WO2017142367A1 - Pharmaceutical composition for prevention or treatment of muscle disease, comprising mesenchymal stem cell or xcl1 - Google Patents

Pharmaceutical composition for prevention or treatment of muscle disease, comprising mesenchymal stem cell or xcl1 Download PDF

Info

Publication number
WO2017142367A1
WO2017142367A1 PCT/KR2017/001807 KR2017001807W WO2017142367A1 WO 2017142367 A1 WO2017142367 A1 WO 2017142367A1 KR 2017001807 W KR2017001807 W KR 2017001807W WO 2017142367 A1 WO2017142367 A1 WO 2017142367A1
Authority
WO
WIPO (PCT)
Prior art keywords
xcl1
muscle
protein
mesenchymal stem
cells
Prior art date
Application number
PCT/KR2017/001807
Other languages
French (fr)
Korean (ko)
Inventor
장종욱
나덕렬
이지은
권수진
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2017142367A1 publication Critical patent/WO2017142367A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention mesenchymal stem cells; Or, it relates to a pharmaceutical composition for the prevention or treatment of muscle diseases, including XCL1 protein or derivatives thereof, and to a method for screening a therapeutic agent for muscle diseases.
  • Mesenchymal stem cells are stromal-derived cells that have the characteristics of self-renewal and can differentiate into bone, cartilage, adipose tissue, muscle, tendons, ligaments, and nerve tissues. It is attracting attention as a cell suitable for therapy.
  • bone marrow is the most representative tissue from which mesenchymal stem cells can be obtained.
  • mesenchymal stem cells present in bone marrow have limited application range due to limited differentiation and proliferative capacity. Due to limitations derived from bone marrow, several steps are required, and the procedure is complicated, It is usually accompanied by time, mental and physical pain.
  • the umbilical cord unlike the bone marrow, can be obtained through a simple procedure in the delivery process, and contains a large number of hematopoietic stem cells and stem cells compared to the amount.
  • research has been actively conducted, as it is known that there are a large amount of stem cells in the umbilical cord, placenta, cord blood, and the like.
  • the factors secreted from mesenchymal stem cells or mesenchymal stem cells isolated and cultured from the umbilical cord inhibit muscle cell death.
  • XCL1 (chemokine (C motif) ligand 1) is one of the chemokine subfamily members. Chemokines are known to be involved in inflammatory and immune responses, and there is no known relationship to cell death.
  • Muscle is an essential tissue that supports our body and maintains life. Muscle myoblasts differentiate and form multinucleated myotubes, form myocytes, and myoblasts and the death of muscle cells are causing various diseases. In addition, diseases in which muscle cells of neuromuscular junctions are lost through chronic inflammation through gene mutation or various causes, muscle loss through autoimmune diseases or degeneration of peripheral nerves have been reported. There is no cure. Currently, mesenchymal stem cells have been shown to be effective in acute and chronic bacterial inflammatory diseases, cystic fibrosis, and sepsis, and their usefulness, but their effects on muscle diseases are negligible. . Thus, there is an urgent need for a new treatment that effectively treats muscle diseases caused by apoptosis and does not cause resistance.
  • zebrafish is a kind of tropical fish and is widely used as an experimental animal model. Zebrafish can replace animal models such as rats and rats as vertebrates, as well as shorter development time and transparent embryos, making them easier to observe.
  • recombinant proteins using microinjection technology can be directly injected into zebrafish, they are useful for the study of observing and identifying the physiological functions of these proteins. Nevertheless, there are no reports of zebrafish and studies made on XCL1 protein.
  • the present inventors confirmed that mesenchymal stem cells have an effect of inhibiting myocyte death, and completed the present invention by identifying the XCL1 protein, which is a water-soluble factor secreted from mesenchymal stem cells.
  • An object of the present invention to provide a pharmaceutical composition for the prevention or treatment of muscle diseases including mesenchymal stem cells or a stem cell therapy for the treatment of muscle diseases.
  • Still another object of the present invention is to provide a pharmaceutical composition or apoptosis inhibitor for preventing or treating muscle diseases comprising XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
  • XCL1 chemokine (C motif) ligand 1
  • the present invention provides a pharmaceutical composition for the prevention or treatment of muscle diseases, including mesenchymal stem cells.
  • the present invention also provides a pharmaceutical composition for preventing or treating muscle diseases, including XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
  • XCL1 chemokine (C motif) ligand 1
  • the present invention also provides a stem cell therapeutic agent for treating muscle diseases, including mesenchymal stem cells.
  • the present invention also provides an apoptosis inhibitor comprising an XCL1 (chemokine (C motif) ligand 1) protein or a derivative thereof.
  • XCL1 chemokine (C motif) ligand 1
  • the present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance to be analyzed with a cell expressing XCL1; (b) analyzing the effect of the test substance on the expression of the XCL1, and when the test substance increases the expression of the XCL1, the test substance is determined as a prophylactic or therapeutic agent for muscle diseases.
  • the present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance with XCL1; (b) analyzing the effect of the test substance on the activity of the XCL1, when the test substance increases the activity of the XCL1 is determined as a prophylactic or therapeutic agent of muscle diseases.
  • the present invention also provides a zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
  • the present invention provides a method for screening a candidate drug for XCL1 co-administration for the prevention or treatment of muscle diseases, comprising the steps of: (a) treating the zebra fish with a candidate drug for co-administration of XCL1; And (b) observing the development of the zebrafish muscle cells.
  • the present invention is to treat the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof to the subject; It provides a method of preventing or treating muscle diseases comprising a.
  • the present invention comprises the steps of treating the individual with XCL1 (chemokine (C motif) ligand 1) protein or derivatives thereof; It provides a method for inhibiting apoptosis comprising a.
  • XCL1 chemokine (C motif) ligand 1
  • the mesenchymal stem cell or XCL1 protein of the present invention has an effect of inhibiting the death of myocytes or myoblasts, it can be usefully used for the prevention or treatment of muscle diseases, and the apoptosis inhibitor including the XCL1 protein is used for cell death research. It can be utilized.
  • 1 is a diagram showing a co-culture of mesenchymal stem cells and killed myoblasts.
  • FIG. 2 is a diagram showing the results of co-culture of mesenchymal stem cells and myoblasts (WJ-MSC: umbilical cord-derived mesenchymal stem cells).
  • Figure 3 is a diagram showing the results of confirming the cleavage of the apoptosis marker PARP in the myoblasts co-cultured with mesenchymal stem cells by Western blotting and the numerical value thereof.
  • Figure 4 shows the cell appearance of myoblasts co-cultured with concentration-dependently treated XCL1 protein.
  • FIG. 5 is a graph showing the results obtained by Western blotting and the numerical value of the cleavage of the apoptosis marker PARP in myoblasts co-cultured with concentration-dependently treated XCL1 protein.
  • Figure 6 is a graph showing the results obtained by Western blotting and the numerical value of the cleavage of PARP, apoptosis marker in myoblasts co-cultured with XCL1 protein treated in a time-dependent manner.
  • FIG. 7 is a diagram showing the results of comparing the apoptosis inhibitory effect of the PAN inhibitor and XCL1 protein.
  • Figure 8 shows the morphology of mouse hippocampal neurons treated with XCL1 protein after apoptosis-inducing factor treatment.
  • FIG. 9 is a graph showing the results obtained by Western blotting of the apoptosis marker PARP in mouse hippocampal neurons after treatment with apoptosis-inducing factor and XCL1 protein and a numerical value thereof.
  • FIG. 10 is a diagram showing the morphology of rat Schwann cells treated with the XCL1 protein after the endoplasmic reticulum stress derivative treatment.
  • FIG. 11 is a graph showing results obtained by Western blotting of PARP, an apoptosis marker in rat Schwann cells treated with XCL1 protein after endoplasmic reticulum stress derivative treatment, and a numerical value thereof.
  • FIG. 12 is a diagram showing the morphology of mouse myotube cells treated with XCL1 protein after lovastatin treatment.
  • FIG. 13 is a graph showing results obtained by Western blotting of PARP, which is an apoptosis marker, in mouse myoblasts and myotubes treated with XCL1 protein after lovastatin treatment and quantification thereof.
  • PARP which is an apoptosis marker
  • FIG. 14 is a graph showing results obtained by Western blotting and quantifying MHC in mouse myoblasts treated with XCL1 protein after lovastatin treatment.
  • Figure 15 shows the morphology of myoblasts co-cultured with mesenchymal stem cells treated with siRNA that inhibits XCL1 synthesis.
  • FIG. 16 is a graph showing the results obtained by Western blotting of the apoptosis marker PARP in myoblasts co-cultured with mesenchymal stem cells treated with siRNA that inhibits XCL1 synthesis and a numerical value thereof.
  • FIG. 16 is a graph showing the results obtained by Western blotting of the apoptosis marker PARP in myoblasts co-cultured with mesenchymal stem cells treated with siRNA that inhibits XCL1 synthesis and a numerical value thereof.
  • 17 is a schematic diagram of micro-implantation for preparing a human XCL1 expression zebrafish model.
  • Figure 18 shows the phenotype of Day 3 after the birth of the human XCL1 expressing zebrafish model.
  • 19 is a diagram illustrating the results of observing zebrafish after injecting XCL1 protein into zebrafish simulating muscle disease symptoms.
  • 20 is a diagram showing a specific region of the body selected to observe the degree of muscle cell activation of zebrafish.
  • 21 is a diagram showing the results of observing the degree of muscle cell activation of zebrafish with a confocal microscope.
  • FIG. 22 is a diagram showing the results of quantifying the normal and abnormal embryos after treatment with zebrafish XCL1 protein at 0, 30, 50 ⁇ g / mL.
  • the present invention provides a pharmaceutical composition for preventing or treating muscle diseases including mesenchymal stem cells.
  • Mesenchymal stem cells of the present invention comprises XCL1 (chemokine (C motif) ligand 1).
  • XCL1 is a soluble factor secreted from mesenchymal stem cells and is one of the chemokine subfamily members (NCBI GenBank Accession number: NP — 002986).
  • XCL1 protein of the present invention is a protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • composition of the present invention contains the XCL1 protein itself, as well as pharmaceutically acceptable salts, hydrates or solvates thereof as an active ingredient.
  • pharmaceutically acceptable salts denotes salts of said XCL1 protein with the desired pharmacological effect, ie the prophylactic or therapeutic effect of muscle disease.
  • Such salts include inorganic acids such as hydrochloride, hydrobromide and hydroiodide, acetates, adipates, alginates, aspartates, benzoates, benzenesulfonates, p-toluenesulfonates, bisulfates, sulfamate, sulfates, Naphthylate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, hep Formed with organic acids such as tanoate, hexanoate, 2-hydroxyethanesulfate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, tos
  • pharmaceutically acceptable hydrate refers to the hydrate of the XCL1 protein with the desired pharmacological effect.
  • pharmaceutically acceptable solvate refers to a solvate of said XCL1 protein with the desired pharmacological effect.
  • the hydrates and solvates may also be prepared using the acids described above.
  • the pharmaceutical composition of the present invention may include a pharmaceutically effective amount of a gene carrier comprising the nucleotide sequence encoding XCL1 as an active ingredient.
  • the nucleotide encoding the XCL1 in the gene carrier comprising the nucleotide sequence encoding the XCL1 consists of the sequence of SEQ ID NO: 2.
  • the nucleotide sequence encoding the XCL1 may be applied to all gene carriers used for conventional gene therapy, and preferably, plasmids, adenoviruses, Adeno-associated viruses (AAV), retroviruses, lentiviruses, It can be applied to herpes simplex virus, basinia virus, liposomes or niosomes.
  • plasmids adenoviruses
  • AAV Adeno-associated viruses
  • retroviruses lentiviruses
  • Adenoviruses are widely used as gene transfer vectors because of their medium genome size, ease of manipulation, high titers, wide range of target cells and excellent infectivity. Both ends of the genome contain 100-200 bp of Inverted Terminal Repeat (ITR), which is an essential cis element for DNA replication and packaging.
  • ITR Inverted Terminal Repeat
  • the genome El region (E1A and E1B) encodes proteins that regulate transcription and transcription of host cell genes.
  • the E2 regions (E2A and E2B) encode proteins that are involved in viral DNA replication.
  • adenovirus vectors currently developed, non-replicating adenoviruses lacking the E1 region are widely used.
  • the E3 region is removed from a typical adenovirus vector to provide a site for insertion of a foreign gene. Therefore, the XCL1 gene of the present invention is preferably inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, more preferably the deleted E3 region.
  • the target nucleotide sequence to be carried into the cell is preferably inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, more preferably inserted into the deleted E1 region do.
  • the insertion sequences can also be inserted into the deleted E4 region.
  • the term "deletion" as used in connection with a viral genome sequence has the meaning including not only that sequence in its entirety, but also partially deleted.
  • the adenovirus gene carrier of the present invention has a structure in which the "promoter-purpose nucleotide sequence-poly A sequence" and the “promoter-XCL1 gene-poly A sequence” are linked, and the "promoter-purpose nucleotide sequence-poly A sequence" Inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, preferably deleted E1 region, wherein the "promoter-XCL1 gene-poly A sequence" is deleted E1 It is inserted into a region (E1A region and / or E1B region, preferably E1B region) or an E3 region, preferably a deleted E3 region.
  • IVS internal ribosome entry site
  • adenovirus can pack up to about 105% of the wild-type genome, about 2 kb can be additionally packaged.
  • the above-described foreign sequence inserted into the adenovirus may additionally bind to the genome of the adenovirus.
  • Adenoviruses have 42 different serotypes and subgroups of A-F. Of these, adenovirus type 5 belonging to subgroup C is the most preferred starting material for obtaining the adenovirus vector of the present invention. Biochemical and genetic information for adenovirus type 5 is well known.
  • adenovirus gene carrier of the present invention is considered to be very safe.
  • Retroviruses are widely used as gene transfer vectors because they insert their genes into the host genome, carry large amounts of foreign genetic material, and have a broad spectrum of cells that can infect them.
  • the XCL1 gene and the target nucleotide sequence to be carried are inserted into the retroviral genome instead of the sequence of the retrovirus to produce a nonreplicating virus.
  • a packaging cell line is constructed that contains the gag, pol, and env genes but does not have a long terminal repeat (LTR) and sequence.
  • LTR long terminal repeat
  • the recombinant plasmid comprising the XCL1 gene, the target nucleotide sequence to be carried, LTR and ⁇ sequence is introduced into the cell line, the ⁇ sequence enables the production of the RNA transcript of the recombinant plasmid, which is packaged into a virus , Virus is discharged into the medium.
  • the medium containing the recombinant retrovirus is collected, concentrated and used as a gene carrier.
  • Adeno-associated virus (AAV) is suitable as the gene carrier of the present invention because it can infect non-dividing cells and has the ability to infect various kinds of cells. Details of the preparation and use of AAV vectors are disclosed in detail in US Pat. Nos. 5,139,941 and 4,797,368.
  • an AAV virus is an expression plasmid comprising a plasmid comprising the gene sequence of interest (XCL1 gene and the desired nucleotide sequence to be transported) with two AAV terminal repeats flanked and a wild type AAV coding sequence without terminal repeats. Prepared by cotransformation.
  • viral vectors can also be used as the gene carrier of the present invention.
  • Vectors derived from Basinia virus, lentivirus or herpes simplex virus can also be used as a delivery system capable of intracellularly carrying the XCL1 gene and the desired nucleotide sequence to be transported.
  • Liposomes are automatically formed by phospholipids dispersed in the aqueous phase. Examples of successfully delivering foreign DNA molecules into liposomes into cells include Nicolau and Sene, Biochim. Biophys. Acta, 721: 185-190 (1982) and Nicolau et al., Methods Enzymol., 149: 157-176 (1987). On the other hand, Lipofectamine (Gibco BRL) is the most used reagent for the transformation of animal cells using liposomes.
  • Liposomes Containing the XCL1 Gene and the Desired Nucleotide Sequence Interact with cells through mechanisms such as endocytosis, adsorption to the cell surface, or fusion with plasma cell membranes, thereby incorporating the XCL1 gene and the desired nucleotide into the cell Carries the sequence.
  • the method of administering the pharmaceutical composition of the present invention is carried out according to a virus infection method known in the art. Infection of host cells with viral vectors is described in the references cited above.
  • the gene delivery system when the gene delivery system is naked recombinant DNA molecules or plasmids, micro-injection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment (Yang et al., Proc. Natl. Acad. Sci., 87: 9568-9572 (1990)) can be introduced into the cell by the method.
  • mesenchymal stem cell refers to pluripotent progenitor cells before they are differentiated into cells of specific organs such as bone, cartilage, fat, tendon, nerve tissue, fibroblast and muscle cells.
  • the mesenchymal stem cells are contained in the composition in an undifferentiated state.
  • the mesenchymal stem cells of the present invention are human backpack (embryonic yolk sac), placenta, umbilical cord, umbilical cord blood, skin, peripheral blood, bone marrow, adipose tissue, muscle, liver, nerve tissue, periosteum, fetal membrane, synovial membrane, synovial fluid, amnion Meniscus, meniscus, anterior cruciate ligament, articular chondrocytes, teeth, perivascular cells, striatum, subpatellar mass, spleen and thymus, etc., but is preferably derived from the umbilical cord.
  • mesenchymal stem cells are preferably derived from humans, but may be derived from a fetus or a mammal except humans. Mammals other than humans may be more preferably canine, feline, ape, animal, cow, sheep, pig, horse, rat, mouse or guinea pig, and the like, without limitation.
  • human backpack embryonic yolk sac
  • placenta umbilical cord
  • cord blood skin
  • peripheral blood bone marrow
  • adipose tissue muscle
  • liver nerve tissue
  • periosteum fetal membrane
  • synovial membrane synovial fluid
  • amniotic membrane meniscus
  • precross It can be isolated and purified from ligaments, articular chondrocytes, teeth, perivascular cells, striatum, subpatellar mass, spleen and thymus, and the isolated mesenchymal stem cells can be cultured as necessary.
  • Mesenchymal stem cells of the present invention can be injected into the patient's living body in the cell alone or cultured in the incubator, for example, may be used clinical methods published by Lindbal et al. Or Douglas Kondziolka. .
  • the preparation may include a pharmaceutically acceptable conventional carrier in addition to the mesenchymal stem cells, and in the case of injections, preservatives, analgesics, solubilizers or stabilizers, in the case of topical administration, bases, excipients, lubricants or Preservatives and the like.
  • muscle disease includes both diseases related to muscle wasting or diseases caused by muscle damage.
  • the term “muscle wasting related disease” means a disease or condition involving symptoms such as gradual loss of muscle mass.
  • the muscle wasting is genetic predisposition; Age-related diseases such as hypertension, impaired glucose tolerance, diabetes, obesity, dyslipidemia, atherosclerosis and cardiovascular disease; Diseases such as cancer, autoimmune diseases, infectious diseases, AIDS, chronic inflammatory diseases, arthritis, malnutrition, kidney disease, chronic obstructive pulmonary disease, emphysema, rickets, chronic lower spinal pain, peripheral nerve damage, central nerve damage and chemical damage Chronic diseases such as; Conditions such as organ fixation, conditions such as helplessness such as fractures or traumas, post-operative bed care; And progressive progression of skeletal muscle mass and strength according to the aging process.
  • Muscle wasting related diseases can lead to a weakened physical condition that can lead to deterioration of health status or incapacity of physical performance.
  • the term “muscle damage” refers to any muscle tissue damage, which may result from physical trauma to the muscle tissue resulting from accidents, motor injuries, endocrine gland disorders, diseases, wounds or surgical operations.
  • the muscle diseases include sprains, strains, convulsions, tendinitis, muscle cancer, myositis, rhabdomyolysis, muscular atrophy, atony, muscular dystrophy, muscle degeneration Syndrome, myasthenia, dystrophinopathy, myopathy, and sacopenia, and at least one selected from the group consisting of, preferably caused by the death of muscle cells or myoblasts.
  • the muscular dystrophy is a phenomenon in which the amount of muscle is partially reduced or completely lost, and skeletal muscle atrophy caused by denervation due to denervation due to trauma, immobilization due to stabilization or joint fixation (pulmonary disuse atrophy) ), And soluble skeletal muscle atrophy is increasing in an aging society.
  • Skeletal muscle atrophy is associated with reduced blood supply to muscles caused by various diseases, or consequent movement and immobilization, persistent weight loss, malnutrition or starvation, denervation to muscles, and cancer , AIDS, congestive heart failure, chronic obstructive pulmonary disease, renal failure, severe burns, and the like.
  • the muscular dystrophy refers to a gradual decrease in skeletal muscle mass due to aging, which directly leads to a decrease in muscle strength, and as a result, a condition in which various physical functions may be reduced and impaired.
  • the composition of the present invention has the effect of preventing or treating muscle diseases by inhibiting the death of myocytes or myoblasts, and muscles are not limited in kind.
  • Mesenchymal stem cell or mesenchymal stem cell-derived XCL of the present invention is characterized in that it inhibits myocyte or myoblast death and functions to protect cells.
  • composition may further comprise a pharmaceutically acceptable carrier, the carrier is commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, know Nate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like
  • the present invention is not limited thereto.
  • the composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. It can be prepared by incorporation into a multi-dose container.
  • the formulations may then be in the form of solutions, suspensions or emulsions in oil or aqueous media, and may further comprise dispersants or stabilizers.
  • composition of the present invention can be administered parenterally, intravenous, subcutaneous, intraperitoneal or topical application, preferably administered directly to the site where the lesion has occurred.
  • Compositions for parenteral administration (e.g. injections) of the compositions according to the invention are infused and dispersed in a pharmaceutically acceptable carrier, e.g., sterile purified water, a buffer of about pH 7, or physiological saline.
  • a pharmaceutically acceptable carrier e.g., sterile purified water, a buffer of about pH 7, or physiological saline.
  • a pharmaceutically acceptable carrier e.g., sterile purified water, a buffer of about pH 7, or physiological saline.
  • additives such as preservatives, stabilizers and the like.
  • the formulation of the composition may vary depending on the method of use, but may be used as a warning agent (Plasters), granules (Granule), powders (Sowrups), syrups (Syrups), solutions (Fluidextracts I), emulsions (Emulsions) It can be prepared as Suspensions, Infusions, Tablets, Injections, Capsules and Pills. Proper formulation is dependent upon the route of administration chosen. Any of the known techniques, carriers and excipients can be used suitably and as understood in the art, for example in Remingston's Pharmaceutical Sciences described above.
  • the amount of mesenchymal stem cells injected in the present invention may be administered 10 4 -10 10 cells / cycle, preferably 10 5 -10 9 cells / cycle, most preferably 5x10 7 cells / It may be administered in a circuit, but is not limited thereto.
  • the XCL1 injected in the present invention may be administered 0.0001ng-500mg / time, and preferably 0.0001mg-200mg / time, but is not limited thereto.
  • the dose may be prescribed in various ways, such as by the method of formulation, the mode of administration, the age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response to the patient.
  • prevention means any action that inhibits or delays progression of muscle disease by administration of a composition of the present invention.
  • treatment refers to any action in which muscle disease improves or benefits altered by administration of a composition of the present invention.
  • the present invention also provides a pharmaceutical composition for preventing or treating muscle diseases, including XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
  • XCL1 chemokine (C motif) ligand 1
  • the XCL1 (chemokine (C motif) ligand 1) may be naturally generated and derived from mesenchymal stem cells, and naturally generated XCL1 includes XCL1 having a wild-type amino acid sequence of XCL1 which is usually associated with an animal, but It is not limited.
  • the naturally occurring XLC1 may include, but is not limited to, naturally occurring variants of XCL1, including allelic variants, polymorphic variants, and the like.
  • the XCL1 of the present invention may include, without limitation, proteins, analogs, derivatives, and mutants thereof recombined by a known method in the art having a bioactivity that achieves the effect of preventing or treating muscle diseases.
  • the mutation may be a mutation found in nature or an artificial mutation with or without the effect of replacing, deleting or inserting one or more amino acids in a nucleic acid sequence encoding XCL1.
  • the mutations may have conservative amino acid substitutions that do not affect protein expression and are 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the amino acid sequence of the natural XCL1 protein. Or amino acid sequences with 100% identity.
  • the XCL1 protein of the present invention includes polypeptide variants by fragments, deletions, truncation, etc., and may be fragments in which amino acid residues are removed from natural XCL1 protein. Such fragments, deletions, truncations and the like have virtually no negative impact on the activity of the resulting polypeptides.
  • the activation domain of XCL1 can be derived by mapping the protein domain of XCL1 or through truncation from the C-terminus, N-terminus, or both C-terminus and N-terminus end, such truncated polypeptides May have virtually no negative impact on activity or may indicate an increase in activity.
  • Recombinant in such a recombinant protein when used in connection with a cell, typically indicates that the cell has been modified by introduction of a foreign nucleic acid sequence or the cell is derived from a cell so modified.
  • a recombinant cell may comprise a gene that is not found in the same form in the native (non-recombinant) form of the cell, or the recombinant cell may contain a native gene (found in the natural form of the cell). However, such genes have been modified and reintroduced into cells.
  • Recombinant cells can include nucleic acids inherent in a modified cell without removal of the nucleic acid from the cell, and such modifications include those obtained by gene substitution, site-specific mutations, and related techniques known to those skilled in the art.
  • Recombinant DNA technology includes techniques for producing recombinant DNA in vitro and delivering such recombinant DNA into cells that can be expressed or propagated to produce recombinant polypeptides.
  • "Recombinant”, “recombinant”, and “recombinant” of a polynucleotide or nucleic acid generally refers to assembling or combining two or more nucleic acids or polynucleotide strands or fragments to produce a new polynucleotide or nucleic acid.
  • Recombinant polynucleotides or nucleic acids are sometimes referred to as chimeras.
  • a nucleic acid or polypeptide, when artificial or engineered, is a "recombinant" nucleic acid or poly
  • Recombinant XCL1 may include any member of the VWF family derived from, for example, primates, humans, monkeys, rabbits, pigs, rodents, mice, rats, hamsters, gerbils, dogs, cats, and biologically active derivatives thereof. Include. Mutant and variant XCL1 proteins with activity are included as well as functional fragments and fusion proteins of the XCL1 protein.
  • the "derivative" in the XCL1 (chemokine (C motif) ligand 1) or derivatives thereof is obtained by substituting a part of the structure of XCL1 (chemokine (C motif) ligand 1) with another atom group, a substituent, or the like, or with other biological substances Or one or more XLC1 polypeptides fused. Also included are proteins improved by methods of protein improvement known in the art.
  • One or more XLC1 polypeptides associated with the other biological material include antibodies, fragments of antibodies, immunoglobulins, peptides, enzymes, growth factors, cytokines, transcription factors, toxins, antigenic peptides, hormones, transporters Proteins, Motor Function Proteins, Receptors, Signaling Proteins, Storage Proteins, Membrane Proteins, Transmembrane Proteins, Internal Proteins, External Proteins, Secretory Proteins, Viral Proteins, Glycoproteins, Cleaved Proteins
  • a protein, a protein complex, a chemically modified protein, or the like may be a fused XCL1 fusion protein.
  • Such biological materials include, without limitation, various small peptides, other proteins, chemical means (known in the art as “tags”) useful for isolating or identifying bound polypeptides.
  • the biological material may be fused to the N terminus or C terminus of the XCL1 amino acid sequence, and may be prepared by methods known in the art.
  • fusion domains that can be fused with XCL1 are particularly useful for the isolation of fusion proteins by affinity chromatography.
  • suitable matrices for affinity chromatography are used, such as glutathione-, amylase- and nickel- or cobalt-bonded resins.
  • Many such matrices are available in "kit” form, such as the Pharmacia GST purification system and the (HIS6) fusion partner and the useful QLAexpressTM system (Qiagen).
  • the fusion domain can be selected to facilitate the detection of the XCL1 protein.
  • detection domains include various epitope proteins (eg, GFP) as well as “epitope tags”, which are generally short peptide sequences in which specific antibodies are available.
  • epitope tags readily available for certain monoclonal antibodies include FLAG, influenza virus hemagglutinin (HA), and c-myc tags.
  • the fusion domain has a protease cleavage site, such as factor Xa or thrombin, that allows the appropriate protease to partially digest the fusion protein and thereby release the recombinant protein therefrom. The released protein can then be isolated from the fusion domain by subsequent chromatographic separation.
  • the domain may also be, for example, polyarginine-tag, Strep-tag, S-tag, calmodulin-binding peptide, cellulose-binding domain.
  • cellulose-binding domain SBP-tag, chitin-binding domain, glutathione S-transferase-tag, maltose-binding protein binding protein
  • NusA, TrxA, DsbA, protein A, protein G, human albumin (human albumin) may be further included.
  • the XCL1 protein may be fused with a domain that stabilizes the XCL1 protein in vivo (“stabilizer” domain).
  • stabilizing means something that increases serum half-life, whether or not the increase in serum half-life is due to reduced destruction, reduced clearance by the kidney, or other pharmacokinetic effects. Fusion of immunoglobulins with the Fc portion is known to impart desirable pharmacokinetic properties to a wide range of proteins. Likewise, fusion to human serum albumin can impart desirable properties. Other types of fusion domains that may be selected include multimerization (eg dimerization, tetramerization) domains and functional domains (which confer additional biologic functions, if desired). Fusions can be constructed such that the heterologous peptide is fused at the amino terminus of the polypeptide of the invention and / or at the carboxy terminus of the polypeptide of the invention.
  • the XCL1 amino acid sequence may be a recombinant polypeptide, natural polypeptide, or synthetic polypeptide comprising a fragment thereof.
  • the polypeptide is a multimer.
  • the polypeptide is a dimer. It will be appreciated in the art that some amino acid sequences of the binders described herein can be varied without significantly affecting the structure or function of the protein. Accordingly, the present invention further encompasses variations of polypeptides that exhibit substantial activity or comprise regions of fragments thereof.
  • amino acid sequence variations include deletions, insertions, inversions, repeats, and / or other types of substitutions.
  • XCL1 proteins, polypeptides, derivatives, analogs and variants thereof may also be modified to contain additional chemical moieties that are not typically part of the polypeptide.
  • Derivatization moieties can improve or otherwise modulate the solubility, biological half-life and / or absorption of a polypeptide. The moiety may also reduce or eliminate undesirable side effects of the polypeptides and variants.
  • An overview of chemical moieties can be found in Remington: The Science and Practice of Pharmacy, 22st Edition, 2012, Pharmaceutical Press, London.
  • the proteins, polypeptides described herein can be produced by any suitable method known in the art. Such methods range from direct protein synthesis methods to construction of DNA sequences encoding polypeptide sequences and expression of these sequences in a suitable host.
  • a DNA sequence is constructed by isolating or synthesizing a DNA sequence encoding a wild type protein of interest using recombinant techniques.
  • mutating this sequence by site-specific mutagenesis functional analogs thereof can be provided.
  • DNA sequences encoding polypeptides of interest can be constructed by chemical synthesis using oligonucleotide synthesizers. Oligonucleotides can be designed based on the amino acid sequence of the polypeptide of interest, by selecting a codon that is advantageous in the host cell in which the recombinant polypeptide of interest will be produced. Standard methods can be applied to synthesize polynucleotide sequences encoding isolated polypeptides of interest. For example, a complete amino acid sequence can be used to construct a reverse translated gene.
  • DNA oligomers containing nucleotide sequences encoding particular isolated polypeptides can be synthesized. For example, several small oligonucleotides encoding portions of the polypeptide of interest can be synthesized and then ligated. Individual oligonucleotides typically contain 5 'or 3' overhangs for complementary assembly.
  • the polynucleotide sequence encoding the particular polypeptide of interest is inserted into an expression vector and operated on an expression control sequence appropriate for expression of the protein in the desired host. Possibly connected. Proper assembly can be identified by nucleotide sequencing, restriction enzyme mapping and / or expression of a biologically active polypeptide in a suitable host.
  • fusion refers to the integration of two molecules having different or identical functions or structures, and fusion by any physical, chemical or biological method in which the peptide can bind to the protein, small molecule drug, nanoparticle or liposome. Can be.
  • the fusion can be by linker peptides.
  • XCL1 of the present invention may be present in further association with a bioactive compound to enhance the therapeutic effect.
  • bioactive compound refers to a compound that modifies a disease when applied to a mammal having the disease.
  • Biologically active compounds may include antagonistic or agonistic properties, or may be proteinaceous bioactive compounds or non-proteinaceous bioactive compounds.
  • proteinaceous bioactive compounds can be covalently attached to the binding domains of the invention, eg, by generating standard DNA cloning techniques, gene fusion polypeptides, and then their standard expression and purification.
  • non-protein biologically active compounds via chemical means, for example via maleimide linkers with cysteines coupled via a peptide linker to the N- or C-terminus of the binding domain, as described herein By coupling to a cysteine thiol, it can be covalently attached to, for example, the binding domain of the invention.
  • proteinaceous bioactive compounds include pronounced target specificities (e.g., neutralizing growth factors by binding them), cytokines (e.g. interleukins), growth factors (e.g. human growth hormones), antibodies and fragments thereof Fragments, hormones (eg GLP-1) and any possible proteinaceous drug.
  • examples of non-proteinaceous bioactive compounds include toxins (eg, DM1 from ImmunoGen), small molecule targeting GPCRs, antibiotics and any possible non-protein drug.
  • binding domain encompasses protein domains representing the same "fold” (three-dimensional arrangement) as protein scaffold (c) and has predetermined properties. Such binding domains can be obtained by rational, or most often, combinatorial protein engineering techniques known in the art.
  • a binding domain comprising predetermined properties may comprise (a) providing the same fold as the protein scaffold as further defined below; And (b) selecting from the various collections to obtain the at least one protein domain comprising the various collection screenings and / or the predetermined properties.
  • Various collections of protein domains may be provided by various methods depending on the screening and / or selection system used, and may include the use of methods well known to those skilled in the art, such as phage display or ribosomal display. Can be.
  • the binding domain is a recombinant binding domain.
  • the binding domain is a repeat protein or designed repeat protein.
  • any recombinant XCL1 that binds the proteins or domains presented herein may be, for example, a bi-specific binder, a bioactive compound, a labeling moiety (e.g., a fluorescent label such as fluorescein or radiotracer), Moieties that allow protein purification (eg small peptide tags such as His- or strep-tags), moieties that provide effector functions for elevated therapeutic efficacy (eg antibodies that provide cell dependent cytotoxicity Fc portion of, toxic protein moiety such as Pseudomonas aeruginosa exotoxin A (ETA), or small molecule toxic agents such as maytansinoid or DNA alkylating agents) or other to generate moieties that provide improved pharmacokinetics It may be intended to covalently bond with one or more additional moieties that include a moiety that binds the target.
  • a labeling moiety e.g., a fluorescent label such as fluorescein or radiotracer
  • Improved pharmacokinetics can be assessed according to perceived therapeutic needs. It is often desirable to improve the bioavailability and / or increase the dose interval time, perhaps by increasing the time that the protein remains available in the serum after dosing. In some instances, it is desirable to improve the persistence of the serum concentration of the protein over time (eg, to reduce the difference in serum concentration of the protein between the concentration immediately after administration and just before the next administration).
  • the XCL1 (chemokine (C motif) ligand 1) or derivatives thereof has an effect of inhibiting myocyte or myoblast death.
  • the pharmaceutical composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy and biological response modifiers for the prevention and treatment of muscle diseases.
  • the present invention also provides a stem cell therapeutic agent for treating muscle diseases, including mesenchymal stem cells.
  • the mesenchymal stem cell is characterized in that it comprises an XCL1 protein.
  • cell therapeutic agent refers to the proliferation, selection, or in vitro of living autologous, allogenic, or xenogenic cells to restore the function of cells and tissues.
  • Means a drug (Article 2 of 2008-78), which is a drug product used for the purpose of treatment, diagnosis and prevention through a series of behaviors that change its characteristics.
  • the present invention also provides an apoptosis inhibitor comprising an XCL1 (chemokine (C motif) ligand 1) protein or a derivative thereof.
  • XCL1 chemokine (C motif) ligand 1
  • apoptosis inhibitor of the present invention, apoptosis is a concept that is differentiated from necrosis or pathological death of cells in a form of dying controlled by genes.
  • an inhibitor means a substance that exhibits an action of inhibiting a chemical reaction or a physiological action.
  • the XCL1 protein of the present invention includes the XCL1 protein as well as variants thereof.
  • variant refers to a protein in which the amino acid sequence of the XCL1 protein and one or more amino acid residues have a different sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof. Amino acid exchange in proteins and fragments that do not alter the activity of the molecule as a whole is known in the art.
  • XCL1 proteins or variants thereof may be extracted from nature or prepared by genetic recombination methods based on synthetic or DNA sequences.
  • the XCL1 protein or derivatives thereof according to the present invention When using the XCL1 protein or derivatives thereof according to the present invention has a feature that can inhibit apoptosis, it can be usefully used for the purpose of apoptosis research.
  • the present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance to be analyzed with a cell expressing XCL1; (b) analyzing the effect of the test substance on the expression of the XCL1, and when the test substance increases the expression of the XCL1, the test substance is determined as a prophylactic or therapeutic agent for muscle diseases.
  • the present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance with XCL1; (b) analyzing the effect of the test substance on the activity of the XCL1, when the test substance increases the activity of the XCL1 is determined as a prophylactic or therapeutic agent of muscle diseases.
  • test material refers to an unknown material used in screening to examine whether it affects the expression level or activity of XCL1 of the present invention or muscle.
  • the test substance includes various materials.
  • the test substance includes, but is not limited to, chemicals, proteins, peptides, antibodies, nucleic acids, and natural extracts.
  • the test substance analyzed by the screening method of the present invention may be a single compound or a mixture of compounds (eg, a natural extract or a cell or tissue culture).
  • the test substance can be obtained from a library of synthetic or natural compounds. Methods of obtaining libraries of such compounds are known in the art. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (UK), Comgenex (USA), Brandon Associates (USA), Microsource (USA), and Sigma-Aldrich (USA), and libraries of natural compounds are available from Pan Laboratories (USA). ) And MycoSearch (United States).
  • Samples can be obtained by a variety of combinatorial library methods known in the art, for example biological libraries, spatially addressable parallel solid phase or solution phase libraries, deconvolution required By a synthetic library method, a "1-bead 1-compound” library method, and a synthetic library method using affinity chromatography screening. Methods of synthesizing molecular libraries are variously disclosed in the art.
  • the test substance is contacted with cells expressing XCL1, and the expression level of XCL1 is measured in the cells treated with the test substance.
  • the expression level can be measured as described below, and as a result of the measurement, when the expression of XCL1 is increased, the test substance can be determined as a prophylactic or therapeutic agent for muscle diseases.
  • Measurement of the change in the expression level of the above-described nucleotide sequence can be carried out through various methods known in the art. For example, it can be carried out using hybridization reaction using RT-PCR, northern blotting, cDNA microarray or in situ hybridization reaction.
  • RNA is isolated from cells treated with the test substance, and then, first-chain cDNA is prepared using oligo dT primers and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and a PCR reaction is performed using an expression material-coding nucleotide-specific primer set.
  • the primer set described above is a sequence included in the XCL1-encoding nucleotide sequence to be used.
  • the PCR amplification products are then electrophoresed and the formed bands are analyzed to determine changes in the amount of expression of the nucleotide sequence.
  • changes in the amount of XCL1 expression can be carried out through various immunoassay methods known in the art.
  • changes in XCL1 expression may include immunostaining, radioimmunoassay, radioimmunoprecipitation, western blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, and sandwich assay. Including, but not limited to.
  • ELISA Enzyme-linked immunosorbent assay
  • an antibody labeled with a radioisotope detects a marker molecule of the invention. It can be used to.
  • the present invention comprises the steps of: (a) coating an unknown cell sample lysate to be analyzed on the surface of a solid substrate; (b) reacting said cell lysate with an antibody to a target as a primary antibody; (c) reacting the resultant of step (b) with a secondary antibody to which an enzyme is bound; And (d) measuring the activity of the enzyme.
  • Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, most preferably microtiter plates.
  • Enzymes bound to the secondary antibody include, but are not limited to, enzymes catalyzing color reaction, fluorescence, luminescence or infrared reaction, for example, alkaline phosphatase, ⁇ -galactosidase, hose Radish peroxidase, luciferase and cytochrome P450.
  • alkaline phosphatase When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT), naphthol-AS-B1-phosphate (naphthol-AS) as a substrate Chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis) if colorimetric substrates such as -B1-phosphate) and enhanced chemifluorescence (ECF) are used, and horse radish peroxidase is used -N-methylacridinium nitrate), resorupin benzyl ether, luminol, Amflex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), p-phenylenediamine-HCl and pyrocatechol (HYR), TMB (tetramethyl
  • Measurement of the final enzyme activity or signal in the ELISA method and the capture-ELISA method can be carried out according to various methods known in the art. Detection of this signal allows for qualitative or quantitative analysis of the XCL1 of the present invention. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferin if luciferase is used.
  • the present invention also provides a zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
  • the zebrafish may be introduced with a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1.
  • the introduction may proceed according to known methods, for example microinjection, electroporation, particle bombardment, sperm-mediated genetransfer, viral infection (viralinfection), direct muscle injection (direct muscle injection), insulators (insulator) and transposon (trnasposon), and the like, and preferably include, but not limited to microinjection.
  • the present invention provides a method for screening a candidate substance for XCL1 co-administration for preventing or treating a muscular disease comprising the following steps. (a) treating the zebrafish of claim 14 with an XCL1 co-administration candidate; And (b) observing the development of the zebrafish muscle cells.
  • the present invention is to treat the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof to the subject; It provides a method of preventing or treating muscle diseases comprising a.
  • the individual is preferably a mammal including a human, a patient in need of the treatment of muscle diseases, patients in the treatment of muscle diseases, patients with muscle diseases who have been treated with muscle diseases, muscle diseases need to be treated It can include all patients.
  • the muscle disease may be caused by the death of muscle cells or myoblasts, sprains, strains, convulsions, tendonitis, muscle cancer, myositis, rhabdomyolysis, muscular dystrophy ( 1 species selected from the group consisting of muscular atrophy, atony, muscular dystrophy, muscular degeneration, myasthenia, dystrophinopathy, myopathy and sacopenia It is preferable that it is above.
  • muscular dystrophy 1 species selected from the group consisting of muscular atrophy, atony, muscular dystrophy, muscular degeneration, myasthenia, dystrophinopathy, myopathy and sacopenia It is preferable that it is above.
  • the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof may be delivered in a pharmaceutically effective amount to a site for the treatment of muscle disease in an individual, and the delivery is for mammalian administration to mammals. More preferably, it is delivered in form, preferably for human patient administration.
  • chemokine (C motif) ligand 1 (XCL1) or derivatives thereof may be formulated by the method of administration, mode of administration, age, weight, sex, morbidity, food, time of administration, administration of the patient.
  • Various prescriptions can be made by factors such as pathway, excretion rate and response sensitivity.
  • XCL1 chemokine (C motif) ligand 1
  • XCL1 chemokine (C motif) ligand 1
  • the present invention comprises the steps of treating the individual with XCL1 (chemokine (C motif) ligand 1) protein or derivatives thereof; It provides a method for inhibiting apoptosis, including the cells may be muscle cells or myoblasts.
  • XCL1 chemokine (C motif) ligand 1
  • the XCL1 (chemokine (C motif) ligand 1) protein or derivative thereof of the present invention may inhibit the occurrence or progression of apoptosis in the subject when treated in the subject, particularly preferably in muscle cells and / or myoblasts. By effectively inhibiting cell death can achieve a cell protective effect, through which can prevent or treat muscle diseases.
  • C2C12 mouse muscle myoblasts were cultured in serum-free medium for 12 to 24 hours to induce apoptosis.
  • Wharton's Jelly-mesenchymal stem isolated from the dead myoblasts obtained in 1.1 and the umbilical cord discarded after childbirth.
  • cell WJ-MSC
  • WJ-MSC was co-cultured using a transwell chamber and the schematic diagram is shown in FIG. 1, and the culture results are shown in FIG. 2.
  • a control group a group without co-culture of human umbilical cord mesenchymal stem cells in a serum-free medium was used.
  • human umbilical cord mesenchymal stem cells inhibit the death of myoblasts due to nutrient depletion.
  • this myoblast killing effect was shown by the co-culture, and because the hole of the co-culture chamber is a size that the cells cannot move, it can be inferred that the water-soluble factor secreted by human umbilical cord mesenchymal stem cells inhibits myoblast death. have.
  • Example 2 water soluble factor XCL1 Of recombinant protein Myoblasts Confirmation of killing effect
  • the antibody array was performed in the medium.
  • XCL1 was identified as a water-soluble factor of human umbilical cord mesenchymal stem cells and selected as a potential candidate.
  • the XCL1 recombinant protein was treated at 50ng / mL for 3, 6, 12 hours. 6 shows a result of detecting the cleavage of the apoptosis marker PARP by the conventional Western blotting method used in the art in the sample and a numerical value thereof.
  • human umbilical cord mesenchymal stem cells or XCL1 can be effectively used for the prevention or treatment of muscle diseases caused by muscle cell death by effectively inhibiting the death of myoblasts in a concentration and time dependent manner.
  • PAN inhibitor significantly less progress in myoblast killing when treated with the XCL1 protein of the present invention, compared to the case of treatment with a PAN inhibitor which is well known as an inhibitor of apoptosis due to depletion of nutrients. It was confirmed that the cytoprotective effect of the XCL1 protein is better than. In addition, it was confirmed that 50 ⁇ M treatment effect of PAN inhibitor was observed similar to 1nM treatment effect of XCL1 protein.
  • XCL1 has the effect of inhibiting apoptosis of myoblasts C2C12, and accordingly, mouse hippocampal neurons HT22, rat Schwann cells, and S16 were used to confirm whether the effect is applied to other cells.
  • apoptosis was induced by treating amyloid beta (Amyloid-ß), a protease inhibitor, and protease inhibitor MG132, with mouse hippocampal neurons HT22. After inducing apoptosis, the result of treating the XCL1 protein is shown in FIG. 8.
  • results of detecting the cleavage of the apoptosis marker PARP in the sample by the conventional Western blotting method in the sample and the result of quantification thereof are shown in FIG. 9.
  • the group not treated with amyloid beta, MG132, and XCL1 protein was used in culture in serum-free medium.
  • the rat Schwann cell S16 cells were treated with Thapsigargin, an endoplasmic reticulum stress derivative, for 12 hours to confirm cell specificity as described above. The results are shown in FIGS. 10 and 11. As a control group, Thapsigargin and XCL1 protein were not treated in the serum-free medium.
  • the rat Schwann cells As shown in Figure 10 and 11, the rat Schwann cells as a result, it was confirmed that there is no effect of inhibiting apoptosis by XCL1. Therefore, it was confirmed that the XCL1 protein has an apoptosis inhibitory effect on myoblasts.
  • Lovastatin a cholesterol synthesis inhibitor
  • Lovastatin a cholesterol synthesis inhibitor
  • Lovastatin was used to determine whether the XCL1 protein had an effect of inhibiting apoptosis of myoblasts caused by other apoptosis inducing agents.
  • Lovastatin is known to induce myoblasts atrophy, and Lovastatin was dose-dependently treated with C2C12 mouse myoblasts and C2C12 mouse myotubes induced differentiation for 7 days at 0.1, 0.5, 1, 2ng / mL. .
  • the sample was cultured with or without treatment with XCL1 protein (50 ng / mL) to confirm the effect of inhibiting death of XCL1 protein by PARP cleavage, which is shown in FIGS. 12 and 13.
  • the muscle myotubes C2C12 induced differentiation for 7 days was treated with concentration-dependent Lovastatin at 1, 2, 5, and 10 ⁇ M to confirm the loss of myotubes.
  • concentration-dependent Lovastatin at 1, 2, 5, and 10 ⁇ M
  • FIG. 14 The result of confirming the MHC which is Myosin Heavy Chain by the conventional western blotting method and the numerical value thereof is shown in FIG. 14.
  • the group that was not treated with Lovastatin and XCL1 in the serum-free medium was used as a control group.
  • the apoptosis inhibitory effect of XCL1 can be inferred to have a specific effect on myoblasts and myotubes.
  • Example 4 siRNA through XCL1 Inhibition of Synthetic Human Umbilical Cord Mesenchyme Confirmed that the stem cell loss of cell death inhibition effect
  • XCL1-siRNA1 an siRNA that can inhibit the synthesis of XCL1 protein in apoptotic myoblasts induced by nutrient depletion, was confirmed to inhibit the synthesis of XCL1 protein by siRNA.
  • the positive control group was co-cultured with C2C12 cells and human umbilical cord stem cells cultured in serum-free medium, and the negative control group with control siRNA (CTRL-siRNA) that did not inhibit the synthesis of XCL1 protein.
  • C2C12 cells human umbilical cord stem cells cultured in serum-free medium
  • CRL-siRNA control siRNA
  • Example 5 human XCL1 Expression Zebrafish Model manufacture and human XCL1 Observe the development of zebrafish three days after the protein was introduced.
  • Wild type zebrafish were bred under conditions (temperature: 28-28.5 ° C., contrast: lighted from 9 am to 8 pm, other times off, food: brine shrimp). The embryos were divided into two partitions each day by zebrafish before mating, and then brightened the next morning to remove mating between females and males. The zebrafish eggs obtained through the mating were transferred to a mold made of agar gel.
  • recombinant XCL1 protein was microinjected 12 hours after zebrafish fertilization. As shown in FIG. 17, zebrafish was transferred to a mold made of agarose gel, and the protein was microinjected with a micropipette mounted in a micromanipulator (World Precision Instruments Inc., Sarasota, FL, USA).
  • the phenotype of the zebrafish model prepared as above was observed 3 days after birth and the results are shown in FIG. 18.
  • zebrafish embryos were treated with 0, 30, 50 ⁇ g / mL of XCL1 protein, and normal and abnormal embryos were observed and quantified.
  • the zebrafish of the muscle disease model without the XCL1 protein injection showed abnormal expression of both markers, whereas the zebrafish to which the human XCL1 protein was introduced was normally expressed in both markers. . In addition, it was confirmed that the muscle disease of zebrafish normalized concentration-dependently on the treated XCL1 protein.
  • zebrafish can be usefully used as a model for muscle diseases, and it was confirmed that it would be useful for screening for the prevention or treatment of muscle diseases such as XCL1 protein.
  • the above ingredients are mixed and filled in an airtight cloth to prepare a powder.
  • the amount of the above ingredient is prepared per ampoule (2 ml).
  • Purified water was added to adjust the total volume to 100 ml. According to the conventional method for preparing a liquid, the above components are mixed, and then filled into a brown bottle and sterilized to prepare a liquid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Reproductive Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Husbandry (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating a muscle disease, the composition comprising mesenchymal stem cells, or an XCL1 protein or a derivative thereof, and a method for screening a muscle disease-treating agent. Effective in inhibiting the death of muscle cells or myoblasts, the mesenchymal stem cells or the XCL1 protein of the present invention can be usefully used for preventing or treating muscle diseases, and an inhibitory agent against cell death, containing an XCL1 protein can be used for cell death studies.

Description

중간엽 줄기세포 또는 XCL1을 포함하는 근육질환의 예방 또는 치료용 약학적 조성물Pharmaceutical composition for the prevention or treatment of muscle diseases, including mesenchymal stem cells or XCL1
본 발명은 중간엽 줄기세포; 또는, XCL1 단백질 또는 이의 유도체를 포함하는 근육질환의 예방 또는 치료용 약학적 조성물 및 근육질환 치료제의 스크리닝 방법에 관한 것이다.The present invention mesenchymal stem cells; Or, it relates to a pharmaceutical composition for the prevention or treatment of muscle diseases, including XCL1 protein or derivatives thereof, and to a method for screening a therapeutic agent for muscle diseases.
중간엽 줄기세포(mesenchymal stem cell)는 스트로마 기원의 세포로 자기 재생(self-renewal)의 특징을 가지고 있으며 골, 연골, 지방조직, 근육, 건, 인대, 신경조직 등으로 분화할 수 있어 세포 치료요법에 적합한 세포로 주목받고 있다. 현재 중간엽 줄기세포를 얻을 수 있는 가장 대표적 기원 조직으로 골수(bone marrow)를 들 수 있다. 그러나, 골수에 존재하는 간엽 줄기세포는 제한적인 분화능과 증식능력으로 인해 그 응용범위가 한정적일 수밖에 없으며, 골수로부터 유래하는 한계로 인해 여러 단계의 시술이 필요하고, 시술 과정이 복잡하여 채취 대상자에게 시간적, 정신적 및 육체적 고통을 수반하는 것이 보통이다. 또한, 골수 이식을 위해서는 조직적합항원 비교를 통해 항원 표현형이 일치하여 이식편대 숙주반응을 보이지 않는 공여자를 찾아야 한다는 문제점이 있다. 탯줄은 골수와는 달리 분만과정에서 간단한 시술을 통해 얻을 수 있으며, 그 양에 비해 수많은 조혈모세포 및 줄기세포를 포함하고 있다. 최근에는, 탯줄, 태반, 제대혈 등에 많은 양의 줄기세포가 있는 것으로 알려지면서 연구가 활발히 이루어지고 있다. 그러나, 아직까지 탯줄로부터 분리·배양한 중간엽 줄기세포 또는 중간엽 줄기세포에서 분비되는 인자가 근육세포 사멸을 억제한다고 보고된 바는 없다.Mesenchymal stem cells are stromal-derived cells that have the characteristics of self-renewal and can differentiate into bone, cartilage, adipose tissue, muscle, tendons, ligaments, and nerve tissues. It is attracting attention as a cell suitable for therapy. Currently, bone marrow is the most representative tissue from which mesenchymal stem cells can be obtained. However, mesenchymal stem cells present in bone marrow have limited application range due to limited differentiation and proliferative capacity. Due to limitations derived from bone marrow, several steps are required, and the procedure is complicated, It is usually accompanied by time, mental and physical pain. In addition, for bone marrow transplantation, there is a problem in that a donor does not show a graft-versus-host response because the antigenic phenotypes are matched through histocompatibility antigen comparison. The umbilical cord, unlike the bone marrow, can be obtained through a simple procedure in the delivery process, and contains a large number of hematopoietic stem cells and stem cells compared to the amount. In recent years, research has been actively conducted, as it is known that there are a large amount of stem cells in the umbilical cord, placenta, cord blood, and the like. However, it has not been reported that the factors secreted from mesenchymal stem cells or mesenchymal stem cells isolated and cultured from the umbilical cord inhibit muscle cell death.
XCL1(chemokine (C motif) ligand 1)은 케모카인(chemokine) 서브패밀리 구성원중 하나이다. 케모카인은 염증 및 면역 반응에 관여하는 것으로 알려져 있으며, 세포 사멸과의 관계에 대해서는 알려진 바가 없다.XCL1 (chemokine (C motif) ligand 1) is one of the chemokine subfamily members. Chemokines are known to be involved in inflammatory and immune responses, and there is no known relationship to cell death.
한편, 근육은 우리 몸을 지탱하고 생명현상을 유지하는 필수 조직이다. 근육은 근육아세포(myoblast)가 분화하여 다핵의 근관세포(multinucleated myotube)를 형성하고 근육세포(myocyte)를 만들며 근육아세포와 근육세포의 사멸은 여러가지 질병의 원인이 되고 있다. 또한, 유전자 돌연변이나 (muscular myopathy) 여러 원인을 통한 만성염증, 자가면역질환을 통한 근육소실 혹은 말초신경의 퇴화를 통하여 신경근접합부(neuromuscular junction)의 근육세포가 소실되는 질환들이 보고되고 있으며 현재까지 근본적인 치료제가 없는 상황이다. 현재 급성 및 만성 세균성 염증 질환, 낭포성 섬유증 및 패혈증 등의 염증 관련 질환에 있어 중간엽 줄기세포의 효능이 입증되어 그 활용성이 주목받고 있으나, 근육질환과의 관계에 대해서는 그 효과가 전무한 상태이다. 이처럼 근육세포사멸에 기인한 근육질환을 효과적으로 치료하고 내성을 유발하지 않는 새로운 치료법에 관한 필요성이 절실하다.Muscle, on the other hand, is an essential tissue that supports our body and maintains life. Muscle myoblasts differentiate and form multinucleated myotubes, form myocytes, and myoblasts and the death of muscle cells are causing various diseases. In addition, diseases in which muscle cells of neuromuscular junctions are lost through chronic inflammation through gene mutation or various causes, muscle loss through autoimmune diseases or degeneration of peripheral nerves have been reported. There is no cure. Currently, mesenchymal stem cells have been shown to be effective in acute and chronic bacterial inflammatory diseases, cystic fibrosis, and sepsis, and their usefulness, but their effects on muscle diseases are negligible. . Thus, there is an urgent need for a new treatment that effectively treats muscle diseases caused by apoptosis and does not cause resistance.
한편, 제브라피쉬(zebrafish)는 열대성 어류의 한 종류로 실험 동물모델로 널리 이용되고 있다. 제브라피쉬는 척추동물로 쥐, 랫트와 같은 동물모델을 대체할 수 있음은 물론 이들 동물에 비해 발생 시간이 짧으며 배아가 투명하여 관찰이 용이하다는 장점이 있다. Meanwhile, zebrafish is a kind of tropical fish and is widely used as an experimental animal model. Zebrafish can replace animal models such as rats and rats as vertebrates, as well as shorter development time and transparent embryos, making them easier to observe.
특히, 미세 주입(microinjection) 기술을 이용한 재조합 단백질들을 제브라피쉬에 직접 주입시킬 수 있으므로, 이들 단백질의 생리적 기능을 관찰 및 규명하는 연구에 유용하다. 그럼에도 현재까지 XCL1 단백질을 대상으로 제작된 제브라피쉬 및 연구 결과에 대한 보고는 없다. In particular, since recombinant proteins using microinjection technology can be directly injected into zebrafish, they are useful for the study of observing and identifying the physiological functions of these proteins. Nevertheless, there are no reports of zebrafish and studies made on XCL1 protein.
또한, 대용량의 치료 물질을 스크리닝하기 위해서는 동물 사육 및 관리비와 분석 비용이 많이 들고 시간이 많이 소요되는 동물들 보다는 경제적, 시간적 효용성이 좋은 제브라피쉬가 훨씬 편리하다. 따라서 생체 내 기능을 모사할 수 있으며 대용량 스케일의 스크리닝이 가능한 질환 동물 모델 제작 및 스크리닝 방법은 개발할 필요성이 있다.In addition, for screening large amounts of therapeutic substances, zebrafish, which is economical and time-efficient, is much more convenient than animal breeding and maintenance costs and analysis-intensive and time-consuming animals. Therefore, there is a need to develop a disease animal model production and screening method capable of simulating in vivo functions and capable of screening on a large scale.
이에 본 발명자들은 중간엽 줄기세포가 근육세포사멸을 저해하는 효과가 있음을 확인하였고, 중간엽 줄기세포에서 분비되는 수용성 인자인 XCL1 단백질을 동정함으로써 본 발명을 완성하였다.The present inventors confirmed that mesenchymal stem cells have an effect of inhibiting myocyte death, and completed the present invention by identifying the XCL1 protein, which is a water-soluble factor secreted from mesenchymal stem cells.
본 발명의 목적은 중간엽 줄기세포를 포함하는 근육질환의 예방 또는 치료용 약학적 조성물 또는 근육질환 치료용 줄기세포 치료제를 제공하는 것이다.An object of the present invention to provide a pharmaceutical composition for the prevention or treatment of muscle diseases including mesenchymal stem cells or a stem cell therapy for the treatment of muscle diseases.
본 발명의 또다른 목적은 XCL1(chemokine (C motif) ligand 1) 또는 이의 유도체를 유효성분으로 포함하는 근육질환의 예방 또는 치료용 약학적 조성물 또는 세포사멸 저해제를 제공하는 것이다.Still another object of the present invention is to provide a pharmaceutical composition or apoptosis inhibitor for preventing or treating muscle diseases comprising XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
본 발명의 또다른 목적은 근육질환 치료제의 스크리닝 방법을 제공하는 것이다.It is another object of the present invention to provide a method for screening a therapeutic agent for muscle diseases.
본 발명의 또다른 목적은 XCL1 단백질 또는 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체가 도입된 제브라피쉬를 제공하는 것이다.It is still another object of the present invention to provide a zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
상기 목적을 달성하기 위하여, 본 발명은 중간엽 줄기세포를 포함하는 근육질환의 예방 또는 치료용 약학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for the prevention or treatment of muscle diseases, including mesenchymal stem cells.
또한, 본 발명은 XCL1(chemokine (C motif) ligand 1) 또는 이의 유도체를 유효성분으로 포함하는 근육질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating muscle diseases, including XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
또한, 본 발명은 중간엽 줄기세포를 포함하는 근육질환 치료용 줄기세포 치료제를 제공한다.The present invention also provides a stem cell therapeutic agent for treating muscle diseases, including mesenchymal stem cells.
또한, 본 발명은 XCL1(chemokine (C motif) ligand 1) 단백질 또는 이의 유도체를 포함하는 세포사멸 저해제를 제공한다.The present invention also provides an apoptosis inhibitor comprising an XCL1 (chemokine (C motif) ligand 1) protein or a derivative thereof.
또한, 본 발명은 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법을 제공한다: (a) XCL1을 발현하는 세포에 분석하고자 하는 시험물질을 접촉시키는 단계; (b) 상기 시험물질이 상기 XCL1의 발현에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 발현을 증가시키는 경우, 상기 시험물질은 근육질환의 예방 또는 치료제로 판정된다. The present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance to be analyzed with a cell expressing XCL1; (b) analyzing the effect of the test substance on the expression of the XCL1, and when the test substance increases the expression of the XCL1, the test substance is determined as a prophylactic or therapeutic agent for muscle diseases.
또한, 본 발명은 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법을 제공한다: (a) XCL1에 시험물질을 접촉시키는 단계; (b) 상기 시험물질이 상기 XCL1의 활성에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 활성을 증가시키면 근육질환의 예방 또는 치료제로 판정된다.The present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance with XCL1; (b) analyzing the effect of the test substance on the activity of the XCL1, when the test substance increases the activity of the XCL1 is determined as a prophylactic or therapeutic agent of muscle diseases.
또한, 본 발명은 XCL1 단백질 또는 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체가 도입된 제브라피쉬(zebrafish)를 제공한다.The present invention also provides a zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
또한, 본 발명은 다음의 단계를 포함하는 근육질환 예방 또는 치료를 위한, XCL1 병용투여용 후보물질의 스크리닝 방법을 제공한다: (a) 상기 제브라피쉬에 XCL1 병용투여용 후보물질을 처리하는 단계; 및 (b) 상기 제브라피쉬 근육세포의 발생정도를 관찰하는 단계.In another aspect, the present invention provides a method for screening a candidate drug for XCL1 co-administration for the prevention or treatment of muscle diseases, comprising the steps of: (a) treating the zebra fish with a candidate drug for co-administration of XCL1; And (b) observing the development of the zebrafish muscle cells.
또한 본 발명은 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 근육질환의 예방 또는 치료 방법을 제공한다. In another aspect, the present invention is to treat the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof to the subject; It provides a method of preventing or treating muscle diseases comprising a.
또한 본 발명은 XCL1(chemokine(C motif) ligand 1) 단백질 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 세포사멸 저해방법을 제공한다. In another aspect, the present invention comprises the steps of treating the individual with XCL1 (chemokine (C motif) ligand 1) protein or derivatives thereof; It provides a method for inhibiting apoptosis comprising a.
본 발명의 중간엽 줄기세포 또는 XCL1 단백질은 근육세포 또는 근육아세포 사멸을 저해하는 효과가 있으므로 근육질환의 예방 또는 치료에 유용하게 이용될 수 있으며, XCL1 단백질을 포함하는 세포사멸 저해제는 세포 사멸 연구에 활용할 수 있다.Since the mesenchymal stem cell or XCL1 protein of the present invention has an effect of inhibiting the death of myocytes or myoblasts, it can be usefully used for the prevention or treatment of muscle diseases, and the apoptosis inhibitor including the XCL1 protein is used for cell death research. It can be utilized.
도 1은 중간엽 줄기세포와 사멸 근육아세포의 공동배양 모식도를 나타낸 도이다.1 is a diagram showing a co-culture of mesenchymal stem cells and killed myoblasts.
도 2는 중간엽 줄기세포와 근육아세포의 공동배양 결과를 나타낸 도이다(WJ-MSC: 탯줄 유래 중간엽 줄기세포).Figure 2 is a diagram showing the results of co-culture of mesenchymal stem cells and myoblasts (WJ-MSC: umbilical cord-derived mesenchymal stem cells).
도 3은 중간엽 줄기세포와 공동배양한 근육아세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.Figure 3 is a diagram showing the results of confirming the cleavage of the apoptosis marker PARP in the myoblasts co-cultured with mesenchymal stem cells by Western blotting and the numerical value thereof.
도 4는 농도 의존적으로 처리한 XCL1 단백질과 공동배양한 근육아세포의 세포모양을 나타낸 도이다.Figure 4 shows the cell appearance of myoblasts co-cultured with concentration-dependently treated XCL1 protein.
도 5는 농도 의존적으로 처리한 XCL1 단백질과 공동배양한 근육아세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.5 is a graph showing the results obtained by Western blotting and the numerical value of the cleavage of the apoptosis marker PARP in myoblasts co-cultured with concentration-dependently treated XCL1 protein.
도 6은 시간 의존적으로 처리한 XCL1 단백질과 공동배양한 근육아세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.Figure 6 is a graph showing the results obtained by Western blotting and the numerical value of the cleavage of PARP, apoptosis marker in myoblasts co-cultured with XCL1 protein treated in a time-dependent manner.
도 7은 PAN 저해제와 XCL1 단백질의 세포사멸 저해 효과를 비교한 결과를 나타낸 도이다.7 is a diagram showing the results of comparing the apoptosis inhibitory effect of the PAN inhibitor and XCL1 protein.
도 8은 세포사멸유도 인자 처리 후 XCL1 단백질을 처리한 마우스 해마신경세포의 형태를 나타낸 도이다.Figure 8 shows the morphology of mouse hippocampal neurons treated with XCL1 protein after apoptosis-inducing factor treatment.
도 9는 세포사멸유도 인자 및 XCL1 단백질 처리 후 마우스 해마신경세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.9 is a graph showing the results obtained by Western blotting of the apoptosis marker PARP in mouse hippocampal neurons after treatment with apoptosis-inducing factor and XCL1 protein and a numerical value thereof.
도 10은 소포체 스트레스 유도체 처리 후 XCL1 단백질을 처리한 랫드 슈반세포의 형태를 나타낸 도이다.10 is a diagram showing the morphology of rat Schwann cells treated with the XCL1 protein after the endoplasmic reticulum stress derivative treatment.
도 11은 소포체 스트레스 유도체 처리 후 XCL1 단백질을 처리한 랫드 슈반세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.FIG. 11 is a graph showing results obtained by Western blotting of PARP, an apoptosis marker in rat Schwann cells treated with XCL1 protein after endoplasmic reticulum stress derivative treatment, and a numerical value thereof.
도 12는 로바스타틴(Lovastatin) 처리 후 XCL1 단백질을 처리한 마우스 근관세포의 형태를 나타낸 도이다.12 is a diagram showing the morphology of mouse myotube cells treated with XCL1 protein after lovastatin treatment.
도 13은 로바스타틴(Lovastatin) 처리 후 XCL1 단백질을 처리한 마우스 근육아세포 및 근관세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.FIG. 13 is a graph showing results obtained by Western blotting of PARP, which is an apoptosis marker, in mouse myoblasts and myotubes treated with XCL1 protein after lovastatin treatment and quantification thereof. FIG.
도 14는 로바스타틴(Lovastatin) 처리 후 XCL1 단백질을 처리한 마우스 근육아세포에서 MHC를 웨스턴 블롯팅으로 확인한 결과 및 이를 수치화한 그래프를 나타낸 도이다.FIG. 14 is a graph showing results obtained by Western blotting and quantifying MHC in mouse myoblasts treated with XCL1 protein after lovastatin treatment. FIG.
도 15는 XCL1 합성을 저해하는 siRNA를 처리한 중간엽 줄기세포와 공동배양한 근육아세포의 형태를 나타낸 도이다.Figure 15 shows the morphology of myoblasts co-cultured with mesenchymal stem cells treated with siRNA that inhibits XCL1 synthesis.
도 16은 XCL1 합성을 저해하는 siRNA를 처리한 중간엽 줄기세포와 공동배양한 근육아세포에서 세포사멸 마커인 PARP의 절단을 웨스턴 블롯팅으로 확인한 결과및 이를 수치화한 그래프를 나타낸 도이다.FIG. 16 is a graph showing the results obtained by Western blotting of the apoptosis marker PARP in myoblasts co-cultured with mesenchymal stem cells treated with siRNA that inhibits XCL1 synthesis and a numerical value thereof. FIG.
도 17은 인간 XCL1 발현 제브라피쉬 모델을 제조하기 위한 미세 주입 모식도이다.17 is a schematic diagram of micro-implantation for preparing a human XCL1 expression zebrafish model.
도 18은 인간 XCL1 발현 제브라피쉬 모델이 태어난 후 3일차의 표현형을 나타낸 도이다.Figure 18 shows the phenotype of Day 3 after the birth of the human XCL1 expressing zebrafish model.
도 19는 근육질환 증상을 모사하는 제브라피쉬에 XCL1 단백질을 주입한 후 제브라피쉬를 관찰한 결과를 나타낸 도이다.19 is a diagram illustrating the results of observing zebrafish after injecting XCL1 protein into zebrafish simulating muscle disease symptoms.
도 20은 제브라피쉬의 근육세포 활성화 정도를 관찰하기 위해 선정한 몸통의 특정 지역을 나타낸 도이다.20 is a diagram showing a specific region of the body selected to observe the degree of muscle cell activation of zebrafish.
도 21은 제브라피쉬의 근육세포 활성화 정도를 공초점현미경으로 관찰한 결과를 나타낸 도이다.21 is a diagram showing the results of observing the degree of muscle cell activation of zebrafish with a confocal microscope.
도 22는 제브라피쉬의 배아에 XCL1 단백질을 0, 30, 50μg/mL로 처리한 후 정상 배아와 비정상 배아를 관찰하여 수치화한 결과를 나타낸 도이다. 22 is a diagram showing the results of quantifying the normal and abnormal embryos after treatment with zebrafish XCL1 protein at 0, 30, 50μg / mL.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 중간엽 줄기세포를 포함하는 근육질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating muscle diseases including mesenchymal stem cells.
본 발명의 중간엽 줄기세포는 XCL1(chemokine (C motif) ligand 1)을 포함한다. XCL1은 중간엽 줄기세포에서 분비되는 수용성 인자로서, 케모카인(chemokine) 서브패밀리 구성원중 하나이다(NCBI GenBank Accession number: NP_002986). Mesenchymal stem cells of the present invention comprises XCL1 (chemokine (C motif) ligand 1). XCL1 is a soluble factor secreted from mesenchymal stem cells and is one of the chemokine subfamily members (NCBI GenBank Accession number: NP — 002986).
본 발명의 XCL1 단백질은 서열번호 1의 아미노산 서열로 이루어진 단백질이다.XCL1 protein of the present invention is a protein consisting of the amino acid sequence of SEQ ID NO: 1.
본 발명의 조성물은 XCL1 단백질 자체 뿐만 아니라 이의 약학적으로 허용 가능한 염, 수화물 또는 용매화물을 유효성분으로 포함한다. 용어 "약학적으로 허용 가능한 염"은 소망하는 약리학적 효과, 즉 근육질환의 예방 또는 치료 효과를 갖는 상기 XCL1 단백질의 염을 나타낸다. 이러한 염은 하이드로클로라이드, 하이드로브로마이드 및 하이드로요오다이드와 같은 무기산, 아세테이트, 아디페이트, 알기네이트, 아스파르테이트, 벤조에이트, 벤젠술포네이트, p-톨루엔설포네이트, 비설페이트, 설파메이트, 설페이트, 나프틸레이트, 부티레이트, 시트레이트, 캄포레이트, 캄포설포네이트, 시클로펜탄프로피오네이트, 디글루코네이트, 도데실설페이트, 에탄설포네이트, 푸마레이트, 글루코헵타노에이트, 글리세로포스페이트, 헤미설페이트, 헵타노에이트, 헥사노에이트, 2-히드록시에탄설페이트, 락테이트, 말리에이트, 메탄설포네이트, 2-나프탈렌설포네이트, 니코티네이트, 옥살레이트, 토실레이트 및 운데카노에이트와 같은 유기산을 이용하여 형성된다. 용어, "약학적으로 허용 가능한 수화물"은 소망하는 약리학적 효과를 갖는 상기 XCL1 단백질의 수화물을 나타낸다. 용어, "약학적으로 허용 가능한 용매화물"은 소망하는 약리학적 효과를 갖는 상기 XCL1 단백질의 용매화물을 나타낸다. 상기 수화물 및 용매화물도 상기한 산을 이용하여 제조될 수 있다.The composition of the present invention contains the XCL1 protein itself, as well as pharmaceutically acceptable salts, hydrates or solvates thereof as an active ingredient. The term "pharmaceutically acceptable salts" denotes salts of said XCL1 protein with the desired pharmacological effect, ie the prophylactic or therapeutic effect of muscle disease. Such salts include inorganic acids such as hydrochloride, hydrobromide and hydroiodide, acetates, adipates, alginates, aspartates, benzoates, benzenesulfonates, p-toluenesulfonates, bisulfates, sulfamate, sulfates, Naphthylate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, hep Formed with organic acids such as tanoate, hexanoate, 2-hydroxyethanesulfate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, tosylate and undecanoate do. The term "pharmaceutically acceptable hydrate" refers to the hydrate of the XCL1 protein with the desired pharmacological effect. The term "pharmaceutically acceptable solvate" refers to a solvate of said XCL1 protein with the desired pharmacological effect. The hydrates and solvates may also be prepared using the acids described above.
또한, 본 발명의 약학적 조성물은 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체의 약학적 유효량을 유효성분으로 포함할 수 있다. 상기 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체에서 XCL1을 코딩하는 뉴클레오타이드는 서열번호 2의 서열로 이루어진다.In addition, the pharmaceutical composition of the present invention may include a pharmaceutically effective amount of a gene carrier comprising the nucleotide sequence encoding XCL1 as an active ingredient. The nucleotide encoding the XCL1 in the gene carrier comprising the nucleotide sequence encoding the XCL1 consists of the sequence of SEQ ID NO: 2.
상기 XCL1을 코딩하는 뉴클레오타이드 서열은 통상적인 유전자 치료에 이용되는 모든 유전자 담체에 적용될 수 있으며, 바람직하게는 플라스미드, 아데노바이러스, 아데노-관련 바이러스(Adeno-associated viruses: AAV), 레트로바이러스, 렌티바이러스, 헤르페스 심플렉스 바이러스, 배시니아 바이러스, 리포좀 또는 니오좀에 적용될 수 있다. The nucleotide sequence encoding the XCL1 may be applied to all gene carriers used for conventional gene therapy, and preferably, plasmids, adenoviruses, Adeno-associated viruses (AAV), retroviruses, lentiviruses, It can be applied to herpes simplex virus, basinia virus, liposomes or niosomes.
1. 아데노바이러스Adenovirus
아데노바이러스는 중간 정도의 지놈 크기, 조작의 편의성, 높은 타이터, 광범위한 타깃세포 및 우수한 감염성 때문에 유전자 전달 벡터로서 많이 이용되고 있다. 지놈의 양 말단은 100-200 bp의 ITR (inverted terminal repeat)를 포함하며, 이는 DNA 복제 및 패키징에 필수적인 시스 엘리먼트이다. 지놈의 E1 영역 (E1A 및 E1B)은 전사 및 숙주 세포 유전자의 전사를 조절하는 단백질을 코딩한다. E2 영역 (E2A 및 E2B)은 바이러스 DNA 복제에 관여하는 단백질을 코딩한다.Adenoviruses are widely used as gene transfer vectors because of their medium genome size, ease of manipulation, high titers, wide range of target cells and excellent infectivity. Both ends of the genome contain 100-200 bp of Inverted Terminal Repeat (ITR), which is an essential cis element for DNA replication and packaging. The genome El region (E1A and E1B) encodes proteins that regulate transcription and transcription of host cell genes. The E2 regions (E2A and E2B) encode proteins that are involved in viral DNA replication.
현재 개발된 아데노바이러스 벡터 중에서, E1 영역이 결여된 복제 불능 아데노바이러스가 많이 이용되고 있다.Among the adenovirus vectors currently developed, non-replicating adenoviruses lacking the E1 region are widely used.
한편, E3 영역은 통상적인 아데노바이러스 벡터에서 제거되어 외래 유전자가 삽입되는 자리를 제공한다. 따라서, 본 발명의 XCL1 유전자는 결실된 E1 영역(E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역에 삽입되는 것이 바람직하고, 보다 바람직하게는 결실된 E3 영역에 삽입된다. 한편, 세포내로 운반하고자 하는 목적 뉴클레오타이드 서열은 결실된 E1 영역(E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역에 삽입되는 것이 바람직하고, 보다 바람직하게는 결실된 E1 영역에 삽입된다.On the other hand, the E3 region is removed from a typical adenovirus vector to provide a site for insertion of a foreign gene. Therefore, the XCL1 gene of the present invention is preferably inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, more preferably the deleted E3 region. On the other hand, the target nucleotide sequence to be carried into the cell is preferably inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, more preferably inserted into the deleted E1 region do.
또한, 상기 삽입 서열들은 결실된 E4 영역에도 삽입될 수 있다. 본 명세서에서 바이러스 지놈 서열과 관련하여 사용되는 용어, "결실"은 해당 서열이 완전히 결실된 것뿐만 아니라, 부분적으로 결실된 것도 포함하는 의미를 가진다.The insertion sequences can also be inserted into the deleted E4 region. As used herein, the term "deletion" as used in connection with a viral genome sequence has the meaning including not only that sequence in its entirety, but also partially deleted.
본 발명의 아데노바이러스 유전자 담체는 "프로모터-목적 뉴클레오타이드 서열-폴리 A 서열"과 "프로모터-XCL1 유전자-폴리 A 서열"이 연결된 구조를 갖으며, 상기 "프로모터-목적 뉴클레오타이드 서열-폴리 A 서열"은 결실된 E1 영역 (E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역, 바람직하게는 결실된 E1 영역에 삽입된 것이고, 상기 "프로모터-XCL1 유전자-폴리 A 서열"은 결실된 E1 영역 (E1A 영역 및/또는 E1B 영역, 바람직하게는 E1B 영역) 또는 E3 영역, 바람직하게는 결실된 E3 영역에 삽입된 것이다. 또한, "프로모터-목적 뉴클레오타이드 서열-폴리 A 서열-IRES-XCL1 유전자-폴리 A 서열"처럼 목적 뉴클레오타이드와 XCL1 유전자가 IRES(internal ribosome entry site)에 의해 연결된 바이시스트론(bicistronic) 발현 시스템에 의해서도 발현될 수 있다.The adenovirus gene carrier of the present invention has a structure in which the "promoter-purpose nucleotide sequence-poly A sequence" and the "promoter-XCL1 gene-poly A sequence" are linked, and the "promoter-purpose nucleotide sequence-poly A sequence" Inserted into the deleted E1 region (E1A region and / or E1B region, preferably E1B region) or E3 region, preferably deleted E1 region, wherein the "promoter-XCL1 gene-poly A sequence" is deleted E1 It is inserted into a region (E1A region and / or E1B region, preferably E1B region) or an E3 region, preferably a deleted E3 region. It is also expressed by a bicistronic expression system in which the target nucleotide and the XCL1 gene are linked by an internal ribosome entry site (IRES), such as "promoter-purpose nucleotide sequence-poly A sequence-IRES-XCL1 gene-poly A sequence". Can be.
또한, 아데노바이러스는 야생형 지놈의 약 105%까지 패킹할 수 있기 때문에, 약 2 kb를 추가적으로 패키징할 수 있다. 따라서, 아데노바이러스에 삽입되는 상술한 외래 서열은 아데노바이러스의 지놈에 추가적으로 결합시킬 수도 있다.In addition, because adenovirus can pack up to about 105% of the wild-type genome, about 2 kb can be additionally packaged. Thus, the above-described foreign sequence inserted into the adenovirus may additionally bind to the genome of the adenovirus.
아데노바이러스는 42개의 상이한 혈청형 및 A-F의 서브그룹을 갖는다. 이 중에서, 서브그룹 C에 속하는 아데노바이러스 타입 5가 본 발명의 아데노바이러스 벡터를 얻기 위한 가장 바람직한 출발물질이다. 아데노바이러스 타입 5에 대한 생화학적 및 유전적 정보는 잘 알려져 있다.Adenoviruses have 42 different serotypes and subgroups of A-F. Of these, adenovirus type 5 belonging to subgroup C is the most preferred starting material for obtaining the adenovirus vector of the present invention. Biochemical and genetic information for adenovirus type 5 is well known.
아데노바이러스에 의해 운반되는 외래 유전자는 에피좀과 동일한 방식으로 복제되며, 이에 숙주세포에 대해 유전적독성이 매우 낮다. 따라서, 본 발명의 아데노바이러스 유전자 담체를 이용한 유전자 치료가 매우 안전할 것으로 판단된다.Foreign genes carried by adenoviruses replicate in the same way as episomes, with very low genetic toxicity to host cells. Therefore, gene therapy using the adenovirus gene carrier of the present invention is considered to be very safe.
2. 레트로바이러스2. Retrovirus
레트로바이러스는 자신의 유전자를 숙주의 지놈으로 삽입시키고, 대량의 외래 유전 물질을 운반할 수 있으며, 감염시킬 수 있는 세포의 스펙트럼이 넓기 때문에 유전자 전달 벡터로서 많이 이용되고 있다.Retroviruses are widely used as gene transfer vectors because they insert their genes into the host genome, carry large amounts of foreign genetic material, and have a broad spectrum of cells that can infect them.
레트로바이러스 벡터를 구축하기 위하여, XCL1 유전자 및 운반하고자 하는 목적 뉴클레오타이드 서열은 레트로바이러스의 서열 대신에 레트로바이러스 지놈에 삽입되어 복제 불능의 바이러스를 생산한다. 바이리온을 생산하기 위하여, gag, pol 및 env 유전자를 포함하지만 LTR(long terminal repeat)와 Ψ서열은 없는 패키징 세포주를 구축한다. XCL1 유전자, 운반하고자 하는 목적 뉴클레오타이드 서열, LTR 및 Ψ서열을 포함하는 재조합 플라스미드를 상기 세포주에 이입하면, Ψ서열은 재조합 플라스미드의 RNA 전사체의 생산을 가능하게 하며, 이 전사체는 바이러스로 패키징되고, 바이러스는 배지로 배출된다. 재조합 레트로바이러스를 함유하는 배지를 수집하고 농축하여 유전자 담체로 이용한다.To construct the retroviral vector, the XCL1 gene and the target nucleotide sequence to be carried are inserted into the retroviral genome instead of the sequence of the retrovirus to produce a nonreplicating virus. To produce the virion, a packaging cell line is constructed that contains the gag, pol, and env genes but does not have a long terminal repeat (LTR) and sequence. When the recombinant plasmid comprising the XCL1 gene, the target nucleotide sequence to be carried, LTR and Ψ sequence is introduced into the cell line, the Ψ sequence enables the production of the RNA transcript of the recombinant plasmid, which is packaged into a virus , Virus is discharged into the medium. The medium containing the recombinant retrovirus is collected, concentrated and used as a gene carrier.
3. AAV 벡터3. AAV Vector
아데노-관련 바이러스(AAV)는 비분열 세포을 감염시킬 수 있고, 다양한 종류의 세포에 감염할 수 있는 능력을 갖고 있기 때문에 본 발명의 유전자 담체로 적합하다. AAV 벡터의 제조 및 용도에 대한 상세한 설명은 미국특허 제 5,139,941 호 및 제 4,797,368 호에 상세하게 개시되어 있다.Adeno-associated virus (AAV) is suitable as the gene carrier of the present invention because it can infect non-dividing cells and has the ability to infect various kinds of cells. Details of the preparation and use of AAV vectors are disclosed in detail in US Pat. Nos. 5,139,941 and 4,797,368.
유전자 담체로서의 AAV에 대한 연구는 LaFace et al, Viology, 162:483486(1988), Zhou et al., Exp. Hematol. (NY), 21:928-933(1993), Walsh et al, J. Clin. Invest., 94:1440-1448(1994) 및 Flotte et al., Gene Therapy, 2:29-37(1995)에 개시되어 있다. Studies on AAV as a gene carrier are described in LaFace et al, Viology, 162: 483486 (1988), Zhou et al., Exp. Hematol. (NY), 21: 928-933 (1993), Walsh et al, J. Clin. Invest., 94: 1440-1448 (1994) and Flotte et al., Gene Therapy, 2: 29-37 (1995).
전형적으로, AAV 바이러스는 두 개의 AAV 말단 리피트가 옆에 위치되어 있는 목적의 유전자 서열(XCL1 유전자 및 운반하고자 하는 목적 뉴클레오타이드 서열)을 포함하는 플라스미드 및 말단 리피트가 없는 야생형 AAV 코딩 서열을 포함하는 발현 플라스미드를 동시형질전환시켜 제조된다.Typically, an AAV virus is an expression plasmid comprising a plasmid comprising the gene sequence of interest (XCL1 gene and the desired nucleotide sequence to be transported) with two AAV terminal repeats flanked and a wild type AAV coding sequence without terminal repeats. Prepared by cotransformation.
4. 다른 바이러스 벡터4. Other Virus Vectors
다른 바이러스 벡터들도 본 발명의 유전자 담체로 이용할 수 있다. 배시니아 바이러스, 렌티바이러스 또는 헤르페스 심플렉스 바이러스로부터 유래된 벡터들도, XCL1 유전자 및 운반하고자 하는 목적 뉴클레오타이드 서열을 세포내로 운반할 수 있는 운반 시스템으로 이용할 수 있다.Other viral vectors can also be used as the gene carrier of the present invention. Vectors derived from Basinia virus, lentivirus or herpes simplex virus can also be used as a delivery system capable of intracellularly carrying the XCL1 gene and the desired nucleotide sequence to be transported.
5. 리포좀5. Liposomes
리포좀은 수상에 분산된 인지질에 의해 자동적으로 형성된다. 외래 DNA 분자를 리포좀으로 성공적으로 세포 내로 운반한 예는 Nicolau 및 Sene, Biochim. Biophys. Acta, 721:185-190(1982) 및 Nicolau et al., Methods Enzymol., 149:157-176(1987)에 개시되어 있다. 한편, 리포좀을 이용한 동물세포의 형질전환에 가장 많이 이용되는 시약으로는 Lipofectamine (Gibco BRL)이 있다. XCL1 유전자 및 운반하고자 하는 목적 뉴클레오타이드 서열을 내포한 리포좀은 엔도사이토시스, 세포 표면에로의 흡착 또는 플라즈마 세포막과의 융합 등의 기전을 통해 세포와 상호작용하여 세포내로 XCL1 유전자 및 운반하고자 하는 목적 뉴클레오타이드 서열을 운반한다.Liposomes are automatically formed by phospholipids dispersed in the aqueous phase. Examples of successfully delivering foreign DNA molecules into liposomes into cells include Nicolau and Sene, Biochim. Biophys. Acta, 721: 185-190 (1982) and Nicolau et al., Methods Enzymol., 149: 157-176 (1987). On the other hand, Lipofectamine (Gibco BRL) is the most used reagent for the transformation of animal cells using liposomes. Liposomes Containing the XCL1 Gene and the Desired Nucleotide Sequence Interact with cells through mechanisms such as endocytosis, adsorption to the cell surface, or fusion with plasma cell membranes, thereby incorporating the XCL1 gene and the desired nucleotide into the cell Carries the sequence.
본 발명에서, 유전자 담체가 바이러스 벡터에 기초하여 제작된 경우에는, 본 발명의 약제학적 조성물의 투여방법은 당업계에 공지된 바이러스 감염 방법에 따라 실시된다. 바이러스 벡터를 이용한 숙주 세포의 감염은 상술한 인용문헌에 기재되어 있다.In the present invention, when the gene carrier is produced based on the viral vector, the method of administering the pharmaceutical composition of the present invention is carried out according to a virus infection method known in the art. Infection of host cells with viral vectors is described in the references cited above.
본 발명에서 유전자 전달 시스템이 내이키드(naked) 재조합 DNA 분자 또는 플라스미드인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법 및 유전자 밤바드먼트(Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572(1990)) 방법에 의해 유전자를 세포내로 이입시킬 수 있다.In the present invention, when the gene delivery system is naked recombinant DNA molecules or plasmids, micro-injection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment (Yang et al., Proc. Natl. Acad. Sci., 87: 9568-9572 (1990)) can be introduced into the cell by the method.
본 발명에서 용어 "중간엽 줄기세포"는 뼈, 연골, 지방, 힘줄, 신경 조직, 섬유아세포 및 근육 세포등 구체적인 장기의 세포로 분화되기 전의 만능 전구 세포를 말한다. 본 발명에서 중간엽 줄기세포는 분화되지 않은 상태로 조성물 중에 함유된다. 본 발명의 중간엽 줄기세포는 인간의 배낭(embryonic yolk sac), 태반, 제대, 제대혈, 피부, 말초혈액, 골수, 지방 조직, 근육, 간, 신경 조직, 골막, 태아막, 활액막, 활액, 양막, 반월상연골, 전십자 인대, 관절 연골세포, 유치, 혈관주위세포, 지주골, 슬개골하 지방괴, 비장 및 흉선 등에서 유래할 수 있으나, 바람직하게는 탯줄에서 유래한다. 또한, 상기 중간엽 줄기세포는 바람직하게는 인간으로부터 유래하지만, 태아 또는 인간을 제외한 포유동물로부터 유래될 수도 있다. 상기 인간을 제외한 포유동물은 보다 바람직하게는 개과 동물, 고양이과 동물, 원숭이과 동물, 소, 양, 돼지, 말, 랫트, 마우스 또는 기니피그 등일 수 있으며, 그 유래를 제한하지 않는다.In the present invention, the term "mesenchymal stem cell" refers to pluripotent progenitor cells before they are differentiated into cells of specific organs such as bone, cartilage, fat, tendon, nerve tissue, fibroblast and muscle cells. In the present invention, the mesenchymal stem cells are contained in the composition in an undifferentiated state. The mesenchymal stem cells of the present invention are human backpack (embryonic yolk sac), placenta, umbilical cord, umbilical cord blood, skin, peripheral blood, bone marrow, adipose tissue, muscle, liver, nerve tissue, periosteum, fetal membrane, synovial membrane, synovial fluid, amnion Meniscus, meniscus, anterior cruciate ligament, articular chondrocytes, teeth, perivascular cells, striatum, subpatellar mass, spleen and thymus, etc., but is preferably derived from the umbilical cord. In addition, the mesenchymal stem cells are preferably derived from humans, but may be derived from a fetus or a mammal except humans. Mammals other than humans may be more preferably canine, feline, ape, animal, cow, sheep, pig, horse, rat, mouse or guinea pig, and the like, without limitation.
상기 중간엽 줄기세포의 분리방법은 당업계에 공지되어 있다. 예컨대 인간의 배낭(embryonic yolk sac), 태반, 제대, 제대혈, 피부, 말초혈액, 골수, 지방 조직, 근육, 간, 신경 조직, 골막, 태아막, 활액막, 활액, 양막, 반월상연골, 전십자 인대, 관절 연골세포, 유치, 혈관주위세포, 지주골, 슬개골하 지방괴, 비장 및 흉선 등으로부터 분리되고 정제될 수 있으며 분리된 중간엽 줄기세포는 필요에 따라 배양할 수도 있다. Methods of isolating the mesenchymal stem cells are known in the art. For example, human backpack (embryonic yolk sac), placenta, umbilical cord, cord blood, skin, peripheral blood, bone marrow, adipose tissue, muscle, liver, nerve tissue, periosteum, fetal membrane, synovial membrane, synovial fluid, amniotic membrane, meniscus, precross It can be isolated and purified from ligaments, articular chondrocytes, teeth, perivascular cells, striatum, subpatellar mass, spleen and thymus, and the isolated mesenchymal stem cells can be cultured as necessary.
본 발명의 중간엽 줄기세포는 세포 단독 혹은 배양기에서 배양된 상태로 환자의 생체 내로 주입될 수 있는데, 예를 들어 린드발 등 또는 더글라스콘치올카(Douglas Kondziolka)가 발표한 임상방법을 이용할 수 있다. 상기 제제에는 상기 중간엽 줄기세포 외에 약학적으로 허용 가능한 통상의 담체를 포함할 수 있고, 주사제의 경우 보존제, 무통화제, 가용화제 또는 안정화제, 국소투여용 제제의 경우에는 기제, 부형제, 윤활제 또는 보존제 등을 포함할 수 있다.Mesenchymal stem cells of the present invention can be injected into the patient's living body in the cell alone or cultured in the incubator, for example, may be used clinical methods published by Lindbal et al. Or Douglas Kondziolka. . The preparation may include a pharmaceutically acceptable conventional carrier in addition to the mesenchymal stem cells, and in the case of injections, preservatives, analgesics, solubilizers or stabilizers, in the case of topical administration, bases, excipients, lubricants or Preservatives and the like.
본 발명에서 "근육질환"은 근육 소모 관련 질환 또는 근육 손상으로 인한 질환을 모두 포함한다. 용어 "근육 소모 관련 질환"은 근육량의 점진적 손실 등의 증상을 수반하는 질환 또는 상태를 의미한다. 상기 근육 소모는 유전적 소인; 고혈압, 내당능장애, 당뇨, 비만, 이상지질혈증, 아테롬성경화증 및 심혈관 질환과 같은 연령-관련 질환; 암, 자가면역질환, 감염성 질환, AIDS, 만성 염증질환, 관절염, 영양실조, 신장 질환, 만성 폐쇄성 폐질환, 폐기종, 구루병, 만성 하부 척추통증, 말초신경손상, 중추신경손상 및 화학적 손상과 같은 질환 등의 만성 질환; 장기 고정과 같은 상태, 골절 또는 외상과 같은 무력감과 같은 상태, 수술 후 침상 요양; 및 노화과정에 따른 골격 근육량 및 강도의 진행성 감소 등의 다양한 원인에 기인할 수 있다. 근육 소모 관련 질환은 약화된 신체 상태를 유발하게 되어 건강상태의 악화 또는 무능한 신체 수행력의 건강 상태를 야기할 수 있다. 용어 “근육 손상”은 임의의 근조직의 손상으로, 근육 손상은 사고, 운동 부상, 내분비선 장애, 질환, 창상 또는 외과 수술로 인한, 근조직에 대한 육체적 트라우마로부터 발생할 수 있다. In the present invention, "muscle disease" includes both diseases related to muscle wasting or diseases caused by muscle damage. The term "muscle wasting related disease" means a disease or condition involving symptoms such as gradual loss of muscle mass. The muscle wasting is genetic predisposition; Age-related diseases such as hypertension, impaired glucose tolerance, diabetes, obesity, dyslipidemia, atherosclerosis and cardiovascular disease; Diseases such as cancer, autoimmune diseases, infectious diseases, AIDS, chronic inflammatory diseases, arthritis, malnutrition, kidney disease, chronic obstructive pulmonary disease, emphysema, rickets, chronic lower spinal pain, peripheral nerve damage, central nerve damage and chemical damage Chronic diseases such as; Conditions such as organ fixation, conditions such as helplessness such as fractures or traumas, post-operative bed care; And progressive progression of skeletal muscle mass and strength according to the aging process. Muscle wasting related diseases can lead to a weakened physical condition that can lead to deterioration of health status or incapacity of physical performance. The term “muscle damage” refers to any muscle tissue damage, which may result from physical trauma to the muscle tissue resulting from accidents, motor injuries, endocrine gland disorders, diseases, wounds or surgical operations.
상기 근육질환은 염좌(sprain), 좌상(strain), 경련, 건염, 근육암, 근염(myositis), 횡문근융해증, 근위축증(muscular atrophy), 긴장감퇴증(atony), 근이영양증(muscular dystrophy), 근육 퇴화증, 근무력증(myasthenia), 디스트로핀병증(dystrophinopathy), 근육병증(myopathy) 및 근감소증(sacopenia)으로 이루어진 군에서 선택된 1종 이상을 포함하며, 바람직하게는 근육세포 또는 근육아세포의 사멸에 의해 발생하는 질환을 포함한다. 상기 근위축증은 근육의 양이 부분적으로 줄거나 완전히 소실되는 현상을 보이며, 외상에 따른 탈신경에 의한 골격근 위축, 안정 와상이나 관절 고정 등에 의한 부동으로 발생하는 골격근 위축 (폐용성 골격근 위축(muscle disuse atrophy))으로 나뉘고, 폐용성 골격근 위축은 고령화 사회에서는 보다 증가 추세이다. 골격근 위축은 각종 질병들에 의한 근육으로의 혈액 공급 감소, 또는 그에 따른 움직임과 운동 부족(immobilization), 지속적인 체중 감소, 영양 불량 상태 (malnutrition or starvation), 근육에 연접한 탈신경(denervation), 암, 에이즈, 울혈심부전 (congestive heart failure), 만성 폐쇄폐질환 (chronic obstructive pulmonary disease), 신부전 (renal failure), 심각한 화상 (severe burns) 등에 의해 나타난다. 상기 근감소증은 노화에 따른 점진적인 골격 근육량의 감소를 의미하는 것으로서, 직접적으로 근력의 저하를 유발하며 그 결과 각종 신체기능의 감소 및 장애를 일으킬 수 있는 상태를 의미한다. 본 발명의 조성물은 근육세포 또는 근육아세포의 사멸을 저해함으로써 근육질환을 예방 또는 치료할 수 있는 효과를 가지고, 근육은 그 종류를 제한하지 않는다.The muscle diseases include sprains, strains, convulsions, tendinitis, muscle cancer, myositis, rhabdomyolysis, muscular atrophy, atony, muscular dystrophy, muscle degeneration Syndrome, myasthenia, dystrophinopathy, myopathy, and sacopenia, and at least one selected from the group consisting of, preferably caused by the death of muscle cells or myoblasts. Disease. The muscular dystrophy is a phenomenon in which the amount of muscle is partially reduced or completely lost, and skeletal muscle atrophy caused by denervation due to denervation due to trauma, immobilization due to stabilization or joint fixation (pulmonary disuse atrophy) ), And soluble skeletal muscle atrophy is increasing in an aging society. Skeletal muscle atrophy is associated with reduced blood supply to muscles caused by various diseases, or consequent movement and immobilization, persistent weight loss, malnutrition or starvation, denervation to muscles, and cancer , AIDS, congestive heart failure, chronic obstructive pulmonary disease, renal failure, severe burns, and the like. The muscular dystrophy refers to a gradual decrease in skeletal muscle mass due to aging, which directly leads to a decrease in muscle strength, and as a result, a condition in which various physical functions may be reduced and impaired. The composition of the present invention has the effect of preventing or treating muscle diseases by inhibiting the death of myocytes or myoblasts, and muscles are not limited in kind.
본 발명의 중간엽 줄기세포 또는 중간엽 줄기세포 유래 XCL는 근육세포 또는 근육아세포 사멸을 저해하여 세포 보호 기능을 함을 특징으로 한다.Mesenchymal stem cell or mesenchymal stem cell-derived XCL of the present invention is characterized in that it inhibits myocyte or myoblast death and functions to protect cells.
또한 상기 조성물은 약제학적으로 허용되는 담체를 더 포함할 수 있으며, 상기 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.In addition, the composition may further comprise a pharmaceutically acceptable carrier, the carrier is commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, know Nate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like However, the present invention is not limited thereto. The composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
본 발명의 조성물은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태일 수 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. It can be prepared by incorporation into a multi-dose container. The formulations may then be in the form of solutions, suspensions or emulsions in oil or aqueous media, and may further comprise dispersants or stabilizers.
본 발명의 조성물은 비경구로 투여할 수 있고, 정맥 내, 피하, 복강 내 투여 또는 국소 적용이 가능하며, 바람직하게는 병변이 발생한 부위에 직접 투여될 수 있다. 본 발명에 따른 조성물의 비경구 투여용 조성물(예, 주사제)은 약제학적으로 허용 가능한 담체, 예를 들어, 멸균 정제수, 약 pH 7의 완충액, 또는 생리식염수 중에 분산 및/또는 용해시켜 생체 내에 주입될 수 있으며, 필요할 경우, 보존제, 안정화제 등과 같은 통상의 첨가제를 포함할 수 있다.The composition of the present invention can be administered parenterally, intravenous, subcutaneous, intraperitoneal or topical application, preferably administered directly to the site where the lesion has occurred. Compositions for parenteral administration (e.g. injections) of the compositions according to the invention are infused and dispersed in a pharmaceutically acceptable carrier, e.g., sterile purified water, a buffer of about pH 7, or physiological saline. And, if necessary, include conventional additives such as preservatives, stabilizers and the like.
상기 조성물의 제형은 사용방법에 따라 달라질 수 있으나, 경고제 (Plasters), 과립제(Granule), 산제(Powders), 시럽제(Syrups), 액제(solutions), 유동엑스제(FluidextractsI), 유제(Emulsions), 현탁제(Suspensions), 침제 (Infusions), 정제(Tablets), 주사제(Injections), 캅셀제(Capsules) 및 환제(Pills)등으로 제조할 수 있다. 적합한 제형은 선택된 투여 루트에 따라 좌우된다. 공지 기술들, 담체 및 부형제들 중의 어느 것이라도 적합하게, 그리고 당해 분야, 예를 들어, 앞서 설명한 Remingston's Pharmaceutical Sciences에서 이해되는 바와 같이 사용될 수 있다.The formulation of the composition may vary depending on the method of use, but may be used as a warning agent (Plasters), granules (Granule), powders (Sowrups), syrups (Syrups), solutions (Fluidextracts I), emulsions (Emulsions) It can be prepared as Suspensions, Infusions, Tablets, Injections, Capsules and Pills. Proper formulation is dependent upon the route of administration chosen. Any of the known techniques, carriers and excipients can be used suitably and as understood in the art, for example in Remingston's Pharmaceutical Sciences described above.
또한, 본 발명에서 주입되는 중간엽 줄기세포의 양은 104-1010cells/회로 투여될 수 있으며, 바람직하게는 105-109 cells/회로 투여될 수 있으며, 가장 바람직하게는 5x107cells/회로 투여될 수 있으나, 이에 한정되는 것은 아니다. 또한, 본 발명에서 주입되는 XCL1은 0.0001ng-500mg/회로 투여될 수 있으며, 바람직하게는 0.0001mg-200mg/회로 투여될 수 있으나, 이에 한정되는 것은 아니다. 상기 용량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다.In addition, the amount of mesenchymal stem cells injected in the present invention may be administered 10 4 -10 10 cells / cycle, preferably 10 5 -10 9 cells / cycle, most preferably 5x10 7 cells / It may be administered in a circuit, but is not limited thereto. In addition, the XCL1 injected in the present invention may be administered 0.0001ng-500mg / time, and preferably 0.0001mg-200mg / time, but is not limited thereto. The dose may be prescribed in various ways, such as by the method of formulation, the mode of administration, the age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response to the patient.
본 발명에서 사용되는 용어 "예방"은 본 발명의 조성물의 투여로 근육질환을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.As used herein, the term "prevention" means any action that inhibits or delays progression of muscle disease by administration of a composition of the present invention.
본 발명에서 사용되는 용어 "치료"는 본 발명의 조성물의 투여로 근육질환이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term "treatment" refers to any action in which muscle disease improves or benefits altered by administration of a composition of the present invention.
또한, 본 발명은 XCL1(chemokine (C motif) ligand 1) 또는 이의 유도체를 유효성분으로 포함하는 근육질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating muscle diseases, including XCL1 (chemokine (C motif) ligand 1) or a derivative thereof as an active ingredient.
상기 XCL1(chemokine (C motif) ligand 1)은 자연적으로 생성되고 중간엽 줄기세포로부터 유래된 것일 수 있으며, 자연적으로 생성된 XCL1은 보통 동물과 연관된 XCL1의 야생형 아미노산 서열을 갖는 XCL1을 포함하나, 이에 한정되는 것은 아니다. 상기 자연적으로 생성된 XLC1은 자연적으로 생성된 XCL1의 변이체를 포함하나, 이에 한정되는 것은 아니며, 대립 변이체, 다형성 변이체 등을 포함한다. The XCL1 (chemokine (C motif) ligand 1) may be naturally generated and derived from mesenchymal stem cells, and naturally generated XCL1 includes XCL1 having a wild-type amino acid sequence of XCL1 which is usually associated with an animal, but It is not limited. The naturally occurring XLC1 may include, but is not limited to, naturally occurring variants of XCL1, including allelic variants, polymorphic variants, and the like.
또한, 본 발명의 XCL1은 근육질환 예방 또는 치료 효과를 달성하는 생물활성을 가진 한 당 분야의 알려진 방법으로 재조합된 단백질, 이들의 유사체, 유도체, 돌연변이체들을 제한 없이 포함할 수 있다. In addition, the XCL1 of the present invention may include, without limitation, proteins, analogs, derivatives, and mutants thereof recombined by a known method in the art having a bioactivity that achieves the effect of preventing or treating muscle diseases.
본 발명에서 상기 돌연변이는 자연계에서 발견되는 돌연변이 또는 XCL1을 코딩하는 핵산 서열에 하나 이상의 아미노산을 치환, 결실 또는 삽입한 효과를 갖거나 갖지 않는 인공적 돌연변이일 수 있다. In the present invention, the mutation may be a mutation found in nature or an artificial mutation with or without the effect of replacing, deleting or inserting one or more amino acids in a nucleic acid sequence encoding XCL1.
상기 돌연변이는 단백질 발현에 영향을 주지 않는 보존적 아미노산 치환을 가질 수 있으며, 자연계의 XCL1 단백질의 아미노산 서열과 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 또는 100% 동일성을 갖는 아미노산 서열을 포함할 수 있다. The mutations may have conservative amino acid substitutions that do not affect protein expression and are 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the amino acid sequence of the natural XCL1 protein. Or amino acid sequences with 100% identity.
또한 본 발명의 XCL1 단백질은 단편, 결실, 절두 등에 의한 폴리펩티드 변이체로 이루어진 것을 포함하며, 자연계의 XCL1 단백질로부터 아미노산 잔기가 제거된 단편일 수 있다. 이러한 단편, 결실, 절두 등은 생성된 폴리펩티드의 활성에 사실상 부정적 영향을 주지 않는다. 구체적 양태에서, XCL1 의 단백질 도메인의 맵핑에 의해 또는 C-말단, N-말단, 또는 C-말단과 N-말단 단부 둘다로부터의 절두를 통해 XCL1의 활성화 도메인을 도출해 낼 수 있으며, 이러한 절두된 폴리펩티드는 활성에 사실상 부정적 영향을 주지 않거나 활성의 증가를 나타낼 수 있다. In addition, the XCL1 protein of the present invention includes polypeptide variants by fragments, deletions, truncation, etc., and may be fragments in which amino acid residues are removed from natural XCL1 protein. Such fragments, deletions, truncations and the like have virtually no negative impact on the activity of the resulting polypeptides. In specific embodiments, the activation domain of XCL1 can be derived by mapping the protein domain of XCL1 or through truncation from the C-terminus, N-terminus, or both C-terminus and N-terminus end, such truncated polypeptides May have virtually no negative impact on activity or may indicate an increase in activity.
상기 재조합된 단백질에서 "재조합"은, 세포와 관련하여 사용될 때, 전형적으로 세포가 외래 핵산 서열의 도입에 의해 변형되었거나 세포가 그렇게 변형된 세포로부터 유래됨을 나타낸다. 예를 들어, 재조합 세포는 천연(native) (비-재조합) 형태의 세포 내에서는 동일한 형태로 발견되지 않는 유전자를 포함할 수 있거나, 또는 재조합 세포는 (천연 형태의 세포에서 발견되는) 천연 유전자를 포함할 수 있지만, 그러나 이러한 유전자는 변형되어 세포 내로 재도입된 것이다. 재조합 세포는, 세포로부터의 핵산의 제거 없이, 변형된 세포에 내재하는 핵산을 포함할 수 있으며 그러한 변형은 유전자 치환, 부위-특이적 돌연변이, 및 당업자에게 공지된 관련 기술에 의해 얻어지는 것들을 포함한다. 재조합 DNA 기술은, 시험관 내에서 재조합 DNA를 생산하고, 그러한 재조합 DNA를 발현 또는 전파될 수 있는 세포 내로 전달하여 재조합 폴리펩티드를 생산하는 기술을 포함한다. 폴리뉴클레오티드 또는 핵산의 "재조합", "재조합하는", 및 "재조합된"은 일반적으로, 둘 이상의 핵산 또는 폴리뉴클레오티드 가닥들 또는 단편들을 조립 또는 조합하여 새로운 폴리뉴클레오티드 또는 핵산을 생성하는 것을 지칭한다. 재조합 폴리뉴클레오티드 또는 핵산은 때때로 키메라로 지칭된다. 핵산 또는 폴리펩티드는, 인공적이거나 또는 엔지니어링된 경우에, "재조합" 핵산 또는 폴리펩티드이다."Recombinant" in such a recombinant protein, when used in connection with a cell, typically indicates that the cell has been modified by introduction of a foreign nucleic acid sequence or the cell is derived from a cell so modified. For example, a recombinant cell may comprise a gene that is not found in the same form in the native (non-recombinant) form of the cell, or the recombinant cell may contain a native gene (found in the natural form of the cell). However, such genes have been modified and reintroduced into cells. Recombinant cells can include nucleic acids inherent in a modified cell without removal of the nucleic acid from the cell, and such modifications include those obtained by gene substitution, site-specific mutations, and related techniques known to those skilled in the art. Recombinant DNA technology includes techniques for producing recombinant DNA in vitro and delivering such recombinant DNA into cells that can be expressed or propagated to produce recombinant polypeptides. "Recombinant", "recombinant", and "recombinant" of a polynucleotide or nucleic acid generally refers to assembling or combining two or more nucleic acids or polynucleotide strands or fragments to produce a new polynucleotide or nucleic acid. Recombinant polynucleotides or nucleic acids are sometimes referred to as chimeras. A nucleic acid or polypeptide, when artificial or engineered, is a "recombinant" nucleic acid or polypeptide.
재조합 XCL1은, 예를 들면, 영장류, 인간, 원숭이, 토끼, 돼지, 설치류, 마우스, 랫트, 햄스터, 게르빌루스쥐, 개, 고양이로부터 유래된 VWF 패밀리의 임의의 멤버, 및 그의 생물학적 활성 유도체를 포함한다. 활성을 갖는 돌연변이 및 변이형 XCL1 단백질이 XCL1 단백질의 기능적 단편 및 융합 단백질과 마찬가지로 포함된다.Recombinant XCL1 may include any member of the VWF family derived from, for example, primates, humans, monkeys, rabbits, pigs, rodents, mice, rats, hamsters, gerbils, dogs, cats, and biologically active derivatives thereof. Include. Mutant and variant XCL1 proteins with activity are included as well as functional fragments and fusion proteins of the XCL1 protein.
상기 XCL1(chemokine (C motif) ligand 1) 또는 이의 유도체에서 상기 "유도체"란 XCL1(chemokine (C motif) ligand 1)의 구조 일부를 다른 원자단, 치환기 등으로 치환하여 얻어지는 것 또는 다른 생물학적 물질과 결합 또는 융합된 하나 이상의 XLC1 폴리펩티드를 포함한다. 또한 당업계에 공지되어 있는 단백질의 개량 방법에 의해 개량된 단백질을 포함한다.The "derivative" in the XCL1 (chemokine (C motif) ligand 1) or derivatives thereof is obtained by substituting a part of the structure of XCL1 (chemokine (C motif) ligand 1) with another atom group, a substituent, or the like, or with other biological substances Or one or more XLC1 polypeptides fused. Also included are proteins improved by methods of protein improvement known in the art.
상기 다른 생물학적 물질과 결합된 하나 이상의 XLC1 폴리펩티드는 항체, 항체의 절편, 면역 글로불린, 펩타이드, 효소, 성장인자 (growth factor), 사이토카인(cytokine), 전사인자, 독소, 항원성 펩티드, 호르몬, 운반 단백질, 운동 기능 단백질, 수용체, 신호(signaling) 단백질, 저장 단백질, 막 단백질, 막횡단(transmembrane) 단백질, 내부(internal) 단백질, 외부(external) 단백질, 분비 단백질, 바이러스 단백질, 당 단백질, 절단된 단백질, 단백질 복합체, 또는 화학적으로 개질된 단백질 등이 융합된 XCL1 융합 단백질일 수 있다. 상기 생물학적 물질은 결합된 폴리펩티드를 분리 또는 확인하는 데 유용한 다양한 작은 펩티드, 다른 단백질, 화학적 수단(당 업계에는 "tag"로 알려짐)을 제한 없이 포함한다. One or more XLC1 polypeptides associated with the other biological material include antibodies, fragments of antibodies, immunoglobulins, peptides, enzymes, growth factors, cytokines, transcription factors, toxins, antigenic peptides, hormones, transporters Proteins, Motor Function Proteins, Receptors, Signaling Proteins, Storage Proteins, Membrane Proteins, Transmembrane Proteins, Internal Proteins, External Proteins, Secretory Proteins, Viral Proteins, Glycoproteins, Cleaved Proteins A protein, a protein complex, a chemically modified protein, or the like may be a fused XCL1 fusion protein. Such biological materials include, without limitation, various small peptides, other proteins, chemical means (known in the art as “tags”) useful for isolating or identifying bound polypeptides.
상기 생물학적 물질은 XCL1 아미노산 서열의 N 말단 또는 C 말단에 융합될 수 있으며, 당 업계에 공지된 방법에 의해서 제조될 수 있다. The biological material may be fused to the N terminus or C terminus of the XCL1 amino acid sequence, and may be prepared by methods known in the art.
구체적으로, XCL1과 융합될 수 있는 일부 융합 도메인은 친화성 크로마토그래피에 의한 융합 단백질의 단리에 특히 유용하다. 친화도 정제의 목적상, 친화성 크로마토그래피를 위한 적절한 매트릭스, 예컨대 글루타티온-, 아밀라제- 및 니켈- 또는 코발트-접합 수지가 사용된다. 다수의 그러한 매트릭스는 파마시아 지에스티 (Pharmacia GST) 정제 시스템 및 (HIS6) 융합 파트너와 유용한 큐엘에이익스프레스(QLAexpress)TM 시스템 (카이아진, Qiagen)과 같이 "키트" 형태로 이용가능하다. 또 다른 예로서, 융합 도메인은 XCL1 단백질의 검출을 촉진하도록 선택될 수 있다. 그러한 검출 도메인의 예는 특정 항체가 이용가능한 일반적으로 길이가 짧은 펩티드 서열인 "에피토프 태그"뿐만 아니라 다양한 형광 단백질 (예를 들어, GFP)도 포함한다. 특정 모노클로날 항체가 쉽사리 이용가능한 주지의 에피토프 태그는 FLAG, 인플루엔자 바이러스 헤마글루티닌 (HA) 및 c-myc 태그를 포함한다. 일부 경우에 있어서, 융합 도메인은 적절한 프로테아제로 하여금 융합 단백질을 부분적으로 소화하도록 해주고 그리하여 그로부터 재조합 단백질을 유리시키게 해주는 프로테아제 절단 부위, 예컨대 인자 Xa 또는 트롬빈에 대한 프로테아제 절단 부위를 갖는다. 이어서 유리된 단백질은 후속 크로마토그래피 분리에 의하여 융합 도메인으로부터 단리시킬 수 있다. 또한 상기 도메인은 예컨대 폴리아르기닌-태그(Arg-tag), Strep-태그(Strep-tag), S-태그(S-tag), 칼모듈린-결합 펩티드(calmodulin-binding peptide), 셀룰로오스-결합 도메인(cellulose-binding domain), SBP-태그(SBP-tag), 키틴-결합 도메인(chitin-binding domain), 글루타티온 S-트랜스퍼라제-태그(glutathione S-transferase-tag), 말토오스-결합 단백질(maltose-binding protein), NusA, TrxA, DsbA, protein A, protein G, 인간 알부민(human albumin) 등을 더 포함할 수 있다. Specifically, some fusion domains that can be fused with XCL1 are particularly useful for the isolation of fusion proteins by affinity chromatography. For the purpose of affinity purification, suitable matrices for affinity chromatography are used, such as glutathione-, amylase- and nickel- or cobalt-bonded resins. Many such matrices are available in "kit" form, such as the Pharmacia GST purification system and the (HIS6) fusion partner and the useful QLAexpressTM system (Qiagen). As another example, the fusion domain can be selected to facilitate the detection of the XCL1 protein. Examples of such detection domains include various epitope proteins (eg, GFP) as well as “epitope tags”, which are generally short peptide sequences in which specific antibodies are available. Known epitope tags readily available for certain monoclonal antibodies include FLAG, influenza virus hemagglutinin (HA), and c-myc tags. In some cases, the fusion domain has a protease cleavage site, such as factor Xa or thrombin, that allows the appropriate protease to partially digest the fusion protein and thereby release the recombinant protein therefrom. The released protein can then be isolated from the fusion domain by subsequent chromatographic separation. The domain may also be, for example, polyarginine-tag, Strep-tag, S-tag, calmodulin-binding peptide, cellulose-binding domain. (cellulose-binding domain), SBP-tag, chitin-binding domain, glutathione S-transferase-tag, maltose-binding protein binding protein), NusA, TrxA, DsbA, protein A, protein G, human albumin (human albumin) may be further included.
특정 실시양태에서, XCL1 단백질은 생체내에서 XCL1 단백질을 안정화시키는 도메인 ("스태빌라이저" 도메인)과 융합될 수 있다. "안정화시키는"이란 혈청 반감기 증가가 감소된 파괴, 신장에 의한 감소된 클리어런스 또는 다른 약동학적 효과 때문인지 여부에 관계 없이 혈청 반감기를 증가시키는 무언가를 의미한다. 이뮤노글로불린의 Fc 부분과의 융합은 광범위의 단백질에 바람직한 약동학적 특성을 부여하는 것으로 알려져 있다. 마찬가지로, 인간 혈청 알부민에의 융합은 바람직한 특성을 부여할 수 있다. 선택될 수 있는 융합 도메인의 다른 유형은 다량체화 (예를 들어, 이량체화, 사량체화) 도메인 및 (소망에 따라, 추가의 생물학적 기능을 부여하는) 기능적 도메인을 포함한다. 융합체는 이종 펩티드가 본 발명의 폴리펩티드의 아미노 말단에서 및/또는 본 발명의 폴리펩티드의 카르복시 말단에서 융합되도록 구축될 수 있다.In certain embodiments, the XCL1 protein may be fused with a domain that stabilizes the XCL1 protein in vivo (“stabilizer” domain). "Stabilizing" means something that increases serum half-life, whether or not the increase in serum half-life is due to reduced destruction, reduced clearance by the kidney, or other pharmacokinetic effects. Fusion of immunoglobulins with the Fc portion is known to impart desirable pharmacokinetic properties to a wide range of proteins. Likewise, fusion to human serum albumin can impart desirable properties. Other types of fusion domains that may be selected include multimerization (eg dimerization, tetramerization) domains and functional domains (which confer additional biologic functions, if desired). Fusions can be constructed such that the heterologous peptide is fused at the amino terminus of the polypeptide of the invention and / or at the carboxy terminus of the polypeptide of the invention.
발명의 일부 실시양태에서, XCL1 아미노산 서열은 그의 단편을 포함하는 재조합 폴리펩티드, 천연 폴리펩티드, 또는 합성 폴리펩티드일 수 있다. 일부 실시양태에서, 폴리펩티드는 다량체이다. 일부 실시양태에서, 폴리펩티드는 이량체이다. 본원에 기재된 결합제의 일부 아미노산 서열은 단백질의 구조 또는 기능에 대해 유의한 영향을 미치지 않으면서 달라질 수 있다는 것이 관련 기술분야에서 인지될 것이다. 따라서, 본 발명은 실질적 활성을 나타내거나, 그의 단편의 영역을 포함하는 폴리펩티드의 변이를 추가로 포함한다. 일부 실시양태에서, 아미노산 서열 변이는 결실, 삽입, 반전, 반복 및/또는 다른 유형의 치환을 포함한다.In some embodiments of the invention, the XCL1 amino acid sequence may be a recombinant polypeptide, natural polypeptide, or synthetic polypeptide comprising a fragment thereof. In some embodiments, the polypeptide is a multimer. In some embodiments, the polypeptide is a dimer. It will be appreciated in the art that some amino acid sequences of the binders described herein can be varied without significantly affecting the structure or function of the protein. Accordingly, the present invention further encompasses variations of polypeptides that exhibit substantial activity or comprise regions of fragments thereof. In some embodiments, amino acid sequence variations include deletions, insertions, inversions, repeats, and / or other types of substitutions.
또한 XCL1 단백질, 폴리펩티드, 그의 유도체, 유사체 및 변이체는 통상적으로 폴리펩티드의 일부가 아닌 추가의 화학적 모이어티(moiety)를 함유하도록 변형될 수 있다. 유도체화 모이어티는 폴리펩티드의 용해도, 생물학적 반감기 및/또는 흡수를 개선시키거나 또는 달리 조절할 수 있다. 모이어티는 또한 폴리펩티드 및 변이체의 바람직하지 않은 부작용을 감소시키거나 또는 제거할 수 있다. 화학적 모이어티에 대한 개관은 문헌 [Remington: The Science and Practice of Pharmacy, 22st Edition, 2012, Pharmaceutical Press, London]에서 찾아볼 수 있다.XCL1 proteins, polypeptides, derivatives, analogs and variants thereof may also be modified to contain additional chemical moieties that are not typically part of the polypeptide. Derivatization moieties can improve or otherwise modulate the solubility, biological half-life and / or absorption of a polypeptide. The moiety may also reduce or eliminate undesirable side effects of the polypeptides and variants. An overview of chemical moieties can be found in Remington: The Science and Practice of Pharmacy, 22st Edition, 2012, Pharmaceutical Press, London.
본원에 기재된 단백질, 폴리펩티드는 관련 기술분야에 공지된 임의의 적합한 방법에 의해 생산될 수 있다. 이러한 방법은 직접 단백질 합성 방법에서부터 폴리펩티드 서열을 코딩하는 DNA 서열의 구축 및 이들 서열을 적합한 숙주에서 발현시키는 것까지의 범위에 이른다. 일부 실시양태에서, 관심 야생형 단백질을 코딩하는 DNA 서열을 재조합 기술을 사용하여 단리 또는 합성함으로써 DNA 서열을 구축한다. 임의로, 부위-특이적 돌연변이유발에 의해 이 서열에 돌연변이를 일으킴으로써, 그의 기능적 유사체를 제공할 수 있다. The proteins, polypeptides described herein can be produced by any suitable method known in the art. Such methods range from direct protein synthesis methods to construction of DNA sequences encoding polypeptide sequences and expression of these sequences in a suitable host. In some embodiments, a DNA sequence is constructed by isolating or synthesizing a DNA sequence encoding a wild type protein of interest using recombinant techniques. Optionally, by mutating this sequence by site-specific mutagenesis, functional analogs thereof can be provided.
일부 실시양태에서, 관심 폴리펩티드를 코딩하는 DNA 서열은 올리고뉴클레오티드 합성기를 사용하여 화학적 합성에 의해 구축할 수 있다. 올리고뉴클레오티드는 목적하는 폴리펩티드의 아미노산 서열을 기반으로, 관심 재조합 폴리펩티드가 생산될 숙주 세포에서 유리한 코돈을 선택함으로써 설계될 수 있다. 표준 방법을 적용하여 단리된 관심 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 합성할 수 있다. 예를 들어, 완전한 아미노산 서열을 사용하여 역번역된 유전자를 구축할 수 있다. 또한, 특정의 단리된 폴리펩티드를 코딩하는 뉴클레오티드 서열을 함유하는 DNA 올리고머를 합성할 수 있다. 예를 들어, 목적하는 폴리펩티드의 일부를 코딩하는 몇몇 소형 올리고뉴클레오티드를 합성한 다음, 이들을 라이게이션할 수 있다. 개별 올리고뉴클레오티드는 전형적으로 상보적 어셈블리를 위한 5' 또는 3' 오버행을 함유한다.In some embodiments, DNA sequences encoding polypeptides of interest can be constructed by chemical synthesis using oligonucleotide synthesizers. Oligonucleotides can be designed based on the amino acid sequence of the polypeptide of interest, by selecting a codon that is advantageous in the host cell in which the recombinant polypeptide of interest will be produced. Standard methods can be applied to synthesize polynucleotide sequences encoding isolated polypeptides of interest. For example, a complete amino acid sequence can be used to construct a reverse translated gene. In addition, DNA oligomers containing nucleotide sequences encoding particular isolated polypeptides can be synthesized. For example, several small oligonucleotides encoding portions of the polypeptide of interest can be synthesized and then ligated. Individual oligonucleotides typically contain 5 'or 3' overhangs for complementary assembly.
어셈블리 (합성, 부위-지정 돌연변이유발 또는 또 다른 방법에 의함)되면, 특정한 관심 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열은 발현 벡터 내에 삽입되고, 목적하는 숙주에서의 단백질의 발현을 위해 적절한 발현 제어 서열에 작동가능하게 연결될 수 있다. 적당한 어셈블리는 적합한 숙주에서의 생물학적 활성 폴리펩티드의 뉴클레오티드 서열분석, 제한 효소 맵핑 및/또는 발현에 의해 확인될 수 있다.Once assembled (by synthesis, site-directed mutagenesis or by another method), the polynucleotide sequence encoding the particular polypeptide of interest is inserted into an expression vector and operated on an expression control sequence appropriate for expression of the protein in the desired host. Possibly connected. Proper assembly can be identified by nucleotide sequencing, restriction enzyme mapping and / or expression of a biologically active polypeptide in a suitable host.
본 발명에 있어서 "융합"은 기능 또는 구조가 다르거나 같은 두 분자를 일체화하는 것으로, 상기 단백질, 소분자 약물, 나노입자 또는 리포좀에 상기 펩티드가 결합할 수 있는 모든 물리, 화학적 또는 생물학적 방법에 의한 융합일 수 있다. 상기 융합은 링커 펩티드에 의할 수 있다. In the present invention, "fusion" refers to the integration of two molecules having different or identical functions or structures, and fusion by any physical, chemical or biological method in which the peptide can bind to the protein, small molecule drug, nanoparticle or liposome. Can be. The fusion can be by linker peptides.
본 발명의 XCL1은 치료 효과의 증진을 위하여 생물활성 화합물과 추가로 결합되어 존재할 수 있다. 용어 "생물활성 화합물"은 상기 질병을 갖는 포유류에 적용되었을 때 질병을 변형하는 화합물을 말한다. 생물 활성 화합물은 길항(antagonistic) 또는 작용물질(agonistic) 특성들을 포함할 수 있고, 또는 단백질성 생물활성 화합물 또는 비-단백질성 생물활성 화합물일 수 있다. 그러한 단백질성 생물활성 화합물은 예를 들어, 표준 DNA 클로닝 기술들, 유전자 융합 폴리펩타이드들을 생성하는 것에 의한 본 발명의 결합 도메인과 공유결합으로 부착될 수 있고, 이어서 그들의 표준 발현 및 정제될 수 있다. 그러한 비-단백질 생물 활성 화합물들은 화학적 수단에 의해, 예를 들어, 여기서 기술한 것과 같이, 결합 도메인의 N- 또는 C-말단에 펩타이드 링커를 통하여 결합(coupled)되는 시스테인을 가지고 말레이미드 링커를 통해 시스테인 티올에 커플링하는 것에 의해, 예를 들어, 본 발명의 결합 도메인에 공유 결합적으로 부착될 수 있다. 단백질성 생물활성 화합물의 예시들은 뚜렷한 타겟 특이성 (예: 그것을 결합하는 것에 의해 성장 인자를 중화하는 것), 사이토카인 (예: 인터루킨), 성장 인자들 (예: 인간 성장 호르몬), 항체 및 그들의 단편들(fragments)m, 호르몬들(예: GLP-1) 및 어떤 가능한 단백질성 약물을 포함한다. 비-단백질성 생물활성 화합물들의 예시들은, 톡신(예: ImmunoGen으로부터 DM1), 소 분자 표적화 GPCRs, 항생물질들 및 어떤 가능한 비-단백질성 약물을 포함한다.XCL1 of the present invention may be present in further association with a bioactive compound to enhance the therapeutic effect. The term "bioactive compound" refers to a compound that modifies a disease when applied to a mammal having the disease. Biologically active compounds may include antagonistic or agonistic properties, or may be proteinaceous bioactive compounds or non-proteinaceous bioactive compounds. Such proteinaceous bioactive compounds can be covalently attached to the binding domains of the invention, eg, by generating standard DNA cloning techniques, gene fusion polypeptides, and then their standard expression and purification. Such non-protein biologically active compounds, via chemical means, for example via maleimide linkers with cysteines coupled via a peptide linker to the N- or C-terminus of the binding domain, as described herein By coupling to a cysteine thiol, it can be covalently attached to, for example, the binding domain of the invention. Examples of proteinaceous bioactive compounds include pronounced target specificities (e.g., neutralizing growth factors by binding them), cytokines (e.g. interleukins), growth factors (e.g. human growth hormones), antibodies and fragments thereof Fragments, hormones (eg GLP-1) and any possible proteinaceous drug. Examples of non-proteinaceous bioactive compounds include toxins (eg, DM1 from ImmunoGen), small molecule targeting GPCRs, antibiotics and any possible non-protein drug.
용어 "결합 도메인"은 단백질 스캐폴드(c)로써 동일한 "폴드(fold)" (3-차원의 배열)을 나타내는 단백질 도메인을 포함하고, 미리 정해진 특성(predetermined property)을 가진다. 그러한 결합 도메인은 이 기술에 알려진 합리적인, 또는 가장 흔하게, 조합화학적 단백질 엔지니어링 기술들에 의해 얻어질 수 있다. 예를 들어, 미리 정해진 특성을 포함하는 결합 도메인은 (a)아래에서 더 정의된 것처럼 단백질 스캐폴드로써 동일한 폴드를 제공하는 것; 그리고 (b) 상기 다양한 컬렉션 스크리닝 및/또는 상기 미리 정해진 특성을 포함하는 적어도 하나의 단백질 도메인을 얻기 위한 상기 다양한 컬렉션으로부터 선택;의 단계를 포함하는 방법에 의해 수득될 수 있다. 단백질 도메인들의 다양한 컬렉션은 스크리닝 및/또는 사용된 선택 시스템에 따른 여러 가지 방법들에 의해 제공될 수 있고, 및 파지 디스플레이 또는 리보좀 디스플레이 같은, 이 기술에 숙련된 당업자에게 잘 알려진 방법들의 사용을 포함할 수 있다. 바람직하게는, 상기 결합 도메인은 재조합 결합 도메인이다. 또한 바람직하게는, 상기 결합 도메인은 반복 단백질 또는 디자인된 반복 단백질이다. The term "binding domain" encompasses protein domains representing the same "fold" (three-dimensional arrangement) as protein scaffold (c) and has predetermined properties. Such binding domains can be obtained by rational, or most often, combinatorial protein engineering techniques known in the art. For example, a binding domain comprising predetermined properties may comprise (a) providing the same fold as the protein scaffold as further defined below; And (b) selecting from the various collections to obtain the at least one protein domain comprising the various collection screenings and / or the predetermined properties. Various collections of protein domains may be provided by various methods depending on the screening and / or selection system used, and may include the use of methods well known to those skilled in the art, such as phage display or ribosomal display. Can be. Preferably, the binding domain is a recombinant binding domain. Also preferably, the binding domain is a repeat protein or designed repeat protein.
상기에서 설명한 바와 같이 여기에서 제시된 단백질들 또는 도메인들을 결합하는 어떤 재조합 XCL1은, 예를 들면, 이중-특이성 결합제, 생물활성 화합물, 라벨링 모이어티(예, 플루오레세인 또는 방사성 추적자 같은 형광성 라벨), 단백질 정제를 가능하게 하는 모이어티(예. His- 또는 strep-태그 같은 소형 펩타이드 태그), 상승된 치료적 효능을 위한 효과기 기능들을 제공하는 모이어티(예. 항체의존세포매개세포독성을 제공하는 항체의 Fc부분, 녹농균 엑소톡신 A (ETA)와 같은 독성 단백질 모이어티 또는, 메이탄시노이드 또는 DNA 알킬화제들과 같은 소형 분자 독성 작용제들) 또는 향상된 약물동태학을 제공하는 모이어티를 생성하기 위해 다른 타겟에 결합하는 모이어티를 포함하는 하나 또는 더 추가적인 모이어티들과 공유결합하게 되어있을 수 있다. 향상된 약물동태학은 인지된 치료상의 필요에 따라 평가될 수 있다. 종종 아마도 복용 후에 혈청 안에서 단백질이 이용가능하게 남아있는 시간을 증가시키는 것에 의해, 생물학적 이용 가능성을 향상시키거나 및/또는 복용 간격 시간을 증가하는 것이 바람직하다. 몇몇의 예시들에서, 시간에 걸쳐 단백질의 혈청 농도의 지속성을 향상시키는 것이 바람직하다.(예, 투여 직후 농도 와 다음 투여 직전 농도 사이의 단백질의 혈청 농도 차이를 감소). As described above, any recombinant XCL1 that binds the proteins or domains presented herein may be, for example, a bi-specific binder, a bioactive compound, a labeling moiety (e.g., a fluorescent label such as fluorescein or radiotracer), Moieties that allow protein purification (eg small peptide tags such as His- or strep-tags), moieties that provide effector functions for elevated therapeutic efficacy (eg antibodies that provide cell dependent cytotoxicity Fc portion of, toxic protein moiety such as Pseudomonas aeruginosa exotoxin A (ETA), or small molecule toxic agents such as maytansinoid or DNA alkylating agents) or other to generate moieties that provide improved pharmacokinetics It may be intended to covalently bond with one or more additional moieties that include a moiety that binds the target. Improved pharmacokinetics can be assessed according to perceived therapeutic needs. It is often desirable to improve the bioavailability and / or increase the dose interval time, perhaps by increasing the time that the protein remains available in the serum after dosing. In some instances, it is desirable to improve the persistence of the serum concentration of the protein over time (eg, to reduce the difference in serum concentration of the protein between the concentration immediately after administration and just before the next administration).
상기 XCL1(chemokine (C motif) ligand 1) 또는 이의 유도체는 근육세포 또는 근육아세포 사멸을 저해하는 효과가 있다.The XCL1 (chemokine (C motif) ligand 1) or derivatives thereof has an effect of inhibiting myocyte or myoblast death.
본 발명의 약학적 조성물은 근육질환의 예방 및 치료를 위하여 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.The pharmaceutical composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy and biological response modifiers for the prevention and treatment of muscle diseases.
또한, 본 발명은 중간엽 줄기세포를 포함하는 근육질환 치료용 줄기세포 치료제를 제공한다.The present invention also provides a stem cell therapeutic agent for treating muscle diseases, including mesenchymal stem cells.
상기 중간엽 줄기세포는 XCL1 단백질을 포함하는 것을 특징으로 한다.The mesenchymal stem cell is characterized in that it comprises an XCL1 protein.
본 발명에서 용어 "세포 치료제"는 세포와 조직의 기능을 복원하기 위하여 살아있는 자가(autologous), 동종(allogenic), 혹은 이종(xenogenic)의 세포를 체외에서 증식, 선별하거나 여러 가지 방법으로 세포의 생물학적 특성을 변화시키는 일련의 행위를 통하여 치료, 진단, 예방의 목적으로 사용하는 의약품 (KFDA가 고시한 생물학적 제재 등의 품목허가 심사고시(2008-78호) 제 2조)를 의미한다.As used herein, the term "cell therapeutic agent" refers to the proliferation, selection, or in vitro of living autologous, allogenic, or xenogenic cells to restore the function of cells and tissues. Means a drug (Article 2 of 2008-78), which is a drug product used for the purpose of treatment, diagnosis and prevention through a series of behaviors that change its characteristics.
또한, 본 발명은 XCL1(chemokine (C motif) ligand 1) 단백질 또는 이의 유도체를 포함하는 세포사멸 저해제(apoptosis inhibitor)를 제공한다.The present invention also provides an apoptosis inhibitor comprising an XCL1 (chemokine (C motif) ligand 1) protein or a derivative thereof.
본 발명의 용어 "세포사멸 저해제(apoptosis inhibitor)"에서 세포사멸(apoptosis)란 유전자에 의해 제어되어 죽는 방식의 한 형태로 세포의 괴사나 병적인 죽음과 구별되는 개념이다. 또한, 저해제(inhibitor)란 화학 반응이나 생리작용을 억제하는 작용을 나타내는 물질을 의미한다.In the term "apoptosis inhibitor" of the present invention, apoptosis is a concept that is differentiated from necrosis or pathological death of cells in a form of dying controlled by genes. In addition, an inhibitor means a substance that exhibits an action of inhibiting a chemical reaction or a physiological action.
본 발명의 XCL1 단백질은 XCL1 단백질 뿐만 아니라 이의 변이체를 포함한다. 본 명세서에서 용어 "변이체"란 XCL1 단백질의 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 의미한다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 단편에서의 아미노산 교환은 당해 분야에 공지되어 있다. XCL1 단백질 또는 이의 변이체는 천연에서 추출하거나 합성 또는 DNA 서열을 기본으로 하는 유전자 재조합 방법에 의해 제조될 수 있다. The XCL1 protein of the present invention includes the XCL1 protein as well as variants thereof. As used herein, the term “variant” refers to a protein in which the amino acid sequence of the XCL1 protein and one or more amino acid residues have a different sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof. Amino acid exchange in proteins and fragments that do not alter the activity of the molecule as a whole is known in the art. XCL1 proteins or variants thereof may be extracted from nature or prepared by genetic recombination methods based on synthetic or DNA sequences.
본 발명에 따른 XCL1 단백질 또는 이의 유도체를 이용하면 세포사멸을 저해할 수 있는 특징이 있으므로, 세포사멸의 연구 목적으로 유용하게 사용될 수 있다.When using the XCL1 protein or derivatives thereof according to the present invention has a feature that can inhibit apoptosis, it can be usefully used for the purpose of apoptosis research.
또한, 본 발명은 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법을 제공한다: (a) XCL1을 발현하는 세포에 분석하고자 하는 시험물질을 접촉시키는 단계; (b) 상기 시험물질이 상기 XCL1의 발현에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 발현을 증가시키는 경우, 상기 시험물질은 근육질환의 예방 또는 치료제로 판정된다. The present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance to be analyzed with a cell expressing XCL1; (b) analyzing the effect of the test substance on the expression of the XCL1, and when the test substance increases the expression of the XCL1, the test substance is determined as a prophylactic or therapeutic agent for muscle diseases.
또한, 본 발명은 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법을 제공한다: (a) XCL1에 시험물질을 접촉시키는 단계; (b) 상기 시험물질이 상기 XCL1의 활성에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 활성을 증가시키면 근육질환의 예방 또는 치료제로 판정된다.The present invention also provides a method for screening a therapeutic agent for muscle diseases, comprising the steps of: (a) contacting a test substance with XCL1; (b) analyzing the effect of the test substance on the activity of the XCL1, when the test substance increases the activity of the XCL1 is determined as a prophylactic or therapeutic agent of muscle diseases.
본 발명의 방법에 따르면, 우선 본 발명의 XCL1을 발현하는 세포에 시험물질을 접촉시킨다. 본 발명 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질"은 본 발명의 XCL1의 발현량 또는 활성에 영향을 미치는지 또는 근육에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. According to the method of the present invention, a test substance is first contacted with a cell expressing the XCL1 of the present invention. As used to refer to the screening methods of the present invention, the term "test material" refers to an unknown material used in screening to examine whether it affects the expression level or activity of XCL1 of the present invention or muscle.
본 발명에서 시험물질은 다양한 물질을 포함한다. 예를 들어, 상기 시험물질은 화학물질, 단백질, 펩타이드, 항체, 핵산 및 천연 추출물을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 스크리닝 방법에 의해 분석되는 시험물질은 단일 화합물 또는 화합물들의 혼합물(예컨대, 천연 추출물 또는 세포 또는 조직 배양물)일 수 있다. 시험물질은 합성 또는 천연 화합물의 라이브러리로부터 얻을 수 있다. 이러한 화합물의 라이브러리를 얻는 방법은 당업계에 공지되어 있다. 합성 화합물 라이브러리는 Maybridge Chemical Co.(영국), Comgenex(미국), Brandon Associates(미국), Microsource(미국) 및 Sigma-Aldrich(미국)에서 상업적으로 구입 가능하며, 천연 화합물의 라이브러리는 Pan Laboratories(미국) 및 MycoSearch(미국)에서 상업적으로 구입 가능하다. 시료는 당업계에 공지된 다양한 조합 라이브러리 방법에 의해 얻을 수 있으며, 예를 들어, 생물학적 라이브러리, 공간 어드레서블 패러럴 고상 또는 액상 라이브러리(spatially addressable parallel solid phase or solution phase libraries), 디컨볼루션이 요구되는 합성 라이브러리 방법, "1-비드 1-화합물" 라이브러리 방법, 그리고 친화성 크로마토그래피 선별을 이용하는 합성 라이브러리 방법에 의해 얻을 수 있다. 분자 라이브러리의 합성 방법은 당 분야에 다양하게 개시되어 있다. In the present invention, the test substance includes various materials. For example, the test substance includes, but is not limited to, chemicals, proteins, peptides, antibodies, nucleic acids, and natural extracts. The test substance analyzed by the screening method of the present invention may be a single compound or a mixture of compounds (eg, a natural extract or a cell or tissue culture). The test substance can be obtained from a library of synthetic or natural compounds. Methods of obtaining libraries of such compounds are known in the art. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (UK), Comgenex (USA), Brandon Associates (USA), Microsource (USA), and Sigma-Aldrich (USA), and libraries of natural compounds are available from Pan Laboratories (USA). ) And MycoSearch (United States). Samples can be obtained by a variety of combinatorial library methods known in the art, for example biological libraries, spatially addressable parallel solid phase or solution phase libraries, deconvolution required By a synthetic library method, a "1-bead 1-compound" library method, and a synthetic library method using affinity chromatography screening. Methods of synthesizing molecular libraries are variously disclosed in the art.
XCL1을 발현하는 세포에 시험물질을 접촉시킨 다음, 시험물질이 처리된 세포에서 XCL1의 발현량을 측정한다. 발현량의 측정은 하기 기재한 바와 같이 실시할 수 있으며, 측정 결과, XCL1의 발현을 증가시키는 경우, 시험물질이 근육질환의 예방 또는 치료제로 판정될 수 있다.The test substance is contacted with cells expressing XCL1, and the expression level of XCL1 is measured in the cells treated with the test substance. The expression level can be measured as described below, and as a result of the measurement, when the expression of XCL1 is increased, the test substance can be determined as a prophylactic or therapeutic agent for muscle diseases.
상술한 뉴클레오타이드 서열의 발현량 변화의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들어, RT-PCR, 노던 블롯팅, cDNA 마이크로어레이를 이용한 혼성화 반응 또는 인 시투(in situ) 혼성화 반응을 이용하여 실시할 수 있다.Measurement of the change in the expression level of the above-described nucleotide sequence can be carried out through various methods known in the art. For example, it can be carried out using hybridization reaction using RT-PCR, northern blotting, cDNA microarray or in situ hybridization reaction.
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 시험물질을 처리한 세포에서 총 RNA를 분리한 다음, 올리고 dT 프라이머 및 역전사효소를 이용하여 제1쇄 cDNA를 제조한다. 이어, 제1쇄 cDNA를 주형으로 이용하고, 발현대상물질-코딩 뉴클레오타이드-특이적 프라이머 세트를 이용하여 PCR 반응을 실시한다. 상술한 프라이머 세트는 이용되는 XCL1-인코딩 뉴클레오타이드 서열에 포함된 서열이다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 뉴클레오타이드 서열의 발현량 변화를 측정한다.When performing according to the RT-PCR protocol, first, total RNA is isolated from cells treated with the test substance, and then, first-chain cDNA is prepared using oligo dT primers and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and a PCR reaction is performed using an expression material-coding nucleotide-specific primer set. The primer set described above is a sequence included in the XCL1-encoding nucleotide sequence to be used. The PCR amplification products are then electrophoresed and the formed bands are analyzed to determine changes in the amount of expression of the nucleotide sequence.
또한, XCL1 발현량의 변화는 당업계에 공지된 다양한 면역분석 방법을 통해 실시될 수 있다. 예를 들어, XCL1 발현량의 변화는 면역염색, 방사능면역분석, 방사능면역침전, 웨스턴 블롯팅, 면역침전, ELISA(enzyme-linked immunosorbent assay), 캡처-ELISA, 억제 또는 경쟁 분석, 그리고 샌드위치 분석을 포함하지만, 이에 한정되는 것은 아니다.In addition, the change in the amount of XCL1 expression can be carried out through various immunoassay methods known in the art. For example, changes in XCL1 expression may include immunostaining, radioimmunoassay, radioimmunoprecipitation, western blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, and sandwich assay. Including, but not limited to.
상기 면역분석 또는 면역염색의 방법은 Enzyme-linked immunosorbent assay (ELISA), in Techniques in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1987 등에 기재되어 있으며, 상기 문헌은 본 명세서에 참조로서 포함된다.The immunoassay or method of immunostaining is described in Enzyme-linked immunosorbent assay (ELISA), in Techniques in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1987, and the like, which is incorporated herein by reference.
예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예컨대, C14, I125, P32 및 S35)로 레이블링된 항체가 본 발명의 마커 분자를 검출하는 데 이용될 수 있다.For example, when the method of the invention is carried out in accordance with radioimmunoassay methods, an antibody labeled with a radioisotope (eg, C 14 , I 125 , P 32 and S 35 ) detects a marker molecule of the invention. It can be used to.
본 발명의 방법이 ELISA 방식으로 실시되는 경우, 본 발명은 (a) 분석하고자 하는 미지의 세포 시료 분해물을 고체 기질의 표면에 코팅하는 단계; (b) 일차항체로서의 타겟에 대한 항체와 상기 세포 분해물을 반응시키는 단계; (c) 상기 단계 (b)의 결과물을 효소가 결합된 이차항체와 반응시키는 단계; 및 (d) 상기 효소의 활성을 측정하는 단계를 추가적으로 포함한다.When the method of the present invention is carried out in an ELISA method, the present invention comprises the steps of: (a) coating an unknown cell sample lysate to be analyzed on the surface of a solid substrate; (b) reacting said cell lysate with an antibody to a target as a primary antibody; (c) reacting the resultant of step (b) with a secondary antibody to which an enzyme is bound; And (d) measuring the activity of the enzyme.
상기 고체 기질로 적합한 것은 탄화수소 폴리머(예컨대, 폴리스틸렌 및 폴리프로필렌), 유리, 금속 또는 젤이며, 가장 바람직하게는 마이크로타이터 플레이트이다.Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, most preferably microtiter plates.
상기 이차항체에 결합된 효소는 발색반응, 형광반응, 발광반응 또는 적외선 반응을 촉매하는 효소를 포함하나, 이에 한정되지 않으며, 예를 들어, 알칼린 포스파타아제, β-갈락토시다아제, 호스 래디쉬 퍼옥시다아제, 루시퍼라아제 및 사이토크롬 P450을 포함한다. 상기 이차항체에 결합하는 효소로서 알칼린 포스파타아제가 이용되는 경우에는, 기질로서 브로모클로로인돌일 포스페이트(BCIP), 니트로 블루 테트라졸리움(NBT), 나프톨-AS-B1-포스페이트(naphthol-AS-B1-phosphate) 및 ECF(enhanced chemifluorescence)와 같은 발색반응 기질이 이용되고, 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프톨, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌(비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약(10-아세틸-3,7-디하이드록시페녹사진), HYR(p-phenylenediamine-HCl and pyrocatechol), TMB(tetramethylbenzidine), ABTS(2,2'-Azidine-di[3-ethylbenzthiazoline sulfonate]), o-페닐렌디아민(OPD) 및 나프톨/파이로닌, 글루코스 옥시다아제와 t-NBT(nitroblue tetrazolium) 및 m-PMS(phenzaine methosulfate)과 같은 기질이 이용될 수 있다.Enzymes bound to the secondary antibody include, but are not limited to, enzymes catalyzing color reaction, fluorescence, luminescence or infrared reaction, for example, alkaline phosphatase, β-galactosidase, hose Radish peroxidase, luciferase and cytochrome P450. When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT), naphthol-AS-B1-phosphate (naphthol-AS) as a substrate Chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis) if colorimetric substrates such as -B1-phosphate) and enhanced chemifluorescence (ECF) are used, and horse radish peroxidase is used -N-methylacridinium nitrate), resorupin benzyl ether, luminol, Amflex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), p-phenylenediamine-HCl and pyrocatechol (HYR), TMB (tetramethylbenzidine), ABTS (2,2'-Azidine-di [3-ethylbenzthiazoline sulfonate]), o-phenylenediamine (OPD) and naphthol / pyronine, glucose oxidase and t-NBT (nitroblue tetrazolium) and m-PMS substrates such as phenzaine methosulfate can be used. The.
상기 ELISA 방법 및 캡처-ELISA 방법에서 최종적인 효소의 활성 측정 또는 시그널의 측정은 당업계에 공지된 다양한 방법에 따라 실시될 수 있다. 이러한 시그널의 검출은 본 발명의 XCL1의 정성적 또는 정량적 분석을 가능하게 한다. 만일, 레이블로서 바이오틴이 이용된 경우에는 스트렙타비딘으로, 루시퍼라아제가 이용된 경우에는 루시페린으로 시그널을 용이하게 검출할 수 있다.Measurement of the final enzyme activity or signal in the ELISA method and the capture-ELISA method can be carried out according to various methods known in the art. Detection of this signal allows for qualitative or quantitative analysis of the XCL1 of the present invention. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferin if luciferase is used.
또한, 본 발명은 XCL1 단백질 또는 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체가 도입된 제브라피쉬(zebrafish)를 제공한다.The present invention also provides a zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
상기 제브라피쉬에는 XCL1 단백질 또는 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체가 도입될 수 있다. 상기 도입은 공지된 방법에 따라 진행할 수 있는데, 예를 들면 미세주입법(microinjection), 전기천공법(electroporation), 입자 분사법 (particle bombardment), 정자를 이용하는 방법(sperm-mediated genetransfer), 바이러스 감염법(viralinfection), 직접근육주입법(direct muscle injection), 인슐레이터(insulator) 및 트랜스포존(trnasposon) 등을 포함하며, 바람직하게는 미세주입법을 포함할 수 있으나, 이에 제한되지 않는다.The zebrafish may be introduced with a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1. The introduction may proceed according to known methods, for example microinjection, electroporation, particle bombardment, sperm-mediated genetransfer, viral infection (viralinfection), direct muscle injection (direct muscle injection), insulators (insulator) and transposon (trnasposon), and the like, and preferably include, but not limited to microinjection.
또한, 본 발명은 다음의 단계를 포함하는 근육질환 예방 또는 치료를 위한, XCL1 병용투여용 후보물질의 스크리닝 방법:을 제공한다. (a) 제14항의 제브라피쉬에 XCL1 병용투여용 후보물질을 처리하는 단계; 및 (b) 상기 제브라피쉬 근육세포의 발생정도를 관찰하는 단계.In addition, the present invention provides a method for screening a candidate substance for XCL1 co-administration for preventing or treating a muscular disease comprising the following steps. (a) treating the zebrafish of claim 14 with an XCL1 co-administration candidate; And (b) observing the development of the zebrafish muscle cells.
또한 본 발명은 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 근육질환의 예방 또는 치료 방법을 제공한다. In another aspect, the present invention is to treat the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof to the subject; It provides a method of preventing or treating muscle diseases comprising a.
본 발명에 있어, 개체는 인간을 포함한 포유류인 것이 바람직하며, 근육질환 치료를 필요로 하는 환자로 근육질환 치료 중인 환자, 근육질환 치료를 받은 적이 있는 근육질환 환자, 근육질환 치료를 받을 필요가 있는 환자를 모두 포함할 수 있다. In the present invention, the individual is preferably a mammal including a human, a patient in need of the treatment of muscle diseases, patients in the treatment of muscle diseases, patients with muscle diseases who have been treated with muscle diseases, muscle diseases need to be treated It can include all patients.
본 발명에 있어서, 상기 근육 질환은 근육세포 또는 근육아세포 사멸에 의해 발생하는 것일 수 있으며, 염좌(sprain), 좌상(strain), 경련, 건염, 근육암, 근염(myositis), 횡문근융해증, 근위축증(muscular atrophy), 긴장감퇴증(atony), 근이영양증(muscular dystrophy), 근육 퇴화증, 근무력증(myasthenia), 디스트로핀병증(dystrophinopathy), 근육병증(myopathy) 및 근감소증(sacopenia)으로 이루어진 군에서 선택된 1종 이상인 것이 바람직하다. In the present invention, the muscle disease may be caused by the death of muscle cells or myoblasts, sprains, strains, convulsions, tendonitis, muscle cancer, myositis, rhabdomyolysis, muscular dystrophy ( 1 species selected from the group consisting of muscular atrophy, atony, muscular dystrophy, muscular degeneration, myasthenia, dystrophinopathy, myopathy and sacopenia It is preferable that it is above.
상기 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체는 개체의 근육 질환 치료가 부위에 약학적으로 유효한 양으로 전달될 수 있으며, 상기 전달은 포유류를 대상으로 하는 포유류 투여용 형태, 바람직하게는 인간 환자 투여용의 형태로 전달되는 것이 더욱 바람직하다. The mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof may be delivered in a pharmaceutically effective amount to a site for the treatment of muscle disease in an individual, and the delivery is for mammalian administration to mammals. More preferably, it is delivered in form, preferably for human patient administration.
또한 본 발명의 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다.In addition, suitable dosages of the mesenchymal stem cells of the present invention, chemokine (C motif) ligand 1 (XCL1) or derivatives thereof may be formulated by the method of administration, mode of administration, age, weight, sex, morbidity, food, time of administration, administration of the patient. Various prescriptions can be made by factors such as pathway, excretion rate and response sensitivity.
근육 질환을 예방 또는 치료하기 위해서 본 발명의 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체 외 다른 공지의 근육 질환 치료제를 병용 투여할 수 있으며, 이와 같은 병용 투여는 동시에 또는 순차적으로 투여할 수 있다. In order to prevent or treat muscle diseases, other mesenchymal stem cells of the present invention, XCL1 (chemokine (C motif) ligand 1), or derivatives thereof may be administered in combination with other known muscle disease therapeutic agents, and such combination administration may be performed simultaneously or It can be administered sequentially.
또한 본 발명은 XCL1(chemokine(C motif) ligand 1) 단백질 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 세포사멸 저해방법을 제공하며, 상기 세포는 근육 세포 또는 근육아세포인 것일 수 있다. In another aspect, the present invention comprises the steps of treating the individual with XCL1 (chemokine (C motif) ligand 1) protein or derivatives thereof; It provides a method for inhibiting apoptosis, including the cells may be muscle cells or myoblasts.
본 발명의 XCL1(chemokine(C motif) ligand 1) 단백질 또는 이의 유도체는 개체에 처리되는 경우 개체의 세포 사멸 발생 또는 진행을 억제할 수 있으며, 특히 바람직하게는 근육 세포 및/또는 근육아세포에서 발생하는 세포 사멸을 효과적으로 억제하여 세포 보호 효과를 달성할 수 있고, 이를 통해 근육 질환을 예방 또는 치료할 수 있다. The XCL1 (chemokine (C motif) ligand 1) protein or derivative thereof of the present invention may inhibit the occurrence or progression of apoptosis in the subject when treated in the subject, particularly preferably in muscle cells and / or myoblasts. By effectively inhibiting cell death can achieve a cell protective effect, through which can prevent or treat muscle diseases.
본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not defined otherwise in this specification are intended to have a meaning commonly used in the art to which the present invention pertains.
이하, 본 발명을 실시예, 제제예에 의해 상세히 설명한다. 단, 하기 실시예, 제제예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예, 제제예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples and preparation examples. However, the following Examples and Formulation Examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following Examples and Formulation Examples.
실시예 1: 인간 탯줄 중간엽 줄기세포의 근육아세포 사멸 억제 효과 확인Example 1 Confirmation of Myoblast Killing Inhibitory Effect of Human Umbilical Cord Mesenchymal Stem Cells
1.1 영양분 고갈을 통한 근육아세포 사멸의 유도Induction of Myoblast Death by Nutrient Depletion
근육아세포 사멸을 유도하기 위해서, C2C12 마우스 근육아세포(skeletal muscle myoblast)를 무혈청 배지에서 12, 24시간 동안 배양하여 세포사멸을 유도하였다.In order to induce myoblast death, C2C12 mouse muscle myoblasts were cultured in serum-free medium for 12 to 24 hours to induce apoptosis.
1.2 인간 탯줄 중간엽 줄기세포의 근육아세포 사멸 억제 효과 확인1.2 Inhibitory Effect of Human Umbilical Cord Mesenchymal Stem Cells on Myoblast Death
인간 탯줄 중간엽 줄기세포의 근육아세포 사멸 억제 효과를 확인하기 위해서, 상기 1.1에서 얻은 사멸된 근육아세포와 출산 후 버려지는 탯줄(umbilical cord)에서 분리한 인간 탯줄 중간엽 줄기세포(Wharton's Jelly-mesenchymal stem cell; WJ-MSC)를 트랜스웰 챔버를 이용하여 공동배양하였고 그 모식도를 도 1에, 배양 결과를 도 2에 나타내었다. 대조군으로는 무혈청 배지에서 인간 탯줄 중간엽 줄기세포를 공동배양하지 않은 군을 사용하였다.To identify the myoblast killing effect of human umbilical cord mesenchymal stem cells, Wharton's Jelly-mesenchymal stem isolated from the dead myoblasts obtained in 1.1 and the umbilical cord discarded after childbirth. cell (WJ-MSC) was co-cultured using a transwell chamber and the schematic diagram is shown in FIG. 1, and the culture results are shown in FIG. 2. As a control group, a group without co-culture of human umbilical cord mesenchymal stem cells in a serum-free medium was used.
도 2에 나타낸 바와 같이, 무혈청 배지에서 12, 24시간 배양한 결과 근육아세포의 사멸이 확인되었으며, 인간 탯줄 중간엽 줄기세포와 공동배양시 세포사멸이 감소되었음을 확인하였다.As shown in Figure 2, 12 and 24 hours incubation in a serum-free medium was confirmed that the death of myoblasts, apoptosis was reduced when co-culture with human umbilical cord mesenchymal stem cells.
또한, 인간 탯줄 줄기세포의 세포사멸 억제 효과를 수치화하기 위하여 상기 시료에서 당분야에 공지된 웨스턴 블롯팅 방법으로 세포사멸 마커인 PARP의 절단을 검출하여 그 결과와 이를 수치화한 결과를 도 3에 나타내었다.In addition, in order to quantify the effect of inhibiting apoptosis of human umbilical cord stem cells, the cleavage of the apoptosis marker PARP was detected by Western blotting method known in the art, and the result and the result of quantification thereof are shown in FIG. 3. It was.
도 3에 나타낸 바와 같이, 인간 탯줄 중간엽 줄기세포를 처리하는 경우 세포사멸에 의한 85kDa 절편의 검출이 확연히 감소함을 확인하였다. As shown in Figure 3, when the treatment of human umbilical cord mesenchymal stem cells was confirmed that the detection of 85kDa fragments by apoptosis is significantly reduced.
따라서, 인간 탯줄 중간엽 줄기세포가 영양분 고갈에 의한 근육아세포의 사멸을 억제함을 알 수 있다. 또한 이러한 근육아세포사멸 억제 효과가 공동배양에 의해 나타났고, 공동배양챔버의 구멍은 세포가 이동할 수 없는 크기이므로 인간 탯줄 중간엽 줄기세포가 분비한 수용성 인자가 근육아세포사멸을 저해함을 유추할 수 있다.Therefore, it can be seen that human umbilical cord mesenchymal stem cells inhibit the death of myoblasts due to nutrient depletion. In addition, this myoblast killing effect was shown by the co-culture, and because the hole of the co-culture chamber is a size that the cells cannot move, it can be inferred that the water-soluble factor secreted by human umbilical cord mesenchymal stem cells inhibits myoblast death. have.
실시예Example 2: 수용성 인자  2: water soluble factor XCL1XCL1 재조합 단백질의  Of recombinant protein 근육아세포Myoblasts 사멸 억제 효과 확인 Confirmation of killing effect
2.1 XCL1 단백질의 농도 의존적 근육아세포 사멸 억제 효과 확인2.1 Determination of Inhibitory Effect of XCL1 Protein on Concentration-dependent Myoblast Death
각 실험군의 공동배양챔버에서 배지를 수득한 뒤, 배지에서 antibody array를 수행하였다. antibody array를 수행한 결과, 인간 탯줄 중간엽 줄기세포의 수용성 인자로 XCL1을 동정하고 이를 유력한 후보로 선정하였다.After obtaining the medium in the co-culture chamber of each experimental group, the antibody array was performed in the medium. As a result of the antibody array, XCL1 was identified as a water-soluble factor of human umbilical cord mesenchymal stem cells and selected as a potential candidate.
XCL1의 근육아세포 사멸 억제 효과를 확인하기 위하여, 상기 1.1과 같은 방법으로 근육아세포의 사멸을 유도하였다. 사멸된 근육아세포에 XCL1 재조합 단백질(R&D Systems, Catalog Number: 695-LT/CF)을 0, 10, 50ng/mL로 각각 12시간 동안 처리한 후 세포모양을 관찰한 결과를 도 4에 나타내었다. 대조군으로는 무혈청 배지에서 배양 도중 XCL1을 처리하지 않은 군을 사용하였다.In order to confirm the myoblast killing effect of XCL1, the killing of myoblasts was induced in the same manner as in 1.1. After the treatment of killed myoblasts with XCL1 recombinant protein (R & D Systems, Catalog Number: 695-LT / CF) at 0, 10, and 50 ng / mL for 12 hours, the results were observed in FIG. 4. As a control group, a group which was not treated with XCL1 during incubation in a serum-free medium was used.
도 4에 나타낸 바와 같이, XCL1 재조합 단백질이 농도 의존적으로 근육아세포의 사멸을 억제함을 확인하였다. As shown in Figure 4, it was confirmed that the XCL1 recombinant protein inhibits the death of myoblasts in a concentration-dependent manner.
XCL1 재조합 단백질의 세포사멸 억제 효과를 추가적으로 확인하기 위하여 상기 시료에서 당분야에서 통상적으로 사용하는 웨스턴 블롯팅 방법으로 세포사멸 마커인 PARP의 절단을 검출한 결과와 이를 수치화한 결과를 도 5에 나타내었다.In order to further confirm the apoptosis inhibitory effect of the XCL1 recombinant protein, the results of detecting and quantifying the apoptosis marker PARP by Western blotting methods commonly used in the art are shown in FIG. 5. .
도 5의 웨스턴 블롯팅에 나타낸 바와 같이, XCL1의 처리에 의해 세포사멸에 의한 85kDa 절편이 확연히 감소함을 확인하였다. 또한 이러한 세포사멸 억제 효과는 XCL1의 농도에 의존적으로 나타남을 확인하였다. As shown in Western blotting of Figure 5, it was confirmed that the 85kDa fragments by apoptosis significantly reduced by the treatment of XCL1. In addition, this apoptosis inhibitory effect was confirmed to be dependent on the concentration of XCL1.
2.2 XCL1 단백질의 시간 의존적 근육아세포 사멸 억제 효과 확인2.2 Confirmation of the Time-dependent Myoblast Killing Effect of XCL1 Protein
XCL1 재조합 단백질의 처리 시간에 따른 세포사멸 억제 효과를 확인하기 위하여, XCL1 재조합 단백질을 50ng/mL로 3, 6, 12시간 동안 처리하였다. 상기 시료에서 당분야에서 사용하는 통상의 웨스턴 블롯팅 방법으로 세포사멸 마커인 PARP의 절단을 검출한 결과와 이를 수치화한 그래프를 도 6에 나타내었다. In order to confirm the effect of inhibiting apoptosis with the treatment time of the XCL1 recombinant protein, the XCL1 recombinant protein was treated at 50ng / mL for 3, 6, 12 hours. 6 shows a result of detecting the cleavage of the apoptosis marker PARP by the conventional Western blotting method used in the art in the sample and a numerical value thereof.
도 6에 나타낸 바와 같이 XCL1 재조합 단백질은 세포사멸 억제 효과를 나타냄을 확인하였다. As shown in Figure 6 it was confirmed that the XCL1 recombinant protein exhibits apoptosis inhibitory effect.
따라서, 인간 탯줄 중간엽 줄기세포 또는 XCL1은 근육아세포의 사멸을 농도와 시간 의존적으로 효과적으로 억제함으로써 근육세포 사멸로 인해 발생하는 근육질환의 예방 또는 치료에 사용될 수 있음을 확인하였다.Therefore, it was confirmed that human umbilical cord mesenchymal stem cells or XCL1 can be effectively used for the prevention or treatment of muscle diseases caused by muscle cell death by effectively inhibiting the death of myoblasts in a concentration and time dependent manner.
2.3 PAN 저해제(PAN inhibitor)와 XCL1 단백질의 세포사멸 억제 효과 비교2.3 Comparison of apoptosis inhibitory effect between PAN inhibitor and XCL1 protein
영양분의 고갈에 의한 세포사멸, 즉 caspase-3에 의해 매개되는 세포사멸의 저해제로 알려진 PAN 저해제와 XCL1의 근육아세포 사멸 억제 효과를 비교하기 위해 영양분의 고갈로 인해 상기 1.1과 같이 근육아세포의 사멸을 유도하였고, 상기 세포에서 PAN 저해제를 5, 10, 20, 50 μM로, XCL1 단백질을 0.5, 1, 2, 5 nM로 각각 처리하였다. 대조군으로는 무혈청 배지에서 배양 도중 PAN 저해제 또는 XCL1 단백질을 처리하지 않은 군을 사용하였다. PARP 절단을 웨스턴 블롯팅 방법으로 확인한 결과와 이를 수치화 한 결과를 도 7에 나타내었다. In order to compare the myoblast killing effect of PCL inhibitor and XCL1, which are known as inhibitors of apoptosis due to depletion of nutrients, ie, caspase-3 mediated apoptosis, the apoptosis of myoblasts is reduced due to the depletion of nutrients. The cells were treated with 5, 10, 20, 50 μM PAN inhibitor and 0.5, 1, 2, 5 nM XCL1 protein, respectively. As a control group, a group which was not treated with PAN inhibitor or XCL1 protein during culture in serum-free medium was used. PARP cleavage was confirmed by Western blotting method and the result of quantification is shown in FIG. 7.
도 7에 나타낸 바와 같이, 영양분의 고갈에 의한 세포사멸의 저해제로 잘 알려진 PAN 저해제를 처리한 경우에 비해, 본 발명의 XCL1 단백질을 처리한 경우 근육아세포 사멸이 유의적으로 덜 진행되었으므로, PAN 저해제보다 XCL1 단백질의 세포 보호 효과가 더 뛰어남을 확인하였다. 또한, PAN 저해제의 50μM 처리 효과가 XCL1 단백질의 1nM 처리 효과와 유사하게 관찰됨을 확인하였다.As shown in Fig. 7, PAN inhibitor significantly less progress in myoblast killing when treated with the XCL1 protein of the present invention, compared to the case of treatment with a PAN inhibitor which is well known as an inhibitor of apoptosis due to depletion of nutrients. It was confirmed that the cytoprotective effect of the XCL1 protein is better than. In addition, it was confirmed that 50μM treatment effect of PAN inhibitor was observed similar to 1nM treatment effect of XCL1 protein.
실시예 3: XCL1 단백질의 세포사멸 억제 효과의 특성 확인Example 3: Characterization of apoptosis inhibitory effect of XCL1 protein
XCL1은 근육아세포인 C2C12의 세포사멸을 억제시키는 효과를 나타내며 이에 따라 다른 세포에도 이러한 효과가 적용되는지 확인하기 위하여, 마우스 해마신경세포인 HT22와 랫드 슈반세포, S16을 이용하였다. 알츠하이머 질병 모델에서 세포사멸유도 인자로 알려진 아밀로이드 베타 (Amyloid-ß)와 단백질분해효소 억제제인 MG132를 마우스 해마신경세포 HT22에 처리하여 세포사멸을 유도하였다. 세포사멸을 유도 후, XCL1 단백질을 처리한 결과를 도 8에 나타내었다.XCL1 has the effect of inhibiting apoptosis of myoblasts C2C12, and accordingly, mouse hippocampal neurons HT22, rat Schwann cells, and S16 were used to confirm whether the effect is applied to other cells. In the Alzheimer's disease model, apoptosis was induced by treating amyloid beta (Amyloid-ß), a protease inhibitor, and protease inhibitor MG132, with mouse hippocampal neurons HT22. After inducing apoptosis, the result of treating the XCL1 protein is shown in FIG. 8.
또한, 상기 시료에서 당분야의 통상의 웨스턴 블롯팅 방법으로 세포사멸 마커인 PARP의 절단을 검출한 결과와 이를 수치화한 결과를 도 9에 나타내었다. 대조군으로는 무혈청 배지에서 배양 중 아밀로이드 베타와 MG132, 그리고 XCL1 단백질을 처리하지 않은 군을 사용하였다.In addition, the results of detecting the cleavage of the apoptosis marker PARP in the sample by the conventional Western blotting method in the sample and the result of quantification thereof are shown in FIG. 9. As a control group, the group not treated with amyloid beta, MG132, and XCL1 protein was used in culture in serum-free medium.
도 8 및 도 9에 나타낸 바와 같이, 세포 형태와 웨스턴 블롯팅 결과를 통하여 마우스 해마신경세포에서는 세포사멸의 뚜렷한 억제 효과가 나타나지 않았음을 확인하였다.As shown in Figures 8 and 9, the cell morphology and Western blotting results in the mouse hippocampal neurons did not show a clear inhibitory effect of apoptosis.
또한, 랫드 슈반세포 S16 세포에서도 상기와 같이 세포 특이성을 확인하기 위하여 소포체 스트레스(Endoplasmic Reticulum stress) 유도체인 Thapsigargin을 12시간 동안 처리하였을 때, XCL1에 의한 세포사멸 억제 효과가 나타나는지 확인하였다. 그 결과를 도 10 및 도 11에 나타내었다. 대조군으로는 무혈청 배지에서 배양 중 Thapsigargin과 XCL1 단백질을 처리하지 않은 군을 사용하였다.In addition, the rat Schwann cell S16 cells were treated with Thapsigargin, an endoplasmic reticulum stress derivative, for 12 hours to confirm cell specificity as described above. The results are shown in FIGS. 10 and 11. As a control group, Thapsigargin and XCL1 protein were not treated in the serum-free medium.
도 10 및 도 11에 나타낸 바와 같이, 랫드 슈반세포에서도 비슷한 결과로, XCL1에 의한 세포사멸 억제 효과를 나타나지 않음을 확인하였다. 따라서, XCL1 단백질은 근육아세포에 대해 특이적으로 세포사멸 억제 효과를 나타냄을 확인하였다.As shown in Figure 10 and 11, the rat Schwann cells as a result, it was confirmed that there is no effect of inhibiting apoptosis by XCL1. Therefore, it was confirmed that the XCL1 protein has an apoptosis inhibitory effect on myoblasts.
또한, 콜레스테롤 합성 억제제인 Lovastatin을 이용하여 XCL1 단백질이 다른 세포사멸 유도제에 의해 야기되는 근육아세포의 세포사멸을 억제하는 효과가 있는지 확인하였다. 당분야에서 Lovastatin은 근육아세포의 위축을 유도한다고 알려져 있으며, C2C12 마우스 근육아세포와 7일 동안 분화 유도시킨 C2C12 마우스 근관세포 (myotube)에 Lovastatin을 0.1, 0.5, 1, 2ng/mL로 농도 의존적 처리하였다. 상기 시료에 XCL1 단백질(50ng/mL)을 처리 또는 처리하지 않고 배양하여 PARP 절단에 의해 XCL1 단백질의 사멸 억제 효과를 확인하고, 이를 도 12 및 도 13에 나타내었다. In addition, Lovastatin, a cholesterol synthesis inhibitor, was used to determine whether the XCL1 protein had an effect of inhibiting apoptosis of myoblasts caused by other apoptosis inducing agents. Lovastatin is known to induce myoblasts atrophy, and Lovastatin was dose-dependently treated with C2C12 mouse myoblasts and C2C12 mouse myotubes induced differentiation for 7 days at 0.1, 0.5, 1, 2ng / mL. . The sample was cultured with or without treatment with XCL1 protein (50 ng / mL) to confirm the effect of inhibiting death of XCL1 protein by PARP cleavage, which is shown in FIGS. 12 and 13.
도 12 및 도 13에 나타낸 바와 같이, Lovastatin에 의해 유도된 PARP 절단은 XCL1 단백질에 의해 완벽히 저해됨을 확인하였다. 따라서, XCL1 단백질은 영양 고갈로 인한 근육아세포의 사멸 뿐만 아니라 다른 원인에 의한 근육아세포의 사멸에 대한 억제 효과를 나타냄을 확인하였다.As shown in FIG. 12 and FIG. 13, it was confirmed that PARP cleavage induced by Lovastatin was completely inhibited by XCL1 protein. Therefore, it was confirmed that the XCL1 protein has an inhibitory effect on the death of myoblasts due to nutritional depletion as well as the death of myoblasts by other causes.
또한, 7일 동안 분화 유도시킨 마우스 근육아세포 C2C12에 1, 2, 5, 10μM로 농도 의존적 Lovastatin을 처리하여 근육근관(Myotube)의 손실을 확인하였으며, 이에 XCL1의 처리 후, 상기 시료에서 당분야의 통상의 웨스턴 블롯팅 방법으로 Myosin Heavy Chain인 MHC를 확인한 결과 및 이를 수치화한 결과를 도 14에 나타내었다. 대조군으로는 무혈청 배지에서 배양 중 Lovastatin과 XCL1을 처리하지 않은 군을 사용하였다.In addition, the muscle myotubes C2C12 induced differentiation for 7 days was treated with concentration-dependent Lovastatin at 1, 2, 5, and 10 μM to confirm the loss of myotubes. Thus, after treatment with XCL1, The result of confirming the MHC which is Myosin Heavy Chain by the conventional western blotting method and the numerical value thereof is shown in FIG. 14. As a control group, the group that was not treated with Lovastatin and XCL1 in the serum-free medium was used.
도 14에 나타낸 바와 같이, XCL1의 세포사멸 억제 효과는 근육아세포 및 근육근관세포에 특이적인 효과를 나타냄을 유추할 수 있다.As shown in Figure 14, the apoptosis inhibitory effect of XCL1 can be inferred to have a specific effect on myoblasts and myotubes.
실시예Example 4:  4: siRNA를siRNA 통한  through XCL1XCL1 합성의 저해가 인간 탯줄  Inhibition of Synthetic Human Umbilical Cord 중간엽Mesenchyme 줄기세포의 세포사멸 억제효과를 상실시킴을 확인 Confirmed that the stem cell loss of cell death inhibition effect
siRNA를 이용해 XCL1 단백질의 합성을 저해하면 인간 탯줄 줄기세포의 세포사멸 억제효과가 상실되는지 확인하기 위하여, 영양분 고갈에 의해 유도된 사멸 근육아세포에 XCL1 단백질의 합성을 저해할 수 있는 siRNA인 XCL1-siRNA1 및 XCL1-siRNA2를 전처리한 인간 탯줄 중간엽 줄기세포를 공동배양하였으며, 근육아세포의 사멸 여부를 상기 실시예와 같은 방법에 의하여 확인하였다. 이때 양성 대조군으로는 무혈청 배지에서 배양한 C2C12세포와 인간 탯줄 줄기세포를 공동배양한 군을, 음성 대조군으로는 XCL1 단백질의 합성을 저해하지 않는 control siRNA(CTRL-siRNA)를 인간 탯줄 중간엽 줄기세포에 처리하고 무혈청 배지에서 키운 C2C12 세포와 공동배양한 군을 사용하였으며, 그 결과를 도 15 및 도 16에 나타내었다.XCL1-siRNA1, an siRNA that can inhibit the synthesis of XCL1 protein in apoptotic myoblasts induced by nutrient depletion, was confirmed to inhibit the synthesis of XCL1 protein by siRNA. And co-cultured human umbilical cord mesenchymal stem cells pretreated with XCL1-siRNA2, and confirmed the death of myoblasts by the same method as in Example. At this time, the positive control group was co-cultured with C2C12 cells and human umbilical cord stem cells cultured in serum-free medium, and the negative control group with control siRNA (CTRL-siRNA) that did not inhibit the synthesis of XCL1 protein. Cells treated with and co-cultured with C2C12 cells grown in serum-free medium were used, and the results are shown in FIGS. 15 and 16.
도 15 및 도 16에 나타낸 바와 같이, XCL1-siRNA1 및 XCL1-siRNA2를 처리한 경우, 인간 탯줄 중간엽 줄기세포의 근육아세포 사멸 억제 효과가 상실된 것을 확인하였다. 따라서, 인간 탯줄 중간엽 줄기세포가 세포사멸 억제효과를 갖도록 하는 유효성분은 XCL1 단백질임을 확실히 하였다. As shown in Figure 15 and Figure 16, when treated with XCL1-siRNA1 and XCL1-siRNA2, it was confirmed that the myoblast killing effect of human umbilical cord mesenchymal stem cells is lost. Therefore, it was confirmed that the active ingredient for inhibiting apoptosis of human umbilical cord mesenchymal stem cells is XCL1 protein.
실시예Example 5: 인간  5: human XCL1XCL1 발현  Expression 제브라피쉬Zebrafish 모델 제조 및 인간  Model manufacture and human XCL1XCL1 단백질이 도입된 후 3일 지난 제브라피쉬의 발생 정도 관찰 Observe the development of zebrafish three days after the protein was introduced.
5.15.1 제브라피쉬의 사육 및 발생배의 준비Breeding of zebrafish and preparation of embryos
야생형(wild type) 제브라피쉬들을 조건[온도: 28-28.5℃, 명암: 오전 9시에서 오후 8시까지 점등 그 외 시간 소등, 먹이: 브라인 슈림프(brine shrimp)]하에서 사육하였다. 발생배는 교미를 시키기 전날 제브라피쉬 암컷과 수컷을 각각 칸막이로 나눠둔 뒤 다음 날 아침에 밝게 해주면서 암컷과 수컷 사이의 칸막이를 없애 교미를 시켰다. 교미를 통해 얻은 제브라피쉬의 알을 아가 젤(agar gel)로 만든 틀에 옮겼다.Wild type zebrafish were bred under conditions (temperature: 28-28.5 ° C., contrast: lighted from 9 am to 8 pm, other times off, food: brine shrimp). The embryos were divided into two partitions each day by zebrafish before mating, and then brightened the next morning to remove mating between females and males. The zebrafish eggs obtained through the mating were transferred to a mold made of agar gel.
5.2 인간 5.2 Human XCL1XCL1 발현  Expression 제브라피쉬Zebrafish 모델 제조 및 인간  Model manufacture and human XCL1XCL1 단백질이 도입된 후 3일 지난 제브라피쉬의 발생 정도 관찰 Observe the development of zebrafish three days after the protein was introduced.
인간 XCL1 발현 제브라피쉬 모델을 제조하기 위해서 재조합 XCL1 단백질을 제브라피쉬가 수정된지 12시간 후에 미세 주입하였다. 도 17에 나타낸 바와 같이 제브라피쉬를 아가로스 젤로 만든 틀에 옮겨 단백질을 미세주입기 (micromanipulator, World Precision Instruments Inc., Sarasota, FL, USA)에 장착된 마이크로피펫으로 미세주입 하였다.To prepare a human XCL1 expressing zebrafish model, recombinant XCL1 protein was microinjected 12 hours after zebrafish fertilization. As shown in FIG. 17, zebrafish was transferred to a mold made of agarose gel, and the protein was microinjected with a micropipette mounted in a micromanipulator (World Precision Instruments Inc., Sarasota, FL, USA).
상기와 같이 제조한 제브라피쉬 모델의 표현형 (phenotype)을 태어난지 3일 후에 관찰하였고 그 결과를 도 18에 나타내었다. The phenotype of the zebrafish model prepared as above was observed 3 days after birth and the results are shown in FIG. 18.
도 18에 나타낸 바와 같이, XCL1 단백질을 미세주입하지 않은 대조군과 비교하였을 때, 인간 XCL1 단백질이 도입된 제브라피쉬의 경우 전반적으로 별다른 이상 없이 정상적으로 발생함을 확인하였다. As shown in FIG. 18, when comparing the XCL1 protein with the micro-injected control group, it was confirmed that the zebrafish to which the human XCL1 protein was introduced generally occurred normally without any abnormality.
실시예 6: 인간 XCL1이 도입된 제브라피쉬의 원위근육계 조사Example 6: Distal Muscle Examination of Zebrafish with Human XCL1
인간 XCL1 단백질의 도입이 제브라피쉬에 어떠한 영향을 미치는지 확인하기 위해서 근육질환 증상을 모사하는 제브라피쉬에 인간 XCL1 단백질을 주입 한 후, 제브라피쉬를 관찰하고 그 결과를 도 19에 나타내었다.In order to confirm how the introduction of human XCL1 protein affects zebrafish, after injecting human XCL1 protein into zebrafish simulating muscle disease symptoms, zebrafish was observed and the results are shown in FIG. 19.
도 19에 나타낸 바와 같이 제브라피쉬의 전체적인 움직임 정도 및 발생정도가 완화됨을 관찰하였다. As shown in FIG. 19, it was observed that the overall degree of movement and occurrence of zebrafish were alleviated.
또한, 제브라피쉬의 배아를 이용해 근육세포의 발생정도를 확인하기 위해 이를 확인할 수 있는 라미닌(Laminin)과 MHC을 마커로 결정하고 형광 염색을 실시하였다. 이 후 근육세포의 활성화 정도를 관찰하기 위해 도 20과 같이 몸통의 특정 지역을 선정하였고, 공초점현미경(confocal microscope)을 통해 근육세포를 관찰하였다. 그 결과를 도 21에 나타내었다. 추가적으로, 제브라피쉬의 배아에 XCL1 단백질을 0, 30, 50μg/mL로 처리한 후 정상 배아와 비정상 배아를 관찰하여 수치화한 결과를 도 22에 나타내었다.In addition, in order to confirm the development of muscle cells using zebrafish embryos, laminin and MHC were identified as markers and fluorescent staining was performed. Thereafter, to observe the degree of activation of muscle cells, specific regions of the body were selected as shown in FIG. 20, and muscle cells were observed through a confocal microscope. The results are shown in FIG. In addition, zebrafish embryos were treated with 0, 30, 50 μg / mL of XCL1 protein, and normal and abnormal embryos were observed and quantified.
도 21 및 도 22에 나타낸 바와 같이, XCL1 단백질을 주사하지 않은 근육질환 모델의 제브라피쉬는 두 마커 모두 비정상적인 발현을 보인 반면, 인간 XCL1 단백질이 도입된 제브라피쉬의 경우 두 마커 모두 정상적으로 발현됨을 관찰하였다. 또한 제브라피쉬의 근육 질환이 처리한 XCL1 단백질에 대해 농도 의존적으로 정상화됨을 확인하였다.As shown in FIGS. 21 and 22, the zebrafish of the muscle disease model without the XCL1 protein injection showed abnormal expression of both markers, whereas the zebrafish to which the human XCL1 protein was introduced was normally expressed in both markers. . In addition, it was confirmed that the muscle disease of zebrafish normalized concentration-dependently on the treated XCL1 protein.
따라서, XCL1의 근육질환 예방 또는 치료 효능을 제브라피쉬 모델에서 확인함으로써 XCL1이 in vivo에서 작동 가능함을 확인하였다. 또한 제브라피쉬를 근육 질환 모델로 유용하게 활용할 수 있으며 XCL1 단백질과 같은 근육 질환의 예방 또는 치료제의 스크리닝에 유용할 것으로 확인하였다.Therefore, by confirming the efficacy of XCL1 in preventing or treating muscle diseases in the zebrafish model, it was confirmed that XCL1 could be operated in vivo . In addition, zebrafish can be usefully used as a model for muscle diseases, and it was confirmed that it would be useful for screening for the prevention or treatment of muscle diseases such as XCL1 protein.
비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described as the preferred embodiment mentioned above, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. The appended claims also cover such modifications and variations as fall within the spirit of the invention.
제제예 - 의약품의 제조Formulation Example-Preparation of Pharmaceuticals
산제의 제조Manufacture of powder
중간엽 줄기세포 5x108 세포 또는 XCL1 100mgMesenchymal stem cells 5x10 8 cells or XCL1 100 mg
유당 100㎎Lactose 100mg
탈 10㎎10 mg
상기의 성분들을 혼합하고 기밀포에 충진하여 산제를 제조한다.The above ingredients are mixed and filled in an airtight cloth to prepare a powder.
주사제의 제조Preparation of Injectables
중간엽 줄기세포 5x108 세포 또는 XCL1 100mgMesenchymal stem cells 5x10 8 cells or XCL1 100 mg
주사용 멸균 증류수 적량Appropriate sterile distilled water for injection
조절제 적량Moderator
통상의 주사제의 제조방법에 따라 1 앰플당(2㎖) 상기의 성분 함량으로 제조한다.According to the conventional method for preparing an injection, the amount of the above ingredient is prepared per ampoule (2 ml).
액제의 제조Preparation of liquid
중간엽 줄기세포 5x108 세포 또는 XCL1 100mgMesenchymal stem cells 5x10 8 cells or XCL1 100 mg
설탕 20g20 g of sugar
이성화당 20g20 g of isomerized sugar
레몬향 적량Lemon flavor
정제수를 가하여 전체 100㎖로 맞추었다. 통상의 액제의 제조방법에 따라 상기의 성분을 혼합한 다음, 갈색병에 충전하고 멸균시켜 액제를 제조한다.Purified water was added to adjust the total volume to 100 ml. According to the conventional method for preparing a liquid, the above components are mixed, and then filled into a brown bottle and sterilized to prepare a liquid.

Claims (19)

  1. 중간엽 줄기세포를 포함하는 근육질환의 예방 또는 치료용 약학적 조성물.Pharmaceutical composition for the prevention or treatment of muscle diseases, including mesenchymal stem cells.
  2. 제1항에 있어서, 상기 중간엽 줄기세포는 XCL1(chemokine(C motif) ligand 1)을 포함하는, 근육질환의 예방 또는 치료용 약학적 조성물.The pharmaceutical composition of claim 1, wherein the mesenchymal stem cells comprise XCL1 (chemokine (C motif) ligand 1).
  3. 제1항에 있어서, 상기 중간엽 줄기세포는 인간 탯줄 유래인 것을 특징으로 하는, 근육질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the mesenchymal stem cells, characterized in that derived from human umbilical cord, pharmaceutical composition for the prevention or treatment of muscle diseases.
  4. 제1항에 있어서, 상기 근육질환은 근육세포 또는 근육아세포 사멸에 의해 발생하는 것인, 근육질환의 예방 또는 치료용 약학적 조성물.According to claim 1, wherein the muscle disease is caused by the death of muscle cells or myoblasts, pharmaceutical composition for the prevention or treatment of muscle diseases.
  5. 제1항에 있어서, 상기 근육질환은 염좌(sprain), 좌상(strain), 경련, 건염, 근육암, 근염(myositis), 횡문근융해증, 근위축증(muscular atrophy), 긴장감퇴증(atony), 근이영양증(muscular dystrophy), 근육 퇴화증, 근무력증(myasthenia), 디스트로핀병증(dystrophinopathy), 근육병증(myopathy) 및 근감소증(sacopenia)으로 이루어진 군에서 선택된 1종 이상인, 근육질환의 예방 또는 치료용 약학적 조성물.The method of claim 1, wherein the muscle disease is sprain, strain, spasms, tendonitis, muscle cancer, myositis, rhabdomyolysis, muscular atrophy, atony, muscular dystrophy A pharmaceutical composition for the prophylaxis or treatment of muscle diseases, which is at least one member selected from the group consisting of muscular dystrophy, muscular degeneration, myasthenia, dystrophinopathy, myopathy and sacopenia.
  6. XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체를 유효성분으로 포함하는, 근육질환의 예방 또는 치료용 약학적 조성물.XCL1 (chemokine (C motif) ligand 1) or a derivative thereof comprising as an active ingredient, a pharmaceutical composition for preventing or treating muscle diseases.
  7. 중간엽 줄기세포를 포함하는 근육질환 치료용 줄기세포 치료제.Stem cell therapy for treating muscular diseases, including mesenchymal stem cells.
  8. 제7항에 있어서, 상기 중간엽 줄기세포는 XCL1(chemokine(C motif) ligand 1)을 포함하는 것을 특징으로 하는, 근육질환 치료용 줄기세포 치료제.According to claim 7, wherein the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand, characterized in that the ligand 1), characterized in that for treating stem disease therapeutic muscle cells.
  9. XCL1(chemokine(C motif) ligand 1) 단백질 또는 이의 유도체를 포함하는 세포사멸 저해제(apoptosis inhibitor).Apoptosis inhibitor including XCL1 (chemokine (C motif) ligand 1) protein or derivatives thereof.
  10. 제9항에 있어서, 상기 세포는 근육세포 또는 근육아세포인, 세포사멸 저해제(apoptosis inhibitor).10. The apoptosis inhibitor of claim 9, wherein the cells are myocytes or myoblasts.
  11. 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법:Screening method for the treatment of muscle diseases comprising the following steps:
    (a) XCL1을 발현하는 세포에 분석하고자 하는 시험물질을 접촉시키는 단계;(a) contacting a test substance to be analyzed with a cell expressing XCL1;
    (b) 상기 시험물질이 상기 XCL1의 발현에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 발현을 증가시키는 경우, 상기 시험물질은 근육질환의 예방 또는 치료제로 판정된다. (b) analyzing the effect of the test substance on the expression of the XCL1, and when the test substance increases the expression of the XCL1, the test substance is determined as a prophylactic or therapeutic agent for muscle diseases.
  12. 다음 단계를 포함하는 근육질환 치료제의 스크리닝 방법:Screening method for the treatment of muscle diseases comprising the following steps:
    (a) XCL1에 시험물질을 접촉시키는 단계; (a) contacting the test substance with XCL1;
    (b) 상기 시험물질이 상기 XCL1의 활성에 미치는 영향을 분석하는 단계로서, 상기 시험물질이 상기 XCL1의 활성을 증가시키면 근육질환의 예방 또는 치료제로 판정된다.(b) analyzing the effect of the test substance on the activity of the XCL1, when the test substance increases the activity of the XCL1 is determined as a prophylactic or therapeutic agent of muscle diseases.
  13. 제11항 또는 제12항에 있어서, 상기 시험물질은 화학물질, 단백질, 펩타이드, 및 천연 추출물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법. The method of claim 11 or 12, wherein the test substance is selected from the group consisting of chemicals, proteins, peptides, and natural extracts.
  14. XCL1 단백질 또는 XCL1을 코딩하는 뉴클레오타이드 서열을 포함하는 유전자 담체가 도입된 제브라피쉬(zebrafish).A zebrafish into which a gene carrier comprising an XCL1 protein or a nucleotide sequence encoding XCL1 is introduced.
  15. 다음의 단계를 포함하는 근육질환 예방 또는 치료를 위한, XCL1 병용투여용 후보물질의 스크리닝 방법:A method for screening a candidate drug for concomitant use of XCL1 for the prevention or treatment of muscle disease, comprising the following steps:
    (a) 제14항의 제브라피쉬에 XCL1 병용투여용 후보물질을 처리하는 단계; 및(a) treating the zebrafish of claim 14 with an XCL1 co-administration candidate; And
    (b) 상기 제브라피쉬 근육세포의 발생정도를 관찰하는 단계.(b) monitoring the development of the zebrafish muscle cells.
  16. 중간엽 줄기세포, XCL1(chemokine(C motif) ligand 1) 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 근육질환의 예방 또는 치료 방법. Treating the mesenchymal stem cells, XCL1 (chemokine (C motif) ligand 1) or derivatives thereof with the subject; Prevention or treatment method of muscle disease comprising a.
  17. 제 16항에 있어서, 상기 근육질환은 염좌(sprain), 좌상(strain), 경련, 건염, 근육암, 근염(myositis), 횡문근융해증, 근위축증(muscular atrophy), 긴장감퇴증(atony), 근이영양증(muscular dystrophy), 근육 퇴화증, 근무력증(myasthenia), 디스트로핀병증(dystrophinopathy), 근육병증(myopathy) 및 근감소증(sacopenia)으로 이루어진 군에서 선택된 1종 이상인 근육질환의 예방 또는 치료 방법. The method of claim 16, wherein the muscle disease is sprain, strain, spasms, tendonitis, muscle cancer, myositis, rhabdomyolysis, muscle atrophy, atony, muscular dystrophy A method for the prevention or treatment of muscular diseases, which are at least one member selected from the group consisting of muscular dystrophy, muscular degeneration, myasthenia, dystrophinopathy, myopathy and sacopenia.
  18. XCL1(chemokine(C motif) ligand 1) 단백질 또는 이의 유도체를 개체에 처리하는 단계; 를 포함하는 세포사멸 저해방법. Treating the subject with an XCL1 (chemokine (C motif) ligand 1) protein or derivative thereof; Apoptosis inhibition method comprising a.
  19. 제18항에 있어서, 상기 세포는 근육세포 또는 근육아세포인, 세포사멸 저해방법. The method of claim 18, wherein the cells are myocytes or myoblasts.
PCT/KR2017/001807 2016-02-19 2017-02-17 Pharmaceutical composition for prevention or treatment of muscle disease, comprising mesenchymal stem cell or xcl1 WO2017142367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0019927 2016-02-19
KR1020160019927A KR101833971B1 (en) 2016-02-19 2016-02-19 Pharmaceutical composition for prevention or treatment of muscular disease containing mesenchymal stem cells or XCL1

Publications (1)

Publication Number Publication Date
WO2017142367A1 true WO2017142367A1 (en) 2017-08-24

Family

ID=59625280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001807 WO2017142367A1 (en) 2016-02-19 2017-02-17 Pharmaceutical composition for prevention or treatment of muscle disease, comprising mesenchymal stem cell or xcl1

Country Status (2)

Country Link
KR (1) KR101833971B1 (en)
WO (1) WO2017142367A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10993967B2 (en) 2018-10-17 2021-05-04 Senti Biosciences, Inc. Combinatorial cancer immunotherapy
CN113491255A (en) * 2021-06-16 2021-10-12 温州大学 Construction method and application of obese type II diabetic zebra fish model
US11419898B2 (en) 2018-10-17 2022-08-23 Senti Biosciences, Inc. Combinatorial cancer immunotherapy
US11446332B2 (en) 2017-04-13 2022-09-20 Senti Biosciences, Inc. Combinatorial cancer immunotherapy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330458B1 (en) 2020-01-03 2021-11-24 한국과학기술원 Apoptosis-inducing polypeptide via simultaneous mitochondrial membrane disruption and calcium delivery
KR20220014196A (en) * 2020-07-28 2022-02-04 이엔셀 주식회사 Pharmaceutical composition for prevention or treatment of muscular disease containing mesenchymal stem cell
KR20220055921A (en) * 2020-10-27 2022-05-04 서울대학교산학협력단 Pharmaceutical composition for preventing or treating tendor or ligament diseases comprising Umbilical Cord Derived-Stem Cells
WO2022103128A1 (en) * 2020-11-13 2022-05-19 사회복지법인 삼성생명공익재단 COMPOSITION FOR PREVENTING OR TREATING MUSCLE DISEASES, CONTAINING STEM CELLS IN WHICH GRO-α IS EXPRESSED OR GRO-α
KR102580518B1 (en) * 2020-12-07 2023-09-21 사회복지법인 삼성생명공익재단 Method for selecting mesenchymal stem cell with improved self-maintenance and mesenchymal stem cells selected by thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113087A (en) * 2006-05-24 2007-11-28 코아스템(주) Methods and compostions for treating motor neuron diseases comprising mesenchymal stem cells
KR20100007241A (en) * 2008-07-11 2010-01-22 서울대학교산학협력단 A transgenic zebrafish for mass production of human lactoferrin and a process of producing human lactoferrin using the same
US20100310562A1 (en) * 2007-11-20 2010-12-09 Bundesrepublik Deutschland letztvertreten durch das Robert Koch-Institut vertreten durch seinen System for delivery into xcr1 positive cell and uses thereof
KR20140070794A (en) * 2012-11-27 2014-06-11 차의과학대학교 산학협력단 Compositions for Improving or Treating Muscle Atrophy Diseases Comprising Stem Cells Derived from Umbilical Cord
KR20150015076A (en) * 2013-07-31 2015-02-10 한국생명공학연구원 Composition for inducing myogenic differentiation comprising MyoD protein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113087A (en) * 2006-05-24 2007-11-28 코아스템(주) Methods and compostions for treating motor neuron diseases comprising mesenchymal stem cells
US20100310562A1 (en) * 2007-11-20 2010-12-09 Bundesrepublik Deutschland letztvertreten durch das Robert Koch-Institut vertreten durch seinen System for delivery into xcr1 positive cell and uses thereof
KR20100007241A (en) * 2008-07-11 2010-01-22 서울대학교산학협력단 A transgenic zebrafish for mass production of human lactoferrin and a process of producing human lactoferrin using the same
KR20140070794A (en) * 2012-11-27 2014-06-11 차의과학대학교 산학협력단 Compositions for Improving or Treating Muscle Atrophy Diseases Comprising Stem Cells Derived from Umbilical Cord
KR20150015076A (en) * 2013-07-31 2015-02-10 한국생명공학연구원 Composition for inducing myogenic differentiation comprising MyoD protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWON, S.: "Anti-apoptotic Effects of Human Wharton's Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1", MOL. THER., vol. 24, no. 9, 19 July 2016 (2016-07-19), pages 1550 - 1560, XP055601423 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446332B2 (en) 2017-04-13 2022-09-20 Senti Biosciences, Inc. Combinatorial cancer immunotherapy
US10993967B2 (en) 2018-10-17 2021-05-04 Senti Biosciences, Inc. Combinatorial cancer immunotherapy
US11419898B2 (en) 2018-10-17 2022-08-23 Senti Biosciences, Inc. Combinatorial cancer immunotherapy
CN113491255A (en) * 2021-06-16 2021-10-12 温州大学 Construction method and application of obese type II diabetic zebra fish model
CN113491255B (en) * 2021-06-16 2022-07-15 温州大学 Construction method and application of obese type II diabetic zebra fish model

Also Published As

Publication number Publication date
KR20170098046A (en) 2017-08-29
KR101833971B1 (en) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2017142367A1 (en) Pharmaceutical composition for prevention or treatment of muscle disease, comprising mesenchymal stem cell or xcl1
Noguchi et al. BETA2/NeuroD protein can be transduced into cells due to an arginine-and lysine-rich sequence
Gellersen et al. Non-genomic progesterone actions in female reproduction
Laborde Invited Reviews-The role of the epidermal growth factor-like protein dlk in cell differentiation
Meise et al. Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica
TWI784394B (en) Anti-inflammatory peptides and composition comprising the same(2)
WO2013169077A1 (en) Composition for preventing or treating cachexia
WO2014046478A1 (en) Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
WO2015156649A1 (en) Peptide having fibrosis inhibitory activity and composition containing same
KR20200085927A (en) Anti-inflammatory Peptides and Composition comprising the same
JP2008521444A (en) MDA-7 protein variant with antiproliferative activity
US20070072238A1 (en) Wnt-frizzled chimera
KR20140099526A (en) Use of cell-permeable peptide inhibitors of the JNK signal transduction pathway for the treatment of dry eye syndrome
Schäffler et al. The human apM-1, an adipocyte-specific gene linked to the family of TNF's and to genes expressed in activated T cells, is mapped to chromosome 1q21. 3-q23, a susceptibility locus identified for familial combined hyperlipidaemia (FCH)
WO2014178653A1 (en) Use of human small leucine zipper protein in adipocyte differentiation procedure
Teichert et al. Definition and characterization of the short αA-conotoxins: a single residue determines dissociation kinetics from the fetal muscle nicotinic acetylcholine receptor
WO2018056706A1 (en) Composition comprising thioredoxin-interacting protein-derived peptide or polynucleotide encoding same as effective ingredient for reverse-ageing of aged stem cell and use thereof
WO2018074682A1 (en) Peptide having anti-obesity and anti-diabetes efficacy and use thereof
WO2021177518A1 (en) Pharmaceutical composition for lowering blood cholesterol, preventing or treating cardiovascular diseases and reducing inflammation
WO2016027990A1 (en) Pharmaceutical composition containing dusp5 as active ingredient for preventing or treating bone metabolic diseases
Zhang et al. CTLA4-FasL fusion product suppresses proliferation of fibroblast-like synoviocytes and progression of adjuvant-induced arthritis in rats
WO2010032976A2 (en) Composition for prevention or treatment of heart failure
WO2019160383A1 (en) Vaccine comprising epitope of heat shock protein, and use thereof
WO2018203613A1 (en) Peptide for toll-like receptor (tlr) inhibition and pharmaceutical composition comprising same
WO2015072750A1 (en) Peptide having anti-inflammatory activity and composition comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753528

Country of ref document: EP

Kind code of ref document: A1