WO2017141353A1 - Fmcw radar device - Google Patents

Fmcw radar device Download PDF

Info

Publication number
WO2017141353A1
WO2017141353A1 PCT/JP2016/054464 JP2016054464W WO2017141353A1 WO 2017141353 A1 WO2017141353 A1 WO 2017141353A1 JP 2016054464 W JP2016054464 W JP 2016054464W WO 2017141353 A1 WO2017141353 A1 WO 2017141353A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
unit
discrete frequency
value
smoothing
Prior art date
Application number
PCT/JP2016/054464
Other languages
French (fr)
Japanese (ja)
Inventor
三本 雅
高橋 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/054464 priority Critical patent/WO2017141353A1/en
Priority to JP2017567859A priority patent/JP6415762B2/en
Publication of WO2017141353A1 publication Critical patent/WO2017141353A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • This invention relates to an FMCW radar apparatus that estimates the distance and speed of an object to be observed.
  • an FMCW (Frequency Modulated Continuous Wave) type radar apparatus that can estimate the distance and speed of an object to be observed that is located within a range of several hundreds of meters or less from its own apparatus with a simple configuration compared to a pulse radar or the like.
  • FMCW radar device measures the distance and relative velocity to an object from the frequency of an observation signal obtained by directly mixing a transmission signal and a reception signal.
  • the observation signal includes a plurality of frequencies corresponding to each object. Therefore, the observation signal is analyzed to obtain a spectrum for each discrete frequency. Since the spectrum power reaches a peak (maximum value) at the discrete frequency corresponding to each object, the frequency corresponding to each object can be detected by detecting these peaks.
  • a peak corresponding to an object to be detected may not be detected, or a peak that should not be detected may be detected.
  • a method in which a spectrum waveform is acquired in the absence of an object to be detected in advance, and a detection threshold value that reflects temperature characteristics and the like is set based on the spectrum waveform (see, for example, Patent Document 1). .
  • a method is also known in which a peak is first detected with a first threshold value set from background noise and the like, and a second threshold value is provided according to the detected peak power to obtain a detection threshold value. (For example, refer to Patent Document 2).
  • a method of setting a detection threshold by a CFAR (Constant False Alarm Rate) technique is known (for example, see Non-Patent Document 1).
  • Patent Document 1 for example, if there is a gentle convex waveform that changes with time as a spectrum waveform, there is a problem that a peak that should not be detected is detected.
  • Patent Document 2 once a peak that should not be detected is detected, detection by a threshold is performed again, so that a large amount of calculation resources such as calculation time and calculation memory are required. There is a problem.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an FMCW radar apparatus that can suppress erroneous detection with a small amount of computation resources compared to the conventional configuration.
  • the FMCW radar apparatus includes: an observation unit that radiates a transmission signal to space, and obtains an observation signal from the transmission signal and a reception signal received by reflection and scattering of the transmission signal by an object to be observed; , A frequency analysis unit that obtains a spectrum for each discrete frequency from the observation signal obtained by the observation unit, and a smooth value calculation that calculates a spectrum smoothing value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit A threshold value calculation unit that calculates a detection threshold value for each discrete frequency by multiplying a spectrum smoothing value for each discrete frequency calculated by the smoothing value calculation unit by a threshold coefficient, and a frequency analysis unit A comparison unit that compares the obtained spectrum for each discrete frequency with a detection threshold value for each discrete frequency calculated by the threshold value calculation unit, and a comparison unit.
  • the present invention since it is configured as described above, it is possible to suppress erroneous detection with a smaller number of computing resources than in the conventional configuration.
  • Embodiment 1 of this invention It is a figure which shows the structural example of the FMCW radar apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the function structural example of the control arithmetic unit in Embodiment 1 of this invention. It is a flowchart which shows the operation example of the control arithmetic unit in Embodiment 1 of this invention. It is a flowchart which shows the operation example of the smooth value calculation part in Embodiment 1 of this invention. 5A to 5C are diagrams for explaining the effect of the FMCW radar apparatus according to Embodiment 1 of the present invention (when a planar reflective object is present near the FMCW radar apparatus).
  • 6A to 6C are diagrams for explaining the effect of the FMCW radar apparatus according to Embodiment 1 of the present invention (when there are a plurality of adjacent objects having different reflection intensities).
  • 7A and 7B are diagrams showing an example of the hardware configuration of the control arithmetic unit according to the first embodiment of the present invention, showing a case where the processing circuit is dedicated hardware and a case where the processing circuit is a CPU.
  • FIG. 1 is a diagrams for explaining the effect of the FMCW radar apparatus according to Embodiment 1 of the present invention (when there are a plurality of adjacent objects having different reflection intensities).
  • 7A and 7B are diagrams showing an example of the hardware configuration of the control arithmetic unit according to the first embodiment of the present invention, showing a case where the processing circuit is dedicated hardware and a case where the processing circuit is a CPU.
  • FIG. 1 is a diagram showing a configuration example of an FMCW radar apparatus 1 according to Embodiment 1 of the present invention.
  • the FMCW radar apparatus 1 estimates the distance and speed of an object to be observed.
  • the FMCW radar apparatus 1 includes a transmitter 11, a receiver 12, an analog / digital converter 13, a memory 14, and a control calculator 15.
  • the transmitter 11 emits a transmission signal to space.
  • the transmitter 11 includes a voltage generation circuit 111, a voltage control oscillator 112, a distribution circuit 113, an amplification circuit 114, and a transmission antenna 115.
  • the voltage generation circuit 111 generates a predetermined modulation voltage for a transmission signal under the control of a control unit 151 described later of the control arithmetic unit 15.
  • the modulation voltage generated by the voltage generation circuit 111 is output to the voltage controlled oscillator 112.
  • the voltage controlled oscillator 112 generates a transmission signal in accordance with the modulation voltage generated by the voltage generation circuit 111.
  • the transmission signal generated by the voltage controlled oscillator 112 is output to the distribution circuit 113.
  • the distribution circuit 113 distributes and outputs the transmission signal generated by the voltage controlled oscillator 112 to a later-described mixer 122 of the amplifier circuit 114 and the receiver 12.
  • the amplification circuit 114 amplifies the transmission signal distributed and output by the distribution circuit 113.
  • the transmission signal amplified by the amplifier circuit 114 is output to the transmission antenna 115.
  • the transmission antenna 115 radiates the transmission signal amplified by the amplification circuit 114 to space as an electromagnetic wave. Thereafter, the transmission signal radiated to the space is reflected and scattered by an object to be observed existing around the FMCW radar apparatus 1 (a range of several hundred meters or less), and a part of the transmission signal is received as a received signal.
  • an object to be observed existing around the FMCW radar apparatus 1 a range of several hundred meters or less
  • the receiver 12 receives a reception signal from the space, and obtains an observation signal from the transmission signal from the distribution circuit 113 of the transmitter 11 and the reception signal.
  • the receiver 12 includes a receiving antenna 121, a mixer 122, an amplifier circuit 123, and a filter circuit 124.
  • the reception antenna 121 receives a reception signal that is returned by the transmission signal radiated from the transmission antenna 115 being reflected and scattered by the object.
  • the received signal received by the receiving antenna 121 is output to the mixer 122.
  • the mixer 122 mixes the reception signal received by the receiving antenna 121 and the transmission signal distributed by the distribution circuit 113 to generate an observation signal.
  • the observation signal generated by the mixer 122 is output to the amplifier circuit 123.
  • the amplification circuit 123 amplifies the observation signal generated by the mixer 122.
  • the observation signal amplified by the amplifier circuit 123 is output to the filter circuit 124.
  • the filter circuit 124 suppresses unnecessary frequency components from the observation signal amplified by the amplifier circuit 123.
  • An observation signal in which unnecessary frequency components are suppressed by the filter circuit 132 is output to the analog-to-digital converter 13.
  • the analog-digital converter 13 converts an observation signal (analog signal) from the receiver 12 (filter circuit 124) into a digital signal (digital voltage data) under the control of a control unit 151 (to be described later) of the control arithmetic unit 15. It is.
  • the observation signal converted into a digital signal by the analog-digital converter 13 is output to the memory 14.
  • the memory 14 stores an observation signal converted into a digital signal by the analog-to-digital converter 13 under the control of a control unit 151 (to be described later) of the control arithmetic unit 15.
  • a control unit 151 to be described later
  • the memory 14 for example, a RAM (Random Access Memory) is applicable.
  • the transmitter 11, the receiver 12, the analog-digital converter 13, and the memory 14 radiate a transmission signal to space, and the transmission signal and the transmission signal are reflected and scattered by an object to be observed and received.
  • An observation unit 16 that obtains an observation signal from the received signal is configured.
  • the configuration and operation of the observation unit 16 are basically the same as the configuration and operation of the conventional FMCW radar apparatus.
  • the control arithmetic unit 15 controls each part of the FMCW radar apparatus 1 and measures the distance and speed of the object to be observed using the observation signal stored in the memory 14.
  • the control calculator 15 includes a control unit 151, a frequency analysis unit 152, a smooth value calculation unit 153, a threshold value calculation unit 154, a comparison unit 155, a maximum value detection unit 156, and a distance speed measurement unit. 157.
  • the control unit 151 includes the voltage generation circuit 111 of the transmitter 11, the analog-digital converter 13, the memory 14, and each unit of the control arithmetic unit 15 (frequency analysis unit 152, smooth value calculation unit 153, threshold value calculation unit 154, comparison Unit 155, maximum value detection unit 156, and distance speed measurement unit 157).
  • the frequency analysis unit 152 obtains a spectrum for each discrete frequency by reading and analyzing the observation signal stored in the memory 14 under the control of the control unit 151. Data indicating the spectrum for each discrete frequency obtained by the frequency analysis unit 152 is output to the smooth value calculation unit 153, the comparison unit 155, and the maximum value detection unit 156.
  • the smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 under the control of the control unit 151.
  • the smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 by using a feedback filter using a smooth filter coefficient. Data indicating the spectrum smooth value for each discrete frequency calculated by the smooth value calculation unit 153 is output to the threshold value calculation unit 154.
  • the threshold calculation unit 154 multiplies the spectrum smooth value for each discrete frequency calculated by the smooth value calculation unit 153 by a threshold coefficient under the control of the control unit 151, thereby detecting the detection threshold for each discrete frequency. Is calculated. Data indicating the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154 is output to the comparison unit 155.
  • the comparison unit 155 compares the spectrum for each discrete frequency obtained by the frequency analysis unit 152 with the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154 under the control of the control unit 151. Is. Data indicating the comparison result by the comparison unit 155 is output to the maximum value detection unit 156.
  • the maximum value detection unit 156 detects a discrete frequency at which the spectrum has a maximum value from the comparison results of the comparison unit 155 for each discrete frequency obtained by the frequency analysis unit 152. Is. At this time, the local maximum detection unit 156 has a spectrum that is larger than the detection threshold at the central discrete frequency among the three consecutive discrete frequencies, and the spectrum of the central discrete frequency is higher than the spectrum of the adjacent discrete frequencies. Is larger, the center discrete frequency is detected as a maximum value. Data indicating the detection result by the maximum value detection unit 156 is output to the distance speed measurement unit 157.
  • the distance / velocity measurement unit 157 measures the distance and speed of an object to be observed based on the detection result of the maximum value detection unit 156 and based on the known FMCW radar principle under the control of the control unit 151. It is.
  • each part (frequency analysis part 152, smooth value calculation part 153, threshold value calculation part 154, comparison part 155, maximum value detection part 156, and distance speed measurement part 157) of the control calculator 15 is operated by the control part 151. Timing etc. are controlled.
  • the frequency analysis unit 152 reads out and analyzes the observation signal stored in the memory 14, thereby obtaining a spectrum for each discrete frequency (step ST301). .
  • the frequency analysis unit 152 obtains a spectrum for each discrete frequency from the observation signal by, for example, a known FFT (Fast Fourier Transform) algorithm.
  • the smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 (step ST302).
  • the smooth value calculation processing by the smooth value calculation unit 153 will be described with reference to the example shown in FIG.
  • the number b of the discrete frequency that is the smooth value calculation target is set to the number 1 corresponding to the lowest discrete frequency in the spectrum obtained by the frequency analysis unit 152. (Step ST401).
  • the smooth value calculation unit 153 increments the value of number b (step ST403).
  • step ST404 the smooth value calculation unit 153 determines whether the number b is larger than the highest discrete frequency number K in the spectrum obtained by the frequency analysis unit 152 (step ST404).
  • step ST404 when the smooth value calculation unit 153 determines that the number b is larger than the number K, the sequence ends.
  • step ST404 when the smooth value calculation unit 153 determines that the number b is not greater than the number K, the spectrum P (b) of the discrete frequency with the number b is already calculated with the number b ⁇ . It is determined whether it is larger than the spectrum smoothing value Ps (b-1) of 1 discrete frequency (step ST405).
  • step ST405 when the smooth value calculation unit 153 determines that the spectrum P (b) is larger than the spectrum smooth value Ps (b-1) of the previous discrete frequency, the smoothing filter coefficient ⁇ s is converted to the smoothing filter coefficient ⁇ s.
  • the coefficient ⁇ u is set (step ST406).
  • the smoothing filter coefficient ⁇ u is a filter coefficient that determines the degree of smoothness of the spectrum near the rising edge of the spectrum waveform, and is set to a value of 0.5 ⁇ ⁇ u ⁇ 1, for example.
  • the smoothing filter coefficient ⁇ u is set (adjusted) using the frequency spectrum obtained from the actual data once for example of the number of states in which the object to be detected exists.
  • step ST405 when the smooth value calculation unit 153 determines that the spectrum P (b) is not larger than the previous spectrum smooth value Ps (b-1), the smoothing filter coefficient ⁇ s is converted to the smoothing filter coefficient ⁇ s.
  • the coefficient ⁇ d is set (step ST407).
  • the smoothing filter coefficient ⁇ d is a filter coefficient that determines the degree of smoothness of the spectrum near the falling edge of the spectrum waveform, and is set to a value of 0 ⁇ ⁇ d ⁇ 0.5, for example.
  • the smoothing filter coefficient ⁇ d is set (adjusted) by, for example, temporarily acquiring actual data for an example of the number of states in which an object to be detected exists and using a frequency spectrum obtained from the data.
  • the smoothing value calculation unit 153 sets the discrete frequency spectrum smoothing value Ps (b) of number b, the discrete frequency spectral smoothing value Ps (b-1) of number b-1, and the number b. Is calculated from the feedback filter of the following equation (2) using the discrete frequency spectrum P (b) and the smoothing filter coefficient ⁇ s (step ST408).
  • Ps (b) ⁇ s ⁇ Ps (b ⁇ 1) + (1 ⁇ s) ⁇ P (b) (2)
  • the smoothing filter coefficient ⁇ u is a filter coefficient that determines the degree of smoothing for the spectrum near the rising edge of the spectrum waveform
  • the smoothing filter coefficient ⁇ d determines the degree of smoothing for the spectrum near the falling edge of the spectrum waveform. It is a filter coefficient. Then, by setting the smoothing filter coefficient ⁇ u to a large value (for example, 0.5 ⁇ ⁇ u ⁇ 1) in the range of 0 ⁇ u ⁇ 1, the waveform of the spectrum smoothing value rises gradually, and the spectrum smoothing value is The value is smaller than the spectrum.
  • the smoothing filter coefficient ⁇ d is set to a small value (for example, 0 ⁇ ⁇ d ⁇ 0.5) in the range of 0 ⁇ ⁇ d ⁇ 1.
  • the smoothing filter coefficient to be multiplied by the discrete frequency spectrum smoothing value Ps (b-1) of number b-1 is ⁇ s
  • the smoothing filter coefficient to be multiplied by the discrete frequency spectrum P (b) of number b is By setting (1- ⁇ s), the smoothing result is prevented from becoming unstable.
  • the smooth value calculation unit 153 can calculate the spectrum smooth value Ps (b) for each discrete frequency.
  • a threshold coefficient ⁇ (b) whose value is changed for each discrete frequency may be used.
  • the threshold coefficient ⁇ (b) is, for example, more likely to be an object at a longer distance as the frequency is higher (number b is larger), and the intensity of the received electromagnetic wave is smaller at an object at a longer distance. You may set (adjust) so that a value may become small, so that b is large.
  • the threshold coefficient ⁇ (b) may be set (adjusted) based on the pattern.
  • the threshold coefficient ⁇ (b) may be set (adjusted) by combining the above two setting methods.
  • the comparison unit 155 compares the spectrum for each discrete frequency obtained by the frequency analysis unit 152 with the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154.
  • the maximum value detection unit 156 detects, from the comparison result by the comparison unit 155, a discrete frequency at which the spectrum has a maximum value among the spectra for each discrete frequency obtained by the frequency analysis unit 152.
  • the comparison unit 155 sets the number b of the discrete frequency to be compared to the number 1 corresponding to the lowest discrete frequency in the spectrum obtained by the frequency analysis unit 152 (step ST304).
  • comparison section 155 determines whether spectrum P (b) obtained by frequency analysis section 152 is greater than detection threshold Th (b) calculated by threshold calculation section 154 (step ST305). .
  • step ST305 when the comparison unit 155 determines that the spectrum P (b) is larger than the detection threshold Th (b), the spectrum P (b) is converted into the spectrum P (b-1) and the spectrum P (b). b + 1) is determined (step ST306).
  • step ST306 when the comparison unit 155 determines that the spectrum P (b) is larger than the spectrum P (b-1) and the spectrum P (b + 1), the maximum value detection unit 156 sets the discrete frequency of number b to the maximum. It detects as a value (step ST307). Thereafter, the sequence proceeds to step ST308.
  • step ST305 determines that the spectrum P (b) is not larger than the detection threshold Th (b)
  • step ST306 determines that the spectrum P (b) is the spectrum. If it is determined that it is not larger than P (b ⁇ 1) and spectrum P (b + 1), the sequence proceeds to step ST308.
  • step ST308 the comparison unit 155 increments the number b of the discrete frequency to be compared.
  • step ST309 when the comparison unit 155 determines that the number b is not greater than the number K, the sequence returns to step ST305 and repeats the above processing.
  • the distance / velocity measurement unit 157 knows from the detection result (the discrete frequency that is the maximum value) by the maximum value detection unit 156. Based on the principle of the FMCW radar, the distance and speed of the object to be observed are measured (step ST310).
  • the horizontal axis indicates the discrete frequency
  • the vertical axis indicates the spectrum power.
  • the spectrum of the discrete frequency obtained by the frequency analysis unit 152 is as shown by a solid line in FIGS. 5A to 5C.
  • the convex pattern of the spectrum waveform changes with time depending on the moving speed of the FMCW radar apparatus 1.
  • FIG. 5A shows a case where CA (Cell Averaging) -CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • a dotted line shows the result of calculating the sum of eight discrete frequencies as a reference range
  • a white broken line shows a detection threshold value obtained by multiplying the sum by a threshold coefficient 0.6. .
  • FIG. 5B is obtained by applying Ordered Statistics (OS) -CFAR, which is one of the conventional techniques, to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • OS Ordered Statistics
  • FIG. 5B a dotted line indicates the fourth spectrum from the smaller value of eight discrete frequencies as a reference range, and a white broken line indicates a detection threshold obtained by multiplying the spectrum by a threshold coefficient 4.5. The value is shown. In this case, there is no spectrum that exceeds the detection threshold in a gentle convex portion that does not need to be detected, and unnecessary detection is not performed. However, since it is necessary to rearrange the eight spectra for each discrete frequency in ascending order, a lot of calculation resources are required.
  • FIG. 5C shows a case where the smoothed value calculation unit 153 calculates the spectrum smooth value for the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • the smooth value calculation processing by the smooth value calculation unit 153 is as shown in FIG. 4, for example, and the processing can be performed with fewer calculation resources than when OS-CFAR is applied.
  • the spectrum of the discrete frequency obtained by the frequency analysis unit 152 is shown in FIG. It becomes like the solid line shown in FIG. 6C.
  • the peak frequencies corresponding to the two objects are denoted by reference numerals 601 and 602.
  • FIG. 6A shows a case where CA-CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • a dotted line indicates a result of calculating the sum of eight discrete frequencies as a reference range
  • a white broken line indicates a detection threshold value obtained by multiplying the sum by a threshold coefficient 0.6. .
  • the detection threshold is high for the peak of the object on the near side, making detection difficult.
  • FIG. 6B shows a case where OS-CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • a dotted line indicates the fourth spectrum from the smaller value of eight discrete frequencies as a reference range
  • a white broken line indicates a detection threshold obtained by multiplying the spectrum by a threshold coefficient 4.5. The value is shown. In this case, both two objects can be detected. However, since it is necessary to rearrange the eight spectra for each discrete frequency in ascending order, a lot of calculation resources are required.
  • FIG. 6C shows a case where the smoothed value calculation unit 153 calculates the spectrum smooth value for the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152.
  • the smooth value calculation processing by the smooth value calculation unit 153 is as shown in FIG. 4, for example, and the processing can be performed with fewer calculation resources than when OS-CFAR is applied.
  • a transmission signal is radiated to a space, and an observation signal is received from the transmission signal and a reception signal received by being reflected and scattered by an object to be observed.
  • the frequency analysis unit 152 for obtaining a spectrum for each discrete frequency from the observation signal obtained by the observation unit 16, and the spectrum for each discrete frequency obtained by the frequency analysis unit 152.
  • a smoothing value calculation unit 153 that calculates a spectrum smoothing value, and a threshold value coefficient is multiplied by the spectrum smoothing value for each discrete frequency calculated by the smoothing value calculation unit 153, thereby calculating a detection threshold value for each discrete frequency.
  • the spectrum for each discrete frequency obtained by the threshold calculation unit 154 and the frequency analysis unit 152 is used as the separation calculated by the threshold calculation unit 154. From the comparison result by the comparison unit 155 that compares the detection threshold value for each frequency and the comparison unit 155, the discrete frequency at which the spectrum has a maximum value is detected from the spectrum for each discrete frequency obtained by the frequency analysis unit 152. Since the maximum value detection unit 156 and the distance speed measurement unit 157 for measuring the distance and speed of the object based on the detection result by the maximum value detection unit 156 are provided, the error is reduced with less calculation resources than the conventional configuration. Detection can be suppressed.
  • the comparison unit 155 notifies the local maximum value detection unit 156 that the spectrum of the discrete frequency to be compared is larger than the detection threshold and larger than the spectrum of the adjacent discrete frequencies.
  • the comparison unit 155 generates detection information by comparing a spectrum for each discrete frequency with a detection threshold value for each discrete frequency, and uses the detection information as a maximum value detection unit 156. You may make it output to.
  • the detection information includes a discrete frequency, a spectrum of the discrete frequency, and a comparison result between the spectrum and a detection threshold value.
  • the comparison unit 155 sets the comparison result to 1 when the spectrum is larger than the detection threshold, and sets the comparison result to 0 when the spectrum is equal to or lower than the detection threshold. Then, the maximum value detection unit 156 detects the maximum value using the detection information from the comparison unit 155.
  • control unit 151 The functions of the control unit 151, the frequency analysis unit 152, the smoothing value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit 157 in the control arithmetic unit 15 are the processing circuit 51. It is realized by. As shown in FIG. 7, even if the processing circuit 51 is dedicated hardware, a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, and the like that executes a program stored in the memory 53. It may be a microcomputer, a processor, or a DSP (Digital Signal Processor) 52.
  • CPU Central Processing Unit
  • a central processing unit a central processing unit
  • a processing unit an arithmetic unit
  • microprocessor and the like that executes a program stored in the memory 53.
  • DSP Digital Signal Processor
  • the processing circuit 51 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit). , FPGA (Field Programmable Gate Array), or a combination thereof.
  • the processing circuit 51 implements the functions of the control unit 151, frequency analysis unit 152, smooth value calculation unit 153, threshold value calculation unit 154, comparison unit 155, maximum value detection unit 156, and distance speed measurement unit 157. Alternatively, the function of each unit may be integrated and realized by the processing circuit 51.
  • the processing circuit 51 is the CPU 52
  • the function 157 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 53.
  • the processing circuit 51 implements the functions of each unit by reading and executing the program stored in the memory 53. That is, the control arithmetic unit 15 includes a memory 53 for storing a program that, when executed by the processing circuit 51, for example, results in the steps shown in FIGS.
  • the memory 53 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a magnetic disk, A flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like are applicable.
  • a nonvolatile or volatile semiconductor memory such as a RAM, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a magnetic disk, A flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like are applicable.
  • control unit 151 the frequency analysis unit 152, the smoothing value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit 157 are dedicated hardware. It may be realized by hardware and a part may be realized by software or firmware.
  • the function of the control unit 151 is realized by the processing circuit 51 as dedicated hardware, and the frequency analysis unit 152, the smooth value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, and the maximum value detection unit 156.
  • the processing circuit 51 can read out and execute the program stored in the memory 53, thereby realizing its function.
  • the processing circuit 51 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the FMCW radar apparatus can suppress erroneous detection with less computation resources than the conventional configuration, and is suitable for use in the FMCW radar apparatus 1 that estimates the distance and speed of an object to be observed. ing.
  • 1 FMCW radar device 11 transmitter, 12 receiver, 13 analog-digital converter, 14 memory, 15 control arithmetic unit, 16 observation unit, 51 processing circuit, 52 CPU, 53 memory, 111 voltage generation circuit, 112 voltage controlled oscillator 113 distribution circuit, 114 amplification circuit, 115 transmission antenna, 121 reception antenna, 122 mixer, 123 amplification circuit, 124 filter circuit, 151 control unit, 152 frequency analysis unit, 153 smooth value calculation unit, 154 Threshold value calculation unit, 155 comparison unit, 156 maximum value detection unit, 157 distance speed measurement unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention is provided with an observation unit (16) for obtaining an observation signal from a transmission signal radiated into space and a reception signal received as a result of the transmission signal being reflected and scattered by an object, a frequency analysis unit (152) for obtaining a spectrum of discrete frequencies from the obtained observation signal, a smoothed value calculation unit (153) for calculating a smoothed value for each discrete frequency from the obtained spectrum of discrete frequencies, a threshold value calculation unit (154) for calculating a detection threshold value for each discrete frequency by multiplying the calculated smoothed value for each discrete frequency by a threshold value coefficient, a comparison unit (155) for comparing the obtained spectrum of discrete frequencies with the calculated detection threshold values for each discrete frequency, a maximum value detection unit (156) for detecting, from the comparison results, the discrete frequency having the maximum spectral value from among the spectrum of discrete frequencies, and a distance and speed measurement unit (157) for measuring the distance and speed of the object on the basis of the detection result.

Description

FMCWレーダ装置FMCW radar equipment
 この発明は、観測対象である物体の距離及び速度を推定するFMCWレーダ装置に関するものである。 This invention relates to an FMCW radar apparatus that estimates the distance and speed of an object to be observed.
 従来から、パルスレーダ等に比べて単純な構成で、自機から数百m以下の範囲に位置する観測対象である物体の距離及び速度を推定可能なFMCW(Frequency Modulated Continuous Wave)方式のレーダ装置(以下、FMCWレーダ装置と記す)が知られている。このFMCWレーダ装置は、送信信号と受信信号を直接ミキシングして得られる観測信号の周波数から、物体までの距離と相対速度を測定する。
 また、物体が複数存在する場合には、観測信号に各物体に対応する複数の周波数が含まれるため、この観測信号を解析して離散周波数毎のスペクトルを得る。そして、各物体に対応する離散周波数でスペクトルのパワーがピーク(極大値)となるため、これらのピークを検出することで各物体に対応する周波数を検出することができる。
Conventionally, an FMCW (Frequency Modulated Continuous Wave) type radar apparatus that can estimate the distance and speed of an object to be observed that is located within a range of several hundreds of meters or less from its own apparatus with a simple configuration compared to a pulse radar or the like. (Hereinafter referred to as FMCW radar device) is known. This FMCW radar apparatus measures the distance and relative velocity to an object from the frequency of an observation signal obtained by directly mixing a transmission signal and a reception signal.
In addition, when there are a plurality of objects, the observation signal includes a plurality of frequencies corresponding to each object. Therefore, the observation signal is analyzed to obtain a spectrum for each discrete frequency. Since the spectrum power reaches a peak (maximum value) at the discrete frequency corresponding to each object, the frequency corresponding to each object can be detected by detecting these peaks.
 しかしながら、スペクトルのパワーに対して適切な検出しきい値を設けないと、検出すべき物体に対応するピークが検出されない、又は、検出すべきではないピークを検出してしまう恐れがある。 However, unless an appropriate detection threshold is provided for the spectrum power, a peak corresponding to an object to be detected may not be detected, or a peak that should not be detected may be detected.
 そこで、予め検出すべき物体が無い状態でスペクトル波形を取得し、そのスペクトル波形を基に温度特性等を反映させた検出しきい値を設定する方法が知られている(例えば特許文献1参照)。
 また、まず、背景雑音等から設定した第1のしきい値でピークを検出し、その検出したピークのパワーに応じて第2のしきい値を設けて検出しきい値とする方法も知られている(例えば特許文献2参照)。
 また、CFAR(Constant False Alarm Rate)技術によって検出しきい値を設定する方法が知られている(例えば非特許文献1参照)。
Therefore, a method is known in which a spectrum waveform is acquired in the absence of an object to be detected in advance, and a detection threshold value that reflects temperature characteristics and the like is set based on the spectrum waveform (see, for example, Patent Document 1). .
A method is also known in which a peak is first detected with a first threshold value set from background noise and the like, and a second threshold value is provided according to the detected peak power to obtain a detection threshold value. (For example, refer to Patent Document 2).
In addition, a method of setting a detection threshold by a CFAR (Constant False Alarm Rate) technique is known (for example, see Non-Patent Document 1).
特開2007-155728号公報JP 2007-155728 A 国際公開第2005/059588号公報International Publication No. 2005/059588
 しかしながら、特許文献1に開示された従来技術では、例えばスペクトル波形として時間的に変化する穏やかな凸状の波形が存在すると、検出すべきでないピークを検出してしまうという課題がある。
 また、特許文献2に開示された従来技術では、一旦、検出すべきでないピークも検出した後、再度、しきい値による検出を行うため、演算時間及び演算メモリ等の演算資源を多く必要とするという課題がある。
 また、非特許文献1に開示された従来技術では、反射強度に差がある近接した複数の物体からのスペクトル波形から物体に対応するピークを検出するのが困難であり、検出可能とするためには多くの演算資源を必要とするという課題がある。
However, in the prior art disclosed in Patent Document 1, for example, if there is a gentle convex waveform that changes with time as a spectrum waveform, there is a problem that a peak that should not be detected is detected.
In addition, in the conventional technique disclosed in Patent Document 2, once a peak that should not be detected is detected, detection by a threshold is performed again, so that a large amount of calculation resources such as calculation time and calculation memory are required. There is a problem.
In addition, in the prior art disclosed in Non-Patent Document 1, it is difficult to detect a peak corresponding to an object from spectral waveforms from a plurality of adjacent objects having different reflection intensities. Has the problem of requiring a lot of computing resources.
 この発明は、上記のような課題を解決するためになされたもので、従来構成に対し、少ない演算資源で、誤検出を抑制することができるFMCWレーダ装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an FMCW radar apparatus that can suppress erroneous detection with a small amount of computation resources compared to the conventional configuration.
 この発明に係るFMCWレーダ装置は、送信信号を空間へ放射し、当該送信信号、及び当該送信信号が観測対象である物体により反射及び散乱されて受信された受信信号から観測信号を得る観測部と、観測部により得られた観測信号から離散周波数毎のスペクトルを得る周波数分析部と、周波数分析部により得られた離散周波数毎のスペクトルから、当該離散周波数毎のスペクトル平滑値を算出する平滑値算出部と、平滑値算出部により算出された離散周波数毎のスペクトル平滑値にしきい値係数を乗じることで、当該離散周波数毎の検出しきい値を算出するしきい値算出部と、周波数分析部により得られた離散周波数毎のスペクトルを、しきい値算出部により算出された当該離散周波数毎の検出しきい値と比較する比較部と、比較部による比較結果から、周波数分析部により得られた離散周波数毎のスペクトルのうち、スペクトルが極大値となる離散周波数を検出する極大値検出部と、極大値検出部による検出結果に基づいて、物体の距離及び速度を測定する距離速度測定部とを備えたものである。 The FMCW radar apparatus according to the present invention includes: an observation unit that radiates a transmission signal to space, and obtains an observation signal from the transmission signal and a reception signal received by reflection and scattering of the transmission signal by an object to be observed; , A frequency analysis unit that obtains a spectrum for each discrete frequency from the observation signal obtained by the observation unit, and a smooth value calculation that calculates a spectrum smoothing value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit A threshold value calculation unit that calculates a detection threshold value for each discrete frequency by multiplying a spectrum smoothing value for each discrete frequency calculated by the smoothing value calculation unit by a threshold coefficient, and a frequency analysis unit A comparison unit that compares the obtained spectrum for each discrete frequency with a detection threshold value for each discrete frequency calculated by the threshold value calculation unit, and a comparison unit. From the comparison result, out of the spectrum for each discrete frequency obtained by the frequency analysis unit, based on the detection result by the maximum value detection unit and the maximum value detection unit for detecting the discrete frequency at which the spectrum becomes the maximum value, the distance of the object And a distance / velocity measuring unit for measuring the velocity.
 この発明によれば、上記のように構成したので、従来構成に対し、少ない演算資源で、誤検出を抑制することができる。 According to the present invention, since it is configured as described above, it is possible to suppress erroneous detection with a smaller number of computing resources than in the conventional configuration.
この発明の実施の形態1に係るFMCWレーダ装置の構成例を示す図である。It is a figure which shows the structural example of the FMCW radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1における制御演算器の機能構成例を示す図である。It is a figure which shows the function structural example of the control arithmetic unit in Embodiment 1 of this invention. この発明の実施の形態1における制御演算器の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the control arithmetic unit in Embodiment 1 of this invention. この発明の実施の形態1における平滑値算出部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the smooth value calculation part in Embodiment 1 of this invention. 図5A~図5Cは、この発明の実施の形態1に係るFMCWレーダ装置の効果を説明する図である(FMCWレーダ装置の近くに面状反射物体が存在する場合)。5A to 5C are diagrams for explaining the effect of the FMCW radar apparatus according to Embodiment 1 of the present invention (when a planar reflective object is present near the FMCW radar apparatus). 図6A~図6Cは、この発明の実施の形態1に係るFMCWレーダ装置の効果を説明する図である(反射強度に差がある近接した複数の物体が存在する場合)。6A to 6C are diagrams for explaining the effect of the FMCW radar apparatus according to Embodiment 1 of the present invention (when there are a plurality of adjacent objects having different reflection intensities). 図7A、図7Bは、この発明の実施の形態1における制御演算器のハードウェア構成例を示す図であって、処理回路が専用のハードウェアである場合と処理回路がCPUである場合を示す図である。7A and 7B are diagrams showing an example of the hardware configuration of the control arithmetic unit according to the first embodiment of the present invention, showing a case where the processing circuit is dedicated hardware and a case where the processing circuit is a CPU. FIG.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るFMCWレーダ装置1の構成例を示す図である。
 FMCWレーダ装置1は、観測対象である物体の距離及び速度を推定するものである。このFMCWレーダ装置1は、図1に示すように、送信器11、受信器12、アナログデジタル変換器13、メモリ14及び制御演算器15を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of an FMCW radar apparatus 1 according to Embodiment 1 of the present invention.
The FMCW radar apparatus 1 estimates the distance and speed of an object to be observed. As shown in FIG. 1, the FMCW radar apparatus 1 includes a transmitter 11, a receiver 12, an analog / digital converter 13, a memory 14, and a control calculator 15.
 送信器11は、送信信号を空間へ放射するものである。この送信器11は、電圧生成回路111、電圧制御発振器112、分配回路113、増幅回路114及び送波用アンテナ115を有している。 The transmitter 11 emits a transmission signal to space. The transmitter 11 includes a voltage generation circuit 111, a voltage control oscillator 112, a distribution circuit 113, an amplification circuit 114, and a transmission antenna 115.
 電圧生成回路111は、制御演算器15の後述する制御部151による制御の下、既定の送信信号用の変調電圧を生成するものである。この電圧生成回路111により生成された変調電圧は、電圧制御発振器112へ出力される。 The voltage generation circuit 111 generates a predetermined modulation voltage for a transmission signal under the control of a control unit 151 described later of the control arithmetic unit 15. The modulation voltage generated by the voltage generation circuit 111 is output to the voltage controlled oscillator 112.
 電圧制御発振器112は、電圧生成回路111により生成された変調電圧に応じて送信信号を発生するものである。この電圧制御発振器112により発生された送信信号は、分配回路113へ出力される。 The voltage controlled oscillator 112 generates a transmission signal in accordance with the modulation voltage generated by the voltage generation circuit 111. The transmission signal generated by the voltage controlled oscillator 112 is output to the distribution circuit 113.
 分配回路113は、電圧制御発振器112により発生された送信信号を、増幅回路114及び受信器12の後述する混合器122へ分配出力するものである。 The distribution circuit 113 distributes and outputs the transmission signal generated by the voltage controlled oscillator 112 to a later-described mixer 122 of the amplifier circuit 114 and the receiver 12.
 増幅回路114は、分配回路113により分配出力された送信信号を増幅するものである。この増幅回路114により増幅された送信信号は、送波用アンテナ115へ出力される。 The amplification circuit 114 amplifies the transmission signal distributed and output by the distribution circuit 113. The transmission signal amplified by the amplifier circuit 114 is output to the transmission antenna 115.
 送波用アンテナ115は、増幅回路114により増幅された送信信号を電磁波として空間へ放射するものである。その後、空間へ放射された送信信号は、FMCWレーダ装置1の周辺(数百m以下の範囲)に存在する観測対象である物体により反射及び散乱され、その一部が受信信号としてFMCWレーダ装置1に戻る。 The transmission antenna 115 radiates the transmission signal amplified by the amplification circuit 114 to space as an electromagnetic wave. Thereafter, the transmission signal radiated to the space is reflected and scattered by an object to be observed existing around the FMCW radar apparatus 1 (a range of several hundred meters or less), and a part of the transmission signal is received as a received signal. Return to.
 受信器12は、空間からの受信信号を受信し、送信器11の分配回路113からの送信信号と当該受信信号とから観測信号を得るものである。この受信器12は、受波用アンテナ121、混合器122、増幅回路123及びフィルタ回路124を有している。 The receiver 12 receives a reception signal from the space, and obtains an observation signal from the transmission signal from the distribution circuit 113 of the transmitter 11 and the reception signal. The receiver 12 includes a receiving antenna 121, a mixer 122, an amplifier circuit 123, and a filter circuit 124.
 受波用アンテナ121は、送波用アンテナ115により放射された送信信号が物体により反射及び散乱されて戻ってきた受信信号を受信するものである。この受波用アンテナ121により受信された受信信号は、混合器122へ出力される。 The reception antenna 121 receives a reception signal that is returned by the transmission signal radiated from the transmission antenna 115 being reflected and scattered by the object. The received signal received by the receiving antenna 121 is output to the mixer 122.
 混合器122は、受波用アンテナ121により受信された受信信号と分配回路113により分配された送信信号とを混合(ミキシング)して観測信号を生成するものである。この混合器122により生成された観測信号は、増幅回路123へ出力される。 The mixer 122 mixes the reception signal received by the receiving antenna 121 and the transmission signal distributed by the distribution circuit 113 to generate an observation signal. The observation signal generated by the mixer 122 is output to the amplifier circuit 123.
 増幅回路123は、混合器122により生成された観測信号を増幅するものである。この増幅回路123により増幅された観測信号は、フィルタ回路124へ出力される。 The amplification circuit 123 amplifies the observation signal generated by the mixer 122. The observation signal amplified by the amplifier circuit 123 is output to the filter circuit 124.
 フィルタ回路124は、増幅回路123により増幅された観測信号から不要な周波数成分を抑圧するものである。このフィルタ回路132により不要な周波数成分が抑圧された観測信号は、アナログデジタル変換器13へ出力される。 The filter circuit 124 suppresses unnecessary frequency components from the observation signal amplified by the amplifier circuit 123. An observation signal in which unnecessary frequency components are suppressed by the filter circuit 132 is output to the analog-to-digital converter 13.
 アナログデジタル変換器13は、制御演算器15の後述する制御部151による制御の下、受信器12(フィルタ回路124)からの観測信号(アナログ信号)をデジタル信号(デジタル電圧データ)に変換するものである。このアナログデジタル変換器13によりデジタル信号に変換された観測信号は、メモリ14に出力される。 The analog-digital converter 13 converts an observation signal (analog signal) from the receiver 12 (filter circuit 124) into a digital signal (digital voltage data) under the control of a control unit 151 (to be described later) of the control arithmetic unit 15. It is. The observation signal converted into a digital signal by the analog-digital converter 13 is output to the memory 14.
 メモリ14は、制御演算器15の後述する制御部151による制御の下、アナログデジタル変換器13によりデジタル信号に変換された観測信号を記憶するものである。なお、メモリ14としては、例えば、RAM(Random Access Memory)が該当する。 The memory 14 stores an observation signal converted into a digital signal by the analog-to-digital converter 13 under the control of a control unit 151 (to be described later) of the control arithmetic unit 15. As the memory 14, for example, a RAM (Random Access Memory) is applicable.
 なお、送信器11、受信器12、アナログデジタル変換器13及びメモリ14は、送信信号を空間へ放射し、当該送信信号、及び当該送信信号が観測対象である物体により反射及び散乱されて受信された受信信号から観測信号を得る観測部16を構成する。この観測部16の構成及び動作は、基本的に、従来のFMCWレーダ装置の構成及び動作と同様である。 The transmitter 11, the receiver 12, the analog-digital converter 13, and the memory 14 radiate a transmission signal to space, and the transmission signal and the transmission signal are reflected and scattered by an object to be observed and received. An observation unit 16 that obtains an observation signal from the received signal is configured. The configuration and operation of the observation unit 16 are basically the same as the configuration and operation of the conventional FMCW radar apparatus.
 制御演算器15は、FMCWレーダ装置1の各部を制御し、また、メモリ14に記憶された観測信号を用いて、観測対象である物体の距離及び速度を測定するものである。この制御演算器15は、図2に示すように、制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157を有している。 The control arithmetic unit 15 controls each part of the FMCW radar apparatus 1 and measures the distance and speed of the object to be observed using the observation signal stored in the memory 14. As shown in FIG. 2, the control calculator 15 includes a control unit 151, a frequency analysis unit 152, a smooth value calculation unit 153, a threshold value calculation unit 154, a comparison unit 155, a maximum value detection unit 156, and a distance speed measurement unit. 157.
 制御部151は、送信器11の電圧生成回路111、アナログデジタル変換器13、メモリ14、及び制御演算器15の各部(周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157)の動作タイミング等を制御するものである。 The control unit 151 includes the voltage generation circuit 111 of the transmitter 11, the analog-digital converter 13, the memory 14, and each unit of the control arithmetic unit 15 (frequency analysis unit 152, smooth value calculation unit 153, threshold value calculation unit 154, comparison Unit 155, maximum value detection unit 156, and distance speed measurement unit 157).
 周波数分析部152は、制御部151による制御の下、メモリ14に記憶された観測信号を読出して分析することで、離散周波数毎のスペクトルを得るものである。この周波数分析部152により得られた離散周波数毎のスペクトルを示すデータは、平滑値算出部153、比較部155及び極大値検出部156へ出力される。 The frequency analysis unit 152 obtains a spectrum for each discrete frequency by reading and analyzing the observation signal stored in the memory 14 under the control of the control unit 151. Data indicating the spectrum for each discrete frequency obtained by the frequency analysis unit 152 is output to the smooth value calculation unit 153, the comparison unit 155, and the maximum value detection unit 156.
 平滑値算出部153は、制御部151による制御の下、周波数分析部152により得られた離散周波数毎のスペクトルから、当該離散周波数毎のスペクトル平滑値を算出するものである。この平滑値算出部153は、周波数分析部152により得られた離散周波数毎のスペクトルから、平滑フィルタ係数を用いた帰還型フィルタにより、当該離散周波数毎のスペクトル平滑値を算出する。この平滑値算出部153により算出された離散周波数毎のスペクトル平滑値を示すデータは、しきい値算出部154へ出力される。 The smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 under the control of the control unit 151. The smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 by using a feedback filter using a smooth filter coefficient. Data indicating the spectrum smooth value for each discrete frequency calculated by the smooth value calculation unit 153 is output to the threshold value calculation unit 154.
 しきい値算出部154は、制御部151による制御の下、平滑値算出部153により算出された離散周波数毎のスペクトル平滑値にしきい値係数を乗じることで、当該離散周波数毎の検出しきい値を算出するものである。このしきい値算出部154により算出された離散周波数毎の検出しきい値を示すデータは、比較部155へ出力される。 The threshold calculation unit 154 multiplies the spectrum smooth value for each discrete frequency calculated by the smooth value calculation unit 153 by a threshold coefficient under the control of the control unit 151, thereby detecting the detection threshold for each discrete frequency. Is calculated. Data indicating the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154 is output to the comparison unit 155.
 比較部155は、制御部151による制御の下、周波数分析部152により得られた離散周波数毎のスペクトルを、しきい値算出部154により算出された当該離散周波数毎の検出しきい値と比較するものである。この比較部155による比較結果を示すデータは、極大値検出部156へ出力される。 The comparison unit 155 compares the spectrum for each discrete frequency obtained by the frequency analysis unit 152 with the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154 under the control of the control unit 151. Is. Data indicating the comparison result by the comparison unit 155 is output to the maximum value detection unit 156.
 極大値検出部156は、制御部151による制御の下、比較部155による比較結果から、周波数分析部152により得られた離散周波数毎のスペクトルのうち、スペクトルが極大値となる離散周波数を検出するものである。この際、極大値検出部156は、連続する3つの離散周波数のうち、中央の離散周波数においてスペクトルが検出しきい値より大きく、且つ、当該中央の離散周波数のスペクトルが両隣の離散周波数のスペクトルよりも大きい場合に、当該中央の離散周波数を極大値として検出する。この極大値検出部156による検出結果を示すデータは、距離速度測定部157へ出力される。 Under the control of the control unit 151, the maximum value detection unit 156 detects a discrete frequency at which the spectrum has a maximum value from the comparison results of the comparison unit 155 for each discrete frequency obtained by the frequency analysis unit 152. Is. At this time, the local maximum detection unit 156 has a spectrum that is larger than the detection threshold at the central discrete frequency among the three consecutive discrete frequencies, and the spectrum of the central discrete frequency is higher than the spectrum of the adjacent discrete frequencies. Is larger, the center discrete frequency is detected as a maximum value. Data indicating the detection result by the maximum value detection unit 156 is output to the distance speed measurement unit 157.
 距離速度測定部157は、制御部151による制御の下、極大値検出部156による検出結果に基づいて、公知のFMCWレーダの原理に基づいて、観測対象である物体の距離及び速度を測定するものである。 The distance / velocity measurement unit 157 measures the distance and speed of an object to be observed based on the detection result of the maximum value detection unit 156 and based on the known FMCW radar principle under the control of the control unit 151. It is.
 次に、実施の形態1における制御演算器15の動作例について、図2~4を用いて説明する。なお、制御演算器15の各部(周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157)は、制御部151により動作タイミング等が制御されている。 Next, an operation example of the control arithmetic unit 15 in the first embodiment will be described with reference to FIGS. In addition, each part (frequency analysis part 152, smooth value calculation part 153, threshold value calculation part 154, comparison part 155, maximum value detection part 156, and distance speed measurement part 157) of the control calculator 15 is operated by the control part 151. Timing etc. are controlled.
 制御演算器15の動作では、図3に示すように、まず、周波数分析部152は、メモリ14に記憶された観測信号を読出して分析することで、離散周波数毎のスペクトルを得る(ステップST301)。この際、周波数分析部152は、観測信号から、例えば公知のFFT(Fast Fourier Transform)アルゴリズムによって、離散周波数毎のスペクトルを得る。 In the operation of the control arithmetic unit 15, as shown in FIG. 3, first, the frequency analysis unit 152 reads out and analyzes the observation signal stored in the memory 14, thereby obtaining a spectrum for each discrete frequency (step ST301). . At this time, the frequency analysis unit 152 obtains a spectrum for each discrete frequency from the observation signal by, for example, a known FFT (Fast Fourier Transform) algorithm.
 次いで、平滑値算出部153は、周波数分析部152により得られた離散周波数毎のスペクトルから、当該離散周波数毎のスペクトル平滑値を算出する(ステップST302)。以下、平滑値算出部153による平滑値算出処理について図4に示す例を参照しながら説明する。 Next, the smooth value calculation unit 153 calculates a spectrum smooth value for each discrete frequency from the spectrum for each discrete frequency obtained by the frequency analysis unit 152 (step ST302). Hereinafter, the smooth value calculation processing by the smooth value calculation unit 153 will be described with reference to the example shown in FIG.
 平滑値算出部153では、図4に示すように、まず、平滑値算出対象である離散周波数の番号bを、周波数分析部152により得られたスペクトルのうちの最も低い離散周波数に対応する番号1に設定する(ステップST401)。 In the smooth value calculation unit 153, as shown in FIG. 4, first, the number b of the discrete frequency that is the smooth value calculation target is set to the number 1 corresponding to the lowest discrete frequency in the spectrum obtained by the frequency analysis unit 152. (Step ST401).
 次いで、平滑値算出部153は、番号b(=1)の離散周波数のスペクトル平滑値Ps(b)を、番号bの離散周波数のスペクトルP(b)及び既定の平滑フィルタ係数α1を用いて次式(1)から算出する(ステップST402)。
Ps(b)=α1×P(b)        (1)
Next, the smoothing value calculation unit 153 uses the discrete frequency spectrum P (b) of the number b (= 1) and the predetermined smoothing filter coefficient α1 as the smoothing coefficient Ps (b) of the discrete frequency of the number b. It calculates from Formula (1) (step ST402).
Ps (b) = α1 × P (b) (1)
 次いで、平滑値算出部153は、番号bの値をインクリメントする(ステップST403)。 Next, the smooth value calculation unit 153 increments the value of number b (step ST403).
 次いで、平滑値算出部153は、番号bが、周波数分析部152により得られたスペクトルのうちの最も高い離散周波数の番号Kよりも大きいかを判断する(ステップST404)。このステップST404において、平滑値算出部153が、番号bが番号Kよりも大きいと判断した場合には、シーケンスは終了する。 Next, the smooth value calculation unit 153 determines whether the number b is larger than the highest discrete frequency number K in the spectrum obtained by the frequency analysis unit 152 (step ST404). In step ST404, when the smooth value calculation unit 153 determines that the number b is larger than the number K, the sequence ends.
 一方、ステップST404において、平滑値算出部153は、番号bが番号Kより大きくはないと判断した場合には、番号bの離散周波数のスペクトルP(b)が、既に算出されている番号b-1の離散周波数のスペクトル平滑値Ps(b-1)よりも大きいかを判断する(ステップST405)。 On the other hand, in step ST404, when the smooth value calculation unit 153 determines that the number b is not greater than the number K, the spectrum P (b) of the discrete frequency with the number b is already calculated with the number b−. It is determined whether it is larger than the spectrum smoothing value Ps (b-1) of 1 discrete frequency (step ST405).
 このステップST405において、平滑値算出部153は、スペクトルP(b)が1つ前の離散周波数のスペクトル平滑値Ps(b-1)より大きいと判断した場合には、平滑フィルタ係数αsを平滑フィルタ係数αuに設定する(ステップST406)。なお、平滑フィルタ係数αuは、スペクトル波形の立上がり付近のスペクトルに対する平滑の度合いを決めるフィルタ係数であり、例えば0.5≦αu≦1の値に設定される。この平滑フィルタ係数αuは、例えば、検出すべき物体が存在する状態数例について実際のデータを一旦取得し、そのデータから得られる周波数スペクトルを利用して設定(調整)する。 In step ST405, when the smooth value calculation unit 153 determines that the spectrum P (b) is larger than the spectrum smooth value Ps (b-1) of the previous discrete frequency, the smoothing filter coefficient αs is converted to the smoothing filter coefficient αs. The coefficient αu is set (step ST406). The smoothing filter coefficient αu is a filter coefficient that determines the degree of smoothness of the spectrum near the rising edge of the spectrum waveform, and is set to a value of 0.5 ≦ αu ≦ 1, for example. The smoothing filter coefficient αu is set (adjusted) using the frequency spectrum obtained from the actual data once for example of the number of states in which the object to be detected exists.
 一方、ステップST405において、平滑値算出部153は、スペクトルP(b)が1つ前のスペクトル平滑値Ps(b-1)より大きくはないと判断した場合には、平滑フィルタ係数αsを平滑フィルタ係数αdに設定する(ステップST407)。なお、平滑フィルタ係数αdは、スペクトル波形の立下り付近のスペクトルに対する平滑の度合いを決めるフィルタ係数であり、例えば0≦αd<0.5の値に設定される。この平滑フィルタ係数αdは、例えば、検出すべき物体が存在する状態数例について実際のデータを一旦取得し、そのデータから得られる周波数スペクトルを利用して設定(調整)する。 On the other hand, in step ST405, when the smooth value calculation unit 153 determines that the spectrum P (b) is not larger than the previous spectrum smooth value Ps (b-1), the smoothing filter coefficient αs is converted to the smoothing filter coefficient αs. The coefficient αd is set (step ST407). The smoothing filter coefficient αd is a filter coefficient that determines the degree of smoothness of the spectrum near the falling edge of the spectrum waveform, and is set to a value of 0 ≦ αd <0.5, for example. The smoothing filter coefficient αd is set (adjusted) by, for example, temporarily acquiring actual data for an example of the number of states in which an object to be detected exists and using a frequency spectrum obtained from the data.
 平滑フィルタ係数αsの設定後、平滑値算出部153は、番号bの離散周波数のスペクトル平滑値Ps(b)を、番号b-1の離散周波数のスペクトル平滑値Ps(b-1)、番号bの離散周波数のスペクトルP(b)及び平滑フィルタ係数αsを用いて次式(2)の帰還型フィルタから算出する(ステップST408)。
Ps(b)=αs×Ps(b-1)+(1-αs)×P(b)   (2)
After setting the smoothing filter coefficient αs, the smoothing value calculation unit 153 sets the discrete frequency spectrum smoothing value Ps (b) of number b, the discrete frequency spectral smoothing value Ps (b-1) of number b-1, and the number b. Is calculated from the feedback filter of the following equation (2) using the discrete frequency spectrum P (b) and the smoothing filter coefficient αs (step ST408).
Ps (b) = αs × Ps (b−1) + (1−αs) × P (b) (2)
 ここで、上述したように、平滑フィルタ係数αuはスペクトル波形の立上がり付近のスペクトルに対する平滑の度合いを決めるフィルタ係数であり、平滑フィルタ係数αdはスペクトル波形の立下り付近のスペクトルに対する平滑の度合いを決めるフィルタ係数である。そして、平滑フィルタ係数αuを0<αu≦1の範囲で大きな値(例えば0.5≦αu≦1)とすることで、スペクトル平滑値の波形は立上がりが緩やかになり、スペクトル平滑値は元のスペクトルより値が小さくなる。その結果、立上がり後に存在するはずの極大点では、スペクトルよりもスペクトル平滑値の方が必ず小さくなり、このスペクトル平滑値にしきい値係数を乗じて求めた検出しきい値を用いることで、極大点の検出が容易となる。一方、スペクトル波形の立下り付近では、平滑フィルタ係数の値が大きいままでは、スペクトル平滑値が元のスペクトルより値が大きい範囲が拡大し、ピーク検出が困難になる。そこで、これを避けるために、平滑フィルタ係数αdは0≦αd<1の範囲で小さな値(例えば0≦αd<0.5)とする。 Here, as described above, the smoothing filter coefficient αu is a filter coefficient that determines the degree of smoothing for the spectrum near the rising edge of the spectrum waveform, and the smoothing filter coefficient αd determines the degree of smoothing for the spectrum near the falling edge of the spectrum waveform. It is a filter coefficient. Then, by setting the smoothing filter coefficient αu to a large value (for example, 0.5 ≦ αu ≦ 1) in the range of 0 <αu ≦ 1, the waveform of the spectrum smoothing value rises gradually, and the spectrum smoothing value is The value is smaller than the spectrum. As a result, at the maximum point that should exist after the rise, the spectrum smooth value is always smaller than the spectrum, and by using the detection threshold obtained by multiplying this spectrum smooth value by the threshold coefficient, the maximum point is obtained. Is easy to detect. On the other hand, in the vicinity of the falling edge of the spectrum waveform, if the value of the smoothing filter coefficient remains large, the range in which the spectrum smooth value is larger than that of the original spectrum is expanded, and peak detection becomes difficult. Therefore, in order to avoid this, the smoothing filter coefficient αd is set to a small value (for example, 0 ≦ αd <0.5) in the range of 0 ≦ αd <1.
 また式(2)において、番号b-1の離散周波数のスペクトル平滑値Ps(b-1)に乗じる平滑フィルタ係数をαsとし、番号bの離散周波数のスペクトルP(b)に乗じる平滑フィルタ係数を(1-αs)とすることで、平滑結果が不安定にならないようにしている。
 以上の処理により、平滑値算出部153は、離散周波数毎のスペクトル平滑値Ps(b)を算出することができる。
In equation (2), the smoothing filter coefficient to be multiplied by the discrete frequency spectrum smoothing value Ps (b-1) of number b-1 is αs, and the smoothing filter coefficient to be multiplied by the discrete frequency spectrum P (b) of number b is By setting (1-αs), the smoothing result is prevented from becoming unstable.
Through the above processing, the smooth value calculation unit 153 can calculate the spectrum smooth value Ps (b) for each discrete frequency.
 再び、図3に示す制御演算器15の動作説明に戻り、しきい値算出部154は、平滑値算出部153により算出された離散周波数毎のスペクトル平滑値にしきい値係数を乗じることで、当該離散周波数毎の検出しきい値を算出する(ステップST303)。すなわち、しきい値算出部154は、離散周波数毎の検出しきい値Th(b)を、離散周波数毎のスペクトル平滑値Ps(b)及びしきい値係数γを用いて次式(3)から算出する。なお、しきい値係数γは、例えば、検出すべき物体が存在する状態数例について実際のデータを一旦取得し、そのデータから得られる周波数スペクトルを利用して設定(調整)する。
Th(b)=γ×Ps(b)        (3)
Returning to the description of the operation of the control arithmetic unit 15 shown in FIG. 3 again, the threshold value calculation unit 154 multiplies the spectrum smoothing value for each discrete frequency calculated by the smoothing value calculation unit 153 by the threshold coefficient, A detection threshold value for each discrete frequency is calculated (step ST303). That is, the threshold value calculation unit 154 calculates the detection threshold value Th (b) for each discrete frequency from the following equation (3) using the spectrum smoothing value Ps (b) and the threshold coefficient γ for each discrete frequency. calculate. Note that the threshold coefficient γ is set (adjusted) using, for example, frequency data obtained from the actual data once for a number of states in which there are objects to be detected.
Th (b) = γ × Ps (b) (3)
 なお、しきい値係数γに代えて、離散周波数毎に値を変化させたしきい値係数γ(b)を用いてもよい。このしきい値係数γ(b)は、例えば、周波数が高い(番号bが大きい)ほど遠い距離の物体である可能性が高く、遠い距離の物体ほど受信される電磁波の強度が小さくなるため、番号bが大きいほど値が小さくなるように設定(調整)してもよい。また、図5の例のように面状反射物体が存在し、予めFMCWレーダ装置1と面状反射物体との距離(間隔)が分かっている場合、FMCWレーダ装置1の移動速度に応じた凸状パターンをある程度予想できるため、そのパターンをもとにしきい値係数γ(b)を変化させるように設定(調整)してもよい。また、上記2つの設定方法を組み合わせてしきい値係数γ(b)を設定(調整)してもよい。 In place of the threshold coefficient γ, a threshold coefficient γ (b) whose value is changed for each discrete frequency may be used. The threshold coefficient γ (b) is, for example, more likely to be an object at a longer distance as the frequency is higher (number b is larger), and the intensity of the received electromagnetic wave is smaller at an object at a longer distance. You may set (adjust) so that a value may become small, so that b is large. In addition, when a planar reflecting object exists and the distance (interval) between the FMCW radar apparatus 1 and the planar reflecting object is known in advance as in the example of FIG. 5, the convexity corresponding to the moving speed of the FMCW radar apparatus 1 is obtained. Since the shape pattern can be predicted to some extent, the threshold coefficient γ (b) may be set (adjusted) based on the pattern. The threshold coefficient γ (b) may be set (adjusted) by combining the above two setting methods.
 次いで、比較部155は、周波数分析部152により得られた離散周波数毎のスペクトルを、しきい値算出部154により算出された当該離散周波数毎の検出しきい値と比較する。次いで、極大値検出部156は、比較部155による比較結果から、周波数分析部152により得られた離散周波数毎のスペクトルのうち、スペクトルが極大値となる離散周波数を検出する。以下、比較部155及び極大値検出部156による処理の一例について図3を参照しながら説明する。 Next, the comparison unit 155 compares the spectrum for each discrete frequency obtained by the frequency analysis unit 152 with the detection threshold value for each discrete frequency calculated by the threshold value calculation unit 154. Next, the maximum value detection unit 156 detects, from the comparison result by the comparison unit 155, a discrete frequency at which the spectrum has a maximum value among the spectra for each discrete frequency obtained by the frequency analysis unit 152. Hereinafter, an example of processing performed by the comparison unit 155 and the maximum value detection unit 156 will be described with reference to FIG.
 まず、比較部155は、比較対象である離散周波数の番号bを、周波数分析部152により得られたスペクトルのうちの最も低い離散周波数に対応する番号1に設定する(ステップST304)。 First, the comparison unit 155 sets the number b of the discrete frequency to be compared to the number 1 corresponding to the lowest discrete frequency in the spectrum obtained by the frequency analysis unit 152 (step ST304).
 次いで、比較部155は、周波数分析部152により得られたスペクトルP(b)が、しきい値算出部154により算出された検出しきい値Th(b)より大きいかを判断する(ステップST305)。 Next, comparison section 155 determines whether spectrum P (b) obtained by frequency analysis section 152 is greater than detection threshold Th (b) calculated by threshold calculation section 154 (step ST305). .
 このステップST305において、比較部155は、スペクトルP(b)が検出しきい値Th(b)より大きいと判断した場合には、スペクトルP(b)がスペクトルP(b-1)及びスペクトルP(b+1)より大きいかを判断する(ステップST306)。 In step ST305, when the comparison unit 155 determines that the spectrum P (b) is larger than the detection threshold Th (b), the spectrum P (b) is converted into the spectrum P (b-1) and the spectrum P (b). b + 1) is determined (step ST306).
 このステップST306において、比較部155がスペクトルP(b)がスペクトルP(b-1)及びスペクトルP(b+1)より大きいと判断した場合には、極大値検出部156は番号bの離散周波数を極大値として検出する(ステップST307)。その後、シーケンスはステップST308に進む。 In step ST306, when the comparison unit 155 determines that the spectrum P (b) is larger than the spectrum P (b-1) and the spectrum P (b + 1), the maximum value detection unit 156 sets the discrete frequency of number b to the maximum. It detects as a value (step ST307). Thereafter, the sequence proceeds to step ST308.
 一方、ステップST305において、比較部155がスペクトルP(b)が検出しきい値Th(b)より大きくはないと判断した場合、また、ステップST306において、比較部155がスペクトルP(b)がスペクトルP(b-1)及びスペクトルP(b+1)より大きくはないと判断した場合には、シーケンスはステップST308に進む。
 そして、ステップST308では、比較部155は、比較対象である離散周波数の番号bをインクリメントする。
On the other hand, when the comparison unit 155 determines in step ST305 that the spectrum P (b) is not larger than the detection threshold Th (b), or in step ST306, the comparison unit 155 determines that the spectrum P (b) is the spectrum. If it is determined that it is not larger than P (b−1) and spectrum P (b + 1), the sequence proceeds to step ST308.
In step ST308, the comparison unit 155 increments the number b of the discrete frequency to be compared.
 次いで、比較部155は、番号bが、周波数分析部152により得られたスペクトルのうちの最も高い離散周波数の番号Kよりも大きいかを判断する(ステップST309)。このステップST309において、比較部155が番号bが番号Kよりも大きくはないと判断した場合には、シーケンスはステップST305に戻り、上記の処理を繰り返す。 Next, the comparison unit 155 determines whether the number b is larger than the number K of the highest discrete frequency in the spectrum obtained by the frequency analysis unit 152 (step ST309). In step ST309, when the comparison unit 155 determines that the number b is not greater than the number K, the sequence returns to step ST305 and repeats the above processing.
 一方、ステップST309において、比較部155が番号bが番号Kより大きいと判断した場合には、距離速度測定部157は、極大値検出部156による検出結果(極大値である離散周波数)から、公知のFMCWレーダの原理に基づいて、観測対象である物体の距離及び速度を測定する(ステップST310)。 On the other hand, if the comparison unit 155 determines in step ST309 that the number b is greater than the number K, the distance / velocity measurement unit 157 knows from the detection result (the discrete frequency that is the maximum value) by the maximum value detection unit 156. Based on the principle of the FMCW radar, the distance and speed of the object to be observed are measured (step ST310).
 次に、実施の形態1に係るFMCWレーダ装置1の効果について図5,6を用いて説明する。なお図5,6において、横軸は離散周波数を示し、縦軸はスペクトルのパワーを示している。
 例えばFMCWレーダ装置1の近くに路面のような面状反射物体が存在する場合、周波数分析部152により得られる離散周波数のスペクトルは、図5A~図5Cに示される実線のようになる。但し、FMCWレーダ装置1の移動速度によってスペクトル波形の凸状のパターンは時間的に変化する。
Next, the effect of the FMCW radar apparatus 1 according to the first embodiment will be described with reference to FIGS. 5 and 6, the horizontal axis indicates the discrete frequency, and the vertical axis indicates the spectrum power.
For example, when a planar reflecting object such as a road surface exists in the vicinity of the FMCW radar apparatus 1, the spectrum of the discrete frequency obtained by the frequency analysis unit 152 is as shown by a solid line in FIGS. 5A to 5C. However, the convex pattern of the spectrum waveform changes with time depending on the moving speed of the FMCW radar apparatus 1.
 そして、図5Aは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、従来技術の一つであるCA(Cell Averaging)-CFARを適用したものである。この図5Aにおいて、点線は、8つの離散周波数を参照範囲としてその総和を算出した結果を示し、白抜き破線は、その総和にしきい値係数0.6を乗じた検出しきい値を示している。
 この場合、検出する必要がない緩やかな凸状部分で検出しきい値を超えるスペクトルは無く、不要な検出はされない。
FIG. 5A shows a case where CA (Cell Averaging) -CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 5A, a dotted line shows the result of calculating the sum of eight discrete frequencies as a reference range, and a white broken line shows a detection threshold value obtained by multiplying the sum by a threshold coefficient 0.6. .
In this case, there is no spectrum that exceeds the detection threshold in a gentle convex portion that does not need to be detected, and unnecessary detection is not performed.
 また、図5Bは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、従来技術の一つであるOS(Ordered Statistics)-CFARを適用したものである。この図5Bにおいて、点線は、8つの離散周波数を参照範囲としてそのうちの値の小さい方から4番目のスペクトルを示し、白抜き破線は、そのスペクトルにしきい値係数4.5を乗じた検出しきい値を示している。
 この場合、検出する必要がない緩やかな凸状部分で検出しきい値を超えるスペクトルは無く、不要な検出はされない。但し、離散周波数毎に8つのスペクトルを昇順に並び替える必要があるため、多くの演算資源が必要になる。
Further, FIG. 5B is obtained by applying Ordered Statistics (OS) -CFAR, which is one of the conventional techniques, to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 5B, a dotted line indicates the fourth spectrum from the smaller value of eight discrete frequencies as a reference range, and a white broken line indicates a detection threshold obtained by multiplying the spectrum by a threshold coefficient 4.5. The value is shown.
In this case, there is no spectrum that exceeds the detection threshold in a gentle convex portion that does not need to be detected, and unnecessary detection is not performed. However, since it is necessary to rearrange the eight spectra for each discrete frequency in ascending order, a lot of calculation resources are required.
 一方、図5Cは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、平滑値算出部153によりスペクトル平滑値を算出した場合を示している。この図5Cにおいて、点線は、平滑フィルタ係数α1=0.5、平滑フィルタ係数αu=0.9及び平滑フィルタ係数αd=0.1として算出したスペクトル平滑値を示し、白抜き破線は、そのスペクトル平滑値にしきい値係数γ=4を乗じた検出しきい値を示している。
 この場合、図5A及び図5Bと同様に、検出する必要がない緩やかな凸状部分で検出しきい値を超えるスペクトルは無く、不要な検出はされない。また、平滑値算出部153による平滑値算出処理は例えば図4に示した通りであり、OS-CFARを適用した場合より少ない演算資源で処理を行うことができる。
On the other hand, FIG. 5C shows a case where the smoothed value calculation unit 153 calculates the spectrum smooth value for the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 5C, the dotted line indicates the spectrum smooth value calculated with the smoothing filter coefficient α1 = 0.5, the smoothing filter coefficient αu = 0.9, and the smoothing filter coefficient αd = 0.1, and the white broken line indicates the spectrum. The detection threshold value obtained by multiplying the smooth value by the threshold coefficient γ = 4 is shown.
In this case, as in FIG. 5A and FIG. 5B, there is no spectrum exceeding the detection threshold in a gentle convex portion that does not need to be detected, and unnecessary detection is not performed. Further, the smooth value calculation processing by the smooth value calculation unit 153 is as shown in FIG. 4, for example, and the processing can be performed with fewer calculation resources than when OS-CFAR is applied.
 また、距離の差が小さく、手前側の物体の方が電波の反射が弱く受信信号の強度が低い2つの物体が存在する場合、周波数分析部152により得られる離散周波数のスペクトルは、図6A~図6Cに示される実線のようになる。また、2つの物体に対応するピークの周波数を符号601,602で示している。 In addition, when there are two objects having a smaller distance difference and an object on the near side having a lower radio wave reflection and lower received signal intensity, the spectrum of the discrete frequency obtained by the frequency analysis unit 152 is shown in FIG. It becomes like the solid line shown in FIG. 6C. The peak frequencies corresponding to the two objects are denoted by reference numerals 601 and 602.
 そして、図6Aは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、従来技術の一つであるCA-CFARを適用したものである。この図6Aにおいて、点線は、8つの離散周波数を参照範囲としてその総和を算出した結果を示し、白抜き破線は、その総和にしきい値係数0.6を乗じた検出しきい値を示している。
 この場合、手前側の物体のピークに対しては検出しきい値が高く、検出が困難となることが分かる。
FIG. 6A shows a case where CA-CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 6A, a dotted line indicates a result of calculating the sum of eight discrete frequencies as a reference range, and a white broken line indicates a detection threshold value obtained by multiplying the sum by a threshold coefficient 0.6. .
In this case, it can be seen that the detection threshold is high for the peak of the object on the near side, making detection difficult.
 また、図6Bは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、従来技術の一つであるOS-CFARを適用したものである。この図6Bにおいて、点線は、8つの離散周波数を参照範囲としてそのうちの値の小さい方から4番目のスペクトルを示し、白抜き破線は、そのスペクトルにしきい値係数4.5を乗じた検出しきい値を示している。
 この場合、2つの物体の両方を検出することができる。但し、離散周波数毎に8つのスペクトルを昇順に並び替える必要があるため、多くの演算資源が必要になる。
FIG. 6B shows a case where OS-CFAR, which is one of the conventional techniques, is applied to the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 6B, a dotted line indicates the fourth spectrum from the smaller value of eight discrete frequencies as a reference range, and a white broken line indicates a detection threshold obtained by multiplying the spectrum by a threshold coefficient 4.5. The value is shown.
In this case, both two objects can be detected. However, since it is necessary to rearrange the eight spectra for each discrete frequency in ascending order, a lot of calculation resources are required.
 一方、図6Cは、周波数分析部152により得られた離散周波数毎のスペクトル(実線)に対し、平滑値算出部153によりスペクトル平滑値を算出した場合を示している。この図6Cにおいて、点線は、平滑フィルタ係数α1=0.5、平滑フィルタ係数αu=0.9及び平滑フィルタ係数αd=0.1として算出したスペクトル平滑値を示し、白抜き破線は、そのスペクトル平滑値にしきい値係数γ=4を乗じた検出しきい値を示している。
 この場合、2つの物体の両方を検出することができる。また、平滑値算出部153による平滑値算出処理は例えば図4に示した通りであり、OS-CFARを適用した場合より少ない演算資源で処理を行うことができる。
On the other hand, FIG. 6C shows a case where the smoothed value calculation unit 153 calculates the spectrum smooth value for the spectrum (solid line) for each discrete frequency obtained by the frequency analysis unit 152. In FIG. 6C, the dotted line indicates the spectrum smooth value calculated with the smoothing filter coefficient α1 = 0.5, the smoothing filter coefficient αu = 0.9, and the smoothing filter coefficient αd = 0.1, and the white broken line indicates the spectrum. The detection threshold value obtained by multiplying the smooth value by the threshold coefficient γ = 4 is shown.
In this case, both two objects can be detected. Further, the smooth value calculation processing by the smooth value calculation unit 153 is as shown in FIG. 4, for example, and the processing can be performed with fewer calculation resources than when OS-CFAR is applied.
 以上のように、この実施の形態1によれば、送信信号を空間へ放射し、当該送信信号、及び当該送信信号が観測対象である物体により反射及び散乱されて受信された受信信号から観測信号を得る観測部16と、観測部16により得られた観測信号から離散周波数毎のスペクトルを得る周波数分析部152と、周波数分析部152により得られた離散周波数毎のスペクトルから、当該離散周波数毎のスペクトル平滑値を算出する平滑値算出部153と、平滑値算出部153により算出された離散周波数毎のスペクトル平滑値にしきい値係数を乗じることで、当該離散周波数毎の検出しきい値を算出するしきい値算出部154と、周波数分析部152により得られた離散周波数毎のスペクトルを、しきい値算出部154により算出された当該離散周波数毎の検出しきい値と比較する比較部155と、比較部155による比較結果から、周波数分析部152により得られた離散周波数毎のスペクトルのうち、スペクトルが極大値となる離散周波数を検出する極大値検出部156と、極大値検出部156による検出結果に基づいて、上記物体の距離及び速度を測定する距離速度測定部157とを備えたので、従来構成に対し、少ない演算資源で、誤検出を抑制することができる。このように、元のスペクトル波形の変化に応じて検出しきい値を設定することで、少ない演算資源で、時間的に変化する緩やかな凸状のスペクトル波形において検出すべきでないピークを検出することはなく、また、反射強度に差がある近接した複数物体からのスペクトル波形から物体に対応するピークを検出することができる。 As described above, according to the first embodiment, a transmission signal is radiated to a space, and an observation signal is received from the transmission signal and a reception signal received by being reflected and scattered by an object to be observed. From the observation signal obtained by the observation unit 16, the frequency analysis unit 152 for obtaining a spectrum for each discrete frequency from the observation signal obtained by the observation unit 16, and the spectrum for each discrete frequency obtained by the frequency analysis unit 152. A smoothing value calculation unit 153 that calculates a spectrum smoothing value, and a threshold value coefficient is multiplied by the spectrum smoothing value for each discrete frequency calculated by the smoothing value calculation unit 153, thereby calculating a detection threshold value for each discrete frequency. The spectrum for each discrete frequency obtained by the threshold calculation unit 154 and the frequency analysis unit 152 is used as the separation calculated by the threshold calculation unit 154. From the comparison result by the comparison unit 155 that compares the detection threshold value for each frequency and the comparison unit 155, the discrete frequency at which the spectrum has a maximum value is detected from the spectrum for each discrete frequency obtained by the frequency analysis unit 152. Since the maximum value detection unit 156 and the distance speed measurement unit 157 for measuring the distance and speed of the object based on the detection result by the maximum value detection unit 156 are provided, the error is reduced with less calculation resources than the conventional configuration. Detection can be suppressed. In this way, by setting the detection threshold according to the change in the original spectrum waveform, it is possible to detect a peak that should not be detected in a gently convex spectrum waveform that changes over time with a small amount of computing resources. In addition, a peak corresponding to an object can be detected from spectral waveforms from a plurality of adjacent objects having different reflection intensities.
 なお図3に示す例では、比較部155は、比較対象の離散周波数のスペクトルが検出しきい値より大きく且つ両隣の離散周波数のスペクトルより大きい場合に、その旨を極大値検出部156に通知し、極大値検出部156にて極大値の検出を行う場合を示した。しかしながら、これに限るものではなく、例えば、比較部155は、離散周波数毎のスペクトルと離散周波数毎の検出しきい値とを比較して検出情報を生成し、この検出情報を極大値検出部156へ出力するようにしてもよい。なお、検出情報には、離散周波数、当該離散周波数のスペクトル、及び当該スペクトルと検出しきい値との比較結果が含まれる。例えば、比較部155は、上記スペクトルが検出しきい値より大きい場合には、比較結果を1とし、上記スペクトルが検出しきい値以下の場合には、比較結果を0とする。そして、極大値検出部156では、この比較部155からの検出情報を用いて、極大値の検出を行う。 In the example shown in FIG. 3, the comparison unit 155 notifies the local maximum value detection unit 156 that the spectrum of the discrete frequency to be compared is larger than the detection threshold and larger than the spectrum of the adjacent discrete frequencies. The case where the maximum value is detected by the maximum value detector 156 is shown. However, the present invention is not limited to this. For example, the comparison unit 155 generates detection information by comparing a spectrum for each discrete frequency with a detection threshold value for each discrete frequency, and uses the detection information as a maximum value detection unit 156. You may make it output to. The detection information includes a discrete frequency, a spectrum of the discrete frequency, and a comparison result between the spectrum and a detection threshold value. For example, the comparison unit 155 sets the comparison result to 1 when the spectrum is larger than the detection threshold, and sets the comparison result to 0 when the spectrum is equal to or lower than the detection threshold. Then, the maximum value detection unit 156 detects the maximum value using the detection information from the comparison unit 155.
 最後に、図7を参照して、この発明の実施の形態1における制御演算器15のハードウェア構成例を説明する。
 制御演算器15における制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157の各機能は、処理回路51により実現される。図7に示すように、処理回路51は、専用のハードウェアであっても、メモリ53に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)52であってもよい。
Finally, with reference to FIG. 7, a hardware configuration example of the control arithmetic unit 15 according to the first embodiment of the present invention will be described.
The functions of the control unit 151, the frequency analysis unit 152, the smoothing value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit 157 in the control arithmetic unit 15 are the processing circuit 51. It is realized by. As shown in FIG. 7, even if the processing circuit 51 is dedicated hardware, a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, and the like that executes a program stored in the memory 53. It may be a microcomputer, a processor, or a DSP (Digital Signal Processor) 52.
 図7Aに示すように処理回路51が専用のハードウェアである場合、処理回路51は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157の各部の機能それぞれを処理回路51で実現してもよいし、各部の機能をまとめて処理回路51で実現してもよい。 When the processing circuit 51 is dedicated hardware as shown in FIG. 7A, the processing circuit 51 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit). , FPGA (Field Programmable Gate Array), or a combination thereof. The processing circuit 51 implements the functions of the control unit 151, frequency analysis unit 152, smooth value calculation unit 153, threshold value calculation unit 154, comparison unit 155, maximum value detection unit 156, and distance speed measurement unit 157. Alternatively, the function of each unit may be integrated and realized by the processing circuit 51.
 図7Bに示すように処理回路51がCPU52の場合、制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ53に格納される。処理回路51は、メモリ53に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、制御演算器15は、処理回路51により実行されるときに、例えば図3,4に示した各ステップが結果的に実行されることになるプログラムを格納するためのメモリ53を備える。また、これらのプログラムは、制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ53とは、例えば、RAM、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の、不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 As shown in FIG. 7B, when the processing circuit 51 is the CPU 52, the control unit 151, the frequency analysis unit 152, the smooth value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit The function 157 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the memory 53. The processing circuit 51 implements the functions of each unit by reading and executing the program stored in the memory 53. That is, the control arithmetic unit 15 includes a memory 53 for storing a program that, when executed by the processing circuit 51, for example, results in the steps shown in FIGS. In addition, these programs are used to calculate the procedures and methods of the control unit 151, the frequency analysis unit 152, the smooth value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit 157. It can be said that this is what is executed. Here, the memory 53 is, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a magnetic disk, A flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like are applicable.
 なお、制御部151、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、制御部151については専用のハードウェアとしての処理回路51でその機能を実現し、周波数分析部152、平滑値算出部153、しきい値算出部154、比較部155、極大値検出部156及び距離速度測定部157については処理回路51がメモリ53に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 Note that some of the functions of the control unit 151, the frequency analysis unit 152, the smoothing value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, the maximum value detection unit 156, and the distance speed measurement unit 157 are dedicated hardware. It may be realized by hardware and a part may be realized by software or firmware. For example, the function of the control unit 151 is realized by the processing circuit 51 as dedicated hardware, and the frequency analysis unit 152, the smooth value calculation unit 153, the threshold value calculation unit 154, the comparison unit 155, and the maximum value detection unit 156. As for the distance / velocity measuring unit 157, the processing circuit 51 can read out and execute the program stored in the memory 53, thereby realizing its function.
 このように、処理回路51は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 51 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 この発明に係るFMCWレーダ装置は、従来構成に対し、少ない演算資源で、誤検出を抑制することができ、観測対象である物体の距離及び速度を推定するFMCWレーダ装置1等に用いるのに適している。 The FMCW radar apparatus according to the present invention can suppress erroneous detection with less computation resources than the conventional configuration, and is suitable for use in the FMCW radar apparatus 1 that estimates the distance and speed of an object to be observed. ing.
 1 FMCWレーダ装置、11 送信器、12 受信器、13 アナログデジタル変換器、14 メモリ、15 制御演算器、16 観測部、51 処理回路、52 CPU、53 メモリ、111 電圧生成回路、112 電圧制御発振器、113 分配回路、114 増幅回路、115 送波用アンテナ、121 受波用アンテナ、122 混合器、123 増幅回路、124 フィルタ回路、151 制御部、152 周波数分析部、153 平滑値算出部、154 しきい値算出部、155 比較部、156 極大値検出部、157 距離速度測定部。 1 FMCW radar device, 11 transmitter, 12 receiver, 13 analog-digital converter, 14 memory, 15 control arithmetic unit, 16 observation unit, 51 processing circuit, 52 CPU, 53 memory, 111 voltage generation circuit, 112 voltage controlled oscillator 113 distribution circuit, 114 amplification circuit, 115 transmission antenna, 121 reception antenna, 122 mixer, 123 amplification circuit, 124 filter circuit, 151 control unit, 152 frequency analysis unit, 153 smooth value calculation unit, 154 Threshold value calculation unit, 155 comparison unit, 156 maximum value detection unit, 157 distance speed measurement unit.

Claims (6)

  1.  送信信号を空間へ放射し、当該送信信号、及び当該送信信号が観測対象である物体により反射及び散乱されて受信された受信信号から観測信号を得る観測部と、
     前記観測部により得られた観測信号から離散周波数毎のスペクトルを得る周波数分析部と、
     前記周波数分析部により得られた離散周波数毎のスペクトルから、当該離散周波数毎のスペクトル平滑値を算出する平滑値算出部と、
     前記平滑値算出部により算出された離散周波数毎のスペクトル平滑値にしきい値係数を乗じることで、当該離散周波数毎の検出しきい値を算出するしきい値算出部と、
     前記周波数分析部により得られた離散周波数毎のスペクトルを、前記しきい値算出部により算出された当該離散周波数毎の検出しきい値と比較する比較部と、
     前記比較部による比較結果から、前記周波数分析部により得られた離散周波数毎のスペクトルのうち、スペクトルが極大値となる離散周波数を検出する極大値検出部と、
     前記極大値検出部による検出結果に基づいて、前記物体の距離及び速度を測定する距離速度測定部と
     を備えたFMCWレーダ装置。
    An observation unit that radiates a transmission signal to space, and obtains an observation signal from the transmission signal and a reception signal received by reflection and scattering of the transmission signal by an object to be observed;
    A frequency analysis unit for obtaining a spectrum for each discrete frequency from the observation signal obtained by the observation unit;
    From the spectrum for each discrete frequency obtained by the frequency analysis unit, a smooth value calculation unit for calculating a spectrum smooth value for each discrete frequency,
    A threshold value calculation unit for calculating a detection threshold value for each discrete frequency by multiplying the spectrum smooth value for each discrete frequency calculated by the smooth value calculation unit by a threshold coefficient;
    A comparison unit that compares the spectrum for each discrete frequency obtained by the frequency analysis unit with a detection threshold value for each discrete frequency calculated by the threshold value calculation unit;
    From the comparison result by the comparison unit, among the spectrum for each discrete frequency obtained by the frequency analysis unit, a maximum value detection unit for detecting a discrete frequency at which the spectrum is a maximum value;
    A FMCW radar apparatus comprising: a distance / velocity measurement unit that measures a distance and a velocity of the object based on a detection result by the maximum value detection unit.
  2.  前記平滑値算出部は、前記周波数分析部により得られた離散周波数毎のスペクトルから、平滑フィルタ係数を用いた帰還型フィルタにより、当該離散周波数毎のスペクトル平滑値を算出する
     ことを特徴とする請求項1記載のFMCWレーダ装置。
    The smoothing value calculation unit calculates a spectrum smoothing value for each discrete frequency from a spectrum for each discrete frequency obtained by the frequency analysis unit by a feedback filter using a smoothing filter coefficient. Item 2. The FMCW radar apparatus according to Item 1.
  3.  前記平滑値算出部は、前記離散周波数が低いスペクトルからスペクトル平滑値の算出を行う
     ことを特徴とする請求項2記載のFMCWレーダ装置。
    The FMCW radar apparatus according to claim 2, wherein the smoothing value calculation unit calculates a spectral smoothing value from a spectrum having a low discrete frequency.
  4.  前記平滑値算出部は、平滑値算出対象である前記スペクトルに対して用いる前記平滑フィルタ係数を、当該スペクトルと、当該スペクトルの1つ前の離散周波数のスペクトル平滑値との大小関係により切替える
     ことを特徴とする請求項3記載のFMCWレーダ装置。
    The smoothing value calculation unit switches the smoothing filter coefficient used for the spectrum that is a smoothing value calculation target according to a magnitude relationship between the spectrum and a spectrum smoothing value of a discrete frequency immediately before the spectrum. 4. The FMCW radar apparatus according to claim 3, wherein
  5.  前記平滑値算出部は、前記平滑値算出対象であるスペクトルが前記1つ前の離散周波数のスペクトル平滑値より大きい場合には前記平滑フィルタ係数の値を0.5以上1以下とし、当該スペクトルが当該スペクトル平滑値以下の場合には前記平滑フィルタ係数の値を0以上0.5未満とする
     ことを特徴とする請求項4記載のFMCWレーダ装置。
    The smoothing value calculation unit sets the value of the smoothing filter coefficient to 0.5 or more and 1 or less when the spectrum that is the smoothing value calculation target is larger than the spectrum smoothing value of the previous discrete frequency, and the spectrum is The FMCW radar apparatus according to claim 4, wherein the smoothing filter coefficient value is 0 or more and less than 0.5 when the spectrum smoothing value is less than or equal to the spectrum smoothing value.
  6.  前記しきい値算出部は、前記しきい値係数を前記離散周波数毎に変化させる
     ことを特徴とする請求項1記載のFMCWレーダ装置。
    The FMCW radar apparatus according to claim 1, wherein the threshold value calculation unit changes the threshold coefficient for each discrete frequency.
PCT/JP2016/054464 2016-02-16 2016-02-16 Fmcw radar device WO2017141353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/054464 WO2017141353A1 (en) 2016-02-16 2016-02-16 Fmcw radar device
JP2017567859A JP6415762B2 (en) 2016-02-16 2016-02-16 FMCW radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054464 WO2017141353A1 (en) 2016-02-16 2016-02-16 Fmcw radar device

Publications (1)

Publication Number Publication Date
WO2017141353A1 true WO2017141353A1 (en) 2017-08-24

Family

ID=59624901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054464 WO2017141353A1 (en) 2016-02-16 2016-02-16 Fmcw radar device

Country Status (2)

Country Link
JP (1) JP6415762B2 (en)
WO (1) WO2017141353A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041949A (en) * 2017-10-13 2019-04-23 인피니온 테크놀로지스 아게 Radar sensing with interference suppression

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271431A (en) * 1998-03-25 1999-10-08 Toyota Central Res & Dev Lab Inc Fmcw radar apparatus
JP2004271262A (en) * 2003-03-06 2004-09-30 Mitsubishi Electric Corp Fm-cw radar device
JP2013200255A (en) * 2012-03-26 2013-10-03 Fujitsu Ten Ltd Radar apparatus and target detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271431A (en) * 1998-03-25 1999-10-08 Toyota Central Res & Dev Lab Inc Fmcw radar apparatus
JP2004271262A (en) * 2003-03-06 2004-09-30 Mitsubishi Electric Corp Fm-cw radar device
JP2013200255A (en) * 2012-03-26 2013-10-03 Fujitsu Ten Ltd Radar apparatus and target detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041949A (en) * 2017-10-13 2019-04-23 인피니온 테크놀로지스 아게 Radar sensing with interference suppression
KR102186191B1 (en) 2017-10-13 2020-12-04 인피니온 테크놀로지스 아게 Radar sensing with interference suppression

Also Published As

Publication number Publication date
JP6415762B2 (en) 2018-10-31
JPWO2017141353A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US9983294B2 (en) Radar system
US6888494B2 (en) FMCW radar system
JP4679632B2 (en) Radar equipment
JP5312503B2 (en) Radar equipment
CN109154652B (en) Speed detection device
US20130229300A1 (en) On-board radar apparatus, object detection method, and object detection program
US20100109939A1 (en) Radar device
US7330148B2 (en) Measuring apparatus and measuring method
KR20160078066A (en) Multi target trace method of radar apparatus
US10823820B2 (en) Radar and beam control method
US11041953B2 (en) Object detecting device and sensor device
CN112904295A (en) Method and apparatus for measuring three-dimensional position using radar sensor
JP6415762B2 (en) FMCW radar equipment
US11614533B2 (en) Radar signal processing device, radar device, and radar signal processing method
JP2015148577A (en) Radio wave sensor and detection method
CN107923967A (en) Handle the reception radiation from target reflection
KR102046061B1 (en) Apparatus and method for detecting target using radar
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JP7127998B2 (en) radar equipment
JPWO2019107368A1 (en) Object detection device, object detection method and program
WO2012056791A1 (en) Distance measurement apparatus
WO2021210489A1 (en) Radar device, vehicle, and incoming wavenumber estimating method
JP7381970B2 (en) Radar device, object detection method, and object detection program
US20220317276A1 (en) Radar signal processing device, radar system, and signal processing method
US11385342B2 (en) Object sensing apparatus, object sensing method, and computer readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890495

Country of ref document: EP

Kind code of ref document: A1