WO2012056791A1 - Distance measurement apparatus - Google Patents

Distance measurement apparatus Download PDF

Info

Publication number
WO2012056791A1
WO2012056791A1 PCT/JP2011/068399 JP2011068399W WO2012056791A1 WO 2012056791 A1 WO2012056791 A1 WO 2012056791A1 JP 2011068399 W JP2011068399 W JP 2011068399W WO 2012056791 A1 WO2012056791 A1 WO 2012056791A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
distance
measurement
amplitude
value
Prior art date
Application number
PCT/JP2011/068399
Other languages
French (fr)
Japanese (ja)
Inventor
大滝 幸夫
高井 大輔
武 種村
崇 佐野
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2012540719A priority Critical patent/JP5379312B2/en
Priority to CN201180048656.5A priority patent/CN103154767B/en
Publication of WO2012056791A1 publication Critical patent/WO2012056791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement

Definitions

  • the present invention relates to a distance measuring device used for distance measurement by detecting a phase of a radio wave reciprocating a measurement target distance.
  • a distance measurement system including a master communication device that transmits radio waves and a slave communication device that returns radio waves received from the master communication device.
  • a radio wave is transmitted from the master communication device to the slave communication device, and the slave communication device receives the radio wave and returns the radio wave to the master communication device in synchronization with the received radio wave.
  • the master communication device receives the radio wave returned from the slave communication device, and measures the distance from the phase information of the received signal to the slave communication device.
  • indirect waves such as reflected waves are included in addition to direct waves as radio waves propagating between the master communication device and the slave communication device. If direct waves and indirect waves are mixed, the measurement accuracy decreases, so the received signal is fast Fourier transformed to separate the direct waves and indirect waves on the time axis, and the phase information of only the direct waves is extracted for distance measurement.
  • Patent Document 1 There is a measurement method used (Patent Document 1). For example, the received frequency range of the received signal is divided into multiple channels in the gorge band, the received signal is fast Fourier transformed for each channel to detect the phase of the direct wave of each channel, and the measurement target distance is determined from the phase difference between adjacent channels. taking measurement.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a distance measuring device that has a small amount of calculation compared to a method using Fourier transform and the like and can sufficiently improve distance measuring accuracy.
  • an object of the present invention is to provide a distance measuring device that has a small amount of calculation compared to a method using Fourier transform and the like and can sufficiently improve distance measuring accuracy.
  • the distance measuring device of the present invention includes a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and a transmission unit that transmits a transmission signal of each channel using the oscillation signal.
  • a reception signal that is returned for each channel from the measurement target that has received the transmission signal of each channel, or a reception unit that receives a reflection signal for each channel from the measurement target, and each reply signal received by the reception unit Alternatively, an amplitude phase measurement unit that measures the reception amplitude phase of each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target
  • An arithmetic unit that calculates a distance between the arithmetic units, and the arithmetic unit processes received amplitude phase measurement values of a plurality of channels extracted from the storage unit.
  • the predetermined frequency range it is determined whether or not there is a local maximum value where the reception amplitude is larger than that of a peripheral channel including an adjacent channel, or a local minimum value where the reception amplitude is small, and the local maximum value and the local minimum value do not exist.
  • the phase difference between the adjacent channels in the predetermined frequency range is averaged, and the distance to the measurement object is calculated using the average value of the phase difference. Since the signal intensity is expressed by the square of the amplitude, the amplitude can be read as the signal intensity.
  • the phase difference between adjacent channels is averaged. For this reason, the influence of the phase distortion of the received signal resulting from the multipath wave can be reduced and the influence of the noise can be reduced without performing complicated processing such as Fourier transform. Thereby, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
  • the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal.
  • a transmission means a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means
  • An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target
  • a calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, the local maximum value exists, And when the minimum value does not exist, or when the minimum value exists and the maximum value does not exist, the adjacent channels having the maximum or minimum amplitude difference among the adjacent channels are specified.
  • the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal.
  • a transmission means a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means
  • An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target
  • a calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, and the local maximum value and the local minimum value Is present, the distance to the measurement object is calculated using an average value of phase differences between adjacent channels from the frequency position at which the maximum value is reached to the frequency position at which the minimum value is obtained
  • the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal.
  • a transmission means a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means
  • An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target
  • a calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, and the local maximum value and the local minimum value Is not present, the phase difference between adjacent channels in the predetermined frequency range is averaged, the distance to the measurement object is calculated using the phase difference average value, the local maximum value exists, and the
  • the distance to the measurement target is calculated using the phase difference between adjacent channels, and when the maximum value and the minimum value exist, the frequency position where the maximum value is obtained is calculated. Or characterized in that by using the average value of the phase difference between the adjacent channels to the frequency position at which the serial minimum value to calculate the distance to the measurement target.
  • the arithmetic unit is a case where the local maximum value and the local minimum value exist, and when there are two or more local maximum values, from the frequency position where the local maximum value is one other There is a case where an average value of phase differences between adjacent channels up to a frequency position having a maximum value is calculated, and a distance from the average value of the phase differences to the measurement object is calculated.
  • the arithmetic unit becomes the other local minimum value from the frequency position at which the local minimum value is obtained.
  • An average value of phase differences between adjacent channels up to the frequency position may be calculated, and a distance from the average value of the phase differences to the measurement object may be calculated.
  • This configuration cancels the effects of multipath waves without performing complex processing such as Fourier transform by using the average value of the phase difference between channels that give maximum values of amplitude or between channels that give minimum values. is doing. For this reason, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
  • the distance measuring device of the present invention it is possible to separate direct waves and indirect waves without using a fast Fourier transform with a large amount of calculation, reducing the calculation load, and even in a multipath environment. Highly accurate distance measurement can be realized.
  • FIG. 1 It is a block diagram which shows the structure of the distance measuring device which concerns on one embodiment of this invention. It is a flowchart of the distance measurement operation
  • FIG. 1 is a block diagram showing a configuration example of a distance measuring device according to an embodiment of the present invention.
  • the distance measuring device 11 uses a reference oscillator 12 capable of oscillating at a plurality of oscillation frequencies corresponding to the number of channels, and a distance measuring device corresponding to each channel using an oscillation signal output from the reference oscillator 12.
  • a transmission system including a transmission unit 13 that generates a transmission signal of, and a transmission antenna 14 that radiates the transmission signal output from the transmission unit 13 by radio waves.
  • the transmission unit 13 includes a mixer, a bandpass filter, a power amplifier, and the like, and up-converts the transmission signal to an RF signal using the oscillation frequency. For example, in the frequency range from 2405 MHz to 2480 MHz, a transmission signal can be generated and transmitted on each channel at intervals of 2.5 MHz.
  • the distance measuring device 11 measures the distance from the receiving antenna 15, the receiving unit 16 that converts the radio wave received by the receiving antenna 15 into a received signal, and the received signal output from the receiving unit 16.
  • a receiving system having a calculation unit 17 is provided.
  • the receiving unit 16 includes a low noise amplifier, a mixer, a band pass filter, and the like, and is configured to be able to receive each transmission signal transmitted through the transmission system.
  • the calculation unit 17 includes an amplitude phase measurement unit 21 that measures the amplitude and phase of the reception signal, and a storage unit 22 that stores the amplitude and phase of the reception signal for each channel, which is a measurement result measured by the amplitude phase measurement unit 21.
  • the amplitude characteristic determination unit 23 that determines the amplitude characteristic based on the amplitude data of the received signal of each channel stored in the storage unit 22 and the distance calculation according to the amplitude characteristic determined by the amplitude characteristic determination unit 23
  • a phase difference calculation unit 24 for obtaining a phase difference between channels
  • an average value calculation unit 25 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating an average value of phase differences between channels in a predetermined frequency range
  • an amplitude characteristic determination unit 23 for calculating
  • the distance measuring device 11 in which the transmission system and the reception system are separated is shown, but for example, the reference oscillator 12 may be shared, and the transmission antenna 14 and the reception antenna 15 may be integrated. Good.
  • the amplitude characteristic determining unit 23 divides the amplitude characteristic into patterns based on the amplitude data of the received signal in the reception frequency range. Specifically, the amplitude characteristic pattern of the received signal does not have an extreme value (monotonically increasing or decreasing), a pattern having only one convex extreme value (minimum value), and an upward extreme value ( It is determined which pattern is a pattern having only one maximum value) or a pattern having a plurality of extreme values. Then, based on the determination pattern, the processing content for subsequent distance measurement is switched.
  • the phase difference calculation unit 24 specifies the phase difference between adjacent channels from the phase of each channel measured by the amplitude phase measurement unit 21 with the transmission time when the transmission signal of each channel is transmitted from the transmission unit 13 as a time reference. .
  • the transmission time of each channel transmitted from the transmission unit 13 may be synchronized with the oscillation operation or the oscillation signal of the reference oscillator 12.
  • the method for measuring the phase difference between adjacent channels is not limited to the above method.
  • a repeater that has received a transmission signal transmits a signal whose phase is synchronized to the distance measuring device 11, and the distance measuring device 11 that has received the signal measures the distance from the received signal.
  • the so-called secondary radar system will be described.
  • the present invention can be similarly applied to a so-called primary radar system in which a signal emitted to a measurement target is simply reflected and the reflected wave is received to measure the distance. .
  • the distance measuring device 11 transmits the transmission signals of the respective channels in order at predetermined intervals.
  • the reference oscillator 12 generates an oscillation signal having an oscillation frequency corresponding to each channel and sequentially supplies the oscillation signal to the transmission unit 13.
  • the transmission unit 13 performs frequency conversion using the oscillation signal having an oscillation frequency corresponding to each channel.
  • a transmission signal is generated. It is desirable to appropriately set the frequency range and the number of channels (adjacent channel interval) composed of a plurality of channels depending on the application.
  • transmission signals of 32 channels at intervals of 2.5 MHz are generated in the frequency range of 2405 MHz to 2480 MHz. In this case, distances up to about 60 m can be measured.
  • the repeater (transponder) to be measured receives the distance measurement transmission signal transmitted from the distance measurement device 11, generates a transmission signal whose phase is synchronized with the received transmission signal, and transmits the transmission signal.
  • the repeater (transponder) sequentially returns transmission signals of the same channel as the reception channel in response to the transmission signal received for each channel. Therefore, the transmission signal of each channel is transmitted in order from the distance measuring device 11, and the transmission signal of each channel is returned in turn from the repeater (transponder).
  • FIG. 2 is a flowchart of distance measurement in the distance measuring device 11 according to the present embodiment.
  • the distance measurement device 11 receives a transmission signal transmitted (response transmission) in order from the repeater (transponder) for each channel, the amplitude phase measurement unit 21 of the calculation unit 17 determines the amplitude and phase of the reception signal of each channel. Measure (Step 101).
  • the measurement result (amplitude and phase of the received signal for each channel) measured by the amplitude phase measurement unit 21 is stored in the storage unit 22.
  • the amplitude characteristic determination unit 23 obtains the amplitude-frequency characteristic based on the amplitude data of the received signal of each channel stored in the storage unit 22, and the maximum value (PEAK) or minimum in the obtained amplitude-frequency characteristic.
  • the number of values (NULL) is counted (step 102).
  • the amplitude data of the received signal is, for example, discrete data of 32 channels, the amplitude-frequency characteristics obtained from the amplitude data of the received signal are discrete on the frequency axis. That is, the maximum value and the minimum value that can be obtained from the amplitude data of the received signal are not the maximum value and the minimum value in a strict sense.
  • the above-mentioned maximum and minimum values are obtained by comparing the amplitude of the target channel with the amplitude of the other channel.
  • the maximum value is the maximum value when the amplitude value of each channel is continuously decreased from a position where the amplitude value is continuously increased in the frequency direction in the amplitude-frequency characteristic curve arranged in the frequency axis direction.
  • the maximum value is not always one in the entire frequency range (all channels).
  • the minimum value refers to the minimum value when the amplitude-frequency characteristic curve continuously increases from a position that continuously decreases in the frequency direction. There is not always one minimum value in the entire frequency range (all channels).
  • the distance measuring device 11 classifies the amplitude-frequency characteristics of the received signals of all the channels by a combination of a maximum value (PEAK) and a minimum value (NULL) (PEAK number, NULL number). 0, 0), (1, 0), (0, 1), and ( ⁇ 1, ⁇ 1) are detected.
  • PEAK maximum value
  • NULL minimum value
  • the amplitude characteristic determination unit 23 determines the presence / absence of a local maximum value from the number of local maximum values counted in Step 102 (Step 103). Further, the presence / absence of a minimum value is determined from the number of minimum values counted in step 102 (steps 104 and 105). Then, based on the determination result, a pattern (0, 0) having no extreme value as shown in FIG. 3, a pattern having only one downward extreme value, such as the amplitude-frequency characteristic shown in FIG. (1, 0), a pattern (0, 1) having only one convex extreme value, such as the amplitude-frequency characteristic of FIG. 5, and a pattern having a plurality of extreme values ( ⁇ 1, 1) as shown in FIG. ⁇ 1).
  • FIG. 4 and 5 show the amplitude difference-frequency characteristics (the lower part of FIG. 4 and the lower part of FIG. 5) together with the amplitude-frequency characteristics (the upper part of FIG. 4 and FIG. 5).
  • the presence or absence of a local minimum is determined.
  • the presence or absence of a local maximum may be determined. And whether or not there is a minimum value may be determined at the same time.
  • step 106 If it is determined in step 103 and step 104 described above that there is no maximum value and there is no minimum value (FIG. 3), the process proceeds to step 106, and the maximum value exists in step 103 and step 104. Without determining, there is a local minimum value (amplitude-frequency characteristic in FIG. 4), or when it is determined in steps 103 and 105 that there is a local maximum value and there is no local minimum value (in FIG. 5). (Amplitude-Frequency Characteristics) shifts to Step 107, and if Step 103 and Step 105 determine that a local maximum value exists and a local minimum value also exists (FIG. 6), the routine proceeds to Step 108. .
  • the presence / absence of a local maximum value or local minimum value is used as a criterion for classifying the amplitude characteristic pattern.
  • the influence of the coherent multipath wave is the maximum or minimum value in the amplitude-frequency characteristic. This is because it appears well.
  • the distance can be obtained with high accuracy without using a complicated calculation method.
  • the average value of the phase difference is calculated in step 106 in the pattern in which the maximum value and the minimum value do not exist.
  • the phase difference measurement unit 24 calculates the phase for each channel and detects the phase difference between adjacent channels (sometimes referred to simply as “phase difference”).
  • the phase of each channel corresponds to the round-trip distance from the distance measuring device 11 to the repeater, and from the time when the distance measuring device 11 transmits the channel transmission signal to the time when the channel return signal is received from the repeater. Measured as delay time.
  • the average value calculator 25 calculates the arithmetic average value of the phase difference. In the case of a pattern having no extreme value as shown in FIG.
  • the phase difference between adjacent channels is calculated over the entire frequency range, and the plurality of phase differences are averaged, so the influence of multipath waves can be mitigated and the distance can be accurately measured. Can be requested. As shown in FIG. 3, the average value of the phase differences between adjacent channels in the channels CH 1 to CH N existing in the frequency range is calculated.
  • the number of samples related to the calculation of the average value is large. For example, when a transmission signal of 32 channels is used, all the levels that can be obtained from these samples are used. It is desirable to obtain an average value of phase differences, that is, an average value of phase differences in 31 sections.
  • the present invention is not limited to this, and the number of samples can be appropriately set according to the target accuracy, required calculation time, the configuration of the distance measuring device, and the like.
  • step 107 the phase difference at the maximum value or the minimum value is calculated. For this reason, among the phase differences between the adjacent channels measured by the phase difference measuring unit 24, the phase difference between the adjacent channels having the maximum amplitude difference (the absolute value of the amplitude difference is maximum) is extracted. In the case of a pattern having only one downward extreme value such as the amplitude-frequency characteristic of FIG. 4 or a pattern having only one upward extreme value such as the amplitude-frequency characteristic of FIG.
  • the section in which the amplitude difference is maximum is, for example, a section represented by P k in FIG. 4 and a section represented by P k in FIG.
  • the phase difference in one section may be used in calculating the distance, or the average value of the phase differences in the two sections may be used. Also good.
  • step 108 an average value of phase differences between extreme values is calculated.
  • the average value calculation unit 25 calculates the arithmetic average value of the phase differences using the phase difference between adjacent channels measured by the phase difference measurement unit 24.
  • an average value of phase differences is calculated in a section between a channel that provides an extreme value and a channel that provides another extreme value.
  • the position between adjacent channels is between a channel that gives an extreme value (for example, CHa) and a channel that gives another extreme value (for example, CHb).
  • the average value may be obtained between a channel that gives a maximum value and a channel that gives a minimum value, or between two channels that give a maximum value, or between two channels that give a minimum value. You may ask.
  • the distance calculation unit 26 calculates the distance between the repeater to be measured and the distance measuring device 11 (step 109).
  • the distance L (m) is obtained by the following equation.
  • ⁇ a (rad) represents the arithmetic average value of the phase difference obtained in step 106
  • c (m ⁇ s ⁇ 1 ) represents the speed of light
  • ⁇ f (Hz) represents the frequency interval between adjacent channels.
  • N represents the number of sections in the measurement range
  • ⁇ i represents the phase difference (rad) in the i-th section.
  • the arithmetic average is obtained in all intervals within the measurement range, but the number of intervals related to the calculation of the arithmetic average can be changed as appropriate.
  • the distance L (m) is obtained by the following equation.
  • ⁇ b (rad) represents the phase difference obtained in step 107, that is, the phase difference between adjacent channels with the maximum amplitude difference
  • c (m ⁇ s ⁇ 1 ) represents the speed of light
  • ⁇ f (Hz) represents the frequency interval between adjacent channels.
  • the distance L (m) is obtained by the following equation.
  • ⁇ c (rad) represents the arithmetic average value of the phase difference obtained in step 108 (arithmetic average value of the phase difference between channels giving extreme values)
  • c (m ⁇ s ⁇ 1 ) Represents the speed of light
  • ⁇ f (Hz) represents the frequency interval between adjacent channels.
  • ba represents the number of sections related to the calculation of the average value (the number of sections between channels giving extreme values)
  • ⁇ i represents the phase difference (rad) in the i-th section. That is, here, the arithmetic average for the a-th section to the (b-1) -th section is obtained.
  • the present embodiment it is possible to reduce the influence of the multipath wave without using Fourier transform by applying appropriate arithmetic processing according to the state of the maximum value and the minimum value of the received signal.
  • the load can be reduced, and by applying different arithmetic processing depending on the state of the received signal, distance measurement can be performed with higher accuracy than a distance measurement device using Fourier transform.
  • the amplitude-frequency characteristic patterns of the received signal are classified into the four patterns shown in FIGS. 3 to 6, and the distance calculation method is switched according to each pattern. And the distance calculation method have a one-to-one correspondence, a high distance measurement accuracy can be realized for the amplitude-frequency characteristic pattern. Therefore, depending on the application, at least one of steps 106, 107, and 108 may be executed.
  • the simulation model using the secondary radar system is shown in FIG.
  • a master 201 (corresponding to the distance measuring device 11), a slave 202 (corresponding to a repeater), and a reflecting wall 203 are assumed.
  • the frequency range was 2402.5 MHz to 2480 MHz, the channel spacing was 2.5 MHz, and the number of channels was 32.
  • the slave 202 When the simulation model shown in FIG. 7A is used, when the master 201 transmits a transmission signal, the slave 202 receives the transmission signal, but the reception signal received by the slave 202 includes the direct wave 211 and the reflected wave 212. Is a synthesized wave (see FIG. 7B). When receiving the synthesized wave, the slave 202 transmits a reply signal in synchronization with a signal whose phase is synchronized with the synthesized wave from the master 201. As a result, the master 201 receives a synthesized wave obtained by synthesizing the direct wave 221 and the reflected wave 222 with respect to the return signal from the slave 202 (see FIG. 7C).
  • the distance d 1 between the measurement terminal (master 201 or slave 202) and the reflection wall 203 and the distance d 2 between the measurement terminals are variable, and the distance between the measurement terminals measured by the apparatus and the actual measurement terminal The measurement accuracy is confirmed by comparing with the distance.
  • FIG. 8 shows measurement results based on the above simulation model.
  • the amplitude when the vertical axis is the distance (m) between the measurement terminal and the reflecting wall 203 and the horizontal axis is the distance (m) between the measurement terminals.
  • the distribution of extreme values of frequency characteristics is shown.
  • Each region in the figure corresponds to the number of extreme values under the target condition.
  • the maximum value and the minimum value are obtained in the upper region in the figure where the pattern of (PEAK, NULL) is ( ⁇ 1, ⁇ 1), that is, in the condition where the distance between the measurement terminal and the reflection wall 203 is large. Value exists.
  • FIG. 9 shows the distribution of distance measurement accuracy when the vertical axis is the distance (m) between the measurement terminal and the reflection wall 203 and the horizontal axis is the distance (m) between the measurement terminals.
  • Each region in the figure is divided according to the difference between the simulation value and the true value, that is, the magnitude of the measurement error, the region A indicates that the measurement error is small, and the region B has a slight measurement error. It shows that. It can be seen that the measurement error is sufficiently small over the entire measurement range of the example.
  • the measurement accuracy of a conventional distance measuring apparatus using Fourier transform and inverse Fourier transform was simulated as a comparative example.
  • the conditions such as the measurement system are the same as in the above simulation.
  • FIG. 10 shows the distribution of distance measurement accuracy when the vertical axis is the distance (m) between the measurement terminal and the reflection wall 203 and the horizontal axis is the distance (m) between the measurement terminals.
  • Each area in the figure is divided according to the difference between the measured value and the true value, that is, the magnitude of the measurement error, the area A indicates that the measurement error is small, and the area B has a slight measurement error.
  • Region C shows that the measurement error is large. It can be seen that the method using the Fourier transform and the inverse Fourier transform has a lower measurement accuracy than the example (the method of the present invention).
  • the distance measuring apparatus performs appropriate arithmetic processing according to the received signal. For this reason, the influence of multipath waves can be reduced without performing complicated processing such as Fourier transform. That is, there is provided a distance measuring device with a small amount of calculation for calculating the distance and with sufficiently high accuracy.
  • the distance measuring device of the present invention can be used for radar, GPS, and other various applications that measure the distance of a measurement target.

Abstract

One of the objectives of the present invention is to provide a distance measurement apparatus that uses a distance measurement method wherein the amount of calculation required is small, and calculation precision of distance can be improved sufficiently. A distance measurement apparatus (11) of the present invention is characterize in being provided with a reference oscillator (12), a transmitting means, a receiving means, an amplitude-phase measurement unit (21), a storage unit (22), and a calculation unit (17). The distance measurement apparatus (11) is also characterized in having the calculation unit (17) process received amplitude-phase measurement values of a plurality of channels taken out from the storage unit (22), evaluate whether a local maximum wherein the received amplitude is greater than the surrounding channels including adjacent channels, or a local minimum wherein the received amplitude is smaller than the surrounding channels exists within a prescribed frequency range, take an average, when no local maximum or local minimum exists, of the phase differences between each of the adjacent channels within the frequency range, and calculate the distance to a measurement object using the averaged phase-difference value.

Description

距離測定装置Distance measuring device
 本発明は、測定対象距離を往復した電波の位相を検出して距離測定に用いる距離測定装置に関する。 The present invention relates to a distance measuring device used for distance measurement by detecting a phase of a radio wave reciprocating a measurement target distance.
 従来、電波を送信するマスタ通信装置と、マスタ通信装置から受けた電波を返信するスレーブ通信装置とを備えた距離測定システムがある。かかる距離測定システムでは、マスタ通信装置からスレーブ通信装置に対して電波を送信し、スレーブ通信装置が電波を受信するとともに受信電波に同期してマスタ通信装置へ電波を返信する。マスタ通信装置は、スレーブ通信装置から返信された電波を受信し、受信信号の位相情報からスレーブ通信装置までの距離を測定する。 Conventionally, there is a distance measurement system including a master communication device that transmits radio waves and a slave communication device that returns radio waves received from the master communication device. In such a distance measurement system, a radio wave is transmitted from the master communication device to the slave communication device, and the slave communication device receives the radio wave and returns the radio wave to the master communication device in synchronization with the received radio wave. The master communication device receives the radio wave returned from the slave communication device, and measures the distance from the phase information of the received signal to the slave communication device.
 マルチパス環境下では、マスタ通信装置とスレーブ通信装置との間を伝搬する電波として直接波の他にも反射波等の間接波が含まれる。直接波と間接波とが混在すると測定精度が低下するので、受信信号を高速フーリエ変換して直接波と間接波とを時間軸上で分離し、直接波のみの位相情報を取り出して距離測定に用いる測定方式がある(特許文献1)。たとえば、受信信号の受信周波数範囲を峡帯域の複数チャンネルに分け、チャンネルごとに受信信号を高速フーリエ変換して各チャンネルの直接波の位相を検出し、隣接チャンネル間の位相差から測定対象距離を測定する。 In a multipath environment, indirect waves such as reflected waves are included in addition to direct waves as radio waves propagating between the master communication device and the slave communication device. If direct waves and indirect waves are mixed, the measurement accuracy decreases, so the received signal is fast Fourier transformed to separate the direct waves and indirect waves on the time axis, and the phase information of only the direct waves is extracted for distance measurement. There is a measurement method used (Patent Document 1). For example, the received frequency range of the received signal is divided into multiple channels in the gorge band, the received signal is fast Fourier transformed for each channel to detect the phase of the direct wave of each channel, and the measurement target distance is determined from the phase difference between adjacent channels. taking measurement.
特開平11-261444号公報JP 11-261444 A
 しかしながら、直接波と間接波とが時間的に近接すると、高速フーリエ変換で直接波だけを分離することが困難になるので、間接波の影響を受けて距離測定精度が低下する可能性がある。また、チャンネルごとに高速フーリエ変換するため、計算量が非常に大きくなって処理負荷が増大するという問題があった。 However, if the direct wave and the indirect wave are close in time, it is difficult to separate only the direct wave by the fast Fourier transform, so that the distance measurement accuracy may be lowered due to the influence of the indirect wave. Further, since fast Fourier transform is performed for each channel, there is a problem in that the amount of calculation becomes very large and the processing load increases.
 本発明はかかる点に鑑みてなされたものであり、フーリエ変換などを用いる方法と比較して計算量が少なく、かつ距離測定精度を十分に高めることができる距離測定装置を提供することを目的の一とする。 The present invention has been made in view of such a point, and an object of the present invention is to provide a distance measuring device that has a small amount of calculation compared to a method using Fourier transform and the like and can sufficiently improve distance measuring accuracy. One.
 本発明の距離測定装置は、所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、前記測定対象との間の距離を計算する演算部と、を備え、前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、前記極大値および前記極小値が存在しない場合は、前記所定周波数範囲における各隣接チャンネル間の位相差を平均し、該位相差平均値を用いて前記測定対象までの距離を算出することを特徴とする。なお、信号強度は、振幅の二乗で表されるから、振幅を信号強度に読み替えることができる。 The distance measuring device of the present invention includes a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and a transmission unit that transmits a transmission signal of each channel using the oscillation signal. A reception signal that is returned for each channel from the measurement target that has received the transmission signal of each channel, or a reception unit that receives a reflection signal for each channel from the measurement target, and each reply signal received by the reception unit Alternatively, an amplitude phase measurement unit that measures the reception amplitude phase of each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target An arithmetic unit that calculates a distance between the arithmetic units, and the arithmetic unit processes received amplitude phase measurement values of a plurality of channels extracted from the storage unit. In the predetermined frequency range, it is determined whether or not there is a local maximum value where the reception amplitude is larger than that of a peripheral channel including an adjacent channel, or a local minimum value where the reception amplitude is small, and the local maximum value and the local minimum value do not exist. In this case, the phase difference between the adjacent channels in the predetermined frequency range is averaged, and the distance to the measurement object is calculated using the average value of the phase difference. Since the signal intensity is expressed by the square of the amplitude, the amplitude can be read as the signal intensity.
 この構成では、隣接チャンネル間の位相差を平均化している。このため、フーリエ変換などの複雑な処理を行うことなく、マルチパス波に起因する受信信号の位相歪の影響を低減し、また、ノイズの影響を低減することができる。そしてこれにより、距離の算出に係る計算量を低減し、かつ距離の算出精度を十分に高めることができる。 In this configuration, the phase difference between adjacent channels is averaged. For this reason, the influence of the phase distortion of the received signal resulting from the multipath wave can be reduced and the influence of the noise can be reduced without performing complicated processing such as Fourier transform. Thereby, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
 または、本発明の距離測定装置は、所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、前記測定対象との間の距離を計算する演算部と、を備え、前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、前記極大値が存在し、かつ、前記極小値が存在しない場合、または、前記極小値が存在し、かつ、前記極大値が存在しない場合は、隣接チャンネル間のうちで振幅差が最大または最小となる隣接チャンネル間を特定し、特定した隣接チャンネル間の前記位相差を用いて前記測定対象までの距離を算出することを特徴とするものでも良い。 Alternatively, the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal. A transmission means, a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target A calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, the local maximum value exists, And when the minimum value does not exist, or when the minimum value exists and the maximum value does not exist, the adjacent channels having the maximum or minimum amplitude difference among the adjacent channels are specified. The distance to the measurement object may be calculated using the phase difference between the specified adjacent channels.
 この構成では、振幅差が極大または極小となる隣接チャンネル間を特定し、その隣接チャンネル間の位相差を用いて距離を算出している。振幅差が極大または極小となる隣接チャネル間ではマルチパス波の影響が小さいため、フーリエ変換などの複雑な処理を行うことなく測定対象とアンテナとの距離を高い精度で算出することができる。よって、この構成により、距離の算出に係る計算量を低減し、かつ距離の算出精度を十分に高めることができる。 In this configuration, adjacent channels where the amplitude difference is maximum or minimum are specified, and the distance is calculated using the phase difference between the adjacent channels. Since the influence of multipath waves is small between adjacent channels where the amplitude difference is maximum or minimum, the distance between the measurement target and the antenna can be calculated with high accuracy without performing complicated processing such as Fourier transform. Therefore, with this configuration, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
 または、本発明の距離測定装置は、所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、前記測定対象との間の距離を計算する演算部と、を備え、前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、前記極大値および前記極小値が存在する場合は、前記極大値となる周波数位置から前記極小値となる周波数位置までの各隣接チャンネル間の位相差の平均値を用いて前記測定対象までの距離を算出することを特徴とするものでも良い。 Alternatively, the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal. A transmission means, a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target A calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, and the local maximum value and the local minimum value Is present, the distance to the measurement object is calculated using an average value of phase differences between adjacent channels from the frequency position at which the maximum value is reached to the frequency position at which the minimum value is obtained. Things can be used.
 この構成では、振幅の極大値を与えるチャンネルと極小値を与えるチャンネルとの間の位相差の平均値を用いることにより、フーリエ変換などの複雑な処理を行うことなく、マルチパス波の影響をキャンセルしている。このため、距離の算出に係る計算量を低減し、かつ距離の算出精度を十分に高めることができる。 In this configuration, by using the average value of the phase difference between the channel that gives the maximum value of the amplitude and the channel that gives the minimum value, the influence of the multipath wave can be canceled without performing complex processing such as Fourier transform. is doing. For this reason, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
 または、本発明の距離測定装置は、所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、前記測定対象との間の距離を計算する演算部と、を備え、前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、前記極大値および前記極小値が存在しない場合は、前記所定周波数範囲における各隣接チャンネル間の位相差を平均し、該位相差平均値を用いて前記測定対象までの距離を算出し、前記極大値が存在し、かつ、前記極小値が存在しない場合、または、前記極小値が存在し、かつ、前記極大値が存在しない場合は、隣接チャンネル間のうちで振幅差が最大または最小となる隣接チャンネル間を特定し、特定した隣接チャンネル間の前記位相差を用いて前記測定対象までの距離を算出し、前記極大値および前記極小値が存在する場合は、前記極大値となる周波数位置から前記極小値となる周波数位置までの各隣接チャンネル間の位相差の平均値を用いて前記測定対象までの距離を算出することを特徴とするものでも良い。 Alternatively, the distance measuring device of the present invention transmits a reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of continuous channels in a frequency direction within a predetermined frequency range, and transmits a transmission signal of each channel using the oscillation signal. A transmission means, a return signal returned for each channel from the measurement object that received the transmission signal of each channel, or a reception means for receiving a reflected signal for each channel from the measurement object; and each received by the reception means An amplitude phase measurement unit that measures the reception amplitude phase of the return signal or each reflected signal for each channel, a storage unit that can store the reception amplitude phase measurement value measured for each channel by the amplitude phase measurement unit, and the measurement target A calculation unit that calculates a distance between the received amplitude phase measurement values of a plurality of channels extracted from the storage unit Processing to determine whether or not there is a local maximum value in which the reception amplitude is larger than a peripheral channel including an adjacent channel, or a local minimum value in which the reception amplitude is small, in the predetermined frequency range, and the local maximum value and the local minimum value Is not present, the phase difference between adjacent channels in the predetermined frequency range is averaged, the distance to the measurement object is calculated using the phase difference average value, the local maximum value exists, and the When there is no minimum value or when the minimum value exists and the maximum value does not exist, the adjacent channels having the maximum or minimum amplitude difference among the adjacent channels are identified and specified. The distance to the measurement target is calculated using the phase difference between adjacent channels, and when the maximum value and the minimum value exist, the frequency position where the maximum value is obtained is calculated. Or characterized in that by using the average value of the phase difference between the adjacent channels to the frequency position at which the serial minimum value to calculate the distance to the measurement target.
 本発明の距離測定装置において、前記演算部は、前記極大値および前記極小値が存在する場合であって前記極大値が二以上存在する場合に、一の極大値となる周波数位置から、他の一の極大値となる周波数位置までの各隣接チャネル間の位相差の平均値を算出し、前記位相差の平均値から前記測定対象までの距離を算出することがある。また、前記演算部は、前記極大値および前記極小値が存在する場合であって前記極小値が二以上存在する場合に、一の極小値となる周波数位置から、他の一の極小値となる周波数位置までの各隣接チャネル間の位相差の平均値を算出し、前記位相差の平均値から前記測定対象までの距離を算出することがある。この構成では、振幅の極大値を与えるチャンネル間、または極小値を与えるチャンネル間の位相差の平均値を用いることにより、フーリエ変換などの複雑な処理を行うことなく、マルチパス波の影響をキャンセルしている。このため、距離の算出に係る計算量を低減し、かつ距離の算出精度を十分に高めることができる。 In the distance measuring device of the present invention, the arithmetic unit is a case where the local maximum value and the local minimum value exist, and when there are two or more local maximum values, from the frequency position where the local maximum value is one other There is a case where an average value of phase differences between adjacent channels up to a frequency position having a maximum value is calculated, and a distance from the average value of the phase differences to the measurement object is calculated. In addition, when the local maximum value and the local minimum value exist and when there are two or more local minimum values, the arithmetic unit becomes the other local minimum value from the frequency position at which the local minimum value is obtained. An average value of phase differences between adjacent channels up to the frequency position may be calculated, and a distance from the average value of the phase differences to the measurement object may be calculated. This configuration cancels the effects of multipath waves without performing complex processing such as Fourier transform by using the average value of the phase difference between channels that give maximum values of amplitude or between channels that give minimum values. is doing. For this reason, it is possible to reduce the amount of calculation related to the distance calculation and sufficiently increase the distance calculation accuracy.
 本発明の距離測定装置によれば、計算量の大きい高速フーリエ変換を用いることなく、直接波と間接波とを分離することができ、演算負荷を軽減でき、かつマルチパス環境下であっても精度の高い距離測定を実現できる。 According to the distance measuring device of the present invention, it is possible to separate direct waves and indirect waves without using a fast Fourier transform with a large amount of calculation, reducing the calculation load, and even in a multipath environment. Highly accurate distance measurement can be realized.
本発明の一実施の形態に係る距離測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the distance measuring device which concerns on one embodiment of this invention. 図1に示す距離測定装置での距離測定動作のフロー図である。It is a flowchart of the distance measurement operation | movement in the distance measuring apparatus shown in FIG. 極値を有さないパターンの振幅-周波数特性の例を示す図である。It is a figure which shows the example of the amplitude-frequency characteristic of the pattern which does not have an extreme value. 下に凸の極値を1つだけ有するパターンの振幅-周波数特性、振幅差-周波数特性の例を示す図である。It is a figure which shows the example of the amplitude-frequency characteristic of a pattern which has only one convex extreme value below, and an amplitude difference-frequency characteristic. 上に凸の極値を1つだけ有するパターンの振幅-周波数特性、振幅差-周波数特性の例を示す図である。It is a figure which shows the example of the amplitude-frequency characteristic of the pattern which has only one convex extreme value upward, and an amplitude difference-frequency characteristic. 複数の極値を有するパターンの振幅-周波数特性の例を示す図である。It is a figure which shows the example of the amplitude-frequency characteristic of the pattern which has a some extreme value. シミュレーションモデルおよび距離測定の方法について示す図である。It is a figure shown about the simulation model and the method of distance measurement. 実施例において、縦軸を測定端末と反射壁との距離、横軸を測定端末間の距離、とした場合の受信信号の振幅の極値の分布を示す図である。In an Example, it is a figure which shows distribution of the extreme value of the amplitude of a received signal when a vertical axis | shaft is the distance of a measurement terminal and a reflecting wall, and a horizontal axis is the distance between measurement terminals. 実施例において、縦軸を測定端末と反射壁との距離、横軸を測定端末間の距離、とした場合の距離測定精度の分布を示す図である。In an Example, it is a figure which shows distribution of the distance measurement precision when a vertical axis | shaft is the distance of a measurement terminal and a reflective wall, and a horizontal axis is the distance between measurement terminals. 比較例において、縦軸を反射壁からの距離、横軸を測定端末間の距離、とした場合の距離測定精度の分布を示す図である。In a comparative example, it is a figure which shows the distribution of the distance measurement precision when a vertical axis | shaft is the distance from a reflecting wall, and a horizontal axis is the distance between measurement terminals.
 図1は、本発明の一実施の形態に係る距離測定装置の構成例を示すブロック図である。
 本実施の形態に係る距離測定装置11は、チャンネル数に対応した複数の発振周波数で発振可能な基準発振器12と、基準発振器12から出力される発振信号を用いて各チャンネルに対応した距離測定用の送信信号を生成する送信部13と、送信部13から出力される送信信号を電波にて放射する送信用アンテナ14とを有する送信系を備える。送信部13は、ミキサ、バンドパスフィルタ、パワーアンプなどを含んで構成され、発振周波数を用いて送信信号をRF信号にアップコンバートする。例えば、2405MHzから2480MHzの周波数範囲において、2.5MHz間隔のチャンネルのそれぞれで送信信号を生成して送信できるように構成されている。
FIG. 1 is a block diagram showing a configuration example of a distance measuring device according to an embodiment of the present invention.
The distance measuring device 11 according to the present embodiment uses a reference oscillator 12 capable of oscillating at a plurality of oscillation frequencies corresponding to the number of channels, and a distance measuring device corresponding to each channel using an oscillation signal output from the reference oscillator 12. A transmission system including a transmission unit 13 that generates a transmission signal of, and a transmission antenna 14 that radiates the transmission signal output from the transmission unit 13 by radio waves. The transmission unit 13 includes a mixer, a bandpass filter, a power amplifier, and the like, and up-converts the transmission signal to an RF signal using the oscillation frequency. For example, in the frequency range from 2405 MHz to 2480 MHz, a transmission signal can be generated and transmitted on each channel at intervals of 2.5 MHz.
 また、距離測定装置11は、受信用アンテナ15と、受信用アンテナ15で受けた電波を受信信号に変換して出力する受信部16と、受信部16から出力される受信信号から距離測定を行う演算部17とを有する受信系を備える。受信部16は、ローノイズアンプ、ミキサ、バンドパスフィルタなどを含んで構成され、上記送信系で各送信信号を送信したチャンネル毎に受信できるように構成されている。演算部17は、受信信号の振幅および位相を測定する振幅位相測定部21と、振幅位相測定部21で測定された測定結果であるチャンネル毎の受信信号の振幅および位相を記憶する記憶部22と、記憶部22に記憶した各チャンネルの受信信号の振幅データをもとに振幅特性を判定する振幅特性判定部23と、振幅特性判定部23によって判定された振幅特性に応じて距離計算に必要なチャンネル間の位相差を求める位相差計算部24と、チャンネル間の位相差の所定周波数範囲での平均値を計算する平均値計算部25と、振幅特性判定部23、位相差計算部24、平均値計算部25からの情報をもとに距離計算を行う距離計算部26と、を含んで構成される。なお、演算部17の構成や機能は、ハードウェアで実現しても良いし、ソフトウェアで実現しても良い。また、記憶部22は、演算部17外に設けられていても良い。 The distance measuring device 11 measures the distance from the receiving antenna 15, the receiving unit 16 that converts the radio wave received by the receiving antenna 15 into a received signal, and the received signal output from the receiving unit 16. A receiving system having a calculation unit 17 is provided. The receiving unit 16 includes a low noise amplifier, a mixer, a band pass filter, and the like, and is configured to be able to receive each transmission signal transmitted through the transmission system. The calculation unit 17 includes an amplitude phase measurement unit 21 that measures the amplitude and phase of the reception signal, and a storage unit 22 that stores the amplitude and phase of the reception signal for each channel, which is a measurement result measured by the amplitude phase measurement unit 21. The amplitude characteristic determination unit 23 that determines the amplitude characteristic based on the amplitude data of the received signal of each channel stored in the storage unit 22 and the distance calculation according to the amplitude characteristic determined by the amplitude characteristic determination unit 23 A phase difference calculation unit 24 for obtaining a phase difference between channels, an average value calculation unit 25 for calculating an average value of phase differences between channels in a predetermined frequency range, an amplitude characteristic determination unit 23, a phase difference calculation unit 24, an average And a distance calculation unit 26 that calculates a distance based on information from the value calculation unit 25. The configuration and function of the calculation unit 17 may be realized by hardware or software. The storage unit 22 may be provided outside the calculation unit 17.
 なお、ここでは、送信系と受信系が分離された態様の距離測定装置11を示しているが、例えば、基準発振器12を共用し、また送信アンテナ14と受信用アンテナ15とを一体化してもよい。 Here, the distance measuring device 11 in which the transmission system and the reception system are separated is shown, but for example, the reference oscillator 12 may be shared, and the transmission antenna 14 and the reception antenna 15 may be integrated. Good.
 振幅特性判定部23は、受信周波数範囲の受信信号の振幅データをもとに振幅特性をパターン分けする。具体的には、受信信号の振幅特性パターンが極値を有さないパターン(単調増加または減少)、下に凸の極値(極小値)を1つだけ有するパターン、上に凸の極値(極大値)を1つだけ有するパターン、複数の極値を有するパターンのいずれのパターンであるかを判定する。そして、判定パターンに基づいて、その後の距離測定のための処理内容を切り替える。位相差計算部24は、送信部13から各チャンネルの送信信号を送信した送信時間を時間基準にして振幅位相測定部21において測定された各チャンネルの位相から、隣接チャンネル間の位相差を特定する。送信部13から送信される各チャンネルの送信時間は、基準発振器12の発振動作または発振信号に同期してもよい。なお、本発明では隣接チャンネル間の位相差測定方法は上記方法に限定されない。 The amplitude characteristic determining unit 23 divides the amplitude characteristic into patterns based on the amplitude data of the received signal in the reception frequency range. Specifically, the amplitude characteristic pattern of the received signal does not have an extreme value (monotonically increasing or decreasing), a pattern having only one convex extreme value (minimum value), and an upward extreme value ( It is determined which pattern is a pattern having only one maximum value) or a pattern having a plurality of extreme values. Then, based on the determination pattern, the processing content for subsequent distance measurement is switched. The phase difference calculation unit 24 specifies the phase difference between adjacent channels from the phase of each channel measured by the amplitude phase measurement unit 21 with the transmission time when the transmission signal of each channel is transmitted from the transmission unit 13 as a time reference. . The transmission time of each channel transmitted from the transmission unit 13 may be synchronized with the oscillation operation or the oscillation signal of the reference oscillator 12. In the present invention, the method for measuring the phase difference between adjacent channels is not limited to the above method.
 次に、以上のように構成された距離測定装置11による距離測定動作について説明する。本実施の形態では、送信信号を受けた中継器(トランスポンダ)が、距離測定装置11に対して位相を同期させた信号を送信し、これを受けた距離測定装置11が受信信号から距離を測定するいわゆる二次レーダ方式の場合について説明するが、測定対象に対して発した信号を単純に反射し、その反射波を受信して距離を計測するいわゆる一次レーダ方式にも同様に適用可能である。 Next, the distance measuring operation by the distance measuring device 11 configured as described above will be described. In the present embodiment, a repeater (transponder) that has received a transmission signal transmits a signal whose phase is synchronized to the distance measuring device 11, and the distance measuring device 11 that has received the signal measures the distance from the received signal. The so-called secondary radar system will be described. However, the present invention can be similarly applied to a so-called primary radar system in which a signal emitted to a measurement target is simply reflected and the reflected wave is received to measure the distance. .
 まず、距離測定装置11は、各チャンネルの送信信号を所定間隔で順番に送信する。例えば、基準発振器12が各チャンネルに対応した発振周波数の発振信号を生成して順番に送信部13へ供給し、送信部13が各チャンネルに対応した発振周波数の発振信号を用いて周波数変換された送信信号を生成する。複数チャンネルで構成される周波数範囲やチャンネル数(隣接チャンネル間隔)については、用途などに応じて適宜設定することが望ましい。ここでは、2405MHz~2480MHzの周波数範囲において2.5MHz間隔の32チャンネルの送信信号を発生させることとする。この場合、約60mまでの距離を測定することが可能である。 First, the distance measuring device 11 transmits the transmission signals of the respective channels in order at predetermined intervals. For example, the reference oscillator 12 generates an oscillation signal having an oscillation frequency corresponding to each channel and sequentially supplies the oscillation signal to the transmission unit 13. The transmission unit 13 performs frequency conversion using the oscillation signal having an oscillation frequency corresponding to each channel. A transmission signal is generated. It is desirable to appropriately set the frequency range and the number of channels (adjacent channel interval) composed of a plurality of channels depending on the application. Here, it is assumed that transmission signals of 32 channels at intervals of 2.5 MHz are generated in the frequency range of 2405 MHz to 2480 MHz. In this case, distances up to about 60 m can be measured.
 測定対象である中継器(トランスポンダ)は、距離測定装置11から送信された距離測定用の送信信号を受信し、受信した送信信号に位相を同期させた送信信号を生成して送信する。中継器(トランスポンダ)は、チャンネル毎に受信される送信信号に対応して、受信チャンネルと同一チャンネルの送信信号を順次返信する。したがって、距離測定装置11からは各チャンネルの送信信号が順番に送信され、中継器(トランスポンダ)からは各チャンネルの送信信号が順番に返信される。 The repeater (transponder) to be measured receives the distance measurement transmission signal transmitted from the distance measurement device 11, generates a transmission signal whose phase is synchronized with the received transmission signal, and transmits the transmission signal. The repeater (transponder) sequentially returns transmission signals of the same channel as the reception channel in response to the transmission signal received for each channel. Therefore, the transmission signal of each channel is transmitted in order from the distance measuring device 11, and the transmission signal of each channel is returned in turn from the repeater (transponder).
 以下に、距離測定装置11が中継器(トランスポンダ)から返信された各チャンネルの返信信号を受信してから距離測定完了までの処理内容について詳しく説明する。 Hereinafter, the processing contents from when the distance measuring device 11 receives the reply signal of each channel returned from the repeater (transponder) until the distance measurement is completed will be described in detail.
 図2は本実施の形態に係る距離測定装置11における距離測定のフロー図である。距離測定装置11は、中継器(トランスポンダ)からチャンネル毎に順番に送信(応答送信)された送信信号を受信すると、演算部17の振幅位相測定部21が各チャンネルの受信信号の振幅および位相を測定する(ステップ101)。振幅位相測定部21で測定された測定結果(チャンネル毎の受信信号の振幅および位相)は、記憶部22に記憶される。 FIG. 2 is a flowchart of distance measurement in the distance measuring device 11 according to the present embodiment. When the distance measurement device 11 receives a transmission signal transmitted (response transmission) in order from the repeater (transponder) for each channel, the amplitude phase measurement unit 21 of the calculation unit 17 determines the amplitude and phase of the reception signal of each channel. Measure (Step 101). The measurement result (amplitude and phase of the received signal for each channel) measured by the amplitude phase measurement unit 21 is stored in the storage unit 22.
 その後、振幅特性判定部23が、記憶部22に記憶された各チャンネルの受信信号の振幅データをもとに振幅-周波数特性を求め、求められた振幅-周波数特性における極大値(PEAK)または極小値(NULL)の数をカウントする(ステップ102)。ここで、受信信号の振幅データは、例えば32チャンネルの離散データであるから、受信信号の振幅データから得られる振幅-周波数特性は、周波数軸上では離散的なものである。つまり、受信信号の振幅データから求めることができる極大値、極小値は、厳密な意味での極大値、極小値ではない。一方で、上述のように十分なチャンネル数の信号を用いることによって、極大値または極小値に近似する値が得られるため、ここではこのような近似的な値を含めて「極大値」、「極小値」と称する。 Thereafter, the amplitude characteristic determination unit 23 obtains the amplitude-frequency characteristic based on the amplitude data of the received signal of each channel stored in the storage unit 22, and the maximum value (PEAK) or minimum in the obtained amplitude-frequency characteristic. The number of values (NULL) is counted (step 102). Here, since the amplitude data of the received signal is, for example, discrete data of 32 channels, the amplitude-frequency characteristics obtained from the amplitude data of the received signal are discrete on the frequency axis. That is, the maximum value and the minimum value that can be obtained from the amplitude data of the received signal are not the maximum value and the minimum value in a strict sense. On the other hand, by using a signal having a sufficient number of channels as described above, a value that approximates a local maximum value or a local minimum value can be obtained. Therefore, here, including such approximate values, “maximum value”, “ This is referred to as “local minimum”.
 なお、上述の極大値、極小値は、対象チャンネルにおける振幅の大きさと、他チャンネルにおける振幅の大きさとの比較によって求められる。極大値とは、各チャンネルの振幅値を周波数軸方向に配列した振幅-周波数特性曲線において、周波数方向に連続的に増加してある位置から連続的に減少している場合の最大値をいう。全周波数範囲(全てのチャンネル)において極大値は1つとは限らない。極小値とは、振幅-周波数特性曲線において、周波数方向に連続的に減少してある位置から連続的に増加している場合の最小値をいう。全周波数範囲(全てのチャンネル)において極小値は1つとは限らない。 Note that the above-mentioned maximum and minimum values are obtained by comparing the amplitude of the target channel with the amplitude of the other channel. The maximum value is the maximum value when the amplitude value of each channel is continuously decreased from a position where the amplitude value is continuously increased in the frequency direction in the amplitude-frequency characteristic curve arranged in the frequency axis direction. The maximum value is not always one in the entire frequency range (all channels). The minimum value refers to the minimum value when the amplitude-frequency characteristic curve continuously increases from a position that continuously decreases in the frequency direction. There is not always one minimum value in the entire frequency range (all channels).
 本実施の形態の距離測定装置11は、全チャンネルの受信信号の振幅-周波数特性を、極大値(PEAK)と極小値(NULL)の組み合わせである(PEAK数,NULL数)で分類し、(0,0)、(1,0)、(0,1)、(≧1,≧1)の4つのパターンのいずれに該当するかを検出する。 The distance measuring device 11 according to the present embodiment classifies the amplitude-frequency characteristics of the received signals of all the channels by a combination of a maximum value (PEAK) and a minimum value (NULL) (PEAK number, NULL number). 0, 0), (1, 0), (0, 1), and (≧ 1, ≧ 1) are detected.
 具体的には、振幅特性判定部23は、ステップ102でカウントされた極大値の数から、極大値の有無を判定する(ステップ103)。また、ステップ102でカウントされた極小値の数から、極小値の有無を判定する(ステップ104、ステップ105)。そして、判定の結果をもとに、図3のような極値を有さないパターン(0,0)、図4の振幅-周波数特性のような下に凸の極値を1つだけ有するパターン(1,0)、図5の振幅-周波数特性のような上に凸の極値を1つだけ有するパターン(0,1)、図6のような複数の極値を有するパターン(≧1,≧1)のいずれかに場合分けする。図4および図5には、振幅-周波数特性(図4上および図5上)と併せて振幅差-周波数特性(図4下および図5下)を示す。なお、ここでは、極大値の有無を判定した後に、極小値の有無を判定しているが、極小値の有無を判定した後に、極大値の有無を判定しても良いし、極大値の有無と、極小値の有無とを同時に判定しても良い。 Specifically, the amplitude characteristic determination unit 23 determines the presence / absence of a local maximum value from the number of local maximum values counted in Step 102 (Step 103). Further, the presence / absence of a minimum value is determined from the number of minimum values counted in step 102 (steps 104 and 105). Then, based on the determination result, a pattern (0, 0) having no extreme value as shown in FIG. 3, a pattern having only one downward extreme value, such as the amplitude-frequency characteristic shown in FIG. (1, 0), a pattern (0, 1) having only one convex extreme value, such as the amplitude-frequency characteristic of FIG. 5, and a pattern having a plurality of extreme values (≧ 1, 1) as shown in FIG. ≥1). 4 and 5 show the amplitude difference-frequency characteristics (the lower part of FIG. 4 and the lower part of FIG. 5) together with the amplitude-frequency characteristics (the upper part of FIG. 4 and FIG. 5). Here, after determining the presence or absence of a local maximum, the presence or absence of a local minimum is determined. However, after determining the presence or absence of a local minimum, the presence or absence of a local maximum may be determined. And whether or not there is a minimum value may be determined at the same time.
 上述のステップ103およびステップ104によって、極大値が存在せず、極小値も存在しないと判定された場合(図3)には、ステップ106へ移行し、ステップ103およびステップ104によって、極大値が存在せず、極小値が存在すると判断された場合(図4の振幅-周波数特性)、またはステップ103およびステップ105によって、極大値が存在し、極小値が存在しないと判断された場合(図5の振幅-周波数特性)には、ステップ107へ移行し、また、ステップ103およびステップ105によって、極大値が存在し、極小値も存在すると判断された場合(図6)には、ステップ108へ移行する。 If it is determined in step 103 and step 104 described above that there is no maximum value and there is no minimum value (FIG. 3), the process proceeds to step 106, and the maximum value exists in step 103 and step 104. Without determining, there is a local minimum value (amplitude-frequency characteristic in FIG. 4), or when it is determined in steps 103 and 105 that there is a local maximum value and there is no local minimum value (in FIG. 5). (Amplitude-Frequency Characteristics) shifts to Step 107, and if Step 103 and Step 105 determine that a local maximum value exists and a local minimum value also exists (FIG. 6), the routine proceeds to Step 108. .
 ステップ103~105で、極大値や極小値の有無を振幅特性パターンの場合分けの基準にしているのは、コヒーレントなマルチパス波の影響は、振幅-周波数特性において、極大値または極小値という形で良く表れるためである。このように、極大値または極小値を用いて、マルチパス波の影響を考慮した距離の算出を行うことで、複雑な計算手法を用いずとも、精度良く距離を求めることができる。 In steps 103 to 105, the presence / absence of a local maximum value or local minimum value is used as a criterion for classifying the amplitude characteristic pattern. The influence of the coherent multipath wave is the maximum or minimum value in the amplitude-frequency characteristic. This is because it appears well. Thus, by calculating the distance in consideration of the influence of the multipath wave using the maximum value or the minimum value, the distance can be obtained with high accuracy without using a complicated calculation method.
 図3に示すように極大値および極小値が存在しないパターンではステップ106において、位相差の平均値が算出される。このために、位相差測定部24においてチャンネル毎の位相を計算し、隣接チャネル間の位相差(単に「位相差」などと呼ぶ場合がある。)を検出している。各チャンネルの位相は、距離測定装置11から中継器までの往復距離に対応しており、距離測定装置11がチャンネルの送信信号を送信してから当該チャンネルの返信信号を中継器から受信するまでの遅延時間として計測される。平均値計算部25が位相差の算術平均値を算出する。図3のような極値を有さないパターンの場合には、特定の隣接チャネル間の位相差のみを用いて距離を算出すると、その位相差がマルチパス波の影響を大きく受けたものである場合に、測定精度が低下してしまうことがある。本実施の形態では、各隣接チャンネル間の位相差を全周波数範囲に亘って計算し、それら複数の位相差を平均化しているので、マルチパス波の影響を緩和することができ、精度良く距離を求めることができる。図3に示すように、周波数範囲に存在するチャンネルCH~CHにおける各隣接チャネル間の位相差の平均値を算出することになる。 As shown in FIG. 3, the average value of the phase difference is calculated in step 106 in the pattern in which the maximum value and the minimum value do not exist. For this purpose, the phase difference measurement unit 24 calculates the phase for each channel and detects the phase difference between adjacent channels (sometimes referred to simply as “phase difference”). The phase of each channel corresponds to the round-trip distance from the distance measuring device 11 to the repeater, and from the time when the distance measuring device 11 transmits the channel transmission signal to the time when the channel return signal is received from the repeater. Measured as delay time. The average value calculator 25 calculates the arithmetic average value of the phase difference. In the case of a pattern having no extreme value as shown in FIG. 3, when the distance is calculated using only the phase difference between specific adjacent channels, the phase difference is greatly influenced by the multipath wave. In some cases, the measurement accuracy may decrease. In the present embodiment, the phase difference between adjacent channels is calculated over the entire frequency range, and the plurality of phase differences are averaged, so the influence of multipath waves can be mitigated and the distance can be accurately measured. Can be requested. As shown in FIG. 3, the average value of the phase differences between adjacent channels in the channels CH 1 to CH N existing in the frequency range is calculated.
 なお、距離測定精度を高めるという意味においては、平均値の算出に係る標本の数は多いことが望ましいから、例えば、32チャンネルの送信信号を用いる場合には、これらから求めることができる全ての位相差の平均値、つまり、31区間の位相差の平均値を求めるのが望ましい。ただし、本発明をこれに限る必要はなく、目的とする精度や要求される計算時間、距離測定装置の構成、などに応じて、標本の数は適宜設定することができる。 In order to increase the distance measurement accuracy, it is desirable that the number of samples related to the calculation of the average value is large. For example, when a transmission signal of 32 channels is used, all the levels that can be obtained from these samples are used. It is desirable to obtain an average value of phase differences, that is, an average value of phase differences in 31 sections. However, the present invention is not limited to this, and the number of samples can be appropriately set according to the target accuracy, required calculation time, the configuration of the distance measuring device, and the like.
 図4の振幅-周波数特性に示すように極大値が存在せず、極小値が存在するパターン、または図5の振幅-周波数特性に示すように極大値が存在し、極小値が存在しないパターンではステップ107において、極大値または極小値における位相差が算出される。このため、位相差測定部24において測定された隣接チャンネル間の位相差のうち、振幅差が最大(振幅差の絶対値が最大)となる隣接チャネル間の位相差を抽出する。図4の振幅-周波数特性のような下に凸の極値を1つだけ有するパターンや、図5の振幅-周波数特性のような上に凸の極値を1つだけ有するパターンの場合には、極大値または極小値をとるチャンネルにおいてマルチパス波の影響が最も強く、隣接チャネル間の振幅差が最大となる区間においてマルチパス波の影響が最も弱いためである。振幅差が最大となる区間は、例えば、図4においてPで表わされる区間であり、図5においてPで表わされる区間である。なお、振幅差が最大となる区間が二つ以上存在する場合には、距離の算出において、一方の区間における位相差のみを用いても良いし、二つの区間の位相差の平均値を用いても良い。 As shown in the amplitude-frequency characteristic of FIG. 4, there is no local maximum value and a local minimum value exists, or as shown in FIG. 5 the amplitude-frequency characteristic has a local maximum value and no local minimum value exists. In step 107, the phase difference at the maximum value or the minimum value is calculated. For this reason, among the phase differences between the adjacent channels measured by the phase difference measuring unit 24, the phase difference between the adjacent channels having the maximum amplitude difference (the absolute value of the amplitude difference is maximum) is extracted. In the case of a pattern having only one downward extreme value such as the amplitude-frequency characteristic of FIG. 4 or a pattern having only one upward extreme value such as the amplitude-frequency characteristic of FIG. This is because the influence of the multipath wave is strongest in the channel having the maximum value or the minimum value, and the influence of the multipath wave is weakest in the section where the amplitude difference between the adjacent channels is maximum. The section in which the amplitude difference is maximum is, for example, a section represented by P k in FIG. 4 and a section represented by P k in FIG. When there are two or more sections in which the amplitude difference is maximum, only the phase difference in one section may be used in calculating the distance, or the average value of the phase differences in the two sections may be used. Also good.
 図6に示すように極大値が存在し、極小値も存在するパターンではステップ108において、極値間の位相差の平均値を算出する。このため、位相差測定部24において測定された隣接チャンネル間の位相差を用いて、平均値計算部25が位相差の算術平均値を算出する。ただし、ここでは、極値を与えるチャンネルと、別の極値を与えるチャンネルとの間の区間において、位相差の平均値を算出する。図6のような複数の極値を有するパターンの場合には、極値を与えるチャネル(例えば、CHa)と別の極値を与えるチャネル(例えば、CHb)との間において、隣接チャネル間の位相差を累積することにより、マルチパス波の影響を相殺することができるためである。なお、上記平均値は、極大値を与えるチャンネルと、極小値を与えるチャンネルとの間において求めても良いし、極大値を与える二つのチャンネルの間、または極小値を与える二つのチャネルの間において求めても良い。 As shown in FIG. 6, in a pattern in which a maximum value exists and a minimum value also exists, in step 108, an average value of phase differences between extreme values is calculated. For this reason, the average value calculation unit 25 calculates the arithmetic average value of the phase differences using the phase difference between adjacent channels measured by the phase difference measurement unit 24. However, here, an average value of phase differences is calculated in a section between a channel that provides an extreme value and a channel that provides another extreme value. In the case of a pattern having a plurality of extreme values as shown in FIG. 6, the position between adjacent channels is between a channel that gives an extreme value (for example, CHa) and a channel that gives another extreme value (for example, CHb). This is because the effects of multipath waves can be canceled by accumulating the phase differences. The average value may be obtained between a channel that gives a maximum value and a channel that gives a minimum value, or between two channels that give a maximum value, or between two channels that give a minimum value. You may ask.
 その後、上述のステップ106~108によって得られる算出結果を元に、距離計算部26は、測定対象である中継器と距離測定装置11との距離を計算する(ステップ109)。図3に示すパターンに対応してステップ106において位相差の平均値を求めている場合、距離L(m)は、次式によって求められる。なお、式中、Δφ(rad)はステップ106において得られた位相差の算術平均値を表し、c(m・s-1)は光速を表し、Δf(Hz)は隣接チャンネルの周波数間隔を表す。また、Nは測定範囲における区間の数を表し、Δφは第iの区間における位相差(rad)を表す。なお、下記式では、測定範囲内の全区間において算術平均を求めているが、算術平均の計算に係る区間数は適宜変更することができる。
Figure JPOXMLDOC01-appb-M000001
Thereafter, based on the calculation results obtained in the above-described steps 106 to 108, the distance calculation unit 26 calculates the distance between the repeater to be measured and the distance measuring device 11 (step 109). When the average value of the phase difference is obtained in step 106 corresponding to the pattern shown in FIG. 3, the distance L (m) is obtained by the following equation. In the equation, Δφ a (rad) represents the arithmetic average value of the phase difference obtained in step 106, c (m · s −1 ) represents the speed of light, and Δf (Hz) represents the frequency interval between adjacent channels. To express. N represents the number of sections in the measurement range, and Δφ i represents the phase difference (rad) in the i-th section. In the following formula, the arithmetic average is obtained in all intervals within the measurement range, but the number of intervals related to the calculation of the arithmetic average can be changed as appropriate.
Figure JPOXMLDOC01-appb-M000001
 また、図4または図5に示すパターンに対応してステップ107において振幅差が最大となる隣接チャネル間の位相差を抽出している場合、距離L(m)は、次式によって求められる。なお、式中、Δφ(rad)はステップ107において得られた位相差、すなわち、振幅差が最大となる隣接チャネル間の位相差を表し、c(m・s-1)は光速を表し、Δf(Hz)は隣接チャンネルの周波数間隔を表す。
Figure JPOXMLDOC01-appb-M000002
If the phase difference between adjacent channels with the maximum amplitude difference is extracted in step 107 corresponding to the pattern shown in FIG. 4 or FIG. 5, the distance L (m) is obtained by the following equation. In the equation, Δφ b (rad) represents the phase difference obtained in step 107, that is, the phase difference between adjacent channels with the maximum amplitude difference, c (m · s −1 ) represents the speed of light, Δf (Hz) represents the frequency interval between adjacent channels.
Figure JPOXMLDOC01-appb-M000002
 また、図6に示すパターンに対応してステップ108において極値間の位相差の平均値を求めている場合、距離L(m)は、次式によって求められる。なお、式中、Δφ(rad)はステップ108において得られた位相差の算術平均値(極値を与えるチャンネル間での位相差の算術平均値)を表し、c(m・s-1)は光速を表し、Δf(Hz)は隣接チャンネルの周波数間隔を表す。また、b-aは平均値の算出に係る区間の数(極値を与えるチャンネル間の区間の数)を表し、Δφは第iの区間における位相差(rad)を表す。つまり、ここでは、第aの区間~第b-1の区間についての算術平均を求めていることになる。
Figure JPOXMLDOC01-appb-M000003
Further, when the average value of the phase differences between the extreme values is obtained in step 108 corresponding to the pattern shown in FIG. 6, the distance L (m) is obtained by the following equation. In the equation, Δφ c (rad) represents the arithmetic average value of the phase difference obtained in step 108 (arithmetic average value of the phase difference between channels giving extreme values), and c (m · s −1 ) Represents the speed of light, and Δf (Hz) represents the frequency interval between adjacent channels. Further, ba represents the number of sections related to the calculation of the average value (the number of sections between channels giving extreme values), and Δφ i represents the phase difference (rad) in the i-th section. That is, here, the arithmetic average for the a-th section to the (b-1) -th section is obtained.
Figure JPOXMLDOC01-appb-M000003
 このように本実施の形態によれば、受信信号の極大値および極小値の状態に応じて適切な演算処理を適用することで、フーリエ変換を用いることなくマルチパス波の影響を低減できるので演算負荷を軽減でき、また受信信号の状態に応じて異なる演算処理を適用することで、フーリエ変換を用いた距離測定装置より高い精度で距離測定を行うことができる。 As described above, according to the present embodiment, it is possible to reduce the influence of the multipath wave without using Fourier transform by applying appropriate arithmetic processing according to the state of the maximum value and the minimum value of the received signal. The load can be reduced, and by applying different arithmetic processing depending on the state of the received signal, distance measurement can be performed with higher accuracy than a distance measurement device using Fourier transform.
 なお、以上の説明では、受信信号の振幅-周波数特性のパターンを図3~図6の4パターンに分類して、各パターンに応じて距離計算方式を切り替えているが、振幅-周波数特性のパターンと距離計算方式とが1対1で対応していれば、当該振幅-周波数特性パターンに対しては高い距離測定精度を実現できる。したがって、用途によっては、ステップ106、107、108のいずれか少なくとも1つを実行できるように構成してもよい。 In the above description, the amplitude-frequency characteristic patterns of the received signal are classified into the four patterns shown in FIGS. 3 to 6, and the distance calculation method is switched according to each pattern. And the distance calculation method have a one-to-one correspondence, a high distance measurement accuracy can be realized for the amplitude-frequency characteristic pattern. Therefore, depending on the application, at least one of steps 106, 107, and 108 may be executed.
 次に、本実施の形態に係る距離測定装置11に基づいて行った振幅の周波数応答と距離誤差についてのシミュレーション結果を示す。 Next, a simulation result of the frequency response of the amplitude and the distance error performed based on the distance measuring device 11 according to the present embodiment will be shown.
 二次レーダ方式を用いたシミュレーションモデルを図7(A)に示す。シミュレーションモデルでは、マスタ201(距離測定装置11に相当)、スレーブ202(中継器に相当)、および反射壁203を想定する。周波数範囲は2402.5MHz~2480MHz、チャンネルの間隔は2.5MHz、チャンネル数は32とした。 The simulation model using the secondary radar system is shown in FIG. In the simulation model, a master 201 (corresponding to the distance measuring device 11), a slave 202 (corresponding to a repeater), and a reflecting wall 203 are assumed. The frequency range was 2402.5 MHz to 2480 MHz, the channel spacing was 2.5 MHz, and the number of channels was 32.
 図7(A)に示されるシミュレーションモデルを用いる場合、マスタ201が送信信号を送信すると、スレーブ202は送信信号を受信するが、スレーブ202が受信する受信信号は、直接波211と反射波212とが合成された合成波である(図7(B)参照)。合成波を受けると、スレーブ202はマスタ201からの合成波と位相が同期した信号に同期して返信信号を送信する。その結果、マスタ201は、スレーブ202からの返信信号に関して、直接波221と反射波222とが合成された合成波を受ける(図7(C)参照)。測定端末(マスタ201またはスレーブ202)と反射壁203との距離d、測定端末間の距離dは可変となっており、装置によって測定される測定端末間の距離と、実際の測定端末間の距離とを比較することで、測定精度の確認が行われる。 When the simulation model shown in FIG. 7A is used, when the master 201 transmits a transmission signal, the slave 202 receives the transmission signal, but the reception signal received by the slave 202 includes the direct wave 211 and the reflected wave 212. Is a synthesized wave (see FIG. 7B). When receiving the synthesized wave, the slave 202 transmits a reply signal in synchronization with a signal whose phase is synchronized with the synthesized wave from the master 201. As a result, the master 201 receives a synthesized wave obtained by synthesizing the direct wave 221 and the reflected wave 222 with respect to the return signal from the slave 202 (see FIG. 7C). The distance d 1 between the measurement terminal (master 201 or slave 202) and the reflection wall 203 and the distance d 2 between the measurement terminals are variable, and the distance between the measurement terminals measured by the apparatus and the actual measurement terminal The measurement accuracy is confirmed by comparing with the distance.
 図8は上記シミュレーションモデルに基づいた測定結果であり、縦軸を、測定端末と反射壁203との距離(m)、横軸を、測定端末間の距離(m)、とした場合の振幅-周波数特性の極値の分布を示す。図中の各領域は、対象となる条件での極値の数に対応している。図8から分かるように、(PEAK,NULL)のパターンが(≧1,≧1)となる図中上側の領域、つまり、測定端末と反射壁203との距離が大きい条件では、極大値および極小値が存在する。また、(PEAK,NULL)のパターンが(0,0)となる図中下側の領域、つまり、測定端末と反射壁203との距離が小さい条件では、極大値および極小値が存在しない。そして、これらの領域の間に相当する条件では、(1,0)、(0,1)が混在しており極大値または極小値のいずれかが存在する。 FIG. 8 shows measurement results based on the above simulation model. The amplitude when the vertical axis is the distance (m) between the measurement terminal and the reflecting wall 203 and the horizontal axis is the distance (m) between the measurement terminals. The distribution of extreme values of frequency characteristics is shown. Each region in the figure corresponds to the number of extreme values under the target condition. As can be seen from FIG. 8, the maximum value and the minimum value are obtained in the upper region in the figure where the pattern of (PEAK, NULL) is (≧ 1, ≧ 1), that is, in the condition where the distance between the measurement terminal and the reflection wall 203 is large. Value exists. Further, in the lower region in the figure where the pattern of (PEAK, NULL) is (0, 0), that is, in the condition where the distance between the measurement terminal and the reflection wall 203 is small, there are no local maximum value and local minimum value. Under the conditions corresponding to these regions, (1, 0) and (0, 1) are mixed, and either a maximum value or a minimum value exists.
 図9は、縦軸を、測定端末と反射壁203との距離(m)、横軸を、測定端末間の距離(m)、とした場合の距離測定精度の分布を示している。図中の各領域は、シミュレーション値と真の値との差、すなわち測定誤差の大きさによって区分けされており、領域Aは測定誤差が小さいことを示し、領域Bは測定誤差が僅かに存在することを示す。実施例の測定範囲全域において測定誤差が十分に小さくなっていることが分かる。 FIG. 9 shows the distribution of distance measurement accuracy when the vertical axis is the distance (m) between the measurement terminal and the reflection wall 203 and the horizontal axis is the distance (m) between the measurement terminals. Each region in the figure is divided according to the difference between the simulation value and the true value, that is, the magnitude of the measurement error, the region A indicates that the measurement error is small, and the region B has a slight measurement error. It shows that. It can be seen that the measurement error is sufficiently small over the entire measurement range of the example.
 フーリエ変換およびフーリエ逆変換を用いる従来方式の距離測定装置の測定精度を比較例としてシミュレーションした。測定系などの条件は、上記シミュレーションと同様である。 The measurement accuracy of a conventional distance measuring apparatus using Fourier transform and inverse Fourier transform was simulated as a comparative example. The conditions such as the measurement system are the same as in the above simulation.
 図10は、縦軸を、測定端末と反射壁203との距離(m)、横軸を、測定端末間の距離(m)、とした場合の距離測定精度の分布を示す。図中の各領域は、実測値と真の値との差、すなわち測定誤差の大きさによって区分けされており、領域Aは測定誤差が小さいことを示し、領域Bは測定誤差が僅かに存在することを示し、領域Cは測定誤差が大きいことを示す。フーリエ変換およびフーリエ逆変換を用いる方式では、実施例(本発明の方式)と比較して、測定精度が低いことが分かる。 FIG. 10 shows the distribution of distance measurement accuracy when the vertical axis is the distance (m) between the measurement terminal and the reflection wall 203 and the horizontal axis is the distance (m) between the measurement terminals. Each area in the figure is divided according to the difference between the measured value and the true value, that is, the magnitude of the measurement error, the area A indicates that the measurement error is small, and the area B has a slight measurement error. Region C shows that the measurement error is large. It can be seen that the method using the Fourier transform and the inverse Fourier transform has a lower measurement accuracy than the example (the method of the present invention).
 以上に述べたように、本発明の距離測定装置では、受信信号に応じた適切な演算処理を行っている。このため、フーリエ変換などの複雑な処理を行うことなくマルチパス波の影響を低減することができる。つまり、距離を算出する際の計算量が少なく、かつ精度が十分に高められた距離測定装置が提供される。 As described above, the distance measuring apparatus according to the present invention performs appropriate arithmetic processing according to the received signal. For this reason, the influence of multipath waves can be reduced without performing complicated processing such as Fourier transform. That is, there is provided a distance measuring device with a small amount of calculation for calculating the distance and with sufficiently high accuracy.
 なお、上記実施の形態において、添付図面に示されている構成などは、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。 In addition, in the said embodiment, the structure etc. which are shown by the attached drawing are not limited to this, It is possible to change suitably in the range which exhibits the effect of this invention.
 本発明の距離測定装置は、測定対象の距離を測定するレーダ、GPSその他の各種用途に用いることができる。 The distance measuring device of the present invention can be used for radar, GPS, and other various applications that measure the distance of a measurement target.
 本出願は、2010年10月26日出願の特願2010-239630に基づく。この内容は、全てここに含めておく。
 
This application is based on Japanese Patent Application No. 2010-239630 filed on Oct. 26, 2010. All this content is included here.

Claims (6)

  1.  所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、
     前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、
     前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、
     前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、
     前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、
     前記測定対象との間の距離を計算する演算部と、
     を備え、
     前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、
     前記極大値および前記極小値が存在しない場合は、前記所定周波数範囲における各隣接チャンネル間の位相差を平均し、該位相差平均値を用いて前記測定対象までの距離を算出することを特徴とする距離測定装置。
    A reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of channels continuous in a frequency direction within a predetermined frequency range;
    Transmitting means for transmitting a transmission signal of each channel using the oscillation signal;
    A receiving means for receiving a return signal returned for each channel from the measurement target that received the transmission signal of each channel, or a reflected signal for each channel from the measurement target;
    An amplitude phase measurement unit for measuring the reception amplitude phase of each reply signal or each reflection signal received by the receiving means for each channel;
    A storage unit capable of storing a received amplitude phase measurement value measured for each channel by the amplitude phase measurement unit;
    A calculation unit for calculating a distance between the measurement object;
    With
    The calculation unit processes the reception amplitude phase measurement values of a plurality of channels extracted from the storage unit, and a local maximum value or reception amplitude in which the reception amplitude is larger than a peripheral channel including an adjacent channel in the predetermined frequency range. Determine if there is a local minimum that decreases,
    When the maximum value and the minimum value do not exist, the phase difference between adjacent channels in the predetermined frequency range is averaged, and the distance to the measurement object is calculated using the phase difference average value. Distance measuring device.
  2.  所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、
     前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、
     前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、
     前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、
     前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、
     前記測定対象との間の距離を計算する演算部と、
     を備え、
     前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、
     前記極大値が存在し、かつ、前記極小値が存在しない場合、または、前記極小値が存在し、かつ、前記極大値が存在しない場合は、隣接チャンネル間のうちで振幅差が最大または最小となる隣接チャンネル間を特定し、特定した隣接チャンネル間の前記位相差を用いて前記測定対象までの距離を算出することを特徴とする距離測定装置。
    A reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of channels continuous in a frequency direction within a predetermined frequency range;
    Transmitting means for transmitting a transmission signal of each channel using the oscillation signal;
    A receiving means for receiving a return signal returned for each channel from the measurement target that received the transmission signal of each channel, or a reflected signal for each channel from the measurement target;
    An amplitude phase measurement unit for measuring the reception amplitude phase of each reply signal or each reflection signal received by the receiving means for each channel;
    A storage unit capable of storing a received amplitude phase measurement value measured for each channel by the amplitude phase measurement unit;
    A calculation unit for calculating a distance between the measurement object;
    With
    The calculation unit processes the reception amplitude phase measurement values of a plurality of channels extracted from the storage unit, and a local maximum value or reception amplitude in which the reception amplitude is larger than a peripheral channel including an adjacent channel in the predetermined frequency range. Determine if there is a local minimum that decreases,
    When the local maximum value exists and the local minimum value does not exist, or when the local minimum value exists and the local maximum value does not exist, the amplitude difference between adjacent channels is maximum or minimum. A distance measuring device characterized in that a distance between adjacent channels is specified, and a distance to the measurement object is calculated using the phase difference between the specified adjacent channels.
  3.  所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、
     前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、
     前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、
     前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、
     前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、
     前記測定対象との間の距離を計算する演算部と、
     を備え、
     前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、
     前記極大値および前記極小値が存在する場合は、前記極大値となる周波数位置から前記極小値となる周波数位置までの各隣接チャンネル間の位相差の平均値を用いて前記測定対象までの距離を算出することを特徴とする距離測定装置。
    A reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of channels continuous in a frequency direction within a predetermined frequency range;
    Transmitting means for transmitting a transmission signal of each channel using the oscillation signal;
    A receiving means for receiving a return signal returned for each channel from the measurement target that received the transmission signal of each channel, or a reflected signal for each channel from the measurement target;
    An amplitude phase measurement unit for measuring the reception amplitude phase of each reply signal or each reflection signal received by the receiving means for each channel;
    A storage unit capable of storing a received amplitude phase measurement value measured for each channel by the amplitude phase measurement unit;
    A calculation unit for calculating a distance between the measurement object;
    With
    The calculation unit processes the reception amplitude phase measurement values of a plurality of channels extracted from the storage unit, and a local maximum value or reception amplitude in which the reception amplitude is larger than a peripheral channel including an adjacent channel in the predetermined frequency range. Determine if there is a local minimum that decreases,
    When the local maximum value and the local minimum value exist, the distance to the measurement object is calculated using an average value of phase differences between adjacent channels from the frequency position where the local maximum value is reached to the frequency position where the local minimum value is obtained. A distance measuring device characterized by calculating.
  4.  所定周波数範囲で周波数方向に連続する複数チャンネルにそれぞれ対応した周波数の発振信号を出力する基準発振器と、
     前記発振信号を用いて各チャンネルの送信信号を送信する送信手段と、
     前記各チャンネルの送信信号を受けた測定対象からチャンネル毎に返信される返信信号、または前記測定対象からのチャンネル毎の反射信号を受信する受信手段と、
     前記受信手段で受信した各返信信号または各反射信号の受信振幅位相をチャンネル毎に測定する振幅位相測定部と、
     前記振幅位相測定部でチャンネル毎に測定された受信振幅位相測定値を記憶可能な記憶部と、
     前記測定対象との間の距離を計算する演算部と、
     を備え、
     前記演算部は、前記記憶部から取り出した複数チャンネルの受信振幅位相測定値を処理して、前記所定周波数範囲に、隣接チャンネルを含む周辺チャンネルよりも受信振幅が大きくなる極大値、または受信振幅が小さくなる極小値が存在するか否か判定し、
     前記極大値および前記極小値が存在しない場合は、前記所定周波数範囲における各隣接チャンネル間の位相差を平均し、該位相差平均値を用いて前記測定対象までの距離を算出し、
     前記極大値が存在し、かつ、前記極小値が存在しない場合、または、前記極小値が存在し、かつ、前記極大値が存在しない場合は、隣接チャンネル間のうちで振幅差が最大または最小となる隣接チャンネル間を特定し、特定した隣接チャンネル間の前記位相差を用いて前記測定対象までの距離を算出し、
     前記極大値および前記極小値が存在する場合は、前記極大値となる周波数位置から前記極小値となる周波数位置までの各隣接チャンネル間の位相差の平均値を用いて前記測定対象までの距離を算出することを特徴とする距離測定装置。
    A reference oscillator that outputs an oscillation signal having a frequency corresponding to each of a plurality of channels continuous in a frequency direction within a predetermined frequency range;
    Transmitting means for transmitting a transmission signal of each channel using the oscillation signal;
    A receiving means for receiving a return signal returned for each channel from the measurement target that received the transmission signal of each channel, or a reflected signal for each channel from the measurement target;
    An amplitude phase measurement unit for measuring the reception amplitude phase of each reply signal or each reflection signal received by the receiving means for each channel;
    A storage unit capable of storing a received amplitude phase measurement value measured for each channel by the amplitude phase measurement unit;
    A calculation unit for calculating a distance between the measurement object;
    With
    The calculation unit processes the reception amplitude phase measurement values of a plurality of channels extracted from the storage unit, and a local maximum value or reception amplitude in which the reception amplitude is larger than a peripheral channel including an adjacent channel in the predetermined frequency range. Determine if there is a local minimum that decreases,
    When the maximum value and the minimum value do not exist, the phase difference between adjacent channels in the predetermined frequency range is averaged, and the distance to the measurement object is calculated using the phase difference average value.
    When the local maximum value exists and the local minimum value does not exist, or when the local minimum value exists and the local maximum value does not exist, the amplitude difference between adjacent channels is maximum or minimum. To determine the distance to the measurement object using the phase difference between the specified adjacent channels,
    When the local maximum value and the local minimum value exist, the distance to the measurement object is calculated using an average value of phase differences between adjacent channels from the frequency position where the local maximum value is reached to the frequency position where the local minimum value is obtained. A distance measuring device characterized by calculating.
  5.  前記演算部は、
     前記極大値および前記極小値が存在する場合であって前記極大値が二以上存在する場合に、一の極大値となる周波数位置から、他の一の極大値となる周波数位置までの各隣接チャネル間の位相差の平均値を算出し、前記位相差の平均値から前記測定対象までの距離を算出することを特徴とする請求項3または請求項4に記載の距離測定装置。
    The computing unit is
    When the local maximum value and the local minimum value exist, and there are two or more local maximum values, each adjacent channel from the frequency position where one local maximum value is reached to the frequency position where the other local maximum value is obtained 5. The distance measuring device according to claim 3, wherein an average value of phase differences is calculated, and a distance from the average value of the phase differences to the measurement object is calculated.
  6.  前記演算部は、
     前記極大値および前記極小値が存在する場合であって前記極小値が二以上存在する場合に、一の極小値となる周波数位置から、他の一の極小値となる周波数位置までの各隣接チャネル間の位相差の平均値を算出し、前記位相差の平均値から前記測定対象までの距離を算出することを特徴とする請求項3から請求項5のいずれかに記載の距離測定装置。
    The computing unit is
    When the local maximum value and the local minimum value exist, and there are two or more local minimum values, each adjacent channel from the frequency position at which one local minimum value is reached to the frequency position at which the other local minimum value is obtained 6. The distance measuring device according to claim 3, wherein an average value of phase differences is calculated, and a distance from the average value of the phase differences to the measurement object is calculated.
PCT/JP2011/068399 2010-10-26 2011-08-11 Distance measurement apparatus WO2012056791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012540719A JP5379312B2 (en) 2010-10-26 2011-08-11 Distance measuring device
CN201180048656.5A CN103154767B (en) 2010-10-26 2011-08-11 Distance measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010239630 2010-10-26
JP2010-239630 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012056791A1 true WO2012056791A1 (en) 2012-05-03

Family

ID=45993521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068399 WO2012056791A1 (en) 2010-10-26 2011-08-11 Distance measurement apparatus

Country Status (3)

Country Link
JP (1) JP5379312B2 (en)
CN (1) CN103154767B (en)
WO (1) WO2012056791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166437A1 (en) * 2020-03-19 2022-05-26 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018522B (en) * 2018-01-09 2023-09-01 松下知识产权经营株式会社 Estimation device and estimation method
EP3564706A1 (en) * 2018-05-04 2019-11-06 Lambda: 4 Entwicklungen GmbH Method and system for high resolution range and velocity measurements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095463A1 (en) * 2005-03-09 2006-09-14 Omron Corporation Distance measuring apparatus, distance measuring method, reflector and communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4283170B2 (en) * 2003-12-17 2009-06-24 株式会社デンソー Object detection device
JP4828167B2 (en) * 2005-06-16 2011-11-30 株式会社 ソキア・トプコン Distance measuring apparatus and method
JP4116053B2 (en) * 2006-09-20 2008-07-09 北陽電機株式会社 Ranging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095463A1 (en) * 2005-03-09 2006-09-14 Omron Corporation Distance measuring apparatus, distance measuring method, reflector and communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166437A1 (en) * 2020-03-19 2022-05-26 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method
US11664807B2 (en) * 2020-03-19 2023-05-30 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method

Also Published As

Publication number Publication date
JPWO2012056791A1 (en) 2014-03-20
JP5379312B2 (en) 2013-12-25
CN103154767B (en) 2015-04-01
CN103154767A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US9689969B2 (en) Doppler radar test system
JP5701083B2 (en) Radar device and method for calculating received power in the radar device
US20140184437A1 (en) Radar device
US9372260B2 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP2012185039A (en) Radar device and arrival angle calculation method of the radar device
JP2011133404A (en) Observation signal processing apparatus
JP4901833B2 (en) Radar equipment
JP6279193B2 (en) Object detection device and sensor device
JP6164918B2 (en) Radar equipment
JP5379312B2 (en) Distance measuring device
JP5932746B2 (en) Media boundary position measurement system
JP2019023577A (en) System and method for moving target detection
JP4314262B2 (en) Automotive radar equipment
RU2486540C1 (en) Simulator of false radar target during linear frequency-modulated signal probing
JP5620232B2 (en) Distance measuring device
RU2669016C2 (en) Doppler ground velocity meter
WO2020031639A1 (en) Radar device
JP6573748B2 (en) Radar equipment
JP5278083B2 (en) Target orientation calculation device
KR102172085B1 (en) Radar apparatus and method for measuring distance of target using the same
JP2006329829A (en) Radar device
JP7462852B2 (en) Radar device and interference detection method for radar device
RU2506607C2 (en) Method to determine non-radial projection of target speed vector
KR101443461B1 (en) Apparatus and method for measuring distance using radar
RU2663215C1 (en) Radio wave method of measuring ground speed

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048656.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835932

Country of ref document: EP

Kind code of ref document: A1