of the outer package is curved along the spacer in advance, so that the outer package is less likely to bulge into a convex shape. If the second part of the exterior body that has entered the first gap and the second gap has a concave shape, it enters deeper into the inside of the first gap and the second gap, so that the convex bulge is further suppressed.
  • the thickness T1 of the portion where the spacer is disposed and the thickness T2 of the portion having the sealing allowance satisfy T1> T2.
  • the minimum thickness of the portion where the spacer of the thin battery is arranged may be obtained as T1.
  • the minimum thickness at the sealing margin of the thin battery may be obtained as T2.
  • the thickness T1 of the portion where the spacer of the thin battery is disposed and the thickness T2 in the sealing allowance satisfy 1.1 ⁇ T1 / T2 ⁇ 6.0, and 2.0 ⁇ T1 / More preferably, T2 ⁇ 3.0 is satisfied. Thereby, it becomes easy to ensure the deployment length when the exterior body is stretched.
  • a line-shaped spacer is a member having an elongated shape (bar shape, strip shape, semi-cylindrical shape, etc.).
  • the spacer has a width that can be accommodated between the sealing margin and the end portion on the sealing margin side of the active material layer. It is desirable that the length of the spacer substantially corresponds to the width of the electrode group, and is preferably about 60 to 120% of the longer of the end portions on the sealing margin side of the first active material layer and the second active material layer. 80 to 110% is more preferable, and about 90 to 100% is more preferable.
  • the width of the spacer is sufficiently shorter than the length of the spacer, for example, 20% or less of the length, and specifically, preferably 1.0 to 5.0 mm.
  • the spacer has a thickness capable of forming an elongated ridge between the sealing margin and the end portion on the sealing margin side of the active material layer so as not to exceed the thickness of the electrode group.
  • the elongated ridge has a shape like a rib or a ridge along a line-shaped spacer. Such a raised portion is formed, for example, by the second portion of the exterior body entering the first gap and the second gap adjacent to both sides in the width direction of the spacer and bending along the shape of the spacer.
  • the material of the spacer is not particularly limited, but a thermoplastic resin having heat weldability is preferable.
  • a spacer formed of a thermoplastic resin having a heat welding property can be fixed to any part of the current collector sheet or the tab by heat welding. Therefore, it is possible to prevent the spacer from moving from a desired position or falling off during manufacturing or when the battery is bent.
  • the thermoplastic resin is not particularly limited, and polyolefin resin, ethylene-vinyl acetate copolymer, and the like can be used.
  • As the polyolefin resin, polypropylene, ethylene-propylene copolymer, and the like are preferable from the viewpoint of excellent resistance to nonaqueous electrolytes.
  • the line-shaped spacers are arranged along the end portions on the sealing margin side of the first active material layer and the second active material layer. That is, it is desirable that the end portion on the sealing margin side of the active material layer and the length direction of the spacer are parallel or as close to parallel as possible.
  • the angle formed by the end portion on the sealing margin side of the active material layer and the length direction of the spacer is preferably 170 to 190 degrees (°), and more preferably 180 degrees.
  • the thickness T1 of the portion where the spacer of the thin battery is disposed and the thickness T3 of the portion where the first active material layer and the second active material layer are disposed are 0.5 ⁇ T1 / T3 ⁇ 1. 5 is preferably satisfied, and more preferably 0.7 ⁇ T1 / T3 ⁇ 1.2. Accordingly, the raised portion formed by the spacer does not protrude excessively in the thickness direction, the battery can be easily handled, and the battery can be easily attached to the device in use. Also here, when the thickness T3 of the portion where the first active material layer and the second active material layer of the thin battery are arranged is not uniform, the first active material layer and the second active material layer of the thin battery are arranged. What is necessary is just to obtain
  • the width G of the second gap and the length L in the first direction of the first active material layer and the second active material layer preferably satisfy 0.01 ⁇ G / L ⁇ 0.2, and 0.05 ⁇ It is more preferable to satisfy G / L ⁇ 0.15. This makes it possible to form a thin battery having a sufficient volumetric energy density and to easily ensure a sufficiently long development length when the exterior body is stretched.
  • the linear spacer is a pair of sheet members that sandwich the first tab and the second tab.
  • one sheet member hereinafter referred to as a spacer sheet
  • a spacer sheet serving as a spacer is arranged on each side of the sheet-like electrode group.
  • a pair of spacer sheets are abutted against each other in a state where the first tab and the second tab are sandwiched, bonded together, and fixed to each tab.
  • the spacer sheet it is preferable to use, for example, a polyolefin resin which is a thermoplastic resin having a heat-welding property.
  • the thickness of the spacer sheet may be selected according to the thickness of the thin battery, but may be, for example, 20 to 500 ⁇ m.
  • the spacer sheet preferably includes a core material that does not melt at the melting point of the polyolefin resin. Due to the presence of the core material, excessive deformation of the spacer sheet is avoided, and the spacer sheet can easily maintain a desired thickness. Therefore, the work of thermally welding the spacer sheet to an arbitrary part of the current collector sheet or tab is facilitated.
  • the material of the core material is not particularly limited, but a non-woven fabric or a woven fabric formed of heat-resistant resin fibers is suitable. Examples of the heat resistant resin include polyamide, polyimide, polyamideimide, polyphenylene sulfide, polyvinylidene fluoride, and polytetrafluoroethylene.
  • the thickness of the thin battery is not particularly limited, but is preferably 3 mm or less, more preferably 2 mm or less, or 1.5 mm or less in consideration of flexibility.
  • the lower limit of the thickness of the thin battery is, for example, 50 ⁇ m.
  • the gel electrolyte can adhere the first active material layer and the separator and the second active material layer and the separator. it can.
  • the load applied to an exterior body tends to increase. Even in such a case, the second portion of the exterior body is curved along the spacer, so that a remarkable effect of reducing the load applied to the exterior body is exhibited.
  • a battery-mounted device includes the thin battery and a flexible electronic device driven by power supply from the thin battery, and the thin battery and the electronic device are integrated into a sheet. It has become.
  • Electronic devices that are integrated into a sheet with a thin battery include, for example, a bio-applied device or a wearable mobile terminal, a mobile phone, a voice recording / playback device, a wristwatch, a video and still image camera, a liquid crystal display, Calculators, IC cards, temperature sensors, hearing aids, pressure-sensitive buzzers, etc.
  • the bio-applied device is required to be flexible because it is used in close contact with a living body.
  • the biological sticking type device include a biological information measuring device and an iontophoresis transdermal dosage device.
  • the thickness of the sheet-like battery-mounted device may be thicker than the thin battery, but is preferably 5 mm or less, more preferably 3 mm or less. If the thickness of the battery-mounted device is about 5 mm or less, relatively good flexibility can be obtained.
  • the lower limit of the thickness of the battery-mounted device is, for example, 50 ⁇ m.
  • the configuration of the electrode group is not particularly limited, and examples thereof include the following.
  • the electrode group having the simplest structure includes one first electrode, one second electrode, and a separator interposed between the first electrode and the second electrode.
  • the first electrode may be a single-sided electrode including the first current collector sheet and the first active material layer attached to one surface thereof.
  • the second electrode may also be a single-sided electrode including a second current collector sheet and a second active material layer attached to one surface thereof.
  • the electrode group having a simple structure has a three-layer structure including one first electrode and two second electrodes sandwiching the first electrode.
  • Such a thin battery has a small thickness and a sufficiently practical capacity.
  • the second electrode may be a single-sided electrode including the second current collector sheet and the second active material layer attached to one surface thereof.
  • the first electrode may be a double-sided electrode including a first current collector sheet and a first active material layer attached to both surfaces.
  • the electrode group having another structure includes, for example, two or more first electrodes and three or more second electrodes, and the first electrodes and the second electrodes are alternately stacked.
  • the simplest structure has two first electrodes, one second electrode interposed between the two first electrodes, and one each outside the two first electrodes. And a second electrode disposed.
  • the first electrode may be a double-sided electrode including a first current collector sheet and a first active material layer attached to both surfaces.
  • One second electrode interposed between the two first electrodes may also be a double-sided electrode including a second current collector sheet and a second active material layer attached to both surfaces thereof.
  • the second electrodes arranged on the outermost sides may be single-sided electrodes including a second current collector sheet and a second active material layer attached to one surface thereof.
  • FIG. 1 is a plan view in which a part of an outer package of a thin battery is cut out
  • FIG. 2 is a longitudinal sectional view showing a main part of the thin battery. 2 corresponds to a cross-sectional view taken along the line II-II of the thin battery shown in FIG.
  • the thin battery 100 includes an electrode group 103, a non-aqueous electrolyte (not shown), and an exterior body 108 that houses them.
  • the electrode group 103 includes one first electrode 110 and a pair of second electrodes 120 that sandwich the first electrode 110, and a separator 107 is interposed between the first electrode 110 and the second electrode 120.
  • the first electrode 110 includes a first current collector sheet 111 and a first active material layer 112 attached to both surfaces.
  • the second electrode 120 includes a second current collector sheet 121 and a second active material layer 122 attached to one surface thereof.
  • the first current collector sheet 111 has a first tab 114 extending in the first direction from one side thereof.
  • a first lead 113 is connected to the first tab 114.
  • the first lead 113 is sandwiched by the sealing allowance 108S of the exterior body 108 via the sealing material 130, and is drawn out of the exterior body 108 in the first direction.
  • the second current collector sheet 121 has a second tab 124 extending from one side thereof in the first direction.
  • the second tabs 124 of the pair of second current collector sheets 121 are overlapped with each other and electrically connected by, for example, welding. Thereby, the collective tab 124A is formed.
  • a second lead 123 is connected to the assembly tab 124A.
  • the second lead 123 is sandwiched between the sealing margins 108S of the exterior body 108 via the sealing material 130, and is drawn out of the exterior body 108 in the first direction. End portions of the first lead 113 and the second lead 123 led out of the exterior body 108 function as a first external terminal or a second external terminal, respectively.
  • the exterior body 108 includes a first portion 108A that faces the first active material layer 112 and the second active material layer 122, and a region of the first current collector sheet 111 that does not include the first active material layer 112 (particularly, the first active material layer 112). Tab) and a region of the second current collector sheet 121 that does not have the second active material layer 122 (particularly, the second tab) and the second portion 108B that faces the region.
  • a spacer 109 is arranged between the sealing margin 108S and the spacer 109, and a second gap G2 is formed between the spacer 109 and the active material layer end portion 103T.
  • the length of the spacer 109 is about 95 to 105% of the length (width) of the end portion 103T on the sealing margin side of the first active material layer and the second active material layer having substantially the same width.
  • the width of the spacer is about 1.0 to 5.0 mm.
  • a pair of spacer sheets 109 are abutted and bonded together with the first tab 114 and the second tab 124 sandwiched therebetween.
  • the thickness of one spacer sheet 109 is, for example, about 20 to 500 ⁇ m or 50 to 300 ⁇ m.
  • the sealing material 130 interposed between the exterior body 108 and each lead is used to enhance the sealing performance of the sealing allowance after joining.
  • a thermoplastic resin having a heat welding property can be used for the sealing material 130.
  • a thermoplastic resin the material illustrated as a material of a spacer, for example is mentioned, Polyolefin resin is preferable.
  • the electrode group 103 is generally rectangular, but the shape of the electrode group 103 is not limited to this.
  • the shape of the electrode excluding the tab may be a shape having a straight portion from which the tab protrudes, and is rectangular (including a square), trapezoid, parallelogram, substantially elliptical shape having a straight portion in part, at least one round Examples include a substantially rectangular shape having a corner, a substantially trapezoidal shape, and a substantially parallelogram shape. From the viewpoint of productivity, a rectangular shape or a substantially rectangular shape is preferable.
  • the direction along the long side is the first direction in which the tab extends.
  • the shape of the tab is not particularly limited.
  • the shape of the tab is, for example, a rectangle (including a square), a trapezoid, a parallelogram, a semicircle, a semi-ellipse, a rectangle with an arc at the tip, a substantially rectangle having at least one round corner, a substantially trapezoid, and a substantially parallelogram. Such as shape.
  • the exterior body 108 includes a first part 108 ⁇ / b> A that faces the first active material layer 112 and the second active material layer 122, and the first active material layer 112 of the first current collector sheet 111.
  • a second region 108B that opposes the region (particularly the first tab) that does not include the region (particularly the second tab) that does not include the second active material layer 122 of the second current collector sheet 121.
  • the second portion 108B covers a linear spacer 109 provided so as to intersect perpendicularly with the first direction.
  • the second portion 108 ⁇ / b> B of the exterior body 108 partially enters the first gap G ⁇ b> 1 and the second gap G ⁇ b> 2 and is curved along the shape of the spacer 109.
  • the minimum thickness T1 of the portion where the spacer 109 is arranged and the minimum thickness T2 at the sealing allowance 108S are measured from the cross section taken along the line II′-II ′ of FIG.
  • the minimum thickness T1 generally corresponds to the total thickness when two exterior bodies 108 and two spacers 109 are overlapped, and the minimum thickness T2 approximately corresponds to the total thickness when two exterior bodies 108 are overlapped.
  • 1.1 ⁇ T1 / T2 ⁇ 6.0 is satisfied, and T1 and the thickness T3 of the portion where the first active material layer and the second active material layer are arranged are 0.5 ⁇ T1 / T3 ⁇ Designed to meet 1.5.
  • the width G of the second gap and the length L in the first direction of the first active material layer and the second active material layer are designed to satisfy 0.01 ⁇ G / L ⁇ 0.2.
  • the thin battery 100 is bent along a curved arrow.
  • the sheet-like thin battery 100 when the sheet-like thin battery 100 is bent, one outer surface of the thin battery has a convex shape and the other outer surface has a concave shape.
  • the second portion 108B of the exterior body 108 that is curved along the shape of the spacer 109 has the first gap G1 and It is pulled out from the second gap G2 and developed.
  • the second portion 108B that has previously entered the first gap G1 and the second gap G2 enters deeper into the inside of the first gap and the second gap. Is suppressed.
  • the first gap G1 and the second gap G2 have the effect of suppressing the stress applied to the exterior body 108 and the convex bulge.
  • the spacer 109 It is important to intentionally form the second gap G2.
  • the electrodes, leads, separators, non-aqueous electrolyte, exterior body, etc. constituting the electrode group will be described.
  • the negative electrode has a negative electrode current collector sheet as the first or second current collector sheet and a negative electrode active material layer as the first or second active material layer.
  • a metal film, metal foil, etc. are used for a negative electrode collector sheet.
  • the material of the negative electrode current collector sheet is preferably at least one selected from the group consisting of copper, nickel, titanium and alloys thereof, and stainless steel.
  • the thickness of the negative electrode current collector sheet is preferably 5 to 30 ⁇ m, for example.
  • the negative electrode active material layer includes a negative electrode active material, and optionally includes a binder and a conductive agent.
  • the negative electrode active material layer may be a deposited film formed by a vapor phase method (for example, vapor deposition).
  • Examples of the negative electrode active material include Li metal, a metal or alloy that electrochemically reacts with Li, a carbon material (for example, graphite), a silicon alloy, and a silicon oxide.
  • the thickness of the negative electrode active material layer is preferably, for example, 1 to 300 ⁇ m.
  • the positive electrode has a positive electrode current collector sheet as a first or second current collector sheet and a positive electrode active material layer as a first or second active material layer.
  • a metal film, a metal foil, or the like is used for the positive electrode current collector sheet.
  • the material of the positive electrode current collector sheet is preferably at least one selected from the group consisting of, for example, silver, nickel, palladium, gold, platinum, aluminum, alloys thereof, and stainless steel.
  • the thickness of the positive electrode current collector sheet is preferably 1 to 30 ⁇ m, for example.
  • the positive electrode active material layer includes a positive electrode active material and a binder, and includes a conductive agent as necessary.
  • the positive electrode active material is not particularly limited.
  • a lithium-containing composite oxide such as LiCoO 2 or LiNiO 2 is used.
  • manganese dioxide is used.
  • Carbon fluoride (fluorinated graphite), lithium-containing composite oxide, and the like can be used.
  • the thickness of the positive electrode active material layer is preferably 1 to 300 ⁇ m, for example.
  • the conductive agent contained in the active material layer graphite, carbon black, or the like is used.
  • the amount of the conductive agent is, for example, 0 to 20 parts by mass per 100 parts by mass of the active material.
  • the binder to be included in the active material layer fluorine resin, acrylic resin, rubber particles, or the like is used.
  • the amount of the binder is, for example, 0.5 to 15 parts by mass per 100 parts by mass of the active material.
  • separator a resin microporous film or a nonwoven fabric is preferably used.
  • material (resin) for the separator polyolefin (polyethylene, polypropylene, etc.), polyamide, polyamideimide, etc. are preferable.
  • the thickness of the separator is, for example, 8 to 30 ⁇ m.
  • the negative electrode lead and the positive electrode lead are connected to the negative electrode current collector sheet or the positive electrode current collector sheet, respectively, by welding or the like.
  • a copper lead, a copper alloy lead, a nickel lead, a nickel-plated copper lead, or the like is preferably used.
  • a nickel lead, an aluminum lead or the like is preferably used.
  • the nonaqueous electrolyte is preferably a mixture of a lithium salt and a nonaqueous solvent that dissolves the lithium salt.
  • the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , and imide salts.
  • Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate and other cyclic carbonate esters, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate and other chain carbonate esters, ⁇ -butyrolactone, ⁇ -valerolactone and other cyclic carboxylic acid esters. Etc.
  • the nonaqueous electrolyte impregnated in the electrode group forms a gel electrolyte.
  • the gel electrolyte is preferably present at least in the interface region between each active material layer and each separator.
  • the presence of the gel electrolyte in the interface region between the active material layer and the separator improves the adhesion between the electrode and the separator.
  • the gel electrolyte is preferably also present in the voids of each active material layer and / or in the pores of each separator.
  • the gel electrolyte includes, for example, a non-aqueous electrolyte and a resin that swells with the non-aqueous electrolyte.
  • a resin that swells with the nonaqueous electrolyte a fluororesin containing a vinylidene fluoride unit is preferable.
  • a fluororesin containing a vinylidene fluoride unit tends to retain a nonaqueous electrolyte and easily gels.
  • Examples of the fluororesin containing a vinylidene fluoride unit include polyvinylidene fluoride (PVdF), a copolymer (PVdF-HFP) containing a vinylidene fluoride (VdF) unit and a hexafluoropropylene (HFP) unit, and vinylidene fluoride (VdF). ) Units and trifluoroethylene (TFE) units.
  • the amount of the vinylidene fluoride unit contained in the fluororesin containing the vinylidene fluoride unit is preferably 1 mol% or more so that the fluororesin can easily swell with the nonaqueous electrolyte.
  • the gel electrolyte When the gel electrolyte is disposed in the interface region between the active material layer and the separator, for example, a resin that swells with a nonaqueous electrolyte is applied to the surface of the active material layer and / or the surface of the separator, for example, in a thin film shape. Thereafter, the active material layer and the separator are laminated via a resin coating, and the obtained laminate or electrode group is impregnated with a nonaqueous electrolyte. As a result, the resin swells with the non-aqueous electrolyte, and a gel electrolyte is formed in the interface region.
  • the amount of the resin contained in the coating film is per unit surface area of the interface region between the active material layer and the separator (that is, per unit surface area of the active material layer or separator). 1 to 30 g / m 2 is preferable.
  • the exterior body is formed of, for example, a laminate film material including a barrier layer against water vapor and resin layers formed on both sides thereof.
  • the material used for the barrier layer is not particularly limited, but it is preferable to use a metal layer, a ceramic layer, or the like.
  • metal materials such as aluminum, titanium, nickel, iron, platinum, gold, silver, and tin, and ceramic materials such as silicon oxide, magnesium oxide, and aluminum oxide are preferable.
  • the thickness of the barrier layer is preferably 0.01 to 50 ⁇ m, for example.
  • the resin layer material disposed on the inner surface side of the outer package is made of polyolefin such as polyethylene and polypropylene, polyethylene terephthalate, polyamide, polyurethane, and polyethylene-acetic acid from the viewpoint of ease of thermal welding, electrolyte resistance, and chemical resistance.
  • a vinyl copolymer (EVA) or the like is preferable.
  • the thickness of the resin layer on the inner surface side is preferably 10 to 100 ⁇ m.
  • the resin layer disposed on the outer surface side of the exterior body is made of polyamide such as 6,6-nylon, polyolefin, polyethylene terephthalate, polyester such as polybutylene terephthalate, etc. from the viewpoint of strength, impact resistance and chemical resistance. preferable.
  • the thickness of the resin layer on the outer surface side is preferably 5 to 100 ⁇ m.
  • Example 1 In the following procedure, a thin battery having a pair of negative electrodes and a positive electrode sandwiched between them was produced.
  • An electrolytic copper foil having a thickness of 8 ⁇ m was prepared as a negative electrode current collector sheet.
  • the negative electrode mixture slurry was applied to one surface of the electrolytic copper foil, dried and rolled to form a negative electrode active material layer, thereby obtaining a negative electrode sheet.
  • the negative electrode mixture slurry was prepared by mixing 100 parts by mass of graphite as a negative electrode active material, 8 parts by mass of polyvinylidene fluoride (PVdF) as a binder, and an appropriate amount of N-methyl-2-pyrrolidone (NMP). Prepared.
  • the thickness of the negative electrode active material layer was 54 ⁇ m.
  • a negative electrode having a size of 47.5 mm ⁇ 18 mm having a negative electrode tab of 5 mm ⁇ 5 mm was cut out from the negative electrode sheet, and the active material layer was peeled off from the negative electrode tab to expose the copper foil. Thereafter, a copper negative electrode lead was ultrasonically welded to the tip of the negative electrode tab.
  • the positive electrode mixture slurry was applied to both surfaces of the aluminum foil, dried and then rolled to form a positive electrode active material layer to obtain a positive electrode sheet.
  • the positive electrode mixture slurry is a mixture of 100 parts by mass of lithium cobalt oxide as a positive electrode active material, 1.2 parts by mass of acetylene black as a conductive agent, 1.2 parts by mass of PVdF as a binder, and an appropriate amount of NMP. Prepared.
  • the thickness (per side) of the positive electrode active material layer was 38 ⁇ m.
  • a 45 mm ⁇ 16 mm positive electrode having a 6 mm ⁇ 5 mm tab was cut out from the positive electrode sheet, and the active material layer was peeled off from the positive electrode tab to expose the aluminum foil. Thereafter, an aluminum positive electrode lead was ultrasonically welded to the tip portion of the positive electrode tab.
  • Nonaqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) as main components.
  • Line-shaped spacer A pair of strip-shaped spacer sheets having a length of 17 mm and a width of 2 mm was cut out from a polypropylene sheet (thickness: 100 ⁇ m) which is a thermoplastic resin having a heat-welding property.
  • a laminate film material (thickness: 75 ⁇ m) having a barrier layer of aluminum foil, an inner layer of polypropylene and an outer layer of nylon is used. Formed body. First, the laminate film material was cut into a rectangle of 29 mm ⁇ 120 mm and folded in half at the center in the longitudinal direction.
  • each lead of the electrode group 103 was led out from the opposite side of the fold.
  • the joining margin of the two sides crossing the crease was welded, and the envelope-shaped exterior body 108 in a state where the electrode group 103 was accommodated was formed.
  • each lead portion that overlaps the sealing margin (opening end) of the envelope-shaped outer package 108 is surrounded by a sealing material (thermoplastic resin) 130, and then a non-aqueous electrolyte is injected from the opening to obtain ⁇ 740 mmHg.
  • the sealing margin was thermally welded under reduced pressure.
  • the thin battery was aged in an environment of 45 ° C., and the entire electrode group was impregnated with a nonaqueous electrolyte. Finally, the battery was pressed at 25 ° C. at a pressure of 0.25 MPa for 30 seconds to produce a battery A having a thickness of 0.45 mm.
  • T1 / T2 The ratio of the thickness T1 (0.35 mm) of the part where the linear spacer of the battery A is arranged to the minimum thickness T2 (0.14 mm) in the sealing margin: T1 / T2 is 2.5. It was. Further, the ratio of T1 to the thickness T3 (0.45 mm) of the portion where the first active material layer and the second active material layer of the battery A are disposed: T1 / T3 was 0.78. Further, the width G of the second gap G2 was 2.5 mm.
  • Constant current charging 0.2 CmA (end voltage 4.35 V)
  • Constant voltage charging 4.35 V (end current 0.05 CmA)
  • Constant current discharge 0.2 CmA (end voltage 3.0 V) (Capacity maintenance rate after bending test)
  • a pair of expandable and contractible fixing members were horizontally arranged opposite to each other, and a battery A in a discharged state was attached to each fixed member and fixed. Then, in an environment of 25 ° C., the distance between both ends of the fixing member was shortened so that the curvature radius of the battery became R30 mm, and then both ends of the fixing member were returned to the original state to return the battery to a flat state. After repeating this operation 1000 times, the front and back of the battery were exchanged, and bending was performed 1000 times on the opposite surface of the battery.
  • the thin battery was charged and discharged under the same conditions as described above, and the discharge capacity (C x ) after the bending test was obtained. From the obtained discharge capacity C x and initial capacity C 0 , the capacity retention rate was obtained from the following equation.
  • Capacity retention ratio after bending test (%) (C x / C 0 ) ⁇ 100
  • Ten batteries A were produced, and the same test was performed on each of them to determine the average value of the capacity retention rate. The results are shown in Table 1. In addition, the number of defective batteries in which cracks in the outer package or convex bulges ( ⁇ ⁇ ) occurred in the stepped portion where the thickness of the electrode group changed was visually confirmed.
  • Example 1 As shown in Table 1, in Example 1, a high capacity retention rate was obtained and no defective battery was generated, whereas in Comparative Example 1, 8 defective batteries were generated, and the capacity maintenance rate was also lowered. did.
  • the thin battery of the present invention is suitable for use in a small electronic device such as a biological sticking device or a wearable portable terminal.

Abstract

A thin battery includes an electrode group, a nonaqueous electrolyte, and an external body. The electrode group is equipped with a first electrode, a second electrode, and a separator. The first electrode includes a first collector sheet and a first active material layer, and the second electrode includes a second collector sheet and a second active material layer. The first collector sheet includes a first tab extending in a first direction and has a first lead connected to the first tab. The second collector sheet includes a second tab extending in the first direction and has a second lead connected to the second tab. The external body has a sealing margin for holding the first lead and the second lead. A linear spacer is arranged between the sealing margin and the edge of the active material layer close to the sealing margin, a first gap is formed between the sealing margin and the spacer, and a second gap is formed between the spacer and the edge of the active material layer close to the sealing margin.

Description

薄型電池Thin battery
 本発明は、シート状の電極群を含む薄型電池に関する。 The present invention relates to a thin battery including a sheet-like electrode group.
 近年、生体貼付型装置、携帯電話機、音声録音再生装置、腕時計、動画および静止画撮影機、液晶ディスプレイ、電卓、ICカード、温度センサ、補聴器、感圧ブザーなどの小型の電子機器の電源として、薄型電池が用いられている。このような薄型電池には柔軟性が求められる。例えば、生体貼付型装置もしくはウェアラブル携帯端末に搭載される薄型電池は、生体の動きに追従するように変形することが求められる。 In recent years, as a power source for small electronic devices such as bio-applied devices, mobile phones, audio recording / playback devices, watches, video and still image cameras, liquid crystal displays, calculators, IC cards, temperature sensors, hearing aids, pressure-sensitive buzzers, etc. Thin batteries are used. Such a thin battery is required to have flexibility. For example, a thin battery mounted on a biological sticking type device or a wearable portable terminal is required to be deformed so as to follow the movement of the living body.
 特許文献1は、薄型の電気化学デバイスにおいて、集電板にタブを形成し、当該タブに外装体の外部に引き出されるリードを接続することを提案している。また、タブをリードとともに固定具で挟み込み、更に外装体のシール部で挟持することを提案している。 Patent Document 1 proposes that in a thin electrochemical device, a tab is formed on a current collector plate, and a lead drawn out of the exterior body is connected to the tab. Further, it has been proposed that a tab is sandwiched with a fixture together with a lead, and is further sandwiched with a seal portion of an exterior body.
 薄型電池の外装体の内部は、電極群と非水電解質とを収納した状態で減圧されている。 The inside of the outer package of the thin battery is decompressed in a state where the electrode group and the non-aqueous electrolyte are accommodated.
 そのため、薄型電池の外観は、電極群の形状に応じて凹凸を生じやすい。そこで、特許文献2は、外装体に皺や歪みが発生するのを抑制するために、外装体内にスペーサを配置することを提案している。 Therefore, the appearance of the thin battery tends to be uneven depending on the shape of the electrode group. Therefore, Patent Document 2 proposes to arrange a spacer in the exterior body in order to suppress wrinkles and distortion in the exterior body.
特開2006-278897号公報JP 2006-278897 A 特開2011-210662号公報JP 2011-210661 A
 しかし、特許文献1、2が提案する手法では、シール部近傍の剛性が高くなり、薄型電池が屈曲するとき、外装体に高い応力が発生しやすく、外装体に亀裂が発生しやすい。このような不具合は、電極群の厚さが変化する段差部位からシール部近傍に集中する傾向がある。 However, in the methods proposed by Patent Documents 1 and 2, the rigidity in the vicinity of the seal portion is increased, and when the thin battery is bent, high stress is easily generated in the exterior body, and cracks are easily generated in the exterior body. Such a defect tends to concentrate in the vicinity of the seal portion from the stepped portion where the thickness of the electrode group changes.
 上記を鑑み、本開示の一局面の薄型電池は、シート状の電極群と、電極群に含浸された非水電解質と、電極群および非水電解質を密閉収納する外装体と、を含む。電極群は、シート状の第1電極と、シート状の第2電極と、第1電極と第2電極との間に配置されているセパレータと、を具備し、第1電極は、第1集電体シートおよび第1集電体シートの表面に付着した第1活物質層を含み、第2電極は、第2集電体シートおよび第2集電体シートの表面に付着した第2活物質層を含む。第1集電体シートは、第1集電体シートの一辺の一部から第1方向に延在する第1タブを含み、第1タブに外装体の外部に引き出される第1リードが接続されており、第2集電体シートは、第2集電体シートの一辺の一部から第1方向に延在する第2タブを含み、第2タブに外装体の外部に引き出される第2リードが接続されている。外装体は、第1リードおよび第2リードを挟持する封止代を有し、封止代と、第1活物質層および第2活物質層の封止代側の端部との間にライン状のスペーサが配置されており、封止代とスペーサとの間に第1隙間が形成されており、スペーサと第1活物質層および第2活物質層の封止代側の端部との間に第2隙間が形成されている。 In view of the above, a thin battery according to one aspect of the present disclosure includes a sheet-like electrode group, a nonaqueous electrolyte impregnated in the electrode group, and an exterior body that hermetically stores the electrode group and the nonaqueous electrolyte. The electrode group includes a sheet-like first electrode, a sheet-like second electrode, and a separator disposed between the first electrode and the second electrode. The second active material includes a first active material layer attached to the surfaces of the current collector sheet and the first current collector sheet, and the second electrode is attached to the surfaces of the second current collector sheet and the second current collector sheet. Including layers. The first current collector sheet includes a first tab extending in a first direction from a part of one side of the first current collector sheet, and a first lead drawn out of the exterior body is connected to the first tab. The second current collector sheet includes a second tab extending in a first direction from a part of one side of the second current collector sheet, and a second lead drawn out of the exterior body by the second tab Is connected. The exterior body has a sealing margin for sandwiching the first lead and the second lead, and a line is formed between the sealing margin and the end portion on the sealing margin side of the first active material layer and the second active material layer. The first spacer is formed between the sealing margin and the spacer, and the spacer and the end of the first active material layer and the second active material layer on the sealing margin side A second gap is formed between them.
 本開示に係る薄型電池によれば、封止代とライン状のスペーサとの間に第1隙間が形成され、かつスペーサと活物質層の封止代側の端部との間に第2隙間が形成されているため、外装体がスペーサに沿って湾曲し、外装体が引き伸ばされたときの展開長が長くなる。これにより、外装体に伸縮を吸収する余裕が生じる。よって、薄型電池が屈曲するときに、電極群の厚さが変化する段差部位で亀裂が発生しにくい。 According to the thin battery according to the present disclosure, the first gap is formed between the sealing margin and the line-shaped spacer, and the second gap is formed between the spacer and the end portion on the sealing margin side of the active material layer. Therefore, the exterior body is curved along the spacer, and the unfolded length when the exterior body is stretched becomes long. Thereby, a margin for absorbing expansion and contraction is generated in the exterior body. Therefore, when the thin battery is bent, cracks are unlikely to occur at the stepped portion where the thickness of the electrode group changes.
図1は、本発明の実施形態に係る薄型電池の外装体の一部を切り欠いた平面図である。FIG. 1 is a plan view in which a part of an outer package of a thin battery according to an embodiment of the present invention is cut away. 図2は、同薄型電池の要部の縦断面図である。FIG. 2 is a longitudinal sectional view of a main part of the thin battery. 図3は、薄型電池が屈曲するときの外装体の状態を示す概念図である。FIG. 3 is a conceptual diagram showing a state of the exterior body when the thin battery is bent.
 本発明の実施形態に係る薄型電池は、シート状の電極群と、電極群に含浸された非水電解質と、電極群および非水電解質を密閉収納する外装体とを具備する。電極群は、シート状の第1電極と、シート状の第2電極と、第1電極と第2電極との間に配置されているセパレータとを具備する。第1電極は、第1集電体シートおよび第1集電体シートに付着した第1活物質層を含む。第2電極は、第2集電体シートおよび第2集電体シートに付着した第2活物質層を含む。第1集電体シートは、第1集電体シートの一辺の一部から第1方向に延在する第1タブを有し、第2集電体シートは、第2集電体シートの一辺の一部から第1方向に延在する第2タブを含む。第1タブには、外装体の外部に第1方向に引き出される第1リードが接続されており、第2タブには、外装体の外部に第1方向に引き出される第2リードが接続されている。 A thin battery according to an embodiment of the present invention includes a sheet-like electrode group, a nonaqueous electrolyte impregnated in the electrode group, and an exterior body that hermetically stores the electrode group and the nonaqueous electrolyte. The electrode group includes a sheet-like first electrode, a sheet-like second electrode, and a separator disposed between the first electrode and the second electrode. The first electrode includes a first current collector sheet and a first active material layer attached to the first current collector sheet. The second electrode includes a second current collector sheet and a second active material layer attached to the second current collector sheet. The first current collector sheet has a first tab extending in a first direction from a part of one side of the first current collector sheet, and the second current collector sheet is one side of the second current collector sheet. A second tab extending in a first direction from a portion of the first tab. A first lead that is pulled out in the first direction is connected to the first tab, and a second lead that is pulled out in the first direction is connected to the second tab. Yes.
 外装体は、第1リードおよび第2リードを挟持する封止代を有し、封止代と、第1活物質層および第2活物質層の封止代側の端部との間にライン状のスペーサが配置されている。封止代とスペーサとの間には第1隙間が形成されている。また、スペーサと第1活物質層および第2活物質層の封止代側の端部との間には、第2隙間が形成されている。 The exterior body has a sealing margin for sandwiching the first lead and the second lead, and a line is formed between the sealing margin and the end portion on the sealing margin side of the first active material layer and the second active material layer. Shaped spacers are arranged. A first gap is formed between the sealing margin and the spacer. Further, a second gap is formed between the spacer and the end portion on the sealing margin side of the first active material layer and the second active material layer.
 なお、外装体の封止代とは、例えば、二枚のフィルム材の周縁部を接合して外装体を形成する場合、もしくは一枚のフィルム材を折り畳んで折り目以外の周縁部を接合して外装体を形成するときの周縁部をいう。例えば外装体の外形が矩形もしくは矩形に近い形状であれば、4つの辺のうちの一つに沿う周縁部が第1リードおよび第2リードを挟持する封止代となる。 Note that the sealing allowance of the outer package is, for example, when the outer package is formed by bonding the peripheral portions of two film materials, or the peripheral portions other than the folds are bonded by folding one film material. The peripheral part when forming an exterior body. For example, if the outer shape of the exterior body is a rectangle or a shape close to a rectangle, the peripheral edge along one of the four sides serves as a sealing margin for sandwiching the first lead and the second lead.
 また、第1活物質層および第2活物質層の封止代側の端部とは、第1活物質層および第2活物質層を合わせた全体の端部を意味する。第1活物質層および第2活物質層の一方が他方よりも封止代側に突出している場合には、突出している活物質層の端部が全体の端部である。 Further, the end portion on the sealing margin side of the first active material layer and the second active material layer means the entire end portion including the first active material layer and the second active material layer. When one of the first active material layer and the second active material layer protrudes more toward the sealing margin than the other, the end of the protruding active material layer is the entire end.
 外装体は、第1活物質層および第2活物質層と対向する第1部位と、第1集電体シートの第1活物質層を有さない領域および第2集電体シートの第2活物質層を有さない領域と対向する第2部位とを有する。 The exterior body includes a first portion that faces the first active material layer and the second active material layer, a region of the first current collector sheet that does not have the first active material layer, and a second current collector sheet. It has the 2nd site | part which opposes the area | region which does not have an active material layer.
 薄型電池の外装体の内部は、電極群と非水電解質とを収納した状態で減圧される。このとき、上記構成によれば、外装体の第2部位がスペーサに沿って湾曲する。これにより、外装体が引き伸ばされたときの展開長が長くなる。 The inside of the outer package of the thin battery is depressurized while the electrode group and the nonaqueous electrolyte are accommodated. At this time, according to the said structure, the 2nd site | part of an exterior body curves along a spacer. Thereby, the expansion | deployment length when an exterior body is extended becomes long.
 薄型電池が屈曲する場合、薄型電池が凸形状になる外面では、湾曲していた外装体の第2部位が伸張し、応力を吸収する。よって、電極群の段差部位における外装体の亀裂が発生しにくくなる。中でも、外装体の亀裂は、第1活物質層および第2活物質層の封止代側の端部近傍で発生しやすい。よって、外装体の内部が減圧されたときに、外装体の第2部位が第2隙間に侵入して湾曲することが特に重要である。 When the thin battery is bent, on the outer surface where the thin battery has a convex shape, the second part of the curved exterior body expands to absorb the stress. Therefore, the crack of the exterior body at the step portion of the electrode group is less likely to occur. Especially, the crack of an exterior body tends to generate | occur | produce in the edge part vicinity of the sealing margin side of a 1st active material layer and a 2nd active material layer. Therefore, when the inside of the exterior body is decompressed, it is particularly important that the second part of the exterior body enters the second gap and curves.
 また、薄型電池が凹形状になる外面では、外装体の第2部位が予めスペーサに沿って湾曲しているため、外装体が凸形状に膨らみにくくなっている。第1隙間および第2隙間に侵入している外装体の第2部位は、凹形状になると、第1隙間および第2隙間の内側により深く入り込むため、凸形状の膨らみは更に抑制される。 Also, on the outer surface where the thin battery becomes concave, the second part of the outer package is curved along the spacer in advance, so that the outer package is less likely to bulge into a convex shape. If the second part of the exterior body that has entered the first gap and the second gap has a concave shape, it enters deeper into the inside of the first gap and the second gap, so that the convex bulge is further suppressed.
 次に、スペーサが配置されている部位の厚さT1と、封止代を有する部位における厚さT2とは、T1>T2を満たすことが望ましい。これにより、外装体が引き伸ばされたときの展開長が更に長くなる。よって、外装体の亀裂や不要な皺が更に発生しにくくなる。 Next, it is desirable that the thickness T1 of the portion where the spacer is disposed and the thickness T2 of the portion having the sealing allowance satisfy T1> T2. Thereby, the expansion | deployment length when an exterior body is extended becomes still longer. Therefore, cracks and unnecessary wrinkles in the exterior body are less likely to occur.
 薄型電池のスペーサが配置されている部位の厚さが均一でない場合、薄型電池のスペーサが配置されている部位の最小の厚さをT1として求めればよい。同様に、薄型電池の封止代における厚さT2が均一でない場合、薄型電池の封止代における最小の厚さをT2として求めればよい。 When the thickness of the portion where the spacer of the thin battery is arranged is not uniform, the minimum thickness of the portion where the spacer of the thin battery is arranged may be obtained as T1. Similarly, when the thickness T2 at the sealing margin of the thin battery is not uniform, the minimum thickness at the sealing margin of the thin battery may be obtained as T2.
 薄型電池のスペーサが配置されている部位の厚さT1と、封止代における厚さT2とは、1.1<T1/T2<6.0を満たすことがより好ましく、2.0≦T1/T2≦3.0を満たすことが更に好ましい。これにより、外装体が引き伸ばされたときの展開長を確保しやすくなる。 More preferably, the thickness T1 of the portion where the spacer of the thin battery is disposed and the thickness T2 in the sealing allowance satisfy 1.1 <T1 / T2 <6.0, and 2.0 ≦ T1 / More preferably, T2 ≦ 3.0 is satisfied. Thereby, it becomes easy to ensure the deployment length when the exterior body is stretched.
 ライン状のスペーサとは、細長い形状(棒状、ストリップ状、半筒状など)の部材である。スペーサは、封止代と活物質層の封止代側の端部との間に収納可能な幅を有する。スペーサの長さは、概ね電極群の幅に対応することが望ましく、第1活物質層および第2活物質層の封止代側の端部のうちの長い方の60~120%程度が好ましく、80~110%程度がより好ましく、90~100%程度が更に好ましい。スペーサの幅は、スペーサの長さより十分に短く、例えば長さの20%以下であり、具体的には1.0~5.0mmであることが好ましい。 A line-shaped spacer is a member having an elongated shape (bar shape, strip shape, semi-cylindrical shape, etc.). The spacer has a width that can be accommodated between the sealing margin and the end portion on the sealing margin side of the active material layer. It is desirable that the length of the spacer substantially corresponds to the width of the electrode group, and is preferably about 60 to 120% of the longer of the end portions on the sealing margin side of the first active material layer and the second active material layer. 80 to 110% is more preferable, and about 90 to 100% is more preferable. The width of the spacer is sufficiently shorter than the length of the spacer, for example, 20% or less of the length, and specifically, preferably 1.0 to 5.0 mm.
 スペーサは、封止代と活物質層の封止代側の端部との間に、電極群の厚さを超えないように細長い隆起部を形成することのできる厚さを有することが好ましい。細長い隆起部とは、ライン状のスペーサに沿ったリブ(rib)もしくは畝(ridge)のような形状を有する。このような隆起部は、例えば、外装体の第2部位がスペーサの幅方向の両側に隣接する第1隙間および第2隙間に侵入し、スペーサの形状に沿って湾曲することで形成される。 It is preferable that the spacer has a thickness capable of forming an elongated ridge between the sealing margin and the end portion on the sealing margin side of the active material layer so as not to exceed the thickness of the electrode group. The elongated ridge has a shape like a rib or a ridge along a line-shaped spacer. Such a raised portion is formed, for example, by the second portion of the exterior body entering the first gap and the second gap adjacent to both sides in the width direction of the spacer and bending along the shape of the spacer.
 スペーサの材質は、特に限定されないが、熱溶着性を有する熱可塑性樹脂が好ましい。熱溶着性を有する熱可塑性樹脂で形成されたスペーサは、集電体シートもしくはタブの任意の部位に熱溶着により固定することができる。よって、製造中、または電池を屈曲した際にスペーサが所望の位置から移動したり、脱落したりすることを防止できる。熱可塑性樹脂としては、特に限定されないが、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体などを用いることができる。ポリオレフィン樹脂としては、非水電解質に対する耐性に優れる点で、ポリプリピレン、エチレン-プロピレン共重合体などが好ましい。 The material of the spacer is not particularly limited, but a thermoplastic resin having heat weldability is preferable. A spacer formed of a thermoplastic resin having a heat welding property can be fixed to any part of the current collector sheet or the tab by heat welding. Therefore, it is possible to prevent the spacer from moving from a desired position or falling off during manufacturing or when the battery is bent. The thermoplastic resin is not particularly limited, and polyolefin resin, ethylene-vinyl acetate copolymer, and the like can be used. As the polyolefin resin, polypropylene, ethylene-propylene copolymer, and the like are preferable from the viewpoint of excellent resistance to nonaqueous electrolytes.
 ライン状のスペーサは、第1活物質層および第2活物質層の封止代側の端部に沿って配置される。すなわち、活物質層の封止代側の端部とスペーサの長さ方向とは、平行、またはできるだけ平行に近いことが望ましい。活物質層の封止代側の端部とスペーサの長さ方向とが成す角度は、170~190度(°)が好ましく、180度であることがより好ましい。これにより、第1方向に沿って薄型電池が屈曲するときに、より屈曲しやすくなる。また、電極群の厚さが変化する段差部位で、より亀裂が発生しにくく、かつ凸形状の膨らみが生じにくくなる。 The line-shaped spacers are arranged along the end portions on the sealing margin side of the first active material layer and the second active material layer. That is, it is desirable that the end portion on the sealing margin side of the active material layer and the length direction of the spacer are parallel or as close to parallel as possible. The angle formed by the end portion on the sealing margin side of the active material layer and the length direction of the spacer is preferably 170 to 190 degrees (°), and more preferably 180 degrees. Thereby, when a thin battery bends along the first direction, it becomes easier to bend. In addition, cracks are less likely to occur at the step portions where the thickness of the electrode group changes, and convex bulges are less likely to occur.
 薄型電池のスペーサが配置されている部位の厚さT1と、第1活物質層および第2活物質層が配置されている部位の厚さT3とは、0.5<T1/T3<1.5を満たすことが好ましく、0.7≦T1/T3≦1.2を満たすことがより好ましい。これにより、スペーサにより形成される隆起部が過度に厚さ方向に突出することがなく、電池の取り扱いが容易になり、電池の使用機器への装着も容易になる。ここでも、薄型電池の第1活物質層および第2活物質層が配置されている部位の厚さT3が均一でない場合、薄型電池の第1活物質層および第2活物質層が配置されている部位の最小の厚さをT3として求めればよい。 The thickness T1 of the portion where the spacer of the thin battery is disposed and the thickness T3 of the portion where the first active material layer and the second active material layer are disposed are 0.5 <T1 / T3 <1. 5 is preferably satisfied, and more preferably 0.7 ≦ T1 / T3 ≦ 1.2. Accordingly, the raised portion formed by the spacer does not protrude excessively in the thickness direction, the battery can be easily handled, and the battery can be easily attached to the device in use. Also here, when the thickness T3 of the portion where the first active material layer and the second active material layer of the thin battery are arranged is not uniform, the first active material layer and the second active material layer of the thin battery are arranged. What is necessary is just to obtain | require the minimum thickness of the site | part which is present as T3.
 第2隙間の幅Gと第1活物質層および第2活物質層の第1方向における長さLとは、0.01<G/L<0.2を満たすことが好ましく、0.05≦G/L≦0.15を満たすことがより好ましい。これにより、十分な体積エネルギー密度を有する薄型電池を形成できるとともに、外装体が引き伸ばされたときの展開長を十分に確保しやすくなる。 The width G of the second gap and the length L in the first direction of the first active material layer and the second active material layer preferably satisfy 0.01 <G / L <0.2, and 0.05 ≦ It is more preferable to satisfy G / L ≦ 0.15. This makes it possible to form a thin battery having a sufficient volumetric energy density and to easily ensure a sufficiently long development length when the exterior body is stretched.
 ライン状のスペーサは、第1タブおよび第2タブを挟持する一対のシート部材であることが好ましい。この場合、スペーサとなるシート部材(以下、スペーサシート)が、シート状の電極群の両面側にそれぞれ1つずつ配置される。例えば、一対のスペーサシートが第1タブおよび第2タブを挟持した状態で互いに突き合わされ、貼り合わされ、各タブに固定される。 It is preferable that the linear spacer is a pair of sheet members that sandwich the first tab and the second tab. In this case, one sheet member (hereinafter referred to as a spacer sheet) serving as a spacer is arranged on each side of the sheet-like electrode group. For example, a pair of spacer sheets are abutted against each other in a state where the first tab and the second tab are sandwiched, bonded together, and fixed to each tab.
 スペーサシートには、例えば、熱溶着性を有する熱可塑性樹脂であるポリオレフィン樹脂を用いることが好ましい。スペーサシートの厚さは、薄型電池の厚さに応じて選択すればよいが、例えば20~500μmであればよい。 For the spacer sheet, it is preferable to use, for example, a polyolefin resin which is a thermoplastic resin having a heat-welding property. The thickness of the spacer sheet may be selected according to the thickness of the thin battery, but may be, for example, 20 to 500 μm.
 スペーサシートは、ポリオレフィン樹脂の融点で溶融しない芯材を含むことが望ましい。芯材の存在により、スペーサシートの過度な変形が回避され、スペーサシートが所望の厚さを維持しやすくなる。よって、スペーサシートを集電体シートもしくはタブの任意の部位に熱溶着する作業が容易になる。芯材の材質は、特に限定されないが、耐熱性樹脂の繊維で形成された不織布や織布が適している。耐熱性樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどが挙げられる。 The spacer sheet preferably includes a core material that does not melt at the melting point of the polyolefin resin. Due to the presence of the core material, excessive deformation of the spacer sheet is avoided, and the spacer sheet can easily maintain a desired thickness. Therefore, the work of thermally welding the spacer sheet to an arbitrary part of the current collector sheet or tab is facilitated. The material of the core material is not particularly limited, but a non-woven fabric or a woven fabric formed of heat-resistant resin fibers is suitable. Examples of the heat resistant resin include polyamide, polyimide, polyamideimide, polyphenylene sulfide, polyvinylidene fluoride, and polytetrafluoroethylene.
 薄型電池の厚さは、特に限定されないが、柔軟性を考慮すると、3mm以下、さらには2mm以下もしくは1.5mm以下であることが好ましい。薄型電池の厚さの下限は、例えば50μmである。 The thickness of the thin battery is not particularly limited, but is preferably 3 mm or less, more preferably 2 mm or less, or 1.5 mm or less in consideration of flexibility. The lower limit of the thickness of the thin battery is, for example, 50 μm.
 非水電解質の少なくとも一部が、ゲル電解質を形成している場合、ゲル電解質により、第1活物質層とセパレータとの間、および、第2活物質層とセパレータとの間を接着することができる。これにより、電極群の曲げ性能は高められるが、一方で、電池を大きく曲げた際には外装体にかかる負荷は大きくなりやすい。このような場合でも、外装体の第2部位がスペーサに沿って湾曲することで、外装体にかかる負荷を緩和する顕著な効果を発揮する。 When at least a part of the non-aqueous electrolyte forms a gel electrolyte, the gel electrolyte can adhere the first active material layer and the separator and the second active material layer and the separator. it can. Thereby, although the bending performance of an electrode group is improved, on the other hand, when a battery is greatly bent, the load applied to an exterior body tends to increase. Even in such a case, the second portion of the exterior body is curved along the spacer, so that a remarkable effect of reducing the load applied to the exterior body is exhibited.
 本発明の実施形態に係る電池搭載デバイスは、上記薄型電池と、薄型電池からの電力供給により駆動される可撓性を有する電子機器を具備し、薄型電池と電子機器とが一体となってシート化されている。薄型電池と一体となってシート化される電子機器としては、例えば、生体貼付型装置もしくはウェアラブル(wearable)携帯端末、携帯電話機、音声録音再生装置、腕時計、動画および静止画撮影機、液晶ディスプレイ、電卓、ICカード、温度センサ、補聴器、感圧ブザーなどが挙げられる。特に、生体貼付型装置は、生体に密着した状態で使用されるため、可撓性が要求される。生体貼付型装置としては、生体情報測定装置、イオントフォレシス経皮投薬装置などが挙げられる。 A battery-mounted device according to an embodiment of the present invention includes the thin battery and a flexible electronic device driven by power supply from the thin battery, and the thin battery and the electronic device are integrated into a sheet. It has become. Electronic devices that are integrated into a sheet with a thin battery include, for example, a bio-applied device or a wearable mobile terminal, a mobile phone, a voice recording / playback device, a wristwatch, a video and still image camera, a liquid crystal display, Calculators, IC cards, temperature sensors, hearing aids, pressure-sensitive buzzers, etc. In particular, the bio-applied device is required to be flexible because it is used in close contact with a living body. Examples of the biological sticking type device include a biological information measuring device and an iontophoresis transdermal dosage device.
 シート状の電池搭載デバイスの厚さは、薄型電池より厚くてもよいが、5mm以下が好ましく、3mm以下がより好ましい。電池搭載デバイスの厚さが5mm程度以下であれば、比較的良好な柔軟性が得られる。電池搭載デバイスの厚さの下限は、例えば50μmである。 The thickness of the sheet-like battery-mounted device may be thicker than the thin battery, but is preferably 5 mm or less, more preferably 3 mm or less. If the thickness of the battery-mounted device is about 5 mm or less, relatively good flexibility can be obtained. The lower limit of the thickness of the battery-mounted device is, for example, 50 μm.
 電極群の構成は、特に限定されないが、例えば以下を挙げることができる。 The configuration of the electrode group is not particularly limited, and examples thereof include the following.
 最もシンプルな構造の電極群は、1つの第1電極と、1つの第2電極と、第1電極と第2電極との間に介在するセパレータとを具備する。この場合、第1電極は、第1集電体シートおよびその一方の表面に付着した第1活物質層を含む片面電極であり得る。第2電極も、第2集電体シートおよびその一方の表面に付着した第2活物質層を含む片面電極であり得る。 The electrode group having the simplest structure includes one first electrode, one second electrode, and a separator interposed between the first electrode and the second electrode. In this case, the first electrode may be a single-sided electrode including the first current collector sheet and the first active material layer attached to one surface thereof. The second electrode may also be a single-sided electrode including a second current collector sheet and a second active material layer attached to one surface thereof.
 次にシンプルな構造の電極群は、1つの第1電極と、第1電極を挟持する2つの第2電極とを含む3層構造を有する。このような薄型電池は、厚さが小さく、かつ十分に実用的な容量を備える。この場合、第2電極は、第2集電体シートおよびその一方の表面に付着した第2活物質層を含む片面電極であり得る。一方、第1電極は、第1集電体シートおよびその両方の表面に付着した第1活物質層を含む両面電極であり得る。 Next, the electrode group having a simple structure has a three-layer structure including one first electrode and two second electrodes sandwiching the first electrode. Such a thin battery has a small thickness and a sufficiently practical capacity. In this case, the second electrode may be a single-sided electrode including the second current collector sheet and the second active material layer attached to one surface thereof. On the other hand, the first electrode may be a double-sided electrode including a first current collector sheet and a first active material layer attached to both surfaces.
 別の構造の電極群は、例えば、2つ以上の第1電極と、3つ以上の第2電極とを具備し、第1電極と第2電極とが交互に積層されている。このような電極群のうち、最もシンプルな構造は、2つの第1電極と、2つの第1電極の間に介在する1つの第2電極と、2つの第1電極の外側にそれぞれ1つずつ配置された第2電極とを含む。このような薄型電池は、厚さが小さいだけでなく、高容量を備える。この場合、第1電極は、第1集電体シートおよびその両方の表面に付着した第1活物質層を含む両面電極であり得る。2つの第1電極の間に介在する1つの第2電極も、第2集電体シートおよびその両方の表面に付着した第2活物質層を含む両面電極であり得る。一方、最外にそれぞれ配置される第2電極は、第2集電体シートおよびその一方の表面に付着した第2活物質層を含む片面電極であり得る。 The electrode group having another structure includes, for example, two or more first electrodes and three or more second electrodes, and the first electrodes and the second electrodes are alternately stacked. Among such electrode groups, the simplest structure has two first electrodes, one second electrode interposed between the two first electrodes, and one each outside the two first electrodes. And a second electrode disposed. Such a thin battery has not only a small thickness but also a high capacity. In this case, the first electrode may be a double-sided electrode including a first current collector sheet and a first active material layer attached to both surfaces. One second electrode interposed between the two first electrodes may also be a double-sided electrode including a second current collector sheet and a second active material layer attached to both surfaces thereof. On the other hand, the second electrodes arranged on the outermost sides may be single-sided electrodes including a second current collector sheet and a second active material layer attached to one surface thereof.
 以下、本発明の実施形態を更に詳細に説明する。ただし、以下の実施形態は、発明の範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described in more detail. However, the following embodiments do not limit the scope of the invention.
 次に、本発明の実施形態に係る薄型電池について、図1および図2を参照しながら説明する。図1は薄型電池の外装体の一部を切り欠いた平面図であり、図2は、薄型電池の要部を示す縦断面図である。なお、図2は、図1に示す薄型電池のII-II線矢視断面図に相当する。 Next, a thin battery according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view in which a part of an outer package of a thin battery is cut out, and FIG. 2 is a longitudinal sectional view showing a main part of the thin battery. 2 corresponds to a cross-sectional view taken along the line II-II of the thin battery shown in FIG.
 薄型電池100は、電極群103と、非水電解質(図示せず)と、これらを収納する外装体108とを備える。電極群103は、1つの第1電極110と、第1電極110を挟持する一対の第2電極120とを含み、第1電極110と第2電極120との間にはセパレータ107が介在している。第1電極110は、第1集電体シート111およびその両方の表面に付着した第1活物質層112を含む。第2電極120は、第2集電体シート121およびその一方の表面に付着した第2活物質層122を含む。 The thin battery 100 includes an electrode group 103, a non-aqueous electrolyte (not shown), and an exterior body 108 that houses them. The electrode group 103 includes one first electrode 110 and a pair of second electrodes 120 that sandwich the first electrode 110, and a separator 107 is interposed between the first electrode 110 and the second electrode 120. Yes. The first electrode 110 includes a first current collector sheet 111 and a first active material layer 112 attached to both surfaces. The second electrode 120 includes a second current collector sheet 121 and a second active material layer 122 attached to one surface thereof.
 第1集電体シート111は、その一辺から第1方向に延在する第1タブ114を有する。第1タブ114には第1リード113が接続されている。第1リード113はシール材130を介して外装体108の封止代108Sに挟持され、第1方向に向かって外装体108の外部に引き出されている。 The first current collector sheet 111 has a first tab 114 extending in the first direction from one side thereof. A first lead 113 is connected to the first tab 114. The first lead 113 is sandwiched by the sealing allowance 108S of the exterior body 108 via the sealing material 130, and is drawn out of the exterior body 108 in the first direction.
 同様に、第2集電体シート121は、その一辺から第1方向に延在する第2タブ124を有する。一対の第2集電体シート121の第2タブ124は、互いに重ねられ、例えば溶接により電気的に接続される。これにより、集合タブ124Aが形成される。集合タブ124Aには、第2リード123が接続されている。第2リード123はシール材130を介して外装体108の封止代108Sに挟持され、第1方向に向かって外装体108の外部に引き出されている。外装体108の外部に導出された第1リード113および第2リード123の端部は、それぞれ第1外部端子または第2外部端子として機能する。 Similarly, the second current collector sheet 121 has a second tab 124 extending from one side thereof in the first direction. The second tabs 124 of the pair of second current collector sheets 121 are overlapped with each other and electrically connected by, for example, welding. Thereby, the collective tab 124A is formed. A second lead 123 is connected to the assembly tab 124A. The second lead 123 is sandwiched between the sealing margins 108S of the exterior body 108 via the sealing material 130, and is drawn out of the exterior body 108 in the first direction. End portions of the first lead 113 and the second lead 123 led out of the exterior body 108 function as a first external terminal or a second external terminal, respectively.
 外装体108は、第1活物質層112および第2活物質層122と対向する第1部位108Aと、第1集電体シート111の第1活物質層112を有さない領域(特に第1タブ)および第2集電体シート121の第2活物質層122を有さない領域(特に第2タブ)と対向する第2部位108Bとに区分することができる。 The exterior body 108 includes a first portion 108A that faces the first active material layer 112 and the second active material layer 122, and a region of the first current collector sheet 111 that does not include the first active material layer 112 (particularly, the first active material layer 112). Tab) and a region of the second current collector sheet 121 that does not have the second active material layer 122 (particularly, the second tab) and the second portion 108B that faces the region.
 封止代108Sと、図1では破線で示される第1活物質層および第2活物質層の封止代側の端部(以下、活物質層端部)103Tとの間には、細長いライン状のスペーサ109が配置されている。封止代108Sとスペーサ109との間には第1隙間G1が形成され、スペーサ109と活物質層端部103Tとの間には第2隙間G2が形成されている。 Between the sealing margin 108S and the end portion (hereinafter referred to as the active material layer end portion) 103T on the sealing margin side of the first active material layer and the second active material layer (hereinafter referred to as the end portion of the active material layer) 103T shown by a broken line in FIG. A spacer 109 is arranged. A first gap G1 is formed between the sealing margin 108S and the spacer 109, and a second gap G2 is formed between the spacer 109 and the active material layer end portion 103T.
 スペーサ109の長さは、ほぼ同じ幅を有する第1活物質層および第2活物質層の封止代側の端部103Tの長さ(幅)の95~105%程度である。スペーサの幅は、1.0~5.0mm程度である。図示例では、一対のスペーサシート109が、第1タブ114および第2タブ124を挟持した状態で互いに突き合わされ、貼り合わされている。スペーサシート109の1枚あたりの厚さは、例えば20~500μmもしくは50~300μm程度である。 The length of the spacer 109 is about 95 to 105% of the length (width) of the end portion 103T on the sealing margin side of the first active material layer and the second active material layer having substantially the same width. The width of the spacer is about 1.0 to 5.0 mm. In the illustrated example, a pair of spacer sheets 109 are abutted and bonded together with the first tab 114 and the second tab 124 sandwiched therebetween. The thickness of one spacer sheet 109 is, for example, about 20 to 500 μm or 50 to 300 μm.
 外装体108と各リードとの間に介在するシール材130は、接合後の封止代の密閉性を高めるために用いられる。シール材130には、熱溶着性を有する熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、例えばスペーサの材質として例示した材料が挙げられ、ポリオレフィン樹脂が好ましい。 The sealing material 130 interposed between the exterior body 108 and each lead is used to enhance the sealing performance of the sealing allowance after joining. For the sealing material 130, a thermoplastic resin having a heat welding property can be used. As a thermoplastic resin, the material illustrated as a material of a spacer, for example is mentioned, Polyolefin resin is preferable.
 図1において、電極群103は概ね矩形で示されているが、電極群103の形状は、これに限定されない。タブを除く電極の形状は、タブが突出する直線部分を有する形状であればよく、矩形(正方形を含む)、台形、平行四辺形、一部に直線部分を有する略楕円形、少なくとも一つの丸角を有する略矩形、略台形、略平行四辺形などが挙げられる。生産性の観点からは、矩形または略矩形が好ましい。電極群が矩形または略矩形である場合、薄型電池の形状も矩形または略矩形となり、その長辺L1と短辺L2との長さの比は、例えば、長辺:短辺=1:1~8:1である。通常、長辺に沿った方向は、タブが延在する第1方向である。 In FIG. 1, the electrode group 103 is generally rectangular, but the shape of the electrode group 103 is not limited to this. The shape of the electrode excluding the tab may be a shape having a straight portion from which the tab protrudes, and is rectangular (including a square), trapezoid, parallelogram, substantially elliptical shape having a straight portion in part, at least one round Examples include a substantially rectangular shape having a corner, a substantially trapezoidal shape, and a substantially parallelogram shape. From the viewpoint of productivity, a rectangular shape or a substantially rectangular shape is preferable. When the electrode group is rectangular or substantially rectangular, the shape of the thin battery is also rectangular or substantially rectangular, and the ratio of the length of the long side L1 to the short side L2 is, for example, long side: short side = 1: 1 to 8: 1. Usually, the direction along the long side is the first direction in which the tab extends.
 タブの形状も特に限定されない。タブの形状は、例えば、矩形(正方形を含む)、台形、平行四辺形、半円形、半楕円形、先端が円弧状の矩形、少なくとも一つの丸角を有する略矩形、略台形、略平行四辺形などである。 The shape of the tab is not particularly limited. The shape of the tab is, for example, a rectangle (including a square), a trapezoid, a parallelogram, a semicircle, a semi-ellipse, a rectangle with an arc at the tip, a substantially rectangle having at least one round corner, a substantially trapezoid, and a substantially parallelogram. Such as shape.
 図2に示すように、外装体108は、第1活物質層112および第2活物質層122と対向する第1部位108Aと、第1集電体シート111の第1活物質層112を有さない領域(特に第1タブ)および第2集電体シート121の第2活物質層122を有さない領域(特に第2タブ)と対向する第2部位108Bとを有する。第2部位108Bは、第1方向と垂直に交わるように設けられたライン状のスペーサ109を覆っている。外装体108の第2部位108Bは、部分的に第1隙間G1および第2隙間G2に侵入しており、スペーサ109の形状に沿って湾曲している。 As shown in FIG. 2, the exterior body 108 includes a first part 108 </ b> A that faces the first active material layer 112 and the second active material layer 122, and the first active material layer 112 of the first current collector sheet 111. A second region 108B that opposes the region (particularly the first tab) that does not include the region (particularly the second tab) that does not include the second active material layer 122 of the second current collector sheet 121. The second portion 108B covers a linear spacer 109 provided so as to intersect perpendicularly with the first direction. The second portion 108 </ b> B of the exterior body 108 partially enters the first gap G <b> 1 and the second gap G <b> 2 and is curved along the shape of the spacer 109.
 スペーサ109が配置されている部位の最小厚さT1と封止代108Sにおける最小厚さT2は、図1のII´-II´線における断面から測定される。最小厚さT1は、概ね外装体108を2枚と2本のスペーサ109を重ねたときの総厚に相当し、最小厚さT2は概ね外装体108を2枚重ねたときの総厚に相当する。このとき、1.1<T1/T2<6.0を満たし、T1と第1活物質層および第2活物質層が配置されている部位の厚さT3とが0.5<T1/T3<1.5を満たすように設計される。また、第2隙間の幅Gと第1活物質層および第2活物質層の第1方向における長さLとは0.01<G/L<0.2を満たすように設計される。 The minimum thickness T1 of the portion where the spacer 109 is arranged and the minimum thickness T2 at the sealing allowance 108S are measured from the cross section taken along the line II′-II ′ of FIG. The minimum thickness T1 generally corresponds to the total thickness when two exterior bodies 108 and two spacers 109 are overlapped, and the minimum thickness T2 approximately corresponds to the total thickness when two exterior bodies 108 are overlapped. To do. At this time, 1.1 <T1 / T2 <6.0 is satisfied, and T1 and the thickness T3 of the portion where the first active material layer and the second active material layer are arranged are 0.5 <T1 / T3 < Designed to meet 1.5. The width G of the second gap and the length L in the first direction of the first active material layer and the second active material layer are designed to satisfy 0.01 <G / L <0.2.
 次に、図3を参照しながらライン状のスペーサ109の役割について更に説明する。図3では、湾曲した矢印に沿って薄型電池100が屈曲した場合を想定する。図3の矢印で概念的に示されるように、シート状の薄型電池100が屈曲するとき、薄型電池の一方の外面は凸形状になり、他方の外面は凹形状になる。このとき、凸形状になる外面では、電極群103の活物質層端部103Tの近傍において、スペーサ109の形状に沿って湾曲している外装体108の第2部位108Bが、第1隙間G1および第2隙間G2から引き出されて展開される。よって、外装体に過度な応力が印加されず、電極群103の段差部位で外装体108に亀裂が発生しにくくなる。一方、凹形状になる外面では、予め第1隙間G1および第2隙間G2に侵入している第2部位108Bが、第1隙間および第2隙間の内側により深く入り込むため、不要な凸形状の膨らみの発生が抑制される。 Next, the role of the linear spacer 109 will be further described with reference to FIG. In FIG. 3, it is assumed that the thin battery 100 is bent along a curved arrow. As conceptually shown by the arrows in FIG. 3, when the sheet-like thin battery 100 is bent, one outer surface of the thin battery has a convex shape and the other outer surface has a concave shape. At this time, on the outer surface having a convex shape, in the vicinity of the active material layer end portion 103T of the electrode group 103, the second portion 108B of the exterior body 108 that is curved along the shape of the spacer 109 has the first gap G1 and It is pulled out from the second gap G2 and developed. Therefore, excessive stress is not applied to the exterior body, and cracks are less likely to occur in the exterior body 108 at the stepped portion of the electrode group 103. On the other hand, on the outer surface having a concave shape, the second portion 108B that has previously entered the first gap G1 and the second gap G2 enters deeper into the inside of the first gap and the second gap. Is suppressed.
 第1隙間G1と第2隙間G2は、同様に、外装体108に印加される応力や凸形状の膨らみを抑制する作用を有する。ただし、電極群の厚さが変化する段差部位(特に第1活物質層および第2活物質層の封止代側の端部近傍)における不具合を抑制する効果を高める観点からは、スペーサ109によって意図的に第2隙間G2を形成することが重要である。 Similarly, the first gap G1 and the second gap G2 have the effect of suppressing the stress applied to the exterior body 108 and the convex bulge. However, from the viewpoint of enhancing the effect of suppressing defects at the stepped portion where the thickness of the electrode group changes (particularly, near the end portions on the sealing margin side of the first active material layer and the second active material layer), the spacer 109 It is important to intentionally form the second gap G2.
 外装体108の開口から第1リード113および第2リード123の端部が導出された状態で外装体108に電極群103を収容し、減圧下で電極群103に非水電解質を含浸させる工程が行なわれる。外装体108の開口端部(封止代108S)と各リードとの間にシール材130を介在させて減圧下でシール材130を加熱し、外装体108の開口を封口すれば、密閉状態の薄型電池が得られる。 The step of accommodating the electrode group 103 in the outer package 108 in a state where the ends of the first lead 113 and the second lead 123 are led out from the opening of the outer package 108 and impregnating the electrode group 103 with a nonaqueous electrolyte under reduced pressure. Done. If the sealing material 130 is interposed between the opening end portion (sealing allowance 108S) of the exterior body 108 and each lead, the sealing material 130 is heated under reduced pressure, and the opening of the exterior body 108 is sealed. A thin battery is obtained.
 次に、電極群を構成する電極、リード、セパレータ、非水電解質、外装体などについて説明する。 Next, the electrodes, leads, separators, non-aqueous electrolyte, exterior body, etc. constituting the electrode group will be described.
 (負極)
 負極は、第1または第2集電体シートとしての負極集電体シートと、第1または第2活物質層としての負極活物質層とを有する。負極集電体シートには、金属フィルム、金属箔などが用いられる。負極集電体シートの材料は、銅、ニッケル、チタンおよびこれらの合金ならびにステンレス鋼からなる群より選ばれる少なくとも1種であることが好ましい。負極集電体シートの厚みは、例えば5~30μmであることが好ましい。
(Negative electrode)
The negative electrode has a negative electrode current collector sheet as the first or second current collector sheet and a negative electrode active material layer as the first or second active material layer. A metal film, metal foil, etc. are used for a negative electrode collector sheet. The material of the negative electrode current collector sheet is preferably at least one selected from the group consisting of copper, nickel, titanium and alloys thereof, and stainless steel. The thickness of the negative electrode current collector sheet is preferably 5 to 30 μm, for example.
 負極活物質層は、負極活物質を含み、必要に応じて結着剤と導電剤を含む。負極活物質層は、気相法(例えば蒸着)で形成される堆積膜でもよい。負極活物質としては、Li金属、Liと電気化学的に反応する金属もしくは合金、炭素材料(例えば黒鉛)、ケイ素合金、ケイ素酸化物などが挙げられる。負極活物質層の厚みは、例えば1~300μmであることが好ましい。 The negative electrode active material layer includes a negative electrode active material, and optionally includes a binder and a conductive agent. The negative electrode active material layer may be a deposited film formed by a vapor phase method (for example, vapor deposition). Examples of the negative electrode active material include Li metal, a metal or alloy that electrochemically reacts with Li, a carbon material (for example, graphite), a silicon alloy, and a silicon oxide. The thickness of the negative electrode active material layer is preferably, for example, 1 to 300 μm.
 (正極)
 正極は、第1または第2集電体シートとしての正極集電体シートと、第1または第2活物質層としての正極活物質層とを有する。正極集電体シートには、金属フィルム、金属箔などが用いられる。正極集電体シートの材料は、例えば、銀、ニッケル、パラジウム、金、白金、アルミニウムおよびこれらの合金ならびにステンレス鋼からなる群より選ばれる少なくとも1種であることが好ましい。正極集電体シートの厚さは、例えば1~30μmであることが好ましい。
(Positive electrode)
The positive electrode has a positive electrode current collector sheet as a first or second current collector sheet and a positive electrode active material layer as a first or second active material layer. A metal film, a metal foil, or the like is used for the positive electrode current collector sheet. The material of the positive electrode current collector sheet is preferably at least one selected from the group consisting of, for example, silver, nickel, palladium, gold, platinum, aluminum, alloys thereof, and stainless steel. The thickness of the positive electrode current collector sheet is preferably 1 to 30 μm, for example.
 正極活物質層は、正極活物質および結着剤を含み、必要に応じて導電剤を含む。正極活物質は、特に限定されないが、薄型電池が二次電池である場合には、LiCoO2、LiNiO2のようなリチウム含有複合酸化物を、薄型電池が一次電池である場合には、二酸化マンガン、フッ化カーボン(フッ化黒鉛)、リチウム含有複合酸化物などを用いることができる。正極活物質層の厚みは、例えば1~300μmであることが好ましい。 The positive electrode active material layer includes a positive electrode active material and a binder, and includes a conductive agent as necessary. The positive electrode active material is not particularly limited. When the thin battery is a secondary battery, a lithium-containing composite oxide such as LiCoO 2 or LiNiO 2 is used. When the thin battery is a primary battery, manganese dioxide is used. Carbon fluoride (fluorinated graphite), lithium-containing composite oxide, and the like can be used. The thickness of the positive electrode active material layer is preferably 1 to 300 μm, for example.
 活物質層に含ませる導電剤には、グラファイト、カーボンブラックなどが用いられる。導電剤の量は、活物質100質量部あたり、例えば0~20質量部である。活物質層に含ませる結着剤には、フッ素樹脂、アクリル樹脂、ゴム粒子などが用いられる。結着剤の量は、活物質100質量部あたり、例えば0.5~15質量部である。 As the conductive agent contained in the active material layer, graphite, carbon black, or the like is used. The amount of the conductive agent is, for example, 0 to 20 parts by mass per 100 parts by mass of the active material. As the binder to be included in the active material layer, fluorine resin, acrylic resin, rubber particles, or the like is used. The amount of the binder is, for example, 0.5 to 15 parts by mass per 100 parts by mass of the active material.
 (セパレータ)
 セパレータとしては、樹脂製の微多孔膜や不織布が好ましく用いられる。セパレータの材料(樹脂)としては、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリアミド、ポリアミドイミドなどが好ましい。セパレータの厚さは、例えば8~30μmである。
(Separator)
As the separator, a resin microporous film or a nonwoven fabric is preferably used. As the material (resin) for the separator, polyolefin (polyethylene, polypropylene, etc.), polyamide, polyamideimide, etc. are preferable. The thickness of the separator is, for example, 8 to 30 μm.
 (リード)
 負極リードおよび正極リードは、負極集電体シートまたは正極集電体シートにそれぞれ溶接などにより接続される。負極リードとしては、銅リード、銅合金リード、ニッケルリード、ニッケルメッキ銅リードなどが好ましく用いられる。正極リードとしては、ニッケルリード、アルミニウムリードなどが好ましく用いられる。
(Lead)
The negative electrode lead and the positive electrode lead are connected to the negative electrode current collector sheet or the positive electrode current collector sheet, respectively, by welding or the like. As the negative electrode lead, a copper lead, a copper alloy lead, a nickel lead, a nickel-plated copper lead, or the like is preferably used. As the positive electrode lead, a nickel lead, an aluminum lead or the like is preferably used.
 (非水電解質)
 薄型電池がリチウムイオン電池である場合、非水電解質としては、リチウム塩と、リチウム塩を溶解させる非水溶媒との混合物が好ましい。リチウム塩としては、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、イミド塩類などが挙げられる。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートなどの環状炭酸エステル、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどの鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどの環状カルボン酸エステルなどが挙げられる。
(Nonaqueous electrolyte)
When the thin battery is a lithium ion battery, the nonaqueous electrolyte is preferably a mixture of a lithium salt and a nonaqueous solvent that dissolves the lithium salt. Examples of the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , and imide salts. Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate and other cyclic carbonate esters, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate and other chain carbonate esters, γ-butyrolactone, γ-valerolactone and other cyclic carboxylic acid esters. Etc.
 電極群に含浸された非水電解質の少なくとも一部は、ゲル電解質を形成していることが好ましい。ゲル電解質は、少なくとも、各活物質層と各セパレータとの界面領域に存在することが好ましい。活物質層とセパレータとの界面領域にゲル電解質が存在することで、電極とセパレータとの接着性が向上する。ゲル電解質は、各活物質層が有する空隙の内部および/または各セパレータの細孔内にも存在することが好ましい。 It is preferable that at least a part of the nonaqueous electrolyte impregnated in the electrode group forms a gel electrolyte. The gel electrolyte is preferably present at least in the interface region between each active material layer and each separator. The presence of the gel electrolyte in the interface region between the active material layer and the separator improves the adhesion between the electrode and the separator. The gel electrolyte is preferably also present in the voids of each active material layer and / or in the pores of each separator.
 ゲル電解質は、例えば、非水電解質と、非水電解質で膨潤する樹脂とを含む。非水電解質で膨潤する樹脂としては、フッ化ビニリデン単位を含むフッ素樹脂が好ましい。フッ化ビニリデン単位を含むフッ素樹脂は、非水電解質を保持しやすく、ゲル化し易い。 The gel electrolyte includes, for example, a non-aqueous electrolyte and a resin that swells with the non-aqueous electrolyte. As the resin that swells with the nonaqueous electrolyte, a fluororesin containing a vinylidene fluoride unit is preferable. A fluororesin containing a vinylidene fluoride unit tends to retain a nonaqueous electrolyte and easily gels.
 フッ化ビニリデン単位を含むフッ素樹脂としては、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン(VdF)単位とヘキサフルオロプロピレン(HFP)単位とを含む共重合体(PVdF-HFP)、フッ化ビニリデン(VdF)単位とトリフルオロエチレン(TFE)単位とを含む共重合体などが挙げられる。フッ化ビニリデン単位を含むフッ素樹脂に含まれるフッ化ビニリデン単位の量は、フッ素樹脂が非水電解質で膨潤しやすいように、1モル%以上であることが好ましい。 Examples of the fluororesin containing a vinylidene fluoride unit include polyvinylidene fluoride (PVdF), a copolymer (PVdF-HFP) containing a vinylidene fluoride (VdF) unit and a hexafluoropropylene (HFP) unit, and vinylidene fluoride (VdF). ) Units and trifluoroethylene (TFE) units. The amount of the vinylidene fluoride unit contained in the fluororesin containing the vinylidene fluoride unit is preferably 1 mol% or more so that the fluororesin can easily swell with the nonaqueous electrolyte.
 活物質層とセパレータとの界面領域にゲル電解質を配置する場合、例えば、活物質層の表面および/またはセパレータの表面に非水電解質で膨潤する樹脂を、例えば薄膜状に塗布する。その後、活物質層とセパレータとを、樹脂の塗膜を介して積層し、得られた積層体もしくは電極群に、非水電解質を含浸させる。これにより、樹脂が非水電解質で膨湿し、界面領域にゲル電解質が形成される。ゲル電解質にフッ化ビニリデン単位を含むフッ素樹脂を用いる場合、塗膜に含まれる樹脂の量は、活物質層とセパレータとの界面領域の単位表面積あたり(すなわち活物質層またはセパレータの単位表面積あたり)、1~30g/m2であることが好ましい。 When the gel electrolyte is disposed in the interface region between the active material layer and the separator, for example, a resin that swells with a nonaqueous electrolyte is applied to the surface of the active material layer and / or the surface of the separator, for example, in a thin film shape. Thereafter, the active material layer and the separator are laminated via a resin coating, and the obtained laminate or electrode group is impregnated with a nonaqueous electrolyte. As a result, the resin swells with the non-aqueous electrolyte, and a gel electrolyte is formed in the interface region. When a fluororesin containing a vinylidene fluoride unit is used for the gel electrolyte, the amount of the resin contained in the coating film is per unit surface area of the interface region between the active material layer and the separator (that is, per unit surface area of the active material layer or separator). 1 to 30 g / m 2 is preferable.
 外装体は、例えば、水蒸気に対するバリア層およびその両面にそれぞれ形成された樹脂層を具備するラミネートフィルム材で形成されている。バリア層に用いられる材料は、特に限定されないが、金属層、セラミックス層などを用いることが好適である。例えば、アルミニウム、チタン、ニッケル、鉄、白金、金、銀、スズなどの金属材料や、酸化ケイ素、酸化マグネシウム、酸化アルミニウムなどのセラミックス材料が好ましい。バリア層の厚さは、例えば、0.01~50μmであることが好ましい。外装体の内面側に配置される樹脂層の材料は、熱溶着の容易さ、耐電解質性および耐薬品性の観点から、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリエチレンテレフタレート、ポリアミド、ポリウレタン、ポリエチレン-酢酸ビニル共重合体(EVA)などであることが好ましい。内面側の樹脂層の厚さは、10~100μmであることが好ましい。外装体の外面側に配置される樹脂層は、強度、耐衝撃性および耐薬品性の観点から、6,6-ナイロンのようなポリアミド、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステルなどが好ましい。外面側の樹脂層の厚さは、5~100μmであることが好ましい。 The exterior body is formed of, for example, a laminate film material including a barrier layer against water vapor and resin layers formed on both sides thereof. The material used for the barrier layer is not particularly limited, but it is preferable to use a metal layer, a ceramic layer, or the like. For example, metal materials such as aluminum, titanium, nickel, iron, platinum, gold, silver, and tin, and ceramic materials such as silicon oxide, magnesium oxide, and aluminum oxide are preferable. The thickness of the barrier layer is preferably 0.01 to 50 μm, for example. The resin layer material disposed on the inner surface side of the outer package is made of polyolefin such as polyethylene and polypropylene, polyethylene terephthalate, polyamide, polyurethane, and polyethylene-acetic acid from the viewpoint of ease of thermal welding, electrolyte resistance, and chemical resistance. A vinyl copolymer (EVA) or the like is preferable. The thickness of the resin layer on the inner surface side is preferably 10 to 100 μm. The resin layer disposed on the outer surface side of the exterior body is made of polyamide such as 6,6-nylon, polyolefin, polyethylene terephthalate, polyester such as polybutylene terephthalate, etc. from the viewpoint of strength, impact resistance and chemical resistance. preferable. The thickness of the resin layer on the outer surface side is preferably 5 to 100 μm.
 次に、本発明を実施例に基づいて説明するが、以下の実施例は発明の範囲を限定するものではない。 Next, the present invention will be described based on examples, but the following examples do not limit the scope of the invention.
 《実施例1》
 以下の手順で、一対の負極と、これらに挟まれた正極とを有する薄型電池を作製した。
Example 1
In the following procedure, a thin battery having a pair of negative electrodes and a positive electrode sandwiched between them was produced.
 (1)負極の作製
 負極集電体シートとして、厚さ8μmの電解銅箔を準備した。電解銅箔の一方の表面に、負極合剤スラリーを塗布し、乾燥後、圧延して、負極活物質層を形成し、負極シートを得た。負極合剤スラリーは、負極活物質である黒鉛100質量部と、結着剤であるポリフッ化ビニリデン(PVdF)8質量部と、適量のN-メチル-2-ピロリドン(NMP)とを混合して調製した。負極活物質層の厚みは54μmであった。負極シートから5mm×5mmの負極タブを有する47.5mm×18mmサイズの負極を切り出し、負極タブから活物質層を剥がして銅箔を露出させた。その後、負極タブの先端部分に銅製の負極リードを超音波溶接した。
(1) Production of negative electrode An electrolytic copper foil having a thickness of 8 μm was prepared as a negative electrode current collector sheet. The negative electrode mixture slurry was applied to one surface of the electrolytic copper foil, dried and rolled to form a negative electrode active material layer, thereby obtaining a negative electrode sheet. The negative electrode mixture slurry was prepared by mixing 100 parts by mass of graphite as a negative electrode active material, 8 parts by mass of polyvinylidene fluoride (PVdF) as a binder, and an appropriate amount of N-methyl-2-pyrrolidone (NMP). Prepared. The thickness of the negative electrode active material layer was 54 μm. A negative electrode having a size of 47.5 mm × 18 mm having a negative electrode tab of 5 mm × 5 mm was cut out from the negative electrode sheet, and the active material layer was peeled off from the negative electrode tab to expose the copper foil. Thereafter, a copper negative electrode lead was ultrasonically welded to the tip of the negative electrode tab.
 (2)正極の作製
 正極集電体シートとして、厚さ15μmのアルミニウム箔を準備した。アルミニウム箔の両方の表面に、正極合剤スラリーを塗布し、乾燥後、圧延して、正極活物質層を形成し、正極シートを得た。正極合剤スラリーは、正極活物質であるコバルト酸リチウム100質量部と、導電剤であるアセチレンブラック1.2質量部と、結着剤であるPVdF1.2質量部と、適量のNMPとを混合して調製した。正極活物質層の厚み(片面あたり)は38μmであった。正極シートから6mm×5mmのタブを有する45mm×16mmサイズの正極を切り出し、正極タブから活物質層を剥がしてアルミニウム箔を露出させた。その後、正極タブの先端部分にアルミニウム製の正極リードを超音波溶接した。
(2) Production of positive electrode An aluminum foil having a thickness of 15 μm was prepared as a positive electrode current collector sheet. The positive electrode mixture slurry was applied to both surfaces of the aluminum foil, dried and then rolled to form a positive electrode active material layer to obtain a positive electrode sheet. The positive electrode mixture slurry is a mixture of 100 parts by mass of lithium cobalt oxide as a positive electrode active material, 1.2 parts by mass of acetylene black as a conductive agent, 1.2 parts by mass of PVdF as a binder, and an appropriate amount of NMP. Prepared. The thickness (per side) of the positive electrode active material layer was 38 μm. A 45 mm × 16 mm positive electrode having a 6 mm × 5 mm tab was cut out from the positive electrode sheet, and the active material layer was peeled off from the positive electrode tab to expose the aluminum foil. Thereafter, an aluminum positive electrode lead was ultrasonically welded to the tip portion of the positive electrode tab.
 (3)非水電解質
 非水電解質は、エチレンカーボネート(EC)、およびジエチルカーボネート(DEC)を主成分とする混合溶媒に、LiPF6を溶解させることにより調製した。
(3) Nonaqueous electrolyte The nonaqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) as main components.
 (4)ライン状のスペーサ
 熱溶着性を有する熱可塑性樹脂であるポリプロピレン製のシート(厚さ100μm)から、長さ17mm×幅2mmのストリップ状の一対のスペーサシートを切り出した。
(4) Line-shaped spacer A pair of strip-shaped spacer sheets having a length of 17 mm and a width of 2 mm was cut out from a polypropylene sheet (thickness: 100 μm) which is a thermoplastic resin having a heat-welding property.
 (5)薄型電池の組み立て
 上記混合溶媒100重量部に対し、PVdFを5重量部溶解してポリマー溶液を調製した。得られたポリマー溶液を49mm×18mmサイズの微多孔性ポリエチレンフィルム(厚さ9μm)からなるセパレータの両面に塗布した後、溶媒を揮散させ、PVdF膜を形成した。塗布されたPVdF量は15g/m2であった。その後、負極活物質層と正極活物質層とが互いに向かい合うように、一対の負極の間にセパレータを介して正極を配置し、電極群を形成した。このとき、正極タブと負極タブは、いずれも電極群の同じ一辺から突出させた。次に、一対のスペーサシートで第1タブおよび第2タブを挟持し、スペーサシート同士を溶着により貼り合わせるとともに各タブにも溶着した。
(5) Assembly of thin battery 5 parts by weight of PVdF was dissolved in 100 parts by weight of the mixed solvent to prepare a polymer solution. The obtained polymer solution was applied to both sides of a separator composed of a 49 mm × 18 mm microporous polyethylene film (thickness 9 μm), and then the solvent was stripped to form a PVdF film. The amount of PVdF applied was 15 g / m 2 . Thereafter, the positive electrode was disposed between the pair of negative electrodes via a separator so that the negative electrode active material layer and the positive electrode active material layer faced each other, thereby forming an electrode group. At this time, both the positive electrode tab and the negative electrode tab were projected from the same side of the electrode group. Next, the first tab and the second tab were sandwiched by a pair of spacer sheets, and the spacer sheets were bonded together by welding and also welded to each tab.
 (6)外装体の作製と電池の組み立て
 外装体の素材として、アルミニウム箔のバリア層、ポリプロピレン内層およびナイロン外層を有するラミネートフィルム材(厚さ75μm)を用いて、以下の要領で封筒状の外装体を形成した。まず、ラミネートフィルム材を29mm×120mmの矩形に切り出し、長手方向の中央で二つ折りにした。
(6) Production of exterior body and battery assembly As a material for the exterior body, a laminate film material (thickness: 75 μm) having a barrier layer of aluminum foil, an inner layer of polypropylene and an outer layer of nylon is used. Formed body. First, the laminate film material was cut into a rectangle of 29 mm × 120 mm and folded in half at the center in the longitudinal direction.
 次に、二つ折りのラミネートフィルム材で電極群103を挟み込み、折り目の反対側から電極群103の各リードを導出させた。次に、折り目と交わる二辺の接合代を溶着させて、電極群103を収容した状態の封筒状の外装体108を成形した。次に、封筒状の外装体108の封止代(開口端部)と重なる各リードの部位をシール材(熱可塑性樹脂)130で包囲した後、開口から非水電解質を注液し、-740mmHgの減圧下で封止代を熱溶着した。その後、薄型電池を45℃環境下でエージングし、電極群全体に非水電解質を含浸させた。最後に0.25MPaの圧力で30秒間、電池を25℃でプレスし、厚さ0.45mmの電池Aを作製した。 Next, the electrode group 103 was sandwiched between two folded laminate film materials, and each lead of the electrode group 103 was led out from the opposite side of the fold. Next, the joining margin of the two sides crossing the crease was welded, and the envelope-shaped exterior body 108 in a state where the electrode group 103 was accommodated was formed. Next, each lead portion that overlaps the sealing margin (opening end) of the envelope-shaped outer package 108 is surrounded by a sealing material (thermoplastic resin) 130, and then a non-aqueous electrolyte is injected from the opening to obtain −740 mmHg. The sealing margin was thermally welded under reduced pressure. Thereafter, the thin battery was aged in an environment of 45 ° C., and the entire electrode group was impregnated with a nonaqueous electrolyte. Finally, the battery was pressed at 25 ° C. at a pressure of 0.25 MPa for 30 seconds to produce a battery A having a thickness of 0.45 mm.
 電池Aのライン状のスペーサが配置されている部位の厚さT1(0.35mm)と、封止代における最小厚さT2(0.14mm)との比:T1/T2は2.5であった。また、T1と、電池Aの第1活物質層および第2活物質層が配置されている部位の厚さT3(0.45mm)との比:T1/T3は0.78であった。また、第2隙間G2の幅Gは2.5mmであった。 The ratio of the thickness T1 (0.35 mm) of the part where the linear spacer of the battery A is arranged to the minimum thickness T2 (0.14 mm) in the sealing margin: T1 / T2 is 2.5. It was. Further, the ratio of T1 to the thickness T3 (0.45 mm) of the portion where the first active material layer and the second active material layer of the battery A are disposed: T1 / T3 was 0.78. Further, the width G of the second gap G2 was 2.5 mm.
 [評価]
 (初期の電池容量)
 25℃の環境下で、電池Aに対して以下の充放電を行い、初期容量(C0)を求めた。ただし、電池Aの設計容量を1C(mAh)とする。
[Evaluation]
(Initial battery capacity)
Under the environment of 25 ° C., the battery A was charged and discharged as follows to determine the initial capacity (C 0 ). However, the design capacity of the battery A is 1 C (mAh).
 (1)定電流充電:0.2CmA(終止電圧4.35V)
 (2)定電圧充電:4.35V(終止電流0.05CmA)
 (3)定電流放電:0.2CmA(終止電圧3.0V)
 (屈曲試験後の容量維持率)
 伸縮可能な一対の固定部材を水平に対向配置し、各固定部材に放電状態の電池Aを張り付けて固定した。そして、25℃の環境下で、電池の曲率半径がR30mmになるように固定部材の両端距離を縮めた後、再び、固定部材の両端を元に戻し、電池をフラットな状態に戻した。この操作を1000回繰り返した後に、電池の表裏を入れ替え、電池の反対面に対して1000回の屈曲を行った。
(1) Constant current charging: 0.2 CmA (end voltage 4.35 V)
(2) Constant voltage charging: 4.35 V (end current 0.05 CmA)
(3) Constant current discharge: 0.2 CmA (end voltage 3.0 V)
(Capacity maintenance rate after bending test)
A pair of expandable and contractible fixing members were horizontally arranged opposite to each other, and a battery A in a discharged state was attached to each fixed member and fixed. Then, in an environment of 25 ° C., the distance between both ends of the fixing member was shortened so that the curvature radius of the battery became R30 mm, and then both ends of the fixing member were returned to the original state to return the battery to a flat state. After repeating this operation 1000 times, the front and back of the battery were exchanged, and bending was performed 1000 times on the opposite surface of the battery.
 その後、薄型電池に対して、上記と同じ条件で充放電を行い、屈曲試験後の放電容量(Cx)を求めた。得られた放電容量Cxと初期容量C0から、以下の式より容量維持率を求めた。 Thereafter, the thin battery was charged and discharged under the same conditions as described above, and the discharge capacity (C x ) after the bending test was obtained. From the obtained discharge capacity C x and initial capacity C 0 , the capacity retention rate was obtained from the following equation.
 屈曲試験後の容量維持率(%)=(Cx/C0)×100
 10個の電池Aを作製して、それぞれに同様の試験を行い、容量維持率の平均値を求めた。結果を表1に示す。また、電極群の厚さが変化する段差部位に外装体の亀裂または凸形状の膨らみ(皺)が生じた不良電池の数を目視で確認した。
Capacity retention ratio after bending test (%) = (C x / C 0 ) × 100
Ten batteries A were produced, and the same test was performed on each of them to determine the average value of the capacity retention rate. The results are shown in Table 1. In addition, the number of defective batteries in which cracks in the outer package or convex bulges (外 装) occurred in the stepped portion where the thickness of the electrode group changed was visually confirmed.
 《比較例1》
 電極群の正極タブおよび負極タブにライン状のスペーサを貼り付けなかったこと以外、実施例1と同様に、10個の電池Bを作製し、評価した。結果を表1に示す。
<< Comparative Example 1 >>
Ten batteries B were produced and evaluated in the same manner as in Example 1 except that the line spacer was not attached to the positive electrode tab and the negative electrode tab of the electrode group. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1では高い容量維持率が得られ、かつ不良電池は発生しなかったのに対し、比較例1では8個の不良電池が発生し、そのため容量維持率も低下した。 As shown in Table 1, in Example 1, a high capacity retention rate was obtained and no defective battery was generated, whereas in Comparative Example 1, 8 defective batteries were generated, and the capacity maintenance rate was also lowered. did.
 本発明の薄型電池は、例えば、生体貼付型装置もしくはウェアラブル携帯端末のような小型の電子機器への使用に適している。 The thin battery of the present invention is suitable for use in a small electronic device such as a biological sticking device or a wearable portable terminal.
100 薄型電池
103 電極群
103T 活物質層端部
107 セパレータ
108 外装体
108S 封止代
108A 第1部位
108B 第2部位
109 ライン状スペーサ
110 第1電極
111 第1集電体シート
112 第1活物質層
113 第1リード
114 第1タブ
120 第2電極
121 第2集電体シート
122 第2活物質層
123 第2リード
124 第2タブ
124A 集合タブ
130 シール材
DESCRIPTION OF SYMBOLS 100 Thin battery 103 Electrode group 103T Active material layer edge part 107 Separator 108 Exterior body 108S Sealing allowance 108A 1st site | part 108B 2nd site | part 109 Line-shaped spacer 110 1st electrode 111 1st collector sheet 112 1st active material layer 113 1st lead 114 1st tab 120 2nd electrode 121 2nd collector sheet 122 2nd active material layer 123 2nd lead 124 2nd tab 124A Collecting tab 130 Sealing material

Claims (9)

  1.  シート状の電極群と、前記電極群に含浸された非水電解質と、前記電極群および前記非水電解質を密閉収納する外装体と、を含み、
     前記電極群は、
     シート状の第1電極と、
     シート状の第2電極と、
     前記第1電極と前記第2電極との間に配置されているセパレータと、
    を具備し、
     前記第1電極は、第1集電体シートおよび前記第1集電体シートの表面に付着した第1活物質層を含み、
     前記第2電極は、第2集電体シートおよび前記第2集電体シートの表面に付着した第2活物質層を含み、
     前記第1集電体シートは、前記第1集電体シートの一辺の一部から第1方向に延在する第1タブを含み、前記第1タブに前記外装体の外部に引き出される第1リードが接続されており、
     前記第2集電体シートは、前記第2集電体シートの一辺の一部から前記第1方向に延在する第2タブを含み、前記第2タブに前記外装体の外部に引き出される第2リードが接続されており、
     前記外装体は、前記第1リードおよび前記第2リードを挟持する封止代を有し、
     前記封止代と、前記第1活物質層および前記第2活物質層の前記封止代側の端部との間にライン状のスペーサが配置されており、
     前記封止代と前記スペーサとの間に第1隙間が形成されており、
     前記スペーサと前記第1活物質層および前記第2活物質層の前記封止代側の端部との間に第2隙間が形成されている、薄型電池。
    A sheet-like electrode group, a non-aqueous electrolyte impregnated in the electrode group, and an exterior body that hermetically stores the electrode group and the non-aqueous electrolyte,
    The electrode group includes:
    A sheet-like first electrode;
    A sheet-like second electrode;
    A separator disposed between the first electrode and the second electrode;
    Comprising
    The first electrode includes a first current collector sheet and a first active material layer attached to a surface of the first current collector sheet;
    The second electrode includes a second current collector sheet and a second active material layer attached to a surface of the second current collector sheet,
    The first current collector sheet includes a first tab extending in a first direction from a part of one side of the first current collector sheet, and is drawn to the outside of the exterior body by the first tab. The lead is connected,
    The second current collector sheet includes a second tab extending in a first direction from a part of one side of the second current collector sheet, and the second current collector sheet is pulled out of the exterior body by the second tab. 2 leads are connected,
    The exterior body has a sealing margin for sandwiching the first lead and the second lead,
    A linear spacer is disposed between the sealing margin and the end portion on the sealing margin side of the first active material layer and the second active material layer,
    A first gap is formed between the sealing margin and the spacer;
    A thin battery in which a second gap is formed between the spacer and an end portion on the sealing margin side of the first active material layer and the second active material layer.
  2.  前記スペーサが配置されている部位の厚さT1と、前記封止代を有する部位の厚さT2とが、T1>T2を満たす、請求項1に記載の薄型電池。 The thin battery according to claim 1, wherein the thickness T1 of the portion where the spacer is disposed and the thickness T2 of the portion having the sealing allowance satisfy T1> T2.
  3.  1.1<T1/T2<6.0を満たす、請求項2に記載の薄型電池。 The thin battery according to claim 2, satisfying 1.1 <T1 / T2 <6.0.
  4.  前記スペーサが配置されている部位の厚さT1と、前記第1活物質層および前記第2活物質層が配置されている部位の厚さT3とが、0.5<T1/T3<1.5を満たす、請求項1~3のいずれか1項に記載の薄型電池。 The thickness T1 of the portion where the spacer is disposed and the thickness T3 of the portion where the first active material layer and the second active material layer are disposed are 0.5 <T1 / T3 <1. The thin battery according to any one of claims 1 to 3, which satisfies 5.
  5.  前記第2隙間の幅Gと前記第1活物質層および前記第2活物質層の前記第1方向における長さLとが、0.01<G/L<0.2を満たす、請求項1~4のいずれか1項に記載の薄型電池。 The width G of the second gap and the length L in the first direction of the first active material layer and the second active material layer satisfy 0.01 <G / L <0.2. 5. The thin battery according to any one of 1 to 4.
  6.  前記スペーサは、前記第1タブおよび第2タブを挟持する一対のシート部材である、請求項1~5のいずれか1項に記載の薄型電池。 6. The thin battery according to claim 1, wherein the spacer is a pair of sheet members that sandwich the first tab and the second tab.
  7.  前記シート部材は、ポリオレフィン樹脂を含む、請求項6に記載の薄型電池。 The thin sheet battery according to claim 6, wherein the sheet member includes a polyolefin resin.
  8.  前記シート部材は、前記ポリオレフィン樹脂の融点で溶融しない芯材を含む、請求項7に記載の薄型電池。 The thin battery according to claim 7, wherein the sheet member includes a core material that does not melt at a melting point of the polyolefin resin.
  9.  厚さが3mm以下である、請求項1~8のいずれか1項に記載の薄型電池。 The thin battery according to any one of claims 1 to 8, wherein the thickness is 3 mm or less.
PCT/JP2016/005231 2016-02-24 2016-12-27 Thin battery WO2017145212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501405A JPWO2017145212A1 (en) 2016-02-24 2016-12-27 Thin battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016033543 2016-02-24
JP2016-033543 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017145212A1 true WO2017145212A1 (en) 2017-08-31

Family

ID=59685973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005231 WO2017145212A1 (en) 2016-02-24 2016-12-27 Thin battery

Country Status (2)

Country Link
JP (1) JPWO2017145212A1 (en)
WO (1) WO2017145212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110016A (en) * 2017-12-18 2019-07-04 パナソニックIpマネジメント株式会社 Thin battery
JP2020129514A (en) * 2019-02-12 2020-08-27 トヨタ自動車株式会社 Laminated battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236947A (en) * 2000-02-23 2001-08-31 Sony Corp Electrode, battery, and their manufacturing method
JP2002252036A (en) * 2001-02-23 2002-09-06 Mitsubishi Materials Corp Lithium ion polymer secondary battery
JP2005142028A (en) * 2003-11-06 2005-06-02 Nec Lamilion Energy Ltd Stacked battery
WO2007105541A1 (en) * 2006-03-13 2007-09-20 Nec Corporation Electric device with outer film cover
WO2015173686A1 (en) * 2014-05-16 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Electronic device with secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236947A (en) * 2000-02-23 2001-08-31 Sony Corp Electrode, battery, and their manufacturing method
JP2002252036A (en) * 2001-02-23 2002-09-06 Mitsubishi Materials Corp Lithium ion polymer secondary battery
JP2005142028A (en) * 2003-11-06 2005-06-02 Nec Lamilion Energy Ltd Stacked battery
WO2007105541A1 (en) * 2006-03-13 2007-09-20 Nec Corporation Electric device with outer film cover
WO2015173686A1 (en) * 2014-05-16 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Electronic device with secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110016A (en) * 2017-12-18 2019-07-04 パナソニックIpマネジメント株式会社 Thin battery
JP7022912B2 (en) 2017-12-18 2022-02-21 パナソニックIpマネジメント株式会社 Thin battery
JP2020129514A (en) * 2019-02-12 2020-08-27 トヨタ自動車株式会社 Laminated battery
JP7194331B2 (en) 2019-02-12 2022-12-22 トヨタ自動車株式会社 laminated battery

Also Published As

Publication number Publication date
JPWO2017145212A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP5753258B2 (en) Flexible battery and manufacturing method thereof
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP6735445B2 (en) Wound battery
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6008981B2 (en) Secondary battery with new structure
JP6250921B2 (en) battery
JP6779905B2 (en) Electrochemical device
JP4095912B2 (en) Flat plate battery and method for manufacturing flat plate battery
JP6032628B2 (en) Thin battery
JP6757318B2 (en) How to manufacture electrochemical devices
WO2016051645A1 (en) Flexible battery
JP2000030742A (en) Lithium-ion secondary battery element
WO2016157685A1 (en) Thin cell and cell-mounting device
US10868285B2 (en) Pouch type battery cell including electrode lead of bending structure
WO2017145212A1 (en) Thin battery
JP7022912B2 (en) Thin battery
JP2016072015A (en) Flexible battery
JP2009110812A (en) Battery and method of manufacturing the same
JP3869668B2 (en) Electrochemical device and manufacturing method thereof
JP2017152129A (en) Thin battery
WO2017110062A1 (en) Film material for battery exterior, and flexible battery including same
JP2016029617A (en) Nonaqueous electrolyte secondary battery
WO2018110080A1 (en) Flexible cell
JP6612568B2 (en) Electrochemical cells and portable devices
JP2003142067A (en) Sheet-like battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891371

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891371

Country of ref document: EP

Kind code of ref document: A1