WO2017141937A1 - Control device for dual-clutch transmission - Google Patents

Control device for dual-clutch transmission Download PDF

Info

Publication number
WO2017141937A1
WO2017141937A1 PCT/JP2017/005419 JP2017005419W WO2017141937A1 WO 2017141937 A1 WO2017141937 A1 WO 2017141937A1 JP 2017005419 W JP2017005419 W JP 2017005419W WO 2017141937 A1 WO2017141937 A1 WO 2017141937A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
speed
shift
engine
input shaft
Prior art date
Application number
PCT/JP2017/005419
Other languages
French (fr)
Japanese (ja)
Inventor
智啓 下沢
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201780011712.5A priority Critical patent/CN108700187A/en
Publication of WO2017141937A1 publication Critical patent/WO2017141937A1/en
Priority to PH12018501714A priority patent/PH12018501714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/10Preventing unintentional or unsafe engagement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1107Vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3082Signal inputs from the transmission from the output shaft
    • F16D2500/30825Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • F16D2500/31453Accelerator pedal position threshold, e.g. switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/3146Signal inputs from the user input from levers
    • F16D2500/31466Gear lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50638Shaft speed synchronising, e.g. using engine, clutch outside transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50661Limit transmission input torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/512Relating to the driver
    • F16D2500/5126Improving response to driver inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • F16D2500/70454Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • F16D2500/70462Opening of the throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70464Transmission parameters
    • F16D2500/70488Selection of the gear ratio

Definitions

  • the present disclosure relates to a control device for a dual clutch transmission in which a clutch device including two clutches is provided between an engine and a transmission mechanism.
  • a dual clutch transmission that includes two clutches capable of connecting / disconnecting power transmission from an engine and is capable of switching a driving force transmission path from the engine to a transmission mechanism to a system via any one of the clutches.
  • a driver manually operates an operation lever to designate a gear position and a shift up / shift down, thereby operating an actuator according to the designation, switching a clutch
  • a device that controls engagement / disengagement of gears in a transmission mechanism is known.
  • the engine may be damaged. For example, if the driver has designated downshifting and immediately tries to shift to a low gear, the engine speed may exceed the allowable upper engine speed (allowable upper engine speed). .
  • an object of the present disclosure is to provide a technique capable of obtaining appropriate deceleration at an early stage when the driver designates downshifting.
  • a control device for a dual clutch transmission includes a clutch device including two clutches between an engine and a transmission mechanism, and the output of the transmission mechanism from the engine.
  • a control system for a dual clutch transmission capable of switching a driving force transmission path to a vehicle drive system connected to a shaft between paths via respective clutches, and whether or not there has been a downshift instruction from the driver
  • a shift down instruction detecting means for detecting the engine and when the downshift instruction is detected, the accelerator is in an off state and is connected to a transmission source clutch that is a clutch engaging the engine and the transmission mechanism.
  • the speed stage of the speed change mechanism connected to the speed change destination clutch which is a clutch different from the speed change source clutch, is lower than the speed change speed of the speed change mechanism.
  • the clutch switching determining means for determining whether or not the clutch that engages the engine and the transmission mechanism can be switched from the transmission source clutch to the transmission destination clutch, and the clutch switching determination means in an accelerator-off state.
  • the speed of the speed change mechanism connected to the speed change destination clutch is lower than the speed change speed of the speed change mechanism connected to the speed change source clutch.
  • the transmission source input shaft that is the input shaft of the transmission mechanism whose engine speed is connected to the transmission source clutch
  • the transmission source clutch is changed from the engaged state to the disengaged state while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the rotation speed is less than
  • the engine switching control means for executing the control for changing the front clutch from the disengaged state to the half-clutch state, and the rotational speed of the speed change destination input shaft that is the input shaft of the speed change mechanism connected to the speed change destination clutch
  • the engine rotation synchronization determination means for determining whether or not the rotation speed is equal to or less than the rotation speed, and when it is determined that the rotation speed of the shift destination input shaft is equal to or lower than the allowable upper limit rotation speed
  • Engine rotation synchronization control means for increasing the engine speed so as to coincide with the engine speed
  • synchronization completion determining means for determining whether the engine speed and the speed of the shift destination input shaft coincide with each other, engine
  • the clutch switching control means is a sum of a transmission torque between the engine and the transmission mechanism by the transmission source clutch and a transmission torque between the engine and the transmission mechanism by the transmission destination clutch.
  • the engagement force of the shift source clutch and the shift destination clutch may be controlled so that is less than or equal to the deceleration torque by the engine.
  • the engine rotation synchronization determination means includes the rotation speed of the output shaft of the speed change mechanism detected by the output shaft rotation speed sensor, and between the shift destination input shaft and the output shaft.
  • the rotational speed of the shift destination input shaft may be calculated based on the gear ratio.
  • the shift end control means may be configured such that the shift destination clutch is operated after a predetermined time elapses after it is determined that the engine speed and the speed of the shift destination input shaft match. You may make it start the control which makes a contact state.
  • FIG. 5 is a flowchart of a shift control process according to an embodiment of the present disclosure.
  • A is a figure which shows the change to the torque from the transmission source input shaft to an engine in the transmission control process, the torque from a transmission destination input shaft to an engine, and the torque by an engine
  • (b) is a transmission source input shaft
  • FIG. 1 is a schematic configuration diagram illustrating a dual clutch transmission including a dual clutch device according to an embodiment of the present disclosure.
  • the dual clutch transmission 1 provided in the vehicle is connected to an output shaft 11 of an engine 10 which is an example of a drive source.
  • the dual clutch transmission 1 includes a dual clutch device 20 having a first clutch 21 and a second clutch 22, a speed change mechanism 30, a speed change control device 80 as an example of a control device, an engine speed sensor 91, a vehicle speed.
  • a sensor 92 also referred to as an output shaft rotational speed sensor
  • an accelerator opening sensor 93 and a shift position sensor 95 are provided.
  • the first clutch 21 is, for example, a wet multi-plate clutch, and includes a clutch hub 23 that rotates integrally with the output shaft 11 of the engine 10, and a first clutch drum 24 that rotates integrally with the first input shaft 31 of the transmission mechanism 30.
  • the state in which torque is transmitted via the first clutch plate 25 while the clutch hub 23 and the first clutch drum 24 rotate at different rotational speeds is referred to as a half-clutch state of the first clutch 21.
  • a state in which the clutch hub 23 and the first clutch drum 24 rotate integrally with the same rotation speed and torque is transmitted through the first clutch plate 25 is referred to as a contact state of the first clutch 21.
  • Hydraulic fluid is supplied to the first space 21A in order to discharge frictional heat and the like generated in the first clutch plate 25.
  • the second clutch 22 is, for example, a wet multi-plate clutch, and includes a clutch hub 23, a second clutch drum 27 that rotates integrally with the second input shaft 32 of the transmission mechanism 30, and a plurality of second clutch plates 28.
  • a second space 22A around the plurality of second clutch plates 28, a second piston 29 press-contacting the second clutch plates 28, and a second hydraulic chamber 29A are provided.
  • the second clutch 22 when the second piston 29 is stroked to the output side (right direction in FIG. 1) by the hydraulic pressure supplied to the second hydraulic chamber 29 ⁇ / b> A, the second clutch plate 28 is pressed to transmit torque. Connection state.
  • the second piston 29 when the operating hydraulic pressure is released, the second piston 29 is stroked to the input side (left direction in FIG. 1) by the urging force of a spring (not shown), and the second clutch 22 is in a disconnected state in which torque transmission is interrupted ( Disconnected state).
  • the state in which the torque is transmitted via the second clutch plate 28 while the clutch hub 23 and the second clutch drum 27 rotate at different rotational speeds is referred to as the half-clutch state of the second clutch 22.
  • the state in which the clutch hub 23 and the second clutch drum 27 rotate together at the same rotation speed and torque is transmitted through the second clutch plate 28 is referred to as a contact state of the second clutch 22.
  • Hydraulic fluid is supplied to the second space 22A in order to discharge frictional heat and the like generated in the second clutch plate 28.
  • the transmission mechanism 30 includes a sub-transmission unit 40 disposed on the input side and a main transmission unit 50 disposed on the output side.
  • the transmission mechanism 30 includes a first input shaft 31 and a second input shaft 32 provided in the sub-transmission unit 40, an output shaft 33 provided in the main transmission unit 50, and parallel to these shafts 31 to 33.
  • the counter shaft 34 is provided.
  • the first input shaft 31 is inserted into a hollow shaft that penetrates the second input shaft 32 in the axial direction so as to be relatively rotatable.
  • a propeller shaft (vehicle drive system) connected to a vehicle drive wheel (not shown) via a differential device or the like is connected to the output end of the output shaft 33.
  • the auxiliary transmission unit 40 is provided with a first splitter gear pair 41 and a second splitter gear pair 42.
  • the first splitter gear pair 41 includes a first input main gear 43 fixed to the first input shaft 31, and a first input sub gear 44 fixed to the sub shaft 34 and constantly meshing with the first input main gear 43. It has.
  • the second splitter gear pair 42 includes a second input main gear 45 fixed to the second input shaft 32, and a second input sub gear 46 fixed to the sub shaft 34 and constantly meshing with the second input main gear 45. It has. Therefore, the sub shaft 34, the first input shaft 31, and the second input shaft 32 are always coupled.
  • the gear ratio of the first splitter gear pair 41 is smaller than that of the second splitter gear pair 42.
  • the first splitter gear pair 41 side is a high-speed gear stage. Therefore, in the auxiliary transmission unit 40, when the driving force is transmitted via the first splitter gear pair 41 (when the first clutch 21 is connected), the auxiliary transmission unit 40 can be set to the high speed side, and the second splitter gear. When the driving force is transmitted via the pair 42 (when the second clutch 22 is connected), the speed can be reduced.
  • the case through the first splitter gear pair 41 is referred to as an H (high speed side) stage
  • the case through the second splitter gear pair 42 is referred to as an L (low speed side) stage.
  • the main transmission unit 50 is provided with a first output gear pair 51, a second output gear pair 61, a third output gear pair 71, a first sync mechanism 55, and a second sync mechanism 56.
  • the first output gear pair 51 includes a third-speed sub-gear 52 fixed to the sub-shaft 34 and a third-speed main gear 53 that is rotatably provided on the output shaft 33 and always meshes with the third-speed sub-gear 52.
  • the second output gear pair 61 includes a second-speed sub-gear 62 fixed to the sub-shaft 34 and a second-speed main gear 63 that is provided on the output shaft 33 so as to be relatively rotatable and always meshes with the second-speed sub-gear 62. I have.
  • the third output gear pair 71 includes a first-speed sub-gear 72 fixed to the sub-shaft 34, and a first-speed main gear 73 that is rotatably provided on the output shaft 33 and always meshes with the first-speed sub-gear 72. I have.
  • the first sync mechanism 55 and the second sync mechanism 56 are known structures, and each includes a sleeve, a dog clutch, etc. (not shown).
  • the first sync mechanism 55 can bring the output shaft 33 and the third-speed main gear 53 into an engaged state (gear-in).
  • the output shaft 33 and the third speed main gear 53 are engaged, the output shaft 33 rotates at a speed corresponding to the third speed (3H speed) of the H stage on the H-stage side path of the sub-transmission unit 40.
  • the output shaft 33 rotates at a speed equivalent to the L-speed 3rd speed (3L speed).
  • the second synchronization mechanism 56 can bring the output shaft 33 and the second speed main gear 63 into an engaged state, and can bring the output shaft 33 and the first speed main gear 73 into an engaged state.
  • the output shaft 33 and the second speed main gear 63 are brought into an engaged state, the output shaft 33 rotates at a speed equivalent to the second speed (2H speed) of the H stage with respect to the H-stage side path of the auxiliary transmission unit 40.
  • the output shaft 33 rotates at a speed equivalent to the L-stage 2nd speed (2L speed).
  • the output shaft 33 rotates in the H-stage path of the sub-transmission unit 40 corresponding to the first H-speed (1H-speed).
  • the output shaft 33 rotates at a speed corresponding to the first speed (1L speed) in the L stage.
  • the auxiliary transmission unit 40 and the main transmission unit 50 can be switched to 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed.
  • the speed is 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed in order from the low speed stage.
  • each gear stage is indicated by a series of numbers, it is 1st, 2nd, 3rd, 4th, 5th, and 6th, respectively.
  • the operations of the first sync mechanism 55 and the second sync mechanism 56 are controlled by a shift control unit 82, which will be described later, depending on the accelerator opening detected by the accelerator opening sensor 93, the speed detected by the vehicle speed sensor 92, and the like.
  • the output shaft 33 and the output main gears (53, 63, 73) are selectively engaged (gear-in) or non-engaged according to the designation of a shift by an operation lever 94 described later by the driver. Switch to state (neutral state).
  • the number of output gear pairs (51, 61, 71) and the synchro mechanisms (55, 56), the arrangement pattern, and the like are not limited to the illustrated examples, and may be changed as appropriate without departing from the spirit of the present disclosure. Is possible.
  • the speed change mechanism 30 at the time of shifting between 1L speed and 1H speed, between 2L speed and 2H speed, between 3L speed and 3H speed (shift up and shift down), the speed is changed only by switching the clutch.
  • shifting between 1H speed and 2L speed and between 2H speed and 3L speed shift up and shift down
  • the engine speed sensor 91 detects the speed of the engine 10 (engine speed) and outputs it to the shift control device 80.
  • the vehicle speed sensor 92 detects the rotational speed of the output shaft 33 (output shaft rotational speed) and outputs it to the transmission control device 80.
  • the vehicle speed can be specified from the output shaft rotation speed.
  • the rotational speed of the first input shaft 31 is specified by multiplying the output shaft rotational speed by the gear ratio between the output shaft 33 and the first input shaft 31. be able to.
  • the rotational speed of the second input shaft 32 (second input shaft rotational speed) is specified by multiplying the output shaft rotational speed by the gear ratio between the output shaft 33 and the second input shaft 32. be able to.
  • the accelerator opening sensor 93 detects the accelerator opening and outputs it to the shift control device 80.
  • the shift position sensor 95 detects the position designated (selected) by the operation lever 94 and outputs it to the shift control device 80.
  • a P (parking) range that is selected when the vehicle is stopped
  • an N (neutral) range that is selected when the vehicle is temporarily stopped
  • a D (drive) range that is selected when automatic shifting is performed
  • a gear shift Select the M (manual) range to be selected when performing the above operation, plus (+) to specify upshifting in the M range, minus (-) to specify downshifting in the M range, etc. Can do.
  • the transmission control device 80 includes a control unit 81, a transmission shifter 85, a first clutch hydraulic oil adjustment unit 86, and a second clutch hydraulic oil adjustment unit 87.
  • the control unit 81 performs various controls of the engine 10, the first clutch hydraulic oil adjustment unit 86, the second clutch hydraulic oil adjustment unit 87, the shift shifter 85, and the like.
  • a known CPU, ROM, RAM, input port, output It is configured with ports and the like.
  • sensor values of various sensors are input to the control unit 81.
  • the control unit 81 also includes a shift control unit 82 as an example of a downshift instruction detection unit, a clutch control unit 83 as an example of a clutch switch determination unit, a clutch switch control unit, and a shift end control unit, and engine rotation synchronization.
  • the determination unit, the engine rotation synchronization control unit, and the synchronization control unit 84 as an example of the synchronization completion determination unit are included as some functional elements. In the present embodiment, these functional elements are described as being included in the control unit 81 that is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.
  • the shift control unit 82 uses information such as the accelerator opening from the accelerator opening sensor 93 and the vehicle speed from the vehicle speed sensor 92. Based on this, it is determined whether or not a shift is necessary. If a shift is necessary, a necessary shift (shift destination) is specified. Further, the shift control unit 82 determines whether the required shift is a shift with only clutch switching or a shift accompanied by a gear change (gear shift) in switching the clutch. The shift control unit 82 instructs the clutch control unit 83 to switch the clutch to be engaged in the case of shifting only by clutch switching. Further, the shift control unit 82 instructs the shift shifter 85 to change the gear when the shift is accompanied by a gear change.
  • the shift control unit 82 receives a shift down instruction (in this embodiment, an operation to move the operation lever 94 negative in the M range) from the driver according to the designated position of the operation lever 94 transmitted from the shift position sensor 95. It is determined whether or not it has been detected. When a downshift instruction is detected, the shift control unit 82 notifies the clutch control unit 83 to that effect.
  • a shift down instruction in this embodiment, an operation to move the operation lever 94 negative in the M range
  • the clutch control unit 83 is in an accelerator-off state (the accelerator opening detected by the accelerator opening sensor 93 is 0) when receiving a notification from the shift control unit 82 that a downshift instruction has been detected, It is connected to a shift destination clutch, which is a clutch different from the shift source clutch, than the shift speed of the shift mechanism 30 connected to the shift source clutch, which is a clutch engaging the engine 10 and the transmission mechanism 30. It is determined whether or not the shift speed of the shift mechanism 30 is lower and the clutch that engages the engine 10 and the shift mechanism 30 can be switched from the shift source clutch to the shift destination clutch.
  • the accelerator-off state is determined in order to determine that the engine 10 is not in a situation where the rotational speed increases due to the supply of fuel. If the accelerator 10 is in the accelerator-off state, the engine rotational speed is determined at this time. Is the rotation speed (shift source input shaft rotation speed) of the input shaft (shift source input shaft) connected to the shift source clutch and the rotation speed (shift destination) of the input shaft (shift destination input shaft) connected to the shift destination clutch. It is guaranteed that the rotation speed is less than the input shaft speed. In addition, it is determined that the speed of the speed change mechanism 30 connected to the speed change destination clutch is lower than the speed change speed of the speed change mechanism 30 connected to the speed change source clutch. This is to determine that the low speed stage can be quickly achieved only by switching the clutch. Further, it is determined whether or not the clutch that engages the engine 10 and the speed change mechanism 30 can be switched from the speed change source clutch to the speed change destination clutch. This is to determine that the clutch can be switched immediately, not in a situation where the clutch switching is prohibited.
  • the transmission mechanism 30 when the transmission source clutch is the first clutch 21 and the transmission destination clutch is the second clutch 22, the transmission mechanism 30 is connected to the second clutch 22 that is the transmission destination clutch.
  • the shift speed of the existing transmission mechanism 30 is lower. More specifically, when the shift stage on the first clutch 21 side is 3H, 2H, and 1H, it is guaranteed that the shift stage on the second clutch 22 side is 3L, 2L, and 1L, respectively.
  • the clutch control unit 83 determines whether or not the shift speed is 3H, 2H, or 1H, thereby connecting to the shift destination clutch rather than the shift speed of the transmission mechanism 30 connected to the shift source clutch. It can be determined that the gear position of the transmission mechanism 30 that is being used is a lower gear position.
  • the clutch control unit 83 is in an accelerator-off state, and the speed of the speed change mechanism 30 connected to the speed change destination clutch is higher than the speed change speed of the speed change mechanism 30 connected to the speed change source clutch. If it is determined that the clutch that engages the engine 10 and the speed change mechanism 30 can be switched from the speed change source clutch to the speed change destination clutch, the engine speed is input to the speed change source.
  • the transmission source clutch While controlling the engagement force of the transmission source clutch and the transmission destination clutch so that the shaft rotational speed is less than the shaft rotation speed, the transmission source clutch is changed from the engaged state to the disconnected state and the transmission destination clutch is changed from the disconnected state to the half-clutch state As described above, the control signal is output to the first clutch hydraulic oil adjusting unit 86 and / or the second clutch hydraulic oil adjusting unit 87.
  • the engine speed acceleration (engine speed acceleration) ⁇ ⁇ e is expressed by the relational expression shown in Expression (1).
  • I is a moment of inertia of the engine 10
  • T e is the torque (engine torque) engine 10 occurs
  • T H is the torque (transmission source input that is transmitted from the transmission source clutch to the engine 10
  • TL is torque transmitted from the shift destination clutch to the engine 10 (shift destination input shaft transmission torque).
  • the engine torque Te , the shift source input shaft transmission torque TH, and the shift destination input shaft transmission torque TL are positive torques in the direction acting in the direction in which the engine 10 is rotated.
  • the engine torque Te is a negative torque that acts in a direction that suppresses the rotation of the engine 10 due to the friction of the engine 10, that is, a torque that acts as an engine brake that decelerates the vehicle.
  • engine speed acceleration ⁇ ⁇ e ⁇ 0, it is only necessary to satisfy ⁇ T e ⁇ T H + T L.
  • the clutch control unit 83 is configured such that the engine torque Te , the transmission source input shaft transmission torque TH, and the transmission destination input shaft transmission torque TL satisfy the expression (2). to, i.e., a transmission source input shaft transmits torque T H, the total torque of the transmission destination input shaft transmits torque T L is, the engine torque T e while maintaining as the same value in the reverse direction, shift from input Control is performed such that the shaft transmission torque TH is decreased and the shift destination input shaft transmission torque TL is increased.
  • the clutch controller 83 the shift in order to reduce the original input shaft transmits torque T H, to determine the hydraulic pressure supplied to the hydraulic chamber of the gear shift based on the clutch to reduce engagement force of the shift based on the clutch
  • the operating hydraulic pressure supplied to the hydraulic chamber of the shift destination clutch is determined, and a control signal (control current) for supplying the determined operating hydraulic pressure is determined. It outputs to the 1 clutch hydraulic oil adjustment part 86 and the 2nd clutch hydraulic oil adjustment part 87.
  • transmission torque (shift source input shaft transmission torque TH and shift destination input shaft transmission torque T L ) by the first clutch 21 and the second clutch 22 and hydraulic pressure to the hydraulic chambers (26A, 29A) of each clutch. Can be grasped in advance by performing measurement using a clutch device having the same or similar configuration.
  • the transmission destination input shaft transmission torque T H is reduced by the reduced torque.
  • the torque TL will increase.
  • the speed change destination input shaft side is a low speed stage, and the speed change destination input shaft side has a higher gear ratio than the speed change source input shaft side, so even if the torque amount is the same on the input shaft side, As the torque amount on the side, the shift destination input shaft side is larger. That is, even a weight torque is canceled by the engine torque T e is the same, who if through the transmission destination input shaft side becomes large as a torque to brake the vehicle. Therefore, when the clutch switching control is started, the torque for braking the vehicle gradually increases. For this reason, it is possible to increase the torque for braking the vehicle at an early stage after detecting the driver's downshift instruction, and to decelerate the vehicle strongly.
  • the clutch control unit 83 operates the first clutch so that the shift destination clutch is brought into a contact state when receiving a notification from the synchronization control unit 84 that the engine speed and the shift destination input shaft rotation speed coincide with each other.
  • a control signal is output to the oil adjustment unit 86 or the second clutch hydraulic oil adjustment unit 87.
  • the clutch control unit 83 outputs a control signal to the first clutch hydraulic oil adjustment unit 86 and / or the second clutch hydraulic oil adjustment unit 87 based on an instruction from the transmission control unit 82.
  • the synchronization control unit 84 determines whether or not the speed change destination input shaft rotational speed is equal to or lower than the allowable upper limit speed of the engine 10 after the clutch control unit 83 performs the clutch switching, and performs the speed change destination input shaft rotation. When it is determined that the number is equal to or lower than the allowable upper limit rotational speed, the engine 10 is controlled to increase the engine rotational speed so as to coincide with the shift destination input shaft rotational speed.
  • the synchronization control unit 84 determines whether or not the engine speed and the speed-destination input shaft speed match, and if it determines that the engine speed and the speed-destination input shaft speed match, This is notified to the clutch control unit 83.
  • the shift shifter 85 operates the first sync mechanism 55 and the second sync mechanism 56 in accordance with an instruction from the shift control unit 82 to release the engagement state between the output shaft 33 and the output main gear (53, 63, 73). (Gear out) or engage (gear in) the output shaft 33 and the output main gear (53, 63, 73).
  • the first clutch hydraulic oil adjustment unit 86 includes, for example, a linear solenoid valve, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the clutch control unit 83. Then, the amount and pressure of the hydraulic oil supplied to the first hydraulic chamber 26A are adjusted.
  • the second clutch hydraulic oil adjustment unit 87 includes, for example, a linear solenoid valve, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the clutch control unit 83. Then, the amount and pressure of hydraulic fluid supplied to the second hydraulic chamber 29A are adjusted.
  • FIG. 2 is a flowchart of a shift control process according to an embodiment of the present disclosure.
  • the shift control process is executed when the vehicle is running.
  • the shift control unit 82 determines whether or not there is a downshift instruction for the operation lever 94 by the driver based on the sensor value of the shift position sensor 95 (step S11). As a result, when there is no downshift instruction (step S11: NO), the shift control unit 82 executes step S11 again.
  • step S11 when there is a downshift instruction (step S11: YES), the clutch control unit 83 determines whether or not the sensor value by the accelerator opening detection sensor 93 indicates accelerator off (step S12). Then, it is determined whether or not it is possible to shift to a low speed only by switching the clutch (step S13).
  • the determination as to whether or not it is possible to shift to a low speed only by switching the clutch is made, for example, based on the speed of the speed change mechanism 30 connected to the speed change source clutch that is the clutch engaging the engine 10 and the speed change mechanism 30.
  • a clutch that engages the engine 10 and the transmission mechanism 30 has a lower shift stage of the transmission mechanism 30 that is connected to a destination clutch that is a clutch different from the transmission source clutch. Further, it may be determined whether or not the shift source clutch can be switched to the shift destination clutch.
  • step S12 when the accelerator is not turned off (step S12: NO), or when it is not possible to shift to a low speed only by clutch switching (step S13: NO), a normal shift-down process (normal shift-down process) Is executed (step S14), and the shift control unit 82 advances the process to step S11.
  • step S15 the clutch control unit 83 changes the transmission source clutch from the engaged state to the disconnected state while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the engine speed is equal to or lower than the transmission source input shaft rotation speed.
  • a control signal is output to the first clutch hydraulic oil adjusting unit 86 and / or the second clutch hydraulic oil adjusting unit 87 so as to change the shift destination clutch from the disengaged state to the half clutch state.
  • the synchronization control unit 84 determines whether or not engine rotation synchronization is possible (step S16). Specifically, the synchronization control unit 84 determines whether or not the speed change destination input shaft speed is equal to or lower than the allowable upper limit speed of the engine 10.
  • step S16: NO when the speed-destination input shaft rotation speed is not less than the allowable upper limit rotation speed and engine rotation synchronization is not possible (step S16: NO), the synchronization control unit 84 executes step S16 again.
  • step S16: YES when the speed change destination input shaft speed is equal to or lower than the allowable upper limit speed and the engine speed can be synchronized (step S16: YES), the synchronization control unit 84 sets the engine speed to the speed change destination input shaft speed. It raises so that it may correspond (step S17).
  • step S18 determines whether or not the engine speed matches the speed change destination input shaft speed. As a result, when the engine speed does not match the speed change destination input shaft speed (step S18: NO), the synchronization control unit 84 executes step S18 again.
  • step S18 when it is determined that the engine speed and the speed change destination input shaft speed match (step S18: YES), the synchronization control unit 84 notifies the clutch control unit 83 to that effect and has received the notification.
  • the clutch control unit 83 outputs a control signal to the first clutch hydraulic oil adjusting unit 86 or the second clutch hydraulic oil adjusting unit 87 to control the shift destination clutch to be in an engaged state (step S19), and processing To step S11.
  • FIG. 3A is a diagram showing torque from the shift source input shaft to the engine, torque from the shift destination input shaft to the engine, and torque change by the engine in the shift control process
  • FIG. It is a figure which shows the change of the rotation speed of an original input shaft, a gear shift destination input shaft, and an engine.
  • the output shaft 33 and the second-speed main gear 63 are engaged by the second sync mechanism 56, and the path between the first input shaft 31 and the output shaft 33 is 2H.
  • the speed state is set, and the path between the second output shaft 32 and the output shaft 33 is set to the 2L speed state.
  • the first clutch 21 connected to the transmission source input shaft here, the first input shaft 31
  • the second clutch connected to the transmission destination input shaft here, the second input shaft 32.
  • step S15 clutch switching control
  • This shift destination input shaft transmission torque TL is a torque having a value obtained by multiplying the value of the shift destination input shaft transmission torque TL by the gear ratio between the shift destination input shaft and the output shaft 33 around the output shaft 33. It corresponds to.
  • the shift speed between the shift destination input shaft (second input shaft 32) and the output shaft 33 is lower than the shift speed between the shift source input shaft (first input shaft 31) and the output shaft 33. Therefore, the gear ratio between the shift destination input shaft and the output shaft is larger than the gear ratio between the shift source input shaft and the output shaft. For this reason, when the shift destination input shaft transmission torque TL increases, the torque acting in the direction of decreasing the rotation speed of the output shaft 33 around the output shaft 33 increases, and the vehicle is decelerated more strongly.
  • the gradients of decrease in the transmission source input shaft rotational speed, the transmission destination input shaft rotational speed, and the engine rotational speed increase from time T1 to time T2.
  • the slope is the same as that at time T2.
  • the speed change destination input shaft speed is higher than the allowable upper limit speed of the engine. For this reason, the shift destination clutch cannot be brought into the engaged state at time T2.
  • the speed change destination input shaft rotational speed matches the allowable upper limit rotational speed of the engine 10. Thereafter, even if the shift destination clutch is in the engaged state, the rotational speed of the engine 10 does not exceed the allowable upper limit rotational speed.
  • the engine torque Te is zero.
  • the clutch control unit 83 controls the speed change destination clutch to be in an engaged state.
  • the vehicle is decelerated due to the friction of the engine 10 at the shift speed (low speed) at the shift destination in a state where the engine speed is higher.
  • the friction of the engine 10 becomes larger, so the effect of deceleration of the vehicle is high.
  • the speed change control device 80 when the driver gives a downshift instruction, the accelerator mechanism is off and the speed change mechanism 30 connected to the speed change source clutch is connected.
  • the speed of the speed change mechanism 30 connected to the speed change destination clutch is lower than the speed change speed, and the clutch that engages the engine 10 and the speed change mechanism 30 is shifted from the speed change source clutch.
  • the transmission source clutch is engaged while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the engine speed is equal to or lower than the transmission source input shaft rotation speed. From the disengaged state to the half-clutch state. To, can be decelerated more strongly the vehicle at an early stage. Therefore, a desired deceleration feeling can be given to the driver at an early stage.
  • the engine speed is increased so as to coincide with the speed change destination input shaft speed, Since the shift destination clutch is connected when the shift destination input shaft rotation speed matches, the engine rotation speed can be appropriately prevented from exceeding the allowable upper limit rotation speed, and at lower shift speeds.
  • the engine 10 can be decelerated.
  • control for immediately bringing the speed-change destination clutch into contact is started.
  • the control to start the speed change destination clutch is started after maintaining the half clutch state. It may be. By doing so, it is possible to make the shift destination clutch slightly slipped (that is, the micro-slip state), and to reduce the shock that occurs when the clutch is subsequently engaged.
  • the input shaft is based on the rotation speed of the output shaft 33 detected by the vehicle speed sensor 92 and the gear ratio between the output shaft 33 and the input shaft (31, 32) in the speed change mechanism 30.
  • the present disclosure is not limited to this, and includes a sensor that detects the rotational speed of the first input shaft 31 and a sensor that detects the rotational speed of the second input shaft 32.
  • the rotational speed of the input shaft may be specified by the sensor value.
  • the operation lever 94 is configured to designate the minus or plus of the M range when manually shifting by the driver.
  • the present disclosure is not limited to this, and for example, the operation lever 94 94 may be configured such that each gear position can be directly designated. In this case, it is possible to specify that the downshift is specified when the speed after the speed change is lower than the speed before the speed change.
  • the dual clutch type transmission 1 which has the subtransmission part 40
  • this indication is not restricted to this, It has two input shafts and one output shaft, One input shaft And the output shaft between the other input shaft and the output shaft can be set to a state of a speed step that is lower than the speed step.
  • the present disclosure can be applied even to a dual clutch transmission that does not include the auxiliary transmission unit 40.
  • control device for the dual clutch transmission of the present disclosure is useful in that appropriate deceleration can be obtained at an early stage when the driver designates downshifting.

Abstract

The invention is provided with: a clutch control unit 83 that, when a downshift instruction is detected by a transmission control device 80 and in the event that an accelerator is off, the gear position on a gear shift destination clutch side is lower than on a gear shift source clutch side, and the clutch that engages with an engine 10 can be switched from the gear shift source clutch to the gear shift destination clutch, controls the engagement force of both clutches such that the engine rotational speed is equal to or less than the rotational speed of a gear shift source input shaft, and performs control such that the gear shift source clutch is changed to a disengaged state and the gear shift destination clutch is changed to a half-clutch state; and a synchronization control unit 84 that, when the rotational speed of a gear shift source input shaft is equal to or less than a maximum allowable rotational speed, increases the engine rotational speed so as to match the rotational speed of a gear shift destination input shaft. After the engine rotational speed and the rotational speed of the gear shift destination input shaft are made to match, the clutch control unit 83 configures the gear shift destination clutch to be controlled in a connected state.

Description

デュアルクラッチ式変速機の制御装置Control device for dual clutch transmission
 本開示は、エンジンと変速機構との間に2つのクラッチを含むクラッチ装置が設けられたデュアルクラッチ式変速機の制御装置に関する。 The present disclosure relates to a control device for a dual clutch transmission in which a clutch device including two clutches is provided between an engine and a transmission mechanism.
 従来、エンジンからの動力伝達を断接可能なクラッチを2つ備え、エンジンから変速機構への駆動力伝達経路をいずれかのクラッチを介する系統に切替可能なデュアルクラッチ式変速機が知られている。 2. Description of the Related Art Conventionally, there is known a dual clutch transmission that includes two clutches capable of connecting / disconnecting power transmission from an engine and is capable of switching a driving force transmission path from the engine to a transmission mechanism to a system via any one of the clutches. .
 デュアルクラッチ式変速機には、例えば、運転者が操作レバーを手動で操作して、変速段や、シフトアップ/シフトダウンを指定することにより、指定に応じてアクチュエータを動作させ、クラッチの切替や、変速機構内のギヤの係合/非係合を制御するものが知られている。 In a dual clutch transmission, for example, a driver manually operates an operation lever to designate a gear position and a shift up / shift down, thereby operating an actuator according to the designation, switching a clutch, A device that controls engagement / disengagement of gears in a transmission mechanism is known.
 デュアルクラッチ式変速機におけるシフトダウンに関する技術として、運転者が変速段を切り換える意図を反映した変速段にプリシフトを行うことにより、変速段の切替えを速くする技術が知られている(例えば、特許文献1参照)。 As a technique related to downshifting in a dual clutch transmission, a technique is known in which the shift speed is changed quickly by pre-shifting to a shift speed that reflects the intention of the driver to switch the shift speed (for example, Patent Documents). 1).
日本国特開2010-38229号公報Japanese Unexamined Patent Publication No. 2010-38229
 例えば、運転者が変速を指定できるデュアルクラッチ式変速機において、運転者の変速の指定に対して、すぐに変速を実行してしまうと、エンジンを破損してしまう虞がある。例えば、運転者がシフトダウンを指定した場合において、直ちに、低速段に変速しようとすると、エンジンの回転数が、エンジンの許容される上限回転数(許容上限回転数)を超えてしまう虞がある。 For example, in a dual clutch transmission in which the driver can specify a shift, if the shift is immediately executed in response to the driver's shift specification, the engine may be damaged. For example, if the driver has designated downshifting and immediately tries to shift to a low gear, the engine speed may exceed the allowable upper engine speed (allowable upper engine speed). .
 そこで、デュアルクラッチ式変速機においては、運転者からシフトダウンの指示があった場合には、シフトダウンを実行してもエンジン回転数が許容上限回転数以内に収まる様になるまで待った後に、変速を実行するようにしていた。 Therefore, in a dual clutch transmission, if the driver gives an instruction to shift down, the engine shifts after waiting until the engine speed falls within the allowable upper limit speed even if the shift down is executed. Had to run.
 このように、シフトダウンを実行してもエンジン回転数が許容上限回転数以内に収まる様になるまで待った後に、変速を実行するようにすると、運転者が強いエンジンブレーキによる減速を得るためにシフトダウンを指定したとしても、実際にシフトダウンが行われていない状態が発生し、運転者が所望する減速が得られない状態となってしまう。 In this way, even if the downshift is executed, if the engine speed is kept within the allowable upper limit number of revolutions and then the speed change is executed, the driver shifts in order to obtain a strong engine brake deceleration. Even if down is designated, a state in which the downshift is not actually performed occurs, and a deceleration desired by the driver cannot be obtained.
 そこで、本開示は、運転者がシフトダウンを指定した際に、早期に適切な減速が得られるようにすることのできる技術を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a technique capable of obtaining appropriate deceleration at an early stage when the driver designates downshifting.
 上述の目的を達成するため、本開示の一観点に係るデュアルクラッチ式変速機の制御装置は、エンジンと変速機構との間に2つのクラッチを含むクラッチ装置が設けられ、エンジンから変速機構の出力軸に接続された車両駆動系への駆動力伝達経路を、それぞれのクラッチを介する経路間で切替可能なデュアルクラッチ式変速機の制御装置であって、運転者からのシフトダウン指示があったか否かを検出するシフトダウン指示検出手段と、シフトダウン指示が検出された場合において、アクセルオフの状態であって、エンジンと変速機構とを係合しているクラッチである変速元クラッチに接続されている変速機構の変速段よりも、変速元クラッチとは別のクラッチである変速先クラッチに接続されている変速機構の変速段の方が低い変速段となっているとともに、エンジンと変速機構とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能か否かを判定するクラッチ切替判定手段と、クラッチ切替判定手段により、アクセルオフの状態であって、変速元クラッチに接続されている変速機構の変速段よりも、変速先クラッチに接続されている変速機構の変速段の方が低い変速段となっているとともに、エンジンと変速機構とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能であると判定された場合には、エンジンの回転数が変速元クラッチに接続されている変速機構の入力軸である変速元入力軸の回転数以下となるように変速元クラッチ及び変速先クラッチの締結力を制御しつつ、変速元クラッチを接状態から断状態に変更するとともに、変速先クラッチを断状態から半クラッチ状態に変更する制御を実行するクラッチ切替制御手段と、変速先クラッチに接続されている変速機構の入力軸である変速先入力軸の回転数が、エンジンの許容上限回転数以下であるか否かを判定するエンジン回転同期判定手段と、変速先入力軸の回転数が許容上限回転数以下であると判定された場合に、エンジンの回転数を変速先入力軸の回転数と一致するように上昇させるエンジン回転同期制御手段と、エンジンの回転数と変速先入力軸の回転数とが一致したか否かを判定する同期完了判定手段と、エンジンの回転数と変速先入力軸の回転数とが一致したと判定された以降に、変速先クラッチを接状態に制御する変速終結制御手段とを備える。 In order to achieve the above-described object, a control device for a dual clutch transmission according to an aspect of the present disclosure includes a clutch device including two clutches between an engine and a transmission mechanism, and the output of the transmission mechanism from the engine. A control system for a dual clutch transmission capable of switching a driving force transmission path to a vehicle drive system connected to a shaft between paths via respective clutches, and whether or not there has been a downshift instruction from the driver A shift down instruction detecting means for detecting the engine and when the downshift instruction is detected, the accelerator is in an off state and is connected to a transmission source clutch that is a clutch engaging the engine and the transmission mechanism. The speed stage of the speed change mechanism connected to the speed change destination clutch, which is a clutch different from the speed change source clutch, is lower than the speed change speed of the speed change mechanism. The clutch switching determining means for determining whether or not the clutch that engages the engine and the transmission mechanism can be switched from the transmission source clutch to the transmission destination clutch, and the clutch switching determination means in an accelerator-off state. In addition, the speed of the speed change mechanism connected to the speed change destination clutch is lower than the speed change speed of the speed change mechanism connected to the speed change source clutch. When it is determined that the clutch to be engaged can be switched from the transmission source clutch to the transmission destination clutch, the transmission source input shaft that is the input shaft of the transmission mechanism whose engine speed is connected to the transmission source clutch The transmission source clutch is changed from the engaged state to the disengaged state while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the rotation speed is less than The engine switching control means for executing the control for changing the front clutch from the disengaged state to the half-clutch state, and the rotational speed of the speed change destination input shaft that is the input shaft of the speed change mechanism connected to the speed change destination clutch The engine rotation synchronization determination means for determining whether or not the rotation speed is equal to or less than the rotation speed, and when it is determined that the rotation speed of the shift destination input shaft is equal to or lower than the allowable upper limit rotation speed, Engine rotation synchronization control means for increasing the engine speed so as to coincide with the engine speed, synchronization completion determining means for determining whether the engine speed and the speed of the shift destination input shaft coincide with each other, engine speed and speed change After it is determined that the rotational speed of the front input shaft matches, a shift end control means for controlling the shift destination clutch to the engaged state is provided.
 上記デュアルクラッチ式変速機の制御装置において、クラッチ切替制御手段は、変速元クラッチによるエンジンと変速機構との間の伝達トルクと、変速先クラッチによるエンジンと変速機構との間の伝達トルクとの合計がエンジンによる減速トルク以下となるように、変速元クラッチ及び変速先クラッチの前記締結力を制御するようにしてもよい。 In the control apparatus for a dual clutch transmission, the clutch switching control means is a sum of a transmission torque between the engine and the transmission mechanism by the transmission source clutch and a transmission torque between the engine and the transmission mechanism by the transmission destination clutch. The engagement force of the shift source clutch and the shift destination clutch may be controlled so that is less than or equal to the deceleration torque by the engine.
 また、上記デュアルクラッチ式変速機の制御装置において、エンジン回転同期判定手段は、出力軸回転数センサにより検出された変速機構の出力軸の回転数と、変速先入力軸と出力軸との間のギヤ比とに基づいて、変速先入力軸の回転数を算出するようにしてもよい。 Further, in the control apparatus for the dual clutch transmission, the engine rotation synchronization determination means includes the rotation speed of the output shaft of the speed change mechanism detected by the output shaft rotation speed sensor, and between the shift destination input shaft and the output shaft. The rotational speed of the shift destination input shaft may be calculated based on the gear ratio.
 また、上記デュアルクラッチ式変速機の制御装置において、変速終結制御手段は、エンジンの回転数と変速先入力軸の回転数とが一致したと判定されてから所定時間が経過した後に、変速先クラッチを接状態にする制御を開始するようにしてもよい。 Further, in the control apparatus for the dual clutch transmission, the shift end control means may be configured such that the shift destination clutch is operated after a predetermined time elapses after it is determined that the engine speed and the speed of the shift destination input shaft match. You may make it start the control which makes a contact state.
 本開示によれば、運転者がシフトダウンを指定した際に、早期に適切な減速が得られるようにすることができる。 According to the present disclosure, when the driver designates downshifting, appropriate deceleration can be obtained early.
本開示の一実施形態に係るデュアルクラッチ装置を備えるデュアルクラッチ式変速機を示す模式的な構成図である。It is a typical lineblock diagram showing a dual clutch type transmission provided with a dual clutch device concerning one embodiment of this indication. 本開示の一実施形態に係る変速制御処理のフローチャートである。5 is a flowchart of a shift control process according to an embodiment of the present disclosure. (a)は、変速制御処理における変速元入力軸からエンジンへのトルク、変速先入力軸からエンジンへのトルク、エンジンによるトルクの変化を示す図であり、(b)は、変速元入力軸、変速先入力軸、エンジンの回転数の変化を示す図である。(A) is a figure which shows the change to the torque from the transmission source input shaft to an engine in the transmission control process, the torque from a transmission destination input shaft to an engine, and the torque by an engine, (b) is a transmission source input shaft, It is a figure which shows the change of a speed-change destination input shaft and an engine speed.
 以下、添付図面に基づいて、本開示の一実施形態に係るデュアルクラッチ式変速機の制御装置の一例である変速制御装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, a shift control device that is an example of a control device for a dual clutch transmission according to an embodiment of the present disclosure will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、本開示の一実施形態に係るデュアルクラッチ装置を備えるデュアルクラッチ式変速機を示す模式的な構成図である。 FIG. 1 is a schematic configuration diagram illustrating a dual clutch transmission including a dual clutch device according to an embodiment of the present disclosure.
 車両に備えられるデュアルクラッチ式変速機1は、駆動源の一例であるエンジン10の出力軸11に接続されている。 The dual clutch transmission 1 provided in the vehicle is connected to an output shaft 11 of an engine 10 which is an example of a drive source.
 デュアルクラッチ式変速機1は、第1クラッチ21及び第2クラッチ22を有するデュアルクラッチ装置20と、変速機構30と、制御装置の一例としての変速制御装置80と、エンジン回転数センサ91と、車速センサ92(出力軸回転数センサともいう)と、アクセル開度センサ93と、シフトポジションセンサ95とを備えている。 The dual clutch transmission 1 includes a dual clutch device 20 having a first clutch 21 and a second clutch 22, a speed change mechanism 30, a speed change control device 80 as an example of a control device, an engine speed sensor 91, a vehicle speed. A sensor 92 (also referred to as an output shaft rotational speed sensor), an accelerator opening sensor 93, and a shift position sensor 95 are provided.
 第1クラッチ21は、例えば、湿式多板クラッチであって、エンジン10の出力軸11と一体回転するクラッチハブ23と、変速機構30の第1入力軸31と一体回転する第1クラッチドラム24と、複数枚の第1クラッチプレート25と、複数枚の第1クラッチプレート25の周囲の第1空間21Aと、第1クラッチプレート25を圧接する第1ピストン26と、第1油圧室26Aとを備えている。 The first clutch 21 is, for example, a wet multi-plate clutch, and includes a clutch hub 23 that rotates integrally with the output shaft 11 of the engine 10, and a first clutch drum 24 that rotates integrally with the first input shaft 31 of the transmission mechanism 30. A plurality of first clutch plates 25, a first space 21A around the plurality of first clutch plates 25, a first piston 26 press-contacting the first clutch plates 25, and a first hydraulic chamber 26A. ing.
 第1クラッチ21は、第1油圧室26Aに供給される作動油の圧力(作動油圧)によって第1ピストン26が出力側(図1の右方向)にストローク移動すると、第1クラッチプレート25が圧接されて、トルクを伝達する接続状態となる。一方、第1油圧室26Aの作動油圧が解放されると、第1ピストン26が図示しないスプリングの付勢力によって入力側(図1の左方向)にストローク移動されて、第1クラッチ21は動力伝達を遮断する切断状態(断状態)となる。なお、以下の説明では、クラッチハブ23と第1クラッチドラム24とが異なる回転数で回転しつつ、第1クラッチプレート25を介してトルクが伝達される状態を第1クラッチ21の半クラッチ状態と称し、クラッチハブ23と第1クラッチドラム24とが同一の回転数で一体して回転しつつ、第1クラッチプレート25を介してトルクが伝達される状態を第1クラッチ21の接状態と称する。第1空間21Aには、第1クラッチプレート25に発生する摩擦熱等を排出するために作動油が供給される。 When the first piston 26 strokes to the output side (right direction in FIG. 1) due to the pressure of hydraulic oil (hydraulic pressure) supplied to the first hydraulic chamber 26A, the first clutch plate 25 is pressed against the first clutch 21. Thus, a connection state for transmitting torque is established. On the other hand, when the operating hydraulic pressure in the first hydraulic chamber 26A is released, the first piston 26 is stroked to the input side (left direction in FIG. 1) by the urging force of a spring (not shown), and the first clutch 21 transmits power. It becomes the cutting state (cutting state) which interrupts. In the following description, the state in which torque is transmitted via the first clutch plate 25 while the clutch hub 23 and the first clutch drum 24 rotate at different rotational speeds is referred to as a half-clutch state of the first clutch 21. In other words, a state in which the clutch hub 23 and the first clutch drum 24 rotate integrally with the same rotation speed and torque is transmitted through the first clutch plate 25 is referred to as a contact state of the first clutch 21. Hydraulic fluid is supplied to the first space 21A in order to discharge frictional heat and the like generated in the first clutch plate 25.
 第2クラッチ22は、例えば、湿式多板クラッチであって、クラッチハブ23と、変速機構30の第2入力軸32と一体回転する第2クラッチドラム27と、複数枚の第2クラッチプレート28と、複数枚の第2クラッチプレート28の周囲の第2空間22Aと、第2クラッチプレート28を圧接する第2ピストン29と、第2油圧室29Aとを備えている。 The second clutch 22 is, for example, a wet multi-plate clutch, and includes a clutch hub 23, a second clutch drum 27 that rotates integrally with the second input shaft 32 of the transmission mechanism 30, and a plurality of second clutch plates 28. A second space 22A around the plurality of second clutch plates 28, a second piston 29 press-contacting the second clutch plates 28, and a second hydraulic chamber 29A are provided.
 第2クラッチ22は、第2油圧室29Aに供給される作動油圧によって第2ピストン29が出力側(図1の右方向)にストローク移動すると、第2クラッチプレート28が圧接されて、トルクを伝達する接続状態となる。一方、作動油圧が解放されると、第2ピストン29が図示しないスプリングの付勢力によって入力側(図1の左方向)にストローク移動されて、第2クラッチ22はトルク伝達を遮断する切断状態(断状態)となる。なお、以下の説明では、クラッチハブ23と第2クラッチドラム27とが異なる回転数で回転しつつ、第2クラッチプレート28を介してトルクが伝達される状態を第2クラッチ22の半クラッチ状態と称し、クラッチハブ23と第2クラッチドラム27とが同一回転数で一体となって回転しつつ、第2クラッチプレート28を介してトルクが伝達される状態を第2クラッチ22の接状態と称する。第2空間22Aには、第2クラッチプレート28に発生する摩擦熱等を排出するために作動油が供給される。 In the second clutch 22, when the second piston 29 is stroked to the output side (right direction in FIG. 1) by the hydraulic pressure supplied to the second hydraulic chamber 29 </ b> A, the second clutch plate 28 is pressed to transmit torque. Connection state. On the other hand, when the operating hydraulic pressure is released, the second piston 29 is stroked to the input side (left direction in FIG. 1) by the urging force of a spring (not shown), and the second clutch 22 is in a disconnected state in which torque transmission is interrupted ( Disconnected state). In the following description, the state in which the torque is transmitted via the second clutch plate 28 while the clutch hub 23 and the second clutch drum 27 rotate at different rotational speeds is referred to as the half-clutch state of the second clutch 22. In other words, the state in which the clutch hub 23 and the second clutch drum 27 rotate together at the same rotation speed and torque is transmitted through the second clutch plate 28 is referred to as a contact state of the second clutch 22. Hydraulic fluid is supplied to the second space 22A in order to discharge frictional heat and the like generated in the second clutch plate 28.
 変速機構30は、入力側に配置された副変速部40と、出力側に配置された主変速部50とを備えている。また、変速機構30は、副変速部40に設けられた第1入力軸31及び第2入力軸32と、主変速部50に設けられた出力軸33と、これらの軸31~33と平行に配置された副軸34とを備えている。第1入力軸31は、第2入力軸32を軸方向に貫通する中空軸内に相対回転自在に挿入されている。出力軸33の出力端には、何れも図示しない車両駆動輪に差動装置等を介して連結されたプロペラシャフト(車両駆動系)が接続されている。 The transmission mechanism 30 includes a sub-transmission unit 40 disposed on the input side and a main transmission unit 50 disposed on the output side. The transmission mechanism 30 includes a first input shaft 31 and a second input shaft 32 provided in the sub-transmission unit 40, an output shaft 33 provided in the main transmission unit 50, and parallel to these shafts 31 to 33. The counter shaft 34 is provided. The first input shaft 31 is inserted into a hollow shaft that penetrates the second input shaft 32 in the axial direction so as to be relatively rotatable. A propeller shaft (vehicle drive system) connected to a vehicle drive wheel (not shown) via a differential device or the like is connected to the output end of the output shaft 33.
 副変速部40には、第1スプリッタギヤ対41と、第2スプリッタギヤ対42とが設けられている。第1スプリッタギヤ対41は、第1入力軸31に固定された第1入力主ギヤ43と、副軸34に固定されて第1入力主ギヤ43と常時歯噛する第1入力副ギヤ44とを備えている。第2スプリッタギヤ対42は、第2入力軸32に固定された第2入力主ギヤ45と、副軸34に固定されて第2入力主ギヤ45と常時歯噛する第2入力副ギヤ46とを備えている。したがって、副軸34と、第1入力軸31及び第2入力軸32とは、常時結合された状態となっている。本実施形態では、第1スプリッタギヤ対41のギヤ比が第2スプリッタギヤ対42よりも小さくなっている。すなわち、第1スプリッタギヤ対41側が高速側の変速段となっている。このため、副変速部40においては、第1スプリッタギヤ対41を介して駆動力を伝達する場合(第1クラッチ21を接続した場合)には、高速側とすることができ、第2スプリッタギヤ対42を介して駆動力を伝達する場合(第2クラッチ22を接続した場合)には、低速側とすることができる。ここで、第1スプリッタギヤ対41を介した場合をH(高速側)段と称し、第2スプリッタギヤ対42を介した場合をL(低速側)段と称する。 The auxiliary transmission unit 40 is provided with a first splitter gear pair 41 and a second splitter gear pair 42. The first splitter gear pair 41 includes a first input main gear 43 fixed to the first input shaft 31, and a first input sub gear 44 fixed to the sub shaft 34 and constantly meshing with the first input main gear 43. It has. The second splitter gear pair 42 includes a second input main gear 45 fixed to the second input shaft 32, and a second input sub gear 46 fixed to the sub shaft 34 and constantly meshing with the second input main gear 45. It has. Therefore, the sub shaft 34, the first input shaft 31, and the second input shaft 32 are always coupled. In the present embodiment, the gear ratio of the first splitter gear pair 41 is smaller than that of the second splitter gear pair 42. That is, the first splitter gear pair 41 side is a high-speed gear stage. Therefore, in the auxiliary transmission unit 40, when the driving force is transmitted via the first splitter gear pair 41 (when the first clutch 21 is connected), the auxiliary transmission unit 40 can be set to the high speed side, and the second splitter gear. When the driving force is transmitted via the pair 42 (when the second clutch 22 is connected), the speed can be reduced. Here, the case through the first splitter gear pair 41 is referred to as an H (high speed side) stage, and the case through the second splitter gear pair 42 is referred to as an L (low speed side) stage.
 主変速部50には、第1出力ギヤ対51と、第2出力ギヤ対61と、第3出力ギヤ対71と、第1シンクロ機構55と、第2シンクロ機構56とが設けられている。第1出力ギヤ対51は、副軸34に固定された3速副ギヤ52と、出力軸33に相対回転自在に設けられると共に3速副ギヤ52と常時歯噛する3速主ギヤ53とを備えている。第2出力ギヤ対61は、副軸34に固定された2速副ギヤ62と、出力軸33に相対回転自在に設けられると共に2速副ギヤ62と常時歯噛する2速主ギヤ63とを備えている。第3出力ギヤ対71は、副軸34に固定された1速副ギヤ72と、出力軸33に相対回転自在に設けられると共に1速副ギヤ72と常時歯噛する1速主ギヤ73とを備えている。 The main transmission unit 50 is provided with a first output gear pair 51, a second output gear pair 61, a third output gear pair 71, a first sync mechanism 55, and a second sync mechanism 56. The first output gear pair 51 includes a third-speed sub-gear 52 fixed to the sub-shaft 34 and a third-speed main gear 53 that is rotatably provided on the output shaft 33 and always meshes with the third-speed sub-gear 52. I have. The second output gear pair 61 includes a second-speed sub-gear 62 fixed to the sub-shaft 34 and a second-speed main gear 63 that is provided on the output shaft 33 so as to be relatively rotatable and always meshes with the second-speed sub-gear 62. I have. The third output gear pair 71 includes a first-speed sub-gear 72 fixed to the sub-shaft 34, and a first-speed main gear 73 that is rotatably provided on the output shaft 33 and always meshes with the first-speed sub-gear 72. I have.
 第1シンクロ機構55、第2シンクロ機構56は、公知の構造であって、何れも図示しないスリーブ、ドグクラッチ等を備えて構成されている。第1シンクロ機構55は、出力軸33と3速主ギヤ53とを係合状態(ギヤイン)にすることができる。出力軸33と3速主ギヤ53とを係合状態にすると、副変速部40のH段側の経路については、出力軸33は、H段の3速(3H速)相当で回転し、副変速部40のL段側の経路については、出力軸33は、L段の3速(3L速)相当で回転する。 The first sync mechanism 55 and the second sync mechanism 56 are known structures, and each includes a sleeve, a dog clutch, etc. (not shown). The first sync mechanism 55 can bring the output shaft 33 and the third-speed main gear 53 into an engaged state (gear-in). When the output shaft 33 and the third speed main gear 53 are engaged, the output shaft 33 rotates at a speed corresponding to the third speed (3H speed) of the H stage on the H-stage side path of the sub-transmission unit 40. With respect to the L-stage side path of the transmission unit 40, the output shaft 33 rotates at a speed equivalent to the L-speed 3rd speed (3L speed).
 第2シンクロ機構56は、出力軸33と2速主ギヤ63とを係合状態にすることができ、また、出力軸33と1速主ギヤ73とを係合状態にすることができる。出力軸33と2速主ギヤ63とを係合状態にすると、副変速部40のH段側の経路については、出力軸33は、H段の2速(2H速)相当で回転し、副変速部40がL段側の経路については、出力軸33は、L段の2速(2L速)相当で回転する。また、出力軸33と1速主ギヤ73とを係合状態にすると、副変速部40のH段の経路については、出力軸33は、H段の1速(1H速)相当で回転し、副変速部40がL段の経路については、出力軸33は、L段の1速(1L速)相当で回転する。 The second synchronization mechanism 56 can bring the output shaft 33 and the second speed main gear 63 into an engaged state, and can bring the output shaft 33 and the first speed main gear 73 into an engaged state. When the output shaft 33 and the second speed main gear 63 are brought into an engaged state, the output shaft 33 rotates at a speed equivalent to the second speed (2H speed) of the H stage with respect to the H-stage side path of the auxiliary transmission unit 40. For the path on the L-stage side of the transmission unit 40, the output shaft 33 rotates at a speed equivalent to the L-stage 2nd speed (2L speed). Further, when the output shaft 33 and the first-speed main gear 73 are engaged, the output shaft 33 rotates in the H-stage path of the sub-transmission unit 40 corresponding to the first H-speed (1H-speed). For the path where the sub-transmission unit 40 is in the L stage, the output shaft 33 rotates at a speed corresponding to the first speed (1L speed) in the L stage.
 変速機構30では、副変速部40と、主変速部50とにより、1L速、1H速、2L速、2H速、3L速、3H速に切替ることができる。変速機構30では、低速段から順に、1L速、1H速、2L速、2H速、3L速、3H速となっている。なお、各変速段を一連の番号で示す場合には、それぞれ、1速,2速,3速,4速,5速,6速となる。第1シンクロ機構55及び第2シンクロ機構56の作動は、後述する変速制御部82によって制御されており、アクセル開度センサ93により検出されるアクセル開度、車速センサ92により検出される速度等に応じて、又は、運転者による後述する操作レバー94による変速の指定に応じて、出力軸33と出力主ギヤ(53,63,73)とを選択的に係合状態(ギヤイン)又は非係合状態(ニュートラル状態)に切替るようになっている。なお、出力ギヤ対(51,61,71)やシンクロ機構(55,56)の個数、配列パターン等は図示例に限定されものではなく、本開示の趣旨を逸脱しない範囲で適宜変更することが可能である。 In the transmission mechanism 30, the auxiliary transmission unit 40 and the main transmission unit 50 can be switched to 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed. In the speed change mechanism 30, the speed is 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed in order from the low speed stage. In addition, when each gear stage is indicated by a series of numbers, it is 1st, 2nd, 3rd, 4th, 5th, and 6th, respectively. The operations of the first sync mechanism 55 and the second sync mechanism 56 are controlled by a shift control unit 82, which will be described later, depending on the accelerator opening detected by the accelerator opening sensor 93, the speed detected by the vehicle speed sensor 92, and the like. The output shaft 33 and the output main gears (53, 63, 73) are selectively engaged (gear-in) or non-engaged according to the designation of a shift by an operation lever 94 described later by the driver. Switch to state (neutral state). The number of output gear pairs (51, 61, 71) and the synchro mechanisms (55, 56), the arrangement pattern, and the like are not limited to the illustrated examples, and may be changed as appropriate without departing from the spirit of the present disclosure. Is possible.
 変速機構30では、1L速と1H速との間、2L速と2H速との間、3L速と3H速との間の変速時(シフトアップ及びシフトダウン)には、クラッチの切替だけで変速を行うことができ、1H速と2L速との間、2H速と3L速との間の変速時(シフトアップ及びシフトダウン)には、クラッチ切替及びギヤ変更を行う必要がある。 In the speed change mechanism 30, at the time of shifting between 1L speed and 1H speed, between 2L speed and 2H speed, between 3L speed and 3H speed (shift up and shift down), the speed is changed only by switching the clutch. When shifting between 1H speed and 2L speed and between 2H speed and 3L speed (shift up and shift down), it is necessary to perform clutch switching and gear change.
 エンジン回転数センサ91は、エンジン10の回転数(エンジン回転数)を検出し、変速制御装置80に出力する。車速センサ92は、出力軸33の回転数(出力軸回転数)を検出し、変速制御装置80に出力する。出力軸回転数からは、車速を特定することができる。また、出力軸回転数に対して、出力軸33と第1入力軸31との間のギヤ比を乗算することにより、第1入力軸31の回転数(第1入力軸回転数)を特定することができる。また、出力軸回転数に対して、出力軸33と第2入力軸32との間のギヤ比を乗算することにより、第2入力軸32の回転数(第2入力軸回転数)を特定することができる。アクセル開度センサ93は、アクセル開度を検出し、変速制御装置80に出力する。シフトポジションセンサ95は、操作レバー94により指定(選択)された位置を検出し、変速制御装置80に出力する。操作レバー94では、例えば、車両の停車時に選択するP(パーキング)レンジ、車両の一時停止時に選択するN(ニュートラル)レンジ、自動変速を行う際に選択するD(ドライブ)レンジ、変速を運転者の操作で行う際に選択するM(マニュアル)レンジ、Mレンジでのシフトアップを指定するためのプラス(+)、Mレンジでのシフトダウンを指定するためのマイナス(-)等を選択することができる。 The engine speed sensor 91 detects the speed of the engine 10 (engine speed) and outputs it to the shift control device 80. The vehicle speed sensor 92 detects the rotational speed of the output shaft 33 (output shaft rotational speed) and outputs it to the transmission control device 80. The vehicle speed can be specified from the output shaft rotation speed. Further, the rotational speed of the first input shaft 31 (first input shaft rotational speed) is specified by multiplying the output shaft rotational speed by the gear ratio between the output shaft 33 and the first input shaft 31. be able to. Further, the rotational speed of the second input shaft 32 (second input shaft rotational speed) is specified by multiplying the output shaft rotational speed by the gear ratio between the output shaft 33 and the second input shaft 32. be able to. The accelerator opening sensor 93 detects the accelerator opening and outputs it to the shift control device 80. The shift position sensor 95 detects the position designated (selected) by the operation lever 94 and outputs it to the shift control device 80. With the operation lever 94, for example, a P (parking) range that is selected when the vehicle is stopped, an N (neutral) range that is selected when the vehicle is temporarily stopped, a D (drive) range that is selected when automatic shifting is performed, and a gear shift. Select the M (manual) range to be selected when performing the above operation, plus (+) to specify upshifting in the M range, minus (-) to specify downshifting in the M range, etc. Can do.
 変速制御装置80は、コントロールユニット81と、変速シフタ85と、第1クラッチ作動油調整部86と、第2クラッチ作動油調整部87とを有する。 The transmission control device 80 includes a control unit 81, a transmission shifter 85, a first clutch hydraulic oil adjustment unit 86, and a second clutch hydraulic oil adjustment unit 87.
 コントロールユニット81は、エンジン10、第1クラッチ作動油調整部86、第2クラッチ作動油調整部87、変速シフタ85等の各種制御を行うもので、公知のCPU、ROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うために、コントロールユニット81には、各種センサ類(91~93、95)のセンサ値が入力される。 The control unit 81 performs various controls of the engine 10, the first clutch hydraulic oil adjustment unit 86, the second clutch hydraulic oil adjustment unit 87, the shift shifter 85, and the like. A known CPU, ROM, RAM, input port, output It is configured with ports and the like. In order to perform these various controls, sensor values of various sensors (91 to 93, 95) are input to the control unit 81.
 また、コントロールユニット81は、シフトダウン指示検出手段の一例としての変速制御部82と、クラッチ切替判定手段、クラッチ切替制御手段、及び変速終結制御手段の一例としてのクラッチ制御部83と、エンジン回転同期判定手段、エンジン回転同期制御手段、及び同期完了判定手段の一例としての同期制御部84と、を一部の機能要素として有する。これら機能要素は、本実施形態では一体のハードウェアであるコントロールユニット81に含まれるものとして説明するが、これらの何れか一部を別体のハードウェアに設けることもできる。 The control unit 81 also includes a shift control unit 82 as an example of a downshift instruction detection unit, a clutch control unit 83 as an example of a clutch switch determination unit, a clutch switch control unit, and a shift end control unit, and engine rotation synchronization. The determination unit, the engine rotation synchronization control unit, and the synchronization control unit 84 as an example of the synchronization completion determination unit are included as some functional elements. In the present embodiment, these functional elements are described as being included in the control unit 81 that is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.
 変速制御部82は、シフトポジションセンサ95から送信される操作レバー94の指定位置がDレンジの場合には、アクセル開度センサ93からのアクセル開度や、車速センサ92からの車速等の情報に基づいて、変速が必要であるか否かを判定し、変速が必要であれば必要な変速(変速先)を特定する。また、変速制御部82は、必要な変速が、クラッチ切替のみの変速であるか、又はクラッチの切替にギヤ変更(ギヤシフト)を伴う変速であるかを判定する。変速制御部82は、クラッチ切替のみの変速の場合には、クラッチ制御部83に締結状態とするクラッチを切り替えるように指示する。また、変速制御部82は、ギヤ変更を伴う変速である場合には、変速シフタ85にギヤ変更を行うように指示する。 When the designated position of the operation lever 94 transmitted from the shift position sensor 95 is in the D range, the shift control unit 82 uses information such as the accelerator opening from the accelerator opening sensor 93 and the vehicle speed from the vehicle speed sensor 92. Based on this, it is determined whether or not a shift is necessary. If a shift is necessary, a necessary shift (shift destination) is specified. Further, the shift control unit 82 determines whether the required shift is a shift with only clutch switching or a shift accompanied by a gear change (gear shift) in switching the clutch. The shift control unit 82 instructs the clutch control unit 83 to switch the clutch to be engaged in the case of shifting only by clutch switching. Further, the shift control unit 82 instructs the shift shifter 85 to change the gear when the shift is accompanied by a gear change.
 また、変速制御部82は、シフトポジションセンサ95から送信される操作レバー94の指定位置により、運転者からシフトダウン指示(本実施形態では、操作レバー94をMレンジでマイナスに移動させる操作)が検出された否かを判定する。変速制御部82は、シフトダウン指示が検出された場合には、その旨をクラッチ制御部83に通知する。 In addition, the shift control unit 82 receives a shift down instruction (in this embodiment, an operation to move the operation lever 94 negative in the M range) from the driver according to the designated position of the operation lever 94 transmitted from the shift position sensor 95. It is determined whether or not it has been detected. When a downshift instruction is detected, the shift control unit 82 notifies the clutch control unit 83 to that effect.
 クラッチ制御部83は、シフトダウン指示が検出されたとの通知を変速制御部82から受けた場合に、アクセルオフの状態(アクセル開度センサ93により検出されたアクセル開度が0)であって、エンジン10と変速機構30とを係合しているクラッチである変速元クラッチに接続されている変速機構30の変速段よりも、変速元クラッチとは別のクラッチである変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっているとともに、エンジン10と変速機構30とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能か否かを判定する。 The clutch control unit 83 is in an accelerator-off state (the accelerator opening detected by the accelerator opening sensor 93 is 0) when receiving a notification from the shift control unit 82 that a downshift instruction has been detected, It is connected to a shift destination clutch, which is a clutch different from the shift source clutch, than the shift speed of the shift mechanism 30 connected to the shift source clutch, which is a clutch engaging the engine 10 and the transmission mechanism 30. It is determined whether or not the shift speed of the shift mechanism 30 is lower and the clutch that engages the engine 10 and the shift mechanism 30 can be switched from the shift source clutch to the shift destination clutch.
 ここで、アクセルオフの状態を判定するのは、エンジン10が燃料の供給により回転数が増加する状況でないことを判定するためであり、アクセルオフの状態であれば、この時点では、エンジン回転数は、変速元クラッチに接続された入力軸(変速元入力軸)の回転数(変速元入力軸回転数)及び変速先クラッチに接続された入力軸(変速先入力軸)の回転数(変速先入力軸回転数)以下であることが保証される。また、変速元クラッチに接続されている変速機構30の変速段よりも、変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっていることを判定するのは、クラッチの切替を行うだけで迅速に低速段にできることを判定するためである。また、エンジン10と変速機構30とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能か否かを判定するのは、クラッチの切替を実行できない状況(例えば、変速段の切替の実行中)や、クラッチの切替が禁止されている状況ではなく、直ちにクラッチの切替が可能であることを判定するためである。 Here, the accelerator-off state is determined in order to determine that the engine 10 is not in a situation where the rotational speed increases due to the supply of fuel. If the accelerator 10 is in the accelerator-off state, the engine rotational speed is determined at this time. Is the rotation speed (shift source input shaft rotation speed) of the input shaft (shift source input shaft) connected to the shift source clutch and the rotation speed (shift destination) of the input shaft (shift destination input shaft) connected to the shift destination clutch. It is guaranteed that the rotation speed is less than the input shaft speed. In addition, it is determined that the speed of the speed change mechanism 30 connected to the speed change destination clutch is lower than the speed change speed of the speed change mechanism 30 connected to the speed change source clutch. This is to determine that the low speed stage can be quickly achieved only by switching the clutch. Further, it is determined whether or not the clutch that engages the engine 10 and the speed change mechanism 30 can be switched from the speed change source clutch to the speed change destination clutch. This is to determine that the clutch can be switched immediately, not in a situation where the clutch switching is prohibited.
 本実施形態では、変速機構30の構成により、変速元クラッチが第1クラッチ21であり、変速先クラッチが第2クラッチ22である場合には、変速先クラッチである第2クラッチ22に接続されている変速機構30の変速段の方が低い変速段となっている。より具体的には、第1クラッチ21側の変速段が3H、2H、1Hである場合には、第2クラッチ22側の変速段がそれぞれ、3L、2L、1Lであることが保証される。このため、クラッチ制御部83は、変速段が3H、2H、1Hであるか否かを判定することにより、変速元クラッチに接続されている変速機構30の変速段よりも、変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっていると判定することができる。 In the present embodiment, when the transmission source clutch is the first clutch 21 and the transmission destination clutch is the second clutch 22, the transmission mechanism 30 is connected to the second clutch 22 that is the transmission destination clutch. The shift speed of the existing transmission mechanism 30 is lower. More specifically, when the shift stage on the first clutch 21 side is 3H, 2H, and 1H, it is guaranteed that the shift stage on the second clutch 22 side is 3L, 2L, and 1L, respectively. For this reason, the clutch control unit 83 determines whether or not the shift speed is 3H, 2H, or 1H, thereby connecting to the shift destination clutch rather than the shift speed of the transmission mechanism 30 connected to the shift source clutch. It can be determined that the gear position of the transmission mechanism 30 that is being used is a lower gear position.
 また、クラッチ制御部83は、アクセルオフの状態であって、変速元クラッチに接続されている変速機構30の変速段よりも、変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっているとともに、エンジン10と変速機構30とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能であると判定された場合には、エンジン回転数が変速元入力軸回転数以下となるように変速元クラッチ及び変速先クラッチの締結力を制御しつつ、変速元クラッチを接状態から断状態に変更するとともに、変速先クラッチを断状態から半クラッチ状態に変更するように第1クラッチ作動油調整部86及び/又は第2クラッチ作動油調整部87に対して制御信号を出力する。 The clutch control unit 83 is in an accelerator-off state, and the speed of the speed change mechanism 30 connected to the speed change destination clutch is higher than the speed change speed of the speed change mechanism 30 connected to the speed change source clutch. If it is determined that the clutch that engages the engine 10 and the speed change mechanism 30 can be switched from the speed change source clutch to the speed change destination clutch, the engine speed is input to the speed change source. While controlling the engagement force of the transmission source clutch and the transmission destination clutch so that the shaft rotational speed is less than the shaft rotation speed, the transmission source clutch is changed from the engaged state to the disconnected state and the transmission destination clutch is changed from the disconnected state to the half-clutch state As described above, the control signal is output to the first clutch hydraulic oil adjusting unit 86 and / or the second clutch hydraulic oil adjusting unit 87.
 ここで、エンジン回転数が変速元入力軸回転数以下となるように変速元クラッチ及び変速先クラッチの締結力を制御する具体例について説明する。 Here, a specific example will be described in which the engagement force of the shift source clutch and the shift destination clutch is controlled so that the engine speed is equal to or lower than the shift source input shaft speed.
 エンジン回転数の加速度(エンジン回転数加速度)ω は、式(1)に示す関係式で表される。 The engine speed acceleration (engine speed acceleration) ω · e is expressed by the relational expression shown in Expression (1).
 Iω =T+T+T・・・(1)
 ここで、Iは、エンジン10の慣性モーメントであり、Tは、エンジン10が発生するトルク(エンジントルク)であり、Tは、変速元クラッチからエンジン10へ伝達されるトルク(変速元入力軸伝達トルク)であり、Tは、変速先クラッチからエンジン10に伝達されるトルク(変速先入力軸伝達トルク)である。エンジントルクTと、変速元入力軸伝達トルクTと、変速先入力軸伝達トルクTとは、エンジン10を回転させる方向に働く方向を正のトルクとする。エンジントルクTは、アクセルオフの場合には、エンジン10のフリクションによりエンジン10の回転を抑制する方向に作用する負のトルク、すなわち、車両を減速させるエンジンブレーキとして作用するトルクとなる。
Iω · e = T e + T H + T L ··· (1)
Here, I is a moment of inertia of the engine 10, T e is the torque (engine torque) engine 10 occurs, T H is the torque (transmission source input that is transmitted from the transmission source clutch to the engine 10 TL is torque transmitted from the shift destination clutch to the engine 10 (shift destination input shaft transmission torque). The engine torque Te , the shift source input shaft transmission torque TH, and the shift destination input shaft transmission torque TL are positive torques in the direction acting in the direction in which the engine 10 is rotated. When the accelerator is off, the engine torque Te is a negative torque that acts in a direction that suppresses the rotation of the engine 10 due to the friction of the engine 10, that is, a torque that acts as an engine brake that decelerates the vehicle.
 エンジン回転数が変速元入力軸回転数以下となるようにするためには、エンジン回転数の減少速度を維持又増加させる必要がある。すなわち、エンジン回転数加速度ω を0以下に維持する必要がある。 In order for the engine speed to be equal to or less than the speed change source input shaft speed, it is necessary to maintain or increase the decrease speed of the engine speed. That is, it is necessary to maintain the engine speed acceleration ω · e at 0 or less.
 式(1)において、エンジン回転数加速度ω =0とすると、式(2)に示す式が得られる。 In the equation (1), when the engine speed acceleration ω · e = 0, the equation shown in the equation (2) is obtained.
 -T=T+T・・・(2)
 式(2)によると、アクセルオフの場合における負のトルクであるエンジントルクTの絶対値を、変速元入力軸伝達トルクTと、変速先入力軸伝達トルクTとの合計トルクの絶対値と同じにする、すなわち、合計トルクをエンジントルクTにより打ち消すようにすることにより、エンジン回転数加速度ω =0となることがわかる。なお、エンジン回転数加速度ω <0とする場合には、-T≧T+Tとすればよい。
-T e = T H + T L (2)
According to equation (2), the absolute value of the engine torque T e is a negative torque when the accelerator pedal, a speed change based on the input shaft transmits torque T H, the absolute total torque and the transmission destination input shaft transmits torque T L the same as the value, i.e., by the total torque to counteract the engine torque T e, it can be seen that the engine speed acceleration ω · e = 0. When engine speed acceleration ω · e <0, it is only necessary to satisfy −T e ≧ T H + T L.
 本実施形態では、クラッチ制御部83は、エンジントルクTと、変速元入力軸伝達トルクTと、変速先入力軸伝達トルクTとが、式(2)を満たすような関係になる様に、すなわち、変速元入力軸伝達トルクTと、変速先入力軸伝達トルクTとの合計トルクが、エンジントルクTとは逆方向の同じ値となる様に維持しつつ、変速元入力軸伝達トルクTを減少させるとともに、変速先入力軸伝達トルクTを増加させるように制御する。 In the present embodiment, the clutch control unit 83 is configured such that the engine torque Te , the transmission source input shaft transmission torque TH, and the transmission destination input shaft transmission torque TL satisfy the expression (2). to, i.e., a transmission source input shaft transmits torque T H, the total torque of the transmission destination input shaft transmits torque T L is, the engine torque T e while maintaining as the same value in the reverse direction, shift from input Control is performed such that the shaft transmission torque TH is decreased and the shift destination input shaft transmission torque TL is increased.
 具体的には、クラッチ制御部83は、変速元入力軸伝達トルクTを減少させるために、変速元クラッチの締結力を減少させるように変速元クラッチの油圧室に供給する作動油圧を決定し、また、変速先入力軸伝達トルクTを増加させるために、変速先クラッチの油圧室に供給する作動油圧を決定し、決定した作動油圧を供給するための制御信号(制御用電流)を第1クラッチ作動油調整部86及び第2クラッチ作動油調整部87に出力する。なお、第1クラッチ21と第2クラッチ22とによる伝達トルク(変速元入力軸伝達トルクT及び変速先入力軸伝達トルクT)と、各クラッチの油圧室(26A,29A)への作動油圧との対応関係については、同一又は同様な構成のクラッチ装置を用いて測定を行うことにより予め把握しておくことができる。 Specifically, the clutch controller 83, the shift in order to reduce the original input shaft transmits torque T H, to determine the hydraulic pressure supplied to the hydraulic chamber of the gear shift based on the clutch to reduce engagement force of the shift based on the clutch In addition, in order to increase the shift destination input shaft transmission torque TL , the operating hydraulic pressure supplied to the hydraulic chamber of the shift destination clutch is determined, and a control signal (control current) for supplying the determined operating hydraulic pressure is determined. It outputs to the 1 clutch hydraulic oil adjustment part 86 and the 2nd clutch hydraulic oil adjustment part 87. Note that transmission torque (shift source input shaft transmission torque TH and shift destination input shaft transmission torque T L ) by the first clutch 21 and the second clutch 22 and hydraulic pressure to the hydraulic chambers (26A, 29A) of each clutch. Can be grasped in advance by performing measurement using a clutch device having the same or similar configuration.
 このように変速元入力軸伝達トルクTを減少させ、変速先入力軸伝達トルクTを増加させるように制御すると、変速元入力軸伝達トルクTが減少したトルクだけ、変速先入力軸伝達トルクTのトルクが増加することとなる。ここで、変速先入力軸側は低速段であり、変速先入力軸側の方が変速元入力軸側と比べてギヤ比が高いので、入力軸側で同じトルク量であっても、出力軸側におけるトルク量としては変速先入力軸側の方が大きくなる。すなわち、エンジントルクTによって打ち消されるトルク量が同じでも、変速先入力軸側を介している場合の方が、車両を制動するトルクとしては大きくなる。したがって、クラッチ切替制御を開始すると、車両を制動するトルクが徐々に大きくなってくる。このため、運転者のシフトダウン指示を検知してから早期に車両を制動するトルクを大きくでき、車両を強く減速させることができる。 In this way, when the shift source input shaft transmission torque T H is decreased and the shift destination input shaft transmission torque TL is controlled to increase, the transmission destination input shaft transmission torque T H is reduced by the reduced torque. The torque TL will increase. Here, the speed change destination input shaft side is a low speed stage, and the speed change destination input shaft side has a higher gear ratio than the speed change source input shaft side, so even if the torque amount is the same on the input shaft side, As the torque amount on the side, the shift destination input shaft side is larger. That is, even a weight torque is canceled by the engine torque T e is the same, who if through the transmission destination input shaft side becomes large as a torque to brake the vehicle. Therefore, when the clutch switching control is started, the torque for braking the vehicle gradually increases. For this reason, it is possible to increase the torque for braking the vehicle at an early stage after detecting the driver's downshift instruction, and to decelerate the vehicle strongly.
 また、クラッチ制御部83は、エンジン回転数と変速先入力軸回転数とが一致した旨の通知を同期制御部84から受けた場合に、変速先クラッチを接状態にするように第1クラッチ作動油調整部86又は第2クラッチ作動油調整部87に対して制御信号を出力する。 In addition, the clutch control unit 83 operates the first clutch so that the shift destination clutch is brought into a contact state when receiving a notification from the synchronization control unit 84 that the engine speed and the shift destination input shaft rotation speed coincide with each other. A control signal is output to the oil adjustment unit 86 or the second clutch hydraulic oil adjustment unit 87.
 また、クラッチ制御部83は、変速制御部82からの指示に基づいて、第1クラッチ作動油調整部86及び/又は第2クラッチ作動油調整部87に対して制御信号を出力する。 Further, the clutch control unit 83 outputs a control signal to the first clutch hydraulic oil adjustment unit 86 and / or the second clutch hydraulic oil adjustment unit 87 based on an instruction from the transmission control unit 82.
 同期制御部84は、クラッチ制御部83によりクラッチ切替が行われた後において、変速先入力軸回転数が、エンジン10の許容上限回転数以下であるか否かを判定し、変速先入力軸回転数が許容上限回転数以下であると判定した場合には、エンジン10を制御して、エンジン回転数を変速先入力軸回転数と一致するように上昇させる。 The synchronization control unit 84 determines whether or not the speed change destination input shaft rotational speed is equal to or lower than the allowable upper limit speed of the engine 10 after the clutch control unit 83 performs the clutch switching, and performs the speed change destination input shaft rotation. When it is determined that the number is equal to or lower than the allowable upper limit rotational speed, the engine 10 is controlled to increase the engine rotational speed so as to coincide with the shift destination input shaft rotational speed.
 また、同期制御部84は、エンジン回転数と変速先入力軸回転数とが一致したか否かを判定し、エンジン回転数と変速先入力軸回転数とが一致したと判定した場合には、その旨をクラッチ制御部83に通知する。 Further, the synchronization control unit 84 determines whether or not the engine speed and the speed-destination input shaft speed match, and if it determines that the engine speed and the speed-destination input shaft speed match, This is notified to the clutch control unit 83.
 変速シフタ85は、変速制御部82の指示に従って、第1シンクロ機構55及び第2シンクロ機構56を作動させて、出力軸33と出力主ギヤ(53,63,73)との係合状態を解放(ギヤアウト)したり、出力軸33と出力主ギヤ(53,63,73)とを係合(ギヤイン)したりする。 The shift shifter 85 operates the first sync mechanism 55 and the second sync mechanism 56 in accordance with an instruction from the shift control unit 82 to release the engagement state between the output shaft 33 and the output main gear (53, 63, 73). (Gear out) or engage (gear in) the output shaft 33 and the output main gear (53, 63, 73).
 第1クラッチ作動油調整部86は、例えば、リニアソレノイドバルブを有し、クラッチ制御部83から供給される制御信号(制御用電流)に従って、図示しない油圧供給源からの作動油を調整することにより、第1油圧室26Aに供給する作動油の量及び圧力を調整する。 The first clutch hydraulic oil adjustment unit 86 includes, for example, a linear solenoid valve, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the clutch control unit 83. Then, the amount and pressure of the hydraulic oil supplied to the first hydraulic chamber 26A are adjusted.
 第2クラッチ作動油調整部87は、例えば、リニアソレノイドバルブを有し、クラッチ制御部83から供給される制御信号(制御用電流)に従って、図示しない油圧供給源からの作動油を調整することにより、第2油圧室29Aに供給する作動油の量及び圧力を調整する。 The second clutch hydraulic oil adjustment unit 87 includes, for example, a linear solenoid valve, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the clutch control unit 83. Then, the amount and pressure of hydraulic fluid supplied to the second hydraulic chamber 29A are adjusted.
 次に、変速制御装置80による変速制御処理について説明する。 Next, the shift control process by the shift control device 80 will be described.
 図2は、本開示の一実施形態に係る変速制御処理のフローチャートである。 FIG. 2 is a flowchart of a shift control process according to an embodiment of the present disclosure.
 変速制御処理は、車両が走行している場合に実行される。 The shift control process is executed when the vehicle is running.
 変速制御部82は、シフトポジションセンサ95のセンサ値に基づいて、運転者による操作レバー94に対するシフトダウン指示があったか否かを判定する(ステップS11)。この結果、シフトダウン指示がない場合(ステップS11:NO)には、変速制御部82は、ステップS11を再び実行する。 The shift control unit 82 determines whether or not there is a downshift instruction for the operation lever 94 by the driver based on the sensor value of the shift position sensor 95 (step S11). As a result, when there is no downshift instruction (step S11: NO), the shift control unit 82 executes step S11 again.
 一方、シフトダウン指示があった場合(ステップS11:YES)には、クラッチ制御部83は、アクセル開度検出センサ93によるセンサ値がアクセルオフを示しているか否かを判定する(ステップS12)と共に、クラッチ切替のみで低速段に変速可能か否かを判定する(ステップS13)。クラッチ切替のみで低速段に変速可能か否かの判定は、例えば、エンジン10と変速機構30とを係合しているクラッチである変速元クラッチに接続されている変速機構30の変速段よりも、変速元クラッチとは別のクラッチである変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっているとともに、エンジン10と変速機構30とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能か否かを判定するようにしてもよい。 On the other hand, when there is a downshift instruction (step S11: YES), the clutch control unit 83 determines whether or not the sensor value by the accelerator opening detection sensor 93 indicates accelerator off (step S12). Then, it is determined whether or not it is possible to shift to a low speed only by switching the clutch (step S13). The determination as to whether or not it is possible to shift to a low speed only by switching the clutch is made, for example, based on the speed of the speed change mechanism 30 connected to the speed change source clutch that is the clutch engaging the engine 10 and the speed change mechanism 30. A clutch that engages the engine 10 and the transmission mechanism 30 has a lower shift stage of the transmission mechanism 30 that is connected to a destination clutch that is a clutch different from the transmission source clutch. Further, it may be determined whether or not the shift source clutch can be switched to the shift destination clutch.
 この結果、アクセルオフを示していない場合(ステップS12:NO)、又は、クラッチ切替のみで低速段に変速可能でない場合(ステップS13:NO)には、通常のシフトダウン処理(通常シフトダウン処理)を実行し(ステップS14)、変速制御部82は、処理をステップS11に進める。 As a result, when the accelerator is not turned off (step S12: NO), or when it is not possible to shift to a low speed only by clutch switching (step S13: NO), a normal shift-down process (normal shift-down process) Is executed (step S14), and the shift control unit 82 advances the process to step S11.
 一方、アクセルオフを示している場合(ステップS12:YES)であって、クラッチ切替のみで低速段に変速可能である場合(ステップS13:YES)には、クラッチ制御部83は、クラッチ切替制御を実行する(ステップS15)。すなわち、クラッチ制御部83は、エンジン回転数が変速元入力軸回転数以下となるように変速元クラッチ及び変速先クラッチの締結力を制御しつつ、変速元クラッチを接状態から断状態に変更するとともに、変速先クラッチを断状態から半クラッチ状態に変更するように第1クラッチ作動油調整部86及び/又は第2クラッチ作動油調整部87に対して制御信号を出力する。 On the other hand, if the accelerator is off (step S12: YES) and the gear can be shifted to a low speed only by clutch switching (step S13: YES), the clutch control unit 83 performs clutch switching control. Execute (Step S15). That is, the clutch control unit 83 changes the transmission source clutch from the engaged state to the disconnected state while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the engine speed is equal to or lower than the transmission source input shaft rotation speed. At the same time, a control signal is output to the first clutch hydraulic oil adjusting unit 86 and / or the second clutch hydraulic oil adjusting unit 87 so as to change the shift destination clutch from the disengaged state to the half clutch state.
 次いで、同期制御部84は、エンジン回転同期可能か否かを判定する(ステップS16)。具体的には、同期制御部84は、変速先入力軸回転数が、エンジン10の許容上限回転数以下であるか否かを判定する。 Next, the synchronization control unit 84 determines whether or not engine rotation synchronization is possible (step S16). Specifically, the synchronization control unit 84 determines whether or not the speed change destination input shaft speed is equal to or lower than the allowable upper limit speed of the engine 10.
 この結果、変速先入力軸回転数が許容上限回転数以下でなく、エンジン回転同期可能でない場合(ステップS16:NO)には、同期制御部84は、再びステップS16を実行する。一方、変速先入力軸回転数が許容上限回転数以下であり、エンジン回転同期可能である場合(ステップS16:YES)には、同期制御部84は、エンジン回転数を変速先入力軸回転数と一致するように上昇させる(ステップS17)。 As a result, when the speed-destination input shaft rotation speed is not less than the allowable upper limit rotation speed and engine rotation synchronization is not possible (step S16: NO), the synchronization control unit 84 executes step S16 again. On the other hand, when the speed change destination input shaft speed is equal to or lower than the allowable upper limit speed and the engine speed can be synchronized (step S16: YES), the synchronization control unit 84 sets the engine speed to the speed change destination input shaft speed. It raises so that it may correspond (step S17).
 次いで、同期制御部84は、エンジン回転数と変速先入力軸回転数とが一致したか否かを判定する(ステップS18)。この結果、エンジン回転数と変速先入力軸回転数とが一致していない場合(ステップS18:NO)には、同期制御部84は、再びステップS18を実行する。 Next, the synchronization control unit 84 determines whether or not the engine speed matches the speed change destination input shaft speed (step S18). As a result, when the engine speed does not match the speed change destination input shaft speed (step S18: NO), the synchronization control unit 84 executes step S18 again.
 一方、エンジン回転数と変速先入力軸回転数とが一致したと判定した場合(ステップS18:YES)には、同期制御部84は、その旨をクラッチ制御部83に通知し、通知を受けたクラッチ制御部83は、第1クラッチ作動油調整部86又は第2クラッチ作動油調整部87に対して制御信号を出力して変速先クラッチを接状態にするように制御し(ステップS19)、処理をステップS11に進める。 On the other hand, when it is determined that the engine speed and the speed change destination input shaft speed match (step S18: YES), the synchronization control unit 84 notifies the clutch control unit 83 to that effect and has received the notification. The clutch control unit 83 outputs a control signal to the first clutch hydraulic oil adjusting unit 86 or the second clutch hydraulic oil adjusting unit 87 to control the shift destination clutch to be in an engaged state (step S19), and processing To step S11.
 次に、本実施形態に係るデュアルクラッチ式変速機1のクラッチ切替制御を行う変速制御処理における各種状態の変化について説明する。 Next, changes in various states in the shift control process for performing clutch switching control of the dual clutch transmission 1 according to the present embodiment will be described.
 図3の(a)は、変速制御処理における変速元入力軸からエンジンへのトルク、変速先入力軸からエンジンへのトルク、及びエンジンによるトルクの変化を示す図であり、(b)は、変速元入力軸、変速先入力軸、エンジンの回転数の変化を示す図である。 FIG. 3A is a diagram showing torque from the shift source input shaft to the engine, torque from the shift destination input shaft to the engine, and torque change by the engine in the shift control process, and FIG. It is a figure which shows the change of the rotation speed of an original input shaft, a gear shift destination input shaft, and an engine.
 ここで、変速機構30においては、第2シンクロ機構56により、出力軸33と2速主ギヤ63とが係合状態にされており、第1入力軸31と出力軸33との経路は、2H速の状態に設定され、第2出力軸32と出力軸33との経路は、2L速の状態に設定されているものとする。また、変速元入力軸(ここでは、第1入力軸31)に接続された第1クラッチ21が接状態であり、変速先入力軸(ここでは、第2入力軸32)に接続された第2クラッチ22が断状態となっているものとし、時点T0において、運転者がアクセルオフにしてエンジンブレーキによる減速を開始したものとする。 Here, in the speed change mechanism 30, the output shaft 33 and the second-speed main gear 63 are engaged by the second sync mechanism 56, and the path between the first input shaft 31 and the output shaft 33 is 2H. The speed state is set, and the path between the second output shaft 32 and the output shaft 33 is set to the 2L speed state. Further, the first clutch 21 connected to the transmission source input shaft (here, the first input shaft 31) is in the engaged state, and the second clutch connected to the transmission destination input shaft (here, the second input shaft 32). Assume that the clutch 22 is disengaged, and at time T0, the driver turns off the accelerator and starts deceleration by engine braking.
 アクセルオフにした時点T0においては、図3の(a)に示すように、エンジントルクTがエンジン回転を停止させる方向に作用する負のトルクであり、変速元入力軸伝達トルクTと釣り合うようになっている。 At time T0 which is the accelerator-off, as shown in FIG. 3 (a), a negative torque which the engine torque T e is applied in a direction to stop the engine rotation, commensurate with the speed change based on the input shaft transmits torque T H It is like that.
 この状態においては、図3の(b)に示すように、変速元入力軸回転数と、エンジン回転数とは、同じ回転数で徐々に減少していく。 In this state, as shown in FIG. 3B, the speed change source input shaft rotation speed and the engine rotation speed gradually decrease at the same rotation speed.
 その後、時点T1において、運転者がより強い減速をさせるために、操作レバー94を操作してシフトダウン指示を行ったとする。 Thereafter, at time T1, it is assumed that the driver operates the operation lever 94 to give a downshift instruction in order to perform a stronger deceleration.
 時点T1において、運転者によるシフトダウン指示があったことが検出されると、所定の条件(図2のステップS12及びS13)を満たしている場合には、クラッチ切替制御(ステップS15)が開始されることとなる。 When it is detected at time T1 that the driver has issued a downshift instruction, if a predetermined condition (steps S12 and S13 in FIG. 2) is satisfied, clutch switching control (step S15) is started. The Rukoto.
 クラッチ切替制御では、変速元クラッチは、接状態から徐々に断状態に制御されるので、図3の(a)に示すように、変速元入力軸伝達トルクTは、徐々に減少していく、一方、変速先クラッチは、断状態から徐々に半クラッチ状態に制御されるので、変速先入力軸トルクTは、徐々に増加していく。この際、変速元入力軸伝達トルクTと、変速先入力軸伝達トルクTとの合計トルクが、エンジントルクTによって打ち消されるように様に、変速元入力軸伝達トルクTを減少させ、変速先入力軸伝達トルクTを増加させるように制御する。クラッチ切替制御が終了する時点T2では、変速元入力軸伝達トルクTは0となり、変速先入力軸トルクTは、クラッチ切替制御の開始前(時点T1)の変速元入力軸伝達トルクTと同じトルクとなる。 In the clutch changeover control, transmission original clutch, so gradually controlled to the cross-sectional state from contact state, as shown in (a) of FIG. 3, the transmission source input shaft transmits torque T H is gradually decreased On the other hand, since the shift destination clutch is gradually controlled from the disengaged state to the half clutch state, the shift destination input shaft torque TL gradually increases. At this time, a transmission source input shaft transmits torque T H, the total torque of the transmission destination input shaft transmits torque T L is, as to be canceled by the engine torque T e, to reduce the transmission source input shaft transmits torque T H Then, control is performed to increase the shift destination input shaft transmission torque TL . At the time T2 when the clutch switching control ends, the transmission source input shaft transmission torque T H becomes 0, and the transmission destination input shaft torque T L is the transmission source input shaft transmission torque T H before the start of the clutch switching control (time T1). And the same torque.
 時点T1から時点T2においては、エンジントルクTによって打ち消される変速先入力軸伝達トルクTが増加する。この変速先入力軸伝達トルクTは、出力軸33の周りにおいては、変速先入力軸伝達トルクTの値に、変速先入力軸と出力軸33と間のギヤ比を乗算した値のトルクに相当する。ここで、変速先入力軸(第2入力軸32)と出力軸33との間の変速段は、変速元入力軸(第1入力軸31)と出力軸33との間の変速段よりも低速段となっているので、変速先入力軸と出力軸との間のギヤ比は、変速元入力軸と出力軸との間のギヤ比よりも大きくなっている。このため、変速先入力軸伝達トルクTが増加すると、出力軸33の周りにおける出力軸33の回転数を減少させる方向に作用するトルクが大きくなり、車両がより強く減速されるようになる。 At the time T2 from the time point T1, the speed change input shaft transmits torque T L increases to be canceled by the engine torque T e. This shift destination input shaft transmission torque TL is a torque having a value obtained by multiplying the value of the shift destination input shaft transmission torque TL by the gear ratio between the shift destination input shaft and the output shaft 33 around the output shaft 33. It corresponds to. Here, the shift speed between the shift destination input shaft (second input shaft 32) and the output shaft 33 is lower than the shift speed between the shift source input shaft (first input shaft 31) and the output shaft 33. Therefore, the gear ratio between the shift destination input shaft and the output shaft is larger than the gear ratio between the shift source input shaft and the output shaft. For this reason, when the shift destination input shaft transmission torque TL increases, the torque acting in the direction of decreasing the rotation speed of the output shaft 33 around the output shaft 33 increases, and the vehicle is decelerated more strongly.
 これにより、図3の(b)に示すように、変速元入力軸回転数、変速先入力軸回転数、及びエンジン回転数の減少の傾きは、時点T1から時点T2に行くほど、大きくなり、時点T2以降は、時点T2と同じ傾きとなる。 As a result, as shown in FIG. 3B, the gradients of decrease in the transmission source input shaft rotational speed, the transmission destination input shaft rotational speed, and the engine rotational speed increase from time T1 to time T2. After time T2, the slope is the same as that at time T2.
 ここで、時点T2においては、変速先入力軸回転数は、エンジンの許容上限回転数よりも高くなっている。このため、時点T2においては、変速先クラッチを接状態にすることはできない。 Here, at the time point T2, the speed change destination input shaft speed is higher than the allowable upper limit speed of the engine. For this reason, the shift destination clutch cannot be brought into the engaged state at time T2.
 その後、時間が経過して、時点T3となると、図3の(b)に示すように、変速先入力軸回転数と、エンジン10の許容上限回転数とが一致する。これ以降においては、変速先クラッチを接状態にしても、エンジン10の回転数が許容上限回転数を超えることがない。本実施形態では、変速先入力軸回転数と、エンジン10の許容上限回転数とが一致したことが検出されると、図3の(b)に示すように、エンジン回転数を変速先入力軸回転数と一致するように上昇させる。なお、この際には、図3の(b)に示すように、エンジントルクTは0となる。 Thereafter, when time elapses and time T3 is reached, as shown in FIG. 3B, the speed change destination input shaft rotational speed matches the allowable upper limit rotational speed of the engine 10. Thereafter, even if the shift destination clutch is in the engaged state, the rotational speed of the engine 10 does not exceed the allowable upper limit rotational speed. In the present embodiment, when it is detected that the shift destination input shaft rotation speed and the allowable upper limit rotation speed of the engine 10 coincide with each other, as shown in FIG. Increase to match the number of revolutions. At this time, as shown in FIG. 3B, the engine torque Te is zero.
 その後、時点T4において、エンジン回転数と変速先入力軸回転数とが一致すると、クラッチ制御部83は、変速先クラッチを接状態にするように制御する。これにより、エンジン回転数がより高い状態における変速先の変速段(低速段)でのエンジン10のフリクションにより車両が減速される。ここで、エンジン回転数がより高い状態では、エンジン10のフリクションが大きくなるので、車両の減速の効果が高い。 Thereafter, when the engine speed coincides with the speed change destination input shaft speed at the time T4, the clutch control unit 83 controls the speed change destination clutch to be in an engaged state. As a result, the vehicle is decelerated due to the friction of the engine 10 at the shift speed (low speed) at the shift destination in a state where the engine speed is higher. Here, in a state where the engine speed is higher, the friction of the engine 10 becomes larger, so the effect of deceleration of the vehicle is high.
 以上説明したように、本実施形態に係る変速制御装置80によると、運転者からシフトダウン指示があった場合に、アクセルオフの状態であって、変速元クラッチに接続されている変速機構30の変速段よりも、変速先クラッチに接続されている変速機構30の変速段の方が低い変速段となっているとともに、エンジン10と変速機構30とを係合するクラッチを、変速元クラッチから変速先クラッチに切替可能であると判定された場合に、エンジン回転数が変速元入力軸回転数以下となるように変速元クラッチ及び変速先クラッチの締結力を制御しつつ、変速元クラッチを接状態から断状態に変更するとともに、変速先クラッチを断状態から半クラッチ状態に変更するように制御するようにしたために、運転者からのシフトダウン指示の後に、早期に車両をより強く減速させることができる。したがって、運転者に、所望する減速感を早期に与えることができる。 As described above, according to the speed change control device 80 according to the present embodiment, when the driver gives a downshift instruction, the accelerator mechanism is off and the speed change mechanism 30 connected to the speed change source clutch is connected. The speed of the speed change mechanism 30 connected to the speed change destination clutch is lower than the speed change speed, and the clutch that engages the engine 10 and the speed change mechanism 30 is shifted from the speed change source clutch. When it is determined that it is possible to switch to the front clutch, the transmission source clutch is engaged while controlling the fastening force of the transmission source clutch and the transmission destination clutch so that the engine speed is equal to or lower than the transmission source input shaft rotation speed. From the disengaged state to the half-clutch state. To, can be decelerated more strongly the vehicle at an early stage. Therefore, a desired deceleration feeling can be given to the driver at an early stage.
 また、変速先入力軸回転数が、エンジン10の許容上限回転数以下であると判定された場合に、エンジン回転数を変速先入力軸回転数と一致するように上昇させ、エンジン回転数と、変速先入力軸回転数とが一致する場合に、変速先クラッチを接続するようにしたので、エンジン回転数が許容上限回転数を超えることを適切に防止することができ、より低い変速段でのエンジン10による減速を行うことができる。 Further, when it is determined that the speed change destination input shaft speed is equal to or lower than the allowable upper limit speed of the engine 10, the engine speed is increased so as to coincide with the speed change destination input shaft speed, Since the shift destination clutch is connected when the shift destination input shaft rotation speed matches, the engine rotation speed can be appropriately prevented from exceeding the allowable upper limit rotation speed, and at lower shift speeds. The engine 10 can be decelerated.
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.
 例えば、上記実施形態では、エンジン回転数と変速先入力軸回転数とが一致したと判定した場合に直ちに変速先クラッチを接状態にする制御を開始するようにしていたが、本開示はこれに限られず、エンジン回転数と変速先入力軸回転数とが一致したと判定されてから所定時間が経過するまで、半クラッチ状態を維持した後に、変速先クラッチを接状態にする制御を開始するようにしてもよい。このようにすることにより、変速先クラッチをわずかに滑った状態(すなわち、マイクロスリップ状態)とすることができ、その後にクラッチを接状態とする際に発生するショックを低減することができる。 For example, in the above-described embodiment, when it is determined that the engine speed and the speed-destination input shaft speed match, control for immediately bringing the speed-change destination clutch into contact is started. Without being limited thereto, after the predetermined time has elapsed after it is determined that the engine speed and the speed change destination input shaft speed match, the control to start the speed change destination clutch is started after maintaining the half clutch state. It may be. By doing so, it is possible to make the shift destination clutch slightly slipped (that is, the micro-slip state), and to reduce the shock that occurs when the clutch is subsequently engaged.
 また、上記実施形態では、車速センサ92により検出される出力軸33の回転数と、変速機構30での出力軸33と入力軸(31,32)との間のギヤ比とに基づいて入力軸の回転数を算出するようにしていたが、本開示はこれに限られず、第1入力軸31の回転数を検出するセンサと、第2入力軸32の回転数を検出するセンサとを備え、そのセンサ値により入力軸の回転数を特定するようにしてもよい。 In the above embodiment, the input shaft is based on the rotation speed of the output shaft 33 detected by the vehicle speed sensor 92 and the gear ratio between the output shaft 33 and the input shaft (31, 32) in the speed change mechanism 30. However, the present disclosure is not limited to this, and includes a sensor that detects the rotational speed of the first input shaft 31 and a sensor that detects the rotational speed of the second input shaft 32. The rotational speed of the input shaft may be specified by the sensor value.
 また、上記実施形態では、操作レバー94は、運転者により手動で変速させる場合に、Mレンジのマイナス又はプラスを指定する構成となっていたが、本開示はこれに限られず、例えば、操作レバー94を、各変速段を直接指定できる構成としてもよい。この場合においては、変速前の変速段よりも変速後の変速段が低い場合にシフトダウンの指定であることを特定することができる。 Further, in the above embodiment, the operation lever 94 is configured to designate the minus or plus of the M range when manually shifting by the driver. However, the present disclosure is not limited to this, and for example, the operation lever 94 94 may be configured such that each gear position can be directly designated. In this case, it is possible to specify that the downshift is specified when the speed after the speed change is lower than the speed before the speed change.
 また、上記実施形態では、副変速部40を有するデュアルクラッチ式変速機1としていたが、本開示はこれに限られず、2つの入力軸と、1つの出力軸とを有し、一方の入力軸と出力軸との間を所定の変速段の状態に設定できるとともに、他方の入力軸と出力軸との間をその変速段よりも低速段である変速段の状態に設定できる構成であれば、副変速部40を有さないデュアルクラッチ式変速機であっても本開示を適用することができる。 Moreover, in the said embodiment, although it was set as the dual clutch type transmission 1 which has the subtransmission part 40, this indication is not restricted to this, It has two input shafts and one output shaft, One input shaft And the output shaft between the other input shaft and the output shaft can be set to a state of a speed step that is lower than the speed step. The present disclosure can be applied even to a dual clutch transmission that does not include the auxiliary transmission unit 40.
 本出願は、2016年2月18日付で出願された日本国特許出願(特願2016-029161)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2016-029161) filed on February 18, 2016, the contents of which are incorporated herein by reference.
 本開示のデュアルクラッチ式変速機の制御装置は、運転者がシフトダウンを指定した際に、早期に適切な減速が得られるようにすることができるという点において有用である。 The control device for the dual clutch transmission of the present disclosure is useful in that appropriate deceleration can be obtained at an early stage when the driver designates downshifting.
 1 デュアルクラッチ式変速機
 10 エンジン
 11 出力軸
 20 デュアルクラッチ装置
 21 第1クラッチ
 22 第2クラッチ
 26,29 ピストン
 26A 第1油圧室
 29A 第2油圧室
 30 変速機構
 31 第1入力軸
 32 第2入力軸
 33 出力軸
 34 副軸
 40 副変速部
 41 第1スプリッタギヤ対
 42 第2スプリッタギヤ対
 50 主変速部
 51 第1出力ギヤ対
 52 3速副ギヤ
 53 3速主ギヤ
 55 第1シンクロ機構
 56 第2シンクロ機構
 61 第2出力ギヤ対
 62 2速副ギヤ
 63 2速主ギヤ
 71 第3出力ギヤ対
 72 1速副ギヤ
 73 1速主ギヤ
 80 変速制御装置
 81 コントロールユニット
 82 変速制御部
 83 クラッチ制御部
 84 同期制御部
 85 変速シフタ
 86 第1クラッチ作動油調整部
 87 第2クラッチ作動油調整部
 91 エンジン回転数センサ
 92 車速センサ
 93 アクセル開度センサ
 94 操作レバー
 95 シフトポジションセンサ
DESCRIPTION OF SYMBOLS 1 Dual clutch type transmission 10 Engine 11 Output shaft 20 Dual clutch apparatus 21 1st clutch 22 2nd clutch 26,29 Piston 26A 1st hydraulic chamber 29A 2nd hydraulic chamber 30 Transmission mechanism 31 1st input shaft 32 2nd input shaft 33 Output shaft 34 Sub shaft 40 Sub transmission unit 41 First splitter gear pair 42 Second splitter gear pair 50 Main transmission unit 51 First output gear pair 52 Third speed sub gear 53 Third speed main gear 55 First sync mechanism 56 Second Synchro mechanism 61 2nd output gear pair 62 2nd speed sub gear 63 2nd speed main gear 71 3rd output gear pair 72 1st speed sub gear 73 1st speed main gear 80 Transmission control device 81 Control unit 82 Transmission control section 83 Clutch control section 84 Synchronous control unit 85 Shift shifter 86 First clutch hydraulic oil adjustment unit 87 Second clutch hydraulic oil adjustment unit 91 Engine speed sensor 92 Vehicle speed sensor 93 Accelerator opening sensor 94 Operation lever 95 Shift position sensor

Claims (4)

  1.  エンジンと変速機構との間に2つのクラッチを含むクラッチ装置が設けられ、前記エンジンから前記変速機構の出力軸に接続された車両駆動系への駆動力伝達経路を、それぞれのクラッチを介する経路間で切り替え可能なデュアルクラッチ式変速機の制御装置であって、
     運転者からのシフトダウン指示があったか否かを検出するシフトダウン指示検出手段と、
     前記シフトダウン指示が検出された場合において、アクセルオフの状態であって、前記エンジンと変速機構とを係合しているクラッチである変速元クラッチに接続されている前記変速機構の変速段よりも、前記変速元クラッチとは別のクラッチである変速先クラッチに接続されている前記変速機構の変速段の方が低い変速段となっているとともに、前記エンジンと前記変速機構とを係合するクラッチを、前記変速元クラッチから前記変速先クラッチに切替可能か否かを判定するクラッチ切替判定手段と、
     前記クラッチ切替判定手段により、アクセルオフの状態であって、前記変速元クラッチに接続されている前記変速機構の変速段よりも、前記変速先クラッチに接続されている前記変速機構の変速段の方が低い変速段となっているとともに、前記エンジンと前記変速機構とを係合するクラッチを、前記変速元クラッチから前記変速先クラッチに切替可能であると判定された場合には、前記エンジンの回転数が前記変速元クラッチに接続されている前記変速機構の入力軸である変速元入力軸の回転数以下となるように前記変速元クラッチ及び前記変速先クラッチの締結力を制御しつつ、前記変速元クラッチを接状態から断状態に変更するとともに、前記変速先クラッチを断状態から半クラッチ状態に変更する制御を実行するクラッチ切替制御手段と、
     前記変速先クラッチに接続されている前記変速機構の入力軸である変速先入力軸の回転数が、前記エンジンの許容上限回転数以下であるか否かを判定するエンジン回転同期判定手段と、
     前記変速先入力軸の回転数が前記許容上限回転数以下であると判定された場合に、前記エンジンの回転数を前記変速先入力軸の回転数と一致するように上昇させるエンジン回転同期制御手段と、
     前記エンジンの回転数と前記変速先入力軸の回転数とが一致したか否かを判定する同期完了判定手段と、
     前記エンジンの回転数と前記変速先入力軸の回転数とが一致したと判定された以降に、前記変速先クラッチを接状態に制御する変速終結制御手段とを備えるデュアルクラッチ式変速機の制御装置。
    A clutch device including two clutches is provided between the engine and the transmission mechanism, and the driving force transmission path from the engine to the vehicle drive system connected to the output shaft of the transmission mechanism is between the paths via the respective clutches. A dual clutch transmission control device that can be switched with
    Downshift instruction detecting means for detecting whether or not there has been a downshift instruction from the driver;
    When the downshift instruction is detected, the accelerator is in an off state, and the shift speed of the speed change mechanism connected to the speed change source clutch, which is the clutch engaging the engine and the speed change mechanism, A clutch that engages the engine and the speed change mechanism with a speed lower than that of the speed change mechanism connected to a speed change destination clutch that is a clutch different from the speed change source clutch. Clutch switching determination means for determining whether or not switching from the shift source clutch to the shift destination clutch is possible,
    The shift state of the speed change mechanism connected to the shift destination clutch is higher than the speed change state of the speed change mechanism connected to the speed change source clutch in the accelerator off state by the clutch switching determination means. Is determined to be low and the clutch that engages the engine and the speed change mechanism is determined to be switchable from the speed change source clutch to the speed change destination clutch. While controlling the fastening force of the shift source clutch and the shift destination clutch so that the number is equal to or less than the rotation speed of the shift source input shaft that is the input shaft of the transmission mechanism connected to the shift source clutch. Clutch switching control means for changing the original clutch from the engaged state to the disengaged state and executing control for changing the shift destination clutch from the disengaged state to the half-clutch state ,
    Engine rotation synchronization determination means for determining whether or not the rotation speed of a shift destination input shaft that is an input shaft of the transmission mechanism connected to the shift destination clutch is equal to or lower than an allowable upper limit rotation speed of the engine;
    Engine rotation synchronization control means for increasing the engine speed so as to coincide with the speed of the shift destination input shaft when it is determined that the speed of the shift destination input shaft is equal to or lower than the allowable upper limit speed. When,
    Synchronization completion determination means for determining whether or not the rotational speed of the engine and the rotational speed of the shift destination input shaft match.
    A control apparatus for a dual clutch transmission, comprising: a shift end control means for controlling the shift destination clutch to a contact state after it is determined that the rotation speed of the engine and the rotation speed of the shift destination input shaft match. .
  2.  前記クラッチ切替制御手段は、前記変速元クラッチによる前記エンジンと前記変速機構との間の伝達トルクと、前記変速先クラッチによる前記エンジンと前記変速機構との間の伝達トルクとの合計が前記エンジンによる減速トルク以下となるように、前記変速元クラッチ及び前記変速先クラッチの前記締結力を制御する請求項1に記載のデュアルクラッチ式変速機の制御装置。 The clutch switching control means is configured such that a sum of a transmission torque between the engine and the transmission mechanism by the transmission source clutch and a transmission torque between the engine and the transmission mechanism by the transmission destination clutch is determined by the engine. The control apparatus for a dual clutch transmission according to claim 1, wherein the engagement force of the shift source clutch and the shift destination clutch is controlled so as to be equal to or less than a deceleration torque.
  3.  前記エンジン回転同期判定手段は、出力軸回転数センサにより検出された前記変速機構の出力軸の回転数と、前記変速先入力軸と前記出力軸との間のギヤ比とに基づいて、前記変速先入力軸の回転数を算出する請求項1又は請求項2に記載のデュアルクラッチ式変速機の制御装置。 The engine rotation synchronization determination means is configured to change the speed based on the rotation speed of the output shaft of the transmission mechanism detected by the output shaft rotation speed sensor and the gear ratio between the shift destination input shaft and the output shaft. The control apparatus for a dual clutch transmission according to claim 1 or 2, wherein the rotational speed of the front input shaft is calculated.
  4.  前記変速終結制御手段は、前記エンジンの回転数と前記変速先入力軸の回転数とが一致したと判定されてから所定時間が経過した後に、前記変速先クラッチを接状態にする制御を開始する請求項1から請求項3の何れか一項に記載のデュアルクラッチ式変速機の制御装置。 The shift end control means starts control for bringing the shift destination clutch into an engaged state after a predetermined time has elapsed since it was determined that the engine speed and the speed of the shift destination input shaft coincided with each other. The control apparatus for a dual clutch transmission according to any one of claims 1 to 3.
PCT/JP2017/005419 2016-02-18 2017-02-15 Control device for dual-clutch transmission WO2017141937A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780011712.5A CN108700187A (en) 2016-02-18 2017-02-15 The control device of double disengaging type speed changers
PH12018501714A PH12018501714A1 (en) 2016-02-18 2018-08-13 Control device for dual-clutch transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029161A JP2017145922A (en) 2016-02-18 2016-02-18 Control device of dual clutch-type transmission
JP2016-029161 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141937A1 true WO2017141937A1 (en) 2017-08-24

Family

ID=59625080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005419 WO2017141937A1 (en) 2016-02-18 2017-02-15 Control device for dual-clutch transmission

Country Status (4)

Country Link
JP (1) JP2017145922A (en)
CN (1) CN108700187A (en)
PH (1) PH12018501714A1 (en)
WO (1) WO2017141937A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185583A (en) * 1992-10-21 1994-07-05 Komatsu Ltd Transmission and control method thereof
JP2004308841A (en) * 2003-04-09 2004-11-04 Nissan Motor Co Ltd Shift control device for multi-stage automatic transmission
JP2013087778A (en) * 2011-10-13 2013-05-13 Aisin Ai Co Ltd Dual clutch type automatic transmission and shift control method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246358A (en) * 1988-08-06 1990-02-15 Honda Motor Co Ltd Speed change control device for automatic transmission
JP3223640B2 (en) * 1993-05-17 2001-10-29 三菱自動車工業株式会社 Shift control method for automatic transmission
US6042504A (en) * 1998-04-01 2000-03-28 Eaton Corporation Range shift control
JP4663840B2 (en) * 2000-03-03 2011-04-06 いすゞ自動車株式会社 Engine overrun prevention device for automatic transmission
JP2001330148A (en) * 2000-05-19 2001-11-30 Isuzu Motors Ltd Shift assist device for transmission
JP2002021950A (en) * 2000-07-10 2002-01-23 Isuzu Motors Ltd Transmission of vehicle
US6832978B2 (en) * 2003-02-21 2004-12-21 Borgwarner, Inc. Method of controlling a dual clutch transmission
JP2007024189A (en) * 2005-07-15 2007-02-01 Jatco Ltd Change control device and method for automatic transmission
JP2008298016A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Vehicle control system
CN101780798B (en) * 2009-01-19 2013-02-13 比亚迪股份有限公司 Dual-clutch gear-shifting control method and device thereof
JP5494410B2 (en) * 2010-10-21 2014-05-14 トヨタ自動車株式会社 Control device for vehicle power transmission device
JP5367853B2 (en) * 2012-01-23 2013-12-11 株式会社小松製作所 Motor grader
JP5880779B2 (en) * 2013-03-18 2016-03-09 日産自動車株式会社 Vehicle shift control device
JP5837011B2 (en) * 2013-09-12 2015-12-24 本田技研工業株式会社 Shift control device for motorcycle
JP2015117662A (en) * 2013-12-19 2015-06-25 ダイハツ工業株式会社 Control method of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185583A (en) * 1992-10-21 1994-07-05 Komatsu Ltd Transmission and control method thereof
JP2004308841A (en) * 2003-04-09 2004-11-04 Nissan Motor Co Ltd Shift control device for multi-stage automatic transmission
JP2013087778A (en) * 2011-10-13 2013-05-13 Aisin Ai Co Ltd Dual clutch type automatic transmission and shift control method thereof

Also Published As

Publication number Publication date
CN108700187A (en) 2018-10-23
PH12018501714A1 (en) 2019-05-20
JP2017145922A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5337300B2 (en) Compound clutch transmission, motorcycle and start control method
EP2653754B1 (en) Control device for dual clutch transmission and control method for dual clutch transmission
JP6205106B2 (en) Dual clutch transmission control method, dual clutch transmission and vehicle equipped with the same
JP5285813B2 (en) Compound clutch transmission and start control method
WO2008029951A9 (en) Automatic transmission controlling apparatus and method
WO2017209229A1 (en) Control device for dual clutch transmission
CN108291631B (en) Control device for a dual clutch transmission and dual clutch transmission
US9926988B2 (en) Starting clutch control device for automatic transmission
JP2013083330A (en) Automatic transmission
JP6834217B2 (en) Transmission control device
WO2017141937A1 (en) Control device for dual-clutch transmission
JP6866578B2 (en) Dual clutch transmission controller
JP2018066413A (en) Control device of transmission
JP2004293665A (en) Gear change control device of automatic transmission
JP6865921B2 (en) Transmission controller
WO2017141930A1 (en) Dual-clutch transmission control device
JP6733388B2 (en) Transmission control device
CN108291630B (en) Control device for dual clutch transmission
JPH0914420A (en) Automatic transmission
JP6724626B2 (en) Transmission control device
JP6724734B2 (en) Control device for vehicle drive device
JP2003336734A (en) Control device and control method for automatic transmission
KR100427667B1 (en) Dual clutch type Manual Transmission
JP2005337149A (en) Control device for automatic transmission
JPH06264997A (en) Speed change control method and device of speed change

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753193

Country of ref document: EP

Kind code of ref document: A1