WO2017143493A1 - App 远程调控的电子镇流器 - Google Patents

App 远程调控的电子镇流器 Download PDF

Info

Publication number
WO2017143493A1
WO2017143493A1 PCT/CN2016/074270 CN2016074270W WO2017143493A1 WO 2017143493 A1 WO2017143493 A1 WO 2017143493A1 CN 2016074270 W CN2016074270 W CN 2016074270W WO 2017143493 A1 WO2017143493 A1 WO 2017143493A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
chip
module
load circuit
light source
Prior art date
Application number
PCT/CN2016/074270
Other languages
English (en)
French (fr)
Inventor
蔡志国
谭翠丽
万佳
杨洋
Original Assignee
深圳凯世光研股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳凯世光研股份有限公司 filed Critical 深圳凯世光研股份有限公司
Priority to PCT/CN2016/074270 priority Critical patent/WO2017143493A1/zh
Publication of WO2017143493A1 publication Critical patent/WO2017143493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Definitions

  • the invention relates to the field of light source devices, and in particular to an electronic ballast for remote control of an APP.
  • the present invention is directed to the above technical problem, and proposes an electronic ballast capable of remotely regulating the illumination of a lamp by an APP.
  • the invention provides an electronic ballast for remote control of an APP, comprising a power switch module for correcting the power factor of the electronic ballast; the AC power source is sequentially passed through the first rectifier module, the filter module, the power switch module and the second rectifier module. Electrically connected to the light source load circuit for supplying power to the light source load circuit;
  • the electronic ballast further includes a communication module, wherein the input end of the communication module is in communication with the mobile terminal, and the output end of the communication module is electrically connected to the input end of the first rectifier module, and is configured to receive a command signal of the mobile terminal, A rectifier module outputs an adjustment signal corresponding to the command signal, and the adjustment signal is output to the power switch module via the first rectifier module and the filter module to adjust the power of the light source load circuit, so that the light source load circuit emits illumination corresponding to the adjustment signal.
  • the electronic ballast of the present invention further includes a feedback module and a driving switch module; the input end of the feedback module is electrically connected to the light source load circuit, and the output end of the feedback module is electrically connected to the input end of the driving switch module, and is driven.
  • the first output end of the switch module is electrically connected to the power switch module, and the second output end of the drive switch module is electrically connected to the communication module, and the feedback module is configured to detect parameters of the light source load circuit and output the parameters of the light source load circuit
  • the drive switch module is configured to send the parameters of the light source load circuit to the mobile terminal through the communication module; the parameters of the light source load circuit include the sampling voltage and/or the sampling current of the light source load circuit.
  • the first rectifier module includes a rectifier, the first input end of the rectifier is connected to the live line of the AC power source, and the second input end of the rectifier is connected to the neutral line of the AC power source;
  • the filter module includes a fourth filter inductor, a fifth filter inductor, a fifteenth filter capacitor, and a fourteenth filter capacitor connected between the first output of the rectifier and the second output of the rectifier; the first output of the rectifier The terminal is grounded through the fourth filter inductor and the fifteenth filter capacitor in sequence, and the second output end of the rectifier is grounded via the fifth filter inductor;
  • the power switch module includes a fourth chip and a transformer, and the fourth chip is of the type OB2512; the second pin of the fourth chip is grounded through the fifteenth protection resistor, the sixteenth protection resistor, and the fifteenth filter capacitor, The second pin of the four chip is connected to the fifth pin of the fourth chip via the second primary winding of the transformer after the fifteenth protection resistor and the sixteenth protection resistor; the first lead of the fourth chip The pin is reversed via the fourth protection diode, and then the first primary winding of the transformer is connected to the seventh pin of the fourth chip; the seventh pin of the fourth chip is electrically connected to the eighth pin of the fourth chip, and both are Grounding; the fourth pin of the fourth chip is grounded through the seventeenth protection resistor, the second pin of the fourth chip is grounded via the eighteenth protection resistor, and the second pin of the fourth chip is also protected by the nineteenth protection The resistor is grounded; the second pin of the fourth chip is also grounded via the sixteenth filter capacitor; the second pin of the fourth chip is connected to the anode
  • the feedback module includes a second triode; the emitter of the second triode is connected to the ground of the three-terminal regulator; and the collector of the second triode is reversed Sixth protection diode connection Ground, the positive pole of the sixth protection diode is further connected to the seventh pin of the light source load circuit interface via the first voltage dividing resistor and the second voltage dividing resistor; the base of the second triode is connected to the first voltage dividing resistor and the first
  • the two-terminal voltage regulator has an output terminal connected to the first pin of the light source load circuit interface; the first pin and the seventh pin of the light source load circuit interface are used to connect the light source load circuit to load the light source The circuit is powered; the collector of the second transistor is also forwarded to the fourth pin of the light source load circuit interface via the first feedback diode and the twenty-second protection resistor; the anode of the first feedback diode is reversed by the second The feedback diode is connected to the negative electrode of the first feedback diode via the twenty
  • the driving switch module comprises an adjustable resistor connected in parallel at two ends of the sixth protection diode, and the adjustable resistor is connected to the communication module.
  • the communication module is a Z-wave module, a Zigbee module or a WIFI module.
  • the communication module includes a first chip, the first chip is of the type zm5202, and the nineteenth pin of the first chip is connected to the mobile terminal via the first filter inductor;
  • the nineteenth pin of the chip is also grounded via the first filter capacitor, and the nineteenth pin of the first chip is grounded via the second filter capacitor after passing through the first filter inductor.
  • the communication module further comprises an ICSP interface
  • the ICSP interface model is CON1 ⁇ 8P-2MM
  • the first pin of the ICSP interface is connected to the eighth pin of the first chip
  • the ICSP interface is A pin is also connected to the first auxiliary power supply via the first protection resistor
  • the second pin of the ICSP interface is connected to the seventh pin of the first chip
  • the second pin of the ICSP interface is also connected to the first by the second protection resistor.
  • the third pin of the ICSP interface is connected to the ninth pin of the first chip, the third pin of the ICSP interface is also connected to the first auxiliary power supply via the third protection resistor; the fourth pin of the ICSP interface is grounded; ICSP The fifth pin of the interface is connected to the second pin of the first chip, the fifth pin of the ICSP interface is also connected to the first auxiliary power supply via the fourth protection resistor, and the sixth pin of the ICSP interface is connected by the fifth protection resistor.
  • the first auxiliary power source, the seventh pin of the ICSP interface is connected to the first auxiliary power source, and the seventh pin of the ICSP interface is also grounded via the third filter capacitor; the communication module passes the I
  • the CSP interface is connected to an external device for causing an external device to write a program to the communication module through the ICSP interface.
  • the fifth pin of the first chip is electrically connected to the live line of the AC power source via the sixth protection resistor, and the fifth pin of the first chip is also connected to the first protection diode.
  • the first auxiliary power source; the fifth pin of the first chip is also grounded in reverse via the second protection diode.
  • the communication module further includes a filter circuit
  • the filter circuit includes a second chip
  • the second chip is of the type LNK306D
  • the fourth pin of the second chip is passed through the second filter inductor. Then, the first rectifier diode is reversed, and then the ninth protection resistor and the tenth protection resistor are connected to the live line of the AC power supply; the seventh pin of the second chip is electrically connected to the eighth pin of the second chip, And the seventh pin of the second chip is grounded through the first Zener diode, and the anode of the first Zener diode is also connected to the neutral line of the AC power source via the second rectifier diode; the connection between the neutral line and the live line of the AC power source There is a transient suppression diode, and a fourth filter capacitor is connected between the neutral line of the AC power source and the live line.
  • the cathode of the first rectifier diode is connected to the anode of the second rectifier diode via the fifth filter capacitor, and the fourth pin of the second chip.
  • the sixth pin of the second chip is electrically connected to the sixth pin of the second chip, and the fifth pin of the second chip is connected to the negative electrode of the first Zener diode, and the second chip is The first pin is connected to the negative pole of the first Zener diode via the seventh filter capacitor, and the second pin of the second chip is connected to the negative pole of the first Zener diode via the eleventh protection resistor, and the second pin of the second chip
  • the second auxiliary power supply is further connected via the twelfth protection resistor, and the freewheeling diode is connected to the second auxiliary power source.
  • the positive electrode of the freewheeling diode is electrically connected to the sixth pin of the second chip via the energy storage inductor, and the second chip is The sixth pin is further connected to the negative pole of the flow diode via the eighth filter capacitor, and the second auxiliary power source is also grounded via the ninth filter capacitor;
  • the filter circuit further includes a third chip, the third chip is of the type RT8259GE, the fifth pin of the third chip is connected to the positive pole of the flow diode, the second pin of the third chip is grounded, and the fifth pin of the third chip is The tenth filter capacitor is grounded, the first pin of the third chip is connected to the sixth pin of the third chip via the eleventh filter capacitor, and the third pin of the third chip is grounded by the thirteenth protection resistor, the third chip The third pin is also connected to the first auxiliary power supply via the fourteenth protection resistor, the sixth pin of the third chip is connected to the first auxiliary power supply via the third filter inductor, and the sixth pin of the third chip is also reversed. After the second Zener diode is grounded, the first auxiliary power source is grounded through the twelfth filter capacitor, and the first auxiliary power source is also grounded via the thirteenth filter capacitor.
  • the present invention provides an electronic ballast that can control the luminaire to fill light at different stages of plant growth. Further, the electronic ballast adopts a communication module, so that the external mobile terminal can output an adjustment signal through the communication module to activate the electronic ballast, thereby realizing the remote adjustment of the illumination of the lamp, and has good practicability.
  • FIG. 1 is a functional block diagram of an electronic ballast according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a first chip of the communication module shown in FIG. 1;
  • FIG. 3 is a circuit diagram of an ICSP interface of the communication module shown in FIG. 1;
  • FIG. 4 is a circuit diagram of a filter circuit of the communication module shown in FIG. 1;
  • FIG. 5 is a partial circuit diagram of the electronic ballast shown in Figure 1.
  • the technical problem to be solved by the present invention is that the plants need different illumination at different growth stages, and the existing lamps for promoting plant growth cannot be effectively regulated and remotely regulated in the illumination control of different growth stages of plants.
  • the technical idea of solving the technical problem proposed by the present invention is to propose an electronic ballast which can control the lamps to fill light at different stages of plant growth. Further, the electronic ballast adopts a communication module, so that the external mobile terminal can output an adjustment signal through the communication module to activate the electronic ballast, thereby realizing remote adjustment of the illumination of the lamp.
  • FIG. 1 is a functional block diagram of an electronic ballast according to an embodiment of the present invention.
  • the electronic ballast includes a power switch module 40 , and the AC power source 100 is electrically connected to the light source load circuit 60 via the first rectifier module 30 , the filter module 110 , the power switch module 40 , and the second rectifier module 50 . Used to supply power to the light source load circuit 60;
  • the electronic ballast further includes a communication module 20, and the input end of the communication module 20 is in communication with the mobile terminal 10.
  • the output end of the communication module 20 is electrically connected to the input end of the first rectifying module 30, and is configured to receive a command signal of the mobile terminal 10, and output an adjustment signal corresponding to the command signal to the first rectifying module 30, the adjusting signal
  • the first rectification module 30 and the filtering module 110 output to the power switch module 40 to adjust the power of the light source load circuit 60, so that the light source load circuit 60 emits illumination corresponding to the adjustment signal.
  • the command signal is input through the APP.
  • the communication module 20 is a Z-wave module. It can be understood that in other embodiments, the communication module 20 is not limited to the Z-wave module, and may also be a Zigbee module or a WIFI module or the like.
  • FIG. 2 there is shown a circuit diagram of a first chip of the communication module shown in Figure 1.
  • the communication module 20 includes a first chip M2, the first chip M2 is of the type zm5202, and the nineteenth pin RF_IO of the first chip M2 is connected to the mobile terminal 10 via the first filter inductor L4. .
  • the nineteenth pin RF_IO of the first chip M2 is also grounded via the first filter capacitor C60.
  • the nineteenth pin RF_IO of the first chip M2 is grounded via the first filter inductor L4 via the first filter capacitor C4.
  • FIG. 3 there is shown a circuit diagram of the ICSP interface of the communication module shown in Figure 1.
  • the communication module 20 further includes an ICSP interface ICSP2.
  • the model number of the ICSP interface ICSP2 is CON1 ⁇ 8P-2MM, and the first pin EEP_SCK of the ICSP interface ICSP2 is connected to the eighth pin of the first chip M2.
  • the first pin EEP_SCK of the ICSP interface ICSP2 is also connected to the first auxiliary power supply 3V3 via the first protection resistor R12;
  • the second pin EEP_SO of the ICSP interface ICSP2 is connected to the seventh pin P1 of the first chip M2 .2/MISO, the second pin EEP_SO of the ICSP interface ICSP2 is also connected to the first auxiliary power supply 3V3 via the second protection resistor R14;
  • the third pin EEP_SI of the ICSP interface ICSP2 is connected to the ninth pin P1 of the first chip M2.
  • ICSP interface ICSP2 third pin EEP_SI is also connected to the first auxiliary power supply 3V3 via the third protection resistor R15; ICSP interface ICSP2 fourth pin is grounded; ICSP interface ICSP2 fifth pin ZRESET is connected to the first The second pin RESET_N of the chip M2, the fifth pin ZRESET of the ICSP interface ICSP2 is also connected to the first auxiliary power supply 3V3 via the fourth protection resistor R42, and the sixth pin EEP_CS of the ICSP interface ICSP2 is connected to the fifth protection resistor R75.
  • the first auxiliary power supply 3V3, the seventh pin of the ICSP interface ICSP2 is connected to the first auxiliary power supply 3V3, and the ICSP interface ICSP
  • the seventh pin of 2 is also grounded via a third smoothing capacitor C61;
  • the communication module 20 is connected to an external device through the ICSP interface ICSP2 for passing the external device through the ICSP interface IC.
  • SP2 writes a program to the communication module 20.
  • the first auxiliary power supply 3V3 is also connected to the eleventh pin VCC33 of the first chip M2;
  • the fifth pin P1.5 of the first chip M2 is electrically connected to the live line L of the alternating current power source 100 via the sixth protection resistor R30, and the fifth pin P1 of the first chip M2. 5 is also connected to the first auxiliary power supply 3V3 via the first protection diode D20; the fifth pin P1.5 of the first chip M2 is also grounded via the second protection diode D15.
  • the first protection diode D20 and the second protection diode D15 are for protecting the first chip M2 from being excessively high in the input and output voltage of the first chip M2.
  • the second pin RESET_N of the first chip M2 is also grounded via the seventh protection resistor R8.
  • the thirteenth pin P0.1/ADC1 of the first chip M2 is connected to the base of the first transistor Q2 via the eighth protection resistor R16, and the emitter of the first transistor Q2 is grounded, first The collector of the transistor Q2 is connected to the second auxiliary power supply 12V via the third protection diode D6, and the collector of the first transistor Q2 is also connected to the second auxiliary power supply 12V via the core inductor LS2.
  • the third protection diode D6 and the core inductor LS2 connected in parallel constitute a protection circuit of the first transistor Q2 to improve the reliability of the first transistor Q2 and prolong its life, and the first transistor Q2 acts as a voltage regulator.
  • FIG 4 there is shown a circuit diagram of a filter circuit of the communication module shown in Figure 1.
  • the communication module further includes a filter circuit including a second chip U1, the second chip U1 is of the type LNK306D, and the fourth pin D of the second chip U1 is passed through the second filter inductor L1. And then reversed through the first rectifier diode D1, and then connected to the live line L of the AC power source 100 via the ninth protection resistor R26 and the tenth protection resistor R22; the seventh pin S3 of the second chip U1 and the second chip U1 The eighth pin S4 is electrically connected, and the seventh pin S3 of the second chip U1 is grounded via the first Zener diode D4, and the anode of the first Zener diode D4 is also connected to the AC through the second rectifier diode D2.
  • a filter circuit including a second chip U1
  • the second chip U1 is of the type LNK306D
  • the fourth pin D of the second chip U1 is passed through the second filter inductor L1. And then reversed through the first rectifier diode D1, and then connected to the live
  • the cathode of the rectifier diode D1 is connected to the anode of the second rectifier diode D2 via the fifth filter capacitor C4, and the fourth pin D of the second chip U1 is grounded via the sixth filter capacitor EC2; the fifth pin S1 and the second chip of the second chip U1
  • the sixth pin S2 of the two chip U1 is electrically connected, and the fifth chip U1 is fifth.
  • the pin S1 is connected to the negative pole of the first Zener diode D4, the first pin BP of the second chip U1 is connected to the negative pole of the first Zener diode D4 via the seventh filter capacitor C1, and the second pin FB of the second chip U1 is
  • the eleventh protection resistor R2 is connected to the negative pole of the first Zener diode D4, and the second chip U1 is second.
  • the pin FB is also passed through the twelfth protection resistor R3, and then reversed via the freewheeling diode D3 to the second auxiliary power supply 12V.
  • the positive pole of the freewheeling diode D3 is also connected to the sixth lead of the second chip U1 through the energy storage inductor L2.
  • the pin S2 is electrically connected.
  • the sixth pin S2 of the second chip U1 is further connected to the negative electrode of the flow diode D3 via the eighth filter capacitor C6, and the second auxiliary power supply 12V is also grounded via the ninth filter capacitor EC4.
  • the filter circuit further includes a third chip U22, the third chip U22 is of the type RT8259GE, the fifth pin VIN of the third chip U22 is connected to the positive pole of the flow diode D3, and the second pin GND of the third chip U22 is grounded, the third The fifth pin VIN of the chip U22 is grounded via the tenth filter capacitor C84, and the first pin BOOT of the third chip U22 is connected to the sixth pin PHASE of the third chip U22 via the eleventh filter capacitor C172, and the third chip U22
  • the third pin FB is grounded through the thirteenth protection resistor R440, and the third pin FB of the third chip U22 is also connected to the first auxiliary power supply 3V3 via the fourteenth protection resistor R436, and the sixth pin of the third chip U22.
  • the first auxiliary power source 3V3 is also grounded via the thirteenth filter capacitor C129.
  • FIG. 5 is a partial circuit diagram of the electronic ballast shown in FIG. 1.
  • the first rectifier module 30 includes a rectifier DB1, the first input of the rectifier DB1 is connected to the live line L of the AC power source 100, and the second input of the rectifier DB1 is connected to the neutral line N of the AC power source 100;
  • the filter module 110 is an EMI filter circuit, including a fourth filter inductor L3, a fifth filter inductor LB1, a fifteenth filter capacitor EC3, and a first output connected to the rectifier DB1 and a second output of the rectifier DB1.
  • the fourteenth filter capacitor EC1; the first output end of the rectifier DB1 is grounded via the fourth filter inductor L3 and the fifteenth filter capacitor EC3 in sequence, and the second output end of the rectifier DB1 is grounded via the fifth filter inductor LB1.
  • the power switch module 40 includes a fourth chip U3 and a transformer T1, and the fourth chip U3 is of the type OB2512; the second pin FB of the fourth chip U3 is sequentially passed through the fifteenth protection resistor R11.
  • the sixteenth protection resistor R19 and the fifteenth filter capacitor EC3 are grounded, and the second pin FB of the fourth chip U3 passes through the fifteenth protection resistor R11 and the sixteenth protection resistor R19, and also passes through the transformer T1.
  • the second primary coil 12 is connected to the fifth pin C of the fourth chip U3; the first pin VDD of the fourth chip U3 is reversed via the fourth protection diode D11, and then connected to the fourth primary winding 34 of the transformer T1.
  • the seventh pin GND of the chip U3; the seventh pin GND of the fourth chip U3 and the eighth pin GND of the fourth chip U3 are electrically connected, and Both are grounded.
  • the fourth pin CS of the fourth chip U3 is grounded via the seventeenth protection resistor RS1, the second pin FB of the fourth chip U3 is grounded via the eighteenth protection resistor R9, and the second pin FB of the fourth chip U3
  • the second pin FB of the fourth chip U3 is also grounded via the sixteenth filter capacitor CC1; the second pin FB of the fourth chip U3 is connected to the twentieth protection resistor R10.
  • the fifth pin C of the fourth chip U3 is connected to the sixth pin C of the fourth chip U3; the fifth pin C of the fourth chip U3 is also positively passed through the fifth protection diode D5, and then passes through the second eleventh.
  • the protection resistor R7 and the fifteenth filter capacitor EC3 are grounded.
  • the secondary coil AB of the transformer T1 is connected to the light source load circuit 60 via the second rectifier module 50. In this way, the DC power rectified by the first rectifying module 30 is corrected by the power factor of the power switch module 40 to become a high-voltage alternating current, and the high-voltage alternating current is rectified by the second rectifying module 50, and then becomes a direct current, thereby supplying power to the light source load circuit 60. .
  • the second rectifying module 50 includes a third rectifying diode D8, and rectifies the high voltage alternating current by using the third rectifying diode D8.
  • the second rectifier module 50 further includes a three-terminal regulator U2.
  • One end of the secondary coil AB of the transformer T1 is forwardly passed through the third rectifier diode D8, and then connected to the three-terminal regulator through the sixth filter inductor L2.
  • the input terminal Vin of U2, the other end of the secondary coil AB of the transformer T1 is connected to the ground terminal GND of the three-terminal regulator U2, the ground terminal GND of the three-terminal regulator U2 is grounded; the output end of the three-terminal regulator U2 Vout is used to power the light source load circuit 60.
  • the electronic ballast further includes a feedback module 70 , and the input end of the feedback module 70 is electrically connected to the light source load circuit 60 , and the output end of the feedback module 70 and the input end of the drive switch module 80 .
  • the first output end of the driving switch module 80 is electrically connected to the power switch module 40, the second output end of the driving switch module 80 is electrically connected to the communication module 20, and the feedback module 70 is configured to detect the light source load circuit 60.
  • the parameters are output to the drive switch module 80, and the drive switch module 80 is configured to transmit the parameters of the light source load circuit 60 to the mobile terminal 10 via the communication module 20.
  • the parameters of the light source load circuit 60 include the sampling voltage and/or sampling current of the light source load circuit 60.
  • the mobile terminal can obtain the illumination condition of the light source load circuit 60 by adopting an algorithm corresponding to the parameters of the light source load circuit 60, thereby facilitating the user to adjust the illumination output by the light source load circuit 60.
  • the feedback module 70 includes a second transistor Q1; the emitter of the second transistor Q1 is connected to the ground GND of the three-terminal regulator U2; The collector of the second transistor Q1 is grounded via the sixth protection diode D10, and the anode of the sixth protection diode D10 is connected to the seventh of the light source load circuit interface P1 via the first voltage dividing resistor R20 and the second voltage dividing resistor R21.
  • the base of the second transistor Q1 B is connected between the first voltage dividing resistor R20 and the second voltage dividing resistor R21; the output terminal Vout of the three-terminal regulator U2 is connected to the first pin of the light source load circuit interface P1; the first lead of the light source load circuit interface P1 The foot and the seventh pin are used to connect the light source load circuit 60 to supply the light source load circuit 60; the collector of the second transistor Q1 is also forwarded through the first feedback diode D9 and the twenty-second protection resistor R13.
  • the fourth pin of the light source load circuit interface P1; the anode of the first feedback diode D9 is reversed via the second feedback diode LED2, and then connected to the cathode of the first feedback diode D9 via the second thirteen protection resistor R23; the first feedback The cathode of the diode D9 is further connected to the fifth pin of the light source load circuit interface P1 via the twenty-fourth protection resistor R24 and the third feedback diode LED1; the emitter of the second transistor Q1 is also connected to the light source load circuit interface P1.
  • a second pin; a fourth pin of the light source load circuit interface P1, a fifth pin of the light source load circuit interface P1, and a second pin of the light source load circuit interface P1 are also connected to the light source load circuit 60 for the light source The parameters of the load circuit 60 are sampled.
  • the driving switch module 80 includes an adjustable resistor KJ1 connected in parallel at both ends of the sixth protection diode D10, and the adjustable resistor KJ1 is tunable to the communication module 20; in this embodiment, the adjustable resistor KJ1
  • the tunable termination of the live line L of the AC power source 100 thus, the change in the sampling voltage and/or the sampling current of the source load circuit 60 can cause a change in the resistance value of the adjustable resistor KJ1, thereby enabling the light source to be loaded through the communication module 20.
  • the parameters of circuit 60 are sent to mobile terminal 10.
  • the drive switch module 80 also changes the output voltage of the power switch module 40 according to the feedback of the parameters of the light source load circuit 60, thereby stabilizing the supply voltage of the light source load circuit 60.
  • the driving switch module 80 includes a switch SW1; the two ends of the switch SW1 are respectively connected to the fourth pin of the light source load circuit interface P1 and the second pin of the light source load circuit interface P1, when the switch SW1 is closed, The light source load circuit 60 is turned off.
  • the electronic ballast further includes an auxiliary power module 90 electrically connected to the driving switch module 80 for supplying power to the driving switch module 80.
  • the auxiliary power supply module 90 includes a third auxiliary power supply 3.3V, and the third auxiliary power supply 3.3V is connected to the negative pole of the first feedback diode D9, and the third auxiliary power supply 3.3V is also connected to the light source load circuit interface. The first pin of P1.
  • the present invention provides an electronic ballast that can control the luminaire to fill light at different stages of plant growth. Further, the electronic ballast adopts a communication module to enable an external mobile terminal The communication module can output an adjustment signal to activate the electronic ballast, thereby realizing the remote adjustment of the illumination of the lamp, and has good practicability.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种APP远程调控的电子镇流器,包括用于校正电子镇流器功率因数的功率开关模块(40);交流电源(100)依次经第一整流模块(30)、滤波模块(110)、功率开关模块以及第二整流模块(50)与光源负载电路(60)电性连接,用于向该光源负载电路供电;电子镇流器还包括通讯模块(20),该通讯模块的输入端与移动终端(10)通讯连接,该通讯模块的输出端与第一整流模块的输入端电性连接,用于接收移动终端的指令信号、向第一整流模块输出与该指令信号对应的调节信号,该调节信号经第一整流模块和滤波模块输出至功率开关模块来调节光源负载电路的功率,从而使光源负载电路发出与调节信号对应的光照。本发明实现了灯具光照的远程调节,有实用性。

Description

APP远程调控的电子镇流器 技术领域
本发明涉及光源设备领域,尤其涉及一种APP远程调控的电子镇流器。
背景技术
近年来,在国家的大力扶持和倡导下,我国的绿色高效农业得到了迅速的发展,农村反季节绿色大棚的兴起便是很好的例证。但是,由于受诸如冬春季节转换、阴雨雾等天气变化的影响,大棚内的光照并不能很好满足植物生长的需要,植物的生长发育、开花结果受到了很大的影响。因此,采用人工光源直接给植物补光是促进植物生长的重要途径。
市场上现有的人工光源,如白炽灯、荧光灯、金卤灯、高压钠灯、LED灯、高压汞灯等已得到广泛应用。然而,植物在不同的生长阶段所需光照也不相同,而现有用于促进植物生长的灯具在植物不同生长阶段的光照控制方面还不能做到有效调节和远程调控。
技术问题
本发明针对上述技术问题,提出了一种可APP远程调控灯具光照的电子镇流器。
问题的解决方案
技术解决方案
本发明提出了一种APP远程调控的电子镇流器,包括用于校正电子镇流器功率因数的功率开关模块;交流电源依次经第一整流模块、滤波模块、功率开关模块以及第二整流模块与光源负载电路电性连接,用于向该光源负载电路供电;
电子镇流器还包括通讯模块,该通讯模块的输入端与移动终端通讯连接,该通讯模块的输出端与第一整流模块的输入端电性连接,用于接收移动终端的指令信号、向第一整流模块输出与该指令信号对应的调节信号,该调节信号经第一整流模块和滤波模块输出至功率开关模块来调节光源负载电路的功率,从而使光源负载电路发出与调节信号对应的光照。
本发明上述的电子镇流器中,还包括反馈模块和驱动开关模块;反馈模块的输入端与光源负载电路电性连接,该反馈模块的输出端与驱动开关模块的输入端电性连接,驱动开关模块的第一输出端与功率开关模块电性连接,驱动开关模块的第二输出端与通讯模块电性连接,反馈模块用于检测光源负载电路的参数,并将该光源负载电路的参数输出至驱动开关模块,驱动开关模块用于通过通讯模块将光源负载电路的参数发送给移动终端;光源负载电路的参数包括光源负载电路的取样电压和/或取样电流。
本发明上述的电子镇流器中,第一整流模块包括整流器,该整流器的第一输入端接交流电源的火线,整流器的第二输入端接交流电源的零线;
滤波模块包括第四滤波电感器、第五滤波电感器、第十五滤波电容器以及连接在整流器的第一输出端和整流器的第二输出端之间的第十四滤波电容器;整流器的第一输出端依次经第四滤波电感器和第十五滤波电容器接地,整流器的第二输出端经第五滤波电感器接地;
功率开关模块包括第四芯片和变压器,第四芯片的型号为OB2512;第四芯片的第二引脚依次经第十五保护电阻器、第十六保护电阻器和第十五滤波电容器接地,第四芯片的第二引脚再在经第十五保护电阻器和第十六保护电阻器后,还经变压器的第二初级线圈接第四芯片的第五引脚;第四芯片的第一引脚反向经第四保护二极管,再经变压器的第一初级线圈接第四芯片的第七引脚;第四芯片的第七引脚和第四芯片的第八引脚电性连接,并均接地;第四芯片的第四引脚经第十七保护电阻器接地,第四芯片的第二引脚经第十八保护电阻器接地,第四芯片的第二引脚还经第十九保护电阻器接地;第四芯片的第二引脚还经第十六滤波电容器接地;第四芯片的第二引脚经第二十保护电阻器接第四保护二极管的正极;第四芯片的第五引脚和第四芯片的第六引脚相连;第四芯片的第五引脚还正向经第五保护二极管,再依次经第二十一保护电阻器和第十五滤波电容器接地;变压器的次级线圈经第二整流模块接光源负载电路,用于给光源负载电路供电。
本发明上述的电子镇流器中,反馈模块包括第二三极管;该第二三极管的发射极与三端稳压器的接地端相连;第二三极管的集电极反向经第六保护二极管接 地,第六保护二极管的正极还依次经第一分压电阻和第二分压电阻接光源负载电路接口的第七引脚;第二三极管的基极接在第一分压电阻和第二分压电阻之间;三端稳压器的输出端接光源负载电路接口的第一引脚;光源负载电路接口的第一引脚和第七引脚用于接光源负载电路以给光源负载电路供电;第二三极管的集电极还正向经第一反馈二极管和第二十二保护电阻器后接光源负载电路接口的第四引脚;第一反馈二极管的正极反向经第二反馈二极管,再经第二十三保护电阻器后接第一反馈二极管的负极;第一反馈二极管的负极还经第二十四保护电阻器和第三反馈二极管后接光源负载电路接口的第五引脚;第二三极管的发射极还接光源负载电路接口的第二引脚;光源负载电路接口的第四引脚、光源负载电路接口的第五引脚和光源负载电路接口的第二引脚也均与光源负载电路相连,用于对光源负载电路的参数进行取样。
本发明上述的电子镇流器中,驱动开关模块包括并联在第六保护二极管的两端的可调式电阻器,该可调式电阻器的可调端接通讯模块。
本发明上述的电子镇流器中,通讯模块为Z-wave模块、Zigbee模块或WIFI模块。
本发明上述的电子镇流器中,通讯模块包括第一芯片,该第一芯片的型号为zm5202,该第一芯片的第十九引脚经第一滤波电感器与移动终端通讯连接;第一芯片的第十九引脚还经第一滤波电容器接地,第一芯片的第十九引脚经第一滤波电感器后,还经第二滤波电容器接地。
本发明上述的电子镇流器中,通讯模块还包括ICSP接口,该ICSP接口的型号是CON1×8P-2MM,ICSP接口的第一引脚接第一芯片的第八引脚,ICSP接口的第一引脚还经第一保护电阻器接第一辅助电源;ICSP接口的第二引脚接第一芯片的第七引脚,ICSP接口的第二引脚还经第二保护电阻器接第一辅助电源;ICSP接口的第三引脚接第一芯片的第九引脚,ICSP接口的第三引脚还经第三保护电阻器接第一辅助电源;ICSP接口的第四引脚接地;ICSP接口的第五引脚接第一芯片的第二引脚,ICSP接口的第五引脚还经第四保护电阻器接第一辅助电源,ICSP接口的第六引脚经第五保护电阻器接第一辅助电源,ICSP接口的第七引脚接第一辅助电源,ICSP接口的第七引脚还经第三滤波电容器接地;通讯模块通过I CSP接口与外部设备连接,用于使外部设备通过ICSP接口向通讯模块写入程序。
本发明上述的电子镇流器中,第一芯片的第五引脚经第六保护电阻器与交流电源的火线电性连接,第一芯片的第五引脚还正向经第一保护二极管接第一辅助电源;第一芯片的第五引脚还反向经第二保护二极管接地。
本发明上述的电子镇流器中,通讯模块还包括滤波电路,该滤波电路包括第二芯片,该第二芯片的型号为LNK306D,该第二芯片的第四引脚经第二滤波电感器,再反向经第一整流二极管,然后依次经第九保护电阻器和第十保护电阻器接交流电源的火线;第二芯片的第七引脚和第二芯片的第八引脚电性连接,且第二芯片的第七引脚反向经第一稳压二极管接地,该第一稳压二极管的正极还经第二整流二极管接交流电源的零线;交流电源的零线和火线之间连接有瞬变抑制二极管,交流电源的零线和火线之间还连接有第四滤波电容器,第一整流二极管的负极经第五滤波电容器接第二整流二极管的正极,第二芯片的第四引脚经第六滤波电容器接地;第二芯片的第五引脚和第二芯片的第六引脚电性连接,且第二芯片的第五引脚接第一稳压二极管的负极,第二芯片的第一引脚经第七滤波电容器接第一稳压二极管的负极,第二芯片的第二引脚经第十一保护电阻器接第一稳压二极管的负极,第二芯片的第二引脚还经第十二保护电阻器,再反向经续流二极管接第二辅助电源,续流二极管的正极还经储能电感器与第二芯片的第六引脚电性连接,第二芯片的第六引脚还经第八滤波电容器接续流二极管的负极,第二辅助电源还经第九滤波电容器接地;
滤波电路还包括第三芯片,该第三芯片的型号为RT8259GE,第三芯片的第五引脚接续流二极管的正极,第三芯片的第二引脚接地,第三芯片的第五引脚经第十滤波电容器接地,第三芯片的第一引脚经第十一滤波电容器接第三芯片的第六引脚,第三芯片的第三引脚经第十三保护电阻器接地,第三芯片的第三引脚还经第十四保护电阻器接第一辅助电源,第三芯片的第六引脚经第三滤波电感器接第一辅助电源,第三芯片的第六引脚还反向经第二稳压二极管接地,第一辅助电源经第十二滤波电容器接地,第一辅助电源还经第十三滤波电容器接地。
发明的有益效果
有益效果
本发明提出了一种电子镇流器,该电子镇流器可以在植物生长的不同阶段控制灯具进行补光。进一步地,该电子镇流器采用了通讯模块,使外部的移动终端可以通过该通讯模块来输出调节信号,以启动电子镇流器,从而实现了灯具光照的远程调节,具有良好的实用性。
对附图的简要说明
附图说明
图1为本发明实施例的电子镇流器的功能模块图;
图2为图1所示的通讯模块的第一芯片的电路图;
图3为图1所示的通讯模块的ICSP接口的电路图;
图4为图1所示的通讯模块的滤波电路的电路图;
图5为图1所示的电子镇流器的部分电路图。
发明实施例
本发明的实施方式
本发明要解决的技术问题是:植物在不同的生长阶段所需光照并不相同,而现有用于促进植物生长的灯具在植物不同生长阶段的光照控制方面还不能做到有效调节和远程调控。本发明提出的解决该技术问题的技术思路是:提出一种电子镇流器,该电子镇流器可以在植物生长的不同阶段控制灯具进行补光。进一步地,该电子镇流器采用了通讯模块,使外部的移动终端可以通过该通讯模块来输出调节信号,以启动电子镇流器,从而实现了灯具光照的远程调节。
为了使本发明的技术目的、技术方案以及技术效果更为清楚,以便于本领域技术人员理解和实施本发明,下面将结合附图及具体实施例对本发明做进一步详细的说明。
参照图1,图1为本发明实施例的电子镇流器的功能模块图。
如图1所示,电子镇流器包括功率开关模块40,交流电源100依次经第一整流模块30、滤波模块110、功率开关模块40以及第二整流模块50与光源负载电路60电性连接,用于向该光源负载电路60供电;
电子镇流器还包括通讯模块20,该通讯模块20的输入端与移动终端10通讯连接 ,该通讯模块20的输出端与第一整流模块30的输入端电性连接,用于接收移动终端10的指令信号、向第一整流模块30输出与该指令信号对应的调节信号,该调节信号经第一整流模块30和滤波模块110输出至功率开关模块40来调节光源负载电路60的功率,从而使光源负载电路60发出与调节信号对应的光照。在本实施例中,指令信号通过APP输入。
在本实施例中,通讯模块20为Z-wave模块。可以理解,在其他实施例中,通讯模块20并不限于Z-wave模块,还可以是Zigbee模块或WIFI模块等。
参照图2,图2示出了图1所示的通讯模块的第一芯片的电路图。
如图2所示,通讯模块20包括第一芯片M2,该第一芯片M2的型号为zm5202,该第一芯片M2的第十九引脚RF_IO经第一滤波电感器L4与移动终端10通讯连接。第一芯片M2的第十九引脚RF_IO还经第一滤波电容器C60接地,第一芯片M2的第十九引脚RF_IO经第一滤波电感器L4后,还经第二滤波电容器C59接地。通过第一滤波电容器C60和第二滤波电容器C59的滤波,通讯模块20和移动终端10可以实现良好的通讯连接。
参照图3,图3示出了图1所示的通讯模块的ICSP接口的电路图。
如图2和图3所示,通讯模块20还包括ICSP接口ICSP2,该ICSP接口ICSP2的型号是CON1×8P-2MM,ICSP接口ICSP2的第一引脚EEP_SCK接第一芯片M2的第八引脚P1.4/SCK,ICSP接口ICSP2的第一引脚EEP_SCK还经第一保护电阻器R12接第一辅助电源3V3;ICSP接口ICSP2的第二引脚EEP_SO接第一芯片M2的第七引脚P1.2/MISO,ICSP接口ICSP2的第二引脚EEP_SO还经第二保护电阻器R14接第一辅助电源3V3;ICSP接口ICSP2的第三引脚EEP_SI接第一芯片M2的第九引脚P1.3/MOSI,ICSP接口ICSP2的第三引脚EEP_SI还经第三保护电阻器R15接第一辅助电源3V3;ICSP接口ICSP2的第四引脚接地;ICSP接口ICSP2的第五引脚ZRESET接第一芯片M2的第二引脚RESET_N,ICSP接口ICSP2的第五引脚ZRESET还经第四保护电阻器R42接第一辅助电源3V3,ICSP接口ICSP2的第六引脚EEP_CS经第五保护电阻器R75接第一辅助电源3V3,ICSP接口ICSP2的第七引脚接第一辅助电源3V3,ICSP接口ICSP2的第七引脚还经第三滤波电容器C61接地;通讯模块20通过ICSP接口ICSP2与外部设备连接,用于使外部设备通过ICSP接口IC SP2向通讯模块20写入程序。
如图2所示,第一辅助电源3V3还接第一芯片M2的第十一引脚VCC33;
进一步地,如图2所示,第一芯片M2的第五引脚P1.5经第六保护电阻器R30与交流电源100的火线L电性连接,第一芯片M2的第五引脚P1.5还正向经第一保护二极管D20接第一辅助电源3V3;第一芯片M2的第五引脚P1.5还反向经第二保护二极管D15接地。在这里,第一保护二极管D20和第二保护二极管D15是为了保护第一芯片M2,防止第一芯片M2的输入输出电压过高。
进一步地,第一芯片M2的第二引脚RESET_N还经第七保护电阻器R8接地。
进一步地,第一芯片M2的第十三引脚P0.1/ADC1经第八保护电阻器R16接第一三极管Q2的基极,该第一三极管Q2的发射极接地,第一三极管Q2的集电极正向经第三保护二极管D6接第二辅助电源12V,第一三极管Q2的集电极还经铁芯电感器LS2接第二辅助电源12V。在这里,并联的第三保护二极管D6和铁芯电感器LS2组成第一三极管Q2的保护电路,以提高第一三极管Q2的可靠性,并延长其寿命,而第一三极管Q2起到稳压的作用。
参照图4,图4示出了图1所示的通讯模块的滤波电路的电路图。
如图4所示,通讯模块还包括滤波电路,该滤波电路包括第二芯片U1,该第二芯片U1的型号为LNK306D,该第二芯片U1的第四引脚D经第二滤波电感器L1,再反向经第一整流二极管D1,然后依次经第九保护电阻器R26和第十保护电阻器R22接交流电源100的火线L;第二芯片U1的第七引脚S3和第二芯片U1的第八引脚S4电性连接,且第二芯片U1的第七引脚S3反向经第一稳压二极管D4接地,该第一稳压二极管D4的正极还经第二整流二极管D2接交流电源100的零线N;交流电源100的零线N和火线L之间连接有瞬变抑制二极管D7,交流电源100的零线N和火线L之间还连接有第四滤波电容器VR1,第一整流二极管D1的负极经第五滤波电容器C4接第二整流二极管D2的正极,第二芯片U1的第四引脚D经第六滤波电容器EC2接地;第二芯片U1的第五引脚S1和第二芯片U1的第六引脚S2电性连接,且第二芯片U1的第五引脚S1接第一稳压二极管D4的负极,第二芯片U1的第一引脚BP经第七滤波电容器C1接第一稳压二极管D4的负极,第二芯片U1的第二引脚FB经第十一保护电阻器R2接第一稳压二极管D4的负极,第二芯片U1的第二 引脚FB还经第十二保护电阻器R3,再反向经续流二极管D3接第二辅助电源12V,续流二极管D3的正极还经储能电感器L2与第二芯片U1的第六引脚S2电性连接,第二芯片U1的第六引脚S2还经第八滤波电容器C6接续流二极管D3的负极,第二辅助电源12V还经第九滤波电容器EC4接地。
滤波电路还包括第三芯片U22,该第三芯片U22的型号为RT8259GE,第三芯片U22的第五引脚VIN接续流二极管D3的正极,第三芯片U22的第二引脚GND接地,第三芯片U22的第五引脚VIN经第十滤波电容器C84接地,第三芯片U22的第一引脚BOOT经第十一滤波电容器C172接第三芯片U22的第六引脚PHASE,第三芯片U22的第三引脚FB经第十三保护电阻器R440接地,第三芯片U22的第三引脚FB还经第十四保护电阻器R436接第一辅助电源3V3,第三芯片U22的第六引脚PHASE经第三滤波电感器L42接第一辅助电源3V3,第三芯片U22的第六引脚PHASE还反向经第二稳压二极管D22接地,第一辅助电源3V3经第十二滤波电容器C5接地,第一辅助电源3V3还经第十三滤波电容器C129接地。
进一步地,参照图5,图5为图1所示的电子镇流器的部分电路图。
如图5所示,第一整流模块30包括整流器DB1,该整流器DB1的第一输入端接交流电源100的火线L,整流器DB1的第二输入端接交流电源100的零线N;
滤波模块110为EMI滤波电路,包括第四滤波电感器L3、第五滤波电感器LB1、第十五滤波电容器EC3以及连接在整流器DB1的第一输出端和整流器DB1的第二输出端之间的第十四滤波电容器EC1;整流器DB1的第一输出端依次经第四滤波电感器L3和第十五滤波电容器EC3接地,整流器DB1的第二输出端经第五滤波电感器LB1接地。
进一步地,如图5所示,功率开关模块40包括第四芯片U3和变压器T1,第四芯片U3的型号为OB2512;第四芯片U3的第二引脚FB依次经第十五保护电阻器R11、第十六保护电阻器R19和第十五滤波电容器EC3接地,第四芯片U3的第二引脚FB在经第十五保护电阻器R11和第十六保护电阻器R19后,还经变压器T1的第二初级线圈12接第四芯片U3的第五引脚C;第四芯片U3的第一引脚VDD反向经第四保护二极管D11,再经变压器T1的第一初级线圈34接第四芯片U3的第七引脚GND;第四芯片U3的第七引脚GND和第四芯片U3的第八引脚GND电性连接,并 均接地。第四芯片U3的第四引脚CS经第十七保护电阻器RS1接地,第四芯片U3的第二引脚FB经第十八保护电阻器R9接地,第四芯片U3的第二引脚FB还经第十九保护电阻器R6接地;第四芯片U3的第二引脚FB还经第十六滤波电容器CC1接地;第四芯片U3的第二引脚FB经第二十保护电阻器R10接第四保护二极管D11的正极。第四芯片U3的第五引脚C和第四芯片U3的第六引脚C相连;第四芯片U3的第五引脚C还正向经第五保护二极管D5,再依次经第二十一保护电阻器R7和第十五滤波电容器EC3接地。变压器T1的次级线圈AB经第二整流模块50接光源负载电路60。这样,由第一整流模块30整流后的直流电经功率开关模块40功率因素校正后变为高压交流电,该高压交流电经第二整流模块50整流后,又变为直流电,从而给光源负载电路60供电。在这里,第二整流模块50包括第三整流二极管D8,并采用第三整流二极管D8对高压交流电进行整流。具体地,第二整流模块50还包括三端稳压器U2,变压器T1的次级线圈AB的一端正向经第三整流二极管D8,再经第六滤波电感器L2后接三端稳压器U2的输入端Vin,变压器T1的次级线圈AB的另一端接三端稳压器U2的接地端GND,该三端稳压器U2的接地端GND接地;三端稳压器U2的输出端Vout用于给光源负载电路60供电。
进一步地,如图1所示,电子镇流器还包括反馈模块70,该反馈模块70的输入端与光源负载电路60电性连接,该反馈模块70的输出端与驱动开关模块80的输入端电性连接,驱动开关模块80的第一输出端与功率开关模块40电性连接,驱动开关模块80的第二输出端与通讯模块20电性连接,反馈模块70用于检测光源负载电路60的参数,并将该光源负载电路60的参数输出至驱动开关模块80,驱动开关模块80用于通过通讯模块20将光源负载电路60的参数发送给移动终端10。这里,光源负载电路60的参数包括光源负载电路60的取样电压和/或取样电流。而移动终端通过采用与光源负载电路60的参数对应的算法,可获得光源负载电路60的光照情况,从而便于用户来调整光源负载电路60所输出的光照。具体地,在本实施例中,如图5所示,反馈模块70包括第二三极管Q1;该第二三极管Q1的发射极与三端稳压器U2的接地端GND相连;第二三极管Q1的集电极反向经第六保护二极管D10接地,第六保护二极管D10的正极还依次经第一分压电阻R20和第二分压电阻R21接光源负载电路接口P1的第七引脚;第二三极管Q1的基极 B接在第一分压电阻R20和第二分压电阻R21之间;三端稳压器U2的输出端Vout接光源负载电路接口P1的第一引脚;光源负载电路接口P1的第一引脚和第七引脚用于接光源负载电路60以给光源负载电路60供电;第二三极管Q1的集电极还正向经第一反馈二极管D9和第二十二保护电阻器R13后接光源负载电路接口P1的第四引脚;第一反馈二极管D9的正极反向经第二反馈二极管LED2,再经第二十三保护电阻器R23后接第一反馈二极管D9的负极;第一反馈二极管D9的负极还经第二十四保护电阻器R24和第三反馈二极管LED1后接光源负载电路接口P1的第五引脚;第二三极管Q1的发射极还接光源负载电路接口P1的第二引脚;光源负载电路接口P1的第四引脚、光源负载电路接口P1的第五引脚和光源负载电路接口P1的第二引脚也均与光源负载电路60相连,用于对光源负载电路60的参数进行取样。
进一步地,驱动开关模块80包括并联在第六保护二极管D10的两端的可调式电阻器KJ1,该可调式电阻器KJ1的可调端接通讯模块20;在本实施例中,可调式电阻器KJ1的可调端接交流电源100的火线L;这样,光源负载电路60的取样电压和/或取样电流的变化能引起可调式电阻器KJ1的电阻值的变化,从而实现通过通讯模块20将光源负载电路60的参数发送给移动终端10。同时,驱动开关模块80还根据光源负载电路60参数的反馈来改变功率开关模块40的输出电压,从而稳定光源负载电路60的供给电压的目的。
进一步地,驱动开关模块80包括开关SW1;该开关SW1的两端分别连接光源负载电路接口P1的第四引脚和光源负载电路接口P1的第二引脚,用于在当开关SW1闭合时,关断光源负载电路60。
进一步地,电子镇流器还包括辅助电源模块90,该辅助电源模块90与驱动开关模块80电性连接,用于给驱动开关模块80供电。具体地,在本实施例中,辅助电源模块90包括第三辅助电源3.3V,该第三辅助电源3.3V接第一反馈二极管D9的负极,该第三辅助电源3.3V还接光源负载电路接口P1的第一引脚。
工业实用性
本发明提出了一种电子镇流器,该电子镇流器可以在植物生长的不同阶段控制灯具进行补光。进一步地,该电子镇流器采用了通讯模块,使外部的移动终端 可以通过该通讯模块来输出调节信号,以启动电子镇流器,从而实现了灯具光照的远程调节,具有良好的实用性。

Claims (10)

  1. 一种电子镇流器,其特征在于,包括用于校正电子镇流器功率因数的功率开关模块(40);交流电源(100)依次经第一整流模块(30)、滤波模块(110)、功率开关模块(40)以及第二整流模块(50)与光源负载电路(60)电性连接,用于向该光源负载电路(60)供电;
    电子镇流器还包括通讯模块(20),该通讯模块(20)的输入端与移动终端(10)通讯连接,该通讯模块(20)的输出端与第一整流模块(30)的输入端电性连接,用于接收移动终端(10)的指令信号、向第一整流模块(30)输出与该指令信号对应的调节信号,该调节信号经第一整流模块(30)和滤波模块(110)输出至功率开关模块(40)来调节光源负载电路(60)的功率,从而使光源负载电路(60)发出与调节信号对应的光照。
  2. 根据权利要求1所述的电子镇流器,其特征在于,还包括反馈模块(70)和驱动开关模块(80);反馈模块(70)的输入端与光源负载电路(60)电性连接,该反馈模块(70)的输出端与驱动开关模块(80)的输入端电性连接,驱动开关模块(80)的第一输出端与功率开关模块(40)电性连接,驱动开关模块(80)的第二输出端与通讯模块(20)电性连接,反馈模块(70)用于检测光源负载电路(60)的参数,并将该光源负载电路(60)的参数输出至驱动开关模块(80),驱动开关模块(80)用于通过通讯模块(20)将光源负载电路(60)的参数发送给移动终端(10);光源负载电路(60)的参数包括光源负载电路(60)的取样电压和/或取样电流。
  3. 根据权利要求2所述的电子镇流器,其特征在于,第一整流模块(30)包括整流器(DB1),该整流器(DB1)的第一输入端接交流电源(100)的火线(L),整流器(DB1)的第二输入端接交流电源(100)的零线(N);
    滤波模块(110)包括第四滤波电感器(L3)、第五滤波电感器(LB1)、第十五滤波电容器(EC3)以及连接在整流器(DB1)的第一输出端和整流器(DB1)的第二输出端之间的第十四滤波电容器(EC1);整流器(DB1)的第一输出端依次经第四滤波电感器(L3)和第十五滤波电容器(EC3)接地,整流器(DB1)的第二输出端经第五滤波电感器(LB1)接地;
    功率开关模块(40)包括第四芯片(U3)和变压器(T1),第四芯片(U3)的型号为OB2512;第四芯片(U3)的第二引脚(FB)依次经第十五保护电阻器(R11)、第十六保护电阻器(R19)和第十五滤波电容器(EC3)接地,第四芯片(U3)的第二引脚(FB)在经第十五保护电阻器(R11)和第十六保护电阻器(R19)后,还经变压器(T1)的第二初级线圈(12)接第四芯片(U3)的第五引脚(C);第四芯片(U3)的第一引脚(VDD)反向经第四保护二极管(D11),再经变压器(T1)的第一初级线圈(34)接第四芯片(U3)的第七引脚(GND);第四芯片(U3)的第七引脚(GND)和第四芯片(U3)的第八引脚(GND)电性连接,并均接地;第四芯片(U3)的第四引脚(CS)经第十七保护电阻器(RS1)接地,第四芯片(U3)的第二引脚(FB)经第十八保护电阻器(R9)接地,第四芯片(U3)的第二引脚(FB)还经第十九保护电阻器(R6)接地;第四芯片(U3)的第二引脚(FB)还经第十六滤波电容器(CC1)接地;第四芯片(U3)的第二引脚(FB)经第二十保护电阻器(R10)接第四保护二极管(D11)的正极;第四芯片(U3)的第五引脚(C)和第四芯片(U3)的第六引脚(C)相连;第四芯片(U3)的第五引脚(C)还正向经第五保护二极管(D5),再依次经第二十一保护电阻器(R7)和第十五滤波电容器(EC3)接地;变压器(T1)的次级线圈(AB)经第二整流模块(50)接光源负载电路(60),用于给光源负载电路(60)供电。
  4. 根据权利要求3所述的电子镇流器,其特征在于,反馈模块(70)包括第二三极管(Q1);该第二三极管(Q1)的发射极与三端稳压器(U2)的接地端(GND)相连;第二三极管(Q1)的集电极反向经第六保护二极管(D10)接地,第六保护二极管(D10)的正极还依次经第一分压电阻(R20)和第二分压电阻(R21)接光源负载电路接口(P1)的第七引脚;第二三极管(Q1)的基极(B)接在第一分压电阻(R20)和第二分压电阻(R21)之间;三端稳压器(U2)的输出端(Vout)接光源负载电路接口(P1)的第一引脚;光源负载电路接口(P1)的第一引脚和第七引脚用于接光源负载电路(60)以给光源负载电路(60)供电;第二三极管(Q1)的集电极还正向经第一反馈二极管(D9)和第二十二保护电阻器(R13)后接光源负载电路接口(P1)的第四引脚;第一反馈二极管(D9)的正极反向经第二反馈二极管(LED2),再经第二十三保护电阻器(R23)后接第一反馈二极管(D9)的负极;第一反馈二极管(D9)的负极还经第二十四保护电阻器(R24)和第三反馈二极管(LED1)后接光源负载电路接口(P1)的第五引脚;第二三极管(Q1)的发射极还接光源负载电路接口(P1)的第二引脚;光源负载电路接口(P1)的第四引脚、光源负载电路接口(P1)的第五引脚和光源负载电路接口(P1)的第二引脚也均与光源负载电路(60)相连,用于对光源负载电路(60)的参数进行取样。
  5. 根据权利要求4所述的电子镇流器,其特征在于,驱动开关模块(80)包括并联在第六保护二极管(D10)的两端的可调式电阻器(KJ1),该可调式电阻器(KJ1)的可调端接通讯模块(20)。
  6. 根据权利要求1所述的电子镇流器,其特征在于,通讯模块(20)为Z-wave模块、Zigbee模块或WIFI模块。
  7. 根据权利要求6所述的电子镇流器,其特征在于,通讯模块(20)包括第一芯片(M2),该第一芯片(M2)的型号为zm5202,该 第一芯片(M2)的第十九引脚(RF_IO)经第一滤波电感器(L4)与移动终端(10)通讯连接;第一芯片(M2)的第十九引脚(RF_IO)还经第一滤波电容器(C60)接地,第一芯片(M2)的第十九引脚(RF_IO)经第一滤波电感器(L4)后,还经第二滤波电容器(C59)接地。
  8. 根据权利要求7所述的电子镇流器,其特征在于,通讯模块(20)还包括ICSP接口(ICSP2),该ICSP接口(ICSP2)的型号是CON1×8P-2MM,ICSP接口(ICSP2)的第一引脚(EEP_SCK)接第一芯片(M2)的第八引脚(P1.4/SCK),ICSP接口(ICSP2)的第一引脚(EEP_SCK)还经第一保护电阻器(R12)接第一辅助电源(3V3);ICSP接口(ICSP2)的第二引脚(EEP_SO)接第一芯片(M2)的第七引脚(P1.2/MISO),ICSP接口(ICSP2)的第二引脚(EEP_SO)还经第二保护电阻器(R14)接第一辅助电源(3V3);ICSP接口(ICSP2)的第三引脚(EEP_SI)接第一芯片(M2)的第九引脚(P1.3/MOSI),ICSP接口(ICSP2)的第三引脚(EEP_SI)还经第三保护电阻器(R15)接第一辅助电源(3V3);ICSP接口(ICSP2)的第四引脚接地;ICSP接口(ICSP2)的第五引脚(ZRESET)接第一芯片(M2)的第二引脚(RESET_N),ICSP接口(ICSP2)的第五引脚(ZRESET)还经第四保护电阻器(R42)接第一辅助电源(3V3),ICSP接口(ICSP2)的第六引脚(EEP_CS)经第五保护电阻器(R75)接第一辅助电源(3V3),ICSP接口(ICSP2)的第七引脚接第一辅助电源(3V3),ICSP接口(ICSP2)的第七引脚还经第三滤波电容器(C61)接地;通讯模块(20)通过ICSP接口(ICSP2)与外部设备连接,用于使外部设备通过ICSP接口(ICSP2)向通讯模块(20)写入程序。
  9. 根据权利要求7所述的电子镇流器,其特征在于,第一芯片(M2)的第五引脚(P1.5)经第六保护电阻器(R30)与交流电源(100)的火线(L)电性连接,第一芯片(M2)的第五引脚(P1.5) 还正向经第一保护二极管(D20)接第一辅助电源(3V3);第一芯片(M2)的第五引脚(P1.5)还反向经第二保护二极管(D15)接地。
  10. 根据权利要求7所述的电子镇流器,其特征在于,通讯模块还包括滤波电路,该滤波电路包括第二芯片(U1),该第二芯片(U1)的型号为LNK306D,该第二芯片(U1)的第四引脚(D)经第二滤波电感器(L1),再反向经第一整流二极管(D1),然后依次经第九保护电阻器(R26)和第十保护电阻器(R22)接交流电源(100)的火线(L);第二芯片(U1)的第七引脚(S3)和第二芯片(U1)的第八引脚(S4)电性连接,且第二芯片(U1)的第七引脚(S3)反向经第一稳压二极管(D4)接地,该第一稳压二极管(D4)的正极还经第二整流二极管(D2)接交流电源(100)的零线(N);交流电源(100)的零线(N)和火线(L)之间连接有瞬变抑制二极管(D7),交流电源(100)的零线(N)和火线(L)之间还连接有第四滤波电容器(VR1),第一整流二极管(D1)的负极经第五滤波电容器(C4)接第二整流二极管(D2)的正极,第二芯片(U1)的第四引脚(D)经第六滤波电容器(EC2)接地;第二芯片(U1)的第五引脚(S1)和第二芯片(U1)的第六引脚(S2)电性连接,且第二芯片(U1)的第五引脚(S1)接第一稳压二极管(D4)的负极,第二芯片(U1)的第一引脚(BP)经第七滤波电容器(C1)接第一稳压二极管(D4)的负极,第二芯片(U1)的第二引脚(FB)经第十一保护电阻器(R2)接第一稳压二极管(D4)的负极,第二芯片(U1)的第二引脚(FB)还经第十二保护电阻器(R3),再反向经续流二极管(D3)接第二辅助电源(12V),续流二极管(D3)的正极还经储能电感器(L2)与第二芯片(U1)的第六引脚(S2)电性连接,第二芯片(U1)的第六引脚(S2)还经第八滤波电容器(C6)接续流二极管(D3)的负极,第二辅助电源(12V)还经第九滤波电 容器(EC4)接地;
    滤波电路还包括第三芯片(U22),该第三芯片(U22)的型号为RT8259GE,第三芯片(U22)的第五引脚(VIN)接续流二极管(D3)的正极,第三芯片(U22)的第二引脚(GND)接地,第三芯片(U22)的第五引脚(VIN)经第十滤波电容器(C84)接地,第三芯片(U22)的第一引脚(BOOT)经第十一滤波电容器(C172)接第三芯片(U22)的第六引脚(PHASE),第三芯片(U22)的第三引脚(FB)经第十三保护电阻器(R440)接地,第三芯片(U22)的第三引脚(FB)还经第十四保护电阻器(R436)接第一辅助电源(3V3),第三芯片(U22)的第六引脚(PHASE)经第三滤波电感器(L42)接第一辅助电源(3V3),第三芯片(U22)的第六引脚(PHASE)还反向经第二稳压二极管(D22)接地,第一辅助电源(3V3)经第十二滤波电容器(C5)接地,第一辅助电源(3V3)还经第十三滤波电容器(C129)接地。
PCT/CN2016/074270 2016-02-22 2016-02-22 App 远程调控的电子镇流器 WO2017143493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074270 WO2017143493A1 (zh) 2016-02-22 2016-02-22 App 远程调控的电子镇流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074270 WO2017143493A1 (zh) 2016-02-22 2016-02-22 App 远程调控的电子镇流器

Publications (1)

Publication Number Publication Date
WO2017143493A1 true WO2017143493A1 (zh) 2017-08-31

Family

ID=59685869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074270 WO2017143493A1 (zh) 2016-02-22 2016-02-22 App 远程调控的电子镇流器

Country Status (1)

Country Link
WO (1) WO2017143493A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809266A (zh) * 2017-11-22 2018-03-16 大同裕隆环保有限责任公司 矿灯智能管理系统网络通信模组
CN108073110A (zh) * 2017-12-28 2018-05-25 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108872693A (zh) * 2018-06-14 2018-11-23 浙江威星智能仪表股份有限公司 一种基于电容充放电和电阻分压的电压检测电路
CN108957114A (zh) * 2018-08-22 2018-12-07 沈阳工业大学 一种接地环流的在线监测试验装置及方法
CN109256967A (zh) * 2018-10-26 2019-01-22 佛山市华全电气照明有限公司 一种启动时功率稳定输出的恒压电源电路
CN109361256A (zh) * 2018-11-21 2019-02-19 中山市宝利金电子有限公司 一种自动调节输出电压的快速充电器
CN109731230A (zh) * 2019-01-03 2019-05-10 重庆悠悦智能科技有限公司 一种专用于量子波镇痛仪的电路
CN110265203A (zh) * 2019-04-08 2019-09-20 上海健康医学院 高精准的电磁铁驱动电路
CN111135455A (zh) * 2020-01-06 2020-05-12 深圳市康美生科技有限公司 一种无线控制无线充电盆底肌治疗训练系统
CN111459860A (zh) * 2020-04-03 2020-07-28 世强先进(深圳)科技股份有限公司 一种适配多种型号mcu仿真器的通用转换隔离电路
CN112437521A (zh) * 2020-11-30 2021-03-02 广州河东科技有限公司 一种基于mosfet的智能后沿调光装置
CN115430889A (zh) * 2022-09-20 2022-12-06 中广核工程有限公司 无线焊机参数配置装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201114933Y (zh) * 2007-08-22 2008-09-10 东营研博电子科技有限公司 它激式电子镇流器
CN101977477A (zh) * 2010-07-12 2011-02-16 芜湖风云能源科技有限公司 一种电子镇流器及其控制方法
CN103152968A (zh) * 2012-11-23 2013-06-12 珠海格林赛威科技有限公司 一种带自诊断和远程监控功能的hid电子镇流器
CN204180370U (zh) * 2014-09-18 2015-02-25 深圳市电王科技有限公司 一种电子镇流器智能控制系统
CN204408731U (zh) * 2015-01-27 2015-06-17 深圳市电王科技有限公司 一种智能电子镇流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201114933Y (zh) * 2007-08-22 2008-09-10 东营研博电子科技有限公司 它激式电子镇流器
CN101977477A (zh) * 2010-07-12 2011-02-16 芜湖风云能源科技有限公司 一种电子镇流器及其控制方法
CN103152968A (zh) * 2012-11-23 2013-06-12 珠海格林赛威科技有限公司 一种带自诊断和远程监控功能的hid电子镇流器
CN204180370U (zh) * 2014-09-18 2015-02-25 深圳市电王科技有限公司 一种电子镇流器智能控制系统
CN204408731U (zh) * 2015-01-27 2015-06-17 深圳市电王科技有限公司 一种智能电子镇流器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809266A (zh) * 2017-11-22 2018-03-16 大同裕隆环保有限责任公司 矿灯智能管理系统网络通信模组
CN107809266B (zh) * 2017-11-22 2024-05-03 大同裕隆环保有限责任公司 矿灯智能管理系统网络通信模组
CN108073110A (zh) * 2017-12-28 2018-05-25 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108073110B (zh) * 2017-12-28 2024-04-23 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108872693A (zh) * 2018-06-14 2018-11-23 浙江威星智能仪表股份有限公司 一种基于电容充放电和电阻分压的电压检测电路
CN108957114A (zh) * 2018-08-22 2018-12-07 沈阳工业大学 一种接地环流的在线监测试验装置及方法
CN109256967A (zh) * 2018-10-26 2019-01-22 佛山市华全电气照明有限公司 一种启动时功率稳定输出的恒压电源电路
CN109256967B (zh) * 2018-10-26 2024-03-19 佛山市华全电气照明有限公司 一种启动时功率稳定输出的恒压电源电路
CN109361256A (zh) * 2018-11-21 2019-02-19 中山市宝利金电子有限公司 一种自动调节输出电压的快速充电器
CN109731230A (zh) * 2019-01-03 2019-05-10 重庆悠悦智能科技有限公司 一种专用于量子波镇痛仪的电路
CN110265203B (zh) * 2019-04-08 2024-02-13 上海健康医学院 高精准的电磁铁驱动电路
CN110265203A (zh) * 2019-04-08 2019-09-20 上海健康医学院 高精准的电磁铁驱动电路
CN111135455A (zh) * 2020-01-06 2020-05-12 深圳市康美生科技有限公司 一种无线控制无线充电盆底肌治疗训练系统
CN111459860A (zh) * 2020-04-03 2020-07-28 世强先进(深圳)科技股份有限公司 一种适配多种型号mcu仿真器的通用转换隔离电路
CN112437521A (zh) * 2020-11-30 2021-03-02 广州河东科技有限公司 一种基于mosfet的智能后沿调光装置
CN115430889B (zh) * 2022-09-20 2023-09-29 中广核工程有限公司 无线焊机参数配置装置
CN115430889A (zh) * 2022-09-20 2022-12-06 中广核工程有限公司 无线焊机参数配置装置

Similar Documents

Publication Publication Date Title
WO2017143493A1 (zh) App 远程调控的电子镇流器
CN204442783U (zh) 一种蓝牙led灯具
CN110099489B (zh) 一种兼容可控硅调光及无线调光的驱动电路
CN102905435B (zh) 宽电压高功率因数led灯的开关调光电路
GB2478013A (en) Controlling LED optical output in accordance with LED temperature and LED current
CN205912289U (zh) 一种宽电压可调led灯驱动电路
CN105934017A (zh) 一种开关电源反馈控制电路以及单级pfc高效恒流电源驱动电路
CN104968070A (zh) 一种led驱动电路
CN204518147U (zh) 一种led驱动电路
CN103298204B (zh) 带开路保护的可控硅调光led灯驱动器
CN207394774U (zh) 基于倒装芯片结构的光电一体化光源模组
CN203206556U (zh) 直流转直流恒流驱动电路
CN205546078U (zh) 大功率led恒流可调电源电路及大功率led照明装置
CN202385369U (zh) 光控台灯
US9648690B1 (en) Dimmable instant-start ballast
CN207543375U (zh) 基于无线远程控制的led可编程驱动电源系统
CN205356734U (zh) 一种led照明设备
CN203896550U (zh) 一种限峰值电流的led非隔离调光线路
CN208581380U (zh) 一种兼容型调光led民用机场灯具电源电路
CN201733487U (zh) 可调led灯电源驱动电路
CN107995728A (zh) 基于无线远程控制的led可编程驱动电源系统
CN207354683U (zh) 一种植物生长补光led驱动电路
CN209419949U (zh) 一种无频闪调光控制电路
CN109661066A (zh) 一种宽电压输入调光控制电路、调光电源和led灯具
CN211580234U (zh) 一种适用于调光调色面板灯电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890947

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16890947

Country of ref document: EP

Kind code of ref document: A1