WO2017138320A1 - Compressed air energy storage generation device - Google Patents

Compressed air energy storage generation device Download PDF

Info

Publication number
WO2017138320A1
WO2017138320A1 PCT/JP2017/001756 JP2017001756W WO2017138320A1 WO 2017138320 A1 WO2017138320 A1 WO 2017138320A1 JP 2017001756 W JP2017001756 W JP 2017001756W WO 2017138320 A1 WO2017138320 A1 WO 2017138320A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
oil
flow path
air flow
heat
Prior art date
Application number
PCT/JP2017/001756
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 久保
正剛 戸島
浩樹 猿田
正樹 松隈
隆 佐藤
佳直美 坂本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780009392.XA priority Critical patent/CN108699968B/en
Publication of WO2017138320A1 publication Critical patent/WO2017138320A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a compressed air storage power generator.
  • CAES compressed air storage
  • a compressed air storage (CAES) power generation device using this CAES system stores electric energy as compressed air in an accumulator tank during off-peak hours of a power plant, and drives an expander with compressed air during high power demand time to generate electricity.
  • the machine is operated to generate electrical energy and level the output.
  • a system is known in which compressed heat is recovered in a heat storage medium, stored in a heat storage tank or the like, and the compressed air before expansion is heated using the recovered compressed heat.
  • Patent Document 1 discloses a device using a thermal energy storage system.
  • the present invention includes an electric motor driven by electric power generated using renewable energy, an oil-cooled compressor driven by the electric motor, and a pressure accumulating unit that stores compressed air compressed by the oil-cooled compressor.
  • a generator driven by the expander and a first air flow path and a second air flow path provided in parallel, fluidly connected from the pressure accumulating section to the expander to flow compressed air A power generation air flow path, a first oil detection section that detects oil contained in the compressed air in the pressure accumulation section or the power generation air flow path, and an oil content from the compressed air in the second air flow path.
  • the compressed air When the compressed air is supplied from the pressure accumulator to the expander, the compressed air is switched to a state in which the compressed air flows through the first air flow path or a state in which the second air flow path flows.
  • the first switching mechanism and the first oil detection unit detect an oil concentration that exceeds a reference, the first switching mechanism is operated to switch the compressed air to a state in which the compressed air flows through the second air flow path.
  • the first switching mechanism switches the compressed air to a state in which it flows through the second air flow path and separates the oil content from the compressed air through the oil separator.
  • oil leakage outside the system can be prevented. Therefore, it is possible to provide an environmentally friendly CAES power generator while reducing the cost of the apparatus using an oil-cooled compressor.
  • the first switching mechanism switches the compressed air to the state where it flows through the first air flow path and supplies the expanded air without going through the oil separator. Therefore, pressure loss in the oil separator can be prevented.
  • a first heat exchanger that exchanges heat between the compressed air and the heat medium supplied from the oil-cooled compressor to the pressure accumulator; a heat accumulator that stores the heat medium heat-exchanged by the first heat exchanger; It is preferable to further include a second heat exchanger that exchanges heat between the compressed air supplied from the pressure accumulator to the expander and the heat medium supplied from the heat accumulator.
  • power generation efficiency can be improved by collecting the compression heat generated in the oil-cooled compressor and returning it to the air before expansion. Specifically, when the temperature of the compressed air stored in the pressure accumulating unit is higher than the atmospheric temperature, heat is released to the atmosphere, resulting in energy loss.
  • heat is recovered in advance by the first heat exchanger before compressed air is supplied to the pressure accumulator. Thereby, the temperature of the compressed air in the pressure accumulating portion is lowered to about the atmospheric temperature, and heat release in the pressure accumulating portion is prevented.
  • the heat recovered by the first heat exchanger is stored in the heat storage unit and returned to the compressed air again before expansion. Therefore, the expansion efficiency is improved and the power generation efficiency is improved.
  • the oil separator is provided between the pressure accumulating unit and the second heat exchanger in the second air flow path.
  • oil can be separated from the air supplied to the second heat exchanger, thus preventing contamination of the second heat exchanger with oil. it can.
  • a second detector provided in the power generation air flow path from the second heat exchanger to the expander; and a branch from the power generation air flow path from the second heat exchanger to the expander
  • a second switching mechanism for switching between the two, and the control device operates the second switching mechanism when the second oil detection unit detects a heat medium that exceeds a reference, and the third air flow path. It is preferable to supply the compressed air and the heat medium to the receiver tank.
  • the oil component can be detected by the second oil detector. In that case, by switching to the recovery air flow path by the second switching mechanism, the compressed air containing oil can be recovered in the receiver tank, and leakage of the heat medium can be prevented.
  • a liquid level detection unit that detects a liquid level in the pressure accumulating unit is further provided, the pressure accumulating unit and the receiver tank are fluidly connected via a third switching mechanism, and the control device When the detection unit detects a value equal to or greater than the reference, it is preferable to operate the third switching mechanism to circulate the pressure accumulating unit and the receiver tank.
  • the third switching mechanism When oil accumulates in the accumulator, or when oil in the accumulator is recovered without generating electricity, the third switching mechanism is switched to circulate between the accumulator and the receiver tank, and the oil accumulated in the accumulator is received in the receiver tank. Can be recovered.
  • the first switching mechanism switches the compressed air to the state in which it flows through the second air flow path and separates the oil content from the compressed air through the oil separator.
  • oil leakage outside the system can be prevented. Therefore, it is possible to provide an environmentally friendly CAES power generator while reducing the cost of the apparatus using an oil-cooled compressor.
  • the schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention.
  • the flowchart which shows the control method of the CAES power generator of FIG.
  • the schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention.
  • a compressed air energy storage (CAES) power generation device 2 equalizes the output fluctuation of the power generation device 4 that uses renewable energy and supplies power to the power system 6. Supply the combined power.
  • CAES compressed air energy storage
  • the configuration of the CAES power generator 2 will be described with reference to FIG.
  • the CAES power generator 2 of the present embodiment includes air flow paths (see broken lines) 8a, 8b, 9a to 9f and heat medium flow paths (see solid lines) 10a to 10c.
  • the CAES power generator 2 includes a motor (electric motor) 12, an oil-cooled compressor (hereinafter sometimes simply referred to as a compressor) 14, a separator (oil separator) 16a to 16c, an accumulator tank (accumulator) 18, an expander 20, a generator 22, a first heat exchanger 24, and a second heat exchanger 26.
  • the power generation device 4 that uses renewable energy is electrically connected to the motor 12 (see the chain line), and the power generated by the power generation device 4 is supplied to the motor 12.
  • the power supplied from the power generation device 4 to the motor 12 is referred to as input power.
  • the motor 12 is driven by this input power.
  • the motor 12 is mechanically connected to the compressor 14 and drives the compressor 14.
  • Compressor 14 is oil-cooled and is cooled and lubricated by supplying lubricating oil. When driven by the motor 12, the compressor 14 takes in air from the intake port 14a, compresses the air inside, and discharges compressed air from the discharge port 14b.
  • the discharge port 14b of the compressor 14 is fluidly connected to the pressure accumulation tank 18 through the air passage 8a for power storage, and the discharged compressed air is pumped to the pressure accumulation tank 18.
  • a valve 32a is provided in the electricity storage air flow path 8a, and the supply of compressed air from the compressor 14 to the pressure accumulating tank 18 can be permitted or blocked by opening and closing the valve 32a.
  • the type of the compressor 14 is not particularly limited as long as it is oil-cooled, and may be, for example, a screw type, a scroll type, a turbo type, and a reciprocating type.
  • the same kind of fluid is used for the heat medium used for cooling and heating the compressed air and the lubricating oil for lubricating the compressor 14 and the expander 20.
  • oil can be used as the same kind of fluid.
  • descriptions of both the heat medium and the lubricating oil may be used hereinafter, but the two are not distinguished.
  • the separator 16a is connected to both the air flow path 8a and the heat medium flow path 10a.
  • oil is separated from the compressed air flowing in the electricity storage air flow path 8a, and the separated oil is supplied as a heat medium to a heat medium flow path 10a described later.
  • the compressed air becomes high temperature due to the compression heat generated during compression.
  • the 1st heat exchanger 24 is interposed by the air flow path 8a for electrical storage as a cooler.
  • the compressed air is cooled by heat exchange between the heat medium and the compressed air.
  • the pressure storage tank 18 can store compressed air and store it as energy.
  • the pressure accumulation tank 18 is provided with an oil component sensor (first oil detection unit) 28 that detects an oil component (oil concentration) contained in the internal compressed air. Further, the pressure accumulation tank 18 is provided with a liquid level sensor (liquid level detection unit) 30 that detects the internal liquid level.
  • first oil detection unit first oil detection unit
  • liquid level detection unit liquid level detection unit
  • the pressure accumulating tank 18 is fluidly connected to the expander 20 through the air passage 8b for power generation, and the compressed air sent from the pressure accumulating tank 18 is supplied to the expander 20.
  • the oil sensor 28 may be provided in the power generation air flow path 8b.
  • the power generation air flow path 8b includes a first air flow path 9a and a second air flow path 9b provided in parallel, and an air flow path 9c in which they are joined.
  • the first air flow path 9a extends from the pressure accumulation tank 18 to the junction J.
  • a valve 32b is provided in the first air flow path 9a.
  • the second air flow path 9b extends from the pressure accumulation tank 18 to the junction point J.
  • the second air flow path 9b is provided with a valve 32c and a separator 16b.
  • the valves 32b and 32c of the present embodiment constitute the first switching mechanism of the present invention, and switch whether the compressed air flows through the first air flow path 9a or the second air flow path 9b.
  • the compressed air normally flows in the first air flow path 9a. Therefore, normally, the valve 32b is opened and the valve 32c is closed.
  • the air flow path 9 c extends from the junction J to the expander 20.
  • the air flow path 9c is provided with a second heat exchanger 26, an oil content sensor (second oil detection unit) 34, a branch point D, and a valve 32d.
  • the valve 32b opens or closes to allow or block the flow of the first air flow path 9a.
  • the first air flow path 9a and the second air flow path 9b are merged.
  • the compressed air supplied to the expander 20 is heated.
  • the oil content sensor 34 cannot be sufficiently separated by the separator 16b, and detects the oil content contained in the compressed air in the power generation air flow path 8b.
  • the third air flow path 9d is branched from the power generation air flow path 8b (air flow path 9c).
  • valves 32d and 32e are provided in the power generation air passage 8b (air passage 9c) and the third air passage 9d, respectively.
  • the valves 32d and 32e of the present embodiment constitute the second switching mechanism of the present invention, and indicate whether the compressed air flows through the power generation air flow path 8b (air flow path 9c) or the third air flow path 9d. Switch. Although the switching control of the second switching mechanism will be described later, normally, the compressed air does not flow through the third air flow path 9d. Therefore, normally, the valve 32d is opened and the valve 32e is closed.
  • the third air flow path 9d is fluidly connected to the receiver tank 36.
  • the receiver tank 36 is fluidly connected directly to the pressure accumulation tank 18 through the air flow path 9 e, and oil can be directly supplied from the pressure accumulation tank 18. Therefore, the receiver tank 36 stores compressed air containing a heat medium and oil. In this embodiment, since the same kind of heat medium and oil are used as described above, they are not distinguished.
  • the air flow path 9e is provided with a valve 32f, and the supply of oil from the pressure accumulation tank 18 to the receiver tank 36 can be permitted or blocked by opening and closing the valve 32f.
  • the valve 32f of the present embodiment constitutes a third switching mechanism of the present invention.
  • An air flow path 9f extends from the receiver tank 36, and a separator 16c and a valve 32g are provided in the air flow path 9f. Therefore, it is possible to release air when necessary by separating the oil component by the separator 16c and opening the valve 32g.
  • valve 32c opens or closes to allow or block the flow of the second air flow path 9b.
  • the separator 16b separates oil from the compressed air flowing through the second air flow path 9b.
  • the second air flow path 9b merges with the first air flow path 9a at the merge point J.
  • the compressed air flows through the power generation air flow path 8b including the first air flow path 9a, the second air flow path 9b, and the air flow path 9c, and is supplied to the expander 20.
  • the expander 20 is an oil-cooled type, and is supplied with lubricating oil to be cooled and lubricated.
  • the expander 20 is mechanically connected to the generator 22, and the expander 20 supplied with compressed air from the air supply port 20 a is operated by the supplied compressed air and drives the generator 22. .
  • the expanded air is exhausted from the exhaust port 20b.
  • the type of the expander 20 may be, for example, a screw type, a scroll type, a turbo type, and a reciprocating type.
  • the expander 20 is not limited to the oil-cooled type, but may be an oil-free type.
  • the generator 22 is electrically connected to the power system 6 (see the alternate long and short dash line), and the power generated by the generator 22 is supplied to the power system 6.
  • a first heat exchanger 24 In the heat medium passages 10a to 10c, a first heat exchanger 24, a high-temperature heat storage tank (heat storage unit) 38, a second heat exchanger 26, and a low-temperature heat storage tank 40 are provided in this order.
  • the heat medium circulates and flows between them.
  • the first heat exchanger 24 heat is exchanged between the compressed air in the electricity storage air flow path 8a and the heat medium in the heat medium flow path 10a extending from the low temperature heat storage tank 40 to the high temperature heat storage tank 38.
  • the compressed air flowing in the electricity storage air flow path 8a is at a high temperature due to compression heat generated during compression by the compressor 14, and the compressed air is cooled by heat exchange. That is, in the first heat exchanger 24, the temperature of the compressed air decreases and the temperature of the heat medium increases.
  • the first heat exchanger 24 is fluidly connected to the high-temperature heat storage tank 38 through the heat medium flow path 10a, and the heat medium whose temperature has risen is supplied to the high-temperature heat storage tank 38 and stored.
  • the high temperature heat storage tank 38 retains and stores the high temperature heat medium supplied from the first heat exchanger 24. Therefore, the high temperature heat storage tank 38 is preferably insulated.
  • the high temperature heat storage tank 38 is fluidly connected to the second heat exchanger 26 through the heat medium flow path 10 b, and the heat medium stored in the high temperature heat storage tank 38 is supplied to the second heat exchanger 26.
  • the second heat exchanger 26 heat is generated by the compressed air in the power generation air flow path 8b (air flow path 9c) and the heat medium in the heat medium flow path 10b extending from the high temperature heat storage tank 38 to the low temperature heat storage tank 40.
  • the high-temperature heat medium in the high-temperature heat storage tank 38 is used to raise the temperature of the compressed air before the expansion by the expander 20 to improve the expansion efficiency. That is, in the second heat exchanger 26, the temperature of the compressed air increases and the temperature of the heat medium decreases.
  • the second heat exchanger 26 is fluidly connected to the low-temperature heat storage tank 40 through the heat medium flow path 10b, and the heat medium whose temperature has been reduced is supplied to and stored in the low-temperature heat storage tank 40.
  • the low temperature heat storage tank 40 stores a low temperature heat medium supplied from the second heat exchanger 26.
  • the low temperature heat storage tank 40 is fluidly connected to the first heat exchanger 24 or the compressor 14 through the heat medium flow paths 10b and 10c, respectively.
  • the heat medium stored in the low temperature heat storage tank 40 is the heat medium flow path 10b, 10c is supplied to the first heat exchanger 24 or the compressor 14, respectively.
  • the heat medium supplied to the compressor 14 is also used as a lubricating oil for lubrication and cooling.
  • the compressor 14 is fluidly connected to the high-temperature heat storage tank 38 through the heat medium passage 10c, and is used as lubricating oil in the compressor 14, and the heat medium whose temperature has risen is passed through the heat medium passage 10c. To be supplied.
  • the heat medium circulates in the heat medium flow paths 10a to 10c.
  • the heat medium is circulated by a pump 42 interposed in the heat medium flow path 10b.
  • the pump 42 is provided downstream of the low-temperature heat storage tank 40, but the position thereof is not particularly limited.
  • the power generation efficiency can be improved by collecting the compression heat generated in the compressor 14 and returning it to the air before expansion. Specifically, when the temperature of the compressed air stored in the pressure accumulating tank 18 is higher than the atmospheric temperature, heat is released to the atmosphere, resulting in energy loss. In this configuration, in order to prevent this, heat is recovered in advance by the first heat exchanger 24 before compressed air is supplied to the pressure accumulation tank 18. Thereby, the temperature of the compressed air in the pressure accumulating tank 18 is reduced to about the atmospheric temperature, and heat release in the pressure accumulating tank 18 is prevented. The heat recovered by the first heat exchanger 24 is stored in the high-temperature heat storage tank 38 and returned to the compressed air again before expansion. Therefore, the expansion efficiency is improved and the power generation efficiency is improved.
  • the CAES power generator 2 includes a control device 44.
  • the control device 44 is constructed by hardware including a sequencer and the software installed therein.
  • the control device 44 monitors the input power and the value of the power demand from the power system 6.
  • the controller 44 operates the CAES power generator 2 based on these monitoring values, leveles the input power, and supplies the power to the power system 6.
  • the control device 44 of the present embodiment receives the detection values of the oil sensor 28, the liquid level sensor 30, and the oil sensor 34, and the first switching mechanisms 32b and 32c and the second switching mechanisms 32d and 32e are described later. And the third switching mechanism 32f.
  • the control device 44 determines whether or not the oil concentration O1 in the pressure accumulation tank 18 measured by the oil sensor 28 (see FIG. 1) is less than the reference value Oth (Ste S2-2). If the oil concentration O1 is not less than the reference value Oth, it is determined whether the liquid level L1 in the pressure accumulation tank 18 measured by the liquid level sensor 30 is less than the reference value Lth (step S2-3).
  • the third switching mechanism 32f is switched, that is, the valve 32f is opened to collect oil from the pressure accumulation tank 18 to the receiver tank 36 (step S2-4). After collecting the oil, the process returns to step S2-3 (step S2-5).
  • step S2-3 when the liquid level L1 is less than the reference value Lth, the first switching mechanisms 32b and 32c are switched, that is, the valve 32b is closed and the valve 32c is opened. Thereby, the compressed air in the pressure accumulating tank 18 flows in the second air flow path 9b, and the oil component is separated by the separator 16b (step S2-6).
  • step S2-2 when the oil component O1 is less than the reference value Oth1, and after the process of step S2-6, the oil concentration in the compressed air flowing through the power generation air flow path 8b measured by the oil sensor 34 It is determined whether or not O2 is less than the reference Oth2 (step S2-7).
  • the second switching mechanisms 32d and 32e are switched, that is, the valve 32d is closed and the valve 32e is opened. Thereby, the compressed air containing the heat medium flowing out from the second heat exchanger 26 flows in the third air flow path 9d, and the heat medium is recovered in the receiver tank 36 (step S2-8).
  • step S2-10 When the oil concentration O2 in the compressed air is less than the reference Oth2, the compressed air is supplied to the expander 20, the expander 20 is driven, and the generator 22 is driven (step S2-9). After completing these processes, the control is terminated (step S2-10).
  • the first switching mechanism 32b, 32c switches the compressed air to the state in which it flows through the second air flow path 9b and removes the oil content from the compressed air through the separator 16b. Since it can be separated, oil leakage outside the system can be prevented. Therefore, it is possible to provide the CAES power generation apparatus 2 in consideration of environmental performance while reducing the cost of the apparatus by using the compressor 14 as an oil cooling type.
  • the first switching mechanisms 32b and 32c switch the compressed air to the state in which the compressed air flows through the first air flow path 9a, and the compressed air is supplied to the expander 20 without the separator 16b. Therefore, pressure loss in the separator 16b can be prevented.
  • the separator 16b By providing the separator 16b upstream of the second heat exchanger 26 in the second air flow path 9b, the oil can be separated from the air supplied to the second heat exchanger 26. Contamination can be prevented.
  • the oil sensor 34 can detect the oil. When detected, by switching to the third air flow path 9d by the second switching mechanisms 32d and 32e, the compressed air containing the oil can be recovered in the receiver tank 36, and leakage of the oil can be prevented.
  • the third switching mechanism 32f is switched to circulate between the pressure accumulation tank 18 and the receiver tank 36, and the pressure accumulation tank The oil accumulated in 18 can be collected in the receiver tank 36.
  • the CAES power generator 2 of the second embodiment shown in FIG. 3 is substantially the same as the first embodiment of FIG. 1 except that the types of the lubricating oil and the heat medium are different. Therefore, the description of the same parts as those shown in FIG. 1 is omitted.
  • the CAES power generation device 2 of the present embodiment includes air flow paths 8a, 8b, 9a to 9f (see broken lines), heat medium flow paths 11a, 11b (see solid lines), and lubricating oil flow paths 46a, 46b (see two-dot chain lines). ).
  • the CAES power generator 2 of the present embodiment is provided with two second heat exchangers 27a and 27b in the first air flow path 9a. Therefore, in the two second heat exchangers 27a and 27b, the compressed air in the first air flow path 9a is heated in two stages.
  • the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b are provided separately. It has been. In other words, the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b do not intersect, and the lubricating oil and the heat medium are not mixed.
  • the CAES power generator 2 of this embodiment includes two high-temperature heat storage tanks (heat storage units) 39a and 39b and two low-temperature heat storage tanks 41a and 41b.
  • one of the two high-temperature heat storage tanks 39a and 39b is a lubricating oil high-temperature tank 39a that stores high-temperature lubricating oil, and the other is a heat-medium high-temperature tank 39b that stores a high-temperature heat medium. It is.
  • one is a lubricating oil low-temperature tank 41a that stores low-temperature lubricating oil
  • the other is a heat-medium low-temperature tank 41b that stores a low-temperature heat medium.
  • the first heat exchanger 24, the heat medium high temperature tank 39a, the second heat exchanger 27b, and the heat medium low temperature tank 41a are fluidly connected, and the heat medium flows between them.
  • the kind of the heat medium is not particularly limited, and for example, a glycol heat medium may be used.
  • the compressor 14 In the lubricating oil flow paths 46a and 46b, the compressor 14, the lubricating oil high temperature tank 39b, the second heat exchanger 27a, and the lubricating oil low temperature tank 41b are fluidly connected, and the lubricating oil flows between them.
  • the kind of lubricating oil is not specifically limited, For example, you may use mineral oil.
  • the second heat exchanger 27a for lubricating oil is installed upstream, and the second heat exchanger 27b for heat medium is installed. Is installed downstream.
  • the lubricating oil and the heat medium are cooled in the second heat exchangers 27a and 27b, since the lubricating oil affects the function of the compressor 14, it is preferable to cool the lubricating oil preferentially. Therefore, the second heat exchanger 27a for lubricating oil is arranged upstream, and the second heat exchanger 27b for heat medium is arranged downstream.
  • pumps 43a and 43b are provided for the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b, respectively. Therefore, the heat medium and the lubricating oil are circulated in the respective flow paths by the pumps 43a and 43b.
  • the control method of the CAES power generator 2 of the present embodiment is the same as the control method of the first embodiment shown in FIG.
  • the target of power generation by renewable energy is steady (or repetitive) with natural forces such as wind, sunlight, solar heat, wave or tidal power, running water or tide, and geothermal heat. It is possible to target anything that uses energy replenished.

Abstract

A compressed air energy storage generation device 2 is provided with: a motor 12; a hydraulic compressor 14; a pressure accumulator tank 18; an expander 20; and an electric generator 22. The device 2 is also provided with a generating-air flow passageway 8b; an oil component sensor 28; a separator 16b; first switch mechanisms 32b, 32c; and a control device 44. The flow passageway 8b includes a first air flow passageway 9a and a second air flow passageway 9b which are disposed in parallel from the tank 18 to the expander 20. The sensor 28 detects an oil component in the flow passageway 8b. The separator 16b separates the oil component from the compressed air in the flow passageway 9b. The first switch mechanisms 32b, 32c switch to either a state in which the compressed air flows through the flow passageway 9a or a state in which the compressed air flows through the flow passageway 9b. The control device 44, when an oil concentration higher than or equal to a reference is detected by the sensor 28, activates the first switch mechanisms 32b, 32c to separate the oil component from the compressed air using the separator 16b. Accordingly, there is provided the compressed air energy storage generation device 2 in which the hydraulic compressor 14 is employed with environmental considerations.

Description

圧縮空気貯蔵発電装置Compressed air storage generator
 本発明は、圧縮空気貯蔵発電装置に関する。 The present invention relates to a compressed air storage power generator.
 風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が変動し安定しないことがある。このような出力変動に対し、出力を平準化するシステムとして圧縮空気貯蔵(CAES:compressed air energy storage)システムが知られている。 Since power generation using renewable energy such as wind power generation and solar power generation depends on weather conditions, the output may fluctuate and be unstable. A compressed air storage (CAES) system is known as a system for leveling the output against such output fluctuations.
 このCAESシステムを利用した圧縮空気貯蔵(CAES)発電装置は、電力プラントのオフピーク時間中に電気エネルギーを圧縮空気として蓄圧タンクに蓄え、高電力需要時間中に圧縮空気により膨張機を駆動して発電機を動作させて電気エネルギーを生成して出力を平準化する。また、発電効率を向上させるために、圧縮熱を蓄熱媒体に回収し、蓄熱タンク等に貯蔵し、回収した圧縮熱を用いて膨張前の圧縮空気を加熱するシステムが知られている。これにより、圧縮時の動力増加を防止し、膨張時の回収動力を増加させると同時に、蓄圧タンク貯蔵時の熱放出を防止するものがある。 A compressed air storage (CAES) power generation device using this CAES system stores electric energy as compressed air in an accumulator tank during off-peak hours of a power plant, and drives an expander with compressed air during high power demand time to generate electricity. The machine is operated to generate electrical energy and level the output. In order to improve power generation efficiency, a system is known in which compressed heat is recovered in a heat storage medium, stored in a heat storage tank or the like, and the compressed air before expansion is heated using the recovered compressed heat. As a result, there is one that prevents an increase in power during compression and increases recovery power during expansion, and at the same time, prevents heat release during storage of the accumulator tank.
 このようなCAES発電装置として、例えば特許文献1には、熱エネルギー貯蔵システムを利用したものが開示されている。 As such a CAES power generator, for example, Patent Document 1 discloses a device using a thermal energy storage system.
特表2013-509530号公報Special table 2013-509530 gazette
 空気圧縮機には潤滑油が混入したままで空気を圧縮する油冷式と呼ばれるものと、潤滑油を用いないタイプのオイルフリー式と呼ばれるものがある。特許文献1には圧縮機の種類についての記載がないものの、CAESシステムに用いられる圧縮機としては、圧縮空気の取り扱い易さの面からオイルフリー式が用いられることが多い。CAES発電装置において油冷式圧縮機ないし油冷式膨張機を用いた場合、装置のコストは安価であるが、運転に潤滑油を要するため、空気と油が混合される。油分離器を使用することで空気と油の分離は可能であるが完全ではない。特に圧縮機を油冷式とした場合、油冷式圧縮機から吐出される圧縮空気は油分を含んだ状態となる。そのため、長期間蓄圧タンクに油分を含んだ圧縮空気を貯蔵した場合など、想定外に油が蓄積し、意図しない箇所に油が供給され、装置が故障する危険がある。また、蓄圧タンク内の油分が圧縮空気に混入したまま膨張機に流れて系外に排出されるのは周囲環境への影響という観点からも好ましくない。 There are two types of air compressors called oil-cooled types that compress air while lubricating oil is mixed, and other types that are called oil-free types that do not use lubricating oil. Although there is no description about the kind of compressor in patent document 1, as a compressor used for a CAES system, an oil free type is often used from the surface of the ease of handling of compressed air. When an oil-cooled compressor or an oil-cooled expander is used in a CAES power generation device, the cost of the device is low, but since lubricating oil is required for operation, air and oil are mixed. By using an oil separator, air and oil can be separated, but not completely. In particular, when the compressor is oil-cooled, the compressed air discharged from the oil-cooled compressor is in a state containing oil. Therefore, when storing compressed air containing oil in the pressure accumulating tank for a long period of time, there is a risk that the oil accumulates unexpectedly, the oil is supplied to an unintended location, and the device breaks down. In addition, it is not preferable that the oil in the pressure accumulating tank flows into the expander while being mixed in the compressed air and is discharged out of the system from the viewpoint of influence on the surrounding environment.
 油冷式圧縮機を使用しつつ環境性に配慮した圧縮空気貯蔵発電装置を提供することを課題とする。 It is an object of the present invention to provide a compressed air storage power generator that is environmentally friendly while using an oil-cooled compressor.
 本発明は、再生可能エネルギーを用いて発電した電力により駆動される電動機と、前記電動機により駆動される油冷式圧縮機と、前記油冷式圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
 前記膨張機により駆動される発電機と、前記蓄圧部から前記膨張機までを流体的に接続して圧縮空気を流通させ、並列に設けられた第1空気流路および第2空気流路を有する発電用の空気流路と、前記蓄圧部または前記発電用の空気流路内の圧縮空気中に含まれる油分を検出する第1油検出部と、前記第2空気流路中の圧縮空気から油分を分離する油分離器と、前記蓄圧部から前記膨張機に圧縮空気を供給する際、圧縮空気が前記第1空気流路を流れる状態または前記第2空気流路を流れる状態のいずれかに切り替える第1切替機構と、前記第1油検出部で基準以上の油濃度が検出されたとき、前記第1切替機構を動作させ、圧縮空気が前記第2空気流路を流れる状態に切り替え、前記油分離器により圧縮空気から油分を分離する制御装置とを備える圧縮空気貯蔵発電装置を提供する。
The present invention includes an electric motor driven by electric power generated using renewable energy, an oil-cooled compressor driven by the electric motor, and a pressure accumulating unit that stores compressed air compressed by the oil-cooled compressor. An expander driven by compressed air supplied from the pressure accumulating unit;
A generator driven by the expander and a first air flow path and a second air flow path provided in parallel, fluidly connected from the pressure accumulating section to the expander to flow compressed air A power generation air flow path, a first oil detection section that detects oil contained in the compressed air in the pressure accumulation section or the power generation air flow path, and an oil content from the compressed air in the second air flow path. When the compressed air is supplied from the pressure accumulator to the expander, the compressed air is switched to a state in which the compressed air flows through the first air flow path or a state in which the second air flow path flows. When the first switching mechanism and the first oil detection unit detect an oil concentration that exceeds a reference, the first switching mechanism is operated to switch the compressed air to a state in which the compressed air flows through the second air flow path. A control device for separating oil from compressed air by means of a separator; Providing compressed air storage power generation apparatus equipped.
 この構成によれば、第1油検出部により基準以上の油分を検出した場合、第1切替機構により圧縮空気が第2空気流路を流れる状態に切り替えて油分離器を通じて圧縮空気から油分を分離できるため、系外への油の漏出を防止できる。そのため、油冷式圧縮機を使用して装置のコストを低下しつつ、環境性に配慮したCAES発電装置を提供できる。また、第1油検出部により基準以上の油分を検出しない場合、第1切替機構により圧縮空気が第1空気流路を流れる状態に切り替えて油分離器を介することなく膨張機に圧縮空気を供給するため、油分離器での圧力損失を防止できる。 According to this configuration, when the first oil detection unit detects an oil content that exceeds the reference, the first switching mechanism switches the compressed air to a state in which it flows through the second air flow path and separates the oil content from the compressed air through the oil separator. As a result, oil leakage outside the system can be prevented. Therefore, it is possible to provide an environmentally friendly CAES power generator while reducing the cost of the apparatus using an oil-cooled compressor. In addition, when the first oil detection unit does not detect an oil component exceeding the reference, the first switching mechanism switches the compressed air to the state where it flows through the first air flow path and supplies the expanded air without going through the oil separator. Therefore, pressure loss in the oil separator can be prevented.
 前記油冷式圧縮機から前記蓄圧部に供給される圧縮空気と熱媒とで熱交換する第1熱交換器と、前記第1熱交換器で熱交換された熱媒を蓄える蓄熱部と、前記蓄圧部から前記膨張機に供給される圧縮空気と前記蓄熱部から供給される熱媒とで熱交換する第2熱交換器とをさらに備えることが好ましい。 A first heat exchanger that exchanges heat between the compressed air and the heat medium supplied from the oil-cooled compressor to the pressure accumulator; a heat accumulator that stores the heat medium heat-exchanged by the first heat exchanger; It is preferable to further include a second heat exchanger that exchanges heat between the compressed air supplied from the pressure accumulator to the expander and the heat medium supplied from the heat accumulator.
 この構成によれば、油冷式圧縮機で発生する圧縮熱を回収し、膨張前の空気に戻すことで発電効率を向上できる。具体的には、蓄圧部に貯蔵する圧縮空気の温度が大気温度よりも高い場合、熱が大気へ放出されてエネルギー損失が生じる。本構成では、これを防止するために、蓄圧部に圧縮空気が供給される前に予め第1熱交換器で熱回収している。これにより、蓄圧部の圧縮空気の温度を大気温度程度まで低下させ、蓄圧部における熱放出を防止している。第1熱交換器で回収された熱は、蓄熱部に蓄えられ、膨張前に再び圧縮空気に戻される。従って膨張効率を向上させ、発電効率を向上させている。 According to this configuration, power generation efficiency can be improved by collecting the compression heat generated in the oil-cooled compressor and returning it to the air before expansion. Specifically, when the temperature of the compressed air stored in the pressure accumulating unit is higher than the atmospheric temperature, heat is released to the atmosphere, resulting in energy loss. In this configuration, in order to prevent this, heat is recovered in advance by the first heat exchanger before compressed air is supplied to the pressure accumulator. Thereby, the temperature of the compressed air in the pressure accumulating portion is lowered to about the atmospheric temperature, and heat release in the pressure accumulating portion is prevented. The heat recovered by the first heat exchanger is stored in the heat storage unit and returned to the compressed air again before expansion. Therefore, the expansion efficiency is improved and the power generation efficiency is improved.
 前記油分離器は、前記第2空気流路において前記蓄圧部から前記第2熱交換器の間に設けられていることが好ましい。 It is preferable that the oil separator is provided between the pressure accumulating unit and the second heat exchanger in the second air flow path.
 油分離器を第2空気流路において第2熱交換器の上流に設けることで、第2熱交換器に供給される空気から油を分離できるため、油による第2熱交換器の汚染を防止できる。 By providing an oil separator upstream of the second heat exchanger in the second air flow path, oil can be separated from the air supplied to the second heat exchanger, thus preventing contamination of the second heat exchanger with oil. it can.
 前記第2熱交換器から前記膨張機までの前記発電用の空気流路に設けられた第2検出部と、前記第2熱交換器から前記膨張機までの前記発電用の空気流路から分岐した回収用空気流路と、前記第3空気流路が流体的に接続されたレシーバタンクと、圧縮空気が前記発電用の空気流路を流れる状態または前記第3空気流路を流れる状態のいずれかに切り替える第2切替機構とをさらに備え、前記制御装置は、前記第2油検出部で基準以上の熱媒が検出されたとき、前記第2切替機構を動作させ、前記第3空気流路を流れる状態に切り替え、前記レシーバタンクに圧縮空気および熱媒を供給することが好ましい。 A second detector provided in the power generation air flow path from the second heat exchanger to the expander; and a branch from the power generation air flow path from the second heat exchanger to the expander The recovered air flow path, the receiver tank to which the third air flow path is fluidly connected, and the compressed air flowing through the power generation air flow path or the third air flow path. A second switching mechanism for switching between the two, and the control device operates the second switching mechanism when the second oil detection unit detects a heat medium that exceeds a reference, and the third air flow path. It is preferable to supply the compressed air and the heat medium to the receiver tank.
 油分離器により圧縮空気から油を十分に分離できなかった場合でも、第2油検出部で油分を検出できる。その場合、第2切替機構により回収用空気流路に切り替えることで、油分を含む圧縮空気をレシーバタンクに回収でき、熱媒の漏出を防止できる。 Even when the oil separator cannot sufficiently separate the oil from the compressed air, the oil component can be detected by the second oil detector. In that case, by switching to the recovery air flow path by the second switching mechanism, the compressed air containing oil can be recovered in the receiver tank, and leakage of the heat medium can be prevented.
 前記蓄圧部内の液面高さを検出する液面検出部をさらに備え、前記蓄圧部と前記レシーバタンクとは、第3切替機構を介して流体的に接続され、前記制御装置は、前記液面検出部で基準以上の値を検出したとき、前記第3切替機構を動作させ、前記蓄圧部と前記レシーバタンクを流通させることが好ましい。 A liquid level detection unit that detects a liquid level in the pressure accumulating unit is further provided, the pressure accumulating unit and the receiver tank are fluidly connected via a third switching mechanism, and the control device When the detection unit detects a value equal to or greater than the reference, it is preferable to operate the third switching mechanism to circulate the pressure accumulating unit and the receiver tank.
 蓄圧部内に油が溜まった場合、または、発電せずに蓄圧部内の油を回収する場合、第3切替機構を切り替えて蓄圧部とレシーバタンクとを流通させ、蓄圧部内に溜まった油をレシーバタンクに回収できる。 When oil accumulates in the accumulator, or when oil in the accumulator is recovered without generating electricity, the third switching mechanism is switched to circulate between the accumulator and the receiver tank, and the oil accumulated in the accumulator is received in the receiver tank. Can be recovered.
 本発明によれば、第1油検出部により基準以上の油分を検出した場合、第1切替機構により圧縮空気が第2空気流路を流れる状態に切り替えて油分離器を通じて圧縮空気から油分を分離できるため、系外への油の漏出を防止できる。そのため、油冷式圧縮機を使用して装置のコストを低下しつつ、環境性に配慮したCAES発電装置を提供できる。 According to the present invention, when the first oil detection unit detects an oil content exceeding the reference, the first switching mechanism switches the compressed air to the state in which it flows through the second air flow path and separates the oil content from the compressed air through the oil separator. As a result, oil leakage outside the system can be prevented. Therefore, it is possible to provide an environmentally friendly CAES power generator while reducing the cost of the apparatus using an oil-cooled compressor.
本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention. 図1のCAES発電装置の制御方法を示すフローチャート。The flowchart which shows the control method of the CAES power generator of FIG. 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention.
 以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(第1実施形態)
 圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2は、再生可能エネルギーを利用する発電装置4の出力変動を平準化して電力系統6に電力供給するとともに、電力系統6における電力需要の変動に合わせた電力を供給する。
(First embodiment)
A compressed air energy storage (CAES) power generation device 2 equalizes the output fluctuation of the power generation device 4 that uses renewable energy and supplies power to the power system 6. Supply the combined power.
 図1を参照して、CAES発電装置2の構成を説明する。本実施形態のCAES発電装置2は、空気流路(破線参照)8a,8b,9a~9fおよび熱媒流路(実線参照)10a~10cを有する。 The configuration of the CAES power generator 2 will be described with reference to FIG. The CAES power generator 2 of the present embodiment includes air flow paths (see broken lines) 8a, 8b, 9a to 9f and heat medium flow paths (see solid lines) 10a to 10c.
 まず、空気流路(破線参照)8a,8b,9a~9fについて説明する。 First, the air flow paths (see broken lines) 8a, 8b, 9a to 9f will be described.
 空気流路8a,8b,9a~9fにおいて、CAES発電装置2は、モータ(電動機)12、油冷式圧縮機(以降、単に圧縮機という場合がある)14、セパレータ(油分離器)16a~16c、蓄圧タンク(蓄圧部)18、膨張機20、発電機22、第1熱交換器24、および第2熱交換器26を備える。 In the air flow paths 8a, 8b, 9a to 9f, the CAES power generator 2 includes a motor (electric motor) 12, an oil-cooled compressor (hereinafter sometimes simply referred to as a compressor) 14, a separator (oil separator) 16a to 16c, an accumulator tank (accumulator) 18, an expander 20, a generator 22, a first heat exchanger 24, and a second heat exchanger 26.
 再生可能エネルギーを利用する発電装置4はモータ12と電気的に接続されており(一点鎖線参照)、発電装置4により発電された電力はモータ12に供給される。以降、発電装置4からモータ12に供給される電力を入力電力という。この入力電力によりモータ12が駆動される。モータ12は、圧縮機14に機械的に接続されており、圧縮機14を駆動する。 The power generation device 4 that uses renewable energy is electrically connected to the motor 12 (see the chain line), and the power generated by the power generation device 4 is supplied to the motor 12. Hereinafter, the power supplied from the power generation device 4 to the motor 12 is referred to as input power. The motor 12 is driven by this input power. The motor 12 is mechanically connected to the compressor 14 and drives the compressor 14.
 圧縮機14は、油冷式であり、潤滑油の供給により冷却および潤滑される。圧縮機14は、モータ12によって駆動されると、吸気口14aより空気を吸気し、内部で圧縮して吐出口14bより圧縮空気を吐出する。圧縮機14の吐出口14bは、蓄電用の空気流路8aを通じて蓄圧タンク18と流体的に接続されており、吐出された圧縮空気は、蓄圧タンク18に圧送される。蓄電用の空気流路8aにはバルブ32aが設けられており、バルブ32aの開閉により圧縮機14から蓄圧タンク18への圧縮空気の供給を許容又は遮断できる。なお、圧縮機14の種類は油冷式であれば特に限定されず、例えば、スクリュ式、スクロール式、ターボ式、およびレシプロ式などであってもよい。 Compressor 14 is oil-cooled and is cooled and lubricated by supplying lubricating oil. When driven by the motor 12, the compressor 14 takes in air from the intake port 14a, compresses the air inside, and discharges compressed air from the discharge port 14b. The discharge port 14b of the compressor 14 is fluidly connected to the pressure accumulation tank 18 through the air passage 8a for power storage, and the discharged compressed air is pumped to the pressure accumulation tank 18. A valve 32a is provided in the electricity storage air flow path 8a, and the supply of compressed air from the compressor 14 to the pressure accumulating tank 18 can be permitted or blocked by opening and closing the valve 32a. The type of the compressor 14 is not particularly limited as long as it is oil-cooled, and may be, for example, a screw type, a scroll type, a turbo type, and a reciprocating type.
 油冷式圧縮機14を使用すると、吐出口14bから油分を含む圧縮空気が吐出される。吐出された圧縮空気から油分を分離するため、蓄電用の空気流路8aにはセパレータ16aが介設されている。 When the oil-cooled compressor 14 is used, compressed air containing oil is discharged from the discharge port 14b. In order to separate the oil from the discharged compressed air, a separator 16a is interposed in the air channel 8a for power storage.
 ここで、本実施形態では、圧縮空気の冷却および加熱に使用される熱媒と、圧縮機14および膨張機20を潤滑する潤滑油とに対して、同種の流体を使用している。同種の流体としては、例えば油を使用できる。本実施形態では、以降熱媒および潤滑油の両方の記載を使用する場合があるが、両者は区別されない。 Here, in this embodiment, the same kind of fluid is used for the heat medium used for cooling and heating the compressed air and the lubricating oil for lubricating the compressor 14 and the expander 20. For example, oil can be used as the same kind of fluid. In the present embodiment, descriptions of both the heat medium and the lubricating oil may be used hereinafter, but the two are not distinguished.
 セパレータ16aは、空気流路8aおよび熱媒流路10aの両方に接続されている。セパレータ16aでは、蓄電用の空気流路8a内を流れる圧縮空気から油が分離され、分離された油は熱媒として後述の熱媒流路10aに供給される。 The separator 16a is connected to both the air flow path 8a and the heat medium flow path 10a. In the separator 16a, oil is separated from the compressed air flowing in the electricity storage air flow path 8a, and the separated oil is supplied as a heat medium to a heat medium flow path 10a described later.
 また、圧縮の際に生じる圧縮熱により圧縮空気は高温となる。高温となった圧縮空気を冷却するため、蓄電用の空気流路8aには冷却器として第1熱交換器24が介設されている。第1熱交換器24では、熱媒と圧縮空気の間の熱交換により圧縮空気を冷却している。 Also, the compressed air becomes high temperature due to the compression heat generated during compression. In order to cool the compressed air which became high temperature, the 1st heat exchanger 24 is interposed by the air flow path 8a for electrical storage as a cooler. In the first heat exchanger 24, the compressed air is cooled by heat exchange between the heat medium and the compressed air.
 蓄圧タンク18は、圧縮空気を蓄えてエネルギーとして蓄積できる。蓄圧タンク18には、内部の圧縮空気に含まれる油分(油濃度)を検出する油分センサ(第1油検出部)28が設けられている。また、蓄圧タンク18には、内部の液面高さを検出する液面センサ(液面検出部)30が設けられている。上述のように蓄圧タンク18には、セパレータ16aにより油分が分離された状態で圧縮空気が供給されるが、セパレータ16aによる油分の分離は完全ではない場合がある。そのため、一部の油分は分離されず、蓄圧タンク18に流入する場合がある。従って、これらのセンサ28,30により蓄圧タンク18内の油分を検出している。蓄圧タンク18は、発電用の空気流路8bを通じて膨張機20と流体的に接続されており、蓄圧タンク18から送出された圧縮空気は膨張機20に供給される。なお、油分センサ28は、発電用の空気流路8bに設けられていてもよい。 The pressure storage tank 18 can store compressed air and store it as energy. The pressure accumulation tank 18 is provided with an oil component sensor (first oil detection unit) 28 that detects an oil component (oil concentration) contained in the internal compressed air. Further, the pressure accumulation tank 18 is provided with a liquid level sensor (liquid level detection unit) 30 that detects the internal liquid level. As described above, compressed air is supplied to the pressure accumulating tank 18 in a state where the oil is separated by the separator 16a, but the separation of the oil by the separator 16a may not be complete. Therefore, part of the oil is not separated and may flow into the pressure accumulation tank 18. Therefore, the oil content in the pressure accumulating tank 18 is detected by these sensors 28 and 30. The pressure accumulating tank 18 is fluidly connected to the expander 20 through the air passage 8b for power generation, and the compressed air sent from the pressure accumulating tank 18 is supplied to the expander 20. The oil sensor 28 may be provided in the power generation air flow path 8b.
 発電用の空気流路8bは、並列に設けられた第1空気流路9aおよび第2空気流路9bと、これらが合流した空気流路9cを有する。第1空気流路9aは、蓄圧タンク18から合流点Jまで延びている。第1空気流路9aには、バルブ32bが設けられている。第2空気流路9bは、蓄圧タンク18から合流点Jまで延びている。第2空気流路9bには、バルブ32cと、セパレータ16bとが設けられている。本実施形態のバルブ32b,32cは、本発明の第1切替機構を構成し、圧縮空気が第1空気流路9aまたは第2空気流路9bのいずれを流れるかを切り替える。第1切替機構の切替制御については後述するが、通常時、圧縮空気は第1空気流路9a内を流れる。そのため、通常時、バルブ32bは開かれ、バルブ32cは閉じられている。空気流路9cは、合流点Jから膨張機20まで延びている。空気流路9cには、第2熱交換器26、油分センサ(第2油検出部)34、分岐点D、およびバルブ32dが設けられている。 The power generation air flow path 8b includes a first air flow path 9a and a second air flow path 9b provided in parallel, and an air flow path 9c in which they are joined. The first air flow path 9a extends from the pressure accumulation tank 18 to the junction J. A valve 32b is provided in the first air flow path 9a. The second air flow path 9b extends from the pressure accumulation tank 18 to the junction point J. The second air flow path 9b is provided with a valve 32c and a separator 16b. The valves 32b and 32c of the present embodiment constitute the first switching mechanism of the present invention, and switch whether the compressed air flows through the first air flow path 9a or the second air flow path 9b. Although the switching control of the first switching mechanism will be described later, the compressed air normally flows in the first air flow path 9a. Therefore, normally, the valve 32b is opened and the valve 32c is closed. The air flow path 9 c extends from the junction J to the expander 20. The air flow path 9c is provided with a second heat exchanger 26, an oil content sensor (second oil detection unit) 34, a branch point D, and a valve 32d.
 発電用の空気流路8bに設けられている要素を順に説明する。バルブ32bは、開閉することで第1空気流路9aの流れを許容または遮断する。合流点Jでは、第1空気流路9aと第2空気流路9bが合流している。第2熱交換器26では、膨張機20に供給される圧縮空気が加熱されている。油分センサ34は、後述のようにセパレータ16bで十分に分離できず、発電用の空気流路8b内の圧縮空気中に含まれている油分を検出する。分岐点Dでは、発電用の空気流路8b(空気流路9c)から第3空気流路9dが分岐している。分岐点Dの下流において、発電用の空気流路8b(空気流路9c)および第3空気流路9dには、それぞれバルブ32d,32eが設けられている。本実施形態のバルブ32d,32eは、本発明の第2切替機構を構成し、圧縮空気が発電用の空気流路8b(空気流路9c)または第3空気流路9dのいずれを流れるかを切り替える。第2切替機構の切替制御については後述するが、通常時、圧縮空気は第3空気流路9d内を流れない。そのため、通常時、バルブ32dは開かれ、バルブ32eは閉じられている。 The elements provided in the power generation air flow path 8b will be described in order. The valve 32b opens or closes to allow or block the flow of the first air flow path 9a. At the junction J, the first air flow path 9a and the second air flow path 9b are merged. In the second heat exchanger 26, the compressed air supplied to the expander 20 is heated. As will be described later, the oil content sensor 34 cannot be sufficiently separated by the separator 16b, and detects the oil content contained in the compressed air in the power generation air flow path 8b. At the branch point D, the third air flow path 9d is branched from the power generation air flow path 8b (air flow path 9c). Downstream of the branch point D, valves 32d and 32e are provided in the power generation air passage 8b (air passage 9c) and the third air passage 9d, respectively. The valves 32d and 32e of the present embodiment constitute the second switching mechanism of the present invention, and indicate whether the compressed air flows through the power generation air flow path 8b (air flow path 9c) or the third air flow path 9d. Switch. Although the switching control of the second switching mechanism will be described later, normally, the compressed air does not flow through the third air flow path 9d. Therefore, normally, the valve 32d is opened and the valve 32e is closed.
 第3空気流路9dは、レシーバタンク36に流体的に接続されている。また、レシーバタンク36は、空気流路9eを通じて蓄圧タンク18と流体的に直接接続されており、蓄圧タンク18から油を直接供給することもできる。そのため、レシーバタンク36は、熱媒および油を含む圧縮空気を貯蔵する。本実施形態では、上述のように熱媒と油は同種のものを使用しているため、これらは区別されない。また、空気流路9eには、バルブ32fが設けられており、バルブ32fの開閉により、蓄圧タンク18からレシーバタンク36への油の供給を許容または遮断できる。本実施形態のバルブ32fは、本発明の第3切替機構を構成する。また、レシーバタンク36からは空気流路9fが延びており、空気流路9fにはセパレータ16cおよびバルブ32gが設けられている。従って、セパレータ16cによって油分を分離し、バルブ32gを開くことで必要時に放気できる。 The third air flow path 9d is fluidly connected to the receiver tank 36. In addition, the receiver tank 36 is fluidly connected directly to the pressure accumulation tank 18 through the air flow path 9 e, and oil can be directly supplied from the pressure accumulation tank 18. Therefore, the receiver tank 36 stores compressed air containing a heat medium and oil. In this embodiment, since the same kind of heat medium and oil are used as described above, they are not distinguished. The air flow path 9e is provided with a valve 32f, and the supply of oil from the pressure accumulation tank 18 to the receiver tank 36 can be permitted or blocked by opening and closing the valve 32f. The valve 32f of the present embodiment constitutes a third switching mechanism of the present invention. An air flow path 9f extends from the receiver tank 36, and a separator 16c and a valve 32g are provided in the air flow path 9f. Therefore, it is possible to release air when necessary by separating the oil component by the separator 16c and opening the valve 32g.
 また、バルブ32cは、開閉することで第2空気流路9bの流れを許容または遮断する。セパレータ16bは、第2空気流路9bを流れる圧縮空気から油分を分離する。第2空気流路9bは、合流点Jで第1空気流路9aに合流している。 Also, the valve 32c opens or closes to allow or block the flow of the second air flow path 9b. The separator 16b separates oil from the compressed air flowing through the second air flow path 9b. The second air flow path 9b merges with the first air flow path 9a at the merge point J.
 このように、圧縮空気は、第1空気流路9aと第2空気流路9bと空気流路9cとを含む発電用の空気流路8bを流れ、膨張機20に供給される。 Thus, the compressed air flows through the power generation air flow path 8b including the first air flow path 9a, the second air flow path 9b, and the air flow path 9c, and is supplied to the expander 20.
 膨張機20は、油冷式であり、潤滑油を供給されて冷却および潤滑される。膨張機20は、発電機22と機械的に接続されており、給気口20aから圧縮空気を給気された膨張機20は、給気された圧縮空気により作動し、発電機22を駆動する。膨張された空気は、排気口20bより排気される。膨張機20の種類は、例えば、スクリュ式、スクロール式、ターボ式、およびレシプロ式などであってもよい。さらに言えば、膨張機20は油冷式に限定されず、オイルフリー式であってもよい。 The expander 20 is an oil-cooled type, and is supplied with lubricating oil to be cooled and lubricated. The expander 20 is mechanically connected to the generator 22, and the expander 20 supplied with compressed air from the air supply port 20 a is operated by the supplied compressed air and drives the generator 22. . The expanded air is exhausted from the exhaust port 20b. The type of the expander 20 may be, for example, a screw type, a scroll type, a turbo type, and a reciprocating type. Furthermore, the expander 20 is not limited to the oil-cooled type, but may be an oil-free type.
 発電機22は電力系統6に電気的に接続されており(一点鎖線参照)、発電機22で発電した電力は電力系統6に供給される。 The generator 22 is electrically connected to the power system 6 (see the alternate long and short dash line), and the power generated by the generator 22 is supplied to the power system 6.
 次に、熱媒流路10a~10c(実線参照)について説明する。 Next, the heat medium passages 10a to 10c (see solid lines) will be described.
 熱媒流路10a~10cには、第1熱交換器24、高温蓄熱タンク(蓄熱部)38、第2熱交換器26、および低温蓄熱タンク40が順に設けられている。熱媒はこれらの間で循環して流動している。 In the heat medium passages 10a to 10c, a first heat exchanger 24, a high-temperature heat storage tank (heat storage unit) 38, a second heat exchanger 26, and a low-temperature heat storage tank 40 are provided in this order. The heat medium circulates and flows between them.
 第1熱交換器24では、蓄電用の空気流路8a内の圧縮空気と、低温蓄熱タンク40から高温蓄熱タンク38に延びる熱媒流路10a内の熱媒とで熱交換している。具体的には、蓄電用の空気流路8a内を流れる圧縮空気は、圧縮機14での圧縮の際に生じる圧縮熱により高温となっており、熱交換により、圧縮空気を冷却している。即ち、第1熱交換器24では圧縮空気の温度は低下し、熱媒の温度は上昇する。第1熱交換器24は熱媒流路10aを通じて高温蓄熱タンク38と流体的に接続されており、温度上昇した熱媒は高温蓄熱タンク38に供給され蓄えられる。 In the first heat exchanger 24, heat is exchanged between the compressed air in the electricity storage air flow path 8a and the heat medium in the heat medium flow path 10a extending from the low temperature heat storage tank 40 to the high temperature heat storage tank 38. Specifically, the compressed air flowing in the electricity storage air flow path 8a is at a high temperature due to compression heat generated during compression by the compressor 14, and the compressed air is cooled by heat exchange. That is, in the first heat exchanger 24, the temperature of the compressed air decreases and the temperature of the heat medium increases. The first heat exchanger 24 is fluidly connected to the high-temperature heat storage tank 38 through the heat medium flow path 10a, and the heat medium whose temperature has risen is supplied to the high-temperature heat storage tank 38 and stored.
 高温蓄熱タンク38は、第1熱交換器24から供給された高温の熱媒を保温して蓄える。そのため、高温蓄熱タンク38は断熱されていることが好ましい。高温蓄熱タンク38は、熱媒流路10bを通じて第2熱交換器26に流体的に接続されており、高温蓄熱タンク38で蓄えられた熱媒は第2熱交換器26に供給される。 The high temperature heat storage tank 38 retains and stores the high temperature heat medium supplied from the first heat exchanger 24. Therefore, the high temperature heat storage tank 38 is preferably insulated. The high temperature heat storage tank 38 is fluidly connected to the second heat exchanger 26 through the heat medium flow path 10 b, and the heat medium stored in the high temperature heat storage tank 38 is supplied to the second heat exchanger 26.
 第2熱交換器26では、発電用の空気流路8b(空気流路9c)内の圧縮空気と、高温蓄熱タンク38から低温蓄熱タンク40に延びる熱媒流路10b内の熱媒とで熱交換している。具体的には、高温蓄熱タンク38内の高温の熱媒を利用して膨張機20による膨張の前に圧縮空気の温度を上昇させて膨張効率を向上させている。即ち、第2熱交換器26では、圧縮空気の温度は上昇し、熱媒の温度は低下する。第2熱交換器26は熱媒流路10bを通じて低温蓄熱タンク40に流体的に接続されており、温度低下した熱媒は低温蓄熱タンク40に供給され蓄えられる。 In the second heat exchanger 26, heat is generated by the compressed air in the power generation air flow path 8b (air flow path 9c) and the heat medium in the heat medium flow path 10b extending from the high temperature heat storage tank 38 to the low temperature heat storage tank 40. We are exchanging. Specifically, the high-temperature heat medium in the high-temperature heat storage tank 38 is used to raise the temperature of the compressed air before the expansion by the expander 20 to improve the expansion efficiency. That is, in the second heat exchanger 26, the temperature of the compressed air increases and the temperature of the heat medium decreases. The second heat exchanger 26 is fluidly connected to the low-temperature heat storage tank 40 through the heat medium flow path 10b, and the heat medium whose temperature has been reduced is supplied to and stored in the low-temperature heat storage tank 40.
 低温蓄熱タンク40は、第2熱交換器26から供給された低温の熱媒を蓄える。低温蓄熱タンク40は熱媒流路10b,10cを通じて第1熱交換器24または圧縮機14にそれぞれ流体的に接続されており、低温蓄熱タンク40で蓄えられた熱媒は熱媒流路10b,10cを通じて第1熱交換器24または圧縮機14にそれぞれ供給される。 The low temperature heat storage tank 40 stores a low temperature heat medium supplied from the second heat exchanger 26. The low temperature heat storage tank 40 is fluidly connected to the first heat exchanger 24 or the compressor 14 through the heat medium flow paths 10b and 10c, respectively. The heat medium stored in the low temperature heat storage tank 40 is the heat medium flow path 10b, 10c is supplied to the first heat exchanger 24 or the compressor 14, respectively.
 本実施形態では、上述のように熱媒および潤滑油として同種のものを使用しているため、圧縮機14に供給された熱媒は潤滑油として潤滑および冷却のためにも使用される。圧縮機14は、熱媒流路10cを通じて高温蓄熱タンク38と流体的に接続されており、圧縮機14で潤滑油として使用され、温度上昇した熱媒は熱媒流路10cを通じて高温蓄熱タンク38に供給される。 In the present embodiment, since the same type of heat medium and lubricating oil are used as described above, the heat medium supplied to the compressor 14 is also used as a lubricating oil for lubrication and cooling. The compressor 14 is fluidly connected to the high-temperature heat storage tank 38 through the heat medium passage 10c, and is used as lubricating oil in the compressor 14, and the heat medium whose temperature has risen is passed through the heat medium passage 10c. To be supplied.
 このように熱媒流路10a~10cでは、熱媒が循環している。熱媒の循環は、熱媒流路10bに介設されたポンプ42によりなされている。本実施形態では、ポンプ42は低温蓄熱タンク40の下流に設けられているが、その位置は特に限定されない。 Thus, the heat medium circulates in the heat medium flow paths 10a to 10c. The heat medium is circulated by a pump 42 interposed in the heat medium flow path 10b. In the present embodiment, the pump 42 is provided downstream of the low-temperature heat storage tank 40, but the position thereof is not particularly limited.
 熱媒流路10a~10cにおける構成によれば、圧縮機14で発生する圧縮熱を回収し、膨張前の空気に戻すことで発電効率を向上できる。具体的には、蓄圧タンク18に貯蔵する圧縮空気の温度が大気温度よりも高い場合、熱が大気へ放出されてエネルギー損失が生じる。本構成では、これを防止するために、蓄圧タンク18に圧縮空気が供給される前に予め第1熱交換器24で熱回収している。これにより、蓄圧タンク18の圧縮空気の温度を大気温度程度まで低下させ、蓄圧タンク18における熱放出を防止している。第1熱交換器24で回収された熱は、高温蓄熱タンク38に蓄えられ、膨張前に再び圧縮空気に戻される。従って、膨張効率が向上し、発電効率を向上させている。 According to the configuration of the heat medium passages 10a to 10c, the power generation efficiency can be improved by collecting the compression heat generated in the compressor 14 and returning it to the air before expansion. Specifically, when the temperature of the compressed air stored in the pressure accumulating tank 18 is higher than the atmospheric temperature, heat is released to the atmosphere, resulting in energy loss. In this configuration, in order to prevent this, heat is recovered in advance by the first heat exchanger 24 before compressed air is supplied to the pressure accumulation tank 18. Thereby, the temperature of the compressed air in the pressure accumulating tank 18 is reduced to about the atmospheric temperature, and heat release in the pressure accumulating tank 18 is prevented. The heat recovered by the first heat exchanger 24 is stored in the high-temperature heat storage tank 38 and returned to the compressed air again before expansion. Therefore, the expansion efficiency is improved and the power generation efficiency is improved.
 また、CAES発電装置2は、制御装置44を備える。制御装置44は、シーケンサ等を含むハードウェアと、それに実装されたソフトウェアにより構築されている。制御装置44は、入力電力及び電力系統6からの電力需要の値を監視している。制御装置44は、これらの監視値に基づいてCAES発電装置2を運転し、入力電力を平準化して電力系統6に電力を供給する。また、本実施形態の制御装置44は、特に油分センサ28、液面センサ30、および油分センサ34の検出値を受け、後述のように第1切替機構32b,32c、第2切替機構32d,32e、および第3切替機構32fを制御する。 Further, the CAES power generator 2 includes a control device 44. The control device 44 is constructed by hardware including a sequencer and the software installed therein. The control device 44 monitors the input power and the value of the power demand from the power system 6. The controller 44 operates the CAES power generator 2 based on these monitoring values, leveles the input power, and supplies the power to the power system 6. In addition, the control device 44 of the present embodiment receives the detection values of the oil sensor 28, the liquid level sensor 30, and the oil sensor 34, and the first switching mechanisms 32b and 32c and the second switching mechanisms 32d and 32e are described later. And the third switching mechanism 32f.
 図2を参照して、本実施形態のCAES発電装置2の制御方法について説明する。 With reference to FIG. 2, the control method of the CAES power generator 2 of this embodiment is demonstrated.
 制御装置44は、制御を開始すると(ステップS2-1)、油分センサ28(図1参照)により測定された蓄圧タンク18内の油濃度O1が基準値Oth未満であるか否かを判断する(ステップS2-2)。油濃度O1が基準値Oth未満でない場合、液面センサ30により測定された蓄圧タンク18内の液面レベルL1が基準値Lth未満であるかを判断する(ステップS2-3)。 When starting the control (step S2-1), the control device 44 determines whether or not the oil concentration O1 in the pressure accumulation tank 18 measured by the oil sensor 28 (see FIG. 1) is less than the reference value Oth ( Step S2-2). If the oil concentration O1 is not less than the reference value Oth, it is determined whether the liquid level L1 in the pressure accumulation tank 18 measured by the liquid level sensor 30 is less than the reference value Lth (step S2-3).
 液面レベルL1が基準値Lth未満でない場合、第3切替機構32fを切り替え、即ちバルブ32fを開いて蓄圧タンク18からレシーバタンク36に油を回収する(ステップS2-4)。油を回収後、ステップS2-3の処理に戻る(ステップS2-5)。 If the liquid level L1 is not less than the reference value Lth, the third switching mechanism 32f is switched, that is, the valve 32f is opened to collect oil from the pressure accumulation tank 18 to the receiver tank 36 (step S2-4). After collecting the oil, the process returns to step S2-3 (step S2-5).
 ステップS2-3において、液面レベルL1が基準値Lth未満である場合、第1切替機構32b,32cを切り替え、即ちバルブ32bを閉じ、バルブ32cを開く。これにより、蓄圧タンク18内の圧縮空気は、第2空気流路9b内を流れ、セパレータ16bにより油分を分離される(ステップS2-6)。 In step S2-3, when the liquid level L1 is less than the reference value Lth, the first switching mechanisms 32b and 32c are switched, that is, the valve 32b is closed and the valve 32c is opened. Thereby, the compressed air in the pressure accumulating tank 18 flows in the second air flow path 9b, and the oil component is separated by the separator 16b (step S2-6).
 ステップS2-2の処理において、油分O1が基準値Oth1未満である場合およびステップS2-6の処理後、油分センサ34により測定された発電用の空気流路8b内を流れる圧縮空気中の油濃度O2が基準Oth2未満であるか否かを判断する(ステップS2-7)。なお、油分O1が基準値Oth1未満である場合は、ミスト状の油分が存在しないことから油液も存在せず、蓄圧タンク18内に油液は溜まっていない。従って、ステップS2-3の処理のように液面センサ30で検知する必要はない。 In the process of step S2-2, when the oil component O1 is less than the reference value Oth1, and after the process of step S2-6, the oil concentration in the compressed air flowing through the power generation air flow path 8b measured by the oil sensor 34 It is determined whether or not O2 is less than the reference Oth2 (step S2-7). When the oil content O1 is less than the reference value Oth1, since there is no mist-like oil content, there is no oil liquid, and no oil liquid is accumulated in the pressure accumulation tank 18. Accordingly, it is not necessary to detect with the liquid level sensor 30 as in the process of step S2-3.
 圧縮空気中の油濃度O2が基準Oth2未満でない場合、第2切替機構32d,32eを切り替え、即ちバルブ32dを閉じ、バルブ32eを開く。これにより、第2熱交換器26から流出した熱媒を含む圧縮空気は、第3空気流路9d内を流れ、レシーバタンク36に熱媒を回収する(ステップS2-8)。 When the oil concentration O2 in the compressed air is not less than the reference Oth2, the second switching mechanisms 32d and 32e are switched, that is, the valve 32d is closed and the valve 32e is opened. Thereby, the compressed air containing the heat medium flowing out from the second heat exchanger 26 flows in the third air flow path 9d, and the heat medium is recovered in the receiver tank 36 (step S2-8).
 圧縮空気中の油濃度O2が基準Oth2未満である場合、圧縮空気は膨張機20に供給され、膨張機20は駆動され、発電機22は駆動される(ステップS2-9)。これらの処理を完了後、制御を終了する(ステップS2-10)。 When the oil concentration O2 in the compressed air is less than the reference Oth2, the compressed air is supplied to the expander 20, the expander 20 is driven, and the generator 22 is driven (step S2-9). After completing these processes, the control is terminated (step S2-10).
 この構成によれば、油分センサ28により基準以上の油分を検出した場合、第1切替機構32b,32cにより圧縮空気が第2空気流路9bを流れる状態に切り替えてセパレータ16bを通じて圧縮空気から油分を分離できるため、系外への油の漏出を防止できる。そのため、圧縮機14を油冷式として装置のコストを低下しつつ、環境性に配慮したCAES発電装置2を提供できる。また、油分センサ28により基準以上の油分を検出しない場合、第1切替機構32b,32cにより圧縮空気が第1空気流路9aを流れる状態に切り替えてセパレータ16bを介することなく膨張機20に圧縮空気を供給するため、セパレータ16bでの圧力損失を防止できる。 According to this configuration, when the oil content sensor 28 detects an oil content above the reference, the first switching mechanism 32b, 32c switches the compressed air to the state in which it flows through the second air flow path 9b and removes the oil content from the compressed air through the separator 16b. Since it can be separated, oil leakage outside the system can be prevented. Therefore, it is possible to provide the CAES power generation apparatus 2 in consideration of environmental performance while reducing the cost of the apparatus by using the compressor 14 as an oil cooling type. In addition, when the oil content sensor 28 does not detect an oil content that exceeds the reference, the first switching mechanisms 32b and 32c switch the compressed air to the state in which the compressed air flows through the first air flow path 9a, and the compressed air is supplied to the expander 20 without the separator 16b. Therefore, pressure loss in the separator 16b can be prevented.
 第2空気流路9bにおいてセパレータ16bを第2熱交換器26の上流に設けることで、第2熱交換器26に供給される空気から油を分離できるため、油による第2熱交換器26の汚染を防止できる。 By providing the separator 16b upstream of the second heat exchanger 26 in the second air flow path 9b, the oil can be separated from the air supplied to the second heat exchanger 26. Contamination can be prevented.
 セパレータ16bにより膨張前の圧縮空気から油を十分に分離できなかった場合でも、油分センサ34で油分を検出できる。検出した場合、第2切替機構32d,32eにより第3空気流路9dに切り替えることで、油分を含む圧縮空気をレシーバタンク36に回収でき、油分の漏出を防止できる。 Even when the separator 16b cannot sufficiently separate the oil from the compressed air before expansion, the oil sensor 34 can detect the oil. When detected, by switching to the third air flow path 9d by the second switching mechanisms 32d and 32e, the compressed air containing the oil can be recovered in the receiver tank 36, and leakage of the oil can be prevented.
 蓄圧タンク18内に油が溜まった場合、または、発電せずに蓄圧タンク18内の油を回収する場合、第3切替機構32fを切り替えて蓄圧タンク18とレシーバタンク36とを流通させ、蓄圧タンク18内に溜まった油をレシーバタンク36に回収できる。 When oil accumulates in the pressure accumulation tank 18 or when oil in the pressure accumulation tank 18 is recovered without generating power, the third switching mechanism 32f is switched to circulate between the pressure accumulation tank 18 and the receiver tank 36, and the pressure accumulation tank The oil accumulated in 18 can be collected in the receiver tank 36.
(第2実施形態)
 図3に示す第2実施形態のCAES発電装置2では、潤滑油と熱媒の種類が異なっていることに関する点を除いて図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については説明を省略する。
(Second Embodiment)
The CAES power generator 2 of the second embodiment shown in FIG. 3 is substantially the same as the first embodiment of FIG. 1 except that the types of the lubricating oil and the heat medium are different. Therefore, the description of the same parts as those shown in FIG. 1 is omitted.
 本実施形態のCAES発電装置2は、空気流路8a,8b,9a~9f(破線参照)、熱媒流路11a,11b(実線参照)、および潤滑油流路46a,46b(二点鎖線参照)を有する。 The CAES power generation device 2 of the present embodiment includes air flow paths 8a, 8b, 9a to 9f (see broken lines), heat medium flow paths 11a, 11b (see solid lines), and lubricating oil flow paths 46a, 46b (see two-dot chain lines). ).
 まず、空気流路(破線参照)8a,8b,9a~9fについて説明する。 First, the air flow paths (see broken lines) 8a, 8b, 9a to 9f will be described.
 本実施形態のCAES発電装置2は、第1空気流路9aに2つの第2熱交換器27a,27bが設けられている。従って、2つの第2熱交換器27a,27bにおいて、第1空気流路9a内の圧縮空気は、2段階で加熱される。 The CAES power generator 2 of the present embodiment is provided with two second heat exchangers 27a and 27b in the first air flow path 9a. Therefore, in the two second heat exchangers 27a and 27b, the compressed air in the first air flow path 9a is heated in two stages.
 次に、熱媒流路11a,11b(実線参照)および潤滑油流路46a,46b(二点鎖線参照)について合わせて説明する。 Next, the heat medium passages 11a and 11b (see the solid line) and the lubricating oil passages 46a and 46b (see the two-dot chain line) will be described together.
 本実施形態のCAES発電装置2の構成において、第1実施形態と異なり潤滑油と熱媒の種類が異なっているため、熱媒流路11a,11bおよび潤滑油流路46a,46bは別々に設けられている。換言すると、熱媒流路11a,11bおよび潤滑油流路46a,46bは交わることはなく、潤滑油と熱媒は混合されない。 In the configuration of the CAES power generator 2 of the present embodiment, since the types of the lubricating oil and the heat medium are different from the first embodiment, the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b are provided separately. It has been. In other words, the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b do not intersect, and the lubricating oil and the heat medium are not mixed.
 本実施形態のCAES発電装置2は、2つの高温蓄熱タンク(蓄熱部)39a,39bおよび2つの低温蓄熱タンク41a,41bを備える。具体的には、2つの高温蓄熱タンク39a,39bのうち、1つは高温の潤滑油を貯蔵する潤滑油高温タンク39aであり、もう1つは高温の熱媒を貯蔵する熱媒高温タンク39bである。2つの低温蓄熱タンク41a,41bのうち、1つは低温の潤滑油を貯蔵する潤滑油低温タンク41aであり、もう1つは低温の熱媒を貯蔵する熱媒低温タンク41bである。 The CAES power generator 2 of this embodiment includes two high-temperature heat storage tanks (heat storage units) 39a and 39b and two low-temperature heat storage tanks 41a and 41b. Specifically, one of the two high-temperature heat storage tanks 39a and 39b is a lubricating oil high-temperature tank 39a that stores high-temperature lubricating oil, and the other is a heat-medium high-temperature tank 39b that stores a high-temperature heat medium. It is. Of the two low-temperature heat storage tanks 41a and 41b, one is a lubricating oil low-temperature tank 41a that stores low-temperature lubricating oil, and the other is a heat-medium low-temperature tank 41b that stores a low-temperature heat medium.
 熱媒流路11a,11bでは、第1熱交換器24、熱媒高温タンク39a、第2熱交換器27b、および熱媒低温タンク41aが流体的に接続され、これらの間を熱媒が流れている。熱媒の種類は特に限定されておらず、例えばグリコール系の熱媒を使用してもよい。 In the heat medium flow paths 11a and 11b, the first heat exchanger 24, the heat medium high temperature tank 39a, the second heat exchanger 27b, and the heat medium low temperature tank 41a are fluidly connected, and the heat medium flows between them. ing. The kind of the heat medium is not particularly limited, and for example, a glycol heat medium may be used.
 潤滑油流路46a,46bでは、圧縮機14、潤滑油高温タンク39b、第2熱交換器27a、および潤滑油低温タンク41bが流体的に接続され、これらの間を潤滑油が流れている。潤滑油の種類は、特に限定されず、例えば鉱物油を使用してもよい。 In the lubricating oil flow paths 46a and 46b, the compressor 14, the lubricating oil high temperature tank 39b, the second heat exchanger 27a, and the lubricating oil low temperature tank 41b are fluidly connected, and the lubricating oil flows between them. The kind of lubricating oil is not specifically limited, For example, you may use mineral oil.
 発電用の空気流路8bにおいて、2つの第2熱交換器27a,27bの配置については、潤滑油用の第2熱交換器27aが上流に設置され、熱媒用の第2熱交換器27bが下流に設置されている。第2熱交換器27a,27bにおいて潤滑油と熱媒を冷却しているが、潤滑油は圧縮機14の機能に影響を及ぼすため、潤滑油を優先的に冷却することが好ましい。従って、潤滑油用の第2熱交換器27aを上流に配置し、熱媒用の第2熱交換器27bを下流に配置している。 Regarding the arrangement of the two second heat exchangers 27a and 27b in the air passage 8b for power generation, the second heat exchanger 27a for lubricating oil is installed upstream, and the second heat exchanger 27b for heat medium is installed. Is installed downstream. Although the lubricating oil and the heat medium are cooled in the second heat exchangers 27a and 27b, since the lubricating oil affects the function of the compressor 14, it is preferable to cool the lubricating oil preferentially. Therefore, the second heat exchanger 27a for lubricating oil is arranged upstream, and the second heat exchanger 27b for heat medium is arranged downstream.
 本実施形態では、熱媒流路11a,11bと、潤滑油流路46a,46bとに対して、それぞれポンプ43a,43bが設けられている。従って、熱媒および潤滑油は、ポンプ43a,43bによってそれぞれの流路内を循環されている。 In this embodiment, pumps 43a and 43b are provided for the heat medium passages 11a and 11b and the lubricating oil passages 46a and 46b, respectively. Therefore, the heat medium and the lubricating oil are circulated in the respective flow paths by the pumps 43a and 43b.
 本実施形態のCAES発電装置2の制御方法は、図2に示す第1実施形態の制御方法と同様である。 The control method of the CAES power generator 2 of the present embodiment is the same as the control method of the first embodiment shown in FIG.
 ここで記載した各実施形態において、再生可能エネルギーによる発電の対象は、例えば、風力、太陽光、太陽熱、波力又は潮力、流水又は潮汐、及び地熱等、自然の力で定常的(もしくは反復的)に補充されるエネルギーを利用したもの全てを対象とすることが可能である。 In each of the embodiments described herein, the target of power generation by renewable energy is steady (or repetitive) with natural forces such as wind, sunlight, solar heat, wave or tidal power, running water or tide, and geothermal heat. It is possible to target anything that uses energy replenished.
  2 圧縮空気貯蔵発電装置(CAES発電装置)
  4 再生可能エネルギーを利用する発電装置
  6 電力系統
  8a,8b,9c,9e,9f 空気流路
  8c 第3空気流路(空気流路)
  9a 第1空気流路
  9b 第2空気流路
  9d 第3空気流路
  10a,10b,10c,11a,11b 熱媒流路
  12 モータ(電動機)
  14 油冷式圧縮機(圧縮機)
  14a 吸気口
  14b 吐出口
  16a,16b,16c セパレータ(油分離器)
  18 蓄圧タンク(蓄圧部)
  20 膨張機
  20a 給気口
  20b 排気口
  22 発電機
  24 第1熱交換器
  26,27a,27b 第2熱交換器
  28 油分センサ(第1油検出部)
  30 液面センサ
  32a,32g バルブ
  32b,32c バルブ(第1切替機構)
  32d,32e バルブ(第2切替機構)
  32f バルブ(第3切替機構)
  34 油分センサ(第2油検出部)
  36 レシーバタンク
  38 高温蓄熱タンク(蓄熱部)
  39a 高温熱媒タンク(高温蓄熱タンク)(蓄熱部)
  39b 高温潤滑油タンク(高温蓄熱タンク)(蓄熱部)
  40 低温蓄熱タンク
  41a 低温熱媒タンク(低温熱媒タンク)
  41b 低温潤滑油タンク(低温熱媒タンク)
  42,43a,43b ポンプ
  44 制御装置
  46a,46b 潤滑油流路
2 Compressed air storage generator (CAES generator)
4 Power generation device using renewable energy 6 Power system 8a, 8b, 9c, 9e, 9f Air flow path 8c Third air flow path (air flow path)
9a First air flow path 9b Second air flow path 9d Third air flow path 10a, 10b, 10c, 11a, 11b Heat medium flow path 12 Motor (electric motor)
14 Oil-cooled compressor (compressor)
14a Intake port 14b Discharge port 16a, 16b, 16c Separator (oil separator)
18 Accumulation tank (accumulation section)
DESCRIPTION OF SYMBOLS 20 Expander 20a Supply port 20b Exhaust port 22 Generator 24 1st heat exchanger 26, 27a, 27b 2nd heat exchanger 28 Oil content sensor (1st oil detection part)
30 Liquid level sensor 32a, 32g Valve 32b, 32c Valve (first switching mechanism)
32d, 32e valve (second switching mechanism)
32f valve (third switching mechanism)
34 Oil sensor (second oil detector)
36 Receiver tank 38 High-temperature heat storage tank (heat storage section)
39a High-temperature heat medium tank (high-temperature heat storage tank) (heat storage part)
39b High temperature lubricating oil tank (high temperature heat storage tank) (heat storage section)
40 Low temperature heat storage tank 41a Low temperature heat medium tank (low temperature heat medium tank)
41b Low temperature lubricating oil tank (low temperature heating medium tank)
42, 43a, 43b Pump 44 Controller 46a, 46b Lubricating oil flow path

Claims (5)

  1.  再生可能エネルギーを用いて発電した電力により駆動される電動機と、
     前記電動機により駆動される油冷式圧縮機と、
     前記油冷式圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、
     前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
     前記膨張機により駆動される発電機と、
     前記蓄圧部から前記膨張機までを流体的に接続して圧縮空気を流通させ、並列に設けられた第1空気流路および第2空気流路を有する発電用の空気流路と、
     前記蓄圧部または前記発電用の空気流路内の圧縮空気中に含まれる油分を検出する第1油検出部と、
     前記第2空気流路中の圧縮空気から油分を分離する油分離器と、
     前記蓄圧部から前記膨張機に圧縮空気を供給する際、圧縮空気が前記第1空気流路を流れる状態または前記第2空気流路を流れる状態のいずれかに切り替える第1切替機構と、
     前記第1油検出部で基準以上の油濃度が検出されたとき、前記第1切替機構を動作させ、圧縮空気が前記第2空気流路を流れる状態に切り替え、前記油分離器により圧縮空気から油分を分離する制御装置と
     を備える、圧縮空気貯蔵発電装置。
    An electric motor driven by electric power generated using renewable energy;
    An oil-cooled compressor driven by the electric motor;
    A pressure accumulator for storing compressed air compressed by the oil-cooled compressor;
    An expander driven by compressed air supplied from the pressure accumulator;
    A generator driven by the expander;
    An air flow path for power generation having a first air flow path and a second air flow path provided in parallel, fluidly connecting the pressure accumulating section to the expander to circulate compressed air,
    A first oil detector that detects oil contained in compressed air in the pressure accumulator or the power generation air flow path;
    An oil separator for separating oil from the compressed air in the second air flow path;
    A first switching mechanism that switches between compressed air flowing through the first air flow path and flowing through the second air flow path when supplying compressed air from the pressure accumulator to the expander;
    When the first oil detection unit detects an oil concentration that exceeds a reference, the first switching mechanism is operated to switch the compressed air to a state where it flows through the second air flow path, and from the compressed air by the oil separator. A compressed air storage power generation device comprising: a control device that separates oil.
  2.  前記油冷式圧縮機から前記蓄圧部に供給される圧縮空気と熱媒とで熱交換する第1熱交換器と、
     前記第1熱交換器で熱交換された熱媒を蓄える蓄熱部と、
     前記蓄圧部から前記膨張機に供給される圧縮空気と前記蓄熱部から供給される熱媒とで熱交換する第2熱交換器と
     をさらに備える、請求項1に記載の圧縮空気貯蔵発電装置。
    A first heat exchanger for exchanging heat between compressed air and a heat medium supplied from the oil-cooled compressor to the pressure accumulator;
    A heat storage unit for storing the heat medium heat-exchanged in the first heat exchanger;
    The compressed air storage power generator according to claim 1, further comprising: a second heat exchanger that exchanges heat between the compressed air supplied from the pressure accumulator to the expander and the heat medium supplied from the heat accumulator.
  3.  前記油分離器は、前記第2空気流路において前記蓄圧部から前記第2熱交換器の間に設けられている、請求項2に記載の圧縮空気貯蔵発電装置。 The compressed air storage power generator according to claim 2, wherein the oil separator is provided between the pressure accumulating unit and the second heat exchanger in the second air flow path.
  4.  前記第2熱交換器から前記膨張機までの前記発電用の空気流路に設けられた第2油検出部と、
     前記第2熱交換器から前記膨張機までの前記発電用の空気流路から分岐した第3空気流路と、
     前記第3空気流路が流体的に接続されたレシーバタンクと、
     圧縮空気が前記発電用の空気流路を流れる状態または前記第3空気流路を流れる状態のいずれかに切り替える第2切替機構と
     をさらに備え、
     前記制御装置は、前記第2油検出部で基準以上の熱媒が検出されたとき、前記第2切替機構を動作させ、前記第3空気流路を流れる状態に切り替え、前記レシーバタンクに圧縮空気および熱媒を供給する、請求項2または請求項3に記載の圧縮空気貯蔵発電装置。
    A second oil detector provided in the air flow path for power generation from the second heat exchanger to the expander;
    A third air flow path branched from the power generation air flow path from the second heat exchanger to the expander;
    A receiver tank fluidly connected to the third air flow path;
    A second switching mechanism for switching to a state in which compressed air flows through the power generation air flow path or a state in which the compressed air flows through the third air flow path;
    The control device operates the second switching mechanism to switch to a state of flowing through the third air flow path when the second oil detection unit detects a heating medium that exceeds a reference, and supplies compressed air to the receiver tank. The compressed air storage power generation device according to claim 2 or 3, wherein a heating medium is supplied.
  5.  前記蓄圧部内の液面高さを検出する液面検出部をさらに備え、
     前記蓄圧部と前記レシーバタンクとは、第3切替機構を介して流体的に接続され、
     前記制御装置は、前記液面検出部で基準以上の値を検出したとき、前記第3切替機構を動作させ、前記蓄圧部と前記レシーバタンクを流通させる、請求項4に記載の圧縮空気貯蔵発電装置。
    A liquid level detector for detecting the liquid level in the pressure accumulator;
    The pressure accumulator and the receiver tank are fluidly connected via a third switching mechanism,
    5. The compressed air storage power generation according to claim 4, wherein the control device operates the third switching mechanism and causes the pressure accumulating unit and the receiver tank to circulate when the liquid level detection unit detects a value that is equal to or greater than a reference value. apparatus.
PCT/JP2017/001756 2016-02-08 2017-01-19 Compressed air energy storage generation device WO2017138320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780009392.XA CN108699968B (en) 2016-02-08 2017-01-19 Compressed air storage power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-022120 2016-02-08
JP2016022120A JP6577384B2 (en) 2016-02-08 2016-02-08 Compressed air storage generator

Publications (1)

Publication Number Publication Date
WO2017138320A1 true WO2017138320A1 (en) 2017-08-17

Family

ID=59563875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001756 WO2017138320A1 (en) 2016-02-08 2017-01-19 Compressed air energy storage generation device

Country Status (3)

Country Link
JP (1) JP6577384B2 (en)
CN (1) CN108699968B (en)
WO (1) WO2017138320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020132771A1 (en) * 2018-12-28 2020-07-02 Universidad Tecnica Federico Santa Maria Electricity generation system comprising at least one compressor, at least two high-pressure recipients, at least two solar tanks, at least one turbine for generating electricity, a set of valves, at least one heat source and at least two heat exchangers; and associated method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103887A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oil tank in oil-cooling type compressor
JPH10238366A (en) * 1996-12-24 1998-09-08 Hitachi Ltd Energy storage type gas turbine power generation system
US20040148922A1 (en) * 2003-02-05 2004-08-05 Pinkerton Joseph F. Thermal and compressed air storage system
US20050271537A1 (en) * 2004-06-03 2005-12-08 Firnhaber Mark A Cavitation noise reduction system for a rotary screw vacuum pump
JP2013036397A (en) * 2011-08-09 2013-02-21 Hitachi Industrial Equipment Systems Co Ltd Refueling type compressor
JP2013064399A (en) * 2011-08-16 2013-04-11 Alstom Technology Ltd Adiabatic compressed air energy storage system and corresponding method
US20150343365A1 (en) * 2014-05-28 2015-12-03 Ingersoll-Rand Company Compressor system and oil separation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757588A1 (en) * 1996-12-24 1998-07-02 Hitachi Ltd Electricity generating system with gas turbine and energy storage
WO2005119066A2 (en) * 2004-06-04 2005-12-15 Entek Manufacturing Inc. Gear for use in a gear pump
CN108952862B (en) * 2018-07-25 2019-09-20 清华大学 Back-heating type compressed-air energy-storage system and its application method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103887A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oil tank in oil-cooling type compressor
JPH10238366A (en) * 1996-12-24 1998-09-08 Hitachi Ltd Energy storage type gas turbine power generation system
US20040148922A1 (en) * 2003-02-05 2004-08-05 Pinkerton Joseph F. Thermal and compressed air storage system
US20050271537A1 (en) * 2004-06-03 2005-12-08 Firnhaber Mark A Cavitation noise reduction system for a rotary screw vacuum pump
JP2013036397A (en) * 2011-08-09 2013-02-21 Hitachi Industrial Equipment Systems Co Ltd Refueling type compressor
JP2013064399A (en) * 2011-08-16 2013-04-11 Alstom Technology Ltd Adiabatic compressed air energy storage system and corresponding method
US20150343365A1 (en) * 2014-05-28 2015-12-03 Ingersoll-Rand Company Compressor system and oil separation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020132771A1 (en) * 2018-12-28 2020-07-02 Universidad Tecnica Federico Santa Maria Electricity generation system comprising at least one compressor, at least two high-pressure recipients, at least two solar tanks, at least one turbine for generating electricity, a set of valves, at least one heat source and at least two heat exchangers; and associated method

Also Published As

Publication number Publication date
CN108699968A (en) 2018-10-23
JP6577384B2 (en) 2019-09-18
CN108699968B (en) 2020-06-19
JP2017141695A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
EP3296546B1 (en) Compressed air energy storage and power generation device
JP6614878B2 (en) Compressed air storage power generation apparatus and compressed air storage power generation method
JP6571491B2 (en) heat pump
EP3428425B1 (en) Compressed air storage power generation device
JP6605348B2 (en) Compressed air storage generator
US10892642B2 (en) Compressed air energy storage power generation apparatus and compressed air energy storage power generation method
WO2016203980A1 (en) Compressed air energy storage power generation device, and compressed air energy storage power generation method
CN101813396B (en) Air conditioning unit and method for detecting oil level of compressor thereof
JP6475107B2 (en) Compressed air storage power generation apparatus and compressed air storage power generation method
WO2016181884A1 (en) Compressed air energy storage and power generation device
WO2016203979A1 (en) Compressed air energy storage power generation device
JP2016211436A (en) Compressed air energy storage power generation device
JP6689616B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP2009228976A (en) Refrigerating cycle device
JP6577384B2 (en) Compressed air storage generator
WO2016104222A1 (en) Compressed-air-storing power generation device and compressed-air-storing power generation method
WO2018193768A1 (en) Compressed-air storage power generation device
JP6906013B2 (en) heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750045

Country of ref document: EP

Kind code of ref document: A1