WO2017138372A1 - Solid-state imaging device and electronic device - Google Patents

Solid-state imaging device and electronic device Download PDF

Info

Publication number
WO2017138372A1
WO2017138372A1 PCT/JP2017/002885 JP2017002885W WO2017138372A1 WO 2017138372 A1 WO2017138372 A1 WO 2017138372A1 JP 2017002885 W JP2017002885 W JP 2017002885W WO 2017138372 A1 WO2017138372 A1 WO 2017138372A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
pupil correction
imaging device
state imaging
derived
Prior art date
Application number
PCT/JP2017/002885
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 村瀬
壽史 若野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017138372A1 publication Critical patent/WO2017138372A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to a solid-state imaging device and an electronic device, and more particularly, to a solid-state imaging device and an electronic device that can improve shading characteristics.
  • the shading characteristics are improved by changing the exit pupil correction amount of the on-chip lens in a concentric manner as represented by contour lines.
  • Patent Document 1 discloses a solid-state imaging device in which the exit pupil correction amount of an on-chip lens is changed to a concentric ellipse shape with contour lines. Thereby, also in the solid-state imaging device using an aspheric lens, the shading characteristics can be improved.
  • the present technology has been made in view of such circumstances, and is intended to improve shading characteristics in a solid-state imaging device having a shading distribution of an arbitrary shape.
  • a solid-state imaging device of the present technology includes a plurality of pixels arranged in an imaging region on a substrate and an on-chip microlens formed corresponding to each pixel, and an exit pupil correction amount of each of the on-chip microlenses Is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function.
  • the pupil correction function can be derived using a predetermined coefficient set based on the imaging region.
  • the pupil correction function can be derived using the coefficient corresponding to the aspect ratio of the imaging region.
  • the pupil correction function can be derived using a coefficient corresponding to the change rate of the pupil correction amount in a plurality of directions from the optical center on the imaging region.
  • the image pickup area may have a plurality of optical centers, and the pupil correction function may be derived for each optical center.
  • pixels having different pixel pitches or pixel sizes may be arranged, and the pupil correction function may be derived using the coefficient corresponding to the pixel arrangement pattern.
  • the substrate is curved so that the imaging region side is concave, and the pupil correction function can be derived using the coefficient corresponding to the amount of warpage of the substrate.
  • the pupil correction function can be derived using the coefficient corresponding to the power supply or wiring on the substrate.
  • the pupil correction function can be derived using the coefficient corresponding to the heat distribution when the solid-state imaging device is driven.
  • the electronic device of the present technology includes a plurality of pixels arranged in an imaging region on a substrate and an on-chip microlens formed corresponding to each pixel, and an exit pupil correction amount of each of the on-chip microlenses is And a solid-state imaging device represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculation correction amount calculated for a predetermined position on the imaging region with an interpolation function.
  • the exit pupil correction amount of each on-chip microlens is a two-dimensional distribution of the pupil correction function derived by interpolating the calculated correction amount calculated for a predetermined position on the imaging region with the interpolation function. It is represented by
  • the exit pupil correction amount of an on-chip microlens (hereinafter simply referred to as a microlens) is increased from the center of the imaging region 11 toward the periphery.
  • the contour line 12 is changed in a concentric manner.
  • an aspherical lens is used as an optical lens.
  • the change in the incident angle with respect to the image height (corresponding to the distance from the center of the imaging region to the periphery) of the aspherical lens is not linear. Therefore, in the correction of the microlens position corresponding to the conventional spherical lens, the condensing position of the microlens and the light receiving portion of the pixel are misaligned, and the incident light is blocked by the light shielding film formed around the light receiving portion. The so-called “vignetting” occurs. As a result, shading deteriorates and sensitivity decreases.
  • Patent Document 1 As shown in FIG. 2, the exit pupil correction amount of the microlens with respect to the distance (corresponding to the image height) from the center to the periphery of the imaging region 11 is represented by a contour line 13. It has been proposed to change to a concentric ellipse.
  • the shading distribution in the imaging region 21 takes an arbitrary shape.
  • the correction amount cannot be locally optimized.
  • FIG. 4 is a cross-sectional view illustrating a structure of an embodiment of a solid-state imaging device to which the present technology is applied.
  • 4 is configured as a CCD (Charge Coupled Device) image sensor
  • the solid-state imaging device 31 may be configured as a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • a plurality of light receiving portions 33 constituting pixels are arranged in a matrix in an imaging region on a substrate 32 made of a silicon semiconductor, and a vertical transfer register having a CCD structure corresponding to each light receiving portion row. 34 is formed. Further, a color filter 36 and a microlens 37 are formed on the imaging region via a passivation film and a flattening film 35 (not shown).
  • the vertical transfer register 34 is configured by forming a transfer electrode 38 made of, for example, polycrystalline silicon on a transfer channel region formed on the surface of the substrate 32 through a gate insulating layer.
  • An interlayer insulating film 39 is formed on the surface of the substrate 32 including the transfer electrode 38.
  • a light shielding film 41 is formed on the interlayer insulating film 39 except for the portion corresponding to the light receiving portion 33. That is, an opening 41 ⁇ / b> A is formed in a portion corresponding to the light receiving portion 33 of the light shielding film 41.
  • the light shielding film 41 is formed of, for example, aluminum (Al) or tungsten (W).
  • the color filter 36 is formed as a Bayer array primary color filter including a red filter component 36R, a green filter component 36G, and a blue filter component 36B.
  • the microlenses 37 are formed so as to be arranged at positions where light is condensed on the corresponding light receiving portions 33.
  • incident light 46 is incident from the aperture point P of the diaphragm 45.
  • the imaging region is formed in a horizontally long shape.
  • the unit pixel is formed in a square shape, and the opening 41A of the light receiving portion 33 is formed in a vertically long rectangle.
  • the exit pupil correction amount of each microlens 37 formed corresponding to each pixel in the imaging region is set to an appropriate correction amount at each pixel position.
  • the exit pupil correction amount of each of the microlenses 37 is a pupil correction function 2 derived by interpolating a correction amount calculated for a predetermined pixel position in the imaging region with an interpolation function described later. It is represented by a pupil correction map that is a dimensional distribution.
  • step S1 a pixel output at a predetermined pixel position on the imaging region is acquired.
  • the actual pixel value of the target pixel is acquired as the pixel output, but incident characteristics (for example, incident angle data) at the pixel position of the target pixel are acquired. Also good.
  • step S2 the pupil correction amount required at each pixel position is calculated based on the pixel output at each pixel position.
  • step S3 the pupil correction function is derived by interpolating the calculated pupil correction amount at each pixel position with the interpolation function.
  • a cubic spline function is used as the interpolation function.
  • N cubic spline functions F (0) and F (1) for interpolating the pupil correction amount at each pixel position in a predetermined direction on the pixel plane corresponding to the imaging region.
  • F (2), F (3), ... F (N) are derived.
  • the pupil correction amount around the pixel position (x, y) on the xy plane representing the pixel plane is calculated using the derived cubic spline function. Then, the pupil correction amount I (x, y) at the pixel position (x, y) is calculated using bicubic interpolation.
  • a pupil correction function representing the pupil correction amount at an arbitrary pixel position on the imaging region is derived.
  • the more complex the pixel output distribution on the imaging area the more complicated the pupil correction function. Therefore, as will be described later, by using a predetermined coefficient set based on the imaging area, The correction function can be simplified and increased in accuracy.
  • step S4 a two-dimensional distribution on the xy plane is extracted from the derived pupil correction function to generate a pupil correction map.
  • the pupil correction map is generated as described above, the correction amount can be optimized locally. Therefore, in a solid-state imaging device having a shading distribution of an arbitrary shape, the shading characteristics are optimized. Can be improved. This also makes it possible to improve the degree of freedom in lens design.
  • Example of pupil correction map> Hereinafter, a specific example of the pupil correction map will be described.
  • FIG. 7 shows a first example of the pupil correction map.
  • the pupil correction function is derived by using a coefficient corresponding to the aspect ratio of the imaging region 51.
  • the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is changed to a horizontally long concentric rectangular shape represented by the contour line 61. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 7 is provided in a camera that captures a wide-angle 360 °, a camera that includes a fish-eye lens, and a medical camera that improves the sensitivity of the angle of view by making the best use of effective pixels.
  • the present invention can be applied to a solid-state imaging device.
  • FIG. 8 shows a second example of the pupil correction map.
  • the pupil correction function is obtained by using a coefficient corresponding to the change rate of the pupil correction amount in the three directions of the vertical direction, the horizontal direction, and the diagonal direction from the optical center on the imaging region 51. Is derived.
  • the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is represented by the contour line 62 and changes concentrically at different rates in three directions. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 8 can be applied to a solid-state imaging device provided in a sensing camera or the like in which the resolution and sensitivity in the diagonal direction of the imaging region are improved.
  • the pupil correction function is derived not only by the example of FIG. 8 but by using a coefficient corresponding to the change rate of the pupil correction amount in a plurality of predetermined directions from the optical center on the imaging region 51. Also good.
  • FIG. 9 shows a third example of the pupil correction map.
  • the solid-state imaging device 31 has four optical centers on the imaging region 51, and a pupil correction function is derived for each optical center.
  • the exit pupil correction amount of the microlens with respect to the distance from each optical center to the periphery is changed concentrically as indicated by the contour line 63. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 9 can be applied to a solid-state imaging device provided in a light field camera having a plurality of small lens arrays between the main lens and the imaging region 51.
  • FIG. 10 shows a fourth example of the pupil correction map.
  • pixels having different pixel pitches and pixel sizes are arranged in the imaging region 51, and a pupil correction function is derived using a coefficient corresponding to the arrangement pattern.
  • a pupil correction function is derived using a coefficient corresponding to the arrangement pattern.
  • a pupil correction map 64 is provided. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 10 can be applied to, for example, a solid-state imaging device for a low-profile module that compensates for a decrease in sensitivity around the angle of view with a pixel size.
  • FIG. 11 shows a fifth example of the pupil correction map.
  • the entire substrate 32 of the solid-state imaging device 31 is curved so that the imaging region 51 side is concave, and a pupil correction function is derived using a coefficient corresponding to the amount of warpage of the substrate 32. .
  • the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is changed concentrically as indicated by the contour line 65. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • FIG. 12 shows a sixth example of the pupil correction map.
  • a pupil correction function is derived using a coefficient corresponding to the power supply and wiring.
  • the exit pupil correction amount of the microlens with respect to the distance from the position shifted from the optical center to the periphery changes in a non-concentric manner as indicated by the contour line 66. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 12 can be applied to a solid-state imaging device provided in a compound eye camera having a plurality of chips.
  • a pupil correction map as shown in FIG. 12 may be generated by deriving the pupil correction function using a coefficient corresponding to the heat distribution when the solid-state imaging device 31 is driven. .
  • FIG. 13 shows a seventh example of the pupil correction map.
  • a pupil correction function is derived according to a shading distribution having an arbitrary shape.
  • the pupil correction amount of the microlens is given by the pupil correction map 67. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
  • the solid-state imaging device 31 having the configuration of FIG. 13 can be applied to a solid-state imaging device having a shading distribution of an arbitrary shape other than the above-described example. Furthermore, the above-described examples 1 to 6 may be applied in any combination.
  • the present technology can also be applied to a solid-state imaging device having an imaging region or a substrate having an arbitrary shape.
  • a Bayer array primary color filter is used.
  • any color filter such as a checkered array or a stripe array may be used.
  • the color filter is not limited to the primary color system, and the same effect can be obtained even in a complementary color system.
  • the curvature and / or the refractive index of the microlens is changed instead of changing the shift amount of the microlens as the change of the exit pupil correction amount of the microlens. May be.
  • changes in the microlens curvature and refractive index are represented by a pupil correction map, as in the above-described example.
  • the shift amount of the microlens may be changed, and the curvature and / or refractive index of the microlens may be changed.
  • the imaging apparatus refers to a camera system such as a digital still camera or a digital video camera, or an electronic apparatus having an imaging function such as a mobile phone.
  • a module-like form mounted on an electronic device that is, a camera module is used as an imaging device.
  • the electronic apparatus 200 shown in FIG. 14 includes an optical lens 201, a shutter device 202, a solid-state imaging device 203, a drive circuit 204, and a signal processing circuit 205.
  • FIG. 14 shows an embodiment in which the above-described solid-state imaging device 1 of the present technology is provided in an electronic apparatus (digital still camera) as the solid-state imaging device 203.
  • the optical lens 201 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 203. Thereby, the signal charge is accumulated in the solid-state imaging device 203 for a certain period.
  • the shutter device 202 controls the light irradiation period and the light shielding period for the solid-state imaging device 203.
  • the drive circuit 204 supplies drive signals to the shutter device 202 and the solid-state imaging device 203.
  • the drive signal supplied to the shutter device 202 is a signal for controlling the shutter operation of the shutter device 202.
  • the drive signal supplied to the solid-state imaging device 203 is a signal for controlling the signal transfer operation of the solid-state imaging device 203.
  • the solid-state imaging device 203 performs signal transfer using a drive signal (timing signal) supplied from the drive circuit 204.
  • the signal processing circuit 205 performs various signal processing on the signal output from the solid-state imaging device 203.
  • the video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.
  • the solid-state imaging device 203 can improve the shading characteristics. As a result, it is possible to provide an electronic device that can capture a high-quality image.
  • FIG. 15 is a diagram showing a usage example of the image sensor described above.
  • the image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports such as action cameras and wearable cameras for sports applications etc.
  • Equipment used for agriculture such as cameras for monitoring the condition of fields and crops
  • this technique can take the following structures.
  • (1) A plurality of pixels arranged in an imaging region on the substrate; An on-chip microlens formed corresponding to each pixel, The exit pupil correction amount of each of the on-chip microlenses is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function.
  • Solid-state imaging device. (2) The solid-state imaging device according to (1), wherein the pupil correction function is derived using a predetermined coefficient set based on the imaging region.
  • (3) The solid-state imaging device according to (2), wherein the pupil correction function is derived using the coefficient corresponding to an aspect ratio of the imaging region.
  • the substrate is curved so that the imaging region side is concave
  • the said pupil correction function is derived
  • the solid-state imaging device in any one of (7).
  • solid-state imaging device 32 substrate, 33 light-receiving unit, 36 color filter, 37 on-chip microlens, 51 imaging area, 200 electronic device, 203 solid-state imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

The present technique pertains to a solid-state imaging device and an electronic device which enable improvement of shading characteristics. This solid-state imaging device is provided with a plurality of pixels arrayed in an imaging area on a substrate, and an on-chip microlens formed corresponding to each of the pixels. The exit pupil correction amount of each respective on-chip microlens is expressed using a two-dimensional distribution of a pupil correction function, which is derived by using an interpolation function to interpolate a calculated correction amount calculated for a prescribed position on the imaging area. The present technique can be applied to a CMOS image sensor or a CCD image sensor.

Description

固体撮像装置および電子機器Solid-state imaging device and electronic apparatus
 本技術は、固体撮像装置および電子機器に関し、特に、シェーディング特性の改善を図ることができるようにする固体撮像装置および電子機器に関する。 The present technology relates to a solid-state imaging device and an electronic device, and more particularly, to a solid-state imaging device and an electronic device that can improve shading characteristics.
 近年、携帯電話機等の携帯端末に搭載されるカメラモジュールのさらなる小型化が要求されている。これに伴い、このようなカメラモジュールにおいては、レンズと撮像面との間の距離(射出瞳距離)が短くなる傾向にあり、撮像面の中心部の画素に入射する光量と周縁部の画素に入射する光量との差が大きくなってしまう。このことがシェーディングと呼ばれる画像内の感度ムラの発生を招いている。 In recent years, there has been a demand for further miniaturization of camera modules mounted on mobile terminals such as mobile phones. Accordingly, in such a camera module, the distance (exit pupil distance) between the lens and the imaging surface tends to be short, and the amount of light incident on the center pixel of the imaging surface and the peripheral pixel are reduced. The difference from the amount of incident light becomes large. This leads to the occurrence of uneven sensitivity in the image called shading.
 これに対して、瞳補正技術を用いてシェーディング特性を改善することが行われている。 On the other hand, shading characteristics are improved by using pupil correction technology.
 例えば、従来の球面レンズを用いた固体撮像装置においては、オンチップレンズの射出瞳補正量を、等高線で表して同心円状に変化させることで、シェーディング特性を改善していた。 For example, in a solid-state imaging device using a conventional spherical lens, the shading characteristics are improved by changing the exit pupil correction amount of the on-chip lens in a concentric manner as represented by contour lines.
 また、特許文献1には、オンチップレンズの射出瞳補正量を、等高線で表して同心楕円状に変化させた固体撮像装置が開示されている。これにより、非球面レンズを用いた固体撮像装置においても、シェーディング特性を改善することができる。 Further, Patent Document 1 discloses a solid-state imaging device in which the exit pupil correction amount of an on-chip lens is changed to a concentric ellipse shape with contour lines. Thereby, also in the solid-state imaging device using an aspheric lens, the shading characteristics can be improved.
特開2006-12910号公報JP 2006-12910 A
 しかしながら、撮像領域におけるシェーディング分布が同心円状や同心楕円状ではない場合、上述した構成では、局所的にシェーディング特性を改善することができない。すなわち、任意の形状のシェーディング分布を有する固体撮像装置において、最適にシェーディング特性の改善を図ることができなかった。 However, when the shading distribution in the imaging region is not concentric or elliptical, the above configuration cannot improve the shading characteristics locally. In other words, in a solid-state imaging device having a shading distribution of an arbitrary shape, the shading characteristics cannot be optimally improved.
 本技術は、このような状況に鑑みてなされたものであり、任意の形状のシェーディング分布を有する固体撮像装置において、シェーディング特性の改善を図ることができるようにするものである。 The present technology has been made in view of such circumstances, and is intended to improve shading characteristics in a solid-state imaging device having a shading distribution of an arbitrary shape.
 本技術の固体撮像装置は、基板上の撮像領域に配列された複数の画素と、各画素に対応して形成されるオンチップマイクロレンズとを備え、前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される。 A solid-state imaging device of the present technology includes a plurality of pixels arranged in an imaging region on a substrate and an on-chip microlens formed corresponding to each pixel, and an exit pupil correction amount of each of the on-chip microlenses Is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function.
 前記瞳補正関数は、前記撮像領域に基づいて設定される所定の係数を用いて導出されるようにすることができる。 The pupil correction function can be derived using a predetermined coefficient set based on the imaging region.
 前記瞳補正関数は、前記撮像領域のアスペクト比に応じた前記係数を用いて導出されるようにすることができる。 The pupil correction function can be derived using the coefficient corresponding to the aspect ratio of the imaging region.
 前記瞳補正関数は、前記撮像領域上の光学中心から複数の方向についての瞳補正量の変化の割合に応じた係数を用いて導出されるようにすることができる。 The pupil correction function can be derived using a coefficient corresponding to the change rate of the pupil correction amount in a plurality of directions from the optical center on the imaging region.
 前記撮像領域上に複数の光学中心を有し、前記瞳補正関数は、光学中心毎に導出されるようにすることができる。 The image pickup area may have a plurality of optical centers, and the pupil correction function may be derived for each optical center.
 前記撮像領域に、画素ピッチまたは画素サイズの異なる画素が配列され、前記瞳補正関数は、前記画素の配列パターンに応じた前記係数を用いて導出されるようにすることができる。 In the imaging region, pixels having different pixel pitches or pixel sizes may be arranged, and the pupil correction function may be derived using the coefficient corresponding to the pixel arrangement pattern.
 前記基板は、前記撮像領域側が凹面状となるように湾曲しており、前記瞳補正関数は、前記基板の反り量に応じた前記係数を用いて導出されるようにすることができる。 The substrate is curved so that the imaging region side is concave, and the pupil correction function can be derived using the coefficient corresponding to the amount of warpage of the substrate.
 前記瞳補正関数は、前記基板における電源または配線に応じた前記係数を用いて導出されるようにすることができる。 The pupil correction function can be derived using the coefficient corresponding to the power supply or wiring on the substrate.
 前記瞳補正関数は、前記固体撮像装置駆動時の熱分布に応じた前記係数を用いて導出されるようにすることができる。 The pupil correction function can be derived using the coefficient corresponding to the heat distribution when the solid-state imaging device is driven.
 本技術の電子機器は、基板上の撮像領域に配列された複数の画素と、各画素に対応して形成されるオンチップマイクロレンズとを備え、前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される固体撮像装置を有する。 The electronic device of the present technology includes a plurality of pixels arranged in an imaging region on a substrate and an on-chip microlens formed corresponding to each pixel, and an exit pupil correction amount of each of the on-chip microlenses is And a solid-state imaging device represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculation correction amount calculated for a predetermined position on the imaging region with an interpolation function.
 本技術においては、オンチップマイクロレンズそれぞれの射出瞳補正量は、撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される。 In the present technology, the exit pupil correction amount of each on-chip microlens is a two-dimensional distribution of the pupil correction function derived by interpolating the calculated correction amount calculated for a predetermined position on the imaging region with the interpolation function. It is represented by
 本技術によれば、任意の形状のシェーディング分布を有する固体撮像装置において、シェーディング特性の改善を図ることが可能となる。 According to the present technology, it is possible to improve shading characteristics in a solid-state imaging device having a shading distribution of an arbitrary shape.
従来の射出瞳補正について説明する図である。It is a figure explaining the conventional exit pupil correction. 従来の射出瞳補正について説明する図である。It is a figure explaining the conventional exit pupil correction. 任意の形状のシェーディング分布を示す図である。It is a figure which shows the shading distribution of arbitrary shapes. 本技術の固体撮像装置の構造を示す断面図である。It is sectional drawing which shows the structure of the solid-state imaging device of this technique. 瞳補正マップ生成処理について説明するフローチャートである。It is a flowchart explaining a pupil correction map production | generation process. 補間関数について説明する図である。It is a figure explaining an interpolation function. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 瞳補正マップの例を示す図である。It is a figure which shows the example of a pupil correction map. 本技術の電子機器の構成例を示すブロック図である。It is a block diagram showing an example of composition of electronic equipment of this art. イメージセンサを使用する使用例を示す図である。It is a figure which shows the usage example which uses an image sensor.
 以下、本技術の実施の形態について図を参照して説明する。なお、説明は以下に示す順序で行うこととする。
 1.従来の射出瞳補正について
 2.本技術の固体撮像装置の構造
 3.瞳補正マップ生成の流れ
 4.瞳補正マップの例
 5.電子機器の構成例
 6.イメージセンサの使用例
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
1. 1. Conventional exit pupil correction 2. Structure of solid-state imaging device of the present technology 3. Flow of generating pupil correction map 4. Example of pupil correction map 5. Configuration example of electronic device Examples of using image sensors
<1.従来の射出瞳補正について>
 従来の球面レンズを用いた固体撮像装置においては、図1に示されるように、オンチップマイクロレンズ(以下、単にマイクロレンズという)の射出瞳補正量を、撮像領域11の中心から周辺に向かって補正量が大きくなるように、等高線12で表して同心円状に変化させていた。
<1. About conventional exit pupil correction>
In a conventional solid-state imaging device using a spherical lens, as shown in FIG. 1, the exit pupil correction amount of an on-chip microlens (hereinafter simply referred to as a microlens) is increased from the center of the imaging region 11 toward the periphery. In order to increase the correction amount, the contour line 12 is changed in a concentric manner.
 一方、近年、モバイル用途の固体撮像装置においては、射出瞳距離が短くすることが求められているため、光学レンズとして非球面レンズが用いられている。 On the other hand, in recent years, in a solid-state imaging device for mobile use, since an exit pupil distance is required to be shortened, an aspherical lens is used as an optical lens.
 しかしながら、非球面レンズは像高(撮像領域の中心から周辺に向かう距離に相当)に対する入射角の変化がリニアではない。そのため、従来の球面レンズに対応したマイクロレンズ位置の補正では、マイクロレンズの集光位置と、画素の受光部との位置が食い違ってしまい、受光部周囲に形成される遮光膜によって入射光が遮光される、いわゆる「ケラレ」が生じてしまう。その結果、シェーディングの悪化や感度の低下を招く。 However, the change in the incident angle with respect to the image height (corresponding to the distance from the center of the imaging region to the periphery) of the aspherical lens is not linear. Therefore, in the correction of the microlens position corresponding to the conventional spherical lens, the condensing position of the microlens and the light receiving portion of the pixel are misaligned, and the incident light is blocked by the light shielding film formed around the light receiving portion. The so-called “vignetting” occurs. As a result, shading deteriorates and sensitivity decreases.
 これに対して、特許文献1では、図2に示されるように、撮像領域11の中心から周辺に向かう距離(像高に対応する)に対するマイクロレンズの射出瞳補正量を、等高線13で表して同心楕円状に変化させることが提案されている。 On the other hand, in Patent Document 1, as shown in FIG. 2, the exit pupil correction amount of the microlens with respect to the distance (corresponding to the image height) from the center to the periphery of the imaging region 11 is represented by a contour line 13. It has been proposed to change to a concentric ellipse.
 このような構成によれば、非球面レンズを用いた短射出瞳距離対応の固体撮像装置において、シェーディング特性の改善を図ることが可能となる。 According to such a configuration, it is possible to improve the shading characteristics in the solid-state imaging device corresponding to the short exit pupil distance using the aspheric lens.
 しかしながら、撮像領域におけるシェーディング分布が同心円状や同心楕円状ではない場合、上述した構成では、局所的にシェーディング特性を改善することができない。 However, when the shading distribution in the imaging region is not concentric or elliptical, the above configuration cannot improve the shading characteristics locally.
 例えば、図3に示されるように、撮像領域21におけるシェーディング分布が任意の形状をとるものとする。このような固体撮像装置について、射出瞳補正量を、光学中心に対して等高線22で表して同心円状に変化させるようにした場合、局所的に補正量の最適化を行うことができない。これは、射出瞳補正量を、光学中心に対して等高線で表して同心楕円状に変化させるようにした場合も同様である。 For example, as shown in FIG. 3, it is assumed that the shading distribution in the imaging region 21 takes an arbitrary shape. In such a solid-state imaging device, when the exit pupil correction amount is changed in a concentric manner expressed by the contour line 22 with respect to the optical center, the correction amount cannot be locally optimized. The same applies to a case where the exit pupil correction amount is changed in a concentric ellipse shape with a contour line with respect to the optical center.
 すなわち、任意の形状のシェーディング分布を有する固体撮像装置において、最適にシェーディング特性の改善を図ることができなかった。 That is, in a solid-state imaging device having a shading distribution of an arbitrary shape, the shading characteristics cannot be optimally improved.
<2.本技術の固体撮像装置の構造>
 図4は、本技術を適用した固体撮像装置の一実施の形態の構造を示す断面図である。図4の固体撮像装置31は、CCD(Charge Coupled Device)イメージセンサとして構成されるものとするが、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとして構成されてもよい。
<2. Structure of solid-state imaging device of the present technology>
FIG. 4 is a cross-sectional view illustrating a structure of an embodiment of a solid-state imaging device to which the present technology is applied. 4 is configured as a CCD (Charge Coupled Device) image sensor, the solid-state imaging device 31 may be configured as a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 固体撮像装置31においては、例えばシリコン半導体からなる基板32上の撮像領域に、画素を構成する複数の受光部33がマトリクス状に配列され、各受光部列に対応してCCD構造の垂直転送レジスタ34が形成される。さらに、撮像領域上に、図示せぬパッシベーション膜および平坦化膜35を介してカラーフィルタ36およびマイクロレンズ37が形成される。 In the solid-state imaging device 31, for example, a plurality of light receiving portions 33 constituting pixels are arranged in a matrix in an imaging region on a substrate 32 made of a silicon semiconductor, and a vertical transfer register having a CCD structure corresponding to each light receiving portion row. 34 is formed. Further, a color filter 36 and a microlens 37 are formed on the imaging region via a passivation film and a flattening film 35 (not shown).
 垂直転送レジスタ34は、基板32の表面に形成された転送チャネル領域上に、ゲート絶縁層を介して例えば多結晶シリコンからなる転送電極38が形成されて構成される。 The vertical transfer register 34 is configured by forming a transfer electrode 38 made of, for example, polycrystalline silicon on a transfer channel region formed on the surface of the substrate 32 through a gate insulating layer.
 転送電極38上を含む基板32の表面には、層間絶縁膜39が形成される。層間絶縁膜39上には、受光部33に対応する部分を除いて遮光膜41が形成される。すなわち、遮光膜41の受光部33に対応する部分には、開口41Aが形成される。遮光膜41は、例えばアルミニウム(Al)やタングステン(W)などにより形成される。 An interlayer insulating film 39 is formed on the surface of the substrate 32 including the transfer electrode 38. A light shielding film 41 is formed on the interlayer insulating film 39 except for the portion corresponding to the light receiving portion 33. That is, an opening 41 </ b> A is formed in a portion corresponding to the light receiving portion 33 of the light shielding film 41. The light shielding film 41 is formed of, for example, aluminum (Al) or tungsten (W).
 カラーフィルタ36は、赤色フィルタ成分36R、緑色フィルタ成分36G、および青色フィルタ成分36Bからなる、ベイヤ配列の原色系カラーフィルタとして形成される。 The color filter 36 is formed as a Bayer array primary color filter including a red filter component 36R, a green filter component 36G, and a blue filter component 36B.
 マイクロレンズ37は、それぞれ対応する受光部33に集光される位置に配列されて形成される。この場合、受光部33上には遮光膜41の開口41Aがあり、基本的には、この開口41Aを通過した光のみが受光部33に到達するようになされている。 The microlenses 37 are formed so as to be arranged at positions where light is condensed on the corresponding light receiving portions 33. In this case, there is an opening 41 </ b> A of the light shielding film 41 on the light receiving unit 33, and basically only light that has passed through the opening 41 </ b> A reaches the light receiving unit 33.
 また、図4においては、絞り45の開口点Pから、入射光46が入射される。 In FIG. 4, incident light 46 is incident from the aperture point P of the diaphragm 45.
 本実施の形態においては、撮像領域は横長形状で形成される。また、単位画素は正方形に形成されるとともに、その受光部33の開口41Aは縦長の長方形に形成される。 In the present embodiment, the imaging region is formed in a horizontally long shape. The unit pixel is formed in a square shape, and the opening 41A of the light receiving portion 33 is formed in a vertically long rectangle.
 また、本実施の形態においては、撮像領域の各画素に対応して形成されるマイクロレンズ37それぞれの射出瞳補正量は、それぞれの画素位置において適切な補正量となるようになされている。 Further, in the present embodiment, the exit pupil correction amount of each microlens 37 formed corresponding to each pixel in the imaging region is set to an appropriate correction amount at each pixel position.
 具体的には、マイクロレンズ37それぞれの射出瞳補正量は、撮像領域上の所定の画素位置について算出された補正量が、後述する補間関数により補間されることで導出される瞳補正関数の2次元分布である瞳補正マップで表される。 Specifically, the exit pupil correction amount of each of the microlenses 37 is a pupil correction function 2 derived by interpolating a correction amount calculated for a predetermined pixel position in the imaging region with an interpolation function described later. It is represented by a pupil correction map that is a dimensional distribution.
<3.瞳補正マップ生成の流れ>
 ここで、図5のフローチャートを参照して、瞳補正マップ生成処理について説明する。
<3. Flow of generating pupil correction map>
Here, the pupil correction map generation processing will be described with reference to the flowchart of FIG.
 ステップS1において、撮像領域上の所定の画素位置における画素出力を取得する。ここでは、画素出力として、対象となる画素の実際の画素値が取得されるものとするが、対象となる画素の画素位置での入射特性(例えば入射角データなど)が取得されるようにしてもよい。 In step S1, a pixel output at a predetermined pixel position on the imaging region is acquired. Here, the actual pixel value of the target pixel is acquired as the pixel output, but incident characteristics (for example, incident angle data) at the pixel position of the target pixel are acquired. Also good.
 ステップS2において、それぞれの画素位置の画素出力に基づいて、各画素位置で必要とされる瞳補正量を算出する。 In step S2, the pupil correction amount required at each pixel position is calculated based on the pixel output at each pixel position.
 ステップS3において、算出された各画素位置での瞳補正量を補間関数により補間することで、瞳補正関数を導出する。 In step S3, the pupil correction function is derived by interpolating the calculated pupil correction amount at each pixel position with the interpolation function.
 補間関数としては、例えば、3次スプライン関数が用いられる。 For example, a cubic spline function is used as the interpolation function.
 例えば、図6に示されるように、撮像領域に対応する画素平面上の所定の方向について、各画素位置の瞳補正量を補間するN個の3次スプライン関数F(0),F(1),F(2),F(3),・・・F(N)を導出する。 For example, as shown in FIG. 6, N cubic spline functions F (0) and F (1) for interpolating the pupil correction amount at each pixel position in a predetermined direction on the pixel plane corresponding to the imaging region. , F (2), F (3), ... F (N) are derived.
 さらに、画素平面を表すxy平面上での画素位置(x,y)周辺の瞳補正量を、導出された3次スプライン関数を用いて算出する。そして、画素位置(x,y)における瞳補正量I(x,y)を、バイキュービック補間を用いて算出する。 Further, the pupil correction amount around the pixel position (x, y) on the xy plane representing the pixel plane is calculated using the derived cubic spline function. Then, the pupil correction amount I (x, y) at the pixel position (x, y) is calculated using bicubic interpolation.
 このようにして、撮像領域上の任意の画素位置における瞳補正量を表す瞳補正関数が導出される。 In this way, a pupil correction function representing the pupil correction amount at an arbitrary pixel position on the imaging region is derived.
 このとき、撮像領域上の画素出力の分布が複雑な形状であるほど、瞳補正関数は複雑化するため、後述するように、撮像領域に基づいて設定される所定の係数を用いることで、瞳補正関数の簡略化および高精度化を図ることができる。 At this time, the more complex the pixel output distribution on the imaging area, the more complicated the pupil correction function. Therefore, as will be described later, by using a predetermined coefficient set based on the imaging area, The correction function can be simplified and increased in accuracy.
 図5のフローチャートに戻り、ステップS4において、導出された瞳補正関数からxy平面上の2次元分布を抽出することで、瞳補正マップを生成する。 Returning to the flowchart of FIG. 5, in step S4, a two-dimensional distribution on the xy plane is extracted from the derived pupil correction function to generate a pupil correction map.
 以上の流れのように、瞳補正マップが生成されることで、局所的にも補正量の最適化を行うことができるので、任意の形状のシェーディング分布を有する固体撮像装置において、最適にシェーディング特性の改善を図ることが可能となる。また、これにより、レンズ設計の自由度を向上させることも可能となる。 Since the pupil correction map is generated as described above, the correction amount can be optimized locally. Therefore, in a solid-state imaging device having a shading distribution of an arbitrary shape, the shading characteristics are optimized. Can be improved. This also makes it possible to improve the degree of freedom in lens design.
<4.瞳補正マップの例>
 以下においては、瞳補正マップの具体的な例について説明する。
<4. Example of pupil correction map>
Hereinafter, a specific example of the pupil correction map will be described.
(例1)
 図7は、瞳補正マップの第1の例を示している。
(Example 1)
FIG. 7 shows a first example of the pupil correction map.
 図7の例においては、撮像領域51のアスペクト比に応じた係数を用いることで、瞳補正関数が導出される。図7の瞳補正マップにおいては、光学中心から周辺に向かう距離に対するマイクロレンズの射出瞳補正量が、等高線61で表して横長の同心角丸長方形状に変化するようになされている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 7, the pupil correction function is derived by using a coefficient corresponding to the aspect ratio of the imaging region 51. In the pupil correction map of FIG. 7, the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is changed to a horizontally long concentric rectangular shape represented by the contour line 61. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図7の構成を有する固体撮像装置31は、広角360°を撮影するカメラ、魚眼レンズを備えるカメラ、有効画素を最大限活用し画角端の感度を向上させた、例えば医療用のカメラなどに備えられる固体撮像装置に適用することができる。 The solid-state imaging device 31 having the configuration of FIG. 7 is provided in a camera that captures a wide-angle 360 °, a camera that includes a fish-eye lens, and a medical camera that improves the sensitivity of the angle of view by making the best use of effective pixels. The present invention can be applied to a solid-state imaging device.
(例2)
 図8は、瞳補正マップの第2の例を示している。
(Example 2)
FIG. 8 shows a second example of the pupil correction map.
 図8の例においては、撮像領域51上の光学中心から、垂直方向、水平方向、および対角方向の3方向についての瞳補正量の変化の割合に応じた係数を用いることで、瞳補正関数が導出される。図8の瞳補正マップにおいては、光学中心から周辺に向かう距離に対するマイクロレンズの射出瞳補正量が、等高線62で表して、3方向にそれぞれ異なる割合で同心状に変化するようになされている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 8, the pupil correction function is obtained by using a coefficient corresponding to the change rate of the pupil correction amount in the three directions of the vertical direction, the horizontal direction, and the diagonal direction from the optical center on the imaging region 51. Is derived. In the pupil correction map of FIG. 8, the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is represented by the contour line 62 and changes concentrically at different rates in three directions. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図8の構成を有する固体撮像装置31は、撮像領域の対角方向の解像度および感度を向上させた感知カメラなどに備えられる固体撮像装置に適用することができる。 The solid-state imaging device 31 having the configuration of FIG. 8 can be applied to a solid-state imaging device provided in a sensing camera or the like in which the resolution and sensitivity in the diagonal direction of the imaging region are improved.
 なお、図8の例に限らず、撮像領域51上の光学中心から複数の所定方向についての瞳補正量の変化の割合に応じた係数を用いることで、瞳補正関数が導出されるようにしてもよい。 Note that the pupil correction function is derived not only by the example of FIG. 8 but by using a coefficient corresponding to the change rate of the pupil correction amount in a plurality of predetermined directions from the optical center on the imaging region 51. Also good.
(例3)
 図9は、瞳補正マップの第3の例を示している。
(Example 3)
FIG. 9 shows a third example of the pupil correction map.
 図9の例においては、固体撮像装置31が、撮像領域51上に4つの光学中心を有しており、その光学中心毎に、瞳補正関数が導出される。図9の瞳補正マップにおいては、それぞれの光学中心から周辺に向かう距離に対するマイクロレンズの射出瞳補正量が、等高線63で表して同心状に変化するようになされている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 9, the solid-state imaging device 31 has four optical centers on the imaging region 51, and a pupil correction function is derived for each optical center. In the pupil correction map of FIG. 9, the exit pupil correction amount of the microlens with respect to the distance from each optical center to the periphery is changed concentrically as indicated by the contour line 63. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図9の構成を有する固体撮像装置31は、メインレンズと撮像領域51との間に複数の小型レンズアレイを有するライトフィールドカメラなどに備えられる固体撮像装置に適用することができる。 The solid-state imaging device 31 having the configuration of FIG. 9 can be applied to a solid-state imaging device provided in a light field camera having a plurality of small lens arrays between the main lens and the imaging region 51.
 なお、図9の例に限らず、撮像領域51上の所定位置に複数の光学中心を有するようにしてもよい。 Note that the present invention is not limited to the example of FIG.
(例4)
 図10は、瞳補正マップの第4の例を示している。
(Example 4)
FIG. 10 shows a fourth example of the pupil correction map.
 図10の例においては、撮像領域51に、他の画素と画素ピッチや画素サイズの異なる画素が配列され、その配列パターンに応じた係数を用いて瞳補正関数が導出される。図10の例では、例えば2画素に対応して設けられる1つのマイクロレンズが複数点在しており、それぞれのマイクロレンズの射出瞳補正量が、それぞれのマイクロレンズ(画素)の配置に応じた瞳補正マップ64として与えられている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 10, pixels having different pixel pitches and pixel sizes are arranged in the imaging region 51, and a pupil correction function is derived using a coefficient corresponding to the arrangement pattern. In the example of FIG. 10, for example, there are a plurality of one microlens provided corresponding to two pixels, and the exit pupil correction amount of each microlens corresponds to the arrangement of each microlens (pixel). A pupil correction map 64 is provided. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図10の構成を有する固体撮像装置31は、例えば、画角周辺での感度低下を画素サイズで補うような、低背化モジュール向けの固体撮像装置に適用することができる。 The solid-state imaging device 31 having the configuration of FIG. 10 can be applied to, for example, a solid-state imaging device for a low-profile module that compensates for a decrease in sensitivity around the angle of view with a pixel size.
(例5)
 図11は、瞳補正マップの第5の例を示している。
(Example 5)
FIG. 11 shows a fifth example of the pupil correction map.
 図11の例においては、固体撮像装置31の基板32全体が、撮像領域51側が凹面となるように湾曲しており、基板32の反り量に応じた係数を用いて瞳補正関数が導出される。図11の瞳補正マップにおいては、光学中心から周辺に向かう距離に対するマイクロレンズの射出瞳補正量が、等高線65で表して同心状に変化するようになされている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 11, the entire substrate 32 of the solid-state imaging device 31 is curved so that the imaging region 51 side is concave, and a pupil correction function is derived using a coefficient corresponding to the amount of warpage of the substrate 32. . In the pupil correction map of FIG. 11, the exit pupil correction amount of the microlens with respect to the distance from the optical center to the periphery is changed concentrically as indicated by the contour line 65. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図11の構成を有する固体撮像装置31は、いわゆる湾曲センサに適用することができる。 11 can be applied to a so-called curvature sensor.
(例6)
 図12は、瞳補正マップの第6の例を示している。
(Example 6)
FIG. 12 shows a sixth example of the pupil correction map.
 近年、画素の微細化に伴う配線の細線化とチップの拡大に伴い、配線抵抗による電圧降下が無視できなくなり、各画素トランジスタの面内特性差が生じてしまう。そのため、線型性や変換効率などの信号量に関する特性について、入射光量の絶対値を変えることで、その面内均一性を高める必要がある。 In recent years, with the thinning of the wiring accompanying the miniaturization of pixels and the expansion of the chip, the voltage drop due to the wiring resistance cannot be ignored, and the in-plane characteristic difference of each pixel transistor occurs. Therefore, it is necessary to improve the in-plane uniformity by changing the absolute value of the amount of incident light with respect to characteristics relating to the signal amount such as linearity and conversion efficiency.
 そこで、図12の例においては、基板32における電源や配線に偏りがある固体撮像装置31について、その電源や配線に応じた係数を用いて瞳補正関数が導出される。図12の瞳補正マップにおいては、光学中心からずれた位置から周辺に向かう距離に対するマイクロレンズの射出瞳補正量が、等高線66で表して非同心状に変化するようになされている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 Therefore, in the example of FIG. 12, for the solid-state imaging device 31 in which the power supply and wiring in the substrate 32 are biased, a pupil correction function is derived using a coefficient corresponding to the power supply and wiring. In the pupil correction map of FIG. 12, the exit pupil correction amount of the microlens with respect to the distance from the position shifted from the optical center to the periphery changes in a non-concentric manner as indicated by the contour line 66. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図12の構成を有する固体撮像装置31は、複数のチップを有する複眼カメラなどに備えられる固体撮像装置に適用することができる。 The solid-state imaging device 31 having the configuration of FIG. 12 can be applied to a solid-state imaging device provided in a compound eye camera having a plurality of chips.
 なお、固体撮像装置31駆動時の熱分布に応じた係数を用いて瞳補正関数が導出されるようにすることで、図12に示されるような瞳補正マップが生成されるようにしてもよい。 Note that a pupil correction map as shown in FIG. 12 may be generated by deriving the pupil correction function using a coefficient corresponding to the heat distribution when the solid-state imaging device 31 is driven. .
(例7)
 図13は、瞳補正マップの第7の例を示している。
(Example 7)
FIG. 13 shows a seventh example of the pupil correction map.
 図13の例においては、任意の形状のシェーディング分布に応じて瞳補正関数が導出される。図13の例では、マイクロレンズの瞳補正量が、瞳補正マップ67で与えられている。これにより、撮像領域51全体の画素について、適正な射出瞳補正を行うことができる。 In the example of FIG. 13, a pupil correction function is derived according to a shading distribution having an arbitrary shape. In the example of FIG. 13, the pupil correction amount of the microlens is given by the pupil correction map 67. Thereby, appropriate exit pupil correction can be performed for the pixels in the entire imaging region 51.
 図13の構成を有する固体撮像装置31は、上述した例以外の、任意の形状のシェーディング分布を有する固体撮像装置に適用することができる。さらに、上述した例1乃至6が、任意に組み合わされて適用されるようにしてもよい。 The solid-state imaging device 31 having the configuration of FIG. 13 can be applied to a solid-state imaging device having a shading distribution of an arbitrary shape other than the above-described example. Furthermore, the above-described examples 1 to 6 may be applied in any combination.
 また、本技術は、任意の形状の撮像領域や基板を有する固体撮像装置にも適用することも可能である。 Further, the present technology can also be applied to a solid-state imaging device having an imaging region or a substrate having an arbitrary shape.
 以上においては、ベイヤ配列の原色系カラーフィルタが用いられるものとしたが、市松配列やストライプ配列など、いかなる配列のカラーフィルタが用いられるようにしてもよい。また、カラーフィルタは、原色系に限らず、補色系でも同様の効果が得られる。 In the above, a Bayer array primary color filter is used. However, any color filter such as a checkered array or a stripe array may be used. Further, the color filter is not limited to the primary color system, and the same effect can be obtained even in a complementary color system.
 また、本技術において、図示はしないが、マイクロレンズの射出瞳補正量の変化分として、マイクロレンズのずらし量を変化させるのに代えて、マイクロレンズの曲率および/または屈折率を変化させるようにしてもよい。この場合、マイクロレンズ曲率、屈折率の変化は、上述した例と同様に、瞳補正マップで表されるようにする。さらに、マイクロレンズの射出瞳補正量の変化分として、マイクロレンズのずらし量を変化させるとともに、マイクロレンズの曲率および/または屈折率を変化させるようにしてもよい。 In addition, in the present technology, although not illustrated, the curvature and / or the refractive index of the microlens is changed instead of changing the shift amount of the microlens as the change of the exit pupil correction amount of the microlens. May be. In this case, changes in the microlens curvature and refractive index are represented by a pupil correction map, as in the above-described example. Further, as the amount of change in the exit lens correction amount of the microlens, the shift amount of the microlens may be changed, and the curvature and / or refractive index of the microlens may be changed.
 なお、本技術は、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器のことをいう。なお、電子機器に搭載されるモジュール状の形態、すなわちカメラモジュールを撮像装置とする場合もある。 In addition, this technique is not restricted to application to a solid-state imaging device, It can apply also to an imaging device. Here, the imaging apparatus refers to a camera system such as a digital still camera or a digital video camera, or an electronic apparatus having an imaging function such as a mobile phone. In some cases, a module-like form mounted on an electronic device, that is, a camera module is used as an imaging device.
<5.電子機器の構成例>
 ここで、図14を参照して、本技術を適用した電子機器の構成例について説明する。
<5. Configuration example of electronic device>
Here, a configuration example of an electronic device to which the present technology is applied will be described with reference to FIG.
 図14に示される電子機器200は、光学レンズ201、シャッタ装置202、固体撮像装置203、駆動回路204、および信号処理回路205を備えている。図14においては、固体撮像装置203として、上述した本技術の固体撮像装置1を電子機器(デジタルスチルカメラ)に設けた場合の実施の形態を示す。 The electronic apparatus 200 shown in FIG. 14 includes an optical lens 201, a shutter device 202, a solid-state imaging device 203, a drive circuit 204, and a signal processing circuit 205. FIG. 14 shows an embodiment in which the above-described solid-state imaging device 1 of the present technology is provided in an electronic apparatus (digital still camera) as the solid-state imaging device 203.
 光学レンズ201は、被写体からの像光(入射光)を固体撮像装置203の撮像面上に結像させる。これにより、信号電荷が一定期間、固体撮像装置203内に蓄積される。シャッタ装置202は、固体撮像装置203に対する光照射期間および遮光期間を制御する。 The optical lens 201 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 203. Thereby, the signal charge is accumulated in the solid-state imaging device 203 for a certain period. The shutter device 202 controls the light irradiation period and the light shielding period for the solid-state imaging device 203.
 駆動回路204は、シャッタ装置202および固体撮像装置203に、駆動信号を供給する。シャッタ装置202に供給される駆動信号は、シャッタ装置202のシャッタ動作を制御するための信号である。固体撮像装置203に供給される駆動信号は、固体撮像装置203の信号転送動作を制御するための信号である。固体撮像装置203は、駆動回路204から供給される駆動信号(タイミング信号)により信号転送を行う。信号処理回路205は、固体撮像装置203から出力された信号に対して各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶されたり、モニタに出力される。 The drive circuit 204 supplies drive signals to the shutter device 202 and the solid-state imaging device 203. The drive signal supplied to the shutter device 202 is a signal for controlling the shutter operation of the shutter device 202. The drive signal supplied to the solid-state imaging device 203 is a signal for controlling the signal transfer operation of the solid-state imaging device 203. The solid-state imaging device 203 performs signal transfer using a drive signal (timing signal) supplied from the drive circuit 204. The signal processing circuit 205 performs various signal processing on the signal output from the solid-state imaging device 203. The video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.
 本実施の形態の電子機器200においては、固体撮像装置203において、シェーディング特性の改善を図ることができるため、結果として、高画質の画像を撮影可能な電子機器を提供することが可能となる。 In the electronic device 200 of the present embodiment, the solid-state imaging device 203 can improve the shading characteristics. As a result, it is possible to provide an electronic device that can capture a high-quality image.
<6.イメージセンサの使用例>
 最後に、本技術を適用した固体撮像装置が備えるイメージセンサの使用例について説明する。
<6. Examples of using image sensors>
Finally, a usage example of the image sensor provided in the solid-state imaging device to which the present technology is applied will be described.
 図15は、上述したイメージセンサの使用例を示す図である。 FIG. 15 is a diagram showing a usage example of the image sensor described above.
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, etc. Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports such as action cameras and wearable cameras for sports applications etc. Equipment used for agriculture such as cameras for monitoring the condition of fields and crops
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 さらに、本技術は以下のような構成をとることができる。
(1)
 基板上の撮像領域に配列された複数の画素と、
 各画素に対応して形成されるオンチップマイクロレンズと
 を備え、
 前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される
 固体撮像装置。
(2)
 前記瞳補正関数は、前記撮像領域に基づいて設定される所定の係数を用いて導出される
 (1)に記載の固体撮像装置。
(3)
 前記瞳補正関数は、前記撮像領域のアスペクト比に応じた前記係数を用いて導出される
 (2)に記載の固体撮像装置。
(4)
 前記瞳補正関数は、前記撮像領域上の光学中心から複数の方向についての瞳補正量の変化の割合に応じた係数を用いて導出される
 (2)または(3)に記載の固体撮像装置。
(5)
 前記撮像領域上に複数の光学中心を有し、
 前記瞳補正関数は、光学中心毎に導出される
 (2)乃至(4)のいずれかに記載の固体撮像装置。
(6)
 前記撮像領域に、画素ピッチまたは画素サイズの異なる画素が配列され、
 前記瞳補正関数は、前記画素の配列パターンに応じた前記係数を用いて導出される
 (2)乃至(5)のいずれかに記載の固体撮像装置。
(7)
 前記基板は、前記撮像領域側が凹面状となるように湾曲しており、
 前記瞳補正関数は、前記基板の反り量に応じた前記係数を用いて導出される
 (2)乃至(6)のいずれかに記載の固体撮像装置。
(8)
 前記瞳補正関数は、前記基板における電源または配線に応じた前記係数を用いて導出される
 (2)乃至(7)のいずれかに記載の固体撮像装置。
(9)
 前記瞳補正関数は、前記固体撮像装置駆動時の熱分布に応じた前記係数を用いて導出される
 (2)乃至(8)のいずれかに記載の固体撮像装置。
(10)
 基板上の撮像領域に配列された複数の画素と、
 各画素に対応して形成されるオンチップマイクロレンズと
 を備え、
 前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される固体撮像装置
 を有する電子機器。
Furthermore, this technique can take the following structures.
(1)
A plurality of pixels arranged in an imaging region on the substrate;
An on-chip microlens formed corresponding to each pixel,
The exit pupil correction amount of each of the on-chip microlenses is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function. Solid-state imaging device.
(2)
The solid-state imaging device according to (1), wherein the pupil correction function is derived using a predetermined coefficient set based on the imaging region.
(3)
The solid-state imaging device according to (2), wherein the pupil correction function is derived using the coefficient corresponding to an aspect ratio of the imaging region.
(4)
The solid-state imaging device according to (2) or (3), wherein the pupil correction function is derived using a coefficient corresponding to a change rate of a pupil correction amount in a plurality of directions from the optical center on the imaging region.
(5)
A plurality of optical centers on the imaging region;
The solid-state imaging device according to any one of (2) to (4), wherein the pupil correction function is derived for each optical center.
(6)
Pixels having different pixel pitches or pixel sizes are arranged in the imaging region,
The solid-state imaging device according to any one of (2) to (5), wherein the pupil correction function is derived using the coefficient corresponding to the pixel arrangement pattern.
(7)
The substrate is curved so that the imaging region side is concave,
The solid-state imaging device according to any one of (2) to (6), wherein the pupil correction function is derived using the coefficient corresponding to a warp amount of the substrate.
(8)
The said pupil correction function is derived | led-out using the said coefficient according to the power supply or wiring in the said board | substrate. (2) The solid-state imaging device in any one of (7).
(9)
The solid-state imaging device according to any one of (2) to (8), wherein the pupil correction function is derived using the coefficient corresponding to a heat distribution when the solid-state imaging device is driven.
(10)
A plurality of pixels arranged in an imaging region on the substrate;
An on-chip microlens formed corresponding to each pixel,
The exit pupil correction amount of each of the on-chip microlenses is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function. An electronic device having a solid-state imaging device.
 31 固体撮像装置, 32 基板, 33 受光部, 36 カラーフィルタ, 37 オンチップマイクロレンズ, 51 撮像領域, 200 電子機器, 203 固体撮像装置 31 solid-state imaging device, 32 substrate, 33 light-receiving unit, 36 color filter, 37 on-chip microlens, 51 imaging area, 200 electronic device, 203 solid-state imaging device

Claims (10)

  1.  基板上の撮像領域に配列された複数の画素と、
     各画素に対応して形成されるオンチップマイクロレンズと
     を備え、
     前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される
     固体撮像装置。
    A plurality of pixels arranged in an imaging region on the substrate;
    An on-chip microlens formed corresponding to each pixel,
    The exit pupil correction amount of each of the on-chip microlenses is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function. Solid-state imaging device.
  2.  前記瞳補正関数は、前記撮像領域に基づいて設定される所定の係数を用いて導出される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the pupil correction function is derived using a predetermined coefficient set based on the imaging region.
  3.  前記瞳補正関数は、前記撮像領域のアスペクト比に応じた前記係数を用いて導出される
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using the coefficient corresponding to an aspect ratio of the imaging region.
  4.  前記瞳補正関数は、前記撮像領域上の光学中心から複数の方向についての瞳補正量の変化の割合に応じた係数を用いて導出される
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using a coefficient corresponding to a change rate of a pupil correction amount in a plurality of directions from the optical center on the imaging region.
  5.  前記撮像領域上に複数の光学中心を有し、
     前記瞳補正関数は、光学中心毎に導出される
     請求項2に記載の固体撮像装置。
    A plurality of optical centers on the imaging region;
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived for each optical center.
  6.  前記撮像領域に、画素ピッチまたは画素サイズの異なる画素が配列され、
     前記瞳補正関数は、前記画素の配列パターンに応じた前記係数を用いて導出される
     請求項2に記載の固体撮像装置。
    Pixels having different pixel pitches or pixel sizes are arranged in the imaging region,
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using the coefficient according to the pixel arrangement pattern.
  7.  前記基板は、前記撮像領域側が凹面状となるように湾曲しており、
     前記瞳補正関数は、前記基板の反り量に応じた前記係数を用いて導出される
     請求項2に記載の固体撮像装置。
    The substrate is curved so that the imaging region side is concave,
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using the coefficient corresponding to a warp amount of the substrate.
  8.  前記瞳補正関数は、前記基板における電源または配線に応じた前記係数を用いて導出される
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using the coefficient corresponding to a power supply or wiring on the substrate.
  9.  前記瞳補正関数は、前記固体撮像装置駆動時の熱分布に応じた前記係数を用いて導出される
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the pupil correction function is derived using the coefficient corresponding to a heat distribution when the solid-state imaging device is driven.
  10.  基板上の撮像領域に配列された複数の画素と、
     各画素に対応して形成されるオンチップマイクロレンズと
     を備え、
     前記オンチップマイクロレンズそれぞれの射出瞳補正量は、前記撮像領域上の所定の位置について算出された算出補正量が補間関数により補間されることで導出される瞳補正関数の2次元分布で表される固体撮像装置
     を有する電子機器。
    A plurality of pixels arranged in an imaging region on the substrate;
    An on-chip microlens formed corresponding to each pixel,
    The exit pupil correction amount of each of the on-chip microlenses is represented by a two-dimensional distribution of a pupil correction function derived by interpolating a calculated correction amount calculated for a predetermined position on the imaging region with an interpolation function. An electronic device having a solid-state imaging device.
PCT/JP2017/002885 2016-02-10 2017-01-27 Solid-state imaging device and electronic device WO2017138372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023784 2016-02-10
JP2016023784 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138372A1 true WO2017138372A1 (en) 2017-08-17

Family

ID=59563839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002885 WO2017138372A1 (en) 2016-02-10 2017-01-27 Solid-state imaging device and electronic device

Country Status (1)

Country Link
WO (1) WO2017138372A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080130A1 (en) * 2018-10-19 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249846A (en) * 2004-03-01 2005-09-15 Sony Corp Imaging apparatus and manufacturing method therefor
JP2006012910A (en) * 2004-06-22 2006-01-12 Sony Corp Solid-state imaging device
JP2006121613A (en) * 2004-10-25 2006-05-11 Konica Minolta Photo Imaging Inc Imaging device
JP2006134157A (en) * 2004-11-08 2006-05-25 Fuji Photo Film Co Ltd Shading correction device, shading correction value computation device and imaging device
JP2006215028A (en) * 1996-02-22 2006-08-17 Canon Inc Photoelectric conversion device
JP2014072471A (en) * 2012-10-01 2014-04-21 Sony Corp Solid state image pickup device and manufacturing method, and electronic apparatus
WO2016009707A1 (en) * 2014-07-16 2016-01-21 ソニー株式会社 Compound-eye imaging device
JP2016015430A (en) * 2014-07-03 2016-01-28 ソニー株式会社 Solid-state image sensor and electronic apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215028A (en) * 1996-02-22 2006-08-17 Canon Inc Photoelectric conversion device
JP2005249846A (en) * 2004-03-01 2005-09-15 Sony Corp Imaging apparatus and manufacturing method therefor
JP2006012910A (en) * 2004-06-22 2006-01-12 Sony Corp Solid-state imaging device
JP2006121613A (en) * 2004-10-25 2006-05-11 Konica Minolta Photo Imaging Inc Imaging device
JP2006134157A (en) * 2004-11-08 2006-05-25 Fuji Photo Film Co Ltd Shading correction device, shading correction value computation device and imaging device
JP2014072471A (en) * 2012-10-01 2014-04-21 Sony Corp Solid state image pickup device and manufacturing method, and electronic apparatus
JP2016015430A (en) * 2014-07-03 2016-01-28 ソニー株式会社 Solid-state image sensor and electronic apparatus
WO2016009707A1 (en) * 2014-07-16 2016-01-21 ソニー株式会社 Compound-eye imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080130A1 (en) * 2018-10-19 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP7180658B2 (en) Solid-state image sensor and electronic equipment
US10910423B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP7264187B2 (en) Solid-state imaging device, its driving method, and electronic equipment
US8830382B2 (en) Image pickup apparatus and image processing apparatus
US10942304B2 (en) Solid-state imaging element, manufacturing method of the same, and electronic device
JP6755679B2 (en) Imaging device
WO2016009707A1 (en) Compound-eye imaging device
US12096642B2 (en) Solid-state imaging device with organic photoelectric conversion film over photodiodes
JP2014164174A (en) Solid-state image pickup device, portable information terminal and solid-state imaging system
JP2016127043A (en) Solid-state image pickup element and electronic equipment
WO2017138372A1 (en) Solid-state imaging device and electronic device
WO2016194620A1 (en) Solid-state imaging device and electronic device
US10580816B2 (en) Solid-state imaging device, camera module, and electronic apparatus
WO2017163925A1 (en) Semiconductor device, solid-state imaging device, and electronic device
WO2016163242A1 (en) Solid-state image capture element and electronic device
US20240321912A1 (en) Solid-state imaging element, manufacturing method, and electronic equipment
WO2016194577A1 (en) Imaging element, imaging method, program, and electronic device
JP2012063456A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP