WO2017142288A1 - Sensor package - Google Patents

Sensor package Download PDF

Info

Publication number
WO2017142288A1
WO2017142288A1 PCT/KR2017/001603 KR2017001603W WO2017142288A1 WO 2017142288 A1 WO2017142288 A1 WO 2017142288A1 KR 2017001603 W KR2017001603 W KR 2017001603W WO 2017142288 A1 WO2017142288 A1 WO 2017142288A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor
output value
sensor unit
light
Prior art date
Application number
PCT/KR2017/001603
Other languages
French (fr)
Korean (ko)
Inventor
최용선
김도형
서귀범
전성수
Original Assignee
크루셜텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160055253A external-priority patent/KR101809437B1/en
Application filed by 크루셜텍(주) filed Critical 크루셜텍(주)
Publication of WO2017142288A1 publication Critical patent/WO2017142288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Definitions

  • the present invention relates to a sensor package, and more particularly to a sensor package with improved security.
  • portable electronic devices have been provided with various additional functions that utilize personal information such as mobile banking as well as communication functions such as a telephone or text message transmission service. Accordingly, the need for a locking device for a portable electronic device is more important.
  • a locking device through fingerprint recognition is mounted on a portable electronic device.
  • the fingerprint sensor may be integrated with a physical function key.
  • the fingerprint sensor is a sensor that detects a human finger fingerprint.
  • the fingerprint sensor is configured to undergo user registration or authentication through a fingerprint sensor, thereby protecting data stored in the portable electronic device and preventing security accidents.
  • the fingerprint sensor may be manufactured in the form of a module including peripheral components or structures, and thus may be effectively mounted on various electronic devices.
  • the fingerprint sensor can be converted into a code by using the features of each fingerprint.
  • user authentication using the fingerprint may be generalized.
  • the fingerprint sensor cannot distinguish between fake fingerprints and actual biometric fingerprints.
  • an optical fingerprint sensor module provided in a device having a larger size than a portable electronic device has a relatively weak constraint on the module size, thereby adding a separate component to implement a detection function for counterfeit fingerprint.
  • Korean Patent Publication No. 10-1436786 discloses a fake fingerprint discrimination apparatus using a separate light source.
  • the forgery fingerprint discrimination apparatus of Korean Patent Publication No. 10-1436786 has a problem that is difficult to be applied to small devices such as portable electronic devices.
  • Figure 1 is an exemplary view showing a conventional sensor package
  • Figure 1 (a) is a sensor package before the polishing process
  • Figure 1 (b) is an exemplary view showing a sensor package after the polishing process.
  • the sensor package 10 may include a base substrate 20, a fingerprint sensor 30, a light source module 40, a biometric module 50, and an encapsulation unit 60. have.
  • the sensor package 10 performs user authentication in a state where the fingerprint sensor 30, the light source module 40, and the biometric module 50 are provided on the base substrate 20.
  • the fingerprint sensor 30 for recognizing the user's fingerprint on the base substrate 20 is electrically coupled.
  • the light source module 40 and the biometric module 50 are electrically coupled on the base substrate 20.
  • the light source module 40 and the biometric module 50 detect the biometric information of the user. That is, the sensor package 10 recognizes the user by analyzing the characteristics of the light received by the biometric module 50 through the object, the light irradiated toward the object from the light source module 40.
  • the light source module 40 may include a light source part 41 and a first optical protection part 42.
  • the light source part 41 is made to irradiate light toward the object
  • the first optical protection part 42 is made to protect the light source part 41.
  • the first optical protection part 42 is usually made of an optical epoxy molding compound (EMC) which can smoothly transmit light from the light source part 41 to an object.
  • EMC optical epoxy molding compound
  • the biometric module 50 may include a biometric sensor 51 and a second optical protector 52. At this time, the biometric sensor 51 is made to receive the light irradiated from the light source unit 41 and passed through the object, the second optical protection unit 52 is made to protect the biometric sensor 51.
  • the second optical protection unit 52 may be made of an optical EMC that can transmit light smoothly like the first optical protection unit 42.
  • the encapsulation unit 60 may include the fingerprint sensor 30, the light source module 40, and the like.
  • the biometric module 50 is covered.
  • the encapsulation part 60 is made to be shielded from light unlike the first optical protection part 42 and the second optical protection part 52. That is, the encapsulation unit 60 is configured to prevent light from being transmitted to the fingerprint sensor 30. Therefore, the encapsulation unit 60 prevents malfunction of the fingerprint sensor 30 due to the generation of photoelectrons due to external light.
  • the encapsulation part 60 may be made of a black semiconductor EMC.
  • a sensing process of adjusting the sensing clearance between the fingerprint sensor 30 and the user's finger through a polishing process is controlled.
  • the encapsulation part 60, the first optical protection part 42, and the second optical protection part 52 are removed together so that the top surface of the sensor package 10 is flat during the polishing process.
  • the first optical protection part 42 and the second optical protection part 52 having the same physical properties will be described in brief terms of the optical protection part.
  • a step is generated between the encapsulation unit 60 and the optical protection units 42 and 52 in the sensor package 10 after the polishing process is performed.
  • Such a step between the encapsulation part 60 and the optical protection parts 42 and 52 has a problem that the same step is generated on the upper surface of the coating layer even when a coating layer is further formed on the top. As a result, appearance defects occur in the sensor package 10.
  • Figure 2 is an exemplary view showing another conventional sensor package.
  • FIG. 2 illustrates the first optical protection part 42 and the removal of the encapsulation part 60, the first optical protection part 42 and the second optical protection part 52 together in the polishing process, unlike in FIG. 1. Only the sealing part 60 was removed in the range which the 2nd optical protection part 52 is not exposed.
  • the sensor package 10 using a single encapsulation unit 60 in a state in which the fingerprint sensor 30, the light source unit 41 and the biometric sensor 51 is mounted on the base substrate 20.
  • the encapsulation unit 60 is a semiconductor EMC
  • the encapsulation unit 60 is an optical EMC.
  • the direct light is transmitted between the light source unit 41 and the biometric sensor 51, so that it is difficult to accurately measure the biometrics, and there is a high possibility of malfunction of the fingerprint sensor 30.
  • the controller (not shown) provided in the conventional sensor package 10 is configured to control the light source module 40 and the biometric module 50 together. That is, the controller simultaneously controls the light source module 40 and the biometric module 50 to analyze the biometric information of the user.
  • the controller needs to control the light source module 40 and the biometric module 50 at the same time, so that the controller may be overloaded.
  • the processing speed of the control unit becomes slow, and the time taken for the sensor package 10 to authenticate a user becomes long.
  • control unit provided in the conventional sensor package 10 to be mounted on the sensor package 10 in a state in which the correction value is set according to the material and color of the cover (not shown) provided on the upper surface of the encapsulation unit 60. do.
  • the controller since the light output value received from the light source module 40 to the biometric module 50 through the user varies depending on the material and color of the cover part, the controller is in a state where the correction value is adjusted according to the material and color of the cover part. It is mounted to the sensor package 10.
  • the conventional sensor package 10 when the material and color of the cover part are determined, only the controller in which the correction value is set accordingly is mounted on the sensor package 10. Accordingly, the conventional sensor package 10 has a problem in that the manufacturing process is complicated and the manufacturing time is long.
  • the technical problem of the present invention for solving the above problems is to provide a sensor package with improved security.
  • an embodiment of the present invention is a base substrate; A first sensor unit provided on the base substrate to detect a fingerprint; A light source unit provided on the base substrate and irradiating light to an object; A second sensor unit provided on the base substrate and configured to receive light emitted from the light source unit to pass through the object to obtain a light output value, and to measure a light characteristic from the obtained light output value; An encapsulation part covering the first sensor part, the light source part, and the second sensor part; A cover part provided on an upper surface of the encapsulation part; And a controller configured to receive an optical output value from the second sensor unit, wherein when the user registers a fingerprint, the controller performs registration setting for automatically adjusting the optical output value acquired by the second sensor unit to a target optical output value. Provide the package.
  • the registration setting of the controller may adjust the light amount of the light source unit or adjust the light output value received by the second sensor unit.
  • the registration setting of the control unit may automatically adjust the light output value received by the second sensor unit to a target light output value even if the material and color of the cover unit are different.
  • the controller when registering a fingerprint of the user, may register the authentication range of the light output value based on the target light output value.
  • the control unit may recognize as a fake fingerprint if the light output value obtained by the second sensor unit does not fall within the authentication range of the pre-registered light output value.
  • the controller may apply the same registered settings when registering the fingerprint of the user.
  • the second sensor unit may control the light source unit by the operation of the control unit.
  • control unit may control the second sensor unit and the light source unit together.
  • the first sensor unit is provided between the light source unit and the second sensor unit, the upper surface of the first sensor unit, the light source unit and the second sensor unit may have the same height.
  • control unit forgery of the fingerprint measured by comparing the fingerprint information measured by the first sensor unit and the optical characteristics measured by the second sensor unit with the registered fingerprint information and optical characteristics. Can be identified.
  • the optical properties may be one or more of pulse wave, heart rate, electrocardiogram, electrocardiogram, oxygen saturation, light quantity, color temperature, wavelength and polarization components.
  • the encapsulation portion may be adjusted the light transmittance to prevent the light is directly transmitted from the light source unit to the second sensor unit.
  • the composition of the encapsulation portion, epoxy resin 3 ⁇ 13 wt%, curing agent 3 ⁇ 7 wt%, curing catalyst 0.1 ⁇ 0.3 wt%, colorant 0.06 ⁇ 0.08 wt% and the rest includes a filler
  • the filler may be made of silica, and the colorant may be made of carbon black.
  • the second sensor unit may divide the received light output value by a predetermined value and then transmit the divided light output value to the controller.
  • the second sensor unit is provided with a processing unit, and the processing unit adds the light output values measured a predetermined number of times within a predetermined time, and then transmits the summed light output values to the control unit. Can be.
  • the control unit upon fingerprint registration of the user, is configured to register automatically for adjusting the obtained light output value to the target light output value. That is, the controller automatically adjusts the light output value acquired by the second sensor unit through the auto gain to the target light output value when registering the fingerprint of the user regardless of the material and the color of the cover unit.
  • the control unit may be automatically adjusted to obtain the same target light output value.
  • the sensor package having a different specification can be forged fingerprint identification under the same conditions.
  • the second sensor unit controls the operation of the light source unit only when measuring the optical characteristics of the object.
  • power consumption of the light source portion can be minimized.
  • the load generated in the controller may be reduced since only the second sensor unit may be controlled without controlling the second sensor unit and the light source unit at the same time. As such, the load generated on the controller is lowered, so that the processing speed of the controller is improved and the user authentication time can be reduced.
  • the optical characteristic is made of one or more of pulse wave, heart rate (blood flow), electrocardiogram, electrocardiogram, oxygen saturation, quantity of light, color temperature, wavelength, and polarization component, enhanced security function can be implemented.
  • the sensor package is made to cover only a single encapsulation portion whose light transmittance is adjusted in a state in which the first sensor portion, the light source portion, and the second sensor portion are electrically connected on the base substrate.
  • the top surface of the sensor package in the polishing process can be manufactured flat without a step.
  • the encapsulation portion provided in the sensor package prevents light from being directly transmitted from the light source portion to the second sensor portion through adjustment of the light transmittance, and at the same time, malfunction of the first sensor portion occurs due to noise generated by photoelectrons. Will be prevented. Therefore, the sensor package can effectively measure fingerprint information and optical characteristic information.
  • the sensor package does not need to include the conventional optical EMC and the semiconductor EMC, the structure of the sensor package is simple, and the manufacturing process is easy.
  • the sensor package can measure the optical characteristic along with the fingerprint information of the object, and compare the measured fingerprint information and the optical characteristic with the registered fingerprint information and the optical characteristic, a fake fingerprint can be identified. Can be improved.
  • 1 is an exemplary view showing a conventional sensor package.
  • Figure 2 is an exemplary view showing another conventional sensor package.
  • FIG. 3 is a state diagram used in the sensor package according to an embodiment of the present invention.
  • FIG 4 is an exemplary view of a sensor package according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process in which a control unit receives an optical output value according to an embodiment of the present invention.
  • FIG. 6 is an exemplary view illustrating an operating state of a light source unit and a second sensor unit according to an embodiment of the present invention.
  • FIG. 7 is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to an embodiment of the present invention.
  • FIG. 3 is a state diagram of use of a sensor package according to an embodiment of the present invention
  • FIG. 4 is an exemplary view of a sensor package according to an embodiment of the present invention.
  • the sensor package 1000 may include a base substrate 100, a first sensor unit 200, a light source unit 300, a second sensor unit 400, and an encapsulation unit 500. Can be.
  • the sensor package 1000 may be provided in an electronic device such as a mobile phone, a smart phone, a PDA, a tablet PC, a notebook computer, and a portable sound player (MP3 player).
  • the sensor package 1000 is configured to measure biometric information.
  • the base substrate 100 may be a substrate through which electrical signal information is transmitted to the first sensor unit 200, the light source unit 300, the second sensor unit 400, and the like.
  • the base substrate 100 may be, for example, a printed circuit board (PCB) or a flexible printed circuit board (FPCB).
  • the first sensor unit 200 may be provided on the base substrate 100.
  • the first sensor unit 200 may detect biometric information, for example, fingerprint information.
  • the first sensor unit 200 may have a sensing pixel, and the sensing pixel may be formed in various forms.
  • the sensing pixel may have a sensing area arranged in an array form.
  • the first sensor unit 200 detects fingerprint information
  • various methods such as a capacitive type, an optical type, an ultrasonic type, a heat sensing type, and a non-contact type, may be applied.
  • the first sensor may be used for convenience of description.
  • the unit 200 will be described as capacitive.
  • the capacitive first sensor unit 200 may form a capacitance with the object P (finger).
  • each sensing pixel of the first sensor unit 200 may form capacitance in relation to a user's finger.
  • the first sensor unit 200 may find a difference in capacitance according to the fingerprint of the user's finger on the corresponding pixel.
  • the first sensor unit 200 may detect a change in capacitance according to whether a user's finger approaches or moves, and may detect a fingerprint of a user's finger contacted or closely spaced.
  • the first sensor unit 200 may be a biometric track pad (BTP) having a fingerprint sensing function and a pointer manipulation function for detecting a fingerprint.
  • the first sensor unit 200 may have a pointer manipulation function of detecting whether the user's finger approaches or input information or capacitance according to the movement, and moves a pointer such as a cursor based on the movement.
  • the first sensor unit 200 and the base substrate 100 may be electrically connected by a bonding wire (not shown).
  • the bonding wire may electrically connect the electrode of the first sensor unit 200 and the electrode of the base substrate 100.
  • Such a bonding wire may be covered by the encapsulation part 500.
  • the first sensor unit 200 that senses the fingerprint of the object P may transmit a driving signal toward the user's finger by the electrical connection configuration by the bonding wire, and in response to the driving signal sent by the user's finger Fingerprint information may be received.
  • the bonding wire may be a gold wire, but is not limited thereto.
  • the first sensor unit 200 may be formed in various types such as a wafer level package (WLP), a chip on board (COB), a quad flat package (QFP), and a ball grid array (BGA).
  • WLP wafer level package
  • COB chip on board
  • QFP quad flat package
  • BGA ball grid array
  • the first sensor unit 200 may not be electrically connected to the base substrate 100 by a bonding wire, but may be attached to the upper portion of the base substrate 100 by surface mounting technology (SMT).
  • SMT surface mounting technology
  • the first sensor unit 200 may be electrically connected to the base substrate 100 through various methods, such as by attaching through an anisotropic conductive film bonding (ACF) bonding.
  • ACF anisotropic conductive film bonding
  • the light source 300 is provided on the base substrate 100, it is made to irradiate light toward the object (P).
  • the light source unit 300 may irradiate various lights.
  • the light source unit 300 may be configured to irradiate any one of infrared ray (IR) light, very high frequency (VHF) light, and radio frequency (RF) light.
  • IR infrared ray
  • VHF very high frequency
  • RF radio frequency
  • the light source unit 300 will be described with reference to an IR light source capable of irradiating IR light.
  • the light source unit 300 is installed upward to irradiate IR light toward the object P.
  • the light source unit 300 may be electrically coupled to the base substrate 100 through a bonding wire like the first sensor unit 200, or may be attached through various methods such as surface mount technology or ACF bonding.
  • the second sensor unit 400 is provided on the base substrate 100.
  • the second sensor unit 400 may include a photodiode, which is an optical sensor that converts light energy into electrical energy, and the second sensor unit 400 is irradiated from the light source unit 300 to be the object P. After passing through the light, the optical properties are measured from the received light.
  • the optical characteristics may include at least one of a pulse wave (PPG: Photo PlethysmoGraph), a heart rate (HR), an electrocardiogram, an electrocardiogram, an oxygen saturation, an amount of light, a color temperature, a wavelength, and a polarization component.
  • PPG PulplethysmoGraph
  • HR heart rate
  • electrocardiogram electrocardiogram
  • oxygen saturation an amount of light
  • color temperature a color temperature
  • wavelength a polarization component
  • polarization component polarization component
  • the second sensor unit 400 may include a sensor (for example, PPG sensor) capable of measuring pulse wave from the received light and a sensor (for example, HR sensor) capable of measuring heart rate (blood flow). It may be provided together.
  • the second sensor unit 400 is irradiated from the light source unit 300 and passes through the object P to receive pulse waves, heartbeats, electrocardiograms, electrocardiograms, oxygen saturation, amount of light, color temperature, wavelength, polarization components, and the like. It will measure the various optical properties of.
  • the second sensor unit 400 when the second sensor unit 400 includes a sensor capable of measuring pulse waves or a sensor capable of measuring heart rate (blood flow), the second sensor unit 400 is irradiated from the light source unit 300 to the object. After passing through (P), the received light can be used to measure pulse wave or heart rate (blood flow). That is, the second sensor unit 400 may measure pulse wave or heartbeat (blood flow) by converting the received light after being irradiated from the light source unit 300 and passing through the object P into a pulse signal.
  • the amplitude of the pulse signal converted from the second sensor unit 400 may be selectively amplified according to the user's requirements. This is to more accurately measure the pulse wave or heart rate (blood flow) of the object P through amplitude amplification of the pulse signal.
  • FIG. 5 is a flowchart illustrating a process of receiving a light output value by a control unit according to an embodiment of the present invention
  • FIG. 6 is an exemplary view showing an operating state of a light source unit and a second sensor unit according to an embodiment of the present invention.
  • the second sensor unit 400 is configured to control the light source unit 300. That is, when the second sensor unit 400 measures the optical characteristics of the object P, the second sensor unit 400 controls the operation of the light source unit 300. As such, since the light source unit 300 is operated only when measuring the optical characteristics by the second sensor unit 400, power consumption of the light source unit 300 may be minimized.
  • the control unit 700 transmits an operation command for the optical characteristic request to the second sensor unit 400
  • the second sensor unit 400 according to the operation command received from the control unit 700
  • the light source unit 300 It will control the operation of. That is, the light source unit 300 emits light according to the operation command of the second sensor unit 400. At this time, the light source unit 300 emits light at predetermined time intervals.
  • the light source unit 300 irradiates light primarily toward the object P and is turned off.
  • the second sensor unit 400 is irradiated from the light source unit 300 to receive the light passing through the object (P).
  • the second sensor unit 400 converts the received light into a digital signal. That is, the second sensor unit 400 converts the light received by the second sensor unit 400 through the analog-to-digital converter (ADC) into an optical output value that is a digital data value. As such, the second sensor unit 400 measures various optical characteristics through the light output value obtained from the received light. Details of such optical characteristics will not be described in detail as described above.
  • ADC analog-to-digital converter
  • the second sensor unit 400 transmits the light output value to the control unit 700.
  • the light source unit 300 after the light source unit 300 irradiates the light toward the object P, it may be one cycle until the second sensor unit 400 transmits the light output value to the control unit 700.
  • the light source unit 300 irradiates light toward the object P again, and then turns off.
  • the second sensor unit 400 obtains another light output value and then transmits the light output value to the controller 700.
  • the light source unit 300 does not continuously irradiate light in the process of transmitting the obtained light output value to the control unit 700 after the second sensor unit 400 obtains the light output value. That is, the light source 300 emits light at predetermined time intervals. Therefore, power consumption of the light source 300 may be reduced.
  • the second sensor unit 400 may transmit the light output value to the control unit 700 every cycle. After collecting the light output values obtained in four cycles of four cycles, the collected light output values may be transmitted to the controller 700.
  • the control unit 700 according to the present invention is unlike the conventional control unit for controlling the light source unit 300 and the second sensor unit 400 at the same time because it is possible to obtain the light output value only by controlling the second sensor unit 400
  • the load generated in the controller 700 can be minimized. Therefore, the processing speed of the controller 700 is increased, and the user authentication time can be reduced.
  • control unit 700 is not necessarily limited to controlling only the second sensor unit 400, and of course, the second sensor unit 400 and the light source unit 300 may be simultaneously controlled.
  • the controller 700 analyzes the forged fingerprint from the light output value obtained from the second sensor unit 400.
  • the controller 700 compares the fingerprint information transmitted from the first sensor unit 200 and the optical property transmitted from the second sensor unit 400 with the registered fingerprint information and the optical property to determine whether the fingerprint is forged. Can be identified.
  • the process of registering the fingerprint information and the light output value, which are criteria for determining whether the user is forged, is registered in the controller 700 for the convenience of description, and the controller 700 at the time of fingerprint authentication of the user.
  • the fingerprint information and the light output value for authenticating the user in the state in which the registered fingerprint information and the light output value are stored are referred to as a process of obtaining by the controller 700.
  • the controller 700 stores and registers fingerprint information and light output values measured by the first sensor unit 200 and the second sensor unit 400 when a user registers a fingerprint.
  • the fingerprint information and the light output value registered in advance are the criteria for analyzing whether or not the object P to be measured is forged.
  • control unit 700 performs registration setting so that the light output value acquired by the second sensor unit 400 is automatically adjusted to the target light output value.
  • control unit 700 performs registration setting for automatically adjusting the light output value acquired by the second sensor unit 400 to the target light output value when the user's fingerprint is registered through autogain.
  • the light output value obtained by the second sensor unit 400 may be an amount of light. That is, the control unit 700 may determine whether the fingerprint is forged by comparing the light output value acquired by the second sensor unit 400 with the light output value previously registered in the control unit 700 in addition to the fingerprint.
  • the controller 700 automatically adjusts the light output value obtained as the target light output value.
  • the control unit 700 automatically adjusts the light output value of 40 obtained by the second sensor unit 400 to the target light output value of 80 through the registration setting. That is, the controller 700 doubles the light output value obtained by the second sensor unit 400 through the auto gain.
  • the registration settings stored in the control unit 700 is equally applied to the fingerprint authentication of the user. That is, when the registration setting is stored in the control unit 700 to double the light output value acquired by the second sensor unit 400 when the user registers the fingerprint, the control unit 700 may control the second sensor even when the user authenticates the fingerprint. The light output value obtained by the unit 400 is doubled.
  • the registration setting of the controller 700 may be configured to adjust the light amount of the light source unit 300 or to selectively adjust the light output value received by the second sensor unit 400.
  • the control unit 700 is automatically adjusted to obtain the same target light output value is different specifications Even in the sensor package 1000, a fake fingerprint identification may be performed under the same conditions.
  • control unit 700 of the present invention unlike the control unit provided in the conventional sensor package, when the user's fingerprint registration, the auto gain is made to the target light output value specified for the light output value received by the second sensor unit 400 Accordingly, the controller 700 may be used in various sensor packages 1000 regardless of the material and the color of the cover 600.
  • the light output value received by the second sensor unit 400 varies according to the transmittance according to the color of the cover 600. That is, IR black has better light transmittance than white and white has better light transmittance than silver. As such, the light output value received from the light source unit 300 to the second sensor unit 400 through the object P varies according to the material and color of the cover unit 600.
  • the controller 700 according to the present invention may automatically adjust the light output value obtained by the second sensor unit 400 to a designated target light output value when the user registers a fingerprint regardless of the material and color of the cover 600.
  • the manufacturing process of the sensor package 1000 is simple, so that the manufacturing time can be shortened.
  • the controller 700 when the user registers a fingerprint, when the controller 700 sets the target light output value to 80, the controller 700 sets an authentication range of the light output value based on the target light output value. That is, the controller 700 may set the light output value of 70 to 90, which may cause an error in the light output value, when the fingerprint is authenticated by the user as the authentication range.
  • the error range of the light output value set by the controller 700 is merely an example for description, and the authentication range of the light output value may be set to various ranges.
  • control unit 700 sets the light output value of 70 to 90 as the authentication range
  • the control unit 700 In the light output value, it is determined that the fingerprint is not a fake fingerprint.
  • control unit 700 may further measure various optical characteristics such as pulse wave, heart rate, electrocardiogram, etc. in addition to the light amount from the light output value obtained by the second sensor unit 400. As such, when the sensor package 1000 measures two or more optical characteristics, it may be determined whether the fingerprint forgery is more accurate.
  • the control unit 700 may perform the second sensor even when the user authenticates the fingerprint.
  • the light output value obtained by the unit 400 is doubled. That is, when the light output value obtained by the second sensor unit 400 is 72 when the user authenticates the fingerprint, the light output value of 72 obtained by the second sensor unit 400 is a value doubled by the controller 700.
  • the control unit 700 is determined to be a fake fingerprint.
  • the second sensor unit 400 may be configured to accurately transmit the received light output value to the control unit 700. That is, the second sensor unit 400 is provided with a divider (not shown), and the user divides the light output value transmitted to the second sensor unit 400 from the divider to a predetermined value, and then divides the divided light output value to the outside. It may be made to transmit to the control unit 700 which is a device.
  • the second sensor unit 400 having the division unit transmits the correct light output value to the control unit 700, thereby preventing the wrong light output value from being transferred to the control unit 700.
  • the conventional second sensor unit is not provided with such a divider, and thus there is a problem in that the light output value is not accurately transmitted to the control unit 700.
  • the light transmitted to the second sensor unit passes through the object P from the light source unit 300, and then the reflected light and the light source unit transmitted to the second sensor unit.
  • the light output value of the reflected light transmitted to the second sensor unit is 95 and the light output value of the direct light is 25, the light output value transmitted to the second sensor unit is 120.
  • the second sensor unit when the maximum light output value that the second sensor unit can transmit to the control unit 700 is 100, the second sensor unit does not transmit the light output value of 120 to the control unit 700 but transmits the light output value of 100. That is, the second sensor unit may cause a problem of transmitting an incorrect light output value to the controller 700.
  • the second sensor unit 400 of the present invention is provided with a divider, and the second sensor unit 400 is configured to transmit the correct light output value to the control unit 700.
  • the user may adjust the light output value transmitted to the second sensor unit 400 to be selectively divided. That is, the user may set to divide the light output value transmitted to the second sensor unit 400 by a predetermined value. In this case, the division may divide the light output value transmitted to the second sensor unit 400 into various values such as 1/2, 1/3, and 1/4.
  • the light output value transmitted to the second sensor unit 400 is 120. If the division unit is set to divide the light output value transmitted to the second sensor unit 400 by 1/2, the second sensor unit 400 divides the light output value of 120 by 1/2 and then divides the light output value of 60 by 1/2. Transmission to the control unit 700.
  • the controller 700 may receive the correct light output value.
  • the controller 700 may be provided with adjustment value information of the division unit, and the controller 700 may know the light output value actually measured from the second sensor unit 400.
  • the second sensor unit 400 is provided with a processing unit (not shown), it is possible to lower the communication power consumption between the second sensor unit 400 and the control unit 700. That is, the processing unit provided in the second sensor unit 400 does not transmit each light output value transmitted to the second sensor unit 400 in real time, but measures a predetermined number of times within a predetermined time and then measures The light output value is transmitted to the control unit 700.
  • the load of the second sensor unit 400 can be lowered, and the power consumption of the second sensor unit 400 can be reduced.
  • FIG. 7 is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to an embodiment of the present invention.
  • the second sensor unit 400 measures the light output value transmitted to the second sensor unit 400 at a predetermined time and then measures the measured light output value in an external device. To the control unit 700.
  • FIG. 7A is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to the comparative example
  • FIG. 7B is light transmitted to the second sensor unit 400 according to the embodiment.
  • the general second sensor unit according to the comparative example is configured to transmit the light output value transmitted to the second sensor unit to the control unit 700 in real time through the operation of the light source unit 300.
  • the second sensor unit is configured to transmit the respective light output values measured at the first to t8 times t8 to the controller 700.
  • the second sensor unit 400 sums the light output values measured a predetermined number of times with respect to the light output values transmitted to the second sensor unit 400 through the operation of the light source unit 300.
  • the aggregated light output value is transmitted to the control unit 700.
  • the second sensor unit 400 may be used.
  • Is 2 the light output value measured at the first time point t1, 4 is the light output value measured at the second time point t2, 4 is the light output value measured at the third time point t3, and 4th time t4.
  • Each light output value of 6, which is the measured light output value, is added up. That is, the processor adds each of the light output values measured in the first section S1 from the first time point t1 to the fourth time point t4, and then adds up the summed light output values 16 (2 + 4 + 4 + 6). ) Is transmitted to the control unit 700.
  • the second sensor unit 400 transmits the light output value measured in the second section S2 to the controller 700.
  • the second sensor unit 400 does not transmit each light output value transmitted to the second sensor unit 400 in real time, and after measuring the predetermined number of times within a predetermined time, only the measured light output value. As the transmission to the control unit 700 is performed, the load of the second sensor unit 400 may be lowered and the power consumption of the second sensor unit 400 may be effectively reduced.
  • the second sensor unit 400 may be electrically coupled to the base substrate 100 in the same manner as the first sensor unit 200.
  • the second sensor unit 400 is spaced apart from the light source unit 300 at a predetermined interval. That is, as the light source unit 300 and the second sensor unit 400 are spaced at a predetermined interval, the light source unit 300 and the second sensor unit 400 may prevent the accuracy of optical characteristics from being degraded due to direct light transmission. Can be.
  • the direct light refers to light in which light emitted from the light source unit 300 is directly guided to the second sensor unit 400 through the encapsulation unit 500.
  • the second sensor unit 400 may be prevented from generating cross-talk due to the direct light transmitted from the light source unit 300.
  • the second distance L which is a distance between the light source unit 300 and the second sensor unit 400, is 400 ⁇ m or more. It is preferable to fall. Because, when the second distance L between the light source unit 300 and the second sensor unit 400 is less than 400 ⁇ m, the second sensor unit 400 may be affected by the direct light emitted from the light source unit 300. Because.
  • the first sensor unit 200 is disposed between the light source unit 300 and the second sensor unit 400. It is preferable. That is, the first sensor unit 200 may block the direct light guided from the light source unit 300 to the second sensor unit 400 through the encapsulation unit 500 in the middle.
  • the first sensor unit 200 does not necessarily need to be disposed between the light source unit 300 and the second sensor unit 400, and the light source unit 300 and the second sensor unit 400 have a predetermined second distance ( Of course, it can be arranged in various positions in the range of L).
  • the first sensor unit 200, the light source unit 300, and the second sensor unit 400 provided on the base substrate 100 may have the same height with respect to the base substrate 100. That is, the distances from the top surfaces of the first sensor unit 200, the light source unit 300, and the second sensor unit 400 to the top surface of the encapsulation unit 500 may be the same in the polishing process. Therefore, the first sensor unit 200 senses the fingerprint of the object P while the encapsulation unit 500 covers the first sensor unit 200, the light source unit 300, and the second sensor unit 400 as a whole.
  • the light source unit 300 irradiates light onto the object P, and the second sensor unit 400 may effectively receive the light reflected from the object P.
  • the first sensor unit 200, the light source unit 300, and the second sensor unit 400 have the same height with respect to the base substrate 100, so that fingerprint sensing and optical property information can be easily obtained. Can be done.
  • the heights of the first sensor unit 200, the light source unit 300, and the second sensor unit 400 do not necessarily have to be the same height, but may be made of various heights within a range in which fingerprint sensing and optical characteristic information can be obtained. Of course.
  • the encapsulation part 500 covers the first sensor part 200, the light source part 300, and the second sensor part 400 provided on the base substrate 100 to protect various electrical components.
  • conventional encapsulation is made of semiconductor EMC.
  • the encapsulation may include a filler, a resin, a curing agent, a flame retardant and a coloring agent.
  • the filler may be made of fused silica, form a spherical shape, the average size is 12 ⁇ m, the maximum size may be 55 ⁇ m. As such, the content of the filler in the encapsulation may be 88.5 wt%.
  • an epoxy resin may be used as the resin, and a curing agent may be a hydrophobic curing agent.
  • the colorant is 0.6 ⁇ 0.8 wt% of the encapsulation.
  • the present invention prevents light from being directly transmitted from the light source unit 300 to the second sensor unit 400 by adjusting the light transmittance of the encapsulation unit 500, and at the same time, the first sensor unit generates noise due to photoelectrons.
  • the malfunction of the fingerprint recognition of the 200 is prevented from occurring, and the fingerprint information and the optical characteristic information are effectively measured.
  • the composition of the encapsulation part 500 having the light transmittance adjusted is 3 to 13 wt% of an epoxy resin, 3 to 7 wt% of a curing agent, 0.1 to 0.3 wt% of a curing catalyst, 0.06 to 0.08 wt% of a coloring agent, and the rest of the filler. It may include.
  • the epoxy resin is at least one selected from biphenyl epoxy resin, novolac epoxy resin, dicyclopentadienyl epoxy resin, bisphenol epoxy resin, terpene epoxy resin, aralkyl epoxy resin, multifunctional epoxy resin, naphthalene epoxy resin, halogenated epoxy resin It may be one compound.
  • the content of this epoxy resin is 3 to 13 wt%.
  • the curing agent is selected from phenolic novolac resin, cresol novolac resin, multifunctional phenolic resin, aralkyl phenolic resin, terpene phenolic resin, dicyclopentadienyl phenolic resin, naphthalene phenolic resin and halogenated phenolic resin. At least one compound.
  • the content of such a curing agent is 3 to 7 wt%.
  • the curing catalyst may be phosphines or amines, and the content of the curing catalyst is 0.1 to 0.3 wt%.
  • the colorant may be composed of carbon black, and the content of the colorant is 0.06 to 0.08 wt%.
  • the colorant is a very important composition for adjusting the light transmittance of the encapsulation part 500.
  • the content of the colorant is less than 0.06 wt%, the light transmittance is so high that the first sensor part recognizes a fingerprint due to noise generated by photoelectrons.
  • the content of the colorant is more than 0.08 wt%, the light transmittance is too low to accurately check the optical properties.
  • the content of the colorant included in the encapsulation portion of the present invention is preferably made in a range of 10% compared to the content of the colorant included in the conventional encapsulation portion.
  • the content of the colorant provided in the encapsulation part 500 is 0.06 to 0.08 wt%, so that the sensor package 1000 may be smoothly subjected to fingerprint sensing and optical property inspection.
  • the filler is a composition constituting the encapsulation part 500 in addition to the epoxy resin, the curing agent, the curing catalyst and the colorant, and the filler may be made of silica.
  • the encapsulation part 500 is not limited to the above-described composition, and any composition may be used as long as the light transmittance may be adjusted to effectively perform fingerprint sensing and optical property inspection of the sensor package 1000.
  • the encapsulation part 500 may be polished in a state in which the first sensor part 200, the light source part 300, and the second sensor part 400 provided on the base substrate 100 are entirely covered.
  • the top surface of the encapsulation part 500 removed through the polishing process may be manufactured flat without a step. That is, the problem of the step difference generated during the polishing process of the sensor package having the conventional optical EMC and semiconductor EMC having different physical properties can be solved.
  • the cover part 600 may be further provided on an upper surface of the encapsulation part 500.
  • the cover unit 600 may perform various functions such as implementing colors in the sensor package 1000 or reinforcing the strength of the sensor package 1000.
  • the cover part 600 may be provided on the encapsulation part 500, and may cover the first sensor part 200, the light source part 300, and the second sensor part 400.
  • the cover part 600 may be made of a material having excellent durability and appearance.
  • the cover part 600 may include any one or more of glass, sapphire, zirconium, and a transparent resin.
  • various glass substrates such as a soda lime glass substrate, an alkali free glass substrate, and a tempered glass substrate, may be included.
  • the transparent resin may include acrylic and the like.
  • the cover part 600 may include an optical transparent adhesive 610, a PET film 620, a color paint layer 630, and a protective layer 640.
  • the cover part 600 may be formed in the order of the optical transparent adhesive 610, PET film 620, the color paint layer 630 and the protective film layer 640.
  • OCA optically clear adhesive
  • PET polyethylene terephthalate
  • the protective layer 640 may be a ceramic coating layer including a UV protective layer or ceramic.
  • the cover unit 600 is made so that the light irradiated from the light source unit 300 is transmitted to the object (P), the light reflected from the object (P) can be smoothly transmitted to the second sensor unit 400 and at the same time
  • the first sensor unit 200 is formed so that fingerprint sensing of the object P is performed smoothly.
  • the sensor package 1000 may be provided with a control unit 700.
  • the control unit 700 is coupled to the main substrate 1 and is electrically connected to the first sensor unit 200, the light source unit 300, and the second sensor unit 400.
  • the controller 700 may receive the fingerprint information measured by the first sensor unit 200 and the optical characteristics measured by the second sensor unit 400. As such, the controller 700 may identify whether the fingerprint is counterfeited by comparing the transmitted fingerprint information and the optical characteristic with the registered fingerprint information and the optical characteristic.
  • the controller 700 may register and store fingerprint information and optical characteristics measured by the first sensor unit 200 and the second sensor unit 400, and the registered fingerprint information and optical characteristics are those of an authenticated user. Can be handled.
  • the controller 700 compares the fingerprint information with the registered fingerprint information and the optical characteristic to identify whether the fingerprint is forged. Done. That is, when at least one of the fingerprint information and the optical characteristic to be measured is different from the registered fingerprint information and the optical characteristic, the controller 700 considers that the fingerprint to be measured is not the fingerprint of the authenticated user.
  • controller 700 may control the first sensor unit 200 and the second sensor unit 400 so that fingerprint information measurement and optical property measurement of the object P may be sequentially performed or simultaneously. Can be.
  • the controller 700 compares the optical characteristics measured by the second sensor unit 400 and the fingerprint information transmitted from the first sensor unit 200 with the registered optical characteristics and fingerprint information, and forgeries the fingerprints measured. By identifying whether or not to increase the security of the sensor package (1000).

Abstract

One embodiment of the present invention provides a sensor package comprising: a base substrate; a first sensor unit, provided on the base substrate, for sensing a fingerprint; a light source unit, provided on the base substrate, for irradiating light on an object; a second sensor unit, provided on the base substrate, for receiving the light irradiated from the light source unit and passed through the object to obtain a light output value, and measuring a light characteristic from the obtained light output value; a sealing unit for covering the first sensor unit, the light source unit and the second sensor unit; a cover unit provided on an upper surface of the sealing unit; and a control unit for receiving the light output value from the second sensor unit, wherein upon registering the fingerprint of a user, the control unit sets up registration for automatically adjusting the light output value obtained by the second sensor unit to a target light output value.

Description

센서 패키지Sensor package
본 발명은 센서 패키지에 관한 것으로, 보다 상세하게는 보안성이 향상된 센서 패키지에 관한 것이다.The present invention relates to a sensor package, and more particularly to a sensor package with improved security.
최근 휴대용 전자기기에는 전화 또는 문자 메시지 전송 서비스와 같은 통신 기능뿐만 아니라, 모바일 뱅킹 등 개인 정보가 활용되는 다양한 부가 기능이 제공되고 있다. 이에 따라, 휴대용 전자기기의 잠금 장치에 대한 필요성이 더욱 중요하게 부각되고 있다.Recently, portable electronic devices have been provided with various additional functions that utilize personal information such as mobile banking as well as communication functions such as a telephone or text message transmission service. Accordingly, the need for a locking device for a portable electronic device is more important.
휴대용 전자기기에 적용되는 종래의 잠금 장치는 비밀번호를 이용하는 방식이 있다. 그러나, 이러한 방식은 비밀번호가 노출되었을 때 무용지물이 된다.Conventional locking devices applied to portable electronic devices have a method using a password. However, this method is useless when the password is exposed.
따라서, 최근에는 이러한 방식을 보완하고 잠금 효과를 향상시키기 위하여, 휴대용 전자기기에 지문 인식을 통한 잠금장치가 장착되고 있다.Therefore, in recent years, in order to complement this method and improve the locking effect, a locking device through fingerprint recognition is mounted on a portable electronic device.
예로, 지문센서는 물리적인 기능키에 일체화되어 구현될 수 있다.For example, the fingerprint sensor may be integrated with a physical function key.
지문센서는 인간의 손가락 지문을 감지하는 센서로서, 지문센서를 통해 사용자 등록이나 인증 절차를 거치도록 함으로써, 휴대용 전자기기에 저장된 데이터를 보호하고, 보안사고를 미연에 방지할 수 있다.The fingerprint sensor is a sensor that detects a human finger fingerprint. The fingerprint sensor is configured to undergo user registration or authentication through a fingerprint sensor, thereby protecting data stored in the portable electronic device and preventing security accidents.
지문센서는 주변 부품이나 구조를 포함하는 모듈의 형태로 제조될 수 있어, 각종 전자기기에 효과적으로 장착될 수 있다.The fingerprint sensor may be manufactured in the form of a module including peripheral components or structures, and thus may be effectively mounted on various electronic devices.
지문센서는 개개인의 지문이 가지는 특장점을 이용하여 코드로 변환할 수 있다. 이때, 변환되어 생성되는 코드가 다른 사람의 지문 코드와 동일하게 등록될 확률은 이론적으로 매우 낮기 때문에, 지문을 이용한 사용자 인증이 보편화될 수 있는 것이다.The fingerprint sensor can be converted into a code by using the features of each fingerprint. In this case, since the probability that the generated code is registered in the same manner as the fingerprint code of another person is very low in theory, user authentication using the fingerprint may be generalized.
그러나 실리콘 등으로 지문을 위조할 경우에는 지문센서는 위조 지문과 실제 생체 지문을 구분하지 못하기에 보안체계가 무력화되는 문제도 있다.However, in the case of forging fingerprints with silicon, the fingerprint sensor cannot distinguish between fake fingerprints and actual biometric fingerprints.
따라서, 등록 사용자의 지문 특장점을 이용한 위조 지문을 식별할 수 있는 기능에 대한 필요성이 대두되고 있다.Therefore, there is a need for a function that can identify fake fingerprints using fingerprint features of registered users.
일반적으로, 휴대용 전자기기보다 큰 크기를 가지는 장치에 마련되는 광학식 지문센서 모듈은 모듈 크기에 대한 제약이 비교적 미약하기 때문에 별도 부품을 추가하여 위조 지문에 대한 검출 기능을 구현하고 있다.In general, an optical fingerprint sensor module provided in a device having a larger size than a portable electronic device has a relatively weak constraint on the module size, thereby adding a separate component to implement a detection function for counterfeit fingerprint.
한국 등록특허공보 제10-1436786호(선행문헌 1)에는 별도의 광원을 이용한 위조 지문 판별 장치가 개시된다. 그러나, 이러한 한국 등록특허공보 제10-1436786호(선행문헌 1)의 위조 지문 판별 장치는 휴대용 전자기기와 같은 소형 기기에 적용되기가 어려운 문제가 있다.Korean Patent Publication No. 10-1436786 (Previous Document 1) discloses a fake fingerprint discrimination apparatus using a separate light source. However, the forgery fingerprint discrimination apparatus of Korean Patent Publication No. 10-1436786 (Previous Document 1) has a problem that is difficult to be applied to small devices such as portable electronic devices.
이에, 휴대용 전자기기와 같은 소형 기기에 장착되어, 지문 인식과 생체 인식을 함께 측정할 수 있는 센서 패키지에 대한 다양한 연구가 이루어지고 있다.Accordingly, various studies have been made on a sensor package mounted on a small device such as a portable electronic device and capable of simultaneously measuring fingerprint recognition and biometrics.
도 1은 종래의 센서 패키지를 보여주는 예시도로, 도 1의 (a)는 폴리싱 공정이 이루어지기 전의 센서 패키지이고, 도 1의 (b)는 폴리싱 공정이 이루어진 후의 센서 패키지를 보여주는 예시도이다.1 is an exemplary view showing a conventional sensor package, Figure 1 (a) is a sensor package before the polishing process, Figure 1 (b) is an exemplary view showing a sensor package after the polishing process.
도 1의 (a)를 참고하면, 센서 패키지(10)는 베이스 기판(20), 지문센서(30), 광원 모듈(40), 생체 인식 모듈(50) 및 봉지부(60)를 포함할 수 있다.Referring to FIG. 1A, the sensor package 10 may include a base substrate 20, a fingerprint sensor 30, a light source module 40, a biometric module 50, and an encapsulation unit 60. have.
이러한 센서 패키지(10)는 베이스 기판(20) 상에 지문센서(30), 광원 모듈(40) 및 생체 인식 모듈(50)이 마련된 상태에서 사용자 인증을 수행하게 된다.The sensor package 10 performs user authentication in a state where the fingerprint sensor 30, the light source module 40, and the biometric module 50 are provided on the base substrate 20.
이와 같은, 센서 패키지(10)의 제조 과정을 살펴보면, 먼저, 베이스 기판(20) 상에 사용자의 지문을 인식하기 위한 지문센서(30)를 전기적으로 결합하게 된다.Looking at the manufacturing process of the sensor package 10 as described above, first, the fingerprint sensor 30 for recognizing the user's fingerprint on the base substrate 20 is electrically coupled.
다음으로, 광원 모듈(40) 및 생체 인식 모듈(50)을 베이스 기판(20) 상에 전기적으로 결합하게 된다. 이러한 광원 모듈(40) 및 생체 인식 모듈(50)은 사용자의 생체 인식 정보를 파악하게 된다. 즉, 센서 패키지(10)는 광원 모듈(40)로부터 대상물을 향해 조사된 광이 대상물을 거쳐 생체 인식 모듈(50)로 수광된 광의 특성을 분석하여 사용자를 인식하게 된다.Next, the light source module 40 and the biometric module 50 are electrically coupled on the base substrate 20. The light source module 40 and the biometric module 50 detect the biometric information of the user. That is, the sensor package 10 recognizes the user by analyzing the characteristics of the light received by the biometric module 50 through the object, the light irradiated toward the object from the light source module 40.
여기서, 광원 모듈(40)은 광원부(41)와 제1 광학 보호부(42)를 포함할 수 있다. 이때, 광원부(41)는 대상물을 향해 광을 조사하도록 이루어지고, 제1 광학 보호부(42)는 광원부(41)를 보호하도록 이루어진다. 이러한 제1 광학 보호부(42)는 대개 광원부(41)로부터 대상물로 광의 투과가 원활히 이루어질 수 있는 광학 EMC(EMC, Epoxy Molding Compound)로 이루어진다.Here, the light source module 40 may include a light source part 41 and a first optical protection part 42. At this time, the light source part 41 is made to irradiate light toward the object, and the first optical protection part 42 is made to protect the light source part 41. The first optical protection part 42 is usually made of an optical epoxy molding compound (EMC) which can smoothly transmit light from the light source part 41 to an object.
생체 인식 모듈(50)은 생체 인식센서(51)와 제2 광학 보호부(52)를 포함할 수 있다. 이때, 생체 인식센서(51)는 광원부(41)로부터 조사되어 대상물을 거친 광을 수광하도록 이루어지고, 제2 광학 보호부(52)는 생체 인식센서(51)를 보호하도록 이루어진다. 이러한 제2 광학 보호부(52)는 제1 광학 보호부(42)와 같이 광의 투과가 원활히 이루어질 수 있는 광학 EMC로 이루어질 수 있다.The biometric module 50 may include a biometric sensor 51 and a second optical protector 52. At this time, the biometric sensor 51 is made to receive the light irradiated from the light source unit 41 and passed through the object, the second optical protection unit 52 is made to protect the biometric sensor 51. The second optical protection unit 52 may be made of an optical EMC that can transmit light smoothly like the first optical protection unit 42.
다음으로, 베이스 기판(20) 상에 지문센서(30), 광원 모듈(40) 및 생체 인식 모듈(50)이 마련된 상태에서 봉지부(60)는 지문센서(30), 광원 모듈(40) 및 생체 인식 모듈(50)을 덮게 된다.Next, in the state where the fingerprint sensor 30, the light source module 40, and the biometric recognition module 50 are provided on the base substrate 20, the encapsulation unit 60 may include the fingerprint sensor 30, the light source module 40, and the like. The biometric module 50 is covered.
이때, 봉지부(60)는 제1 광학 보호부(42) 및 제2 광학 보호부(52)와 달리 차광이 가능하도록 이루어진다. 즉, 봉지부(60)는 지문센서(30)로 광이 전달되는 것을 방지하도록 이루어진다. 따라서, 봉지부(60)는 외부 광으로 인한 광전자의 발생으로 지문센서(30)의 오작동이 발생되는 것을 방지하게 된다. 이러한 봉지부(60)는 검은색을 띠는 반도체 EMC로 이루어질 수 있다.At this time, the encapsulation part 60 is made to be shielded from light unlike the first optical protection part 42 and the second optical protection part 52. That is, the encapsulation unit 60 is configured to prevent light from being transmitted to the fingerprint sensor 30. Therefore, the encapsulation unit 60 prevents malfunction of the fingerprint sensor 30 due to the generation of photoelectrons due to external light. The encapsulation part 60 may be made of a black semiconductor EMC.
다음으로, 폴리싱(Polishing) 공정을 통해 지문센서(30)와 사용자의 손가락이 맞닿는 센싱 간격(Sensing Clearance)을 조절하게 된다. 이때, 폴리싱 공정시 센서 패키지(10)의 상면이 평평하도록 봉지부(60), 제1 광학 보호부(42) 및 제2 광학 보호부(52)를 함께 제거하게 된다. 이하에서는 설명의 편의를 위해 물성이 같은 제1 광학 보호부(42)와 제2 광학 보호부(52)는 광학 보호부의 간략한 용어로 설명하기로 한다.Next, a sensing process of adjusting the sensing clearance between the fingerprint sensor 30 and the user's finger through a polishing process is controlled. In this case, the encapsulation part 60, the first optical protection part 42, and the second optical protection part 52 are removed together so that the top surface of the sensor package 10 is flat during the polishing process. Hereinafter, for convenience of description, the first optical protection part 42 and the second optical protection part 52 having the same physical properties will be described in brief terms of the optical protection part.
그러나, 열과 압력이 수반되는 폴리싱 공정시, 서로 다른 물성을 갖는 봉지부(60)와 광학 보호부(42, 52) 사이에는 단차가 발생하는 문제가 있다.However, in the polishing process involving heat and pressure, there is a problem that a step occurs between the encapsulation unit 60 having different physical properties and the optical protection units 42 and 52.
도 1의 (b)에서와 같이, 폴리싱 공정이 이루어진 후의 센서 패키지(10)는 봉지부(60)와 광학 보호부(42, 52) 간에 단차가 발생된다. 이와 같은, 봉지부(60)와 광학 보호부(42, 52) 간의 단차는 상부에 코팅층을 더 형성하더라도 코팅층의 상면에는 동일한 단차가 발생되는 문제가 있다. 이로 인해, 센서 패키지(10)에는 외관 불량이 발생된다.As shown in FIG. 1B, a step is generated between the encapsulation unit 60 and the optical protection units 42 and 52 in the sensor package 10 after the polishing process is performed. Such a step between the encapsulation part 60 and the optical protection parts 42 and 52 has a problem that the same step is generated on the upper surface of the coating layer even when a coating layer is further formed on the top. As a result, appearance defects occur in the sensor package 10.
도 2는 종래의 또 다른 센서 패키지를 보여주는 예시도이다.Figure 2 is an exemplary view showing another conventional sensor package.
도 2는 도 1에서와 달리 폴리싱 공정시, 봉지부(60), 제1 광학 보호부(42) 및 제2 광학 보호부(52)를 함께 제거하지 않고, 제1 광학 보호부(42) 및 제2 광학 보호부(52)가 노출되지 않는 범위에서 봉지부(60)만을 제거하였다.FIG. 2 illustrates the first optical protection part 42 and the removal of the encapsulation part 60, the first optical protection part 42 and the second optical protection part 52 together in the polishing process, unlike in FIG. 1. Only the sealing part 60 was removed in the range which the 2nd optical protection part 52 is not exposed.
그러나, 이 경우에도 폴리싱 공정에서 서로 다른 물성(탄성 계수 및 열팽창 계수)을 갖는 봉지부(60)와 광학 보호부(42, 52) 간에는 단차가 발생하는 문제가 있다.However, even in this case, there is a problem that a step occurs between the encapsulation portion 60 and the optical protection portions 42 and 52 having different physical properties (elastic coefficient and thermal expansion coefficient) in the polishing process.
이와 같은 문제로 인해, 베이스 기판(20) 상에 지문센서(30), 광원부(41) 및 생체 인식센서(51)를 실장한 상태에서 단일의 봉지부(60)를 사용하여 센서 패키지(10)를 제조할 수도 있으나, 봉지부(60)가 반도체 EMC인 경우에는 광 투과율 문제로 인해 광원부(41) 및 생체 인식센서(51)의 작동상 어려움이 있고, 봉지부(60)가 광학 EMC인 경우에는 광원부(41) 및 생체 인식센서(51) 간의 직접 광이 전달되어 정확한 생체 인식 측정에 어려움에 있으며, 지문센서(30)의 오작동 발생 우려가 높다.Due to this problem, the sensor package 10 using a single encapsulation unit 60 in a state in which the fingerprint sensor 30, the light source unit 41 and the biometric sensor 51 is mounted on the base substrate 20. However, when the encapsulation unit 60 is a semiconductor EMC, there is a difficulty in operating the light source unit 41 and the biometric sensor 51 due to a light transmittance problem, and the encapsulation unit 60 is an optical EMC. The direct light is transmitted between the light source unit 41 and the biometric sensor 51, so that it is difficult to accurately measure the biometrics, and there is a high possibility of malfunction of the fingerprint sensor 30.
한편, 종래의 센서 패키지(10)에 구비되는 제어부(미도시)는 광원 모듈(40)과 생체 인식 모듈(50)을 함께 제어하도록 이루어진다. 즉, 제어부는 광원 모듈(40)과 생체 인식 모듈(50)을 동시에 제어하며 사용자의 생체 인식 정보를 분석하게 된다.Meanwhile, the controller (not shown) provided in the conventional sensor package 10 is configured to control the light source module 40 and the biometric module 50 together. That is, the controller simultaneously controls the light source module 40 and the biometric module 50 to analyze the biometric information of the user.
이와 같이, 센서 패키지(10)가 사용자의 생체 인식 정보를 분석함에 있어, 제어부는 광원 모듈(40)과 생체 인식 모듈(50)을 동시에 제어해야되기에, 제어부에는 과부하가 걸릴 수 있다. 이에, 제어부의 처리 속도가 느려지게 되어, 센서 패키지(10)가 사용자를 인증하는데 걸리는 시간이 길어지는 문제가 있다.As such, when the sensor package 10 analyzes the biometric information of the user, the controller needs to control the light source module 40 and the biometric module 50 at the same time, so that the controller may be overloaded. As a result, the processing speed of the control unit becomes slow, and the time taken for the sensor package 10 to authenticate a user becomes long.
그리고 종래의 센서 패키지(10)에 구비되는 제어부는 봉지부(60)의 상면에 구비되는 커버부(미도시)의 소재 및 색상에 맞춰 보정값을 설정한 상태로 센서 패키지(10)에 장착하게 된다.And the control unit provided in the conventional sensor package 10 to be mounted on the sensor package 10 in a state in which the correction value is set according to the material and color of the cover (not shown) provided on the upper surface of the encapsulation unit 60. do.
다시 말해서, 광원 모듈(40)로부터 사용자를 거쳐 생체 인식 모듈(50)로 수광된 광 출력값은 커버부의 소재 및 색상에 따라 달라지기에, 제어부는 커버부의 소재 및 색상에 따라 보정값이 맞춰진 상태로 센서 패키지(10)에 장착된다.In other words, since the light output value received from the light source module 40 to the biometric module 50 through the user varies depending on the material and color of the cover part, the controller is in a state where the correction value is adjusted according to the material and color of the cover part. It is mounted to the sensor package 10.
이와 같이, 종래의 센서 패키지(10)는 커버부의 소재 및 색상이 결정되면 그에 맞게 보정값이 설정된 제어부만을 센서 패키지(10)에 장착하였다. 이에 따라, 종래의 센서 패키지(10)는 제조 과정이 복잡하고, 제조 시간이 오래 걸리는 문제가 있다.As described above, in the conventional sensor package 10, when the material and color of the cover part are determined, only the controller in which the correction value is set accordingly is mounted on the sensor package 10. Accordingly, the conventional sensor package 10 has a problem in that the manufacturing process is complicated and the manufacturing time is long.
상기와 같은 문제점을 해결하기 위한 본 발명의 기술적 과제는, 보안성이 향상된 센서 패키지를 제공하는 것이다.The technical problem of the present invention for solving the above problems is to provide a sensor package with improved security.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 베이스 기판; 상기 베이스 기판 상에 구비되며, 지문을 감지하는 제1 센서부; 상기 베이스 기판 상에 구비되며, 대상물에 광을 조사하는 광원부; 상기 베이스 기판 상에 구비되며, 상기 광원부로부터 조사되어 상기 대상물을 거친 광을 수광하여 광 출력값을 획득하고, 획득된 광 출력값으로부터 광 특성을 측정하는 제2 센서부; 상기 제1 센서부, 광원부 및 제2 센서부를 덮는 봉지부; 상기 봉지부의 상면에 구비되는 커버부; 및 상기 제2 센서부로부터 광 출력값을 전달받는 제어부를 포함하며, 사용자의 지문 등록시, 상기 제어부는 상기 제2 센서부로 획득된 광 출력값을 목표 광 출력값으로 자동 조정하기 위한 등록 설정이 이루어지는 것인 센서 패키지를 제공한다.In order to achieve the above technical problem, an embodiment of the present invention is a base substrate; A first sensor unit provided on the base substrate to detect a fingerprint; A light source unit provided on the base substrate and irradiating light to an object; A second sensor unit provided on the base substrate and configured to receive light emitted from the light source unit to pass through the object to obtain a light output value, and to measure a light characteristic from the obtained light output value; An encapsulation part covering the first sensor part, the light source part, and the second sensor part; A cover part provided on an upper surface of the encapsulation part; And a controller configured to receive an optical output value from the second sensor unit, wherein when the user registers a fingerprint, the controller performs registration setting for automatically adjusting the optical output value acquired by the second sensor unit to a target optical output value. Provide the package.
본 발명의 일실시예에 있어서, 상기 제어부의 등록 설정은 상기 광원부의 광량을 조절하거나 상기 제2 센서부로 수광된 광 출력값을 조정할 수 있다.In one embodiment of the present invention, the registration setting of the controller may adjust the light amount of the light source unit or adjust the light output value received by the second sensor unit.
본 발명의 일실시예에 있어서, 상기 제어부의 등록 설정은 상기 커버부의 소재 및 색상이 다르더라도 상기 제2 센서부로 수광된 광 출력값을 목표 광 출력값으로 자동 조정할 수 있다.In one embodiment of the present invention, the registration setting of the control unit may automatically adjust the light output value received by the second sensor unit to a target light output value even if the material and color of the cover unit are different.
본 발명의 일실시예에 있어서, 사용자의 지문 등록시, 상기 제어부는 목표 광 출력값을 기준으로 광 출력값의 인증 범위를 등록할 수 있다.In one embodiment of the present invention, when registering a fingerprint of the user, the controller may register the authentication range of the light output value based on the target light output value.
본 발명의 일실시예에 있어서, 사용자의 지문 인증시, 상기 제어부는 상기 제2 센서부로 획득된 광 출력값이 기 등록된 광 출력값의 인증 범위에 해당되지 않는 경우, 위조 지문으로 인식할 수 있다.In one embodiment of the present invention, when the fingerprint authentication of the user, the control unit may recognize as a fake fingerprint if the light output value obtained by the second sensor unit does not fall within the authentication range of the pre-registered light output value.
본 발명의 일실시예에 있어서, 사용자의 지문 인증시, 상기 제어부는 사용자의 지문 등록시 저장된 등록 설정을 동일하게 적용할 수 있다.In one embodiment of the present invention, upon fingerprint authentication of the user, the controller may apply the same registered settings when registering the fingerprint of the user.
본 발명의 일실시예에 있어서, 상기 제2 센서부는 상기 제어부의 작동에 의해 상기 광원부를 제어할 수 있다.In one embodiment of the present invention, the second sensor unit may control the light source unit by the operation of the control unit.
본 발명의 일실시예에 있어서, 상기 제어부는 제2 센서부와 광원부를 함께 제어할 수 있다.In one embodiment of the present invention, the control unit may control the second sensor unit and the light source unit together.
본 발명의 일실시예에 있어서, 상기 제1 센서부는 상기 광원부와 제2 센서부 사이에 구비되며, 상기 제1 센서부, 광원부 및 제2 센서부의 상면은 동일한 높이를 갖도록 이루어질 수 있다.In one embodiment of the present invention, the first sensor unit is provided between the light source unit and the second sensor unit, the upper surface of the first sensor unit, the light source unit and the second sensor unit may have the same height.
본 발명의 일실시예에 있어서, 상기 제어부는 상기 제1 센서부에서 측정되는 지문 정보와 상기 제2 센서부에서 측정되는 광 특성을 기 등록된 지문 정보 및 광 특성과 비교하여 측정되는 지문의 위조 여부를 식별할 수 있다.In one embodiment of the present invention, the control unit forgery of the fingerprint measured by comparing the fingerprint information measured by the first sensor unit and the optical characteristics measured by the second sensor unit with the registered fingerprint information and optical characteristics. Can be identified.
본 발명의 일실시예에 있어서, 상기 광 특성은 맥파, 심장 박동, 심전도, 근전도, 산소 포화도, 광량, 색온도, 파장 및 편광성분 중 하나 이상일 수 있다.In one embodiment of the present invention, the optical properties may be one or more of pulse wave, heart rate, electrocardiogram, electrocardiogram, oxygen saturation, light quantity, color temperature, wavelength and polarization components.
본 발명의 일실시예에 있어서, 상기 봉지부는 상기 광원부로부터 상기 제2 센서부로 직접 광이 전달되는 것을 방지하도록 광 투과율이 조정될 수 있다.In one embodiment of the present invention, the encapsulation portion may be adjusted the light transmittance to prevent the light is directly transmitted from the light source unit to the second sensor unit.
본 발명의 일실시예에 있어서, 상기 봉지부의 조성물은, 에폭시 수지 3 ~ 13 wt%, 경화제 3 ~ 7 wt%, 경화 촉매제 0.1 ~ 0.3 wt%, 착색제 0.06 ~ 0.08 wt% 및 나머지는 충진재를 포함하며, 상기 충진재는 실리카로 이루어지고, 상기 착색제는 카본블랙으로 이루어질 수 있다.In one embodiment of the present invention, the composition of the encapsulation portion, epoxy resin 3 ~ 13 wt%, curing agent 3 ~ 7 wt%, curing catalyst 0.1 ~ 0.3 wt%, colorant 0.06 ~ 0.08 wt% and the rest includes a filler The filler may be made of silica, and the colorant may be made of carbon black.
본 발명의 일실시예에 있어서, 상기 커버부는, 상기 봉지부의 상면에 구비되는 광학투명점착제; 상기 광학투명점착제의 상면에 구비되는 PET 필름; 상기 PET 필름의 상면에 구비되며 컬러를 구현하는 컬러도료층; 및 상기 컬러도료층의 상면에 구비되는 보호막층을 포함할 수 있다.In one embodiment of the present invention, the cover portion, the optical transparent adhesive provided on the upper surface of the encapsulation; PET film provided on the upper surface of the optical transparent adhesive; A color paint layer provided on an upper surface of the PET film to implement color; And it may include a protective film layer provided on the upper surface of the color paint layer.
본 발명의 일실시예에 있어서, 상기 제2 센서부는 수광된 광 출력값을 미리 정해진 값으로 나눈 후, 나뉜 광 출력값을 상기 제어부로 전송할 수 있다.In an embodiment of the present disclosure, the second sensor unit may divide the received light output value by a predetermined value and then transmit the divided light output value to the controller.
본 발명의 일실시예에 있어서, 상기 제2 센서부에는 처리부가 구비되며, 상기 처리부는 미리 정해진 시간내에서 미리 정해진 횟수로 측정된 광 출력값을 합산한 후, 합산된 광 출력값을 상기 제어부로 전송할 수 있다.In one embodiment of the present invention, the second sensor unit is provided with a processing unit, and the processing unit adds the light output values measured a predetermined number of times within a predetermined time, and then transmits the summed light output values to the control unit. Can be.
상기에서 설명한 본 발명에 따른 센서 패키지의 효과를 설명하면 다음과 같다.The effect of the sensor package according to the present invention described above is as follows.
본 발명에 따르면, 사용자의 지문 등록시, 제어부는 획득된 광 출력값을 목표 광 출력값으로 자동 조정하기 위한 등록 설정이 이루어진다. 즉, 제어부는 커버부의 소재 및 색상에 상관없이 사용자의 지문 등록시, 오토게인(autogain)을 통해 제2 센서부로 획득된 광 출력값을 목표 광 출력값으로 자동 조정하게 된다.According to the present invention, upon fingerprint registration of the user, the control unit is configured to register automatically for adjusting the obtained light output value to the target light output value. That is, the controller automatically adjusts the light output value acquired by the second sensor unit through the auto gain to the target light output value when registering the fingerprint of the user regardless of the material and the color of the cover unit.
따라서, 서로 다른 사양(커버부와 봉지부의 소재 및 색상 등)을 갖는 센서 패키지라도 사용자의 지문 등록시, 제어부는 동일한 목표 광 출력값이 획득되도록 자동 조정이 이루어질 수 있다. 이에, 사양이 다른 센서 패키지라도 동일한 조건에서 위조 지문 식별이 이루어질 수 있다.Therefore, even if the sensor package having different specifications (such as the material and color of the cover portion and the encapsulation portion), when the user registers the fingerprint, the control unit may be automatically adjusted to obtain the same target light output value. Thus, even if the sensor package having a different specification can be forged fingerprint identification under the same conditions.
본 발명에 따르면, 제2 센서부는 대상물에 대한 광 특성을 측정할 경우에만 광원부의 작동을 제어하게 된다. 따라서, 광원부의 전력 소비는 최소화될 수 있다.According to the present invention, the second sensor unit controls the operation of the light source unit only when measuring the optical characteristics of the object. Thus, power consumption of the light source portion can be minimized.
그리고 제어부는 광 출력값을 획득함에 있어, 제2 센서부와 광원부를 동시에 제어하지 않고, 제2 센서부만을 제어하면 되기에 제어부에 발생되는 부하는 줄어들 수 있다. 이와 같이, 제어부에 발생되는 부하가 낮아짐으로써, 제어부의 처리 속도는 개선되어 사용자 인증 시간은 줄어들 수 있다.When the controller acquires the light output value, the load generated in the controller may be reduced since only the second sensor unit may be controlled without controlling the second sensor unit and the light source unit at the same time. As such, the load generated on the controller is lowered, so that the processing speed of the controller is improved and the user authentication time can be reduced.
본 발명에 따르면, 광 특성은 맥파, 심장 박동(혈류), 심전도, 근전도, 산소 포화도, 광량, 색온도, 파장, 편광성분 중 하나 이상으로 이루어지기 때문에, 강화된 보안 기능이 구현될 수 있다.According to the present invention, since the optical characteristic is made of one or more of pulse wave, heart rate (blood flow), electrocardiogram, electrocardiogram, oxygen saturation, quantity of light, color temperature, wavelength, and polarization component, enhanced security function can be implemented.
본 발명에 따르면, 센서 패키지는 베이스 기판 상에 제1 센서부, 광원부 및 제2 센서부가 전기적으로 연결된 상태에서 광 투과율이 조정된 단일의 봉지부로만 덮도록 이루어진다.According to the present invention, the sensor package is made to cover only a single encapsulation portion whose light transmittance is adjusted in a state in which the first sensor portion, the light source portion, and the second sensor portion are electrically connected on the base substrate.
따라서, 폴리싱 공정시 센서 패키지의 상면은 단차없이 평평하게 제조될 수 있다.Therefore, the top surface of the sensor package in the polishing process can be manufactured flat without a step.
본 발명에 따르면, 센서 패키지에 구비된 봉지부는 광 투과율의 조정을 통해 광원부로부터 제2 센서부로 직접 광이 전달되는 것을 방지함과 동시에, 광전자로 인한 노이즈 발생으로 제1 센서부의 오작동이 발생되는 것을 방지하게 된다. 따라서, 센서 패키지는 지문 정보 및 광 특성 정보를 효과적으로 측정할 수 있다.According to the present invention, the encapsulation portion provided in the sensor package prevents light from being directly transmitted from the light source portion to the second sensor portion through adjustment of the light transmittance, and at the same time, malfunction of the first sensor portion occurs due to noise generated by photoelectrons. Will be prevented. Therefore, the sensor package can effectively measure fingerprint information and optical characteristic information.
또한, 센서 패키지에는 종래의 광학 EMC 및 반도체 EMC가 각각 구비되지 않아도 되기에 센서 패키지의 구조가 단순하며, 제조 과정도 수월하다.In addition, since the sensor package does not need to include the conventional optical EMC and the semiconductor EMC, the structure of the sensor package is simple, and the manufacturing process is easy.
본 발명에 따르면, 센서 패키지는 대상물의 지문 정보와 함께 광 특성을 측정하고, 측정된 지문 정보 및 광 특성을 기 등록된 지문 정보 및 광 특성과 비교하여 위조 지문을 식별할 수 있기에, 보안성이 향상될 수 있다.According to the present invention, since the sensor package can measure the optical characteristic along with the fingerprint information of the object, and compare the measured fingerprint information and the optical characteristic with the registered fingerprint information and the optical characteristic, a fake fingerprint can be identified. Can be improved.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 종래의 센서 패키지를 보여주는 예시도이다.1 is an exemplary view showing a conventional sensor package.
도 2는 종래의 또 다른 센서 패키지를 보여주는 예시도이다.Figure 2 is an exemplary view showing another conventional sensor package.
도 3은 본 발명의 일실시예에 따른 센서 패키지의 사용 상태도이다.3 is a state diagram used in the sensor package according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 센서 패키지의 예시도이다.4 is an exemplary view of a sensor package according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 제어부가 광 출력값을 전달받는 과정을 보여주는 흐름도이다.5 is a flowchart illustrating a process in which a control unit receives an optical output value according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 광원부와 제2 센서부의 작동 상태를 보여주는 예시도이다.6 is an exemplary view illustrating an operating state of a light source unit and a second sensor unit according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 제2 센서부로 전달된 광 출력값을 개략적으로 보여주는 예시도이다.7 is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected" but also "indirectly connected" with another member in between. . In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 일실시예에 따른 센서 패키지의 사용 상태도이고, 도 4는 본 발명의 일실시예에 따른 센서 패키지의 예시도이다.3 is a state diagram of use of a sensor package according to an embodiment of the present invention, and FIG. 4 is an exemplary view of a sensor package according to an embodiment of the present invention.
도 3과 도 4를 참고하면, 센서 패키지(1000)는 베이스 기판(100), 제1 센서부(200), 광원부(300), 제2 센서부(400) 및 봉지부(500)를 포함할 수 있다.3 and 4, the sensor package 1000 may include a base substrate 100, a first sensor unit 200, a light source unit 300, a second sensor unit 400, and an encapsulation unit 500. Can be.
본 실시예에 따른 센서 패키지(1000)는 휴대폰, 스마트폰, PDA, 태블릿 PC, 노트북 컴퓨터, 휴대용 음원재생기(MP3 플레이어) 등의 전자기기에 구비될 수 있다. 센서 패키지(1000)는 생체 정보(Biometric Information)를 측정하도록 이루어진다.The sensor package 1000 according to the present embodiment may be provided in an electronic device such as a mobile phone, a smart phone, a PDA, a tablet PC, a notebook computer, and a portable sound player (MP3 player). The sensor package 1000 is configured to measure biometric information.
베이스 기판(100)은 제1 센서부(200), 광원부(300) 및 제2 센서부(400) 등과 전기신호 정보가 전달되는 기판일 수 있다. 베이스 기판(100)은 예컨대 인쇄회로기판(PCB: Printed Circuit Board) 또는 연성회로기판(FPCB: Flexible Printed Circuit Board)일 수 있다.The base substrate 100 may be a substrate through which electrical signal information is transmitted to the first sensor unit 200, the light source unit 300, the second sensor unit 400, and the like. The base substrate 100 may be, for example, a printed circuit board (PCB) or a flexible printed circuit board (FPCB).
제1 센서부(200)는 베이스 기판(100) 상에 마련될 수 있다. 이러한 제1 센서부(200)는 생체 정보, 예를 들면, 지문정보를 감지할 수 있다.The first sensor unit 200 may be provided on the base substrate 100. The first sensor unit 200 may detect biometric information, for example, fingerprint information.
이러한 제1 센서부(200)는 센싱 픽셀을 가질 수 있으며, 센싱 픽셀은 다양한 형태로 이루어질 수 있는데, 예를 들면, 센싱 픽셀은 어레이(Array) 형태로 배치되는 센싱 영역을 가질 수 있다.The first sensor unit 200 may have a sensing pixel, and the sensing pixel may be formed in various forms. For example, the sensing pixel may have a sensing area arranged in an array form.
이러한 제1 센서부(200)는 지문정보를 감지함에 있어, 정전용량 방식, 광학식, 초음파 방식, 열감지 방식, 비접촉 방식 등의 다양한 방식이 적용될 수 있으며, 이하에서는 설명의 편의를 위해 제1 센서부(200)는 정전용량식으로 설명하기로 한다.When the first sensor unit 200 detects fingerprint information, various methods, such as a capacitive type, an optical type, an ultrasonic type, a heat sensing type, and a non-contact type, may be applied. Hereinafter, the first sensor may be used for convenience of description. The unit 200 will be described as capacitive.
정전용량 방식의 제1 센서부(200)는 대상물(P, 손가락)과 정전용량을 형성할 수 있다. 이 경우, 제1 센서부(200)의 각각의 센싱 픽셀은 사용자 손가락과의 관계에서 정전용량을 형성할 수 있다. 이러한 제1 센서부(200)는 정전용량의 크기를 측정함으로써, 해당 픽셀 상부에서의 사용자 손가락의 지문에 따른 정전용량의 차이를 찾을 수 있다.The capacitive first sensor unit 200 may form a capacitance with the object P (finger). In this case, each sensing pixel of the first sensor unit 200 may form capacitance in relation to a user's finger. By measuring the size of the capacitance, the first sensor unit 200 may find a difference in capacitance according to the fingerprint of the user's finger on the corresponding pixel.
이를 통해, 제1 센서부(200)는 사용자의 손가락의 접근 여부나 그 움직임에 따른 정전용량의 변화를 감지할 수 있으며, 접촉되거나 또는 근접하게 이격된 사용자 손가락의 지문을 감지할 수 있다.In this way, the first sensor unit 200 may detect a change in capacitance according to whether a user's finger approaches or moves, and may detect a fingerprint of a user's finger contacted or closely spaced.
또한, 제1 센서부(200)는 지문을 감지하는 지문 감지 기능과 포인터 조작 기능을 가지는 바이오매트릭 트랙패드(BTP:Biometric Track Pad)일 수 있다. 더하여, 제1 센서부(200)는 사용자의 손가락의 접근 여부나 그 움직임에 따른 입력정보나 정전용량을 감지하고, 그 움직임을 기초로 커서와 같은 포인터를 움직이는 포인터 조작 기능을 가질 수 있다.In addition, the first sensor unit 200 may be a biometric track pad (BTP) having a fingerprint sensing function and a pointer manipulation function for detecting a fingerprint. In addition, the first sensor unit 200 may have a pointer manipulation function of detecting whether the user's finger approaches or input information or capacitance according to the movement, and moves a pointer such as a cursor based on the movement.
이러한 제1 센서부(200) 및 베이스 기판(100)은 본딩 와이어(미도시)에 의해 전기적으로 연결될 수 있다. 여기서, 본딩 와이어는 제1 센서부(200)의 전극과 베이스 기판(100)의 전극을 전기적으로 연결할 수 있다. 이러한 본딩 와이어는 봉지부(500)에 의해 덮일 수 있다.The first sensor unit 200 and the base substrate 100 may be electrically connected by a bonding wire (not shown). Here, the bonding wire may electrically connect the electrode of the first sensor unit 200 and the electrode of the base substrate 100. Such a bonding wire may be covered by the encapsulation part 500.
대상물(P)의 지문을 센싱하는 제1 센서부(200)는 본딩 와이어에 의한 전기적 연결 구성에 의해 사용자의 손가락을 향하여 구동신호가 송출될 수 있고, 또한 송출된 구동신호에 응답하여 사용자의 손가락의 지문 정보가 수신될 수 있다. 여기서 본딩 와이어는 골드 와이어(Gold Wire)일 수 있으나 이에 한정되는 것은 아니다.The first sensor unit 200 that senses the fingerprint of the object P may transmit a driving signal toward the user's finger by the electrical connection configuration by the bonding wire, and in response to the driving signal sent by the user's finger Fingerprint information may be received. The bonding wire may be a gold wire, but is not limited thereto.
이러한 제1 센서부(200)는 WLP(Wafer Level Package), COB(Chip On Board), QFP(Quad Flat Package), BGA(Ball Grid Array) 등의 다양한 형태(Type)로 형성될 수 있다.The first sensor unit 200 may be formed in various types such as a wafer level package (WLP), a chip on board (COB), a quad flat package (QFP), and a ball grid array (BGA).
또한, 제1 센서부(200)는 본딩 와이어에 의해 베이스 기판(100)과 전기적으로 연결되지 않고, 베이스 기판(100)의 상부에 표면실장기술(SMT: Surface Mounting Technology)에 의해 부착될 수 있고, ACF(Anisotropic Conductive Film bonding) 본딩을 통해 부착될 수도 있는 등 제1 센서부(200)는 다양한 방식을 통해 베이스 기판(100)과 전기적 연결이 이루어질 수도 있음은 물론이다.In addition, the first sensor unit 200 may not be electrically connected to the base substrate 100 by a bonding wire, but may be attached to the upper portion of the base substrate 100 by surface mounting technology (SMT). For example, the first sensor unit 200 may be electrically connected to the base substrate 100 through various methods, such as by attaching through an anisotropic conductive film bonding (ACF) bonding.
한편, 광원부(300)는 베이스 기판(100) 상에 마련되며, 대상물(P)을 향해 광을 조사하도록 이루어진다. 이러한 광원부(300)는 다양한 광을 조사할 수 있다. 예로, 광원부(300)는 IR(Infrared Ray)광, VHF(Very High Frequency)광, RF(Radio Frequency)광 중 어느 하나의 광을 조사하도록 이루어질 수 있다.On the other hand, the light source 300 is provided on the base substrate 100, it is made to irradiate light toward the object (P). The light source unit 300 may irradiate various lights. For example, the light source unit 300 may be configured to irradiate any one of infrared ray (IR) light, very high frequency (VHF) light, and radio frequency (RF) light.
이하에서는 설명의 편의를 위해 광원부(300)는 IR광을 조사할 수 있는 IR광원을 예를 들어 설명하기로 한다. 이러한 광원부(300)는 대상물(P)를 향해 IR광을 조사할 수 있도록 상측을 향하여 설치된다.Hereinafter, for convenience of description, the light source unit 300 will be described with reference to an IR light source capable of irradiating IR light. The light source unit 300 is installed upward to irradiate IR light toward the object P.
여기서 광원부(300)는 제1 센서부(200)와 같이 본딩 와이어를 통해 베이스 기판(100)과 전기적 결합이 이루어질 수도 있고, 표면실장기술 또는 ACF 본딩 등의 다양한 방식을 통해 부착될 수도 있다.The light source unit 300 may be electrically coupled to the base substrate 100 through a bonding wire like the first sensor unit 200, or may be attached through various methods such as surface mount technology or ACF bonding.
한편, 제2 센서부(400)는 베이스 기판(100) 상에 마련된다. 이러한 제2 센서부(400)는 빛에너지를 전기에너지로 변환하는 광센서인 포토다이오드(Photodiode)를 포함할 수 있으며, 제2 센서부(400)는 광원부(300)로부터 조사되어 대상물(P)을 거친 후 수광된 광으로부터 광 특성을 측정하도록 이루어진다.Meanwhile, the second sensor unit 400 is provided on the base substrate 100. The second sensor unit 400 may include a photodiode, which is an optical sensor that converts light energy into electrical energy, and the second sensor unit 400 is irradiated from the light source unit 300 to be the object P. After passing through the light, the optical properties are measured from the received light.
광 특성은 맥파(PPG: Photo PlethysmoGraph), 심장 박동(HR: Heart Rate), 심전도, 근전도, 산소 포화도, 광량, 색온도, 파장, 편광성분 중 하나 이상으로 이루어질 수 있다. 예로, 제2 센서부(400)는 수광된 광으로부터 맥파를 측정할 수 있는 센서(예를 들면, PPG 센서)와 심장 박동(혈류)를 측정할 수 있는 센서(예를 들면, HR 센서)가 함께 구비될 수도 있다.The optical characteristics may include at least one of a pulse wave (PPG: Photo PlethysmoGraph), a heart rate (HR), an electrocardiogram, an electrocardiogram, an oxygen saturation, an amount of light, a color temperature, a wavelength, and a polarization component. For example, the second sensor unit 400 may include a sensor (for example, PPG sensor) capable of measuring pulse wave from the received light and a sensor (for example, HR sensor) capable of measuring heart rate (blood flow). It may be provided together.
이와 같이, 제2 센서부(400)는 광원부(300)로부터 조사되어 대상물(P)을 거친 후 수광된 광으로부터 맥파, 심장 박동, 심전도, 근전도, 산소 포화도, 광량, 색온도, 파장, 편광성분 등의 다양한 광 특성을 측정하게 된다.As such, the second sensor unit 400 is irradiated from the light source unit 300 and passes through the object P to receive pulse waves, heartbeats, electrocardiograms, electrocardiograms, oxygen saturation, amount of light, color temperature, wavelength, polarization components, and the like. It will measure the various optical properties of.
여기서 제2 센서부(400)가 맥파를 측정할 수 있는 센서 또는, 심장 박동(혈류)을 측정할 수 있는 센서를 포함하는 경우, 제2 센서부(400)는 광원부(300)로부터 조사되어 대상물(P)을 거친 후 수광된 광을 통해 맥파 또는 심장 박동(혈류)의 측정이 이루어질 수 있다. 즉, 제2 센서부(400)는 광원부(300)로부터 조사되어 대상물(P)을 거친 후 수광된 광을 펄스 신호로 변환함으로써, 맥파 또는 심장 박동(혈류)을 측정할 수 있다.Here, when the second sensor unit 400 includes a sensor capable of measuring pulse waves or a sensor capable of measuring heart rate (blood flow), the second sensor unit 400 is irradiated from the light source unit 300 to the object. After passing through (P), the received light can be used to measure pulse wave or heart rate (blood flow). That is, the second sensor unit 400 may measure pulse wave or heartbeat (blood flow) by converting the received light after being irradiated from the light source unit 300 and passing through the object P into a pulse signal.
이때, 제2 센서부(400)로부터 변환된 펄스 신호의 크기는 사용자의 요구사항에 따라 선택적인 증폭이 이루어질 수도 있다. 이는, 펄스 신호의 크기 증폭을 통해 대상물(P)의 맥파 또는 심장 박동(혈류)을 보다 정확하게 측정하기 위함이다.At this time, the amplitude of the pulse signal converted from the second sensor unit 400 may be selectively amplified according to the user's requirements. This is to more accurately measure the pulse wave or heart rate (blood flow) of the object P through amplitude amplification of the pulse signal.
도 5는 본 발명의 일실시예에 따른 제어부가 광 출력값을 전달받는 과정을 보여주는 흐름도이고, 도 6은 본 발명의 일실시예에 따른 광원부와 제2 센서부의 작동 상태를 보여주는 예시도이다.5 is a flowchart illustrating a process of receiving a light output value by a control unit according to an embodiment of the present invention, and FIG. 6 is an exemplary view showing an operating state of a light source unit and a second sensor unit according to an embodiment of the present invention.
도 5와 도 6을 참고하면, 제2 센서부(400)는 광원부(300)를 제어하도록 이루어진다. 즉, 제2 센서부(400)는 대상물(P)에 대한 광 특성을 측정할 경우, 광원부(300)의 작동을 제어하게 된다. 이와 같이, 광원부(300)는 제2 센서부(400)에 의해 광 특성을 측정할 경우에만 작동되기에 광원부(300)의 전력 소비는 최소화될 수 있다.5 and 6, the second sensor unit 400 is configured to control the light source unit 300. That is, when the second sensor unit 400 measures the optical characteristics of the object P, the second sensor unit 400 controls the operation of the light source unit 300. As such, since the light source unit 300 is operated only when measuring the optical characteristics by the second sensor unit 400, power consumption of the light source unit 300 may be minimized.
구체적으로, 제어부(700)가 제2 센서부(400)로 광 특성 요청에 대한 작동 명령을 전달하면, 제2 센서부(400)는 제어부(700)로부터 전달받은 작동 명령에 따라 광원부(300)의 작동을 제어하게 된다. 즉, 광원부(300)는 제2 센서부(400)의 작동 명령에 따라 발광하게 된다. 이때, 광원부(300)는 미리 정해진 시간 간격으로 발광하게 된다.Specifically, when the control unit 700 transmits an operation command for the optical characteristic request to the second sensor unit 400, the second sensor unit 400 according to the operation command received from the control unit 700, the light source unit 300 It will control the operation of. That is, the light source unit 300 emits light according to the operation command of the second sensor unit 400. At this time, the light source unit 300 emits light at predetermined time intervals.
여기서 광원부(300)로부터 제2 센서부(400)가 광 출력값을 획득하는 과정을 개략적으로 살펴보면, 광원부(300)가 대상물(P)을 향해 1차로 광을 조사한 후, 꺼지게 된다.Here, when the second sensor unit 400 acquires the light output value from the light source unit 300, the light source unit 300 irradiates light primarily toward the object P and is turned off.
다음으로, 제2 센서부(400)는 광원부(300)로부터 조사되어 대상물(P)을 거친 광을 수광하게 된다.Next, the second sensor unit 400 is irradiated from the light source unit 300 to receive the light passing through the object (P).
다음으로, 제2 센서부(400)는 수광된 광을 디지털 신호로 변환시킨다. 즉, 제2 센서부(400)는 아날로그디지털 변환기(ADC)를 통해 제2 센서부(400)로 수광된 광을 디지털 데이터 값인 광 출력값으로 변환시키게 된다. 이와 같이, 제2 센서부(400)는 수광된 광으로부터 획득된 광 출력값을 통해 다양한 광 특성을 측정하게 된다. 이러한 광 특성에 대한 내용은 상술된 바 구체적인 설명은 생략하기로 한다.Next, the second sensor unit 400 converts the received light into a digital signal. That is, the second sensor unit 400 converts the light received by the second sensor unit 400 through the analog-to-digital converter (ADC) into an optical output value that is a digital data value. As such, the second sensor unit 400 measures various optical characteristics through the light output value obtained from the received light. Details of such optical characteristics will not be described in detail as described above.
다음으로, 제2 센서부(400)는 광 출력값을 제어부(700)로 전송하게 된다.Next, the second sensor unit 400 transmits the light output value to the control unit 700.
이때, 광원부(300)가 대상물(P)을 향해 광을 조사한 후, 제2 센서부(400)가 광 출력값을 제어부(700)로 전송하는 단계까지가 1 사이클(cycle)이 될 수 있다.In this case, after the light source unit 300 irradiates the light toward the object P, it may be one cycle until the second sensor unit 400 transmits the light output value to the control unit 700.
이러한 1 사이클 완료된 후, 광원부(300)는 다시 대상물(P)을 향해 2차로 광을 조사한 후, 꺼지게 된다. 다음으로, 제2 센서부(400)는 또 다른 광 출력값을 획득한 후 제어부(700)로 광 출력값을 전송하게 된다.After this one cycle is completed, the light source unit 300 irradiates light toward the object P again, and then turns off. Next, the second sensor unit 400 obtains another light output value and then transmits the light output value to the controller 700.
이와 같이, 광원부(300)는 제2 센서부(400)가 광 출력값을 획득한 후, 획득된 광 출력값을 제어부(700)로 전송하는 과정에서 지속적으로 광을 조사하지 않는다. 즉, 광원부(300)는 미리 정해진 시간 간격으로 발광이 이루어지게 된다. 따라서, 광원부(300)의 전력 소모는 줄어들 수 있다.As described above, the light source unit 300 does not continuously irradiate light in the process of transmitting the obtained light output value to the control unit 700 after the second sensor unit 400 obtains the light output value. That is, the light source 300 emits light at predetermined time intervals. Therefore, power consumption of the light source 300 may be reduced.
그리고 제2 센서부(400)로부터 제어부(700)로 광 출력값을 전송하는 과정에서 제2 센서부(400)는 매 사이클마다 광 출력값을 제어부(700)로 전송할 수도 있고, 예를 들어 1 사이클 ~ 4 사이클의 4개의 사이클에서 획득된 광 출력값을 취합한 후, 취합된 광 출력값을 제어부(700)로 전송할 수도 있다.In the process of transmitting the light output value from the second sensor unit 400 to the control unit 700, the second sensor unit 400 may transmit the light output value to the control unit 700 every cycle. After collecting the light output values obtained in four cycles of four cycles, the collected light output values may be transmitted to the controller 700.
이와 같이, 각각의 사이클에서 획득된 광 출력값을 취합 상태에서 제어부(700)로 광 출력값을 전송할 경우에는 제2 센서부(400)와 제어부(700) 간의 통신 횟수가 줄게 되어 센서 패키지(1000)의 전력 소모는 줄어들게 된다.As such, when the light output value is transmitted to the control unit 700 in the collected state obtained from each cycle, the number of times of communication between the second sensor unit 400 and the control unit 700 is reduced, so that Power consumption is reduced.
이러한 본 발명에 따른 제어부(700)는 광원부(300)와 제2 센서부(400)를 동시에 제어하는 종래의 제어부와 달리 제2 센서부(400)만 제어하고도 광 출력값의 획득이 가능하기에 제어부(700)에 발생되는 부하는 최소화될 수 있다. 따라서, 제어부(700)의 처리 속도가 빨라지게 되어, 사용자 인증 시간은 줄어들 수 있다.The control unit 700 according to the present invention is unlike the conventional control unit for controlling the light source unit 300 and the second sensor unit 400 at the same time because it is possible to obtain the light output value only by controlling the second sensor unit 400 The load generated in the controller 700 can be minimized. Therefore, the processing speed of the controller 700 is increased, and the user authentication time can be reduced.
여기서 본 발명에 따른 제어부(700)는 반드시 제2 센서부(400)만을 제어하도록 이루어진 것으로 한정되지 않으며, 제2 센서부(400)와 광원부(300)를 동시에 제어할 수도 있음은 물론이다.Here, the control unit 700 according to the present invention is not necessarily limited to controlling only the second sensor unit 400, and of course, the second sensor unit 400 and the light source unit 300 may be simultaneously controlled.
한편, 제어부(700)는 제2 센서부(400)로부터 획득된 광 출력값으로부터 위조 지문을 분석하게 된다.Meanwhile, the controller 700 analyzes the forged fingerprint from the light output value obtained from the second sensor unit 400.
이러한 제어부(700)는 제1 센서부(200)로부터 전달된 지문 정보와 제2 센서부(400)로부터 전달된 광 특성을 기 등록된 지문 정보 및 광 특성과 비교하여 측정되는 지문의 위조 여부를 식별할 수 있다.The controller 700 compares the fingerprint information transmitted from the first sensor unit 200 and the optical property transmitted from the second sensor unit 400 with the registered fingerprint information and the optical property to determine whether the fingerprint is forged. Can be identified.
이하, 설명의 편의를 위해 사용자의 지문 등록시는 사용자의 위조 여부를 판단하기 위한 기준이 되는 지문 정보 및 광 출력값을 제어부(700)에 등록하는 과정이고, 사용자의 지문 인증시는 제어부(700)에 기 등록된 지문 정보 및 광 출력값이 저장된 상태에서 사용자를 인증하기 위한 지문 정보 및 광 출력값의 정보가 제어부(700)로 획득되는 과정을 말한다.Hereinafter, for convenience of description, the process of registering the fingerprint information and the light output value, which are criteria for determining whether the user is forged, is registered in the controller 700 for the convenience of description, and the controller 700 at the time of fingerprint authentication of the user. The fingerprint information and the light output value for authenticating the user in the state in which the registered fingerprint information and the light output value are stored are referred to as a process of obtaining by the controller 700.
상세히, 제어부(700)는 사용자의 지문 등록시, 제1 센서부(200) 및 제2 센서부(400)에서 측정되는 지문 정보 및 광 출력값을 저장 등록하게 된다. 이렇게 기 등록된 지문 정보 및 광 출력값은 측정되는 대상물(P)의 위조 여부를 분석하는 기준이 된다.In detail, the controller 700 stores and registers fingerprint information and light output values measured by the first sensor unit 200 and the second sensor unit 400 when a user registers a fingerprint. The fingerprint information and the light output value registered in advance are the criteria for analyzing whether or not the object P to be measured is forged.
여기서 사용자의 지문 등록시, 제어부(700)는 제2 센서부(400)로 획득된 광 출력값이 목표 광 출력값으로 자동 조정되도록 등록 설정이 이루어진다.In this case, when the user registers a fingerprint, the control unit 700 performs registration setting so that the light output value acquired by the second sensor unit 400 is automatically adjusted to the target light output value.
다시 말해서, 제어부(700)는 오토게인(autogain)을 통해 사용자의 지문 등록시 제2 센서부(400)로 획득된 광 출력값을 목표 광 출력값으로 자동 조정하기 위한 등록 설정이 이루어진다.In other words, the control unit 700 performs registration setting for automatically adjusting the light output value acquired by the second sensor unit 400 to the target light output value when the user's fingerprint is registered through autogain.
여기서 기 등록된 광 특성이 광량인 경우를 일예로 설명하면, 제2 센서부(400)에서 획득되는 광 출력값은 광량 값이 될 수 있다. 즉, 제어부(700)는 지문 이외에 제2 센서부(400)에서 획득된 광 출력값과 제어부(700)에 기 등록된 광 출력값과의 비교를 통해 지문의 위조 여부를 판단할 수 있다.Herein, a case in which the pre-registered optical characteristic is an amount of light will be described as an example. The light output value obtained by the second sensor unit 400 may be an amount of light. That is, the control unit 700 may determine whether the fingerprint is forged by comparing the light output value acquired by the second sensor unit 400 with the light output value previously registered in the control unit 700 in addition to the fingerprint.
예를 들면, 사용자의 지문 등록시, 제2 센서부(400)로 획득된 광 출력값이 40인 경우, 제어부(700)는 목표 광 출력값으로 획득된 광 출력값을 자동 조정하게 된다. 이때, 제어부(700)의 목표 광 출력값이 80이라면 제어부(700)는 등록 설정을 통해 제2 센서부(400)로 획득된 40의 광 출력값을 80의 목표 광 출력값으로 자동 조정하게 된다. 즉, 제어부(700)는 오토게인을 통해 제2 센서부(400)로 획득되는 광 출력값을 2배로 증대시키게 된다.For example, when the user registers a fingerprint, when the light output value obtained by the second sensor unit 400 is 40, the controller 700 automatically adjusts the light output value obtained as the target light output value. In this case, if the target light output value of the control unit 700 is 80, the control unit 700 automatically adjusts the light output value of 40 obtained by the second sensor unit 400 to the target light output value of 80 through the registration setting. That is, the controller 700 doubles the light output value obtained by the second sensor unit 400 through the auto gain.
이때, 사용자의 지문 등록시, 제어부(700)에 저장된 등록 설정은 사용자의 지문 인증시에도 동일하게 적용된다. 즉, 사용자의 지문 등록시, 제2 센서부(400)로 획득된 광 출력값을 2배로 증대시키도록 등록 설정이 제어부(700)에 저장된 경우, 사용자의 지문 인증시에도 제어부(700)는 제2 센서부(400)로 획득된 광 출력값을 2배로 증대시키게 된다.At this time, when registering the fingerprint of the user, the registration settings stored in the control unit 700 is equally applied to the fingerprint authentication of the user. That is, when the registration setting is stored in the control unit 700 to double the light output value acquired by the second sensor unit 400 when the user registers the fingerprint, the control unit 700 may control the second sensor even when the user authenticates the fingerprint. The light output value obtained by the unit 400 is doubled.
여기서 제어부(700)의 등록 설정은 광원부(300)의 광량을 조절하거나 제2 센서부(400)로 수광되는 광 출력값을 선택적으로 조절하도록 이루어질 수도 있다.The registration setting of the controller 700 may be configured to adjust the light amount of the light source unit 300 or to selectively adjust the light output value received by the second sensor unit 400.
따라서, 서로 다른 사양(커버부와 봉지부의 소재 및 색상 등)을 갖는 센서 패키지(1000)라도 사용자의 지문 등록시, 제어부(700)는 동일한 목표 광 출력값이 획득되도록 자동 조정이 이루어짐에 따라 사양이 다른 센서 패키지(1000)라도 동일한 조건에서 위조 지문 식별이 이루어질 수 있다.Therefore, even if the sensor package 1000 having different specifications (such as the material and color of the cover portion and the encapsulation portion), when the user's fingerprint registration, the control unit 700 is automatically adjusted to obtain the same target light output value is different specifications Even in the sensor package 1000, a fake fingerprint identification may be performed under the same conditions.
다시 말해서, 본 발명의 제어부(700)는 종래의 센서 패키지에 구비된 제어부와 달리 사용자의 지문 등록시, 제2 센서부(400)로 수광된 광 출력값에 대해 지정된 목표 광 출력값으로 오토게인이 이루어짐에 따라 제어부(700)는 커버부(600)의 소재 및 색상에 상관없이 다양한 센서 패키지(1000)에 사용될 수 있다.In other words, the control unit 700 of the present invention, unlike the control unit provided in the conventional sensor package, when the user's fingerprint registration, the auto gain is made to the target light output value specified for the light output value received by the second sensor unit 400 Accordingly, the controller 700 may be used in various sensor packages 1000 regardless of the material and the color of the cover 600.
일예로, 커버부(600)의 색상에 따른 투과율에 따라 제2 센서부(400)로 수광된 광 출력값은 달라지게 된다. 즉, IR 블랙은 화이트보다 광 투과율이 우수하고 화이트는 실버보다 광 투과율이 우수하다. 이와 같이, 커버부(600)의 소재 및 색상에 따라 광원부(300)로부터 대상물(P)을 거쳐 제2 센서부(400)로 수광된 광 출력값은 달라지게 된다.For example, the light output value received by the second sensor unit 400 varies according to the transmittance according to the color of the cover 600. That is, IR black has better light transmittance than white and white has better light transmittance than silver. As such, the light output value received from the light source unit 300 to the second sensor unit 400 through the object P varies according to the material and color of the cover unit 600.
이에, 종래에는 센서 패키지를 제조하는 과정에서 커버부의 소재 및 색상에 따라 제어부의 설정값을 각각 조절하거나 커버부의 소재 및 색상에 맞는 제어부를 별도로 제조해야되는 어려움이 있었다.Thus, conventionally, in the process of manufacturing the sensor package, there is a difficulty in controlling the set values of the control unit according to the material and the color of the cover part, or separately manufacturing a control unit suitable for the material and the color of the cover part.
그러나 본 발명에 따른 제어부(700)는 커버부(600)의 소재 및 색상에 상관없이 사용자의 지문 등록시, 제2 센서부(400)로 획득된 광 출력값을 지정된 목표 광 출력값으로 자동 조정이 가능하도록 이루어짐에 따라 센서 패키지(1000)를 제조하는 과정에서 커버부(600)의 소재 및 색상에 맞는 맞춤 형태의 제어부를 센서 패키지(1000)에 장착할 필요가 없다. 따라서, 센서 패키지(1000)의 제조 과정이 단순하여 제조 시간은 단축될 수 있다.However, the controller 700 according to the present invention may automatically adjust the light output value obtained by the second sensor unit 400 to a designated target light output value when the user registers a fingerprint regardless of the material and color of the cover 600. As a result, in the process of manufacturing the sensor package 1000, there is no need to mount a controller having a custom shape that matches the material and color of the cover part 600 to the sensor package 1000. Therefore, the manufacturing process of the sensor package 1000 is simple, so that the manufacturing time can be shortened.
앞의 예를 이어서 설명하면, 사용자의 지문 등록시, 제어부(700)가 목표 광 출력값을 80으로 설정한 경우, 제어부(700)는 목표 광 출력값을 기준으로 광 출력값의 인증 범위를 설정하게 된다. 즉, 제어부(700)는 사용자의 지문 인증시, 광 출력값의 오차가 발생될 수 있는 70 ~ 90의 광 출력값을 인증 범위로 설정할 수도 있다. 여기서 제어부(700)가 설정한 광 출력값의 오차 범위는 설명을 위한 일예일 뿐, 광 출력값의 인증 범위는 다양한 범위로 설정될 수 있음은 물론이다.In the following example, when the user registers a fingerprint, when the controller 700 sets the target light output value to 80, the controller 700 sets an authentication range of the light output value based on the target light output value. That is, the controller 700 may set the light output value of 70 to 90, which may cause an error in the light output value, when the fingerprint is authenticated by the user as the authentication range. Here, the error range of the light output value set by the controller 700 is merely an example for description, and the authentication range of the light output value may be set to various ranges.
이와 같이, 제어부(700)가 70 ~ 90의 광 출력값을 인증 범위로 설정한 상태에서, 사용자의 지문 인증시 제2 센서부(400)로 획득된 광 출력값이 72인 경우, 제어부(700)는 광 출력값에 있어서는 위조 지문이 아니라고 판단하게 된다.As such, when the control unit 700 sets the light output value of 70 to 90 as the authentication range, when the light output value obtained by the second sensor unit 400 is 72 when the user authenticates the fingerprint, the control unit 700 In the light output value, it is determined that the fingerprint is not a fake fingerprint.
여기서 제어부(700)는 제2 센서부(400)로 획득된 광 출력값으로부터 광량 이외의 맥파, 심장 박동, 심전도 등의 다양한 광 특성을 더 측정할 수 있음은 물론이다. 이와 같이, 센서 패키지(1000)가 2가지 이상의 광 특성을 측정하는 경우에는 더욱 정밀한 지문 위조 여부를 판단할 수 있다.Here, the control unit 700 may further measure various optical characteristics such as pulse wave, heart rate, electrocardiogram, etc. in addition to the light amount from the light output value obtained by the second sensor unit 400. As such, when the sensor package 1000 measures two or more optical characteristics, it may be determined whether the fingerprint forgery is more accurate.
이때, 사용자의 지문 등록시, 제2 센서부(400)로 획득된 광 출력값을 2배로 증대시키도록 제어부(700)에 등록 설정이 저장된 경우, 사용자의 지문 인증시에도 제어부(700)는 제2 센서부(400)로 획득된 광 출력값을 2배로 증대시키게 된다. 즉, 사용자의 지문 인증시 제2 센서부(400)로 획득된 광 출력값이 72이라면 제2 센서부(400)에 획득된 72의 광 출력값은 제어부(700)에 의해 2배가 증대된 값이다.At this time, when the registration setting is stored in the control unit 700 to double the light output value acquired by the second sensor unit 400 when the user registers the fingerprint, the control unit 700 may perform the second sensor even when the user authenticates the fingerprint. The light output value obtained by the unit 400 is doubled. That is, when the light output value obtained by the second sensor unit 400 is 72 when the user authenticates the fingerprint, the light output value of 72 obtained by the second sensor unit 400 is a value doubled by the controller 700.
한편, 사용자 지문 인증시 제2 센서부(400)로 획득된 광 출력값이 50인 경우, 사용자 지문 인증시 제2 센서부(400)로 획득된 광 출력값은 기 등록된 광 출력값의 인증 범위에 해당되지 않으므로, 제어부(700)는 위조 지문으로 판단하게 된다.On the other hand, when the light output value obtained by the second sensor unit 400 when the user fingerprint authentication is 50, the light output value obtained by the second sensor unit 400 during the user fingerprint authentication corresponds to the authentication range of the pre-registered light output value. Since not, the control unit 700 is determined to be a fake fingerprint.
한편, 제2 센서부(400)는 수광된 광 출력값을 제어부(700)로 정확히 전송하도록 이루어질 수 있다. 즉, 제2 센서부(400)에는 분할부(미도시)가 구비되어, 사용자는 제2 센서부(400)로 전달된 광 출력값을 분할부로부터 미리 정해진 값으로 나눈 후, 나눠진 광 출력값을 외부 기기인 제어부(700)로 전송하도록 이루어질 수 있다.Meanwhile, the second sensor unit 400 may be configured to accurately transmit the received light output value to the control unit 700. That is, the second sensor unit 400 is provided with a divider (not shown), and the user divides the light output value transmitted to the second sensor unit 400 from the divider to a predetermined value, and then divides the divided light output value to the outside. It may be made to transmit to the control unit 700 which is a device.
이와 같이, 분할부가 구비된 제2 센서부(400)는 정확한 광 출력값을 제어부(700)로 전송하게 되어 잘못된 광 출력값이 제어부(700)로 전달되는 것을 방지하게 된다.As such, the second sensor unit 400 having the division unit transmits the correct light output value to the control unit 700, thereby preventing the wrong light output value from being transferred to the control unit 700.
종래의 제2 센서부에는 이러한 분할부가 구비되어 있지 않아, 광 출력값이 정확히 제어부(700)로 전달되지 못하는 문제가 있었다. 예를 들어, 광원부(300)로부터 제2 센서부로 광 출력값이 전달됨에 있어, 제2 센서부로 전달되는 광은 광원부(300)로부터 대상물(P)을 거친 후, 제2 센서부로 전달되는 반사광과 광원부(300)로부터 제2 센서부로 광이 직접 전달되는 직접 광이 있을 수 있다. 이때, 예로 제2 센서부로 전달된 반사광의 광 출력값이 95이고, 직접 광의 광 출력값이 25인 경우, 제2 센서부로 전달되는 광 출력값은 120이 된다.The conventional second sensor unit is not provided with such a divider, and thus there is a problem in that the light output value is not accurately transmitted to the control unit 700. For example, in the light output value transmitted from the light source unit 300 to the second sensor unit, the light transmitted to the second sensor unit passes through the object P from the light source unit 300, and then the reflected light and the light source unit transmitted to the second sensor unit. There may be direct light from which light is directly transmitted from 300 to the second sensor unit. At this time, for example, when the light output value of the reflected light transmitted to the second sensor unit is 95 and the light output value of the direct light is 25, the light output value transmitted to the second sensor unit is 120.
여기서 제2 센서부가 제어부(700)로 전송 가능한 최대 광 출력값이 100일 경우, 제2 센서부는 제어부(700)로 120의 광 출력값을 전송하지 못하고 100의 광 출력값을 전송하게 된다. 즉, 제2 센서부는 제어부(700)로 잘못된 광 출력값을 전송하는 문제가 발생하게 된다.Here, when the maximum light output value that the second sensor unit can transmit to the control unit 700 is 100, the second sensor unit does not transmit the light output value of 120 to the control unit 700 but transmits the light output value of 100. That is, the second sensor unit may cause a problem of transmitting an incorrect light output value to the controller 700.
이에 반해, 본 발명의 제2 센서부(400)에는 분할부가 구비되어 있어, 제2 센서부(400)는 정확한 광 출력값을 제어부(700)로 전송하도록 이루어진다. 여기서 사용자는 제2 센서부(400)로 전달된 광 출력값을 선택적으로 분할 가능하도록 조정할 수 있다. 즉, 사용자는 제2 센서부(400)로 전달된 광 출력값을 미리 정해진 값으로 나누도록 설정할 수 있다. 이때, 분할부는 제2 센서부(400)로 전달된 광 출력값을 1/2, 1/3, 1/4 등 다양한 값으로 나눌 수 있음은 물론이다.On the other hand, the second sensor unit 400 of the present invention is provided with a divider, and the second sensor unit 400 is configured to transmit the correct light output value to the control unit 700. In this case, the user may adjust the light output value transmitted to the second sensor unit 400 to be selectively divided. That is, the user may set to divide the light output value transmitted to the second sensor unit 400 by a predetermined value. In this case, the division may divide the light output value transmitted to the second sensor unit 400 into various values such as 1/2, 1/3, and 1/4.
예로, 상기와 같이 제2 센서부(400)로 전달된 반사광의 광 출력값이 95이고, 직접 광의 광 출력값이 25인 경우, 제2 센서부(400)로 전달되는 광 출력값은 120이 된다. 만약, 분할부가 제2 센서부(400)로 전달된 광 출력값에 대해 1/2로 나누도록 설정된 경우, 제2 센서부(400)는 120의 광 출력값을 1/2로 나눈 60의 광 출력값을 제어부(700)로 전송하게 된다.For example, when the light output value of the reflected light transmitted to the second sensor unit 400 is 95 and the light output value of the direct light is 25 as described above, the light output value transmitted to the second sensor unit 400 is 120. If the division unit is set to divide the light output value transmitted to the second sensor unit 400 by 1/2, the second sensor unit 400 divides the light output value of 120 by 1/2 and then divides the light output value of 60 by 1/2. Transmission to the control unit 700.
이와 같이, 제2 센서부(400)로 전달된 광 출력값이 제2 센서부(400)가 전송 가능한 광 출력값의 이상일 경우라도, 제2 센서부(400)에 구비된 분할부를 통해 광 출력값을 선택적으로 조절한 후, 제어부(700)로 전송할 수 있다. 따라서, 제어부(700)는 정확한 광 출력값을 전달받을 수 있다. 이때, 제어부(700)로는 분할부의 조정값 정보가 제공되어, 제어부(700)는 제2 센서부(400)로부터 실제로 측정된 광 출력값을 알 수 있다.As such, even when the light output value transmitted to the second sensor unit 400 is greater than or equal to the light output value that can be transmitted by the second sensor unit 400, the light output value is obtained through the division unit provided in the second sensor unit 400. After the selective adjustment, it can be transmitted to the control unit 700. Therefore, the controller 700 may receive the correct light output value. In this case, the controller 700 may be provided with adjustment value information of the division unit, and the controller 700 may know the light output value actually measured from the second sensor unit 400.
한편, 제2 센서부(400)에는 처리부(미도시)가 구비되어, 제2 센서부(400)와 제어부(700)간의 통신 소비전력을 낮출 수 있다. 즉, 제2 센서부(400)에 구비된 처리부는 제2 센서부(400)로 전달된 각각의 광 출력값을 실시간으로 전송하지 않고, 미리 정해진 시간 내에서 미리 정해진 횟수만큼 측정한 후, 측정된 광 출력값을 제어부(700)로 전송하도록 이루어진다.On the other hand, the second sensor unit 400 is provided with a processing unit (not shown), it is possible to lower the communication power consumption between the second sensor unit 400 and the control unit 700. That is, the processing unit provided in the second sensor unit 400 does not transmit each light output value transmitted to the second sensor unit 400 in real time, but measures a predetermined number of times within a predetermined time and then measures The light output value is transmitted to the control unit 700.
따라서, 제2 센서부(400)와 제어부(700)의 통신 횟수를 줄임으로써, 제2 센서부(400)의 부하를 낮추며, 제2 센서부(400)의 소비 전력을 줄일 수 있다.Therefore, by reducing the number of times the communication between the second sensor unit 400 and the control unit 700, the load of the second sensor unit 400 can be lowered, and the power consumption of the second sensor unit 400 can be reduced.
도 7은 본 발명의 일실시예에 따른 제2 센서부로 전달된 광 출력값을 개략적으로 보여주는 예시도이다.7 is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to an embodiment of the present invention.
도 7을 참고하면, 제2 센서부(400)는 광원부(300)의 작동시, 미리 정해진 시간마다 제2 센서부(400)로 전달되는 광 출력값을 측정한 후, 측정된 광 출력값을 외부 기기인 제어부(700)로 전송할 수 있다.Referring to FIG. 7, in operation of the light source unit 300, the second sensor unit 400 measures the light output value transmitted to the second sensor unit 400 at a predetermined time and then measures the measured light output value in an external device. To the control unit 700.
여기서, 도 7의 (a)는 비교예 따른 제2 센서부로 전달된 광 출력값을 개략적으로 보여주는 예시도이고, 도 7의 (b)는 실시예에 따른 제2 센서부(400)로 전달된 광 출력값을 개략적으로 보여주는 예시도이다.Here, FIG. 7A is an exemplary view schematically showing the light output value transmitted to the second sensor unit according to the comparative example, and FIG. 7B is light transmitted to the second sensor unit 400 according to the embodiment. An example diagram schematically showing the output value.
비교예에 따른 일반적인 제2 센서부는 광원부(300)의 작동을 통해 제2 센서부로 전달되는 광 출력값을 실시간으로 제어부(700)로 전송하도록 이루어진다. 예로, 제2 센서부는 제1 시점(t1) 내지 제8 시점(t8)에서 측정된 각각의 광 출력값을 제어부(700)로 전송하도록 이루어진다.The general second sensor unit according to the comparative example is configured to transmit the light output value transmitted to the second sensor unit to the control unit 700 in real time through the operation of the light source unit 300. For example, the second sensor unit is configured to transmit the respective light output values measured at the first to t8 times t8 to the controller 700.
이와 달리, 실시예에 따른 제2 센서부(400)는 광원부(300)의 작동을 통해 제2 센서부(400)로 전달되는 광 출력값에 대해 미리 정해진 횟수로 측정된 광 출력값을 합산한 후, 합산된 광 출력값을 제어부(700)로 전송하도록 이루어진다.On the contrary, the second sensor unit 400 according to the embodiment sums the light output values measured a predetermined number of times with respect to the light output values transmitted to the second sensor unit 400 through the operation of the light source unit 300. The aggregated light output value is transmitted to the control unit 700.
예로, 제2 센서부(400)의 처리부가 제1 시점(t1)으로부터 제4 시점(t4)까지의 4개의 측정 시점을 제1 구간(S1)으로 설정한 경우, 제2 센서부(400)는 제1 시점(t1)에서 측정된 광 출력값인 2, 제2 시점(t2)에서 측정된 광 출력값인 4, 제3 시점(t3)에서 측정된 광 출력값인 4, 제4 시점(t4)에서 측정된 광 출력값인 6의 각각의 광 출력값을 합산하게 된다. 즉, 처리부는 제1 시점(t1)으로부터 제4 시점(t4)까지의 제1 구간(S1)에서 측정된 각각의 광 출력값이 합산한 후, 합산된 광 출력값 16(2+4+4+6)을 제어부(700)로 전송하게 된다.For example, when the processing unit of the second sensor unit 400 sets four measurement time points from the first time point t1 to the fourth time point t4 as the first section S1, the second sensor unit 400 may be used. Is 2, the light output value measured at the first time point t1, 4 is the light output value measured at the second time point t2, 4 is the light output value measured at the third time point t3, and 4th time t4. Each light output value of 6, which is the measured light output value, is added up. That is, the processor adds each of the light output values measured in the first section S1 from the first time point t1 to the fourth time point t4, and then adds up the summed light output values 16 (2 + 4 + 4 + 6). ) Is transmitted to the control unit 700.
다음으로, 제2 센서부(400)는 제2 구간(S2)에서 측정된 광 출력값을 제어부(700)로 전송하게 된다.Next, the second sensor unit 400 transmits the light output value measured in the second section S2 to the controller 700.
이와 같이, 제2 센서부(400)는 제2 센서부(400)로 전달된 각각의 광 출력값을 실시간으로 전송하지 않고, 미리 정해진 시간 내에서 미리 정해진 횟수만큼 측정한 후, 측정된 광 출력값만을 제어부(700)로 전송하도록 이루어짐에 따라, 제2 센서부(400)의 부하를 낮춤과 동시에 제2 센서부(400)의 소비 전력을 효과적으로 줄일 수 있다.As such, the second sensor unit 400 does not transmit each light output value transmitted to the second sensor unit 400 in real time, and after measuring the predetermined number of times within a predetermined time, only the measured light output value. As the transmission to the control unit 700 is performed, the load of the second sensor unit 400 may be lowered and the power consumption of the second sensor unit 400 may be effectively reduced.
다시 도 3과 도 4를 참고하면, 제2 센서부(400)는 제1 센서부(200)와 같은 방식으로 베이스 기판(100)과 전기적 결합이 이루어질 수 있다.3 and 4, the second sensor unit 400 may be electrically coupled to the base substrate 100 in the same manner as the first sensor unit 200.
이때, 제2 센서부(400)는 광원부(300)와 미리 정해진 간격으로 이격된다. 즉, 광원부(300)와 제2 센서부(400)는 미리 정해진 간격으로 이격됨에 따라, 광원부(300)와 제2 센서부(400)는 직접 광의 전달로 인해 광 특성의 정확도를 떨어지는 것을 방지할 수 있다. 여기서 직접 광은 광원부(300)로부터 조사된 광이 봉지부(500)를 통해 제2 센서부(400)로 직접적으로 안내되는 광을 말한다.In this case, the second sensor unit 400 is spaced apart from the light source unit 300 at a predetermined interval. That is, as the light source unit 300 and the second sensor unit 400 are spaced at a predetermined interval, the light source unit 300 and the second sensor unit 400 may prevent the accuracy of optical characteristics from being degraded due to direct light transmission. Can be. Herein, the direct light refers to light in which light emitted from the light source unit 300 is directly guided to the second sensor unit 400 through the encapsulation unit 500.
이러한 제2 센서부(400)는 광원부(300)로부터 전달되는 직접 광에 의해 크로스토크(cross-talk)가 발생되는 것이 방지될 수 있다.The second sensor unit 400 may be prevented from generating cross-talk due to the direct light transmitted from the light source unit 300.
여기서 광원부(300)로부터 제2 센서부(400)로 전달되는 직접 광을 막기 위해서는 광원부(300)와 제2 센서부(400)의 간의 이격된 거리인, 제2 거리(L)는 400㎛ 이상 떨어지는 것이 바람직하다. 왜냐하면, 광원부(300)와 제2 센서부(400) 간의 제2 거리(L)가 400㎛ 미만인 경우에는 제2 센서부(400)는 광원부(300)로부터 조사되는 직접 광에 영향을 받을 수 있기 때문이다.Here, in order to prevent direct light transmitted from the light source unit 300 to the second sensor unit 400, the second distance L, which is a distance between the light source unit 300 and the second sensor unit 400, is 400 μm or more. It is preferable to fall. Because, when the second distance L between the light source unit 300 and the second sensor unit 400 is less than 400 μm, the second sensor unit 400 may be affected by the direct light emitted from the light source unit 300. Because.
또한, 광원부(300)과 제2 센서부(400)가 베이스 기판(100) 상에 마련됨에 있어, 광원부(300)와 제2 센서부(400) 사이에는 제1 센서부(200)가 배치되는 것이 바람직하다. 즉, 제1 센서부(200)는 광원부(300)로부터 봉지부(500)를 통해 제2 센서부(400)로 안내되는 직접 광을 중간에서 차단할 수도 있다.In addition, since the light source unit 300 and the second sensor unit 400 are provided on the base substrate 100, the first sensor unit 200 is disposed between the light source unit 300 and the second sensor unit 400. It is preferable. That is, the first sensor unit 200 may block the direct light guided from the light source unit 300 to the second sensor unit 400 through the encapsulation unit 500 in the middle.
이러한 광원부(300)와 제2 센서부(400)의 사이에는 반드시 제1 센서부(200)가 배치되어야 하는 것은 아니며, 광원부(300)와 제2 센서부(400)는 미리 정해진 제2 거리(L)의 범위에서 다양한 위치에 배치될 수 있음은 물론이다.The first sensor unit 200 does not necessarily need to be disposed between the light source unit 300 and the second sensor unit 400, and the light source unit 300 and the second sensor unit 400 have a predetermined second distance ( Of course, it can be arranged in various positions in the range of L).
또한, 베이스 기판(100) 상에 마련되는 제1 센서부(200), 광원부(300) 및 제2 센서부(400)는 베이스 기판(100)을 기준으로 동일한 높이를 갖도록 이루어질 수 있다. 즉, 폴리싱 공정이 이루어진 상태에서의 제1 센서부(200), 광원부(300) 및 제2 센서부(400)의 상면으로부터 봉지부(500)의 상면까지의 거리는 모두 동일하게 이루어질 수 있다. 따라서, 봉지부(500)가 제1 센서부(200), 광원부(300) 및 제2 센서부(400)를 전체적으로 덮은 상태에서 제1 센서부(200)는 대상물(P)의 지문을 센싱하고, 광원부(300)는 대상물(P)로 광을 조사하며, 제2 센서부(400)는 대상물(P)로부터 반사되는 광을 효과적으로 받아들일 수 있다.In addition, the first sensor unit 200, the light source unit 300, and the second sensor unit 400 provided on the base substrate 100 may have the same height with respect to the base substrate 100. That is, the distances from the top surfaces of the first sensor unit 200, the light source unit 300, and the second sensor unit 400 to the top surface of the encapsulation unit 500 may be the same in the polishing process. Therefore, the first sensor unit 200 senses the fingerprint of the object P while the encapsulation unit 500 covers the first sensor unit 200, the light source unit 300, and the second sensor unit 400 as a whole. The light source unit 300 irradiates light onto the object P, and the second sensor unit 400 may effectively receive the light reflected from the object P.
이와 같이, 제1 센서부(200), 광원부(300) 및 제2 센서부(400)는 베이스 기판(100)을 기준으로 동일한 높이를 갖도록 이루어짐에 따라 지문 센싱 및 광 특성 정보의 획득이 수월하게 이루어질 수 있다. 여기서 제1 센서부(200), 광원부(300) 및 제2 센서부(400)의 높이는 반드시 동일한 높이로 이루어지지 않아도 되며, 지문 센싱 및 광 특성 정보의 획득이 가능한 범위에서 다양한 높이로 이루어질 수 있음은 물론이다.As such, the first sensor unit 200, the light source unit 300, and the second sensor unit 400 have the same height with respect to the base substrate 100, so that fingerprint sensing and optical property information can be easily obtained. Can be done. Here, the heights of the first sensor unit 200, the light source unit 300, and the second sensor unit 400 do not necessarily have to be the same height, but may be made of various heights within a range in which fingerprint sensing and optical characteristic information can be obtained. Of course.
한편, 봉지부(500)는 베이스 기판(100) 상에 마련되는 제1 센서부(200), 광원부(300) 및 제2 센서부(400)를 전체적으로 덮음으로써, 각종 전기적 부품들을 보호하게 된다.Meanwhile, the encapsulation part 500 covers the first sensor part 200, the light source part 300, and the second sensor part 400 provided on the base substrate 100 to protect various electrical components.
일반적으로 종래의 봉지부는 반도체 EMC로 이루어진다. 이러한 종래의 봉지부를 살펴보면, 봉지부는 필러, 수지, 경화제, 난연제 및 착색제가 포함될 수 있다. 이때, 필러는 용융 실리카로 이루어질 수 있고, 구형상을 이루며 평균 크기는 12㎛이고, 최대 크기는 55㎛ 이루어질 수 있다. 이와 같은, 봉지부 중 필러의 함량은 88.5 wt%를 이룰 수 있다.In general, conventional encapsulation is made of semiconductor EMC. Looking at the conventional encapsulation, the encapsulation may include a filler, a resin, a curing agent, a flame retardant and a coloring agent. In this case, the filler may be made of fused silica, form a spherical shape, the average size is 12㎛, the maximum size may be 55㎛. As such, the content of the filler in the encapsulation may be 88.5 wt%.
그리고 수지로는 에폭시 수지가 사용될 수 있으며, 경화제는 소수성(hydrophobic) 경화제가 사용될 수 있다. 한편, 착색제는 봉지부 중 0.6 ~ 0.8 wt%를 이루게 된다. 그러나 이와 같은, 종래의 봉지부를 본 발명에 적용할 경우, 광 투과율이 낮아 광원부(300)와 제2 센서부(400)의 작동상 어려움이 있다.In addition, an epoxy resin may be used as the resin, and a curing agent may be a hydrophobic curing agent. On the other hand, the colorant is 0.6 ~ 0.8 wt% of the encapsulation. However, when applying such a conventional encapsulation part to the present invention, the light transmittance is low, there is a difficulty in the operation of the light source unit 300 and the second sensor unit 400.
따라서, 본 발명에서는 봉지부(500)의 광 투과율 조정을 통해 광원부(300)로부터 제2 센서부(400)로 직접 광이 전달되는 것을 방지함과 동시에, 광전자로 인한 노이즈 발생으로 제1 센서부(200)의 지문 인식에 오작동이 발생되는 것을 방지하며, 지문정보 및 광 특성 정보를 효과적으로 측정하도록 이루어진다.Therefore, the present invention prevents light from being directly transmitted from the light source unit 300 to the second sensor unit 400 by adjusting the light transmittance of the encapsulation unit 500, and at the same time, the first sensor unit generates noise due to photoelectrons. The malfunction of the fingerprint recognition of the 200 is prevented from occurring, and the fingerprint information and the optical characteristic information are effectively measured.
이와 같은, 광 투과율이 조정된 봉지부(500)의 조성물은 에폭시 수지 3 ~ 13 wt%, 경화제 3 ~ 7 wt%, 경화 촉매제 0.1 ~ 0.3 wt%, 착색제 0.06 ~ 0.08 wt% 및 나머지는 충진재를 포함할 수 있다.As such, the composition of the encapsulation part 500 having the light transmittance adjusted is 3 to 13 wt% of an epoxy resin, 3 to 7 wt% of a curing agent, 0.1 to 0.3 wt% of a curing catalyst, 0.06 to 0.08 wt% of a coloring agent, and the rest of the filler. It may include.
여기서 에폭시 수지는 바이페닐 에폭시 수지, 노볼락 에폭시 수지, 디사이클로펜타디에닐 에폭시 수지, 비스페놀 에폭시 수지, 테르펜 에폭시 수지, 아랄킬 에폭시 수지, 다기능성 에폭시 수지, 나프탈렌 에폭시 수지, 할로겐화 에폭시 수지 중 선택된 적어도 하나의 화합물일 수 있다. 이러한 에폭시 수지의 함량은 3 ~ 13 wt%로 이루어진다.Wherein the epoxy resin is at least one selected from biphenyl epoxy resin, novolac epoxy resin, dicyclopentadienyl epoxy resin, bisphenol epoxy resin, terpene epoxy resin, aralkyl epoxy resin, multifunctional epoxy resin, naphthalene epoxy resin, halogenated epoxy resin It may be one compound. The content of this epoxy resin is 3 to 13 wt%.
경화제는 페놀릭 노볼락 수지, 크레졸 노볼락 수지, 다기능성 페놀릭 수지, 아르알킬 페놀릭 수지, 테르펜 페놀릭 수지, 디사이클로펜타디에닐 페놀릭 수지, 나프탈렌 페놀릭 수지 및 할로겐화 페놀릭 수지 중 선택된 적어도 하나의 화합물일 수 있다. 이러한 경화제의 함량은 3 ~ 7 wt%로 이루어진다.The curing agent is selected from phenolic novolac resin, cresol novolac resin, multifunctional phenolic resin, aralkyl phenolic resin, terpene phenolic resin, dicyclopentadienyl phenolic resin, naphthalene phenolic resin and halogenated phenolic resin. At least one compound. The content of such a curing agent is 3 to 7 wt%.
경화 촉매제는 포스핀류나 아민류 등이 될 수 있으며, 경화 촉매제의 함량은 0.1 ~ 0.3 wt%로 이루어진다.The curing catalyst may be phosphines or amines, and the content of the curing catalyst is 0.1 to 0.3 wt%.
착색제는 카본블랙으로 이루어질 수 있으며, 이러한 착색제의 함량은 0.06 ~ 0.08 wt%로 이루어진다. 특히, 착색제는 봉지부(500)의 광투과율을 조정하는 매우 중요한 조성으로, 착색제의 함량이 0.06 wt% 미만인 경우에는 광 투과율이 너무 높아 광전자로 인한 노이즈 발생으로 지문을 인식하는 제1 센서부(200)에 오작동이 발생되는 문제가 있고, 착색제의 함량이 0.08 wt% 초과인 경우에는 광 투과율이 너무 낮아 광 특성 검사가 정확히 이루어지지 못하는 문제가 있다.The colorant may be composed of carbon black, and the content of the colorant is 0.06 to 0.08 wt%. In particular, the colorant is a very important composition for adjusting the light transmittance of the encapsulation part 500. When the content of the colorant is less than 0.06 wt%, the light transmittance is so high that the first sensor part recognizes a fingerprint due to noise generated by photoelectrons. There is a problem that a malfunction occurs in the 200), and when the content of the colorant is more than 0.08 wt%, the light transmittance is too low to accurately check the optical properties.
이와 같은, 본 발명의 봉지부에 포함된 착색제의 함량은 종래의 봉지부에 포함된 착색제의 함량에 비해 10% 범위로 이루어짐이 바람직하다.As such, the content of the colorant included in the encapsulation portion of the present invention is preferably made in a range of 10% compared to the content of the colorant included in the conventional encapsulation portion.
이와 같이, 봉지부(500)에 구비되는 착색제의 함량은 0.06 ~ 0.08 wt%로 이루어짐으로써 센서 패키지(1000)는 지문 센싱 및 광 특성 검사가 원활히 이루어질 수 있다.As such, the content of the colorant provided in the encapsulation part 500 is 0.06 to 0.08 wt%, so that the sensor package 1000 may be smoothly subjected to fingerprint sensing and optical property inspection.
충진재는 에폭시 수지, 경화제, 경화 촉매제 및 착색제 이외에 봉지부(500)를 구성하는 조성으로, 이러한 충진재는 실리카로 이루어질 수 있다.The filler is a composition constituting the encapsulation part 500 in addition to the epoxy resin, the curing agent, the curing catalyst and the colorant, and the filler may be made of silica.
이와 같은, 봉지부(500)는 상기 기재된 조성으로만 한정되지 않으며, 센서 패키지(1000)의 지문 센싱 및 광 특성 검사가 효과적으로 이루어질 수 있는 광 투과율이 조정된 경우라면 어떠한 조성이라도 상관없다.As such, the encapsulation part 500 is not limited to the above-described composition, and any composition may be used as long as the light transmittance may be adjusted to effectively perform fingerprint sensing and optical property inspection of the sensor package 1000.
이러한 봉지부(500)는 베이스 기판(100) 상에 마련되는 제1 센서부(200), 광원부(300) 및 제2 센서부(400)를 전체적으로 덮은 상태에서 폴리싱 공정이 이루어지게 된다.The encapsulation part 500 may be polished in a state in which the first sensor part 200, the light source part 300, and the second sensor part 400 provided on the base substrate 100 are entirely covered.
이와 같이, 폴리싱 공정을 통해 제거된 봉지부(500)의 상면은 단차없이 평평하게 제조될 수 있다. 즉, 종래의 서로 다른 물성을 갖는 광학 EMC와 반도체 EMC가 구비된 센서 패키지의 폴리싱 공정시 발생되는 단차 문제가 해결될 수 있다.As such, the top surface of the encapsulation part 500 removed through the polishing process may be manufactured flat without a step. That is, the problem of the step difference generated during the polishing process of the sensor package having the conventional optical EMC and semiconductor EMC having different physical properties can be solved.
이러한 봉지부(500)의 상면에는 커버부(600)가 더 구비될 수도 있다.The cover part 600 may be further provided on an upper surface of the encapsulation part 500.
여기서 커버부(600)는 센서 패키지(1000)에 컬러를 구현하거나 센서 패키지(1000)의 강도를 보강하는 등의 다양한 기능을 하게 된다. 이러한 커버부(600)는 봉지부(500)의 상부에 마련될 수 있으며, 제1 센서부(200), 광원부(300) 및 제2 센서부(400)를 덮을 수 있다. 커버부(600)는 내구성과 외관이 우수한 소재로 이루어질 수 있다. 예를 들어, 커버부(600)는 글라스, 사파이어, 지르코늄 및 투명 수지 중 어느 하나 이상을 포함할 수 있다. 커버부(600)가 글라스로 이루어지는 경우, 소다라임 글라스기판, 무알칼리 글라스기판, 강화글라스기판 등 각종 글라스기판이 포함될 수 있다. 그리고 투명 수지로는 아크릴 등이 포함될 수도 있다.The cover unit 600 may perform various functions such as implementing colors in the sensor package 1000 or reinforcing the strength of the sensor package 1000. The cover part 600 may be provided on the encapsulation part 500, and may cover the first sensor part 200, the light source part 300, and the second sensor part 400. The cover part 600 may be made of a material having excellent durability and appearance. For example, the cover part 600 may include any one or more of glass, sapphire, zirconium, and a transparent resin. When the cover part 600 is made of glass, various glass substrates, such as a soda lime glass substrate, an alkali free glass substrate, and a tempered glass substrate, may be included. And the transparent resin may include acrylic and the like.
이러한 커버부(600)는 광학투명점착제(610), PET 필름(620), 컬러도료층(630) 및 보호막층(640)을 포함할 수도 있다. 이때, 커버부(600)는 광학투명점착제(610), PET 필름(620), 컬러도료층(630) 그리고 보호막층(640)의 순서로 형성될 수 있다.The cover part 600 may include an optical transparent adhesive 610, a PET film 620, a color paint layer 630, and a protective layer 640. In this case, the cover part 600 may be formed in the order of the optical transparent adhesive 610, PET film 620, the color paint layer 630 and the protective film layer 640.
이러한 광학투명점착제(OCA; optically clear adhesive)(610)는 봉지부(500)의 상면에 구비된다. 이때, 광학투명점착제(610)는 PET 필름과 봉지부(500)를 점착시키게 된다.An optically clear adhesive (OCA) 610 is provided on the top surface of the encapsulation part 500. At this time, the optical transparent adhesive 610 is to adhere the PET film and the sealing portion 500.
그리고 광학투명점착제(610)의 상면에는 PET(polyethylene terephthalate) 필름(620)이 구비된다. 이러한 PET 필름(620)은 컬러도료층(630)을 연결하게 되며, 컬러도료층(630)은 커버부(600)의 컬러를 구현하게 된다.In addition, a polyethylene terephthalate (PET) film 620 is provided on the upper surface of the optically transparent adhesive 610. The PET film 620 connects the color paint layer 630, and the color paint layer 630 implements the color of the cover part 600.
보호막층(640)은 유브이(UV) 보호막 또는 세라믹을 포함하는 세라믹 코팅층일 수 있다.The protective layer 640 may be a ceramic coating layer including a UV protective layer or ceramic.
이러한 커버부(600)는 광원부(300)로부터 조사된 광이 대상물(P)로 전달되고, 대상물(P)로부터 반사된 광이 제2 센서부(400)로 원활히 전달될 수 있도록 이루어짐과 동시에 제1 센서부(200)는 대상물(P)의 지문 센싱이 원활히 이루어지도록 형성된다.The cover unit 600 is made so that the light irradiated from the light source unit 300 is transmitted to the object (P), the light reflected from the object (P) can be smoothly transmitted to the second sensor unit 400 and at the same time The first sensor unit 200 is formed so that fingerprint sensing of the object P is performed smoothly.
한편, 센서 패키지(1000)에는 제어부(700)가 구비될 수 있다.On the other hand, the sensor package 1000 may be provided with a control unit 700.
제어부(700)는 메인 기판(1)에 결합되며, 제1 센서부(200), 광원부(300) 및 제2 센서부(400)와 전기적으로 연결된다. 이러한 제어부(700)는 제1 센서부(200)에서 측정되는 지문 정보 및 제2 센서부(400)에서 측정되는 광 특성을 전달받을 수 있다. 이와 같은, 제어부(700)는 전달된 지문 정보 및 광 특성을 기 등록된 지문 정보 및 광 특성과 비교하여 측정되는 지문의 위조 여부를 식별할 수 있다.The control unit 700 is coupled to the main substrate 1 and is electrically connected to the first sensor unit 200, the light source unit 300, and the second sensor unit 400. The controller 700 may receive the fingerprint information measured by the first sensor unit 200 and the optical characteristics measured by the second sensor unit 400. As such, the controller 700 may identify whether the fingerprint is counterfeited by comparing the transmitted fingerprint information and the optical characteristic with the registered fingerprint information and the optical characteristic.
제어부(700)는 제1 센서부(200) 및 제2 센서부(400)에서 측정되는 지문 정보 및 광 특성을 저장하여 등록할 수 있으며, 이렇게 등록되는 지문 정보 및 광 특성은 인증된 사용자의 것으로 취급될 수 있다.The controller 700 may register and store fingerprint information and optical characteristics measured by the first sensor unit 200 and the second sensor unit 400, and the registered fingerprint information and optical characteristics are those of an authenticated user. Can be handled.
제어부(700)는 어떠한 대상물, 즉, 사람의 손가락 또는 지문이 부착된 물체로부터 측정되는 지문 정보 및 광 특성이 전달되면, 이를 등록된 지문 정보 및 광 특성과 비교하여 측정되는 지문의 위조 여부를 식별하게 된다. 즉, 제어부(700)는 측정되는 지문 정보 및 광 특성 중 하나 이상이 기 등록된 지문 정보 및 광 특성과 다를 경우, 측정되는 지문이 인증된 사용자의 지문이 아닌 것으로 간주하게 된다.When the fingerprint information and the optical characteristic measured from a certain object, that is, a human finger or an object to which the fingerprint is transmitted, are transmitted to the controller 700, the controller 700 compares the fingerprint information with the registered fingerprint information and the optical characteristic to identify whether the fingerprint is forged. Done. That is, when at least one of the fingerprint information and the optical characteristic to be measured is different from the registered fingerprint information and the optical characteristic, the controller 700 considers that the fingerprint to be measured is not the fingerprint of the authenticated user.
또한, 제어부(700)는 제1 센서부(200) 및 제2 센서부(400)를 제어하여 대상물(P)의 지문 정보 측정 및 광 특성 측정이 순차적으로 진행되도록 하거나, 또는 동시에 진행되도록 제어할 수 있다.In addition, the controller 700 may control the first sensor unit 200 and the second sensor unit 400 so that fingerprint information measurement and optical property measurement of the object P may be sequentially performed or simultaneously. Can be.
이러한 제어부(700)는 제2 센서부(400)에서 측정되어 전달되는 광 특성 및 제1 센서부(200)에서 전달되는 지문 정보를 기 등록된 광 특성 및 지문 정보와 비교하여 측정되는 지문의 위조 여부를 식별하여 센서 패키지(1000)의 보안성을 높이게 된다.The controller 700 compares the optical characteristics measured by the second sensor unit 400 and the fingerprint information transmitted from the first sensor unit 200 with the registered optical characteristics and fingerprint information, and forgeries the fingerprints measured. By identifying whether or not to increase the security of the sensor package (1000).
다만, 이는 본 발명의 바람직한 일실시예에 불과할 뿐, 본 발명의 권리 범위가 이러한 실시예의 기재 범위에 의하여 제한되는 것은 아니다.However, this is only a preferred embodiment of the present invention, the scope of the present invention is not limited by the scope of these embodiments.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (16)

  1. 베이스 기판;A base substrate;
    상기 베이스 기판 상에 구비되며, 지문을 감지하는 제1 센서부;A first sensor unit provided on the base substrate to detect a fingerprint;
    상기 베이스 기판 상에 구비되며, 대상물에 광을 조사하는 광원부;A light source unit provided on the base substrate and irradiating light to an object;
    상기 베이스 기판 상에 구비되며, 상기 광원부로부터 조사되어 상기 대상물을 거친 광을 수광하여 광 출력값을 획득하고, 획득된 광 출력값으로부터 광 특성을 측정하는 제2 센서부;A second sensor unit provided on the base substrate and configured to receive light emitted from the light source unit to pass through the object to obtain a light output value, and to measure a light characteristic from the obtained light output value;
    상기 제1 센서부, 광원부 및 제2 센서부를 덮는 봉지부;An encapsulation part covering the first sensor part, the light source part, and the second sensor part;
    상기 봉지부의 상면에 구비되는 커버부; 및A cover part provided on an upper surface of the encapsulation part; And
    상기 제2 센서부로부터 광 출력값을 전달받는 제어부를 포함하며,It includes a control unit for receiving the light output value from the second sensor unit,
    사용자의 지문 등록시, 상기 제어부는 상기 제2 센서부로 획득된 광 출력값을 목표 광 출력값으로 자동 조정하기 위한 등록 설정이 이루어지는 것인 센서 패키지.When registering a fingerprint of the user, the control unit is a registration package for automatically adjusting the light output value obtained by the second sensor unit to the target light output value.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부의 등록 설정은 상기 광원부의 광량을 조절하거나 상기 제2 센서부로 수광된 광 출력값을 조정하는 것인 센서 패키지.The registration setting of the control unit is a sensor package for adjusting the light amount of the light source unit or the light output value received by the second sensor unit.
  3. 제1항에 있어서,The method of claim 1,
    상기 제어부의 등록 설정은 상기 커버부의 소재 및 색상이 다르더라도 상기 제2 센서부로 수광된 광 출력값을 목표 광 출력값으로 자동 조정하는 것인 센서 패키지.The registration setting of the control unit may automatically adjust the light output value received by the second sensor unit to a target light output value even if the material and color of the cover unit are different.
  4. 제1항에 있어서,The method of claim 1,
    사용자의 지문 등록시, 상기 제어부는 목표 광 출력값을 기준으로 광 출력값의 인증 범위를 등록하는 것인 센서 패키지.When registering a fingerprint of the user, the control unit is to register the authentication range of the light output value based on the target light output value.
  5. 제4항에 있어서,The method of claim 4, wherein
    사용자의 지문 인증시, 상기 제어부는 상기 제2 센서부로 획득된 광 출력값이 기 등록된 광 출력값의 인증 범위에 해당되지 않는 경우, 위조 지문으로 인식하는 것인 센서 패키지.When fingerprint authentication of a user, the control unit recognizes as a fake fingerprint if the light output value obtained by the second sensor unit does not fall within the authentication range of the pre-registered light output value.
  6. 제1항에 있어서,The method of claim 1,
    사용자의 지문 인증시, 상기 제어부는 사용자의 지문 등록시 저장된 등록 설정을 동일하게 적용하는 것인 센서 패키지.In the fingerprint authentication of the user, the control unit applies the same registration settings stored when registering the fingerprint of the user.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2 센서부는 상기 제어부의 작동에 의해 상기 광원부를 제어하는 것인 센서 패키지.And the second sensor unit controls the light source unit by the operation of the control unit.
  8. 제1항에 있어서,The method of claim 1,
    상기 제어부는 상기 제2 센서부와 광원부를 함께 제어하는 것인 센서 패키지.The control unit will control the second sensor unit and the light source unit together.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 센서부는 상기 광원부와 제2 센서부 사이에 구비되며, 상기 제1 센서부, 광원부 및 제2 센서부의 상면은 동일한 높이를 갖도록 이루어진 것인 센서 패키지.The first sensor unit is provided between the light source unit and the second sensor unit, the sensor package of the first sensor unit, the light source unit and the second sensor unit is configured to have the same height.
  10. 제1항에 있어서,The method of claim 1,
    상기 제어부는 상기 제1 센서부에서 측정되는 지문 정보와 상기 제2 센서부에서 측정되는 광 특성을 기 등록된 지문 정보 및 광 특성과 비교하여 측정되는 지문의 위조 여부를 식별하는 것인 센서 패키지.The control unit is to identify whether the fingerprint forgery measured by comparing the fingerprint information measured by the first sensor unit and the optical characteristics measured by the second sensor unit with the registered fingerprint information and the optical characteristics.
  11. 제1항에 있어서,The method of claim 1,
    상기 광 특성은 맥파, 심장 박동, 심전도, 근전도, 산소 포화도, 광량, 색온도, 파장 및 편광성분 중 하나 이상인 것인 센서 패키지.Wherein the optical characteristic is at least one of pulse wave, heart rate, electrocardiogram, electrocardiogram, oxygen saturation, quantity of light, color temperature, wavelength and polarization component.
  12. 제1항에 있어서,The method of claim 1,
    상기 봉지부는 상기 광원부로부터 상기 제2 센서부로 직접 광이 전달되는 것을 방지하도록 광 투과율이 조정된 것인 센서 패키지.The encapsulation part is a sensor package, the light transmittance is adjusted to prevent the light from being transmitted directly from the light source to the second sensor.
  13. 제12항에 있어서,The method of claim 12,
    상기 봉지부의 조성물은,The composition of the encapsulation portion,
    에폭시 수지 3 ~ 13 wt%, 경화제 3 ~ 7 wt%, 경화 촉매제 0.1 ~ 0.3 wt%, 착색제 0.06 ~ 0.08 wt% 및 나머지는 충진재를 포함하며, 상기 충진재는 실리카로 이루어지고, 상기 착색제는 카본블랙으로 이루어진 것인 센서 패키지.3 to 13 wt% epoxy resin, 3 to 7 wt% curing agent, 0.1 to 0.3 wt% curing catalyst, 0.06 to 0.08 wt% coloring agent and the rest including filler, the filler is made of silica, the colorant is carbon black Sensor package consisting of.
  14. 제1항에 있어서,The method of claim 1,
    상기 커버부는,The cover part,
    상기 봉지부의 상면에 구비되는 광학투명점착제;An optically transparent adhesive agent provided on an upper surface of the encapsulation portion;
    상기 광학투명점착제의 상면에 구비되는 PET 필름;PET film provided on the upper surface of the optical transparent adhesive;
    상기 PET 필름의 상면에 구비되며 컬러를 구현하는 컬러도료층; 및A color paint layer provided on an upper surface of the PET film to implement color; And
    상기 컬러도료층의 상면에 구비되는 보호막층을 포함하는 센서 패키지.Sensor package comprising a protective film layer provided on the upper surface of the color paint layer.
  15. 제1항에 있어서,The method of claim 1,
    상기 제2 센서부는 수광된 광 출력값을 미리 정해진 값으로 나눈 후, 나뉜 광 출력값을 상기 제어부로 전송하도록 이루어진 것인 센서 패키지.And the second sensor unit divides the received light output value by a predetermined value and transmits the divided light output value to the controller.
  16. 제1항에 있어서,The method of claim 1,
    상기 제2 센서부에는 처리부가 구비되며, 상기 처리부는 미리 정해진 시간내에서 미리 정해진 횟수로 측정된 광 출력값을 합산한 후, 합산된 광 출력값을 상기 제어부로 전송하는 것인 센서 패키지.The second sensor unit includes a processing unit, wherein the processing unit adds the light output values measured a predetermined number of times within a predetermined time, and then transmits the summed light output values to the control unit.
PCT/KR2017/001603 2016-02-15 2017-02-14 Sensor package WO2017142288A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0017493 2016-02-15
KR20160017493 2016-02-15
KR10-2016-0055253 2016-05-04
KR1020160055253A KR101809437B1 (en) 2016-02-15 2016-05-04 Sensor package
KR1020170017633A KR20170095737A (en) 2016-02-15 2017-02-08 Sensor package
KR10-2017-0017633 2017-02-08

Publications (1)

Publication Number Publication Date
WO2017142288A1 true WO2017142288A1 (en) 2017-08-24

Family

ID=59626162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001603 WO2017142288A1 (en) 2016-02-15 2017-02-14 Sensor package

Country Status (1)

Country Link
WO (1) WO2017142288A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144420A (en) * 2001-11-09 2003-05-20 Nec Corp Fingerprint image input device and electronic equipment using the same
KR20080095333A (en) * 2007-04-24 2008-10-29 주식회사 유니온커뮤니티 Apparatus for distinguishing forged fingerprint and method therof
KR20110065690A (en) * 2009-12-10 2011-06-16 연세대학교 산학협력단 Forged fingerprint detector and method thereof
KR20140029081A (en) * 2012-08-31 2014-03-10 크루셜텍 (주) Fingerprint sensor package and portable electronic device having the same
KR20150004294A (en) * 2013-07-02 2015-01-12 아바고 테크놀로지스 제너럴 아이피 (싱가포르) 피티이 리미티드 Infrared attenuating or blocking layer in optical proximity sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144420A (en) * 2001-11-09 2003-05-20 Nec Corp Fingerprint image input device and electronic equipment using the same
KR20080095333A (en) * 2007-04-24 2008-10-29 주식회사 유니온커뮤니티 Apparatus for distinguishing forged fingerprint and method therof
KR20110065690A (en) * 2009-12-10 2011-06-16 연세대학교 산학협력단 Forged fingerprint detector and method thereof
KR20140029081A (en) * 2012-08-31 2014-03-10 크루셜텍 (주) Fingerprint sensor package and portable electronic device having the same
KR20150004294A (en) * 2013-07-02 2015-01-12 아바고 테크놀로지스 제너럴 아이피 (싱가포르) 피티이 리미티드 Infrared attenuating or blocking layer in optical proximity sensor

Similar Documents

Publication Publication Date Title
KR101809437B1 (en) Sensor package
WO2018230875A1 (en) Terminal and control method thereof
KR101869624B1 (en) Secure human fingerprint sensor
WO2017183910A2 (en) Electronic device supporting fingerprint verification and method for operating the same
WO2016093669A1 (en) Fingerprint sensor module assembly integrated with cover window for electronic device
WO2019146995A1 (en) Display having infrared element arranged such that at least one portion thereof overlaps pixel, and electronic device including same
WO2019093683A1 (en) Electronic device comprising fingerprint sensor
WO2019112314A1 (en) Electronic apparatus in which conductive member for blocking noise generated by display is disposed between display and ultrasonic sensor
WO2020166830A1 (en) Display and electronic device including the same
WO2015115716A1 (en) Fingerprint recognition device, manufacturing method therefor and electronic device
WO2019203575A1 (en) Electronic device including multiple fixing members to fix biometric sensor to display and method for manufacturing the same
KR20180136172A (en) Optical Image Sensor and Display Device having the Same
WO2019107910A1 (en) Wearable electronic device including fingerprint sensor
EP3673399A1 (en) Method for recognizing fingerprint, and electronic device and storage medium therefor
WO2020167064A1 (en) Electronic device including display module including sensor and method for manufacturing the display module
WO2017222286A2 (en) Fingerprint sensor module and method of manufacturing same
WO2017065346A1 (en) Fingerprint recognition module, method for manufacturing fingerprint recognition module, vehicle operation control system using fingerprint recognition module
CN108830178A (en) Fingerprint recognition mould group, electronic equipment and fingerprint image generation method
WO2017142288A1 (en) Sensor package
WO2020231053A1 (en) Electronic device comprising sensor module
WO2019009685A1 (en) Method for inspecting forged passport by means of passport authentication card displaying face photograph and system for processing same
WO2020071693A1 (en) Electronic device, server, and signature authentication method using same
EP3956755A1 (en) Electronic device including display and sensor
WO2017204570A1 (en) Touch sensing device and electronic device including same
KR20170033058A (en) Sensor package and method for distinguishing fake fingerprint of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753449

Country of ref document: EP

Kind code of ref document: A1