WO2017138366A1 - Method for purifying fluorine compound gas - Google Patents
Method for purifying fluorine compound gas Download PDFInfo
- Publication number
- WO2017138366A1 WO2017138366A1 PCT/JP2017/002853 JP2017002853W WO2017138366A1 WO 2017138366 A1 WO2017138366 A1 WO 2017138366A1 JP 2017002853 W JP2017002853 W JP 2017002853W WO 2017138366 A1 WO2017138366 A1 WO 2017138366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine compound
- fluoride
- compound gas
- metal
- metal component
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/083—Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/24—Inter-halogen compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
Definitions
- the present invention relates to a method for purifying a fluorine compound gas, which purifies the fluorine compound gas by removing the metal component from the fluorine compound gas containing a metal component as an impurity.
- Fluorine compound gas is used for substrate etching or thin film formation such as CVD (Chemical Vapor Deposition) in the manufacturing process of semiconductor devices, MEMS (Micro Electro Mechanical Systems) devices, TFT (Thin Film Transistor) panels for liquid crystals and solar cells. Widely used as cleaning gas or fluorinating agent for fluorine chemical synthesis.
- CVD Chemical Vapor Deposition
- MEMS Micro Electro Mechanical Systems
- TFT Thin Film Transistor
- the technical difficulty of processing is increasing year by year due to the development of miniaturization and high integration technology.
- impurities contained in the semiconductor device material may cause problems such as a reduction in product yield in the manufacturing process of the semiconductor device. Therefore, the fluorine compound gas used as a cleaning gas is also required to be highly purified.
- a metal impurity that has a large influence on the electrical characteristics of a semiconductor device is reduced to less than 10 mass ppb. Very high purity is required.
- the mixed gas containing the gas and impurities is cooled to a low temperature and liquefied, and distillation is caused by the difference in temperature when each gas in the mixed gas condenses.
- a cryogenic purification method which is a method of separating and collecting by partial condensation.
- energy is applied to a fluorine compound to react the fluorine compound to generate a fluorine gas component and a component other than the fluorine gas, and the generated fluorine gas component and a gas component other than the fluorine gas component are liquidized.
- a cryogenic purification method is disclosed in which cooling is performed using nitrogen or the like, and fluorine gas is separated according to the difference in boiling points between the two.
- Patent Document 1 cannot be applied when the difference in boiling point or melting point between a fluorine compound gas to be purified and impurities contained therein is small.
- the impurity is a metal impurity
- the metal impurity is usually contained in the gas as a metal or metal compound fine particle or cluster, or a gas of a metal halide or metal complex having a relatively high vapor pressure.
- the metal impurities have a very high sublimation property, and the amount contained as impurities in the fluorine compound gas is very small, so that there is a problem that it is difficult to remove them by a cryogenic purification method.
- the equipment is complex and large, and it can be installed in a fluorine compound gas manufacturing plant, but it is difficult to install equipment when processing a small amount of gas. There is also a problem.
- Patent Document 2 discloses a method for removing sublimated manganese fluoride contained in fluorine gas generated by heating MnF 4. Specifically, manganese fluoride and sodium fluoride are disclosed. It is described that a composite fluoride can be formed and removed by the formula MnF 4 + 2NaF ⁇ Na 2 MnF 6 .
- Patent Document 2 The method described in Patent Document 2 is an effective method when the impurity is hydrogen fluoride. However, it has little effect on impurities other than hydrogen fluoride. Patent Document 2 describes a method for removing hydrogen fluoride contained in fluorine gas, but does not describe a removal method when the impurity is a metal impurity.
- Patent Document 3 discloses heating to a high temperature of 100 ° C. or higher in order to react sodium fluoride and manganese fluoride to form a composite fluoride.
- a reaction between the composite fluoride gas and the metal container filled with sodium fluoride also occurs, and the metal component of the container is mixed into the composite fluoride gas and becomes a new impurity.
- An object of the present invention is to provide a method for purifying a fluorine compound gas, which purifies the fluorine compound gas by removing trace metal components contained as impurities in the fluorine compound gas with an apparatus having a simple structure.
- the present inventors have found that when a small amount of hydrogen fluoride is allowed to coexist in a fluorine compound gas containing a metal component as an impurity, the metal component contained in the fluorine compound gas is reduced. It has been found that it can be adsorbed and removed by solid metal fluoride together with hydrogen fluoride to purify the fluorine compound gas, and the present invention has been completed.
- the present invention includes inventions 1 to 13.
- [Invention 1] A method for purifying a fluorine compound gas that removes a metal component from a fluorine compound gas containing hydrogen fluoride and a metal component, A method for purifying a fluorine compound gas, comprising a removing step of bringing the fluorine compound gas into contact with a solid metal fluoride and adsorbing and removing hydrogen fluoride and a metal component on the metal fluoride.
- the fluorine compound gas is at least one fluorine selected from the group consisting of ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3.
- the method for purifying a fluorine compound gas according to the first aspect comprising a compound.
- invention 4 The method for purifying a fluorine compound gas according to invention 3, wherein the concentration adjusting step is an addition step of adding hydrogen fluoride to the fluorine compound gas.
- invention 5 The method for purifying a fluorine compound gas according to any one of Inventions 1 to 4, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides.
- invention 6 The fluorine compound gas according to invention 5, wherein the metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride. Purification method.
- the temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride in the removing step is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C., according to any one of inventions 1 to 6. Of purifying fluorine compound gas.
- invention 8 Any one of inventions 1 to 7, wherein the metal component contained in the fluorine compound gas before the removing step contains at least one metal selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni.
- the purification method of the fluorine compound gas as described in one.
- invention 9 Any one of Inventions 1 to 8, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorine compound gas after the removing step is 10 mass ppb or less.
- [Invention 11] A method for producing a purified fluorine compound gas for removing a metal component contained in a fluorine compound gas, Production of a purified fluorine compound gas comprising a removal step of contacting hydrogen fluoride and a metal component with a solid metal fluoride and removing the hydrogen fluoride and the metal component by adsorbing the metal fluoride to the metal fluoride. Method.
- a gas that can be easily removed from a fluorine compound gas containing a metal component as an impurity with an apparatus having a simple structure and can be used for applications such as etching corresponding to miniaturization in the semiconductor field. Can provide.
- 1 and 2 show only an example of a method for carrying out the present invention, and the present invention can be carried out by a method other than this embodiment.
- the purification apparatus 10 is supplied with the fluorine compound gas from the fluorine compound gas supply unit 20 and supplies the outlet gas to the external device 30.
- the purification apparatus 10 includes at least a metal fluoride filling unit 100 and, if necessary, a hydrogen fluoride concentration adjusting unit 110 and a hydrogen fluoride supply unit 120.
- the metal fluoride filling unit 100 is a container filled with a drug containing a metal fluoride, and is appropriately designed depending on the purity and flow rate of the flowing gas.
- a detoxification facility in which metal fluoride pellets are filled on the bottom mesh, a gas to be treated is introduced from the lower part, and discharged from the upper part.
- the drug to be filled may be powdery, granular, or pelletized as long as it contains a metal fluoride, and the content of the metal fluoride is not particularly limited, but usually has a purity of 90% by mass or more, preferably a purity. It is 95 mass% or more.
- metal fluoride to be used examples include alkali metal fluoride and alkaline earth metal fluoride. Specifically, lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, An example is barium fluoride. These metal fluorides are preferable because they have low reactivity with fluorine compounds but can adsorb hydrogen fluoride gas.
- the material used for the container of the metal fluoride filling unit 100 is a metal that is corrosion resistant to fluorine compounds, fluorine, or hydrogen fluoride.
- nickel, nickel-based alloy Hastelloy (registered trademark), Monel (registered trademark) or Inconel (registered trademark), aluminum, aluminum alloy, or stainless steel can be selected.
- Hastelloy registered trademark
- Monel registered trademark
- Inconel registered trademark
- aluminum, aluminum alloy, or stainless steel can be selected.
- Fe or Cr contained in the material reacts with the fluorine compound, which may be a source of metal impurities. Before use, distribute fluorine compound gas or fluorine gas, It is necessary to perform a treatment such as forming a passive film.
- the use temperature of the metal fluoride filling unit 100 that is, the temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C. If the operating temperature is less than the boiling point of the fluorine compound at the pressure in the metal fluoride filling portion 100, a problem of gas condensing in the metal fluoride filling portion 100 occurs. Further, a temperature higher than 50 ° C. is not preferable because the reaction between the fluorine compound gas and the container of the metal fluoride filling unit 100 is accelerated, and metal impurities derived from the container may be generated and the concentration of the metal component may increase. .
- the metal fluoride filling part 100 can be used at a temperature as low as possible to obtain a purification effect, it requires a separate cooling facility, and thus is usually used near room temperature (about 20 ° C.). .
- the inside of the apparatus such as the metal fluoride filling unit 100 may be decompressed and used at a temperature of 50 ° C. or less.
- the fluorine compound gas supplied to the metal fluoride filling unit 100 preferably contains 50 ppm by volume or more and 1% by volume or less of hydrogen fluoride. Moreover, about each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in a fluorine compound gas, it is a semiconductor device manufacture in the exit of the metal fluoride filling part 100. It is preferable that all are 10 mass ppb or less so that it can be used in a process.
- each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in the fluorine compound gas at the inlet of the metal fluoride filling part 100, 10 mass ppb or more 1000 mass ppb or less, preferably 20 mass ppb or more and 500 mass ppb or less. If the amount of the metal component is too large, the metal component may not be completely removed. If the amount is too small, the necessity of applying the present invention is eliminated.
- Each metal component is contained in the gas as fine particles or clusters of metal or metal compound, or a gas of metal halide or metal complex having a relatively high vapor pressure. However, the content of each metal component is evaluated not as the content of a metal compound or a metal complex but as the content of a single metal.
- the metal component is a member such as a reactor or piping in the production process of the fluorine compound gas, or a metal used as a material used in the cylinder is corroded by the fluorine compound gas. Mixed with fluorine compound gas. The content can be suppressed to 1000 mass ppb or less by using the above-mentioned corrosion-resistant metal for the member and the cylinder.
- the amount of hydrogen fluoride contained in the fluorine compound gas at the outlet from the metal fluoride filling unit 100 is 50 ppm by volume or less with respect to the total volume of the fluorine compound gas, hydrogen fluoride, and the metal component. It is preferable to become.
- the fluorine compound gas supply unit 20 is a fluorine compound gas storage unit manufactured by a fluorine compound gas manufacturing facility, a cylinder filled with the fluorine compound gas, or the like.
- the fluorine compound gas to be supplied is not particularly limited as long as it does not directly react with the metal fluoride filled in the metal fluoride filling unit 100.
- the purity of the gas to be supplied there is no restriction on the purity of the gas to be supplied, but when a low-concentration gas is used, the load on the metal fluoride filling unit 100 installed on the downstream side increases, resulting in an increase in the size of the apparatus and the frequency of drug replacement. It is preferable to use a gas from which impurities have been removed in advance by distillation or a cryogenic purification method. Specifically, it is preferable to use those having a purity of 90% by volume or more, more preferably 99% by volume or more.
- An external device 30 is connected downstream of the purification device 10.
- the external device 30 corresponds to a fluorine compound gas filling facility.
- the etching apparatus corresponds to the external apparatus 30.
- the purification device 10 of the present invention is provided in the middle of the gas inlet and piping of the etching device, and the semiconductor device is etched using the gas from which the metal component has been removed by supplying the outlet gas of the purification device 10 to the etching chamber. can do.
- the hydrogen fluoride concentration adjusting unit 110 adjusts the amount of hydrogen fluoride contained in the fluorine compound gas supplied to the purification apparatus 10 to an amount suitable for supplying to the metal fluoride filling unit 100.
- the content of hydrogen fluoride in the fluorine compound gas supplied to the metal fluoride filling unit 100 is 50 ppm by volume or more and 1% by volume with respect to the total volume of the fluorine compound gas, hydrogen fluoride, and metal components. Or less, more preferably 100 volume ppm or more and 2000 volume ppm or less, and may be 200 volume ppm or more and 1000 ppm or less.
- the hydrogen fluoride content is less than 50 ppm, the amount of hydrogen fluoride is too small, and it is often difficult to sufficiently reduce the amount of the metal component.
- the fluorine compound gas supplied from the fluorine compound gas supply unit 20 contains 50 volume ppm or more of hydrogen fluoride in advance, it is supplied to the metal fluoride filling unit 100 as it is, but the hydrogen fluoride content is 50 volumes. In the case of less than ppm, it is preferable to supply hydrogen fluoride from the hydrogen fluoride supply unit 120.
- the hydrogen fluoride concentration adjusting unit 110 may be diluted with the same type of fluorine compound gas having a lower hydrogen fluoride content, or a metal Hydrogen fluoride may be roughly removed with a chemical such as fluoride.
- the hydrogen fluoride supply unit 120 is connected by a pipe or the like in the upstream portion of the metal fluoride filling unit 100, and can add hydrogen fluoride to the fluorine compound gas.
- a container or a cylinder filled with hydrogen fluoride is connected to the hydrogen fluoride supply unit 120.
- the purity of the hydrogen fluoride to be connected is preferably high-purity, and the purity is preferably 99.5% by mass or more, more preferably 99.9% by mass or more. Further, regarding the metal impurities, it is preferable that the concentration of each of the mixed Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni metal components is 10 mass ppb or less.
- the concentration of the metal component can be reduced to a very low level with an apparatus having a simple structure simply filled with a drug. Therefore, even in a small factory, a gas with few metal impurities can be obtained using the present invention.
- the purification device 10 can be provided immediately before using the fluorine compound gas, it is possible to prevent mixing of metal components derived from piping and the like, and the external device 30 can use a gas with less metal impurities. .
- Example According to the system diagram shown in FIG. 2, a cylinder filled with ClF, ClF 3 , IF 7 , BrF 5 , NF 3 , and WF 6 as the fluorine compound gas supply unit 20 (purity: 99 vol% or more, 99.99 vol% or less)
- the hydrogen fluoride supply unit 120 was connected to a cylinder filled with HF (HF purity: 99.99% by volume).
- HF HF purity: 99.99% by volume.
- the supply amount of each gas was controlled using a mass flow controller (manufactured by Horiba Estec Co., Ltd.) as a flow rate control device on the downstream side of each cylinder.
- metal fluoride filling portion 100 what filled 100 g of NaF pellets (Morita Chemical Co., Ltd.) in a 1 inch (25.4 mm) ⁇ 200 mm Ni tube was used for the metal fluoride filling portion 100.
- the metal fluoride filling part 100 was used by heating or cooling to room temperature or a predetermined temperature. And the gas of the part corresponded to the inlet_port
- ICP-MS inductively coupled plasma mass spectrometer
- the metal component is a component such as a reactor or a pipe in the production process of the fluorine compound gas, or the metal used as a material used in the cylinder is corroded by the fluorine compound gas. It is mixed in the compound gas.
- Example 1 it was possible to reduce the metal concentration by bringing IF 7 containing a predetermined amount of hydrogen fluoride into contact with NaF at 25 ° C. Further, in Example 2 and Example 3, the metal concentration could be sufficiently reduced even when the temperature of contact with NaF was 45 ° C. or 0 ° C., but in Example 2 of contact at 45 ° C., Example Compared to 1 and Example 3, the metal concentration was higher. This is presumed to be because IF 7 reacted somewhat with the metal material constituting the device. In Example 4, the concentration of hydrogen fluoride contained in the IF 7 gas was 58 vol ppm, the effect of removing the metal components was confirmed. However, because the concentration of hydrogen fluoride was low, some metal components were included more than in Example 1.
- Example 11 to 13 the same procedure as in Example 1 was performed except that the chemical filling the metal fluoride filler 100 was changed to KF pellets, MgF 2 pellets, and BaF 2 pellets. As a result, the effect of removing the metal component was confirmed in the same manner as in Example 1.
- a metal component contained in a fluorine compound gas can be easily removed, and a gas usable for applications such as etching corresponding to miniaturization in the semiconductor field can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Disclosed is a purification method for removing a metal component from a fluorine compound gas that contains hydrogen fluoride and a metal component. This method includes a removal step for contacting the fluorine compound gas to a solid metal fluoride, and removing the hydrogen fluoride and the metal component therefrom as a result of adsorption thereof by the metal fluoride. It is preferable for the fluorine compound gas to contain one or more types selected from the group consisting of ClF, ClF3, IF5, IF7, BrF3, BrF5, NF3, WF6, SiF4, CF4, SF6 and BF3. It is also preferable for the metal fluoride to be an alkali metal fluoride or an alkali earth metal fluoride. Surprisingly, the presence of hydrogen fluoride in a fluorine compound gas makes it possible to remove a metal component therefrom as an impurity as a result of adsorption thereof by a metal fluoride.
Description
本発明は、不純物として金属成分を含むフッ素化合物ガスから金属成分を除去しフッ素化合物ガスを精製する、フッ素化合物ガスの精製方法に関するものである。
The present invention relates to a method for purifying a fluorine compound gas, which purifies the fluorine compound gas by removing the metal component from the fluorine compound gas containing a metal component as an impurity.
フッ素化合物ガスは、半導体デバイス、MEMS(Micro Electro Mechanical Systems)デバイス、液晶用TFT(Thin Film Transistor)パネルおよび太陽電池などの製造工程における、基板のエッチングもしくはCVD(Chemical Vapor Deposition)などの薄膜形成におけるクリーニングガス、またはフッ素化学品合成のためのフッ素化剤など、広く使用されている。
Fluorine compound gas is used for substrate etching or thin film formation such as CVD (Chemical Vapor Deposition) in the manufacturing process of semiconductor devices, MEMS (Micro Electro Mechanical Systems) devices, TFT (Thin Film Transistor) panels for liquid crystals and solar cells. Widely used as cleaning gas or fluorinating agent for fluorine chemical synthesis.
半導体デバイスの製造においては、微細化および高集積化技術の発展により、加工の技術的難易度は年々高くなっている。このような状況の中で半導体デバイスの材料に含まれる不純物は、半導体デバイスの製造工程において、製品の歩留まりを低下させるなどの問題を引き起こす懸念がある。そこで、クリーニングガスなどとして使用されるフッ素化合物ガスについても、その高純度化が要求され、特に、半導体デバイスの電気特性へ与える影響が大きい金属不純物については、10質量ppb未満に低減することなど、非常に高い純度が要求されている。
In the manufacture of semiconductor devices, the technical difficulty of processing is increasing year by year due to the development of miniaturization and high integration technology. Under such circumstances, impurities contained in the semiconductor device material may cause problems such as a reduction in product yield in the manufacturing process of the semiconductor device. Therefore, the fluorine compound gas used as a cleaning gas is also required to be highly purified. In particular, a metal impurity that has a large influence on the electrical characteristics of a semiconductor device is reduced to less than 10 mass ppb. Very high purity is required.
こうしたガスの高純度化を狙いとする精製方法としては、ガスと不純物を含む混合ガスを低温に冷却して液化させ、混合ガス中でのそれぞれのガスが凝縮する際の温度の違いにより、蒸留または部分凝縮によって分離回収する方法である、深冷精製法が知られている。例えば、特許文献1において、フッ素化合物にエネルギーを付与しフッ素化合物を反応させフッ素ガス成分とフッ素ガス以外の成分とを生成し、生成されたフッ素ガス成分とフッ素ガス成分以外のガス成分とを液体窒素などを用い冷却し、双方の沸点の違いにより、フッ素ガスを分離する深冷精製法が開示されている。
As a purification method aimed at increasing the purity of these gases, the mixed gas containing the gas and impurities is cooled to a low temperature and liquefied, and distillation is caused by the difference in temperature when each gas in the mixed gas condenses. Alternatively, a cryogenic purification method, which is a method of separating and collecting by partial condensation, is known. For example, in Patent Document 1, energy is applied to a fluorine compound to react the fluorine compound to generate a fluorine gas component and a component other than the fluorine gas, and the generated fluorine gas component and a gas component other than the fluorine gas component are liquidized. A cryogenic purification method is disclosed in which cooling is performed using nitrogen or the like, and fluorine gas is separated according to the difference in boiling points between the two.
しかしながら、特許文献1に記載の方法は、精製する目的のフッ素化合物ガスとそれに含まれる不純物との沸点や融点の差が小さい場合には適用できない。また、不純物が金属不純物である場合、金属不純物は、通常、金属もしくは金属化合物の微粒子またはクラスター、あるいは比較的高い蒸気圧を持つ金属ハロゲン化物または金属錯体の気体として、ガス中に含有されている。しかしながら、金属不純物は昇華性が非常に高く、さらにフッ素化合物ガスに不純物として含まれる量も微量であることから、深冷精製法による除去は困難であるという問題がある。また、深冷精製法を用いると、その設備は複雑で大きく、フッ素化合物ガスの製造工場には設備を設置可能であるが、少量のガスを処理する際は設備を設置し難く不向きであるという問題もある。
However, the method described in Patent Document 1 cannot be applied when the difference in boiling point or melting point between a fluorine compound gas to be purified and impurities contained therein is small. Further, when the impurity is a metal impurity, the metal impurity is usually contained in the gas as a metal or metal compound fine particle or cluster, or a gas of a metal halide or metal complex having a relatively high vapor pressure. . However, the metal impurities have a very high sublimation property, and the amount contained as impurities in the fluorine compound gas is very small, so that there is a problem that it is difficult to remove them by a cryogenic purification method. In addition, if the deep cooling method is used, the equipment is complex and large, and it can be installed in a fluorine compound gas manufacturing plant, but it is difficult to install equipment when processing a small amount of gas. There is also a problem.
簡単な構造の装置を用いガスを処理する方法として、固形充填剤と接触させる乾式処理方法が知られている。例えば、フッ化ナトリウム(NaF)などの吸着剤を充填した処理塔を有する精製装置において、処理塔にフッ素ガスと不純物を含む混合ガスを流通し不純物であるフッ化水素を除去する方法が、特許文献2に開示されている。また、特許文献3には、MnF4を加熱して生成したフッ素ガスに含まれる、昇華したフッ化マンガンを除去する方法が開示されている、具体的には、フッ化マンガンとフッ化ナトリウムとを接触させて、反応させ、式 MnF4+2NaF→Na2MnF6により、複合フッ化物を形成し除去することができると記載されている。
As a method for treating a gas using an apparatus having a simple structure, a dry treatment method in which a solid filler is brought into contact is known. For example, in a purification apparatus having a processing tower filled with an adsorbent such as sodium fluoride (NaF), a method of removing hydrogen fluoride as an impurity by passing a mixed gas containing fluorine gas and impurities through the processing tower is patented. It is disclosed in Document 2. Patent Document 3 discloses a method for removing sublimated manganese fluoride contained in fluorine gas generated by heating MnF 4. Specifically, manganese fluoride and sodium fluoride are disclosed. It is described that a composite fluoride can be formed and removed by the formula MnF 4 + 2NaF → Na 2 MnF 6 .
特許文献2に記載の方法は、不純物がフッ化水素の場合は有効な方法である。しかしながら、フッ化水素以外の不純物に対しては、効果がほとんどなくい。特許文献2には、フッ素ガスに含まれるフッ化水素を除去する方法については記載されているが、不純物が金属不純物である場合の除去方法については記載されていない。
The method described in Patent Document 2 is an effective method when the impurity is hydrogen fluoride. However, it has little effect on impurities other than hydrogen fluoride. Patent Document 2 describes a method for removing hydrogen fluoride contained in fluorine gas, but does not describe a removal method when the impurity is a metal impurity.
特許文献3に記載の方法は、フッ化ナトリウムとフッ化マンガンを反応させて複合フッ化物を形成するため、100℃以上の高温に加熱することが開示されている。しかしながら、100℃以上の高温に加熱すると、複合フッ化物ガスとフッ化ナトリウムを充填する金属容器との反応も生じ、容器の金属成分が複合フッ化物ガス中に混入して新たな不純物となってしまうといった問題がある。
The method described in Patent Document 3 discloses heating to a high temperature of 100 ° C. or higher in order to react sodium fluoride and manganese fluoride to form a composite fluoride. However, when heated to a high temperature of 100 ° C. or higher, a reaction between the composite fluoride gas and the metal container filled with sodium fluoride also occurs, and the metal component of the container is mixed into the composite fluoride gas and becomes a new impurity. There is a problem such as. *
本発明は、簡単な構造の装置でフッ素化合物ガスに不純物として含まれる微量金属成分を除去しフッ素化合物ガスを精製する、フッ素化合物ガスの精製方法を提供することを目的とする。
An object of the present invention is to provide a method for purifying a fluorine compound gas, which purifies the fluorine compound gas by removing trace metal components contained as impurities in the fluorine compound gas with an apparatus having a simple structure.
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、不純物としての金属成分を含むフッ素化合物ガスに微量のフッ化水素を共存させると、フッ素化合物ガスに含まれる金属成分がフッ化水素とともに固体の金属フッ化物に吸着し除去され、フッ素化合物ガスを精製できることを見出し、本発明を完成させるに至った。
As a result of intensive studies to achieve the above object, the present inventors have found that when a small amount of hydrogen fluoride is allowed to coexist in a fluorine compound gas containing a metal component as an impurity, the metal component contained in the fluorine compound gas is reduced. It has been found that it can be adsorbed and removed by solid metal fluoride together with hydrogen fluoride to purify the fluorine compound gas, and the present invention has been completed.
本発明のフッ素化合物ガスの精製方法において、フッ素化合物ガスにフッ化水素ガスを添加しフッ化水素ガスを共存させることで、これら金属不純物を金属フッ化物に吸着させることが可能となる。
In the method for purifying a fluorine compound gas according to the present invention, by adding hydrogen fluoride gas to the fluorine compound gas and allowing the hydrogen fluoride gas to coexist, these metal impurities can be adsorbed on the metal fluoride.
すなわち、本発明は発明1~13を含む。
That is, the present invention includes inventions 1 to 13.
[発明1]
フッ化水素および金属成分を含むフッ素化合物ガスから金属成分を除去するフッ素化合物ガスの精製方法であって、
前記フッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む、フッ素化合物ガスの精製方法。 [Invention 1]
A method for purifying a fluorine compound gas that removes a metal component from a fluorine compound gas containing hydrogen fluoride and a metal component,
A method for purifying a fluorine compound gas, comprising a removing step of bringing the fluorine compound gas into contact with a solid metal fluoride and adsorbing and removing hydrogen fluoride and a metal component on the metal fluoride.
フッ化水素および金属成分を含むフッ素化合物ガスから金属成分を除去するフッ素化合物ガスの精製方法であって、
前記フッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む、フッ素化合物ガスの精製方法。 [Invention 1]
A method for purifying a fluorine compound gas that removes a metal component from a fluorine compound gas containing hydrogen fluoride and a metal component,
A method for purifying a fluorine compound gas, comprising a removing step of bringing the fluorine compound gas into contact with a solid metal fluoride and adsorbing and removing hydrogen fluoride and a metal component on the metal fluoride.
[発明2]
前記フッ素化合物ガスが、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物を含む、発明1に記載のフッ素化合物ガスの精製方法。 [Invention 2]
The fluorine compound gas is at least one fluorine selected from the group consisting of ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3. The method for purifying a fluorine compound gas according to the first aspect, comprising a compound.
前記フッ素化合物ガスが、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物を含む、発明1に記載のフッ素化合物ガスの精製方法。 [Invention 2]
The fluorine compound gas is at least one fluorine selected from the group consisting of ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3. The method for purifying a fluorine compound gas according to the first aspect, comprising a compound.
[発明3]
前記除去工程の前に、前記フッ素化合物ガス中のフッ化水素の含有量を、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整する濃度調整工程を行う、発明1または発明2に記載のフッ素化合物ガスの精製方法。 [Invention 3]
Concentration adjustment for adjusting the content of hydrogen fluoride in the fluorine compound gas to 50 volume ppm or more and 1 volume% or less with respect to the total volume of the fluorine compound, hydrogen fluoride and metal component before the removing step The method for purifying a fluorine compound gas according to Invention 1 or 2, wherein the step is performed.
前記除去工程の前に、前記フッ素化合物ガス中のフッ化水素の含有量を、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整する濃度調整工程を行う、発明1または発明2に記載のフッ素化合物ガスの精製方法。 [Invention 3]
Concentration adjustment for adjusting the content of hydrogen fluoride in the fluorine compound gas to 50 volume ppm or more and 1 volume% or less with respect to the total volume of the fluorine compound, hydrogen fluoride and metal component before the removing step The method for purifying a fluorine compound gas according to Invention 1 or 2, wherein the step is performed.
[発明4]
前記濃度調整工程が、フッ素化合物ガスにフッ化水素を添加する添加工程である、発明3に記載のフッ素化合物ガスの精製方法。 [Invention 4]
The method for purifying a fluorine compound gas according to invention 3, wherein the concentration adjusting step is an addition step of adding hydrogen fluoride to the fluorine compound gas.
前記濃度調整工程が、フッ素化合物ガスにフッ化水素を添加する添加工程である、発明3に記載のフッ素化合物ガスの精製方法。 [Invention 4]
The method for purifying a fluorine compound gas according to invention 3, wherein the concentration adjusting step is an addition step of adding hydrogen fluoride to the fluorine compound gas.
[発明5]
前記金属フッ化物が、アルカリ金属フッ化物およびアルカリ土類金属フッ化物からなる群より選ばれる少なくとも1種である、発明1~4のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 5]
The method for purifying a fluorine compound gas according to any one of Inventions 1 to 4, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides.
前記金属フッ化物が、アルカリ金属フッ化物およびアルカリ土類金属フッ化物からなる群より選ばれる少なくとも1種である、発明1~4のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 5]
The method for purifying a fluorine compound gas according to any one of Inventions 1 to 4, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides.
[発明6]
前記金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種である、発明5に記載のフッ素化合物ガスの精製方法。 [Invention 6]
The fluorine compound gas according to invention 5, wherein the metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride. Purification method.
前記金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種である、発明5に記載のフッ素化合物ガスの精製方法。 [Invention 6]
The fluorine compound gas according to invention 5, wherein the metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride. Purification method.
[発明7]
前記除去工程において、フッ素化合物ガスを固体の金属フッ化物に接触させる温度が、前記フッ素化合物ガスに含まれるフッ素化合物の沸点以上、50℃以下である、発明1~6のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 7]
The temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride in the removing step is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C., according to any one of inventions 1 to 6. Of purifying fluorine compound gas.
前記除去工程において、フッ素化合物ガスを固体の金属フッ化物に接触させる温度が、前記フッ素化合物ガスに含まれるフッ素化合物の沸点以上、50℃以下である、発明1~6のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 7]
The temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride in the removing step is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C., according to any one of inventions 1 to 6. Of purifying fluorine compound gas.
[発明8]
前記除去工程前のフッ素化合物ガスに含まれる金属成分が、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属を含む、発明1~7のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 8]
Any one of inventions 1 to 7, wherein the metal component contained in the fluorine compound gas before the removing step contains at least one metal selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni. The purification method of the fluorine compound gas as described in one.
前記除去工程前のフッ素化合物ガスに含まれる金属成分が、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属を含む、発明1~7のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 8]
Any one of inventions 1 to 7, wherein the metal component contained in the fluorine compound gas before the removing step contains at least one metal selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni. The purification method of the fluorine compound gas as described in one.
[発明9]
前記除去工程後のフッ素化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明1~8のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 9]
Any one of Inventions 1 to 8, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorine compound gas after the removing step is 10 mass ppb or less. The purification method of the fluorine compound gas as described in one.
前記除去工程後のフッ素化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明1~8のいずれか1つに記載のフッ素化合物ガスの精製方法。 [Invention 9]
Any one of Inventions 1 to 8, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorine compound gas after the removing step is 10 mass ppb or less. The purification method of the fluorine compound gas as described in one.
[発明10]
フッ化水素および、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属成分を含む、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物ガスから、金属成分を除去する精製方法であって、
前記フッ素化合物ガスを、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種の固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する、除去工程を含み、
除去工程後のフッ素化化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、フッ素化合物ガスの精製方法。 [Invention 10]
ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 containing hydrogen fluoride and at least one metal component selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni A purification method for removing a metal component from at least one fluorine compound gas selected from the group consisting of NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 and BF 3 ,
The fluorine compound gas is brought into contact with at least one solid metal fluoride selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride, Removing the hydrogen and metal components by adsorbing them on the metal fluoride,
A method for purifying a fluorine compound gas, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorinated compound gas after the removing step is 10 mass ppb or less.
フッ化水素および、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属成分を含む、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物ガスから、金属成分を除去する精製方法であって、
前記フッ素化合物ガスを、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種の固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する、除去工程を含み、
除去工程後のフッ素化化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、フッ素化合物ガスの精製方法。 [Invention 10]
ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 containing hydrogen fluoride and at least one metal component selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni A purification method for removing a metal component from at least one fluorine compound gas selected from the group consisting of NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 and BF 3 ,
The fluorine compound gas is brought into contact with at least one solid metal fluoride selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride, Removing the hydrogen and metal components by adsorbing them on the metal fluoride,
A method for purifying a fluorine compound gas, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorinated compound gas after the removing step is 10 mass ppb or less.
[発明11]
フッ素化合物ガスに含まれる金属成分を除去する精製フッ素化合物ガスの製造方法であって、
フッ化水素と金属成分を含むフッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む、精製フッ素化合物ガスの製造方法。 [Invention 11]
A method for producing a purified fluorine compound gas for removing a metal component contained in a fluorine compound gas,
Production of a purified fluorine compound gas comprising a removal step of contacting hydrogen fluoride and a metal component with a solid metal fluoride and removing the hydrogen fluoride and the metal component by adsorbing the metal fluoride to the metal fluoride. Method.
フッ素化合物ガスに含まれる金属成分を除去する精製フッ素化合物ガスの製造方法であって、
フッ化水素と金属成分を含むフッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む、精製フッ素化合物ガスの製造方法。 [Invention 11]
A method for producing a purified fluorine compound gas for removing a metal component contained in a fluorine compound gas,
Production of a purified fluorine compound gas comprising a removal step of contacting hydrogen fluoride and a metal component with a solid metal fluoride and removing the hydrogen fluoride and the metal component by adsorbing the metal fluoride to the metal fluoride. Method.
[発明12]
前記精製フッ素化合物に含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明11に記載の精製フッ素化合物ガスの製造方法。 [Invention 12]
Production of purified fluorine compound gas according to invention 11, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the purified fluorine compound is 10 mass ppb or less. Method.
前記精製フッ素化合物に含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明11に記載の精製フッ素化合物ガスの製造方法。 [Invention 12]
Production of purified fluorine compound gas according to invention 11, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the purified fluorine compound is 10 mass ppb or less. Method.
[発明13]
前記精製フッ素化合物ガス中のフッ化水素の含有量が、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以下である、発明11または発明12に記載の精製フッ素化合物ガスの製造方法。 [Invention 13]
The purified fluorine compound gas according to Invention 11 or Invention 12, wherein the content of hydrogen fluoride in the purified fluorine compound gas is 50 ppm by volume or less with respect to the total volume of the fluorine compound, hydrogen fluoride, and the metal component. Production method.
前記精製フッ素化合物ガス中のフッ化水素の含有量が、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以下である、発明11または発明12に記載の精製フッ素化合物ガスの製造方法。 [Invention 13]
The purified fluorine compound gas according to Invention 11 or Invention 12, wherein the content of hydrogen fluoride in the purified fluorine compound gas is 50 ppm by volume or less with respect to the total volume of the fluorine compound, hydrogen fluoride, and the metal component. Production method.
本発明によれば、簡単な構造の装置で不純物として金属成分を含むフッ素化合物ガスから金属成分を容易に除去することができ、半導体分野における微細化に対応したエッチングなどの用途に使用可能なガスを提供できる。
According to the present invention, a gas that can be easily removed from a fluorine compound gas containing a metal component as an impurity with an apparatus having a simple structure and can be used for applications such as etching corresponding to miniaturization in the semiconductor field. Can provide.
以下、本発明の実施方法について、図面を参照して本発明を詳述する。
なお、図1、2は本発明を実施する方法の一例を示したに過ぎず、本形態以外の方法でも本発明の実施は可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings for the method of carrying out the present invention.
1 and 2 show only an example of a method for carrying out the present invention, and the present invention can be carried out by a method other than this embodiment.
なお、図1、2は本発明を実施する方法の一例を示したに過ぎず、本形態以外の方法でも本発明の実施は可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings for the method of carrying out the present invention.
1 and 2 show only an example of a method for carrying out the present invention, and the present invention can be carried out by a method other than this embodiment.
<精製装置10>
本発明に係る精製装置10は、フッ素化合物ガス供給部20からフッ素化合物ガスが供給され、出口ガスを外部装置30に供給する。精製装置10は、少なくとも金属フッ化物充填部100を備え、必要によりフッ化水素濃度調整部110とフッ化水素供給部120を備える。 <Purification device 10>
The purification apparatus 10 according to the present invention is supplied with the fluorine compound gas from the fluorine compound gas supply unit 20 and supplies the outlet gas to the external device 30. The purification apparatus 10 includes at least a metal fluoride filling unit 100 and, if necessary, a hydrogen fluoride concentration adjusting unit 110 and a hydrogen fluoride supply unit 120.
本発明に係る精製装置10は、フッ素化合物ガス供給部20からフッ素化合物ガスが供給され、出口ガスを外部装置30に供給する。精製装置10は、少なくとも金属フッ化物充填部100を備え、必要によりフッ化水素濃度調整部110とフッ化水素供給部120を備える。 <Purification device 10>
The purification apparatus 10 according to the present invention is supplied with the fluorine compound gas from the fluorine compound gas supply unit 20 and supplies the outlet gas to the external device 30. The purification apparatus 10 includes at least a metal fluoride filling unit 100 and, if necessary, a hydrogen fluoride concentration adjusting unit 110 and a hydrogen fluoride supply unit 120.
<金属フッ化物充填部100>
金属フッ化物充填部100は金属フッ化物を含む薬剤を充填した容器で、流通するガスの純度や流速によって適宜設計される。例えば、底網上に金属フッ化物のペレットを充填し、下部から処理対象ガスを導入し、上部から排出する除害設備などを使用できる。充填する薬剤は、金属フッ化物を含んでいれば、粉末状でも粒状でもペレット状でもよく、金属フッ化物の含有量も特に限定されないが、通常は純度90質量%以上であり、好ましくは、純度95質量%以上である。使用する金属フッ化物としては、アルカリ金属フッ化物、アルカリ土類金属フッ化物を挙げることができ、具体的には、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムを例示することができる。これらの金属フッ化物は、フッ素化合物との反応性が低いが、フッ化水素ガスを吸着可能であるため、好ましい。 <Metal fluoride filling part 100>
The metal fluoride filling unit 100 is a container filled with a drug containing a metal fluoride, and is appropriately designed depending on the purity and flow rate of the flowing gas. For example, it is possible to use a detoxification facility in which metal fluoride pellets are filled on the bottom mesh, a gas to be treated is introduced from the lower part, and discharged from the upper part. The drug to be filled may be powdery, granular, or pelletized as long as it contains a metal fluoride, and the content of the metal fluoride is not particularly limited, but usually has a purity of 90% by mass or more, preferably a purity. It is 95 mass% or more. Examples of the metal fluoride to be used include alkali metal fluoride and alkaline earth metal fluoride. Specifically, lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, An example is barium fluoride. These metal fluorides are preferable because they have low reactivity with fluorine compounds but can adsorb hydrogen fluoride gas.
金属フッ化物充填部100は金属フッ化物を含む薬剤を充填した容器で、流通するガスの純度や流速によって適宜設計される。例えば、底網上に金属フッ化物のペレットを充填し、下部から処理対象ガスを導入し、上部から排出する除害設備などを使用できる。充填する薬剤は、金属フッ化物を含んでいれば、粉末状でも粒状でもペレット状でもよく、金属フッ化物の含有量も特に限定されないが、通常は純度90質量%以上であり、好ましくは、純度95質量%以上である。使用する金属フッ化物としては、アルカリ金属フッ化物、アルカリ土類金属フッ化物を挙げることができ、具体的には、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムを例示することができる。これらの金属フッ化物は、フッ素化合物との反応性が低いが、フッ化水素ガスを吸着可能であるため、好ましい。 <Metal fluoride filling part 100>
The metal fluoride filling unit 100 is a container filled with a drug containing a metal fluoride, and is appropriately designed depending on the purity and flow rate of the flowing gas. For example, it is possible to use a detoxification facility in which metal fluoride pellets are filled on the bottom mesh, a gas to be treated is introduced from the lower part, and discharged from the upper part. The drug to be filled may be powdery, granular, or pelletized as long as it contains a metal fluoride, and the content of the metal fluoride is not particularly limited, but usually has a purity of 90% by mass or more, preferably a purity. It is 95 mass% or more. Examples of the metal fluoride to be used include alkali metal fluoride and alkaline earth metal fluoride. Specifically, lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, An example is barium fluoride. These metal fluorides are preferable because they have low reactivity with fluorine compounds but can adsorb hydrogen fluoride gas.
また、金属フッ化物充填部100の容器に使用する材質は、フッ素化合物、フッ素、またはフッ化水素に対し耐食性のある金属が使用される。具体的には、ニッケル、ニッケル基合金であるハステロイ(登録商標)、モネル(登録商標)もしくはインコネル(登録商標)、アルミニウム、アルミニウム合金、またはステンレス鋼などを選択することができる。なお、ステンレス鋼については、材質に含まれるFeまたはCrとフッ素化合物が反応し、金属不純物の発生源となる可能性があるため、使用する前に、フッ素化合物ガスやフッ素ガスを流通し、表面に不動態皮膜を形成するなどの処理を行う必要がある。
Also, the material used for the container of the metal fluoride filling unit 100 is a metal that is corrosion resistant to fluorine compounds, fluorine, or hydrogen fluoride. Specifically, nickel, nickel-based alloy Hastelloy (registered trademark), Monel (registered trademark) or Inconel (registered trademark), aluminum, aluminum alloy, or stainless steel can be selected. For stainless steel, Fe or Cr contained in the material reacts with the fluorine compound, which may be a source of metal impurities. Before use, distribute fluorine compound gas or fluorine gas, It is necessary to perform a treatment such as forming a passive film.
また、金属フッ化物充填部100の使用温度、すなわち、フッ素化合物ガスを固体の金属フッ化物に接触させる温度は、フッ素化合物ガスに含まれるフッ素化合物の沸点以上、50℃以下である。使用温度が、金属フッ化物充填部100での圧力におけるフッ素化合物の沸点未満では、金属フッ化物充填部100内でガスが凝縮する問題が発生する。また50℃より高い温度では、フッ素化合物ガスと金属フッ化物充填部100の容器の反応が促進され、容器由来の金属不純物が発生し、金属成分の濃度が増加する可能性があるため、好ましくない。なお、金属フッ化物充填部100は可能な限り低温で使用する方が、より精製効果が得られるが、別途冷却設備などが必要となるため、通常は室温(約20℃)付近で使用される。なお、フッ素化合物の常圧での沸点が50℃を超える場合は、金属フッ化物充填部100などの装置の内部を減圧し、50℃以下で気体になるようにして使用するとよい。
Further, the use temperature of the metal fluoride filling unit 100, that is, the temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C. If the operating temperature is less than the boiling point of the fluorine compound at the pressure in the metal fluoride filling portion 100, a problem of gas condensing in the metal fluoride filling portion 100 occurs. Further, a temperature higher than 50 ° C. is not preferable because the reaction between the fluorine compound gas and the container of the metal fluoride filling unit 100 is accelerated, and metal impurities derived from the container may be generated and the concentration of the metal component may increase. . In addition, although the metal fluoride filling part 100 can be used at a temperature as low as possible to obtain a purification effect, it requires a separate cooling facility, and thus is usually used near room temperature (about 20 ° C.). . When the boiling point of the fluorine compound at normal pressure exceeds 50 ° C., the inside of the apparatus such as the metal fluoride filling unit 100 may be decompressed and used at a temperature of 50 ° C. or less.
金属フッ化物充填部100に供給されるフッ素化合物ガスには、後述の通り、フッ化水素が50体積ppm以上、1体積%以下含まれることが好ましい。また、フッ素化合物ガスに含まれる各金属成分(Fe、Cr、Mn、Co、Ti、Mo、Cu、Ni)のそれぞれの含有量については、金属フッ化物充填部100の出口では、半導体デバイスの製造工程において使用できるよう、いずれも10質量ppb以下であることが好ましい。
As described later, the fluorine compound gas supplied to the metal fluoride filling unit 100 preferably contains 50 ppm by volume or more and 1% by volume or less of hydrogen fluoride. Moreover, about each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in a fluorine compound gas, it is a semiconductor device manufacture in the exit of the metal fluoride filling part 100. It is preferable that all are 10 mass ppb or less so that it can be used in a process.
なお、金属フッ化物充填部100の入口でのフッ素化合物ガスに含まれる各金属成分(Fe、Cr、Mn、Co、Ti、Mo、Cu、Ni)のそれぞれの含有量については、10質量ppb以上、1000質量ppb以下であることが好ましく、20質量ppb以上、500質量ppb以下であることが好ましい。金属成分の量が多すぎる場合、金属成分を除去しきれない恐れがあり、少なすぎる場合、本発明を適用する必要性がなくなる。各金属成分は、金属や金属化合物の微粒子またはクラスターや、比較的高い蒸気圧を持つ金属ハロゲン化物または金属錯体の気体として、ガス中に含有されている。但し、各金属成分の含有量は、金属化合物や金属錯体の含有量ではなく、金属単体の含有量として評価する。
In addition, about each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in the fluorine compound gas at the inlet of the metal fluoride filling part 100, 10 mass ppb or more 1000 mass ppb or less, preferably 20 mass ppb or more and 500 mass ppb or less. If the amount of the metal component is too large, the metal component may not be completely removed. If the amount is too small, the necessity of applying the present invention is eliminated. Each metal component is contained in the gas as fine particles or clusters of metal or metal compound, or a gas of metal halide or metal complex having a relatively high vapor pressure. However, the content of each metal component is evaluated not as the content of a metal compound or a metal complex but as the content of a single metal.
金属成分は、フッ素化合物ガスの製造工程における反応器または配管などの部材、またはボンベに使用される材質として使用される金属がフッ素化合物ガスにより腐食するなどして、前述の金属不純物の状態で、フッ素化合物ガスに混入する。その含有量は、部材およびボンベなどに前述の耐食性の金属を用いることで1000質量ppb以下に抑えることができる。
The metal component is a member such as a reactor or piping in the production process of the fluorine compound gas, or a metal used as a material used in the cylinder is corroded by the fluorine compound gas. Mixed with fluorine compound gas. The content can be suppressed to 1000 mass ppb or less by using the above-mentioned corrosion-resistant metal for the member and the cylinder.
また、金属フッ化物充填部100からの出口でのフッ素化合物ガスに含まれるフッ化水素の量が、フッ素化合物ガス、フッ化水素、および、金属成分の合計体積に対して、50体積ppm以下となることが好ましい。
The amount of hydrogen fluoride contained in the fluorine compound gas at the outlet from the metal fluoride filling unit 100 is 50 ppm by volume or less with respect to the total volume of the fluorine compound gas, hydrogen fluoride, and the metal component. It is preferable to become.
<フッ素化合物ガス供給部20>
フッ素化合物ガス供給部20は、フッ素化合物ガスの製造設備で製造されたフッ素化合物ガスの貯蔵部や、フッ素化合物ガスを充填したボンベなどである。供給するフッ素化合物ガスは、金属フッ化物充填部100に充填された金属フッ化物と直接反応しない限り特に限定されないが、例えば、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3が挙げられる。供給するガスの純度などに制約は無いが、低濃度のガスを使用した場合、下流側に設置する金属フッ化物充填部100の負荷が大きくなり、装置の大型化や、薬剤交換頻度が高くなるなどの支障をきたすため、予め、蒸留や深冷精製法で不純物を除去したガスを使用することが好ましい。具体的には純度が90体積%以上のものを使用するのが好ましく、さらに好ましくは99体積%以上のものを使用するのが好ましい。 <Fluorine compound gas supply unit 20>
The fluorine compound gas supply unit 20 is a fluorine compound gas storage unit manufactured by a fluorine compound gas manufacturing facility, a cylinder filled with the fluorine compound gas, or the like. The fluorine compound gas to be supplied is not particularly limited as long as it does not directly react with the metal fluoride filled in the metal fluoride filling unit 100. For example, ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3 . There is no restriction on the purity of the gas to be supplied, but when a low-concentration gas is used, the load on the metal fluoride filling unit 100 installed on the downstream side increases, resulting in an increase in the size of the apparatus and the frequency of drug replacement. It is preferable to use a gas from which impurities have been removed in advance by distillation or a cryogenic purification method. Specifically, it is preferable to use those having a purity of 90% by volume or more, more preferably 99% by volume or more.
フッ素化合物ガス供給部20は、フッ素化合物ガスの製造設備で製造されたフッ素化合物ガスの貯蔵部や、フッ素化合物ガスを充填したボンベなどである。供給するフッ素化合物ガスは、金属フッ化物充填部100に充填された金属フッ化物と直接反応しない限り特に限定されないが、例えば、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3が挙げられる。供給するガスの純度などに制約は無いが、低濃度のガスを使用した場合、下流側に設置する金属フッ化物充填部100の負荷が大きくなり、装置の大型化や、薬剤交換頻度が高くなるなどの支障をきたすため、予め、蒸留や深冷精製法で不純物を除去したガスを使用することが好ましい。具体的には純度が90体積%以上のものを使用するのが好ましく、さらに好ましくは99体積%以上のものを使用するのが好ましい。 <Fluorine compound gas supply unit 20>
The fluorine compound gas supply unit 20 is a fluorine compound gas storage unit manufactured by a fluorine compound gas manufacturing facility, a cylinder filled with the fluorine compound gas, or the like. The fluorine compound gas to be supplied is not particularly limited as long as it does not directly react with the metal fluoride filled in the metal fluoride filling unit 100. For example, ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3 . There is no restriction on the purity of the gas to be supplied, but when a low-concentration gas is used, the load on the metal fluoride filling unit 100 installed on the downstream side increases, resulting in an increase in the size of the apparatus and the frequency of drug replacement. It is preferable to use a gas from which impurities have been removed in advance by distillation or a cryogenic purification method. Specifically, it is preferable to use those having a purity of 90% by volume or more, more preferably 99% by volume or more.
<外部装置30>
精製装置10の下流には、外部装置30が接続される。外部装置30には、例えば、本発明の方法をフッ素化合物ガスの製造工程で使用する場合は、フッ素化合物ガスの充填設備が相当する。また、本発明の方法をエッチング工程のガス供給ラインに使用する場合は、エッチング装置が外部装置30に相当する。なお、一つの筐体に精製装置10と外部装置30の両方を備えていてもよい。例えば、エッチング装置のガス受入口や配管の途中に本発明の精製装置10を設け、精製装置10の出口ガスをエッチングチャンバーに供給することで、金属成分を除去したガスを用いて半導体素子をエッチングすることができる。 <External device 30>
An external device 30 is connected downstream of the purification device 10. For example, when the method of the present invention is used in the fluorine compound gas production process, the external device 30 corresponds to a fluorine compound gas filling facility. Further, when the method of the present invention is used for the gas supply line in the etching process, the etching apparatus corresponds to the external apparatus 30. In addition, you may provide both the refinement | purification apparatus 10 and the external apparatus 30 in one housing | casing. For example, the purification device 10 of the present invention is provided in the middle of the gas inlet and piping of the etching device, and the semiconductor device is etched using the gas from which the metal component has been removed by supplying the outlet gas of the purification device 10 to the etching chamber. can do.
精製装置10の下流には、外部装置30が接続される。外部装置30には、例えば、本発明の方法をフッ素化合物ガスの製造工程で使用する場合は、フッ素化合物ガスの充填設備が相当する。また、本発明の方法をエッチング工程のガス供給ラインに使用する場合は、エッチング装置が外部装置30に相当する。なお、一つの筐体に精製装置10と外部装置30の両方を備えていてもよい。例えば、エッチング装置のガス受入口や配管の途中に本発明の精製装置10を設け、精製装置10の出口ガスをエッチングチャンバーに供給することで、金属成分を除去したガスを用いて半導体素子をエッチングすることができる。 <External device 30>
An external device 30 is connected downstream of the purification device 10. For example, when the method of the present invention is used in the fluorine compound gas production process, the external device 30 corresponds to a fluorine compound gas filling facility. Further, when the method of the present invention is used for the gas supply line in the etching process, the etching apparatus corresponds to the external apparatus 30. In addition, you may provide both the refinement | purification apparatus 10 and the external apparatus 30 in one housing | casing. For example, the purification device 10 of the present invention is provided in the middle of the gas inlet and piping of the etching device, and the semiconductor device is etched using the gas from which the metal component has been removed by supplying the outlet gas of the purification device 10 to the etching chamber. can do.
<フッ化水素濃度調整部110>
フッ化水素濃度調整部110は、精製装置10に供給されたフッ素化合物ガスに含まれるフッ化水素の量を、金属フッ化物充填部100に供給するのに適した量に調整する。金属フッ化物充填部100に供給されるフッ素化合物ガス中のフッ化水素の含有量が、フッ素化合物ガス、フッ化水素、および、金属成分の合計体積に対して、50体積ppm以上、1体積%以下であることが好ましく、100体積ppm以上、2000体積ppm以下であることがより好ましく、200体積ppm以上、1000ppm以下であってもよい。フッ化水素含有量が50ppm未満であると、フッ化水素の量が少なすぎて、金属成分の量を十分に低減するのが難しい場合が多い。フッ素化合物ガス供給部20から供給されるフッ素化合物ガスに、あらかじめ50体積ppm以上のフッ化水素が含まれる場合は、そのまま金属フッ化物充填部100に供給するが、フッ化水素含有量が50体積ppm未満の場合は、フッ化水素供給部120よりフッ化水素を供給することが好ましい。 <Hydrogen fluoride concentration adjusting unit 110>
The hydrogen fluoride concentration adjusting unit 110 adjusts the amount of hydrogen fluoride contained in the fluorine compound gas supplied to the purification apparatus 10 to an amount suitable for supplying to the metal fluoride filling unit 100. The content of hydrogen fluoride in the fluorine compound gas supplied to the metal fluoride filling unit 100 is 50 ppm by volume or more and 1% by volume with respect to the total volume of the fluorine compound gas, hydrogen fluoride, and metal components. Or less, more preferably 100 volume ppm or more and 2000 volume ppm or less, and may be 200 volume ppm or more and 1000 ppm or less. When the hydrogen fluoride content is less than 50 ppm, the amount of hydrogen fluoride is too small, and it is often difficult to sufficiently reduce the amount of the metal component. When the fluorine compound gas supplied from the fluorine compound gas supply unit 20 contains 50 volume ppm or more of hydrogen fluoride in advance, it is supplied to the metal fluoride filling unit 100 as it is, but the hydrogen fluoride content is 50 volumes. In the case of less than ppm, it is preferable to supply hydrogen fluoride from the hydrogen fluoride supply unit 120.
フッ化水素濃度調整部110は、精製装置10に供給されたフッ素化合物ガスに含まれるフッ化水素の量を、金属フッ化物充填部100に供給するのに適した量に調整する。金属フッ化物充填部100に供給されるフッ素化合物ガス中のフッ化水素の含有量が、フッ素化合物ガス、フッ化水素、および、金属成分の合計体積に対して、50体積ppm以上、1体積%以下であることが好ましく、100体積ppm以上、2000体積ppm以下であることがより好ましく、200体積ppm以上、1000ppm以下であってもよい。フッ化水素含有量が50ppm未満であると、フッ化水素の量が少なすぎて、金属成分の量を十分に低減するのが難しい場合が多い。フッ素化合物ガス供給部20から供給されるフッ素化合物ガスに、あらかじめ50体積ppm以上のフッ化水素が含まれる場合は、そのまま金属フッ化物充填部100に供給するが、フッ化水素含有量が50体積ppm未満の場合は、フッ化水素供給部120よりフッ化水素を供給することが好ましい。 <Hydrogen fluoride concentration adjusting unit 110>
The hydrogen fluoride concentration adjusting unit 110 adjusts the amount of hydrogen fluoride contained in the fluorine compound gas supplied to the purification apparatus 10 to an amount suitable for supplying to the metal fluoride filling unit 100. The content of hydrogen fluoride in the fluorine compound gas supplied to the metal fluoride filling unit 100 is 50 ppm by volume or more and 1% by volume with respect to the total volume of the fluorine compound gas, hydrogen fluoride, and metal components. Or less, more preferably 100 volume ppm or more and 2000 volume ppm or less, and may be 200 volume ppm or more and 1000 ppm or less. When the hydrogen fluoride content is less than 50 ppm, the amount of hydrogen fluoride is too small, and it is often difficult to sufficiently reduce the amount of the metal component. When the fluorine compound gas supplied from the fluorine compound gas supply unit 20 contains 50 volume ppm or more of hydrogen fluoride in advance, it is supplied to the metal fluoride filling unit 100 as it is, but the hydrogen fluoride content is 50 volumes. In the case of less than ppm, it is preferable to supply hydrogen fluoride from the hydrogen fluoride supply unit 120.
一方、フッ化水素含有量が1体積%を超える場合は、金属フッ化物充填部100の薬剤を頻繁に交換する必要があるため、経済的でないうえに、金属フッ化物充填部100の薬剤の量によってはフッ化水素を除去しきれずに、金属成分を十分に低減することができない場合もある。そのため、フッ化水素含有量が1体積%を超えるフッ素化合物ガスが供給された場合、フッ化水素濃度調整部110は、フッ化水素含有量がより少ない同種のフッ素化合物ガスで希釈するか、金属フッ化物などの薬剤でフッ化水素を粗取りしてもよい。
On the other hand, when the content of hydrogen fluoride exceeds 1% by volume, it is necessary to frequently replace the drug in the metal fluoride filling part 100, which is not economical and the amount of the drug in the metal fluoride filling part 100 In some cases, the metal component cannot be sufficiently reduced without completely removing hydrogen fluoride. Therefore, when a fluorine compound gas having a hydrogen fluoride content exceeding 1% by volume is supplied, the hydrogen fluoride concentration adjusting unit 110 may be diluted with the same type of fluorine compound gas having a lower hydrogen fluoride content, or a metal Hydrogen fluoride may be roughly removed with a chemical such as fluoride.
<フッ化水素供給部120>
フッ化水素供給部120は、金属フッ化物充填部100の上流部分で配管などによって接続され、フッ素化合物ガスにフッ化水素を添加可能である。フッ化水素供給部120にはフッ化水素を充填した容器やボンベが接続される。接続するフッ化水素の純度は高純度のものを使用するのが好ましく、純度が99.5質量%以上、より好ましくは99.9質量%以上のものを使用するのが好ましい。さらに金属不純物については、混入したFe、Cr、Mn、Co、Ti、Mo、Cu、Niの各金属成分の濃度が、いずれも10質量ppb以下であることが好ましい。 <Hydrogen fluoride supply unit 120>
The hydrogen fluoride supply unit 120 is connected by a pipe or the like in the upstream portion of the metal fluoride filling unit 100, and can add hydrogen fluoride to the fluorine compound gas. A container or a cylinder filled with hydrogen fluoride is connected to the hydrogen fluoride supply unit 120. The purity of the hydrogen fluoride to be connected is preferably high-purity, and the purity is preferably 99.5% by mass or more, more preferably 99.9% by mass or more. Further, regarding the metal impurities, it is preferable that the concentration of each of the mixed Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni metal components is 10 mass ppb or less.
フッ化水素供給部120は、金属フッ化物充填部100の上流部分で配管などによって接続され、フッ素化合物ガスにフッ化水素を添加可能である。フッ化水素供給部120にはフッ化水素を充填した容器やボンベが接続される。接続するフッ化水素の純度は高純度のものを使用するのが好ましく、純度が99.5質量%以上、より好ましくは99.9質量%以上のものを使用するのが好ましい。さらに金属不純物については、混入したFe、Cr、Mn、Co、Ti、Mo、Cu、Niの各金属成分の濃度が、いずれも10質量ppb以下であることが好ましい。 <Hydrogen fluoride supply unit 120>
The hydrogen fluoride supply unit 120 is connected by a pipe or the like in the upstream portion of the metal fluoride filling unit 100, and can add hydrogen fluoride to the fluorine compound gas. A container or a cylinder filled with hydrogen fluoride is connected to the hydrogen fluoride supply unit 120. The purity of the hydrogen fluoride to be connected is preferably high-purity, and the purity is preferably 99.5% by mass or more, more preferably 99.9% by mass or more. Further, regarding the metal impurities, it is preferable that the concentration of each of the mixed Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni metal components is 10 mass ppb or less.
<精製装置10の効果>
本発明を利用した精製装置10では、薬剤を充填しただけの簡易な構造の装置で、金属成分の濃度を非常に低いレベルまで低減可能である。そのため、小規模な工場でも本発明を利用して金属不純物の少ないガスを得ることができる。また、フッ素化合物ガスを使用する直前に精製装置10を設けることができるため、配管などに由来した金属成分の混入を防ぐことができ、外部装置30は金属不純物の少ないガスを利用することができる。 <Effect of the purification apparatus 10>
In the purification apparatus 10 using the present invention, the concentration of the metal component can be reduced to a very low level with an apparatus having a simple structure simply filled with a drug. Therefore, even in a small factory, a gas with few metal impurities can be obtained using the present invention. In addition, since the purification device 10 can be provided immediately before using the fluorine compound gas, it is possible to prevent mixing of metal components derived from piping and the like, and the external device 30 can use a gas with less metal impurities. .
本発明を利用した精製装置10では、薬剤を充填しただけの簡易な構造の装置で、金属成分の濃度を非常に低いレベルまで低減可能である。そのため、小規模な工場でも本発明を利用して金属不純物の少ないガスを得ることができる。また、フッ素化合物ガスを使用する直前に精製装置10を設けることができるため、配管などに由来した金属成分の混入を防ぐことができ、外部装置30は金属不純物の少ないガスを利用することができる。 <Effect of the purification apparatus 10>
In the purification apparatus 10 using the present invention, the concentration of the metal component can be reduced to a very low level with an apparatus having a simple structure simply filled with a drug. Therefore, even in a small factory, a gas with few metal impurities can be obtained using the present invention. In addition, since the purification device 10 can be provided immediately before using the fluorine compound gas, it is possible to prevent mixing of metal components derived from piping and the like, and the external device 30 can use a gas with less metal impurities. .
以下、実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples.
[実施例]
図2に示す系統図に従い、フッ素化合物ガス供給部20としてClF、ClF3、IF7、BrF5、NF3、WF6それぞれを充填したボンベ(純度99体積%以上、99.99体積%以下)を用い、フッ化水素供給部120にはHFを充填したボンベ(HF純度:99.99体積%)を接続した。なお、図2には図示していないが、それぞれのボンベの下流側に流量制御装置として、マスフローコントローラー(株式会社堀場エステック製)を使用して、各ガスの供給量を制御した。また、金属フッ化物充填部100には、径1インチ(25.4mm)×200mmのNi管にNaFペレット(森田化学工業株式会社製)100gを充填したものを使用した。なお、金属フッ化物充填部100は、室温や、所定の温度に加熱または冷却して使用した。そして、金属フッ化物充填部100の入口と出口に相当する部分のガスを捕集し、誘導結合プラズマ質量分析計(ICP-MS)により、金属成分の含有量を測定した。 [Example]
According to the system diagram shown in FIG. 2, a cylinder filled with ClF, ClF 3 , IF 7 , BrF 5 , NF 3 , and WF 6 as the fluorine compound gas supply unit 20 (purity: 99 vol% or more, 99.99 vol% or less) The hydrogen fluoride supply unit 120 was connected to a cylinder filled with HF (HF purity: 99.99% by volume). Although not shown in FIG. 2, the supply amount of each gas was controlled using a mass flow controller (manufactured by Horiba Estec Co., Ltd.) as a flow rate control device on the downstream side of each cylinder. Moreover, what filled 100 g of NaF pellets (Morita Chemical Co., Ltd.) in a 1 inch (25.4 mm) × 200 mm Ni tube was used for the metal fluoride filling portion 100. In addition, the metal fluoride filling part 100 was used by heating or cooling to room temperature or a predetermined temperature. And the gas of the part corresponded to the inlet_port | entrance and exit of the metal fluoride filling part 100 was collected, and the content of the metal component was measured with the inductively coupled plasma mass spectrometer (ICP-MS).
図2に示す系統図に従い、フッ素化合物ガス供給部20としてClF、ClF3、IF7、BrF5、NF3、WF6それぞれを充填したボンベ(純度99体積%以上、99.99体積%以下)を用い、フッ化水素供給部120にはHFを充填したボンベ(HF純度:99.99体積%)を接続した。なお、図2には図示していないが、それぞれのボンベの下流側に流量制御装置として、マスフローコントローラー(株式会社堀場エステック製)を使用して、各ガスの供給量を制御した。また、金属フッ化物充填部100には、径1インチ(25.4mm)×200mmのNi管にNaFペレット(森田化学工業株式会社製)100gを充填したものを使用した。なお、金属フッ化物充填部100は、室温や、所定の温度に加熱または冷却して使用した。そして、金属フッ化物充填部100の入口と出口に相当する部分のガスを捕集し、誘導結合プラズマ質量分析計(ICP-MS)により、金属成分の含有量を測定した。 [Example]
According to the system diagram shown in FIG. 2, a cylinder filled with ClF, ClF 3 , IF 7 , BrF 5 , NF 3 , and WF 6 as the fluorine compound gas supply unit 20 (purity: 99 vol% or more, 99.99 vol% or less) The hydrogen fluoride supply unit 120 was connected to a cylinder filled with HF (HF purity: 99.99% by volume). Although not shown in FIG. 2, the supply amount of each gas was controlled using a mass flow controller (manufactured by Horiba Estec Co., Ltd.) as a flow rate control device on the downstream side of each cylinder. Moreover, what filled 100 g of NaF pellets (Morita Chemical Co., Ltd.) in a 1 inch (25.4 mm) × 200 mm Ni tube was used for the metal fluoride filling portion 100. In addition, the metal fluoride filling part 100 was used by heating or cooling to room temperature or a predetermined temperature. And the gas of the part corresponded to the inlet_port | entrance and exit of the metal fluoride filling part 100 was collected, and the content of the metal component was measured with the inductively coupled plasma mass spectrometer (ICP-MS).
尚、金属成分は、フッ素化合物ガスの製造工程における反応器または配管などの部材、またはボンベに使用される材質として使用される金属がフッ素化合物ガスにより腐食するなどして、前述の状態で、フッ素化合物ガスに混入したものである。
In addition, the metal component is a component such as a reactor or a pipe in the production process of the fluorine compound gas, or the metal used as a material used in the cylinder is corroded by the fluorine compound gas. It is mixed in the compound gas.
実施例および比較例の結果については表1にまとめた。
The results of Examples and Comparative Examples are summarized in Table 1.
実施例1では、所定量のフッ化水素を含むIF7を、25℃でNaFと接触させることで、金属濃度を低減可能であった。また、実施例2と実施例3では、NaFと接触させる温度が45℃または0℃であっても十分に金属濃度を低減可能であったが、45℃で接触させる実施例2では、実施例1と実施例3に比べて金属濃度が高くなった。これは、IF7が装置を構成する金属材料と多少反応したためと推測される。実施例4では、IF7ガスに含まれるフッ化水素の濃度が58体積ppmであったが、金属成分の除去効果が確認された。但し、フッ化水素の濃度が低いためか、一部金属成分が実施例1に比べると多く含まれることとなった。
In Example 1, it was possible to reduce the metal concentration by bringing IF 7 containing a predetermined amount of hydrogen fluoride into contact with NaF at 25 ° C. Further, in Example 2 and Example 3, the metal concentration could be sufficiently reduced even when the temperature of contact with NaF was 45 ° C. or 0 ° C., but in Example 2 of contact at 45 ° C., Example Compared to 1 and Example 3, the metal concentration was higher. This is presumed to be because IF 7 reacted somewhat with the metal material constituting the device. In Example 4, the concentration of hydrogen fluoride contained in the IF 7 gas was 58 vol ppm, the effect of removing the metal components was confirmed. However, because the concentration of hydrogen fluoride was low, some metal components were included more than in Example 1.
他に、実施例5~9においては、ClF、ClF3、BrF5、NF3、WF6についても、本発明の精製方法を用いて、金属成分の除去効果が確認された。一方で、フッ化水素の濃度が低い実施例10でも、ある程度の金属成分を除去することができたが、フッ化水素の量が少ないため、一部の金属成分について、10質量ppb未満にまで低減することが難しかった。
In addition, in Examples 5 to 9, ClF, ClF 3 , BrF 5 , NF 3 , and WF 6 were also confirmed to have a metal component removal effect using the purification method of the present invention. On the other hand, even in Example 10 where the concentration of hydrogen fluoride was low, a certain amount of metal components could be removed. However, since the amount of hydrogen fluoride was small, some metal components were less than 10 mass ppb. It was difficult to reduce.
また、表2に示すように、実施例11~13において、金属フッ化物充填部100に充填する薬剤を、KFペレット、MgF2ペレット、BaF2ペレットに変更する以外は実施例1と同様にした実施した結果、実施例1と同様に、金属成分の除去効果が確認できた。
Further, as shown in Table 2, in Examples 11 to 13, the same procedure as in Example 1 was performed except that the chemical filling the metal fluoride filler 100 was changed to KF pellets, MgF 2 pellets, and BaF 2 pellets. As a result, the effect of removing the metal component was confirmed in the same manner as in Example 1.
なお、比較例1のように充填剤にアルミナを使用した場合、フッ化水素や七フッ化ヨウ素とアルミナが反応して反応熱が生じ、その反応熱によって、金属フッ化物充填部100や、その下流側に設置された接続のためのステンレス管と七フッ化ヨウ素が反応したため、金属成分を除去するどころか、金属成分が増える結果となった。
When alumina is used as the filler as in Comparative Example 1, hydrogen fluoride or iodine heptafluoride reacts with alumina to generate reaction heat, and the reaction heat causes the metal fluoride filling portion 100 or Since the stainless steel pipe for connection and iodine heptafluoride that were installed on the downstream side reacted, the metal component increased rather than removing the metal component.
本発明により、フッ素化合物ガスに含まれる金属成分を容易に除去することができ、半導体分野における微細化に対応したエッチングなどの用途に使用可能なガスを提供できる。
According to the present invention, a metal component contained in a fluorine compound gas can be easily removed, and a gas usable for applications such as etching corresponding to miniaturization in the semiconductor field can be provided.
Claims (13)
- フッ化水素および金属成分を含むフッ素化合物ガスから金属成分を除去する精製方法であって、
前記フッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む、フッ素化合物ガスの精製方法。 A purification method for removing a metal component from a fluorine compound gas containing hydrogen fluoride and a metal component,
A method for purifying a fluorine compound gas, comprising a removing step of bringing the fluorine compound gas into contact with a solid metal fluoride and adsorbing and removing hydrogen fluoride and a metal component on the metal fluoride. - 前記フッ素化合物ガスが、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物を含む、請求項1に記載のフッ素化合物ガスの精製方法。 The fluorine compound gas is at least one fluorine selected from the group consisting of ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 , NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 , and BF 3. The method for purifying a fluorine compound gas according to claim 1, comprising a compound.
- 前記除去工程の前に、前記フッ素化合物ガス中のフッ化水素の含有量を、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整する濃度調整工程を行う、請求項1または請求項2に記載のフッ素化合物ガスの精製方法。 Concentration adjustment for adjusting the content of hydrogen fluoride in the fluorine compound gas to 50 volume ppm or more and 1 volume% or less with respect to the total volume of the fluorine compound, hydrogen fluoride and metal component before the removing step The method for purifying a fluorine compound gas according to claim 1 or 2, wherein the step is performed.
- 前記濃度調整工程が、フッ素化合物ガスにフッ化水素を添加する添加工程である、請求項3に記載のフッ素化合物ガスの精製方法。 The method for purifying a fluorine compound gas according to claim 3, wherein the concentration adjusting step is an addition step of adding hydrogen fluoride to the fluorine compound gas.
- 前記金属フッ化物が、アルカリ金属フッ化物およびアルカリ土類金属フッ化物からなる群より選ばれる少なくとも1種である、請求項1乃至請求項4のいずれか1項に記載のフッ素化合物ガスの精製方法。 The method for purifying a fluorine compound gas according to any one of claims 1 to 4, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides. .
- 前記金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種である、請求項5に記載のフッ素化合物ガスの精製方法。 The fluorine compound gas according to claim 5, wherein the metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, and barium fluoride. Purification method.
- 前記除去工程において、フッ素化合物ガスを固体の金属フッ化物に接触させる温度が、前記フッ素化合物ガスに含まれるフッ素化合物の沸点以上、50℃以下である、請求項1乃至請求項6のいずれか1項に記載のフッ素化合物ガスの精製方法。 The temperature at which the fluorine compound gas is brought into contact with the solid metal fluoride in the removing step is not less than the boiling point of the fluorine compound contained in the fluorine compound gas and not more than 50 ° C. The method for purifying a fluorine compound gas according to Item.
- 前記除去工程前のフッ素化合物ガスに含まれる金属成分が、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属を含む、請求項1乃至請求項7のいずれか1項に記載のフッ素化合物ガスの精製方法。 The metal component contained in the fluorine compound gas before the removing step contains at least one metal selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni. The method for purifying a fluorine compound gas according to any one of the above.
- 前記除去工程後のフッ素化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、請求項1乃至請求項8のいずれか1項に記載のフッ素化合物ガスの精製方法。 Each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorine compound gas after the removing step is 10 mass ppb or less. The method for purifying a fluorine compound gas according to any one of the above.
- フッ化水素および、Fe、Cr、Mn、Co、Ti、Mo、CuおよびNiからなる群より選ばれる少なくとも一種の金属成分を含む、ClF、ClF3、IF5、IF7、BrF3、BrF5、NF3、WF6、SiF4、CF4、SF6、BF3からなる群より選ばれる少なくとも一種のフッ素化合物ガスから、金属成分を除去する精製方法であって、
前記フッ素化合物ガスを、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムおよびフッ化バリウムからなる群より選ばれる少なくとも1種の固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する、除去工程を含み、
除去工程後のフッ素化化合物ガスに含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、フッ素化合物ガスの精製方法。 ClF, ClF 3 , IF 5 , IF 7 , BrF 3 , BrF 5 containing hydrogen fluoride and at least one metal component selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni A purification method for removing a metal component from at least one fluorine compound gas selected from the group consisting of NF 3 , WF 6 , SiF 4 , CF 4 , SF 6 and BF 3 ,
The fluorine compound gas is brought into contact with at least one solid metal fluoride selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride, Removing the hydrogen and metal components by adsorbing them on the metal fluoride,
A method for purifying a fluorine compound gas, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the fluorinated compound gas after the removing step is 10 mass ppb or less. - フッ素化合物ガスに含まれる金属成分を除去する精製フッ素化合物ガスの製造方法であって、
フッ化水素と金属成分を含むフッ素化合物ガスを、固体の金属フッ化物に接触させ、フッ化水素および金属成分を前記金属フッ化物に吸着させて除去する除去工程を含む精製フッ素化合物ガスの製造方法。 A method for producing a purified fluorine compound gas for removing a metal component contained in a fluorine compound gas,
A method for producing a purified fluorine compound gas comprising a removal step of contacting a fluorine compound gas containing hydrogen fluoride and a metal component with a solid metal fluoride and adsorbing and removing the hydrogen fluoride and the metal component on the metal fluoride. . - 前記精製フッ素化合物に含まれる、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、請求項11に記載の精製フッ素化合物ガスの製造方法。 The content of each of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni contained in the purified fluorine compound is 10 mass ppb or less, and the purified fluorine compound gas according to claim 11. Production method.
- 前記精製フッ素化合物ガス中のフッ化水素の含有量が、フッ素化合物、フッ化水素および金属成分の合計体積に対して50体積ppm以下である、請求項11または請求項12に記載の精製フッ素化合物ガスの製造方法。 The purified fluorine compound according to claim 11 or 12, wherein a content of hydrogen fluoride in the purified fluorine compound gas is 50 ppm by volume or less with respect to a total volume of the fluorine compound, hydrogen fluoride, and a metal component. Gas production method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187025975A KR102136391B1 (en) | 2016-02-09 | 2017-01-27 | Method for purifying fluorine compound gas |
KR1020207020511A KR102231220B1 (en) | 2016-02-09 | 2017-01-27 | Method for purifying fluorine compound gas |
US16/076,536 US10926211B2 (en) | 2016-02-09 | 2017-01-27 | Method for purifying fluorine compound gas |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016022452 | 2016-02-09 | ||
JP2016-022452 | 2016-02-09 | ||
JP2017-010594 | 2017-01-24 | ||
JP2017010594A JP6792158B2 (en) | 2016-02-09 | 2017-01-24 | Fluorine compound gas purification method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138366A1 true WO2017138366A1 (en) | 2017-08-17 |
Family
ID=59563287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002853 WO2017138366A1 (en) | 2016-02-09 | 2017-01-27 | Method for purifying fluorine compound gas |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017138366A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390230A (en) * | 2020-11-20 | 2021-02-23 | 苏州金宏气体股份有限公司 | Purification method and purification system of chlorine trifluoride |
EP3782969A1 (en) | 2019-08-22 | 2021-02-24 | Fujian Yongjing Technology Co., Ltd. | Process of fluorinating inorganic or organic compounds by direct fluorination |
CN112533873A (en) * | 2018-08-17 | 2021-03-19 | 中央硝子株式会社 | Method for producing tungsten hexafluoride |
CN112915719A (en) * | 2021-02-02 | 2021-06-08 | 福建德尔科技有限公司 | Separation device and separation method for electronic-grade chlorine trifluoride |
CN115945041A (en) * | 2022-12-30 | 2023-04-11 | 浙江研一新能源科技有限公司 | Phosphorus pentafluoride purification device and phosphorus pentafluoride preparation method |
JP7573033B2 (en) | 2022-02-11 | 2024-10-24 | 福建徳尓科技股▲ふん▼有限公司 | New modified sodium fluoride adsorbent, its manufacture and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215588A (en) * | 2008-03-10 | 2009-09-24 | Toyo Tanso Kk | Apparatus for generating fluorine gas |
JP2009242215A (en) * | 2008-04-01 | 2009-10-22 | Iwatani Internatl Corp | Method for recovering fluorine and method for purifying calcium fluoride |
JP2013535397A (en) * | 2010-08-05 | 2013-09-12 | ソルヴェイ(ソシエテ アノニム) | Fluorine purification method |
WO2015076415A1 (en) * | 2013-11-25 | 2015-05-28 | ギガフォトン株式会社 | Gas laser device |
-
2017
- 2017-01-27 WO PCT/JP2017/002853 patent/WO2017138366A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215588A (en) * | 2008-03-10 | 2009-09-24 | Toyo Tanso Kk | Apparatus for generating fluorine gas |
JP2009242215A (en) * | 2008-04-01 | 2009-10-22 | Iwatani Internatl Corp | Method for recovering fluorine and method for purifying calcium fluoride |
JP2013535397A (en) * | 2010-08-05 | 2013-09-12 | ソルヴェイ(ソシエテ アノニム) | Fluorine purification method |
WO2015076415A1 (en) * | 2013-11-25 | 2015-05-28 | ギガフォトン株式会社 | Gas laser device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112533873A (en) * | 2018-08-17 | 2021-03-19 | 中央硝子株式会社 | Method for producing tungsten hexafluoride |
EP3782969A1 (en) | 2019-08-22 | 2021-02-24 | Fujian Yongjing Technology Co., Ltd. | Process of fluorinating inorganic or organic compounds by direct fluorination |
CN112390230A (en) * | 2020-11-20 | 2021-02-23 | 苏州金宏气体股份有限公司 | Purification method and purification system of chlorine trifluoride |
CN112915719A (en) * | 2021-02-02 | 2021-06-08 | 福建德尔科技有限公司 | Separation device and separation method for electronic-grade chlorine trifluoride |
WO2022166270A1 (en) * | 2021-02-02 | 2022-08-11 | 福建德尔科技股份有限公司 | Electronic grade chlorine trifluoride separation device, and separation method |
JP7573033B2 (en) | 2022-02-11 | 2024-10-24 | 福建徳尓科技股▲ふん▼有限公司 | New modified sodium fluoride adsorbent, its manufacture and application |
CN115945041A (en) * | 2022-12-30 | 2023-04-11 | 浙江研一新能源科技有限公司 | Phosphorus pentafluoride purification device and phosphorus pentafluoride preparation method |
CN115945041B (en) * | 2022-12-30 | 2024-06-11 | 浙江研一新能源科技有限公司 | Purifying device of phosphorus pentafluoride and preparation method of phosphorus pentafluoride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6792158B2 (en) | Fluorine compound gas purification method | |
WO2017138366A1 (en) | Method for purifying fluorine compound gas | |
JP6867581B2 (en) | Fluorine gas purification method | |
TWI525043B (en) | Recovery method and recovery unit of iodinated iodide compound derived from iodine iodide | |
CN111918839B (en) | Method and apparatus for producing molybdenum hexafluoride | |
CN110167878B (en) | Method for manufacturing polycrystalline silicon | |
CN108883942A (en) | The manufacturing method of metal powder | |
JP2008094630A (en) | Hydrofluoric acid production apparatus and hydrofluoric acid production method | |
TWI848190B (en) | Method for producing high purity hydrogen chloride gas | |
WO2017138367A1 (en) | Method for purifying fluorine gas | |
CN115583631A (en) | Method and device for preparing chlorine trifluoride | |
CN111886674B (en) | Gas for substrate processing, storage container, and substrate processing method | |
WO2021070550A1 (en) | Method for producing bromine pentafluoride | |
TW201738171A (en) | Method for purifying fluorinated interhalogen compound | |
JP3512285B2 (en) | Method for producing purified hydrogen iodide | |
JP3986376B2 (en) | Method for producing silicon tetrafluoride | |
CN114180535A (en) | Production and purification process and system of sulfur tetrafluoride | |
CN111991978A (en) | Water removal device and method for hydrogen fluoride gas | |
WO2013123185A1 (en) | Deposition system and method of forming a metalloid-containing material therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750091 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187025975 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17750091 Country of ref document: EP Kind code of ref document: A1 |