WO2017141508A1 - Platelet aggregation activity analysis device, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method - Google Patents

Platelet aggregation activity analysis device, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method Download PDF

Info

Publication number
WO2017141508A1
WO2017141508A1 PCT/JP2016/083896 JP2016083896W WO2017141508A1 WO 2017141508 A1 WO2017141508 A1 WO 2017141508A1 JP 2016083896 W JP2016083896 W JP 2016083896W WO 2017141508 A1 WO2017141508 A1 WO 2017141508A1
Authority
WO
WIPO (PCT)
Prior art keywords
platelet
platelet aggregation
blood
analysis
containing sample
Prior art date
Application number
PCT/JP2016/083896
Other languages
French (fr)
Japanese (ja)
Inventor
彩 村田
義人 林
賢三 町田
マルクオレル ブルン
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680081455.8A priority Critical patent/CN108603888B/en
Priority to EP16890645.1A priority patent/EP3418748A4/en
Priority to JP2017567954A priority patent/JP6941061B2/en
Priority to US16/077,305 priority patent/US20190049428A1/en
Publication of WO2017141508A1 publication Critical patent/WO2017141508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator

Definitions

  • the present invention relates to a platelet aggregation analysis device, a platelet aggregation analysis system, a platelet aggregation analysis program, and a platelet aggregation analysis method.
  • anticoagulant therapy is indispensable for the prevention of thrombosis, and their usefulness has been shown by large-scale clinical trials.
  • anticoagulant therapy the efficacy of each anti-platelet drug can be sustained while the drug efficacy is appropriately monitored for each patient by the International Standard Ratio of Prothrombin Time (PT-INR) and thrombotest.
  • PT-INR International Standard Ratio of Prothrombin Time
  • One possible cause is the lack of established monitoring methods for antiplatelet therapy despite the reported differences. Therefore, even in antiplatelet therapy, if the drug efficacy can be appropriately monitored by an easy-to-understand method, it will be a means for searching for an appropriate method of using the drug in each case, and an improvement in the therapeutic effect can be expected.
  • the most basic functions of platelets are adhesion and aggregation.
  • Platelet aggregation ability which determines the adhesion state between platelets, is the most popular method for quantitatively measuring this basic phenomenon.
  • the test methods include (1) permeability method and (2) impedance method. (3) There are particle counting methods. Depending on the type and concentration of the aggregation-inducing substance used in these test methods, it is possible to know details of the decrease and enhancement of the blood microscopic test function. In particular, the permeability method is common for daily inspection.
  • the strength of platelet aggregation depends to some extent on the number of platelets in PRP, so when the platelet count is 100,000 / ⁇ l or less, the difference in absorbance before and after aggregation is small and slightly changed. Cannot be detected, (iii) Testing with turbid plasma such as whole blood and milk plasma is impossible, (iv) The correlation between the formation of platelet aggregates and light transmittance is poor, Etc.
  • the impedance method of (2) is a method of detecting platelet aggregation as a change in electrical resistance between electrodes, and the platelet aggregation ability in whole blood can be observed. You can observe the attitude. Problems include the following (v) and (vi): (v) The initial decrease in electrical resistance is due to the presence of red blood cells between the electrodes, making it difficult to determine the initial state of platelet aggregation, (vi) The aggregation pattern is not stable compared to the permeability method, Etc.
  • the particle calculation method (3) is a method for determining the degree of aggregation by calculating the number of platelet aggregates or the number of single platelets not involved in the formation of aggregates with a Coulter counter. Problems include the following (vii) to (ix): (vii) The procedure is complicated, (viii) Cannot record changes over time, (ix) Platelet lysis by aggregator is miscalculated as single platelet loss, Etc.
  • Patent Document 1 a method for measuring the dielectric constant of the blood coagulation process has been devised as a method capable of simply and accurately evaluating blood coagulation measurement.
  • blood is filled in a capacitor-like sample portion composed of a pair of electrodes, and an alternating voltage is applied thereto to measure a change in dielectric constant accompanying the blood coagulation process.
  • the blood sample was collected from a vein using citric acid as an anticoagulant.
  • citric acid as an anticoagulant.
  • the anticoagulant action of citric acid was canceled and the blood coagulation reaction was performed.
  • To advance By analyzing the data thus obtained according to a predetermined algorithm, parameters relating to blood coagulation such as blood coagulation time can be obtained.
  • the blood coagulation system analysis system apparatus based on the dielectric constant measurement can also acquire information on the influence of platelets on coagulation. For example, by adding a substance that activates or inactivates platelets to blood, information on the coagulation ability of the blood is obtained based on a change that occurs in a complex dielectric constant spectrum measured during the blood coagulation process. System analysis can be performed (Patent Document 2).
  • Patent Document 2 In this blood coagulation system analysis method, when a platelet activating substance is used as the substance, it is in an inactive state in the blood based on a change that occurs in the complex dielectric constant spectrum due to platelet activation by the substance. Information on the coagulation ability of the contained platelets can be acquired.
  • the inventors of the present application have conducted intensive research to provide a new method and apparatus for measuring platelet aggregation that can be used for monitoring in antiplatelet therapy, for example, and have completed the present technology.
  • a blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
  • a platelet aggregation analyzing apparatus including an output control unit for controlling an output of an analysis result by the blood coagulation system analysis unit.
  • the apparatus may include a biological sample holding unit that holds the platelet-containing sample and the platelet-inducing substance.
  • the apparatus may include a measuring unit that measures a coagulation process of the platelet-containing sample.
  • the apparatus may include a biological sample supply unit that supplies a platelet-containing sample.
  • the apparatus may include a drug supply unit that supplies the platelet-inducing substance.
  • the blood coagulation system analysis unit analyzes the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is added based on the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is not added. be able to.
  • the measurement information obtained by measuring the coagulation process of the platelet-containing sample may be measurement data of electrical characteristics and / or viscoelasticity.
  • the measurement data of the electrical characteristics may be a dielectric constant of a platelet-containing sample, and the measurement data of the viscoelasticity may be measurement data by a rheometer of the platelet-containing sample.
  • the platelet-containing sample is blood or plasma.
  • the blood or plasma may be collected from a subject who has been administered an antiplatelet aggregating agent or an anticoagulant.
  • the reaction between the platelet-containing sample and the platelet-inducing substance is performed for 1 minute to 20 minutes.
  • platelet aggregates can be collected after the reaction between the platelet-containing sample and the platelet-inducing substance.
  • This technology includes a blood coagulation system analysis unit that analyzes platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added,
  • a platelet aggregation analysis system comprising a platelet aggregation analysis device including an output control unit for controlling the output of an analysis result by the blood coagulation system analysis unit, and a display device for displaying the analysis result.
  • the present technology includes a step of analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added; A program for analyzing platelet aggregation ability that causes a computer to execute a step of controlling the output of the analysis result is provided.
  • the present technology includes a step of analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added; And a method for analyzing the platelet aggregation ability, comprising the step of controlling the output of the analysis result.
  • the platelet aggregation ability analysis system is A blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added; A platelet aggregating ability analysis device including an output control unit for controlling an output of an analysis result by the blood coagulation system analysis unit; and a display device for displaying the analysis result.
  • FIG. 1 shows the configuration of a platelet aggregation ability analysis system.
  • the platelet aggregation ability analysis system 2000 includes a platelet aggregation ability analyzer 1000 and a display device 1010.
  • the platelet aggregation ability analysis system 2000 measures the platelet aggregation ability of a platelet-containing sample and analyzes the platelet aggregation ability from the measurement data.
  • the display device 1010 displays the analysis result of platelet aggregation ability.
  • the platelet aggregation analyzing apparatus 1000 may include a computer having a program for performing platelet aggregation based on measurement data, and the display device 1010 may be a display provided in the computer.
  • the platelet aggregation analyzing apparatus 1000 may analyze not only the platelet aggregation ability of the platelet-containing sample but also other blood coagulation system measurement items.
  • the other blood coagulation system measurement items include blood coagulation (clotting), fibrin formation, fibrin clot formation, clot formation, red blood cell formation, blood aggregation, red blood cell sedimentation (red sedimentation), blood clot Examples include contraction (retraction), hemolysis, and fibrinolysis.
  • these item analysis programs are used in place of the platelet aggregation ability program provided in the computer.
  • Display device 1010 may include a warning unit.
  • the warning unit presets a range of normal values for each blood state change, and issues a warning when the analysis result of the sample is outside the range of normal values.
  • the warning method is not particularly limited.
  • the warning can be given by display display or voice.
  • FIG. 2 shows a detailed configuration of an example of the platelet aggregability analyzing apparatus 1000 described in FIG.
  • the platelet agglutination analysis device 1000 includes a blood coagulation system analysis unit 12 and an output control unit 14, and more specifically, as main parts, a biological sample supply unit 2, a drug supply unit 3a, a reagent supply unit 3b, The biological sample holding units 1a and 1b and the measurement unit 10 are also included.
  • the biological sample supply unit 2 supplies blood collected from a human or a mammal to the platelet aggregation analyzing apparatus 1000.
  • the blood supply method is not particularly limited, and it is supplied from a syringe, puts blood in a sample cartridge and is set in the platelet aggregation analysis device 1000, or is directly supplied from the subject to the platelet aggregation analysis device 1000 through a tube. be able to.
  • the subject may have been administered an antiplatelet aggregating agent or an anticoagulant.
  • the biological sample standby unit 4 enables the blood sent from the biological sample supply unit 2 to be maintained at a constant temperature and state.
  • the biological sample standby unit 4 includes a temperature control unit 5 that maintains the temperature of the blood, a time control unit 6 that controls the standby time of the blood, and more preferably includes a stirring mechanism 7a.
  • the first biological sample holder 1a supplies the aforementioned platelet-inducing substance to blood and performs a reaction.
  • a drug supply unit 3a is connected to the first biological sample holding unit 1a.
  • the drug supply unit 3a supplies platelet-inducing substances to the blood.
  • the first biological sample holding unit 1a includes a temperature control unit 5, a time control unit 6, and a stirring mechanism 7b. In the first biological sample holding unit 1a, stirring is performed while maintaining the temperature of the blood sent from the biological sample standby unit 4, and platelets in the blood and the platelet-inducing substance from the drug supply unit 3a are mixed for a certain period of time. React.
  • the biological sample sorting unit 8 sorts blood reacted with the platelet-inducing substance in the first biological sample holding unit.
  • the collected blood is sent from the biological sample collection unit 8 to the second biological sample holding unit 1b.
  • the second biological sample holding part 1b supplies a coagulation promoting substance to blood and performs a reaction.
  • a reagent supply unit 3b is connected to the second biological sample holding unit 1b.
  • the reagent supply unit 3b supplies a coagulation promoting substance to blood.
  • the coagulation promoting substance include calcium, an extrinsic coagulation promoting reagent, an intrinsic coagulation promoting substance, and the like. From these, one type or two or more types may be combined to promote coagulation.
  • Specific exogenous coagulation promoting reagents include, for example, tissue thromboplastin, tissue factor and the like, and intrinsic coagulation promoting reagents include, for example, ellagic acid and kaolin.
  • the second biological sample holding unit 1b includes a temperature control unit 5 and a stirring mechanism 7c, and may further include a drive mechanism 9.
  • the drive mechanism 9 performs operations related to the second biological sample holding unit 1b, such as driving the temperature control unit 5 and the stirring mechanism 7c, and sending blood.
  • the blood is reacted with the coagulation promoting substance from the reagent supply unit 3b while maintaining the blood at a constant temperature.
  • the measuring unit 10 measures the dielectric constant after or simultaneously with the addition of a coagulation promoting substance to blood.
  • a rheometer may be used for the measurement unit 10. Examples of the rheometer include rotation thromboelastometry, thromboelastography, and Leo Rocks (ReoRox TM).
  • Measurement condition control unit 13 adjusts conditions suitable for each measurement method, such as temperature and measurement time.
  • the measurement condition control unit 13 controls, for example, the frequency used for measurement, the measurement interval, and the like.
  • the accuracy management unit 11 manages the data so as not to cause a difference between measurements, background fluctuations, etc., monitors the state of each part of the apparatus, etc., and includes this in the measurement unit 10. it can.
  • a platelet collection unit including a filter or the like for collecting aggregated platelets may be provided in front of the measurement unit 10.
  • Blood coagulation system analysis unit 12 detects and analyzes changes in blood state based on measurement data based on dielectric constant.
  • the blood coagulation system analysis unit 12 outputs the analysis result to the output control unit 14.
  • the output control unit 14 outputs and displays the analysis result on the display device 1010.
  • the blood coagulation system analysis unit 12 communicates with the storage unit 15, and the storage unit 15 stores data and analysis results over time in continuous measurement of platelet-containing samples, or previously measured data and analysis results, etc. .
  • the blood aggregating ability analysis apparatus 1000 described above operates various logical functions of the platelet aggregating ability analyzing apparatus 1000 by a processor executing a program stored in a memory or another recording medium.
  • blood is collected from a human or mammal.
  • Whole blood may be used as a sample as it is, or blood may be stretched at 1000 rpm for 10 minutes, for example, and platelet plasma may be collected and used as a sample.
  • FIG. 3 shows a process of analyzing platelet aggregation ability.
  • the sample is first supplied to the biological sample supply unit 2.
  • the sample is sent from the biological sample supply unit 2 to the biological sample standby unit 4, heated to 37 ° C., and stirred for 3 minutes, for example, and maintained (S1101).
  • the sample is sent to the biological sample holding unit 10, physiological saline is added to the control, and a platelet-inducing substance is added to the sample to be measured (S1102).
  • the platelet-inducing substance to be added is not particularly limited, but collagen, epinephrine, ristocetin, calcium ion, thrombin, thromboxane A 2 , thrombin receptor activating protein (TRAP), adenosine diphosphate (ADP), arachidonic acid (AA) Serotonin, adrenaline, noradrenaline and the like are used.
  • the concentration of the platelet-inducing substance is preferably 1 ⁇ M or more and 100 ⁇ M or less, more preferably 3 ⁇ M or more and 80 ⁇ M or less, and further preferably 5.4 ⁇ M or more and 62 ⁇ M or less for thrombin receptor activating protein (TRAP).
  • thrombin receptor activating protein thrombin receptor activating protein
  • ADP adenosine diphosphate
  • it is preferably 0.1 ⁇ M or more and 100 ⁇ M or less, more preferably 0.5 ⁇ M or more and 30 ⁇ M or less, and further preferably 1.0 ⁇ M or more and 12.5 ⁇ M or less.
  • arachidonic acid it is preferably 0.01 mM or more and 10 mM or less, more preferably 0.05 mM or more and 5.0 mM or less, and further preferably 0.08 mM or more and 1.0 mM or less.
  • the sample After the physiological saline or platelet-inducing substance is added to the sample in the first biological sample holding unit 1a, the sample is continuously heated to 37 ° C. in the first biological sample holding unit 1a. Thereafter, stirring is preferably performed for 3 to 6 minutes (S1103), and platelets are consumed. When stirring for 1 minute or longer, the reaction between the platelets and the platelet-inducing substance proceeds. When stirring for 20 minutes or shorter, the platelet aggregates may not collapse.
  • the collection can be performed, for example, by filtration (S1105).
  • the sample from which the aggregated platelets are determined to be collected and from which the aggregated platelets have been removed is subjected to extrinsic / intrinsic coagulation measurement by the measurement unit 10 provided in the second biological sample holding unit 1b (S1106).
  • the blood coagulation system analysis unit 12 performs analysis according to the following procedure from the data of external / intrinsic system coagulation measurement.
  • the blood coagulation system analysis unit 12 extracts feature points based on the measurement result (S1107).
  • the characteristic points are, for example, the point where the measurement results of the control and the sample start to stabilize, the point where the clotting time of platelets is determined, and the like.
  • the blood coagulation system analysis unit 12 calculates the difference between the control and the sample at the extracted feature points (S1108), and outputs the result.
  • the blood coagulation system analysis unit 12 determines that platelets are activated as the difference between the characteristic points of the control and the sample increases (S1109).
  • the blood coagulation system analysis unit 12 outputs the analysis result to the display control unit 14, and the display control unit outputs and displays the analysis result on the display device 1010 (S1112).
  • the extrinsic system / intrinsic system coagulation measurement is performed by the measurement unit provided in the second biological sample holding unit without collecting the aggregated platelets (S1110). .
  • the contribution of platelets to coagulation is analyzed (S1111). The analysis can be performed by comparing the measurement result of the control added with the physiological saline and the measurement result of the sample added with the platelet-inducing substance. For example, the measurement data obtained over time can be graphed, and the contribution to platelet coagulation can be analyzed by looking at the difference or ratio of the measured values at a specific time, the difference or ratio of the graph area, etc. .
  • the blood coagulation system analysis unit 12 outputs the analysis result to the display control unit 14, and the display control unit outputs and displays the analysis result on the display device 1010 (S1113).
  • the above description mainly relates to a technique (see Patent No. 5691168, Patent No. 5678422) using a measurement method of a solidification process using electrical characteristics (dielectric constant).
  • the coagulation process can also be measured by other methods.
  • Other methods include, for example, measurement of a coagulation process by viscoelasticity, and this method can also be applied to the present technology.
  • TAG thromboelastography
  • ROTEM rotation thromboelastometry
  • Nippon Fingal Link thromboelastometry
  • thromboelastography In thromboelastography, a whole blood sample is injected into a cup, which is a measurement container, and an inducer according to the purpose of the test is added. Then, a rod-like pin suspended by a wire is immersed from the top of the container. Giving a steady reciprocating angular motion (typically reciprocating 4.45 ° in 10 seconds). As the coagulation reaction proceeds, the viscoelasticity of the specimen increases, the relative movement of the cup and pin decreases, and therefore the rotational displacement of the pin increases. By recording this rotational displacement with time using an optical system in the apparatus, a waveform called a thromboelastogram is obtained.
  • a thromboelastogram By recording this rotational displacement with time using an optical system in the apparatus, a waveform called a thromboelastogram is obtained.
  • Rotation thromboelastometry is basically based on the same principle, although there is a difference that reciprocal angular motion is given to the pin instead of the cup.
  • prothrombin time and activated partial thromboplastin time are methods for detecting the end point of coagulation
  • thromboelastography and thromboelastometry are a series of processes from the start of coagulation to thrombus formation and subsequent fibrinolysis. There is an advantage that it can be monitored over time with a single device.
  • both whole blood and plasma can be used as a platelet-containing sample.
  • the platelet aggregability analyzer 1000 it is preferable to use whole blood.
  • Venous blood collection of healthy subjects was performed by a normal method using a commercially available vacuum blood collection tube (blood collection amount: 1.8 mL, 5 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining four were used for the experiment shown below. Further, after blood collection, it was used after being allowed to stand at room temperature for about 30 minutes. First, 300 ul of whole blood was stirred for 3 minutes at 37 ° C. Thereafter, a platelet-inducing substance was added and allowed to react for 6 minutes.
  • FIG. 4 shows the blood platelet count as a control and the platelet count when a platelet-inducing substance is added to the blood.
  • NaCl described as an additive reagent represents physiological saline and was used as a control.
  • TRAP represents thrombin receptor activating protein
  • AA represents arachidonic acid
  • AA + ASA represents arachidonic acid and aspirin
  • ADP represents adenosine diphosphate
  • ADP + PGE1 represents adenosine diphosphate and prostaglandin E1.
  • Substances that activate platelets include thrombin receptor activating protein (TRAP), adenosine diphosphate (ADP), arachidonic acid (AA), collagen, epinephrine, ristocetin, thromboxane A 2 (TAX 2 ), adrenaline, etc.
  • TRAP thrombin receptor activating protein
  • ADP adenosine diphosphate
  • AA arachidonic acid
  • TAX 2 thromboxane A 2
  • adrenaline etc.
  • the platelet count was also measured when substances that inactivate the respective activation pathways were added. Thereby, when the inactivating substance was added, it turned out that even if an activator is added, a platelet aggregate does not increase and it exists as a single platelet.
  • Venous blood collection for healthy individuals was performed by a conventional method using commercially available vacuum blood collection tubes (cigarette collection volume: 1.8 mL, 3 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining two were used in the experiment shown below. In addition, after blood collection, the mixture was allowed to stand at room temperature for about 30 minutes, and then the two were centrifuged at 1000 rpm for 10 minutes to collect platelet-rich plasma (PRP).
  • PRP platelet-rich plasma
  • the platelet count in the case where the blood inducer used as the specimen was not added was 340,000 / ul.
  • the lower limit of the normal platelet count is 50,000 / ul, it is assumed that the change in coagulation ability due to the change in platelet aggregation becomes difficult after 45 minutes after the addition of platelet-inducing substances. . This was confirmed in the experiment.
  • Venous blood collection of healthy subjects was performed by a normal method using a commercially available vacuum blood collection tube (blood collection amount: 1.8 mL, 5 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining four were used for the following experiments. Further, after blood collection, it was used after being allowed to stand at room temperature for about 30 minutes.
  • FIG. 10-1 (DiCa-Ex) and FIG. 10-2 (ROTEM-EXTEM)
  • the examination time is 15 minutes, which is determined by the coagulation time, and the value is 15 minutes (DiCa is the difference between the maximum value 1 and the 15-minute value)
  • DiCa is the difference between the maximum value 1 and the 15-minute value
  • the ratio of NaCl-TRAP (without filter) and NaCl + Filter-TRAP + Filter (with filter) was calculated. The results are shown in FIG. In the case of DiCa-Ex, there was no significant difference in the ratio without the filter, but in the case of ROTEM, the difference in the ratio was greater with the filter.
  • FIG. 12-2 shows a calculation time (calculation CF) obtained by calculating the reciprocal of the difference from 10 minutes determined as the examination time (FIG. 12-1), the maximum value being 1, and the difference from the maximum value.
  • the range indicated by the arrow in FIG. 12-2 is reflected by the platelet function (platelet contributing part), and this difference may be reduced when the platelet aggregation function is lowered or when a platelet inhibitor is taken. is assumed. This was actually confirmed by a combination of ADP and a prostaglandin E1 inhibitor (ADP pathway inhibitor).
  • a method of calculating the difference from the control by the area or ratio when the measurement data of the obtained coagulation process is graphed can be considered. Since the view of the blood coagulation system analyzer also changes depending on the measurement frequency, it has a higher degree of freedom than ROTEM, and it may be possible to calculate parameters other than platelet function at the same time.
  • the following steps are also performed: (1) Taking measurement data of the coagulation process of a platelet-containing sample to which no platelet-inducing substance is added (data showing the aggregation effect of platelets and fibrin is obtained) (2) On the other hand, measurement data of the coagulation process of a platelet-containing sample to which a platelet function inhibitor has been added is obtained (data obtained by excluding platelets (for fibrin) is obtained), and (3) Take measurement data of the coagulation process of the added platelet-containing sample, The analysis method including this can be performed. When the subject is taking an antiplatelet drug, the measurement result appears between the data (1) and (2) depending on the degree of the effect.
  • the blood coagulation system analyzer can be used not only for the measurement of coagulation factors but also for the measurement of platelet function as a platelet aggregability analyzer, and can be used for monitoring treatment according to the type of antiplatelet drug. it can.
  • it is possible to perform measurement with whole blood, which is a superior sample, as a clinical test with thrombosis in view.
  • this technique can also take the following structures; [1] a blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added; An apparatus for analyzing platelet aggregation, comprising an output control unit for controlling the output of the analysis result by the blood coagulation system analysis unit. [2] The platelet aggregation analyzing apparatus according to [1], further comprising a biological sample holding unit that holds the platelet-containing sample and the platelet-inducing substance.
  • the platelet aggregation analyzing apparatus according to [1] or [2], further including a measuring unit that measures a coagulation process of the platelet-containing sample.
  • the platelet aggregation analyzing apparatus according to any one of [1] to [3], further comprising a biological sample supply unit that supplies the platelet-containing sample.
  • the platelet aggregation analyzing apparatus according to any one of [1] to [4], further comprising a drug supply unit that supplies the platelet-inducing substance.
  • the blood coagulation system analysis unit measures the coagulation process of the platelet-containing sample to which the platelet-inducing substance is added based on the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is not added.
  • the apparatus for analyzing platelet aggregation ability according to any one of [1] to [5].
  • the platelet aggregation analysis apparatus according to [7] wherein the measurement data of the electrical characteristics is a dielectric constant of a platelet-containing sample.
  • the platelet aggregation analyzing apparatus according to [7], wherein the measurement data of the viscoelasticity is measurement data of a platelet-containing sample using a rheometer.
  • the platelet aggregation analyzing apparatus according to any one of [1] to [9], wherein the platelet-containing sample is blood or plasma.
  • the platelet aggregation analyzing apparatus according to [10], wherein the blood or plasma is collected from a subject who has been administered an antiplatelet aggregation agent or an anticoagulant.
  • the platelet aggregation analyzing apparatus according to any one of [1] to [11], wherein the platelet-containing sample and the platelet-inducing substance are reacted for a time of 1 minute to 20 minutes.
  • a blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
  • a platelet aggregation capacity analysis system comprising: a platelet aggregation capacity analysis apparatus including an output control section for controlling output of analysis results by the blood coagulation system analysis section; and a display device for displaying the analysis results.

Abstract

Provided are a novel platelet aggregation activity measurement device and a novel platelet aggregation activity measurement method, which can be used for monitoring in an anti-platelet therapy. A platelet aggregation activity analysis device equipped with: a blood coagulation system analysis section for analyzing platelet aggregation activity on the basis of measurement data for a coagulation process of a platelet-containing sample to which a platelet-inducing substance has been added; and an output control section for controlling the output of an analysis result produced by the blood coagulation system analysis section.

Description

血小板凝集能解析装置、血小板凝集能解析システム、血小板凝集能解析用プログラム及び血小板凝集能の解析方法Platelet aggregation ability analyzer, platelet aggregation ability analysis system, platelet aggregation ability analysis program, and platelet aggregation ability analysis method
 本発明は、血小板凝集能解析装置、血小板凝集能解析システム、血小板凝集能解析用プログラム及び血小板凝集能の解析方法に関する。 The present invention relates to a platelet aggregation analysis device, a platelet aggregation analysis system, a platelet aggregation analysis program, and a platelet aggregation analysis method.
 従来から行われている抗凝固療法や抗血小板療法は、血栓症予防に欠くことのできない治療法であり、その有用性は大規模な臨床試験により示されている。しかし、抗血小板療法が動脈血栓症を低減する効果は、抗凝固療法の脳梗塞低減効果よりも低い。これは、抗凝固療法においては、プロトロンビン時間国際標準比(PT-INR)やトロンボテストにより患者ごとに薬効が適切にモニタリングされている一方で、抗血小板薬の感受性や効果の持続にはかなりの個体差があることが報告されているにも関わらず、抗血小板療法におけるモニタリング方法が確立していないことが原因の一つとして考えられる。従って、抗血小板療法においても、分かりやすい方法で薬効が適切にモニタリングできれば、各症例における薬品の適正な使用方法を探る手段となり、治療効果の向上が期待できる。 Conventional anticoagulant therapy and antiplatelet therapy are indispensable for the prevention of thrombosis, and their usefulness has been shown by large-scale clinical trials. However, the effect of antiplatelet therapy to reduce arterial thrombosis is lower than that of anticoagulant therapy to reduce cerebral infarction. In anticoagulant therapy, the efficacy of each anti-platelet drug can be sustained while the drug efficacy is appropriately monitored for each patient by the International Standard Ratio of Prothrombin Time (PT-INR) and thrombotest. One possible cause is the lack of established monitoring methods for antiplatelet therapy despite the reported differences. Therefore, even in antiplatelet therapy, if the drug efficacy can be appropriately monitored by an easy-to-understand method, it will be a means for searching for an appropriate method of using the drug in each case, and an improvement in the therapeutic effect can be expected.
 血小板の最も基本的な機能は、粘着と凝集である。血小板同士の付着状態を判定する血小板凝集能は、この基本的な現象を定量的に測定する方法として最も普及しており、その検査法には、(1)透過度法、(2)インピーダンス法、(3)粒子算定法等がある。これらの検査法に用いる凝集惹起物質の種類・濃度によって、血小検機能低下および亢進の詳細を知ることが可能である。特に、日常検査として一般的なのは透過度法である。 The most basic functions of platelets are adhesion and aggregation. Platelet aggregation ability, which determines the adhesion state between platelets, is the most popular method for quantitatively measuring this basic phenomenon. The test methods include (1) permeability method and (2) impedance method. (3) There are particle counting methods. Depending on the type and concentration of the aggregation-inducing substance used in these test methods, it is possible to know details of the decrease and enhancement of the blood microscopic test function. In particular, the permeability method is common for daily inspection.
 前記(1)の透過度法は、血小板刺激物質を加え、多血小板血漿(PRP)中の血小板凝集に伴い、多血小板血漿の透明度が上昇すること利用して経時的に血小板凝集を定量化する方法である。
 問題点としては、以下の(i)~(iv):
 (i) 血漿の分離が必須のため、測定までの検体処理が複雑で、遠沈条件によって得られるPRPの量はそれぞれ異なり、血小板の回収率も一定でない。また、PRP分離操作の際に、密度の高い血小板は赤血球と共に沈殿し、それらの凝集態度は観察できない、
 (ii) 血小板凝集の強さ(凝集率)は、PRP中の血小板数にある程度依存するので、血小板数が10万/μl以下の場合には、凝集前後の吸光度の差が小さく、僅かな変化は検出できない、
 (iii) 全血および乳糜血漿など混濁した血漿を用いての検査は不可能である、
 (iv) 血小板凝集塊の形成と光透過性の相関が悪い、
等が挙げられる。
In the permeability method of (1), platelet aggregation is added and platelet aggregation is quantified over time using the increase in transparency of platelet-rich plasma accompanying platelet aggregation in platelet-rich plasma (PRP). Is the method.
Problems include the following (i) to (iv):
(i) Since the separation of plasma is essential, the sample processing up to the measurement is complicated, the amount of PRP obtained varies depending on the centrifuge conditions, and the platelet recovery rate is not constant. Also, during the PRP separation operation, high-density platelets precipitate together with erythrocytes, and their aggregation attitude cannot be observed.
(ii) The strength of platelet aggregation (aggregation rate) depends to some extent on the number of platelets in PRP, so when the platelet count is 100,000 / μl or less, the difference in absorbance before and after aggregation is small and slightly changed. Cannot be detected,
(iii) Testing with turbid plasma such as whole blood and milk plasma is impossible,
(iv) The correlation between the formation of platelet aggregates and light transmittance is poor,
Etc.
 前記(2)のインピーダンス法は、血小板の凝集を電極間の電気抵抗の変化として検出する方法であり、全血中の血小板の凝集能を観察でき、遠沈操作が無いため全ての血小板の凝集態度を観察出来る。
 問題点としては、以下の(v)及び(vi):
 (v) 電気抵抗の初期の減少は電極間の赤血球の存在に由来し、血小板凝集の初期状態の判定が困難、
 (vi) 透過度法と比較して、凝集パターンは安定でない、
等が挙げられる。
The impedance method of (2) is a method of detecting platelet aggregation as a change in electrical resistance between electrodes, and the platelet aggregation ability in whole blood can be observed. You can observe the attitude.
Problems include the following (v) and (vi):
(v) The initial decrease in electrical resistance is due to the presence of red blood cells between the electrodes, making it difficult to determine the initial state of platelet aggregation,
(vi) The aggregation pattern is not stable compared to the permeability method,
Etc.
 前記(3)の粒子算定法は、血小板凝集塊、または凝集塊の形成に関与しない単一血小板の数をコールターカウンターで算定し、凝集の程度を知る方法である。
 問題点としては、以下の(vii)~(ix):
 (vii) 手技が煩雑である、
 (viii) 継時的変化を記録できない、
 (ix) 凝集惹起物質による血小板溶解を単一血小板の減少と誤って算定される、
等が挙げられる。
The particle calculation method (3) is a method for determining the degree of aggregation by calculating the number of platelet aggregates or the number of single platelets not involved in the formation of aggregates with a Coulter counter.
Problems include the following (vii) to (ix):
(vii) The procedure is complicated,
(viii) Cannot record changes over time,
(ix) Platelet lysis by aggregator is miscalculated as single platelet loss,
Etc.
 ところで、血液凝固系解析においては、近年、血液凝固測定を簡便且つ正確に評価することができる手法として、血液凝固過程の誘電率の測定を行う方法が考案された(特許文献1)。
 この手法は、一対の電極からなるコンデンサー状の試料部に血液を充填し、それに交番電圧を印加して血液の凝固過程に伴う誘電率の変化を測定する方法である。ここで、血液検体は、クエン酸を抗凝固剤として用いて静脈から採血されたものであり、測定開始直前に塩化カルシウム水溶液を添加することでクエン酸の抗凝固作用を解除して血液凝固反応を進行させる。こうして得られたデータを所定のアルゴリズムに従って解析することで、血液凝固時間等、血液凝固に係るパラメータを得ることができる。
By the way, in the blood coagulation system analysis, in recent years, a method for measuring the dielectric constant of the blood coagulation process has been devised as a method capable of simply and accurately evaluating blood coagulation measurement (Patent Document 1).
In this method, blood is filled in a capacitor-like sample portion composed of a pair of electrodes, and an alternating voltage is applied thereto to measure a change in dielectric constant accompanying the blood coagulation process. Here, the blood sample was collected from a vein using citric acid as an anticoagulant. By adding a calcium chloride aqueous solution just before the start of measurement, the anticoagulant action of citric acid was canceled and the blood coagulation reaction was performed. To advance. By analyzing the data thus obtained according to a predetermined algorithm, parameters relating to blood coagulation such as blood coagulation time can be obtained.
 前記誘電率測定による血液凝固系解析系装置は、血小板が凝固に与える影響に関する情報を取得することもできる。
 例えば、血小板を活性化あるいは不活化する物質を血液に添加することにより該血液の凝固過程で測定される複素誘電率スペクトルに生じる変化に基づいて、前記血液の凝固能に関する情報を取得する血液凝固系解析を行うことができる(特許文献2)。この血液凝固系解析方法では、前記物質に血小板活性化物質を用いた場合には、該物質による血小板活性化に伴って前記複素誘電率スペクトルに生じる変化に基づき、血液中に不活性な状態で含まれる血小板の凝固能に関する情報を取得することができる。また、前記物質に血小板不活化物質を用いた場合には、該物質による血小板不活化に伴って前記複素誘電率スペクトルに生じる変化に基づき、血液中に活性な状態で含まれる血小板の凝固に関する情報を取得することができる。
The blood coagulation system analysis system apparatus based on the dielectric constant measurement can also acquire information on the influence of platelets on coagulation.
For example, by adding a substance that activates or inactivates platelets to blood, information on the coagulation ability of the blood is obtained based on a change that occurs in a complex dielectric constant spectrum measured during the blood coagulation process. System analysis can be performed (Patent Document 2). In this blood coagulation system analysis method, when a platelet activating substance is used as the substance, it is in an inactive state in the blood based on a change that occurs in the complex dielectric constant spectrum due to platelet activation by the substance. Information on the coagulation ability of the contained platelets can be acquired. In addition, when a platelet inactivating substance is used as the substance, information on the coagulation of platelets contained in the active state in the blood based on the change that occurs in the complex permittivity spectrum due to the platelet inactivation by the substance. Can be obtained.
 一方、プロトロンビン時間国際標準比(PT-INR)及び活性化部分トロンボプラスチン時間(APTT)等の従来の血液凝固能検査では、実質的には抗凝固薬の過剰投与による血液凝固能の低下に伴う出血リスクしか評価できず、血液凝固能の亢進に伴う血栓リスクの評価はできない。また、多血小板血漿(PRP)を用いた既存の血小板凝集能検査は、遠心分離手順が必須となり、該手順中に血小板が活性化してしまうことにより正確な検査結果が得られず、操作も煩雑である。 On the other hand, in conventional blood coagulation tests such as International Standard Ratio of Prothrombin Time (PT-INR) and Activated Partial Thromboplastin Time (APTT), bleeding due to decreased blood coagulation ability due to excessive administration of anticoagulants Only risk can be evaluated, and the risk of thrombosis associated with increased blood coagulation ability cannot be evaluated. In addition, the existing platelet agglutination test using platelet-rich plasma (PRP) requires a centrifugation procedure, and platelets are activated during the procedure, so accurate test results cannot be obtained and the operation is complicated. It is.
 また、従来の血液凝固能検査では、以下の(x)及び(xi):
 (x) 正常な凝固能を有するサンプル(全血)を用いて、予め基準となる血液凝固時間の短縮幅Δts(基準値)を設定する必要がある、
 (xi) 凝固反応を進行させる際、加速試薬を添加していないため測定時間が長い(加速試薬を添加すると、血小板機能による差が見えなくなる)、
という問題がある。
In the conventional blood coagulation test, the following (x) and (xi):
(x) It is necessary to set a reference blood coagulation time reduction width Δt s (reference value) in advance using a sample (whole blood) having normal coagulation ability.
(xi) When accelerating the coagulation reaction, the measurement time is long because no accelerating reagent is added (if the accelerating reagent is added, the difference due to platelet function becomes invisible)
There is a problem.
特開2010-181400号公報JP 2010-181400 A 特開2012-194087号公報JP 2012-194087 A 国際公開第2015/159623号パンフレットInternational Publication No. 2015/159623 Pamphlet
 本願発明者らは、例えば抗血小板療法におけるモニタリングに用いることができる、血小板凝集能の新たな測定方法、装置を提供するべく鋭意研究を行い、本技術を完成するに至った。 The inventors of the present application have conducted intensive research to provide a new method and apparatus for measuring platelet aggregation that can be used for monitoring in antiplatelet therapy, for example, and have completed the present technology.
 すなわち、本技術は、
 血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
 該血液凝固系解析部による解析結果の出力を制御する出力制御部と
を含む血小板凝集能解析装置を提供する。
 前記装置は、前記血小板含有試料と前記血小板惹起物質とを保持する生体試料保持部を含むことができる。
 また、前記装置は、前記血小板含有試料の凝固過程を測定する測定部を含むことができる。
 更に、前記装置は、血小板含有試料を供給する生体試料供給部を含むことができる。
 更にまた、前記装置は、前記血小板惹起物質を供給する薬剤供給部を含むことができる。
 前記血液凝固系解析部は、前記血小板惹起物質が添加されていない血小板含有試料の凝固過程の測定データに基づいて、前記血小板惹起物質が添加された血小板含有試料の凝固過程の測定データを解析することができる。
 前記血小板含有試料の凝固過程を測定した測定情報は、電気的特性及び/又は粘弾性の測定データでよい。
 前記電気的特性の測定データは血小板含有試料の誘電率であり、前記粘弾性の測定データは血小板含有試料のレオメーターによる測定データとすることができる。
 また、前記血小板含有試料は血液又は血漿である。
 更に、前記血液又は血漿は、抗血小板凝集薬又は抗凝固薬を投与された被験者から採取されたものとすることができる。
 前記血小板含有試料と前記血小板惹起物質は1分以上20分以下の時間で反応が行われる。
 また、前記血小板含有試料と血小板惹起物質との反応後、血小板凝集塊の回収を行うことができる。
In other words, this technology
A blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
There is provided a platelet aggregation analyzing apparatus including an output control unit for controlling an output of an analysis result by the blood coagulation system analysis unit.
The apparatus may include a biological sample holding unit that holds the platelet-containing sample and the platelet-inducing substance.
The apparatus may include a measuring unit that measures a coagulation process of the platelet-containing sample.
Furthermore, the apparatus may include a biological sample supply unit that supplies a platelet-containing sample.
Furthermore, the apparatus may include a drug supply unit that supplies the platelet-inducing substance.
The blood coagulation system analysis unit analyzes the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is added based on the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is not added. be able to.
The measurement information obtained by measuring the coagulation process of the platelet-containing sample may be measurement data of electrical characteristics and / or viscoelasticity.
The measurement data of the electrical characteristics may be a dielectric constant of a platelet-containing sample, and the measurement data of the viscoelasticity may be measurement data by a rheometer of the platelet-containing sample.
The platelet-containing sample is blood or plasma.
Furthermore, the blood or plasma may be collected from a subject who has been administered an antiplatelet aggregating agent or an anticoagulant.
The reaction between the platelet-containing sample and the platelet-inducing substance is performed for 1 minute to 20 minutes.
In addition, platelet aggregates can be collected after the reaction between the platelet-containing sample and the platelet-inducing substance.
 本技術は、血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
該血液凝固系解析部による解析結果の出力を制御する出力制御部と
を含む血小板凝集能解析装置、及び
前記解析結果を表示する表示装置
を備える、血小板凝集能解析システムを提供する。
This technology includes a blood coagulation system analysis unit that analyzes platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added,
There is provided a platelet aggregation analysis system comprising a platelet aggregation analysis device including an output control unit for controlling the output of an analysis result by the blood coagulation system analysis unit, and a display device for displaying the analysis result.
 本技術は、血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する工程と、
該解析結果の出力を制御する工程と
をコンピュータに実行させる血小板凝集能解析用プログラムを提供する。
The present technology includes a step of analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
A program for analyzing platelet aggregation ability that causes a computer to execute a step of controlling the output of the analysis result is provided.
 本技術は、血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する工程と、
該解析結果の出力を制御する工程と
を含む血小板凝集能解析方法を提供する。
The present technology includes a step of analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
And a method for analyzing the platelet aggregation ability, comprising the step of controlling the output of the analysis result.
血小板凝集能解析システムの構成を示す図である。It is a figure which shows the structure of a platelet aggregation ability analysis system. 血小板凝集能解析装置の構成を示す図である。It is a figure which shows the structure of a platelet aggregation ability analyzer. 血小板凝集能の解析の工程を示す図である。It is a figure which shows the process of an analysis of platelet aggregation ability. 血液への血小板惹起物質添加による血小板数の変化を示すグラフである。It is a graph which shows the change of the platelet count by the platelet inducer addition to the blood. 誘電率を用いた血小板凝集能解析装置による全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by the platelet aggregation analysis apparatus using a dielectric constant. 誘電率を用いた血小板凝集能解析装置による全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by the platelet aggregation analysis apparatus using a dielectric constant. ROTEMのEXTEMによる全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by EXTEM of ROTEM. ROTEMのINTEMによる全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by ROTEM INTEM. ROTEMのEXTEMによる血漿の測定結果を示すグラフである。It is a graph which shows the measurement result of the plasma by ROTEM EXTEM. ROTEMのINTEMによる血漿の測定結果を示すグラフである。It is a graph which shows the measurement result of the plasma by ROTEM INTEM. 全血への血小板惹起物質添加後の反応時間による血小板数の変化を示すグラフである。It is a graph which shows the change of the number of platelets by the reaction time after adding the platelet inducer to whole blood. 誘電率を用いた血小板凝集能解析装置による全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by the platelet aggregation analysis apparatus using a dielectric constant. ROTEMのEXTEMによる全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by EXTEM of ROTEM. 誘電率を用いた血小板凝集能解析装置による全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by the platelet aggregation analysis apparatus using a dielectric constant. ROTEMのEXTEMによる全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood by EXTEM of ROTEM. フィルターの効果を示すグラフである。It is a graph which shows the effect of a filter. 誘電率を用いた血小板凝集能解析装置による最大値を1とした全血の測定結果を示すグラフである。It is a graph which shows the measurement result of the whole blood which made the maximum value 1 by the platelet aggregation analysis apparatus using a dielectric constant. 誘電率を用いた血小板凝集能解析装置による全血の測定結果の差分の逆数を算出したものを示すグラフである。It is a graph which shows what computed the reciprocal number of the difference of the measurement result of the whole blood by the platelet aggregation analysis apparatus using a dielectric constant.
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.血小板凝集能解析システム
2.血小板凝集能解析装置
 2-1.装置の構成
 2-2.装置の動作
3.実施例
 3-1.本実施例の概要
 3-2.血小板凝集が起きていることの確認
 3-3.検体が全血の場合
 3-4.検体が血漿の場合
 3-5.血小板と惹起物質を反応させる時間の効果
 3-6.血小板の刺激を長時間行った場合
 3-7.フィルター等による凝集した血小板の回収
 3-8.血小板凝集能の解析方法
 3-9.まとめ
Hereinafter, preferred embodiments for carrying out the present technology will be described. In addition, embodiment described below shows typical embodiment of this technique, and, thereby, the range of this technique is not interpreted narrowly. The description will be given in the following order.
1. 1. Platelet aggregation ability analysis system Platelet aggregation ability analyzer 2-1. Configuration of apparatus 2-2. 2. Device operation Example 3-1. Outline of the present embodiment 3-2. Confirmation of platelet aggregation 3-3. When the specimen is whole blood 3-4. When the specimen is plasma 3-5. Effect of time for reacting platelets and inducer 3-6. When platelets are stimulated for a long time 3-7. Collection of aggregated platelets using a filter 3-8. Method for analyzing platelet aggregation 3-9. Summary
1.血小板凝集能解析システム
 本技術に係る血小板凝集能解析システムは、
 血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
該血液凝固系解析部による解析結果の出力を制御する出力制御部と
を含む血小板凝集能解析装置、及び
前記解析結果を表示する表示装置
を備える。
1. Platelet aggregation ability analysis system The platelet aggregation ability analysis system according to this technology is
A blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
A platelet aggregating ability analysis device including an output control unit for controlling an output of an analysis result by the blood coagulation system analysis unit; and a display device for displaying the analysis result.
 図1に血小板凝集能解析システムの構成を示す。
 血小板凝集能解析システム2000は、血小板凝集能解析装置1000と表示装置1010を備える。
 血小板凝集能解析システム2000は、血小板含有試料の血小板凝集能を測定し、測定データから血小板凝集能を解析する。
表示装置1010は、血小板凝集能の解析結果を表示する。
FIG. 1 shows the configuration of a platelet aggregation ability analysis system.
The platelet aggregation ability analysis system 2000 includes a platelet aggregation ability analyzer 1000 and a display device 1010.
The platelet aggregation ability analysis system 2000 measures the platelet aggregation ability of a platelet-containing sample and analyzes the platelet aggregation ability from the measurement data.
The display device 1010 displays the analysis result of platelet aggregation ability.
 血小板凝集能解析装置1000は、測定データから血小板凝集能を行うプログラムを備えたコンピュータ等を含む構成であってもよく、表示装置1010はコンピュータに備え付けられたディスプレイ等であってもよい。 The platelet aggregation analyzing apparatus 1000 may include a computer having a program for performing platelet aggregation based on measurement data, and the display device 1010 may be a display provided in the computer.
 また、血小板凝集能解析装置1000は、血小板含有試料の血小板凝集能だけでなく、他の血液凝固系測定項目も解析できるようにしてもよい。前記他の血液凝固系測定項目としては、例えば、血液の凝固(凝血)、フィブリン形成、フィブリン塊形成、血餅形成、赤血球の連銭形成、血液の凝集、赤血球の沈降(赤沈)、血餅収縮(退縮)、溶血、フィブリノリジス等が挙げられる。これらの項目の解析の際には、コンピュータに備えられた血小板凝集能を行うプログラムに代えて、これらの項目解析用プログラムを用いる。 Further, the platelet aggregation analyzing apparatus 1000 may analyze not only the platelet aggregation ability of the platelet-containing sample but also other blood coagulation system measurement items. Examples of the other blood coagulation system measurement items include blood coagulation (clotting), fibrin formation, fibrin clot formation, clot formation, red blood cell formation, blood aggregation, red blood cell sedimentation (red sedimentation), blood clot Examples include contraction (retraction), hemolysis, and fibrinolysis. When analyzing these items, these item analysis programs are used in place of the platelet aggregation ability program provided in the computer.
 表示装置1010は、警告部を含んでもよい。警告部は、各血液の状態変化における正常値の範囲を予め設定しておき、試料の分析結果が正常値の範囲外であったときに警告を発する。
 警告の方法は特に限定されず、例えば、ディスプレイ表示や音声により警告することができる。
Display device 1010 may include a warning unit. The warning unit presets a range of normal values for each blood state change, and issues a warning when the analysis result of the sample is outside the range of normal values.
The warning method is not particularly limited. For example, the warning can be given by display display or voice.
2.血小板凝集能解析装置
 2-1.装置の構成
 図2に、前記図1に記載された血小板凝集能解析装置1000の一例の詳細な構成を示す。血小板凝集能解析装置1000は、血液凝固系解析部12と出力制御部14とを含み、更に詳細には、主要部として、生体試料供給部2と、薬剤供給部3aと、試薬供給部3bと、生体試料保持部1a、1bと、測定部10も含む。
2. Platelet aggregation ability analyzer 2-1. Configuration of Apparatus FIG. 2 shows a detailed configuration of an example of the platelet aggregability analyzing apparatus 1000 described in FIG. The platelet agglutination analysis device 1000 includes a blood coagulation system analysis unit 12 and an output control unit 14, and more specifically, as main parts, a biological sample supply unit 2, a drug supply unit 3a, a reagent supply unit 3b, The biological sample holding units 1a and 1b and the measurement unit 10 are also included.
 生体試料供給部2は、ヒトや哺乳動物から採血した血液を血小板凝集能解析装置1000に供給する。
 血液の供給方法は特に限定されず、シリンジから供給したり、サンプルカートリッジに血液を入れて血小板凝集能解析装置1000にセットしたり、被験者からチューブを介して直接血小板凝集能解析装置1000に供給することができる。被験者は、抗血小板凝集薬又は抗凝固薬を投与されていてもよい。
The biological sample supply unit 2 supplies blood collected from a human or a mammal to the platelet aggregation analyzing apparatus 1000.
The blood supply method is not particularly limited, and it is supplied from a syringe, puts blood in a sample cartridge and is set in the platelet aggregation analysis device 1000, or is directly supplied from the subject to the platelet aggregation analysis device 1000 through a tube. be able to. The subject may have been administered an antiplatelet aggregating agent or an anticoagulant.
 生体試料待機部4は、前記生体試料供給部2から送られた血液を一定の温度、状態に維持できるようにする。生体試料待機部4は、血液の温度を維持する温度制御部5、血液の待機時間を制御する時間制御部6を備え、更に好ましくは撹拌機構7aを備える。 The biological sample standby unit 4 enables the blood sent from the biological sample supply unit 2 to be maintained at a constant temperature and state. The biological sample standby unit 4 includes a temperature control unit 5 that maintains the temperature of the blood, a time control unit 6 that controls the standby time of the blood, and more preferably includes a stirring mechanism 7a.
 第1の生体試料保持部1aは、血液に前述の血小板惹起物質を供給し、反応を行う。第1の生体試料保持部1aには薬剤供給部3aが連結されている。
 薬剤供給部3aは、血液に血小板惹起物質を供給する。
 また、第1の生体試料保持部1aは、温度制御部5、時間制御部6、撹拌機構7bを備える。第1の生体試料保持部1aでは、生体試料待機部4から送られた血液の温度を維持しつつ撹拌して、一定時間、血液中の血小板と、薬剤供給部3aからの血小板惹起物質とを反応させる。
The first biological sample holder 1a supplies the aforementioned platelet-inducing substance to blood and performs a reaction. A drug supply unit 3a is connected to the first biological sample holding unit 1a.
The drug supply unit 3a supplies platelet-inducing substances to the blood.
The first biological sample holding unit 1a includes a temperature control unit 5, a time control unit 6, and a stirring mechanism 7b. In the first biological sample holding unit 1a, stirring is performed while maintaining the temperature of the blood sent from the biological sample standby unit 4, and platelets in the blood and the platelet-inducing substance from the drug supply unit 3a are mixed for a certain period of time. React.
 生体試料分取部8は、第1の生体試料保持部で血小板惹起物質と反応させた血液を分取する。分取された血液は、生体試料分取部8から第2の生体試料保持部1bに送られる。 The biological sample sorting unit 8 sorts blood reacted with the platelet-inducing substance in the first biological sample holding unit. The collected blood is sent from the biological sample collection unit 8 to the second biological sample holding unit 1b.
 第2の生体試料保持部1bは、血液に凝固促進物質を供給し、反応を行う。第2の生体試料保持部1bには試薬供給部3bが連結されている。
 試薬供給部3bは、血液に凝固促進物質を供給する。
 凝固促進物質は、例えば、カルシウム、外因系凝固促進試薬、内因系凝固促進物質等が挙げられる。これらから1種類、又は2種類以上を組み合わせて凝固促進を行ってもよい。具体的な外因系凝固促進試薬としては、例えば組織トロンボプラスチン、組織因子等があり、内因系凝固促進試薬としては、例えばエラグ酸、カオリン等がある。
The second biological sample holding part 1b supplies a coagulation promoting substance to blood and performs a reaction. A reagent supply unit 3b is connected to the second biological sample holding unit 1b.
The reagent supply unit 3b supplies a coagulation promoting substance to blood.
Examples of the coagulation promoting substance include calcium, an extrinsic coagulation promoting reagent, an intrinsic coagulation promoting substance, and the like. From these, one type or two or more types may be combined to promote coagulation. Specific exogenous coagulation promoting reagents include, for example, tissue thromboplastin, tissue factor and the like, and intrinsic coagulation promoting reagents include, for example, ellagic acid and kaolin.
 また、第2の生体試料保持部1bは、温度制御部5と撹拌機構7cを備え、更に駆動機構9を備えていてもよい。駆動機構9は、温度制御部5や撹拌機構7cの駆動、血液を送る等の、第2の生体試料保持部1bに関わる動作を行う。
 第2の生体試料保持部1bでは、血液を一定の温度に保ちつつ、血液と試薬供給部3bからの凝固促進物質とを反応させる。
Further, the second biological sample holding unit 1b includes a temperature control unit 5 and a stirring mechanism 7c, and may further include a drive mechanism 9. The drive mechanism 9 performs operations related to the second biological sample holding unit 1b, such as driving the temperature control unit 5 and the stirring mechanism 7c, and sending blood.
In the second biological sample holding unit 1b, the blood is reacted with the coagulation promoting substance from the reagent supply unit 3b while maintaining the blood at a constant temperature.
 測定部10は、血液に凝固促進物質を添加した後又は添加と同時に誘電率を測定する。測定部10にはレオメーターを用いてもよい。レオメーターとして、例えば、ローテーショントロンボエラストメトリー、トロンボエラストグラフィー、レオロックス(ReoRox(商標))が挙げられる。 The measuring unit 10 measures the dielectric constant after or simultaneously with the addition of a coagulation promoting substance to blood. A rheometer may be used for the measurement unit 10. Examples of the rheometer include rotation thromboelastometry, thromboelastography, and Leo Rocks (ReoRox ™).
 測定条件制御部13は、温度や測定時間等、各々の測定方法に適した条件に調節する。測定部10での誘電率測定の際には、測定条件制御部13は、例えば測定に用いる周波数や測定の間隔等をコントロールする。 Measurement condition control unit 13 adjusts conditions suitable for each measurement method, such as temperature and measurement time. When the dielectric constant is measured by the measurement unit 10, the measurement condition control unit 13 controls, for example, the frequency used for measurement, the measurement interval, and the like.
 また、精度管理部11は、測定間差、バックグラウンドの変動等が生じないようにデータを管理すること、装置の各部の状態を監視すること等を行い、これを測定部10に備えることができる。
 なお、測定部10の前に、凝集した血小板を回収するフィルター等を備えた血小板回収部が備えられていてもよい。
In addition, the accuracy management unit 11 manages the data so as not to cause a difference between measurements, background fluctuations, etc., monitors the state of each part of the apparatus, etc., and includes this in the measurement unit 10. it can.
In addition, a platelet collection unit including a filter or the like for collecting aggregated platelets may be provided in front of the measurement unit 10.
 血液凝固系解析部12は、誘電率による測定データに基づいて血液の状態変化を検出して解析する。血液凝固系解析部12は、出力制御部14に対し、解析結果を出力する。出力制御部14は、解析結果を表示装置1010に出力し表示させる。また、血液凝固系解析部12は記憶部15と連絡し、記憶部15は、血小板含有試料の連続測定におけるデータや解析結果の経時的変化、あるいは以前に測定したデータや解析結果等を記憶する。 Blood coagulation system analysis unit 12 detects and analyzes changes in blood state based on measurement data based on dielectric constant. The blood coagulation system analysis unit 12 outputs the analysis result to the output control unit 14. The output control unit 14 outputs and displays the analysis result on the display device 1010. In addition, the blood coagulation system analysis unit 12 communicates with the storage unit 15, and the storage unit 15 stores data and analysis results over time in continuous measurement of platelet-containing samples, or previously measured data and analysis results, etc. .
 以上の血液凝集能解析装置1000は、プロセッサがメモリ又は他の記録媒体に記憶されるプログラムを実行することにより、血小板凝集能解析装置1000の様々な論理的機能を動作させる。 The blood aggregating ability analysis apparatus 1000 described above operates various logical functions of the platelet aggregating ability analyzing apparatus 1000 by a processor executing a program stored in a memory or another recording medium.
 2-2.装置の動作
 まず、ヒト又は哺乳動物から採血する。全血をそのまま試料としてもよいし、血液を例えば1000rpm、10分間延伸して、血小板血漿を回収して、試料としてもよい。
2-2. Operation of the apparatus First, blood is collected from a human or mammal. Whole blood may be used as a sample as it is, or blood may be stretched at 1000 rpm for 10 minutes, for example, and platelet plasma may be collected and used as a sample.
 図3に、血小板凝集能解析の工程を示す。
 試料は、まず生体試料供給部2に供される。試料は、生体試料供給部2から生体試料待機部4に送られ、37℃に加温し、例えば3分間撹拌して維持される(S1101)。次に、試料は生体試料保持部10に送られ、対照には生理食塩水、測定対象の試料には血小板惹起物質を添加する(S1102)。添加する血小板惹起物質は特に限定されないが、コラーゲン、エピネフリン、リストセチン、カルシウムイオン、トロンビン、トロンボキサンA2、トロンビン受容体活性化タンパク質(TRAP)、アデノシン二リン酸(ADP)、アラキドン酸(AA)、セロトニン、アドレナリン、ノルアドレナリン等が用いられる。
FIG. 3 shows a process of analyzing platelet aggregation ability.
The sample is first supplied to the biological sample supply unit 2. The sample is sent from the biological sample supply unit 2 to the biological sample standby unit 4, heated to 37 ° C., and stirred for 3 minutes, for example, and maintained (S1101). Next, the sample is sent to the biological sample holding unit 10, physiological saline is added to the control, and a platelet-inducing substance is added to the sample to be measured (S1102). The platelet-inducing substance to be added is not particularly limited, but collagen, epinephrine, ristocetin, calcium ion, thrombin, thromboxane A 2 , thrombin receptor activating protein (TRAP), adenosine diphosphate (ADP), arachidonic acid (AA) Serotonin, adrenaline, noradrenaline and the like are used.
 血小板惹起物質の濃度としては、トロンビン受容体活性化タンパク質(TRAP)であれば、好ましくは1μM以上100μM以下、より好ましくは3μM以上80μM以下、更に好ましくは5.4μM以上62μM以下である。アデノシン二リン酸(ADP)であれば、好ましくは0.1μM以上100μM以下、より好ましくは0.5μM以上30μM以下、更に好ましくは1.0μM以上12.5μM以下である。アラキドン酸(AA)であれば、好ましくは0.01mM以上10mM以下、より好ましくは0.05mM以上5.0mM以下、更に好ましくは0.08mM以上1.0mM以下である。 The concentration of the platelet-inducing substance is preferably 1 μM or more and 100 μM or less, more preferably 3 μM or more and 80 μM or less, and further preferably 5.4 μM or more and 62 μM or less for thrombin receptor activating protein (TRAP). In the case of adenosine diphosphate (ADP), it is preferably 0.1 μM or more and 100 μM or less, more preferably 0.5 μM or more and 30 μM or less, and further preferably 1.0 μM or more and 12.5 μM or less. In the case of arachidonic acid (AA), it is preferably 0.01 mM or more and 10 mM or less, more preferably 0.05 mM or more and 5.0 mM or less, and further preferably 0.08 mM or more and 1.0 mM or less.
 第1の生体試料保持部1aで試料に前記生理食塩水又は血小板惹起物質を添加後、第1の生体試料保持部1a内で37℃に加温し続け、例えば、好ましくは1分以上20分以下、より好ましくは3分以上6分以下で撹拌し(S1103)、血小板を消費する。1分以上撹拌すると、血小板と血小板惹起物質との反応が進み、20分以下で撹拌すると、血小板凝集塊の崩壊まで至らないことがある。 After the physiological saline or platelet-inducing substance is added to the sample in the first biological sample holding unit 1a, the sample is continuously heated to 37 ° C. in the first biological sample holding unit 1a. Thereafter, stirring is preferably performed for 3 to 6 minutes (S1103), and platelets are consumed. When stirring for 1 minute or longer, the reaction between the platelets and the platelet-inducing substance proceeds. When stirring for 20 minutes or shorter, the platelet aggregates may not collapse.
 次に、消費(凝集)した血小板を回収するかの判断を行う(S1104)。回収は、例えばフィルトレーションにより行うことができる(S1105)。
 凝集した血小板を回収すると判断され、凝集した血小板が除去された試料は、第2の生体試料保持部1bに備えられた測定部10で外因系・内因系凝固測定に供される(S1106)。
Next, it is determined whether the collected (aggregated) platelets are collected (S1104). The collection can be performed, for example, by filtration (S1105).
The sample from which the aggregated platelets are determined to be collected and from which the aggregated platelets have been removed is subjected to extrinsic / intrinsic coagulation measurement by the measurement unit 10 provided in the second biological sample holding unit 1b (S1106).
 次に、血液凝固系解析部12は、外・内因系凝固測定のデータから、以下の手順で解析を行う。
 まず、血液凝固系解析部12は、測定結果に基づいて、特徴点の抽出を行う(S1107)。
特徴点は、例えば、コントロールと試料の測定結果が安定し始めた点、血小板の凝固時間の決まる点等である。
 次に、血液凝固系解析部12は、抽出された特徴点において、コントロールと試料との差分を算出し(S1108)、その結果を出力する。
 血液凝固系解析部12は、コントロールと試料との特徴点の差分の大きさが大きい程、血小板が活性化していると判定する(S1109)。
 次いで、血液凝固系解析部12は解析結果を表示制御部14へ出力し、表示制御部は表示装置1010に解析結果を出力して表示させる(S1112)。
Next, the blood coagulation system analysis unit 12 performs analysis according to the following procedure from the data of external / intrinsic system coagulation measurement.
First, the blood coagulation system analysis unit 12 extracts feature points based on the measurement result (S1107).
The characteristic points are, for example, the point where the measurement results of the control and the sample start to stabilize, the point where the clotting time of platelets is determined, and the like.
Next, the blood coagulation system analysis unit 12 calculates the difference between the control and the sample at the extracted feature points (S1108), and outputs the result.
The blood coagulation system analysis unit 12 determines that platelets are activated as the difference between the characteristic points of the control and the sample increases (S1109).
Next, the blood coagulation system analysis unit 12 outputs the analysis result to the display control unit 14, and the display control unit outputs and displays the analysis result on the display device 1010 (S1112).
 あるいは、凝集した血小板を回収しないと判断された場合は、凝集した血小板を回収せずに、第2の生体試料保持部に備えられた測定部で外因系・内因系凝固測定を行う(S1110)。
 次に、血小板の凝固への寄与の解析を行う(S1111)。解析は、前記生理食塩水を添加した対照の測定結果と血小板惹起物質を添加した試料の測定結果とを比較することにより行うことができる。
 例えば、経時的に得られた測定データをグラフ化し、特定の時間での測定数値の差分又は比率、グラフ面積の差分又は比率等をみることで、血小板の凝固への寄与を解析することができる。測定した試料と対照との差分が小さくなった場合、血小板凝集機能の低下や血小板阻害薬を服用していることが推測される。
 次いで、血液凝固系解析部12は解析結果を表示制御部14へ出力し、表示制御部は表示装置1010に解析結果を出力して表示させる(S1113)。
Alternatively, when it is determined that the aggregated platelets are not collected, the extrinsic system / intrinsic system coagulation measurement is performed by the measurement unit provided in the second biological sample holding unit without collecting the aggregated platelets (S1110). .
Next, the contribution of platelets to coagulation is analyzed (S1111). The analysis can be performed by comparing the measurement result of the control added with the physiological saline and the measurement result of the sample added with the platelet-inducing substance.
For example, the measurement data obtained over time can be graphed, and the contribution to platelet coagulation can be analyzed by looking at the difference or ratio of the measured values at a specific time, the difference or ratio of the graph area, etc. . When the difference between the measured sample and the control becomes small, it is presumed that the platelet aggregation function is lowered or a platelet inhibitor is being taken.
Next, the blood coagulation system analysis unit 12 outputs the analysis result to the display control unit 14, and the display control unit outputs and displays the analysis result on the display device 1010 (S1113).
 なお、図3に記載されたフローチャートに示された手順は、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的に又は個別的に実行される処理をも含む。また、時系列的に処理される手順でも、場合によっては適宜順序を変更することが可能であることは言うまでもない。 It should be noted that the procedure shown in the flowchart shown in FIG. 3 can be performed in parallel or individually even if not necessarily time-sequentially processed, as well as processing performed time-sequentially in the order described. Also includes processing to be performed. Further, it goes without saying that the order of the procedures processed in time series can be changed as appropriate in some cases.
 また、前記手順を行うため、本技術の血小板凝集能解析装置1000に内蔵されるハードウェアに組み込まれるコンピュータプログラムを作成することも可能である。該コンピュータプログラムが記憶された記憶媒体も本技術によって提供される。 In order to perform the above procedure, it is also possible to create a computer program incorporated in the hardware built in the platelet aggregation analyzing apparatus 1000 of the present technology. A storage medium storing the computer program is also provided by the present technology.
 以上の説明は、主に、電気的特性(誘電率)を利用した凝固過程の測定方法を利用した技術(特許第5691168号明細書、特許第5768422号明細書参照)についてのものであるが、その他の方法によっても凝固過程の測定を行うことができる。
 その他の方法として、例えば、粘弾性による凝固過程の測定が挙げられ、この方法を本技術に適用することもできる。
The above description mainly relates to a technique (see Patent No. 5691168, Patent No. 5678422) using a measurement method of a solidification process using electrical characteristics (dielectric constant). The coagulation process can also be measured by other methods.
Other methods include, for example, measurement of a coagulation process by viscoelasticity, and this method can also be applied to the present technology.
 粘弾性の測定には、前述のトロンボエラストグラフィー(TEG(登録商標))血液凝固分析装置(ヘモネティクス社)、ローテーショントロンボエラストメトリー(ROTEM(登録商標))血液凝固分析装置(日本フィンガルリンク社)等を用いることができる。 For the measurement of viscoelasticity, the aforementioned thromboelastography (TEG (registered trademark)) blood coagulation analyzer (Hemonetics), rotation thromboelastometry (ROTEM (registered trademark)) blood coagulation analyzer (Nippon Fingal Link) Etc. can be used.
 トロンボエラストグラフィーでは、測定容器であるカップに全血検体を注入し、検査目的に応じた惹起物質を添加したうえで、容器の上部よりワイヤーで吊るされた棒状のピンを浸漬し、容器に対して定常的な往復角運動(典型的には10秒間で4.45°の範囲を往復する運動)を与える。凝固反応の進行に伴い検体の粘弾性が増加し、カップとピンの相対運動は小さくなり、したがってピンの回転変位は増加する。この回転変位を装置内の光学系を用いて経時的に記録することで、トロンボエラストグラムと呼ばれる波形が得られる。 In thromboelastography, a whole blood sample is injected into a cup, which is a measurement container, and an inducer according to the purpose of the test is added. Then, a rod-like pin suspended by a wire is immersed from the top of the container. Giving a steady reciprocating angular motion (typically reciprocating 4.45 ° in 10 seconds). As the coagulation reaction proceeds, the viscoelasticity of the specimen increases, the relative movement of the cup and pin decreases, and therefore the rotational displacement of the pin increases. By recording this rotational displacement with time using an optical system in the apparatus, a waveform called a thromboelastogram is obtained.
 カップではなくピンに対して往復角運動が与えられるという違いはあるものの、ローテーショントロンボエラストメトリーも基本的に同一の原理に基づいている。上記のプロトロンビン時間や活性化部分トロンボプラスチン時間が凝固の終点検出法であるのに対して、トロンボエラストグラフィーやトロンボエラストメトリーは、凝固開始から血栓形成、更にはその後の線溶までの一連のプロセスをひとつの装置で経時的にモニタリングできるという利点がある。 Rotation thromboelastometry is basically based on the same principle, although there is a difference that reciprocal angular motion is given to the pin instead of the cup. Whereas the prothrombin time and activated partial thromboplastin time are methods for detecting the end point of coagulation, thromboelastography and thromboelastometry are a series of processes from the start of coagulation to thrombus formation and subsequent fibrinolysis. There is an advantage that it can be monitored over time with a single device.
 前記ローテーショントロンボエラストメトリーで凝固過程を測定する場合は、全血、血漿共に血小板含有試料として使用することができる。前記血小板凝集能解析装置1000を用いた場合、全血の使用が好適である。 When measuring the coagulation process by the rotation thromboelastometry, both whole blood and plasma can be used as a platelet-containing sample. When the platelet aggregability analyzer 1000 is used, it is preferable to use whole blood.
3.実施例
 以下、実施例の一例を説明するが、本技術はこれに限定されるものではない。
 3-1.本実施例の概要
 まず、全血若しくは多血小板血漿(PRP)に血小板惹起物質を添加した。一定時間撹拌すると血小板は凝集反応を示し、その反応の度合いを血小板数の減少によって確認した。血小板数は、細胞の大きさによって種類を分類するDC検出法を測定原理としている多項目自動血球系計数装置pocH-100i(Sysmex社)によって測定した。
3. Examples Hereinafter, examples of the examples will be described, but the present technology is not limited thereto.
3-1. Overview of this Example First, a platelet-inducing substance was added to whole blood or platelet-rich plasma (PRP). When stirring for a certain period of time, platelets showed an agglutination reaction, and the degree of the reaction was confirmed by a decrease in the number of platelets. The platelet count was measured by a multi-item automatic blood cell counter pocH-100i (Sysmex) based on the DC detection method that classifies the type according to the cell size.
 3-2.血小板凝集が起きていることの確認
<実験方法>
 健常者の静脈血採血は、クエン酸を抗凝固剤として内包した市販の真空採血管(採血量1.8mL、5本)を用いて通常の方法で行った。最初の1本目は使用せずに廃棄し、残りの4本を以下に示す実験に用いた。また、採血後、約30分室温静置した後に使用した。
 まず、全血300ulを3分間37℃で撹拌した。その後、血小板惹起物質を添加し、6分間反応させた。この際、コントロールとして、生理食塩水を加えた系も作製し、反応後の血液中の血小板数を多項目自動血球系計数装置pocH-100i(Sysmex)によって測定した。
 また、再現性を確認するため複数回の実験を行い、さらに、上記とは別の健常者による同様の実験も行った。
3-2. Confirmation of platelet aggregation <Experimental method>
Venous blood collection of healthy subjects was performed by a normal method using a commercially available vacuum blood collection tube (blood collection amount: 1.8 mL, 5 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining four were used for the experiment shown below. Further, after blood collection, it was used after being allowed to stand at room temperature for about 30 minutes.
First, 300 ul of whole blood was stirred for 3 minutes at 37 ° C. Thereafter, a platelet-inducing substance was added and allowed to react for 6 minutes. At this time, a system to which physiological saline was added was prepared as a control, and the number of platelets in the blood after the reaction was measured with a multi-item automatic blood cell counter pocH-100i (Sysmex).
In addition, in order to confirm reproducibility, a plurality of experiments were performed, and a similar experiment was also performed by a healthy person different from the above.
<結果>
 図4に、コントロールである血液の血小板数と、血小板惹起物質を血液に加えた際の血小板数を示す。図4中、添加試薬として記載されるNaClは生理食塩水を示し、コントロールとした。また、TRAPはトロンビン受容体活性化タンパク質、AAはアラキドン酸、AA+ASAはアラキドン酸及びアスピリン、ADPはアデノシン二リン酸、ADP+PGE1はアデノシン二リン酸及びプロスタグランジンE1を示す。
<Result>
FIG. 4 shows the blood platelet count as a control and the platelet count when a platelet-inducing substance is added to the blood. In FIG. 4, NaCl described as an additive reagent represents physiological saline and was used as a control. TRAP represents thrombin receptor activating protein, AA represents arachidonic acid, AA + ASA represents arachidonic acid and aspirin, ADP represents adenosine diphosphate, and ADP + PGE1 represents adenosine diphosphate and prostaglandin E1.
 図4に示されるように、血小板の数は、血小板惹起物質を添加することによって減少することが分かった。結果から、血小板惹起物質の添加によって、血中に血小板凝集塊が増加し、単一血小板が減少したことが分かった。 As shown in FIG. 4, it was found that the number of platelets was decreased by adding a platelet-inducing substance. From the results, it was found that platelet aggregation increased in the blood and single platelets decreased by the addition of platelet-inducing substances.
 血小板を活性化する物質には、トロンビン受容体活性化タンパク質(TRAP)、アデノシン二リン酸(ADP)、アラキドン酸(AA)、コラーゲン、エピネフリン、リストセチン、トロンボキサンA2(TAX2)、アドレナリンなどを用いることができるが、本実施例においてはTRAP、AA、ADPを使用した。
 また、それぞれの活性化経路を不活化する物質を加えた場合も、血小板数を測定した。
 これにより、不活化物質が添加されている場合は、活性化剤を添加しても血小板凝集塊が増加せず、単一血小板のままで存在することが分かった。
Substances that activate platelets include thrombin receptor activating protein (TRAP), adenosine diphosphate (ADP), arachidonic acid (AA), collagen, epinephrine, ristocetin, thromboxane A 2 (TAX 2 ), adrenaline, etc. In this example, TRAP, AA, and ADP were used.
The platelet count was also measured when substances that inactivate the respective activation pathways were added.
Thereby, when the inactivating substance was added, it turned out that even if an activator is added, a platelet aggregate does not increase and it exists as a single platelet.
 3-3.検体が全血の場合
<実験方法>
 前記3-2.の実験で反応させた血液を用いて、血液凝固能の測定を行った。この測定は、前述した試料の誘電率測定を行う血液凝固系解析装置(誘電コアグロメータープロトタイプ2号機)と、包括的止血能測定システムROTEM(登録商標)を用いて、測定温度は37℃で行った。
 血液凝固系解析装置の場合は、測定開始直前に混合するカルシウム水溶液(0.2M Ca)と市販の外因系刺激試薬(100倍希釈+PBS(v/v=1/5))を添加するDiCA-Exの測定と、カルシウム水溶液(0.2MCa)と市販の内因系刺激試薬(+PBS(v/v=1/5))を添加するDiCA-Inの測定を行った。量は血液180uLあたり各12uLと統一した。
3-3. When the sample is whole blood <Experimental method>
3-2. The blood coagulation ability was measured using the blood reacted in this experiment. This measurement uses the blood coagulation system analyzer (dielectric core gromometer prototype No. 2) that measures the dielectric constant of the sample and the comprehensive hemostasis measuring system ROTEM (registered trademark) at a measurement temperature of 37 ° C. went.
In the case of a blood coagulation system analyzer, DiCA-Ex is added with an aqueous calcium solution (0.2M Ca) mixed immediately before the start of measurement and a commercially available extrinsic stimulus (100-fold dilution + PBS (v / v = 1/5)). And DiCA-In to which a calcium aqueous solution (0.2MCa) and a commercially available endogenous stimulating reagent (+ PBS (v / v = 1/5)) were added were measured. The volume was unified at 12uL for each 180uL of blood.
 ROTEMにおいては、組織トロンボプラスチンあるいは組織因子を凝固剤として添加する原理を用いたEXTEM、エラジン酸を活性化剤として加え、部分トロンボプラスチンを添加する原理を用いたINTEMを測定した。
 また、再現性を確認するため複数回の実験を行い、さらに、前記とは別の健常者による同様の実験も行った。
In ROTEM, EXTEM using the principle of adding tissue thromboplastin or tissue factor as a coagulant, and INTEM using the principle of adding ellagic acid as an activator and adding partial thromboplastin were measured.
In addition, in order to confirm reproducibility, a plurality of experiments were performed, and a similar experiment was also performed by a healthy person different from the above.
<結果>
 図5-1、図5-2に示すように、100kHzにおける誘電率(規格化)の時間変化を、生理食塩水添加後(コントロール、+NaCl)と血小板惹起物質添加後(+TRAP)で比較すると、血小板惹起物質を添加した場合に振幅が高くなることが分かった。
 ROTEMにおいても、図6-1(EXTEM)、図6-2(INTEM)に示すように、血餅硬度を示すCFに変化が現れた。
 この変化は血小板消費によるものであり、ROTEMにおいても同様の方法で血小板凝集能を測定できることが分かった(図6-1、図6-2)。
<Result>
As shown in FIGS. 5A and 5B, the change in the dielectric constant (normalized) at 100 kHz over time is compared after adding physiological saline (control, + NaCl) and after adding platelet-inducing substance (+ TRAP). It was found that the amplitude increased when a platelet-inducing substance was added.
Also in ROTEM, as shown in FIG. 6-1 (EXTEM) and FIG. 6-2 (INTEM), a change in CF indicating clot hardness appeared.
This change was due to platelet consumption, and it was found that the platelet aggregation ability can be measured by ROTEM in the same way (FIGS. 6-1 and 6-2).
 3-4.検体が血漿の場合
<実験方法>
 健常者の静脈血採血は、クエン酸を抗凝固剤として内包した市販の真空採血管(採血量1.8mL、3本)を用いて通常の方法で行った。最初の1本目は使用せずに廃棄し、残りの2本を以下に示す実験に用いた。また、採血後、約30分室温静置した後に、2本を1000rpm、10分間遠心し、多血小板血漿(PRP)を回収した。
3-4. When the sample is plasma <Experimental method>
Venous blood collection for healthy individuals was performed by a conventional method using commercially available vacuum blood collection tubes (cigarette collection volume: 1.8 mL, 3 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining two were used in the experiment shown below. In addition, after blood collection, the mixture was allowed to stand at room temperature for about 30 minutes, and then the two were centrifuged at 1000 rpm for 10 minutes to collect platelet-rich plasma (PRP).
 まず、血漿300ulを3分間37℃で撹拌した。その後、血小板惹起物質を20ul添加し、6分間反応させた。この際、コントロールとして、生理食塩水を加えた系も作製し、反応後の血液中の血小板数を多項目自動血球系計数装置pocH-100i(Sysmex社)によって測定した。ROTEMでEXTEM及びINTEMの測定を実施した。なお、ROTEMでは血漿も検体として測定することが可能である。 First, 300ul of plasma was stirred for 3 minutes at 37 ° C. Thereafter, 20ul of platelet-inducing substance was added and allowed to react for 6 minutes. At this time, a system to which physiological saline was added was prepared as a control, and the number of platelets in the blood after the reaction was measured with a multi-item automatic blood cell counter pocH-100i (Sysmex). The measurement of EXTEM and INTEM was performed by ROTEM. In ROTEM, plasma can also be measured as a specimen.
<結果>
 図7-1、図7-2に示すように、全血の場合と同様に、血餅硬度を示すCFに変化が現れた結果が得られたため、測定検体には血小板を含む血漿及び全血を使用できることが示された。
<Result>
As shown in FIGS. 7-1 and 7-2, as in the case of whole blood, since a result of a change in CF indicating clot hardness was obtained, plasma containing platelets and whole blood were used as measurement samples. It was shown that can be used.
 3-5.血小板と惹起物質を反応させる時間の効果
<実験方法>
 全血(採血方法は前記3-2.の実験と同様)を用いて、血小板惹起物質添加後の反応時間(加温・撹拌時間)に関する実験を行った。血液に血小板惹起物質を添加後、各反応時間後(1分~45分)の血小板数の変化を、pocH-100i(Sysmex)によって測定した。
3-5. Effect of reaction time of platelets and inducer <Experimental method>
Using whole blood (the blood collection method is the same as the experiment in 3-2 above), an experiment was conducted on the reaction time (heating / stirring time) after the addition of the platelet-inducing substance. After adding a platelet-inducing substance to blood, the change in the number of platelets after each reaction time (1 to 45 minutes) was measured with pocH-100i (Sysmex).
<実験結果>
 図8に示すように、血小板数は3分~6分の間に最小になり、その後は時間とともに数が回復していることが分かった。よって、血小板惹起物質添加後3~6分後が最も血小板機能が活性化していることが推測され、この反応時間後が血小板凝集による凝固反応への影響が一番見易いと判断できる。
<Experimental result>
As shown in FIG. 8, it was found that the platelet count was minimized between 3 and 6 minutes, and thereafter the number recovered with time. Therefore, it is presumed that the platelet function is most activated 3 to 6 minutes after the addition of the platelet-inducing substance, and it can be judged that the influence of the platelet aggregation on the coagulation reaction is most easily observed after this reaction time.
 なお、図8には示していないが、今回検体として使用した血液の惹起物質を添加しない場合の血小板数は34万/ulであった。
 また、正常血小板数の下限が5万/ulであることから、血小板惹起物質添加後45分以降は、血小板凝集の変化による凝固能の変化をみることが難しくなると想定され、次の3-6.の実験にて確認を行った。
Although not shown in FIG. 8, the platelet count in the case where the blood inducer used as the specimen was not added was 340,000 / ul.
In addition, since the lower limit of the normal platelet count is 50,000 / ul, it is assumed that the change in coagulation ability due to the change in platelet aggregation becomes difficult after 45 minutes after the addition of platelet-inducing substances. . This was confirmed in the experiment.
 3-6.血小板の刺激を長時間行った場合
<実験方法>
 健常者の静脈血採血は、クエン酸を抗凝固剤として内包した市販の真空採血管(採血量1.8mL、5本)を用いて通常の方法で行った。最初の1本目は使用せずに廃棄し、残りの4本を以後に示す実験に用いた。また、採血後、約30分室温静置した後に使用した。
3-6. When platelets are stimulated for a long time <Experimental method>
Venous blood collection of healthy subjects was performed by a normal method using a commercially available vacuum blood collection tube (blood collection amount: 1.8 mL, 5 tubes) containing citric acid as an anticoagulant. The first one was discarded without being used, and the remaining four were used for the following experiments. Further, after blood collection, it was used after being allowed to stand at room temperature for about 30 minutes.
 まず、全血300ulを3分間37℃で撹拌した。その後、血小板惹起物質を20ul添加し、6分間または30分間反応させた。反応させた血液を用いて、凝固能の測定を行った。測定に用いた装置や試薬濃度は前記4-3.の実験と同様とした。
 この時、対照として血小板惹起物質と同量の生理食塩水を添加した系も測定した。
First, 300 ul of whole blood was stirred for 3 minutes at 37 ° C. Thereafter, 20ul of platelet-inducing substance was added and reacted for 6 minutes or 30 minutes. Using the reacted blood, coagulation ability was measured. The apparatus and reagent concentration used for the measurement are the same as those in 4-3. It was the same as the experiment.
At this time, a system to which the same amount of physiological saline as the platelet-inducing substance was added was also measured as a control.
<結果>
 図9-1、図9-2に示すように血小板惹起物質添加後、30分加温・撹拌を行うと血小板惹起物質を添加していない系に近づくことが分かった。すなわち、前記4-5.の実験結果が確認された。
<Result>
As shown in FIGS. 9-1 and 9-2, it was found that when the platelet-inducing substance was added and heated and stirred for 30 minutes, it approached the system to which no platelet-inducing substance was added. That is, said 4-5. The experimental results were confirmed.
 3-7.フィルター等による凝集した血小板の回収
<実験方法>
 前述の実験方法と同様に、全血に血小板惹起物質を添加することによって血小板を活性化した後、フィルター(PluriStrainer)に反応後の全血を通し、血液凝固系解析装置でDiCa-EX を、ROTEMにてEXTEMの測定を行った。
 フィルターのサイズは血小板の小凝集塊のサイズである15~25umを使用した。本実験では15umを使用した際の結果を示す。
3-7. Collection of aggregated platelets by filter etc. <Experimental method>
Similar to the above experimental method, platelets are activated by adding platelet-inducing substances to whole blood, then the reacted whole blood is passed through a filter (PluriStrainer), and DiCa-EX is analyzed with a blood coagulation system analyzer. EXTEM was measured with ROTEM.
The size of the filter used was 15 to 25 um, which is the size of a small aggregate of platelets. In this experiment, the result when 15um is used is shown.
<結果>
 DiCa-Exの場合は、図10-1に示すように、フィルターを通した系と通してない系で大きな差は見られなかった。即ち、血小板が凝集塊として存在している系と、フィルターによって除去した系はほぼ同様の比を示しているので、凝集塊の存在は対照との差を見るうえで影響を与えないことが推測された。
<Result>
In the case of DiCa-Ex, as shown in FIG. 10-1, no significant difference was observed between the system through the filter and the system through the filter. That is, the system in which platelets exist as aggregates and the system removed by a filter show almost the same ratio, so the presence of aggregates is presumed to have no effect on the difference from the control. It was done.
 一方、ROTEM-EXTEMの場合は、図10-2に示すように、フィルターを用いた血小板凝集塊の除去の有無で惹起物質添加の効果が変化している。ROTEMを使用する場合には、凝固測定前に物理的に血小板凝集塊を除去する方が、対照との差が良く見えることが分かった。
 なお、その他の血小板凝集塊を除去する方法としては、測定開始前に活性化血小板特異的表面抗体がコーティングされたマイクロビーズを用いる方法が挙げられる。
On the other hand, in the case of ROTEM-EXTEM, as shown in FIG. 10-2, the effect of adding the inducer varies depending on whether or not the platelet aggregate is removed using a filter. When ROTEM was used, it was found that the difference from the control was better seen when the platelet aggregate was physically removed before the coagulation measurement.
Examples of other methods for removing platelet aggregates include a method using microbeads coated with an activated platelet-specific surface antibody before the start of measurement.
 前記図10-1(DiCa-Ex)、図10-2(ROTEM-EXTEM)において、凝固時間の決まる15分を検討時間とし、15分の値(DiCaは最大値1と15分値の差分)における、NaCl-TRAP(フィルターなし)、NaCl+Filter-TRAP+Filter(フィルターあり)の比を算出した。
 結果を図11に示す。
 DiCa-Exの場合は、フィルターありなしで、比に大きな差は生じないが、ROTEMの場合では、フィルターありの方が比の差が大きかった。
In FIG. 10-1 (DiCa-Ex) and FIG. 10-2 (ROTEM-EXTEM), the examination time is 15 minutes, which is determined by the coagulation time, and the value is 15 minutes (DiCa is the difference between the maximum value 1 and the 15-minute value) The ratio of NaCl-TRAP (without filter) and NaCl + Filter-TRAP + Filter (with filter) was calculated.
The results are shown in FIG.
In the case of DiCa-Ex, there was no significant difference in the ratio without the filter, but in the case of ROTEM, the difference in the ratio was greater with the filter.
 3-8.血小板凝集能の解析方法
 前記3-3.の誘電率による血小板凝固解析装置の測定結果をもとに、解析方法の例を示す。
 凝固時間の決まる10分を検討時間(図12-1)とし、最大値を1とし、そこからの差分の逆数を算出したもの(算出CF)を、図12-2に示した。NaClを加えた場合(コントロール)の平均値は17.7、血小板惹起物質を加えた場合の平均値は12.7であった(n=4)。
3-8. Method for analyzing platelet aggregation ability 3-3. An example of the analysis method is shown based on the measurement result of the platelet coagulation analyzer based on the dielectric constant.
FIG. 12-2 shows a calculation time (calculation CF) obtained by calculating the reciprocal of the difference from 10 minutes determined as the examination time (FIG. 12-1), the maximum value being 1, and the difference from the maximum value. When NaCl was added (control), the average value was 17.7, and when the platelet-inducing substance was added, the average value was 12.7 (n = 4).
 図12-2上の矢印で示す範囲が、血小板機能によって反映され(血小板寄与部)、血小板凝集機能が低下している場合や血小板阻害薬を服用している場合はこの差が小さくなることが想定される。このことは、実際に、ADPとプロスタグランジンE1阻害薬(ADP経路阻害薬)の組み合わせ等で確認された。 The range indicated by the arrow in FIG. 12-2 is reflected by the platelet function (platelet contributing part), and this difference may be reduced when the platelet aggregation function is lowered or when a platelet inhibitor is taken. is assumed. This was actually confirmed by a combination of ADP and a prostaglandin E1 inhibitor (ADP pathway inhibitor).
 また、t検定において、p=0.001(p<0.01)であったので、NaClを加えた場合と血小板惹起物質を加えた場合の2つの平均値に有意差があると判断できた。
(ここで、t分布において、外側5%の範囲にあれば同一母集団からの標本ではなく、有意差があると考えられ、95%信頼区間の外側に来る確率をpとする。)
In the t-test, since p = 0.001 (p <0.01), it was judged that there was a significant difference between the two average values when NaCl was added and when the platelet-inducing substance was added.
(Here, in the t distribution, if it is in the outer 5% range, it is considered that there is a significant difference, not a sample from the same population, and the probability of being outside the 95% confidence interval is p.)
 前記解析方法の他にも、得られた凝固過程の測定データをグラフ化したときの面積や、比で、対照との差分を算出する方法などが考えられる。血液凝固系解析装置は測定周波数によっても見方が変わるので、ROTEMと比較して自由度が高く、血小板機能以外のパラメータの算出も同時にできる可能性がある。 In addition to the above analysis method, a method of calculating the difference from the control by the area or ratio when the measurement data of the obtained coagulation process is graphed can be considered. Since the view of the blood coagulation system analyzer also changes depending on the measurement frequency, it has a higher degree of freedom than ROTEM, and it may be possible to calculate parameters other than platelet function at the same time.
 また、本技術において、以下の工程:
(1)血小板惹起物質等を添加しない血小板含有試料の凝固過程の測定データをとる(血小板とフィブリンの凝集効果が表れたデータが得られる)、
(2)一方で、血小板機能阻害薬を添加した血小板含有試料の凝固過程の測定データをとる(血小板を除いた(フィブリンの)データが得られる)、及び
(3)更に、血小板凝固惹起物質を添加した血小板含有試料の凝固過程の測定データをとる、
ことを含む解析方法を行うことができる。被験者が抗血小板薬を服薬している場合、その効果の度合いによって、測定結果が(1)と(2)のデータの間に出現する。
In the present technology, the following steps are also performed:
(1) Taking measurement data of the coagulation process of a platelet-containing sample to which no platelet-inducing substance is added (data showing the aggregation effect of platelets and fibrin is obtained)
(2) On the other hand, measurement data of the coagulation process of a platelet-containing sample to which a platelet function inhibitor has been added is obtained (data obtained by excluding platelets (for fibrin) is obtained), and (3) Take measurement data of the coagulation process of the added platelet-containing sample,
The analysis method including this can be performed. When the subject is taking an antiplatelet drug, the measurement result appears between the data (1) and (2) depending on the degree of the effect.
 3-9.まとめ
 本技術によれば、血液凝固系解析装置を血小板凝集能解析装置として、凝固因子に関する測定だけでなく血小板機能の測定にも用いることができ、抗血小板薬の種類別にモニタリング治療につなげることができる。
 また、本技術によれば、血栓症を視野に入れた臨床検査として、より優れた試料である全血で測定を行うことができる。
3-9. Summary According to the present technology, the blood coagulation system analyzer can be used not only for the measurement of coagulation factors but also for the measurement of platelet function as a platelet aggregability analyzer, and can be used for monitoring treatment according to the type of antiplatelet drug. it can.
In addition, according to the present technology, it is possible to perform measurement with whole blood, which is a superior sample, as a clinical test with thrombosis in view.
 なお、本技術は、以下の構成をとることもできる;
〔1〕血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
該血液凝固系解析部による解析結果の出力を制御する出力制御部と
を含む血小板凝集能解析装置。
〔2〕前記血小板含有試料と前記血小板惹起物質とを保持する生体試料保持部を更に含む、〔1〕に記載の血小板凝集能解析装置。
〔3〕前記血小板含有試料の凝固過程を測定する測定部を更に含む、〔1〕又は〔2〕に記載の血小板凝集能解析装置。
〔4〕前記血小板含有試料を供給する生体試料供給部を更に含む、〔1〕~〔3〕のいずれかに記載の血小板凝集能解析装置。
〔5〕前記血小板惹起物質を供給する薬剤供給部を更に含む、〔1〕~〔4〕のいずれかに記載の血小板凝集能解析装置。
〔6〕前記血液凝固系解析部は、前記血小板惹起物質が添加されていない血小板含有試料の凝固過程の測定データに基づいて、前記血小板惹起物質が添加された血小板含有試料の凝固過程の測定データを解析する、〔1〕~〔5〕のいずれかに記載の血小板凝集能解析装置。
〔7〕前記血小板含有試料の凝固過程を測定した測定情報は、電気的特性及び/又は粘弾性の測定データである、〔1〕~〔6〕のいずれかに記載の血小板凝集能解析装置。
〔8〕前記電気的特性の測定データは血小板含有試料の誘電率である、〔7〕に記載の血小板凝集能解析装置。
〔9〕前記粘弾性の測定データは血小板含有試料のレオメーターによる測定データである、〔7〕に記載の血小板凝集能解析装置。
〔10〕前記血小板含有試料は血液又は血漿である、〔1〕~〔9〕のいずれかに記載の血小板凝集能解析装置。
〔11〕前記血液又は血漿は、抗血小板凝集薬又は抗凝固薬を投与された被験者から採取されたものである、〔10〕に記載の血小板凝集能解析装置。
〔12〕前記血小板含有試料と前記血小板惹起物質は1分以上20分以下の時間で反応が行われる、〔1〕~〔11〕のいずれかに記載の血小板凝集能解析装置。
〔13〕前記血小板含有試料と血小板惹起物質との反応後、血小板凝集塊の回収を行う、〔12〕に記載の血小板凝集能解析装置。
〔14〕血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
該血液凝固系解析部による解析結果の出力を制御する出力制御部と
を含む血小板凝集能解析装置、及び
前記解析結果を表示する表示装置
を備える、血小板凝集能解析システム。
〔15〕血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する解析機能と、
該解析結果の出力を制御する出力制御機能と
をコンピュータに実行させる血小板凝集能解析用プログラム。
〔16〕血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する工程と、
該解析結果の出力を制御する工程と
を含む血小板凝集能解析方法。
In addition, this technique can also take the following structures;
[1] a blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
An apparatus for analyzing platelet aggregation, comprising an output control unit for controlling the output of the analysis result by the blood coagulation system analysis unit.
[2] The platelet aggregation analyzing apparatus according to [1], further comprising a biological sample holding unit that holds the platelet-containing sample and the platelet-inducing substance.
[3] The platelet aggregation analyzing apparatus according to [1] or [2], further including a measuring unit that measures a coagulation process of the platelet-containing sample.
[4] The platelet aggregation analyzing apparatus according to any one of [1] to [3], further comprising a biological sample supply unit that supplies the platelet-containing sample.
[5] The platelet aggregation analyzing apparatus according to any one of [1] to [4], further comprising a drug supply unit that supplies the platelet-inducing substance.
[6] The blood coagulation system analysis unit measures the coagulation process of the platelet-containing sample to which the platelet-inducing substance is added based on the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is not added. The apparatus for analyzing platelet aggregation ability according to any one of [1] to [5].
[7] The platelet aggregation analysis apparatus according to any one of [1] to [6], wherein the measurement information obtained by measuring the coagulation process of the platelet-containing sample is measurement data of electrical characteristics and / or viscoelasticity.
[8] The platelet aggregation analysis apparatus according to [7], wherein the measurement data of the electrical characteristics is a dielectric constant of a platelet-containing sample.
[9] The platelet aggregation analyzing apparatus according to [7], wherein the measurement data of the viscoelasticity is measurement data of a platelet-containing sample using a rheometer.
[10] The platelet aggregation analyzing apparatus according to any one of [1] to [9], wherein the platelet-containing sample is blood or plasma.
[11] The platelet aggregation analyzing apparatus according to [10], wherein the blood or plasma is collected from a subject who has been administered an antiplatelet aggregation agent or an anticoagulant.
[12] The platelet aggregation analyzing apparatus according to any one of [1] to [11], wherein the platelet-containing sample and the platelet-inducing substance are reacted for a time of 1 minute to 20 minutes.
[13] The platelet aggregation analysis apparatus according to [12], wherein platelet aggregation is collected after the reaction between the platelet-containing sample and the platelet-inducing substance.
[14] a blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
A platelet aggregation capacity analysis system comprising: a platelet aggregation capacity analysis apparatus including an output control section for controlling output of analysis results by the blood coagulation system analysis section; and a display device for displaying the analysis results.
[15] An analysis function for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
A program for analyzing platelet aggregation ability that causes a computer to execute an output control function for controlling the output of the analysis result.
[16] analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
A method for analyzing platelet aggregation, comprising a step of controlling the output of the analysis result.
1a       第1の生体試料保持部
1b       第2の生体試料保持部
2        生体試料供給部
3a       薬剤供給部
3b       試薬供給部
4        生体試料待機部
5        温度制御部
6        時間制御部
7a、7b    撹拌機構
8        生体試料分取部
9        駆動機構
10       測定部
11       精度管理部
12       血液凝固系解析部
13       測定条件制御部
14       出力制御部
15       記憶部
1000     血小板凝集能解析装置
1010     表示装置
2000     血小板凝集能解析システム
DESCRIPTION OF SYMBOLS 1a 1st biological sample holding part 1b 2nd biological sample holding part 2 Biological sample supply part 3a Drug supply part 3b Reagent supply part 4 Biological sample waiting part 5 Temperature control part 6 Time control part 7a, 7b Stirring mechanism 8 Biological sample Sorting unit 9 Drive mechanism 10 Measuring unit 11 Accuracy management unit 12 Blood coagulation system analysis unit 13 Measurement condition control unit 14 Output control unit 15 Storage unit 1000 Platelet aggregation analysis device 1010 Display device 2000 Platelet aggregation analysis system

Claims (16)

  1.  血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
     該血液凝固系解析部による解析結果の出力を制御する出力制御部と
    を含む血小板凝集能解析装置。
    A blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
    An apparatus for analyzing platelet aggregation, comprising an output control unit for controlling the output of the analysis result by the blood coagulation system analysis unit.
  2.  前記血小板含有試料と前記血小板惹起物質とを保持する生体試料保持部を更に含む、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analyzing apparatus according to claim 1, further comprising a biological sample holding unit for holding the platelet-containing sample and the platelet-inducing substance.
  3.  前記血小板含有試料の凝固過程を測定する測定部を更に含む、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analyzing apparatus according to claim 1, further comprising a measuring unit for measuring a coagulation process of the platelet-containing sample.
  4.  前記血小板含有試料を供給する生体試料供給部を更に含む、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analyzing apparatus according to claim 1, further comprising a biological sample supply unit that supplies the platelet-containing sample.
  5.  前記血小板惹起物質を供給する薬剤供給部を更に含む、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analyzing apparatus according to claim 1, further comprising a drug supply unit that supplies the platelet-inducing substance.
  6.  前記血液凝固系解析部は、前記血小板惹起物質が添加されていない血小板含有試料の凝固過程の測定データに基づいて、前記血小板惹起物質が添加された血小板含有試料の凝固過程の測定データを解析する、請求項1に記載の血小板凝集能解析装置。 The blood coagulation system analysis unit analyzes the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is added based on the measurement data of the coagulation process of the platelet-containing sample to which the platelet-inducing substance is not added. The platelet aggregation analyzing apparatus according to claim 1.
  7.  前記血小板含有試料の凝固過程を測定した測定情報は、電気的特性及び/又は粘弾性の測定データである、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analysis apparatus according to claim 1, wherein the measurement information obtained by measuring the coagulation process of the platelet-containing sample is measurement data of electrical characteristics and / or viscoelasticity.
  8.  前記電気的特性の測定データは血小板含有試料の誘電率である、請求項7に記載の血小板凝集能解析装置。 The platelet aggregation analysis apparatus according to claim 7, wherein the measurement data of the electrical characteristics is a dielectric constant of a platelet-containing sample.
  9.  前記粘弾性の測定データは血小板含有試料のレオメーターによる測定データである、請求項7に記載の血小板凝集能解析装置。 The platelet aggregation analysis apparatus according to claim 7, wherein the measurement data of the viscoelasticity is measurement data of a platelet-containing sample by a rheometer.
  10.  前記血小板含有試料は血液又は血漿である、請求項1に記載の血小板凝集能解析装置。 2. The platelet aggregation analyzing apparatus according to claim 1, wherein the platelet-containing sample is blood or plasma.
  11.  前記血液又は血漿は、抗血小板凝集薬又は抗凝固薬を投与された被験者から採取されたものである、請求項10に記載の血小板凝集能解析装置。 The blood platelet or plasma analysis apparatus according to claim 10, wherein the blood or plasma is collected from a subject who has been administered an antiplatelet aggregating agent or an anticoagulant.
  12.  前記血小板含有試料と前記血小板惹起物質は1分以上20分以下の時間で反応が行われる、請求項1に記載の血小板凝集能解析装置。 The platelet aggregation analysis apparatus according to claim 1, wherein the platelet-containing sample and the platelet-inducing substance are reacted in a time of 1 minute to 20 minutes.
  13.  前記血小板含有試料と血小板惹起物質との反応後、血小板凝集塊の回収を行う、請求項12に記載の血小板凝集能解析装置。 The platelet aggregation analyzing apparatus according to claim 12, wherein platelet aggregation is collected after the reaction between the platelet-containing sample and the platelet-inducing substance.
  14.  血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する血液凝固系解析部と、
    該血液凝固系解析部による解析結果の出力を制御する出力制御部と
    を含む血小板凝集能解析装置、及び
     前記解析結果を表示する表示装置
    を備える、血小板凝集能解析システム。
    A blood coagulation system analysis unit for analyzing platelet aggregation ability based on measurement data of a coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
    A platelet aggregation analysis system comprising: a platelet aggregation analysis device including an output control unit that controls output of an analysis result by the blood coagulation system analysis unit; and a display device that displays the analysis result.
  15.  血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する工程と、
     該解析結果の出力を制御する工程と
    をコンピュータに実行させる血小板凝集能解析用プログラム。
    Analyzing platelet aggregation ability based on measurement data of the coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
    A program for analyzing platelet aggregation ability that causes a computer to execute a step of controlling the output of the analysis result.
  16.  血小板惹起物質が添加された血小板含有試料の凝固過程の測定データに基づいて血小板凝集能を解析する工程と、
     該解析結果の出力を制御する工程と
    を含む血小板凝集能解析方法。
    Analyzing platelet aggregation ability based on measurement data of the coagulation process of a platelet-containing sample to which a platelet-inducing substance is added;
    A method for analyzing platelet aggregation, comprising a step of controlling the output of the analysis result.
PCT/JP2016/083896 2016-02-17 2016-11-16 Platelet aggregation activity analysis device, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method WO2017141508A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680081455.8A CN108603888B (en) 2016-02-17 2016-11-16 Platelet aggregation activity analysis apparatus, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method
EP16890645.1A EP3418748A4 (en) 2016-02-17 2016-11-16 Platelet aggregation activity analysis device, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method
JP2017567954A JP6941061B2 (en) 2016-02-17 2016-11-16 Platelet agglutination ability analyzer, platelet agglutination ability analysis system, platelet agglutination ability analysis program and platelet agglutination ability analysis method
US16/077,305 US20190049428A1 (en) 2016-02-17 2016-11-16 Platelet aggregability analyzing device, platelet aggregability analyzing system, platelet aggregability analyzing program, and method of analyzing platelet aggregability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-027938 2016-02-17
JP2016027938 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141508A1 true WO2017141508A1 (en) 2017-08-24

Family

ID=59624885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083896 WO2017141508A1 (en) 2016-02-17 2016-11-16 Platelet aggregation activity analysis device, platelet aggregation activity analysis system, platelet aggregation activity analysis program, and platelet aggregation activity analysis method

Country Status (5)

Country Link
US (1) US20190049428A1 (en)
EP (1) EP3418748A4 (en)
JP (2) JP6941061B2 (en)
CN (1) CN108603888B (en)
WO (1) WO2017141508A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059799A (en) * 2016-10-05 2018-04-12 ソニー株式会社 Platelet aggregation ability analyzing method, platelet aggregation ability analyzing device, program for platelet aggregation ability analysis, and platelet aggregation ability analyzing system
CN111033256A (en) * 2017-09-05 2020-04-17 深圳迈瑞生物医疗电子股份有限公司 Alarming method of platelet aggregation sample, blood cell analyzer and storage medium
JP2020190570A (en) * 2016-10-05 2020-11-26 ソニー株式会社 Platelet agglutination ability analysis method, platelet agglutination ability analyzer, program for platelet agglutination ability analysis and platelet agglutination ability analysis system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164253A (en) * 2018-10-26 2019-01-08 浙江师范大学 A kind of tuning fork resonant mode blood platelet shrinks force measuring device and method
CN111781336B (en) * 2019-04-04 2022-10-21 江苏赛灵医疗科技有限公司 Test system and method of thrombelastogram instrument

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550162A (en) * 1978-10-02 1980-04-11 Wellcome Found Method and device for testing agglutination of platelets
JPS6117942A (en) * 1984-06-14 1986-01-25 アーサー エイチ,フライリツヒ Platelet agglutination electrode device
JP2009008503A (en) * 2007-06-27 2009-01-15 Sysmex Corp Platelet aggregation measuring method and platelet aggregation measuring apparatus
JP2010181400A (en) 2009-01-08 2010-08-19 Sony Corp Blood coagulation system analysis device, and method and program for analysis of blood coagulation system
JP2012194087A (en) 2011-03-17 2012-10-11 Sony Corp Blood coagulation system analysis method and blood coagulation system analysis apparatus
WO2015102726A2 (en) * 2013-10-16 2015-07-09 President And Fellows Of Harvard College A microfluidic device for real-time clinical monitoring and quantitative assessment of whole blood coagulation
WO2015159623A1 (en) 2014-04-17 2015-10-22 ソニー株式会社 Blood state analysis device, blood state analysis system, blood state analysis method, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019742A1 (en) * 2002-10-15 2005-01-27 Jennings Lisa K. Methods for assessment of platelet aggregation
JP5549484B2 (en) * 2010-09-01 2014-07-16 ソニー株式会社 Sample cartridge and apparatus for measuring electrical properties of liquid samples
EP2508892A1 (en) * 2011-04-04 2012-10-10 Siemens Healthcare Diagnostics Products GmbH Controls and kit for thrombocyte activity tests
EP2950087B1 (en) * 2013-01-28 2020-11-04 Sony Corporation Impedance measuring device for biological samples and impedance measuring system for biological samples
US10739359B2 (en) * 2014-04-17 2020-08-11 Sony Corporation Blood condition analysis device, blood condition analysis system, blood condition analysis method, and blood condition analysis program for causing computer to implement the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550162A (en) * 1978-10-02 1980-04-11 Wellcome Found Method and device for testing agglutination of platelets
JPS6117942A (en) * 1984-06-14 1986-01-25 アーサー エイチ,フライリツヒ Platelet agglutination electrode device
JP2009008503A (en) * 2007-06-27 2009-01-15 Sysmex Corp Platelet aggregation measuring method and platelet aggregation measuring apparatus
JP2010181400A (en) 2009-01-08 2010-08-19 Sony Corp Blood coagulation system analysis device, and method and program for analysis of blood coagulation system
JP5691168B2 (en) 2009-01-08 2015-04-01 ソニー株式会社 Blood coagulation system analyzer, blood coagulation system analysis method and program
JP2012194087A (en) 2011-03-17 2012-10-11 Sony Corp Blood coagulation system analysis method and blood coagulation system analysis apparatus
JP5768422B2 (en) 2011-03-17 2015-08-26 ソニー株式会社 Blood coagulation system analysis method and blood coagulation system analyzer
WO2015102726A2 (en) * 2013-10-16 2015-07-09 President And Fellows Of Harvard College A microfluidic device for real-time clinical monitoring and quantitative assessment of whole blood coagulation
WO2015159623A1 (en) 2014-04-17 2015-10-22 ソニー株式会社 Blood state analysis device, blood state analysis system, blood state analysis method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418748A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059799A (en) * 2016-10-05 2018-04-12 ソニー株式会社 Platelet aggregation ability analyzing method, platelet aggregation ability analyzing device, program for platelet aggregation ability analysis, and platelet aggregation ability analyzing system
US20190346352A1 (en) * 2016-10-05 2019-11-14 Sony Corporation Platelet aggregation analysis method, platelet aggregation analysis device, program for analyzing platelet aggregation, and platelet aggregation analysis system
JP2020190570A (en) * 2016-10-05 2020-11-26 ソニー株式会社 Platelet agglutination ability analysis method, platelet agglutination ability analyzer, program for platelet agglutination ability analysis and platelet agglutination ability analysis system
US11802825B2 (en) 2016-10-05 2023-10-31 Sony Corporation Platelet aggregation analysis method, platelet aggregation analysis device, program for analyzing platelet aggregation, and platelet aggregation analysis system
CN111033256A (en) * 2017-09-05 2020-04-17 深圳迈瑞生物医疗电子股份有限公司 Alarming method of platelet aggregation sample, blood cell analyzer and storage medium
CN111033256B (en) * 2017-09-05 2022-07-12 深圳迈瑞生物医疗电子股份有限公司 Alarming method of platelet aggregation sample, blood cell analyzer and storage medium
US11402370B2 (en) 2017-09-05 2022-08-02 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Alarming method for platelet aggregation sample, blood cell analyzer and storage medium

Also Published As

Publication number Publication date
EP3418748A1 (en) 2018-12-26
JP2021036246A (en) 2021-03-04
CN108603888B (en) 2022-06-10
JP7070641B2 (en) 2022-05-18
JPWO2017141508A1 (en) 2018-12-06
JP6941061B2 (en) 2021-09-29
CN108603888A (en) 2018-09-28
US20190049428A1 (en) 2019-02-14
EP3418748A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP7070641B2 (en) Platelet agglutination ability analyzer, platelet agglutination ability analysis system, platelet agglutination ability analysis program and platelet agglutination ability analysis method
JP5768422B2 (en) Blood coagulation system analysis method and blood coagulation system analyzer
JP6776221B2 (en) Detection and classification of anticoagulants using coagulation analysis
JP6442858B2 (en) Blood state analysis apparatus, blood state analysis system, blood state analysis method, and blood state analysis program for causing a computer to realize the method
JP7192944B2 (en) Blood coagulation system analysis device, blood coagulation system analysis system, blood coagulation system analysis method, blood coagulation system analysis program, blood loss prediction device, blood loss prediction system, blood loss prediction method, and blood loss prediction program
US10794896B2 (en) Blood coagulation system examination module, blood coagulation system examination system, blood coagulation system examination method, and determination method of parameter for blood coagulation system examination module
JP6579100B2 (en) Blood state analysis apparatus, blood state analysis system, blood state analysis method, and blood state analysis program for causing a computer to realize the method
JP6750443B2 (en) Platelet aggregation analysis method, platelet aggregation analysis device, platelet aggregation analysis program, and platelet aggregation analysis system
WO2020084893A1 (en) Platelet-aggregation-ability analysis device, platelet-aggregation-ability analysis method, and platelet-aggregation-ability analysis system
JP6973585B2 (en) Platelet agglutination ability analysis method, platelet agglutination ability analyzer, platelet agglutination ability analysis program and platelet agglutination ability analysis system
US10962495B2 (en) Blood coagulation system analysis system, blood coagulation system analysis method, and blood coagulation system analysis program
US11630101B2 (en) Method for diagnosing anomalies in the coagulation of blood
Dias et al. New-Generation Thromboelastography.
JP2016191668A (en) Method and device for measuring electrical properties, and blood condition analysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016890645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890645

Country of ref document: EP

Effective date: 20180917