WO2017138280A1 - Power generation system, and elastic energy storage device for power generation system - Google Patents

Power generation system, and elastic energy storage device for power generation system Download PDF

Info

Publication number
WO2017138280A1
WO2017138280A1 PCT/JP2017/000390 JP2017000390W WO2017138280A1 WO 2017138280 A1 WO2017138280 A1 WO 2017138280A1 JP 2017000390 W JP2017000390 W JP 2017000390W WO 2017138280 A1 WO2017138280 A1 WO 2017138280A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
shaft
elastic
power generation
energy
Prior art date
Application number
PCT/JP2017/000390
Other languages
French (fr)
Japanese (ja)
Inventor
西浦 信一
Original Assignee
西風技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西風技研株式会社 filed Critical 西風技研株式会社
Publication of WO2017138280A1 publication Critical patent/WO2017138280A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/007Systems for storing electric energy involving storage in the form of mechanical energy, e.g. fly-wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/02Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a power generation system that generates power based on renewable energy and a storage device that stores elastic energy based on renewable energy, and in particular, fluid flow such as wind, seawater tidal waves, waves, and river flows that occur in nature. And other power generation systems that generate power using renewable energy, and preferably power generation systems that use renewable energy in an environment with low average renewable energy and difficult energy continuity, and their regeneration.
  • the present invention relates to an elastic energy storage device for a power generation system that temporarily stores energy as elastic energy and sends this elastic energy to a generator as energy suitable for power generation.
  • a power generation system using renewable energy is used in an environment where high energy can be obtained as continuously as possible.
  • installation on the coast, offshore, mountain top, mountainside, etc. where strong wind can be expected is the mainstream.
  • the energy receiving mechanism (blade) is arranged at a height of several tens of meters.
  • wave power generation there are very few practical examples.
  • installation offshore with high wave height is the mainstream.
  • most of these are large facilities.
  • the current situation is limited to very subsidized ones, and no one with the ability as an alternative power generator has yet appeared. The biggest reason is the installation environment.
  • the annual average wind speed on the roof of a building in Tokyo is about 3m. There are many days without wind and energy continuity is poor.
  • the wind power generators sold for consumer use there is a product that claims a power generation capacity of 2000 kWh, which is based on the assumption of strong winds such as wind speeds of 15 m. There is no strong wind.
  • the generated power is 20 minutes of the wind speed. It drops to about 100kWh.
  • Patent Document 1 external energy is accumulated by distorting an elastic body by an external force, and the external energy accumulated is output at a substantially constant power, and output from the mechanical energy accumulation unit.
  • a mechanical energy storage type power generation device comprising a power generation means for converting external energy into electric power and a rectification means for rectifying the power converted by the power generation means, and a spring, a helical spring, a plate as an elastic body Examples are springs, rubber, shape memory alloys and the like.
  • the external force for accumulating the mechanical energy in the accumulating means is human power. For example, when the rotary knob is picked and rotated, the mainspring is wound around the power input shaft, and the external energy is stored in the mainspring. It is described that it is done.
  • Patent Document 2 is a card-type generator that converts kinetic energy generated by being moved into electrical energy into mechanical energy conversion means that receives the kinetic energy and converts it into mechanical energy;
  • a power generation mechanism comprising mechanical energy storage means for storing mechanical energy converted by the mechanical energy conversion means and power generation means for generating electric power driven by mechanical energy output from the mechanical energy storage means is a card type A card-type generator characterized in that it is built in a case formed in the above.
  • An example of the mechanical energy storage means is an elastic body (for example, a spring) that is deformed by rotation of a rotary weight and stores the mechanical energy by the deformation.
  • the kinetic energy to be used is kinetic energy generated by the walking of the wearer and the like, but indirectly, is human power.
  • Patent Document 3 discloses mechanical energy storage means for temporarily storing water kinetic energy (kinetic energy of water flowing in a water passage) as mechanical energy, and power generation means for converting the mechanical energy into electric energy. And a power supply device for supplying electrical energy to an automatic water discharge device configured to include an electrical storage device that stores electrical energy obtained by the power generation device, and as a mechanical energy storage device, Examples are elastic bodies such as rubber and springs. And the kinetic energy used is the kinetic energy of the water which flows in a water channel.
  • Patent Document 4 includes a rack bar having a longitudinal direction in one direction, a pinion that is rotated by relative movement with respect to the rack bar, and a power generation means that generates electric power using the rotational force of the pinion.
  • a kinetic force having a component When a kinetic force having a component is applied, the rack bar and the pinion perform relative movement along one direction, and the pinion is rotated by this relative movement.
  • a generator that generates power by means of power generation by rotation of a pinion is disclosed.
  • At least one of the rack bar and the pinion is provided with a reaction force applying means (elastic body) that applies a reaction force in the opposite direction to the relative movement direction of either one of the rack bar and the pinion. Examples are leaf springs, rubbers and the like.
  • JP 10-131841 A JP 2002-84726 A Japanese Patent Laid-Open No. 2003-278216 JP 2004-260896 JP
  • the present inventor has found that the above-mentioned problem of the conventional renewable energy power generation system is that the kinetic energy extracted from the renewable energy is directly connected to the generator, and the extraction of the renewable energy and the power generation are processed in the same time series. I found out that it is due to being. That is, when the extraction of renewable energy and power generation are processed in the same time series, the efficiency of power conversion is determined by the height of the renewable energy and the conversion efficiency of the generator motor, and the input of low renewable energy is a problem described above. There is a marked disadvantage as it is. In addition, since there is no countermeasure against energy continuity, natural discharge in a power storage device such as a battery cannot be avoided.
  • the present inventor does not process the extraction of regenerative energy and power generation in the same time series, but temporarily stores regenerative energy as elastic energy before power generation, and generates power after accumulating a predetermined amount of this elastic energy.
  • a generator is installed in front of the generator to store the regenerative energy as elastic energy.
  • small elastic energy and intermittent elastic energy are converted into large continuous elastic energy, and the generator
  • the low renewable energy which is an obstacle to the realization of renewable energy for civilian use, such as wind power generation in urban areas and wave power generation at the bay, and the generation of intermittent energy I found that the problem could be overcome.
  • the present invention has been made in view of the above circumstances, and does not process the extraction of the regenerative energy and the power generation in the same time series, and temporarily stores the regenerative energy as elastic energy before the power generation. It is applied to this power generation system and a power generation system that can be used for consumer use by generating electricity after a predetermined amount of (elastic energy) is accumulated for power generation, and that can be used in a consumer environment that is small, medium-sized, and has a poor renewable energy environment.
  • An elastic energy storage device is provided.
  • the present invention has been made to solve the above-described problems, and has the following configuration.
  • the first aspect of the invention is to store elastic energy using the input first power, and to use the stored elastic energy to generate a second power larger than the first power, and to store the second power as electric power.
  • a power generation device for conversion, and the storage device includes an elastic body that includes a ring-shaped member that is elastically deformable in a radial direction, and elastically deforms the elastic body by the first power.
  • the power generation system stores elastic energy and converts elastic energy into the second power when the elastic body is released from elastic deformation.
  • the storage device includes a rail, a plurality of the annular bodies arranged so that outer peripheral surfaces thereof are in contact with each other along the rail, and a slider for slidably attaching the annular bodies to the rail.
  • a stopper that contacts the annular body at one end of each of the annular bodies, and compresses each annular body toward the stopper by the first power or moves away from the stopper.
  • a third aspect of the present invention further includes a receiving device that receives energy and generates the first power, a first shaft that connects the receiving device and the storage device, and a first shaft that connects the storage device and the power generation device. Two shafts, wherein the first power is transmitted to the storage device by the rotational motion of the first shaft, and the second power is transmitted to the power generation device by the rotational motion of the second shaft.
  • the power generation system according to claim 1 or 2.
  • the invention 4 is a receiving device that receives energy and generates first power, stores elastic energy using the first power, and generates second power that is larger than the first power using the stored elastic energy.
  • An accumulating device that generates power, a power generating device that converts the second power into electric power, and the receiving device and the accumulating device are connected, and the first power generated by the receiving device is transmitted to the accumulating device by rotational movement.
  • a transmission that changes the rotational speed of the first shaft, and the storage device includes an elastic body, and elastically deforms the elastic body by the first power to generate elastic energy. When the elastic deformation of the elastic body is released, elastic energy is converted into the second power, and the torque of the first shaft after the shift by the transmission is the second shaft necessary for power generation by the power generation device. It is a power generation system that is
  • the storage device includes a third shaft, a cam that rotates about the third shaft, a first gear train that transmits the rotational motion of the first shaft to the third shaft, and the third shaft.
  • a second gear train that transmits the rotational motion of the shaft to the second shaft, and the cam is caused by the rotational motion of the first shaft, the first gear train, and the third shaft by the first power.
  • the elastic body is elastically deformed, and the second power for rotating the second shaft is generated by the rotational movement of the cam, the third shaft, and the second gear train accompanying the cancellation of the elastic deformation of the elastic body.
  • the storage device includes a rack connected to the elastic body, a first gear connected to the first shaft, and a second gear connected to the second shaft, and meshed with the rack.
  • a gear train wherein the first gear is rotated by the first power to move the rack in the first direction, the elastic body is elastically deformed, and the rack is released when the elastic deformation of the elastic body is released.
  • the power generation system according to claim 4, wherein the second power is generated by rotating the second gear while moving in a second direction opposite to the first direction.
  • the storage device further includes a switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released. It is an electric power generation system in any one of invention 1 thru
  • Invention 8 stores the elastic energy using the input first power, generates the second power larger than the first power using the stored elastic energy, and converts the second power into electric power.
  • An elastic energy storage device for a power generation system that is connected to a device so as to be capable of transmitting power, comprising an elastic body that includes a ring-shaped member and is elastically deformable in a radial direction.
  • An elastic energy storage device for a power generation system that stores elastic energy by elastically deforming an elastic body and converts the elastic energy into the second power when releasing the elastic deformation of the elastic body.
  • the invention 9 includes a rail, a plurality of the annular bodies arranged with their outer peripheral surfaces in contact with each other along the rail, a slider for slidably attaching the annular bodies to the rail, and the annular bodies.
  • a stopper that contacts the ring body at one end, and compresses each ring body toward the stopper by the first power, or extends in a direction away from the stopper.
  • Invention 11 is the elastic energy storage device for a power generation system according to Invention 10, wherein the torque of the first shaft is smaller than the torque of the second shaft required for power generation by the power generation device.
  • the invention 12 includes a rack connected to the elastic body, a gear train including a first gear connected to the first shaft and a second gear connected to the second shaft, and meshed with the rack. Further, the first gear is rotated by the first power to move the rack in the first direction, and the elastic body is elastically deformed. When the elastic body is released from elastic deformation, the rack is moved to the first direction.
  • the elastic energy is stored using the input first power, the second power larger than the first power is generated using the stored elastic energy, and the second power is converted into electric power.
  • An elastic energy storage device for a power generation system connected to the device so as to be capable of transmitting power, the first shaft transmitting the first power from the receiving device that receives the energy and generates the first power; and Each of the second shafts that transmit the second power to the power generation device is connected, and an elastic body, a third shaft, a cam that rotates around the third shaft, and a rotational motion of the first shaft.
  • the cam causes the elastic body to be elastically deformed by the rotational movement of the first gear train and the third shaft, and the cam, the third shaft, and the second gear train are accompanied by the cancellation of the elastic deformation of the elastic body.
  • This is an elastic energy storage device for a power generation system in which the second power for rotating the second shaft is generated by the rotational movement of the power generation system.
  • the invention 14 further includes a switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released.
  • An elastic energy storage device for a power generation system according to any one of the above.
  • the present invention it is possible to provide a small-sized, medium-sized power generation system that can be used for consumer use and that can be used in a consumer environment with a poor renewable energy environment, and an elastic energy storage device applied to this power generation system.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power generation system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the storage device 3.
  • FIG. 3 is a diagram illustrating a configuration example of the storage device 3.
  • FIG. 4 is a diagram showing a storage device during elastic energy storage.
  • FIG. 5 is a diagram showing a storage device having the maximum elastic energy storage amount.
  • FIG. 6 is a diagram illustrating the storage device when using elastic energy.
  • FIG. 7 is a diagram illustrating a schematic configuration of a power generation system according to the second embodiment.
  • FIG. 8 is a diagram illustrating a schematic configuration of a power generation system according to the third embodiment.
  • FIG. 9 is a diagram illustrating a schematic configuration of a power generation system according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power generation system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the storage device 3.
  • FIG. 10 is a diagram illustrating a schematic configuration of a storage device according to the fifth embodiment.
  • FIG. 11 is a diagram showing a storage device during elastic energy storage.
  • FIG. 12 is a diagram illustrating a storage device in which the elastic energy storage amount is maximized.
  • FIG. 13 is a diagram showing a storage device when using elastic energy.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power generation system 1 according to the first embodiment.
  • the power generation system 1 includes a renewable energy receiving device 2 (hereinafter referred to as a receiving device 2), a storage device 3, and a power generating device 4.
  • the receiving device 2 receives the regenerative energy and generates first power.
  • the regenerative energy for example, wave energy, which is a force that moves the water surface up and down, such as wind power and the sea, and various energy generated by fluid flow such as water discharge from a dam or water through which water flows in a river can be used.
  • regenerative energy tidal power that is the power of tide filling, steam generated by using geothermal heat, or the like may be used.
  • Renewable energy is sometimes called renewable energy.
  • These regenerative energy receiving devices themselves are known to those skilled in the art, for example, from Japanese Unexamined Patent Application Publication Nos. 2015-17614 and 2015-17622.
  • the regenerative energy receiving apparatus of the present invention is not limited to the apparatus described in Japanese Patent Application Laid-Open No. 2015-17614 or 2015-17622.
  • the receiving device 2 and the storage device 3 are connected by a first shaft 5.
  • the first power generated by the receiving device 2 is transmitted to the storage device 3 via the first shaft 5.
  • various mechanisms may be employed as the mechanism that the receiving device 2 receives the regeneration energy and generates the first power.
  • the receiving device 2 when the regenerative energy is wind power, the receiving device 2 includes a blade that rotates by receiving the wind power, and a power generation mechanism that rotates the first shaft 5 as the blade rotates.
  • the receiving device 2 includes a floating body that moves up and down together with the water surface, and a power generation mechanism that rotates the first shaft 5 as the floating body moves up and down.
  • the receiving device 2 when the regenerative energy is hydraulic, the receiving device 2 includes a turbine that rotates by receiving hydraulic power, and a power generation mechanism that rotates the first shaft 5 as the turbine rotates.
  • the configuration of the power generation mechanism is not particularly limited.
  • a gear train that transmits the rotational motion of blades and turbines to the first shaft 5 may be included.
  • wave power a rack that reciprocates as the floating body moves up and down, and a gear train that meshes with the rack and rotates as the rack reciprocates to rotate the first shaft 5 can be included.
  • Rotational motion of the blade or turbine and vertical motion of the floating body may be converted into rotational motion of the first shaft 5 after being converted into reciprocating motion of the cable.
  • the cable for example, a structure including a hollow outer cable and an inner cable passed through the outer cable, and the inner cable reciprocatingly moves inside the outer cable can be adopted. Even if the mechanism that converts the reciprocating motion of the inner cable into the rotational motion is installed at a position away from the installation position of the blade, turbine, or floating body by giving flexibility to the outer cable and the inner cable, Both can be easily connected.
  • a transmission 6 is interposed between the receiving device 2 and the storage device 3.
  • the first shaft 5 includes a shaft 5 ⁇ / b> A that connects the receiving device 2 and the transmission 6, and a shaft 5 ⁇ / b> B that connects the transmission 6 and the storage device 3.
  • the shaft 5 ⁇ / b> A is rotated by the first power of the receiving device 2.
  • the transmission 6 shifts (increases or decreases) the rotational speed of the shaft 5A, and rotates the shaft 5B at the rotational speed after the shift.
  • the speed increasing ratio or the speed reducing ratio of the transmission 6 may be appropriately determined in consideration of the rotational speed and torque obtained by the receiving device 2 and the rotational speed and torque necessary for the storage device 3.
  • the storage device 3 and the power generation device 4 are connected by a second shaft 7.
  • the storage device 3 stores elastic energy using the first power transmitted via the first shaft 5 and generates second power using the stored elastic energy.
  • the second power is transmitted to the power generation device 4 as the rotational motion of the second shaft 7.
  • the power generation device 4 converts the second power into electric power.
  • the power generation device 4 illustrated in FIG. 1 includes a speed governor 41, a power generation unit 42, a power storage unit 43, and a power transmission unit 44.
  • the second shaft 7 is connected to the speed governor 41 and the power generation unit 42.
  • the governor 41 adjusts the rotation speed of the second shaft 7 within a speed range suitable for power generation.
  • a centrifugal governor can be used as the governor 41.
  • the power generation unit 42 generates electric power based on the rotational motion of the second shaft 7.
  • the power storage unit 43 includes a battery that stores power generated by the power generation unit 42.
  • the power transmission unit 44 supplies the power stored in the power storage unit 43 to the power transmission line with a predetermined voltage and current.
  • the power transmission line may be a part of an existing power transmission network, or may be specially provided for use in a specific building such as a factory, a building, or a house.
  • the storage device 3 includes an elastic body, and stores elastic energy corresponding to the elastic coefficient and deformation amount of the elastic body by elastically deforming the elastic body using the first power. Furthermore, the storage device 3 generates second power using elastic energy stored in the elastic body when the elastic body cancels elastic deformation. As described above, the storage device 3 stores and uses elastic energy by elastic deformation of the elastic body and its elimination.
  • the structure of the storage device 3 is not particularly limited as long as it exhibits such a function.
  • the second power is larger than the first power. Further, the second power exceeds at least the load of the power generation device 4.
  • the power is, for example, a work amount per unit time, and can be defined as a value proportional to the product of the torque and the rotational speed in terms of the rotating body.
  • the first power is generated based on unstable regenerative energy, and fluctuates according to the magnitude of the regenerative energy. Therefore, the first power may be temporarily larger than the second power.
  • the phrase “the second power is greater than the first power” does not exclude the case where the first power temporarily exceeds the second power in this way. It is intended that the average value is smaller than the second power.
  • the storage device 3 in this example includes a cam 30, a third shaft 31, a first gear train 32, and a second gear train 33, as shown in FIG. Furthermore, as shown in FIG. 3, the storage device 3 includes an elastic body 34, a rail 35, a stopper 36, and a slider 37.
  • the first gear train 32 transmits the rotational motion of the first shaft 5 (shaft 5 ⁇ / b> B) to the third shaft 31.
  • the second gear train 33 transmits the rotational motion of the third shaft 31 to the second shaft 7.
  • the first gear train 32 includes gears 32A and 32B (first gears) meshing with each other.
  • the gear 32A is attached to the first shaft 5 (shaft 5B) and rotates about the shaft 5B.
  • the gear 32B is attached to the third shaft 31, and rotates around the third shaft 31.
  • the gear 32A has a smaller diameter than the gear 32B.
  • the gear 32A has, for example, a unidirectional clutch mechanism. When the shaft 5B rotates in a certain direction by the first power, this rotation is transmitted to the gear 32B, but when the shaft 5B rotates in the other direction. Idle.
  • the second gear train 33 includes gears 33A and 33B (second gears) meshed with each other.
  • the gear 33A is attached to the second shaft 7 and rotates about the second shaft 7 as an axis.
  • the gear 33 ⁇ / b> B is attached to the third shaft 31 and rotates about the third shaft 31.
  • the gear 33A has a smaller diameter than the gear 33B.
  • the cam 30 is attached to the third shaft 31 and rotates around the third shaft 31.
  • the cam 30 is a disc cam in which the distance between the circumferential surface that is a curved surface and the third shaft 31 changes according to the rotation angle.
  • the elastic body 34 includes an annular body 38 formed of, for example, a band-shaped member.
  • the ring body 38 is elastically deformable in the radial direction.
  • the ring body 38 can be formed of, for example, a metal material such as spring steel or rubber.
  • the elastic body 34 includes five ring bodies 38.
  • the number of ring bodies 38 included in the elastic body 34 may be four or less, or may be six or more.
  • the annular body 38 is, for example, a perfect circle in a natural state where it is not elastically deformed.
  • the ring body 38 may have another shape such as an elliptical shape or a polygonal shape in a natural state. Note that the specific material, thickness, circumferential width, diameter, and the like of the ring body 38 can be determined as appropriate in consideration of required elastic force, installation space, manufacturing cost, and the like.
  • the elastic body 34 may include, for example, a U-shaped member, a V-shaped member, or an annular member in which two U-shaped members are coupled instead of the ring body 38. These members can be formed of a metal material such as steel, like the ring body 38.
  • Each ring 38 is attached to the rail 35 via a slider 37.
  • the slider 37 is slidable along the rail 35.
  • Each ring 38 is arranged in a straight line along the rail 35.
  • the outer peripheral surfaces of the adjacent ring bodies 38 are in contact with each other. For example, by disposing a roller or a ball at the contact portion between the rail 35 and the slider 37, loss due to friction can be reduced.
  • a roller or ball may be provided on either the rail 35 or the slider 37.
  • the outer peripheral surface of the cam 30 is in contact with the outer peripheral surface of the ring body 38 at the left end in FIG.
  • the outer peripheral surface of the ring body 38 at the right end in FIG. 3 is in contact with the stopper 36.
  • the positional relationship among the stopper 36, the rail 35, and the third shaft 31 is fixed and does not change with the rotation of the cam 30.
  • the operation of the storage device 3 will be described with reference to FIGS.
  • the gears 32A and 32B, the third shaft 31, the cam 30, the gears 33A and 33B, and the second shaft 7 are rotated.
  • each ring 38 repeats elastic deformation (accumulation of elastic energy) and cancellation (utilization of elastic energy) according to the rotation angle of the cam 30.
  • FIG. 4 shows a state when elastic energy is accumulated.
  • the cam 30 pushes each ring body 38 toward the stopper 36.
  • each ring 38 is elastically deformed in the direction indicated by the arrow in the figure, and elastic energy is stored.
  • the force with which the elastic body 34 pushes the cam 30 includes the load on the shaft 5B (the load on the receiving device 2 and the transmission 6) and the load on the second shaft 7 (the load on the power generation device 4). Less than the sum of Therefore, the cam 30 does not reversely rotate.
  • a separate mechanism may be provided in the storage device 3 so that the cam 30 does not reversely rotate during elastic energy storage.
  • the cam 30 does not reversely rotate during elastic energy storage.
  • FIG. 6 shows a state when using elastic energy.
  • the elastic deformation of each ring body 38 is eliminated. It is pushed in the direction indicated by. That is, the elastic energy stored in the elastic body 34 is used.
  • the cam 30 rotates by the force pushed by the elastic body 34 in addition to the rotation by the first power.
  • the power generated with the rotation of the cam 30 corresponds to the second power described above.
  • the second power is transmitted to the power generation device 4 via the second shaft 7 and the power generation device 4 generates power. Thereafter, when the distance between the position where the outer peripheral surface of the cam 30 contacts the ring body 38 and the third shaft 31 reaches the minimum distance, accumulation of elastic energy is started again.
  • the second shaft 7 also rotates during elastic energy accumulation, but the power generation device 4 does not generate power because the rotational speed and torque are small. Or even if it generates electric power, only very small electric power is generated. In general, the larger the generated power, the greater the load on the power generator. Therefore, the load of the power generation device 4 at the time of elastic energy accumulation is extremely small.
  • the gear ratio of the transmission 6 is determined so that the elastic body 34 is elastically deformed and the power generation device 4 does not generate power when elastic energy is accumulated. That is, the torque N1 for rotating the shaft 5B is smaller than the torque N2 required for power generation by the power generation device 4 (N1 ⁇ N2).
  • the first power W1 transmitted through the shaft 5B is smaller than the third power W3 required for power generation by the power generation device 4, and is equivalent to the fourth power W4 required for elastic energy storage by the storage device 3. Or more (W4 ⁇ W1 ⁇ W3).
  • the second power W2 generated in the storage device 3 when using elastic energy is equal to or greater than the third power W3 (W3 ⁇ W2).
  • the power generation system 1 repeats accumulation and use of elastic energy.
  • the first power obtained from the renewable energy is unstable, and a value suitable for power generation cannot always be obtained, and sometimes it stops.
  • the power generation device when the power from the receiving device is less than the load of the power generation device, the power generation device does not operate and power may not be obtained. In this case, the power generated by the receiving device is wasted.
  • the power generation system 1 according to the present embodiment even when the first power generated by the receiving device 2 is small, the first power can be effectively utilized to generate power. That is, the first power from the receiving device 2 is temporarily stored as elastic energy in the storage device 3.
  • the storage device 3 uses the elastic energy to generate the second power that exceeds the load of the power generation device 4.
  • This second power is extremely stable because it corresponds to energy when the elastic body 34 releases elastic deformation.
  • FIG. 7 is a diagram illustrating a main configuration of the power generation system 1 according to the second embodiment.
  • the receiving device 2 includes a floating body 20, a rack 21, and a gear 22.
  • the floating body 20 is floated on a water surface WF such as a sea or a lake.
  • the floating body 20 moves up and down according to a change in the position of the water surface WF due to waves.
  • the rack 21 is fixed to the floating body 20.
  • the rack 21 has a blade row 21 a arranged in a straight line in the vertical movement direction of the floating body 20.
  • the gear 22 meshes with the rack row 21a.
  • the gear 22 is rotatable about the shaft 5A.
  • the gear 22 includes, for example, a one-way clutch mechanism, and transmits the rotation when the rack 22 is raised to the shaft 5A and does not transmit the rotation when the rack 22 is lowered to the shaft 5A.
  • the rotational motion of the shaft 5A when the rack 22 is raised corresponds to the first power.
  • the gear 22 may transmit the rotation when the rack 22 is lowered to the shaft 5A.
  • the rotational motion of the shaft 5A when the rack 22 is lowered corresponds to the first power.
  • rotation when the rack 22 is raised and lowered may be transmitted to the shaft 5A.
  • FIG. 7 shows an example in which the floating body 20 and the rack 21 are fixed.
  • the floating body and the rack 21 may be connected by the inner cable and the outer cable described above. In this case, the freedom degree of installation positions, such as the floating body 20 and the storage device 3, increases.
  • FIG. 8 is a diagram illustrating a main configuration of the power generation system 1 according to the third embodiment.
  • the receiving device 2 includes a blade 23.
  • the storage device 3, the power generation device 4, and the transmission 6 are accommodated in a nacelle 101 supported at a high place by a support column 100.
  • a part of the power generation device 4, for example, the power storage unit 43 and the power transmission unit 44 may be provided outside the nacelle 101.
  • each ring body 38 and the stopper of the elastic body 34 are arranged in the vertical direction (the direction of gravity, the extending direction of the column 100).
  • the blade 23 is rotatable about the shaft 5A.
  • the shaft 5A rotates when the blade 23 rotates by receiving wind.
  • This rotational movement of the shaft 5A corresponds to the first power.
  • FIG. 8 shows an example in which the rotational motion of the blade 23 is directly transmitted to the shaft 5A.
  • the inner cable and the outer cable described above may be interposed between the blade 23 and the shaft 5A.
  • a mechanism for converting the rotational motion of the blade 23 into the reciprocating motion of the inner cable and a mechanism for converting the reciprocating motion of the inner cable into the rotational motion of the shaft 5A are provided.
  • the storage device 3 and the power generation device 4 can be arranged outside the nacelle 101.
  • FIG. 9 is a diagram illustrating a main configuration of the power generation system 1 according to the fourth embodiment.
  • the receiving device 2 in the first embodiment receives the hydraulic power of water flowing in a river or the like to generate the first power.
  • the receiving device 2 includes a turbine 24 whose lower part is immersed in running water R flowing in a river or the like.
  • the turbine 24 receives the force of the flowing water R and rotates about the shaft 5A. This rotational movement of the shaft 5A corresponds to the first power.
  • FIG. 9 shows an example in which the rotational motion of the turbine 24 is directly transmitted to the shaft 5A.
  • the inner cable and the outer cable described above may be interposed between the turbine 24 and the shaft 5A.
  • a mechanism for converting the rotational motion of the turbine 24 into the reciprocating motion of the inner cable and a mechanism for converting the reciprocating motion of the inner cable into the rotational motion of the shaft 5A are provided. With such a configuration, the degree of freedom of the installation positions of the turbine 24 and the storage device 3 is increased.
  • FIG. 10 is a diagram showing a schematic configuration of the storage device 3 according to the fifth embodiment.
  • the storage device 3 includes a gear 130 (first gear), a gear 131 (second gear), a gear 132 (third gear), a rack 133, a movable member 134, a sensor 135, a control device 136, It has. Further, the storage device 3 includes a rail 35, a stopper 36, an elastic body 34, and a slider 37, as in the first embodiment.
  • the elastic body 34 includes three ring bodies 38. However, the number and shape of the ring 38 are not particularly limited.
  • the gear 130 can rotate around the shaft 5B.
  • the gear 131 can rotate around the second shaft 7.
  • the gear 132 can rotate around the shaft 137.
  • the rack 133 has a blade row 133a arranged in a straight line.
  • the movable member 134 is connected to one end of the rack 133. Furthermore, the movable member 134 is in contact with the outer peripheral surface of the ring body 38 disposed at the left end in the drawing.
  • the gear 132 meshes with the gear 130, the gear 131, and the blade row 133a. As the gear 132 rotates, the rack 133 and the movable member 134 reciprocate in a direction approaching the stopper 36 and a direction away from the stopper 36.
  • the gear 130 has a bi-directional first clutch mechanism CL1 capable of switching between the driving direction and the idling direction.
  • the first clutch mechanism CL1 switches the driving direction and the idling direction by electromagnetic control, for example, and is controlled by the control device 136.
  • the sensor 135 detects that the rack 133 or the movable member 134 has reached the first reference position and the second reference position.
  • the first reference position is, for example, a position where the marker M1 attached to the rack 133 and the sensor 135 face each other.
  • the second reference position is, for example, a position where the marker M2 attached to the rack 133 and the sensor 135 face each other.
  • the sensor 135 outputs a detection signal when detecting the markers M1 and M2.
  • the sensor 135 is an optical sensor that optically detects the markers M1 and M2.
  • the sensor 135 may be another type of sensor such as a magnetic sensor that magnetically detects the markers M1 and M2.
  • the control device 136 controls the first clutch mechanism CL1 based on the detection signal of the sensor 135. That is, the gear 130 functions as a two-way clutch gear.
  • the driving direction is the rotation direction of the gear 130 that transmits power between the shaft 5B and the gear 132
  • the idling direction is the rotation direction of the gear 130 that does not transmit power between the shaft 5B and the gear 132.
  • the gear 131 has a unidirectional second clutch mechanism CL2 that has a driving direction and an idling direction but cannot switch between them. That is, the gear 131 functions as a one-way clutch gear.
  • a bi-directional clutch mechanism may be used as the second clutch mechanism CL2.
  • the driving direction is the rotation direction of the gear 131 that transmits power between the second shaft 7 and the gear 132
  • the idling direction is a gear that does not transmit power between the second shaft 7 and the gear 132.
  • 131 is the direction of rotation.
  • the first clutch mechanism CL1 and the second clutch mechanism CL2 constitute a switching mechanism 140.
  • the switching mechanism 140 switches between a first state that allows elastic deformation of the elastic body 34 and a second state that releases elastic deformation of the elastic body 34.
  • an arrow indicated by a solid line indicates the rotation direction of each gear when elastic energy is accumulated.
  • the arrow shown with a broken line shows the rotation direction of each gear at the time of elastic energy utilization.
  • the shaft 5B rotates in the same direction both when elastic energy is accumulated and when it is used.
  • the driving direction and idling direction of the first clutch mechanism CL1 are set so that the gear 130 rotates in the direction of the solid arrow in response to the rotation of the shaft 5B.
  • the gear 132, the gear 131, and the gear 131 rotate in the direction indicated by the solid arrow.
  • the drive direction and the rotation direction of the second clutch mechanism CL2 are set so that the gear 131 does not rotate and the second shaft 7 does not rotate.
  • the gear 132 rotates, the rack 133 and the movable member 134 move toward the stopper 36. Further, each ring 38 is elastically deformed by being pushed by the movable member 134.
  • the elastic member 34 pushes the movable member 134 and the rack 133 away from the stopper 36, thereby rotating the gear 132 in the direction indicated by the dashed arrow.
  • the gear 130 and the gear 131 rotate in the direction indicated by the broken line arrow.
  • the drive direction of the first clutch mechanism CL1 and the idling direction are reversed by the control of the control device 136. Therefore, since the gear 130 idles, the rotation of the gear 130 is not transmitted to the shaft 5B.
  • the rotation of the gear 131 coincides with the driving direction of the second clutch mechanism CL2, the second shaft 7 is rotated by the rotation of the gear 131.
  • the power generation device 4 can generate power. It should be noted that it is necessary to prevent the elastic deformation of the elastic body 34 from being released during elastic energy accumulation. In this embodiment, release of elastic deformation of the elastic body 34 is prevented by using the load of the shaft 5B (the load of the receiving device 2 and the transmission 6) and the load of the second shaft 7 (the load of the power generation device 4). It is out. That is, even when the elastic body 34 tries to push the movable member 134 and the rack 133 away from the stopper 36 during the accumulation of elastic energy, the rotational directions of the gear 130 and the gear 131 at this time coincide with the driving direction.
  • the load of the shaft 5B and the second shaft 7 acts simultaneously, and the movable member 134 and the rack 133 are prevented from moving.
  • the load of the shaft 5B and the second shaft 7 is used to prevent release of elastic deformation of the elastic body 34.
  • release of elastic deformation during energy storage is prevented. But it ’s okay.
  • the storage device 3 is set to the first state described above.
  • the gears 130 and 132 are rotated by the first power transmitted via the shaft 5 ⁇ / b> B, and the rack 133 and the movable member 134 move toward the stopper 36. Accordingly, each ring 38 is elastically deformed, and elastic energy corresponding to the elastic deformation is accumulated in the accumulation device 3.
  • the control device 136 controls the switching mechanism 140 (mainly the first clutch mechanism CL1) and switches the storage device 3 to the second state described above.
  • the movable member 134 and the rack 133 are pushed by releasing the elastic deformation of the elastic body 34, and the movable member 134 and the rack 133 move away from the stopper 36.
  • the gear 131 rotates, and further, the rotation of the gear 131 is transmitted to the second shaft 7 and the second shaft 7 rotates.
  • the power generation device 4 generates electric power.
  • the control device 136 controls the switching mechanism 140 (mainly the first clutch mechanism CL1), and switches the storage device 3 to the first state described above. Thereby, the storage device 3 again stores elastic energy using the first power.
  • the present invention can be implemented by adding various modifications to the configurations of the embodiments described above.
  • the configurations disclosed in the embodiments may be combined as appropriate.
  • the forms modified without departing from the gist of the invention are included in the invention described in the claims and the equivalents thereof.
  • the storage device 3 disclosed the example which stores elastic energy by compressing the elastic body 34.
  • the storage device 3 may store elastic energy by expanding the elastic body 34 or may store it by continuously compressing and expanding.
  • the storage device 3 may include a mechanism for transmitting the first power from the receiving device 2 to the power generation device 4 as it is, and the mechanism and a mechanism for storing elastic energy may be switched.
  • the control method in which the control device 136 switches between the first state and the second state is not limited to the above. For example, after the sensor 135 detects the marker M1 and is switched to the second state, it may be switched to the first state when a certain time has elapsed. In this case, it is not necessary to detect the marker M2.
  • the sensor 135 may be switched to the second state when a certain time has elapsed. In this case, it is not necessary to detect the marker M1. Moreover, you may switch a 1st state and a 2nd state for every fixed time. In this case, the sensor 136 is not necessary. Further, the number of rotations of the gear 132 or the like may be counted, and the first state and the second state may be switched according to the count value. In addition, various control methods can be adopted. The method of elastically deforming the elastic body 34 in the storage device 3 is not limited to that using the cam 30 or the rack 133.
  • a ball screw mechanism including a screw that rotates as the shaft 5B rotates and a nut that is screwed into the screw via a ball can be used. That is, in this ball screw mechanism, the elastic body 34 can be elastically deformed if the elastic body 34 is compressed or stretched as the nut moves.
  • the problem of the threshold value for starting the energy receiving unit at least the problem of the threshold value for starting the energy receiving unit, the problem of the threshold value of the power generation system, the problem of power generation efficiency
  • the problem of the power storage performance of a power storage device such as a battery due to the discontinuity of the battery can be solved. That is, (Solving the problem of the threshold for starting energy reception)
  • Conventional wind power generators have a torque that does not lose the kinetic energy to the load on the generator side, so the blades need to be sturdy and tend to be heavy. This increases the threshold of wind power until the blades begin to rotate.
  • the kinetic energy of the regenerative energy is not the generator but the transmission is used as the inlet, so that the load received by the energy receiving unit can be freely reduced by the transmission rate.
  • the blade can be made of a material such as cloth in an extreme case, and can be designed so that it can be easily rotated even by a slight wind.
  • power generation efficiency can be improved with a relatively simple configuration, and a highly efficient power generation system can be realized at low cost. There is no doubt that this will greatly contribute to the improvement of system performance and to wind power and wave power generation for consumer use.
  • the elastic energy storage device of the present invention is provided with a transmission that can reduce the torque received on the regeneration energy receiving device side as necessary, in addition to the combination with the regeneration energy receiving device, human power and crane In combination with external power like a car, it can also be used as a power generator for remote areas and emergency use.
  • elastic energy can be stored and generated by combining human power instead of renewable energy.
  • stable power generation for a long time can be supplied.
  • the first energy is stored using the first power that is external power
  • the first energy is stored using the stored elastic energy.
  • a power generation system including a storage device that generates second power that is larger than power and a power generation device that converts the second power into electric power, and “stores elastic energy using the first power that is external power” ,
  • An elastic energy storage device for a power generation system that generates second power that is larger than the first power by using the stored elastic energy and that can be used for power generation.
  • SYMBOLS 1 Electric power generation system, 2 ... Regenerative energy acceptance apparatus, 3 ... Accumulation apparatus, 4 ... Electric power generation apparatus, 5 ... 1st shaft, 6 ... Transmission, 7 ... 2nd shaft, 30 ... Cam, 31 ... 3rd shaft, 34 DESCRIPTION OF SYMBOLS ... Elastic body, 35 ... Rail, 36 ... Stopper, 37 ... Slider, 38 ... Ring, 133 ... Rack, 134 ... Movable member, 135 ... Sensor, 136 ... Control apparatus, 140 ... Switching mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)

Abstract

A power generation system according to an embodiment is characterized in that renewable energy, such as wind power or wave power, is converted into elastic energy and stored, and thereafter a generator device is driven using energy released from the stored energy. Specifically, as a shaft 5B of a storage device 3 is rotated, gears 32A, 32b, a third shaft 31, a cam 30, gears 33A, 33B, and a second shaft 7 are rotated. Then, in accordance with a rotation angle of the cam 30, annular members 38 constituting an elastic body 34 repeat storing and releasing of elastic energy. The process allows even discontinuous and unstable renewable energy to be stored without loss, and released stably and continuously using a stable repulsive force of the elastic body 34. The invention makes it possible to obtain large power to stably drive the generator device even in an unstable and intermittent renewable energy environment.

Description

発電システム及び発電システム用弾性エネルギー蓄積装置Power generation system and elastic energy storage device for power generation system
 本発明は、再生エネルギーに基づいて発電する発電システム及び再生エネルギーに基づいて弾性エネルギーを蓄える蓄積装置に係り、特に、自然界に発生する風、海水の干満、波、川の流れなど、流体の流動や、その他の再生エネルギーを利用して発電する発電システム、好適には、平均的に低い再生エネルギー、そしてエネルギーの継続性に難のある環境での再生エネルギーを利用する発電システム、及びこれらの再生エネルギーを弾性エネルギーとして一旦蓄積し、この弾性エネルギーを発電に適したエネルギーとして発電機に送る発電システム用弾性エネルギー蓄積装置に関する。 The present invention relates to a power generation system that generates power based on renewable energy and a storage device that stores elastic energy based on renewable energy, and in particular, fluid flow such as wind, seawater tidal waves, waves, and river flows that occur in nature. And other power generation systems that generate power using renewable energy, and preferably power generation systems that use renewable energy in an environment with low average renewable energy and difficult energy continuity, and their regeneration The present invention relates to an elastic energy storage device for a power generation system that temporarily stores energy as elastic energy and sends this elastic energy to a generator as energy suitable for power generation.
 再生エネルギーを利用する発電システムは、高いエネルギーができるだけ継続的に得られる環境で使用されているのが一般的である。たとえば、風力発電においては、強い風が期待できる海岸や沖合、あるいは山頂、山腹などへの設置が主流である。さらに、そのエネルギー受容機構(ブレード)は、数十メートルの高所に配置される。また、波力発電においては、実用例は、はなはだ少ないが、これまで開発が試みられた例をみると、波高の高い沖合での設置が主流となっている。そして、これらは、ほとんどが大型の設備である。
 再生エネルギーの地産地消がいわれて久しい。このため、民生品として実用的な、中型、小型のもので、かつ、一般的な環境である市街地での風力発電や入り江での波力発電などの実現が期待されている。しかし、現状は、きわめて補助的なものに限られ、代替の電力発生機としての能力を持つものはまだ現れていない。その最大の理由は、設置される環境にある。
Generally, a power generation system using renewable energy is used in an environment where high energy can be obtained as continuously as possible. For example, in wind power generation, installation on the coast, offshore, mountain top, mountainside, etc. where strong wind can be expected is the mainstream. Further, the energy receiving mechanism (blade) is arranged at a height of several tens of meters. In wave power generation, there are very few practical examples. However, when the development has been attempted so far, installation offshore with high wave height is the mainstream. And most of these are large facilities.
It has been a long time since local production for local consumption of renewable energy was said. For this reason, it is expected to realize wind power generation in urban areas and wave power generation in bays, which are practical, medium-sized and small-sized consumer products. However, the current situation is limited to very subsidized ones, and no one with the ability as an alternative power generator has yet appeared. The biggest reason is the installation environment.
 風力発電を例にすると、東京都内のビルの屋上の年間平均風速は3m程度である。風のない日も多く、エネルギーの継続性も悪い。民生用に販売されている風力発電機の中には、2000kWhの発電能力をうたっている製品があるが、それは、風速15mといった強風時を前提とした能力であって、都会では年に何回もない強風である。このような製品を実際に東京都内のような年間平均風速3m(前記風速の5分の1)の環境で使用すると、次のような種々の問題が生じて、発電力は前記風速の20分の1の100kWh程度に落ちてしまう。 Taking wind power generation as an example, the annual average wind speed on the roof of a building in Tokyo is about 3m. There are many days without wind and energy continuity is poor. Among the wind power generators sold for consumer use, there is a product that claims a power generation capacity of 2000 kWh, which is based on the assumption of strong winds such as wind speeds of 15 m. There is no strong wind. When such a product is actually used in an environment with an annual average wind speed of 3 m (1/5 of the wind speed) as in Tokyo, the following various problems occur, and the generated power is 20 minutes of the wind speed. It drops to about 100kWh.
 1.微風時では、システムの機械的負荷、例えばブレード(羽)などの重量、モーター軸のトルクなどによってブレードが回転しないという、エネルギー受容部の閾値の問題が生じる。
 2.ブレード(羽)が回る風速に達しても、発電機のモーターが発電するまでの回転スピードに達しなければ利用できる電力とならないという、発電システムの閾値の問題が生じる。
 3.発電できる回転スピードに達しても、システム内の負荷による電力ロスによって受容エネルギーが消費されてしまうという、発電効率の問題が生じる。
 4.風力がブレードを回し十分な電力が発生してバッテリ等の蓄電装置に蓄えられても、風がなく発電しない時間が長く続くとバッテリ内で自然放電してしまうという、発電の非継続性によるバッテリ等の蓄電装置の蓄電性能の問題が生じる。
1. In a light wind, there is a problem of the threshold of the energy receiving unit that the blade does not rotate due to the mechanical load of the system, for example, the weight of the blade (wing), the torque of the motor shaft, and the like.
2. Even if the wind speed at which the blades (wings) turn is reached, there is a problem of the threshold value of the power generation system in that the electric power that can be used is not reached unless the rotation speed until the motor of the generator is generated is reached.
3. Even when the rotation speed at which power can be generated is reached, there is a problem of power generation efficiency in that the received energy is consumed due to the power loss due to the load in the system.
4). Batteries due to non-continuity of power generation, in which even if wind power rotates blades and sufficient power is generated and stored in a power storage device such as a battery, if there is no wind and power generation continues for a long time, the battery will spontaneously discharge in the battery The problem of the power storage performance of the power storage device occurs.
 他方、波の上下動(波高)をエネルギー源とする波力発電においては、沖合の年間平均数メートルの波高に対して、民生用として実用となる設置環境の海の入り江などは、年間平均数10センチメートルの波高であり、波高を風速と読み替えれば風力発電とまったく同様の問題が生じることは論を待たない。
 このような問題の解決に、低速で発電できる多極発電モーターや電力のコンピュータ制御によるバッテリーチャージャなどが提案されているが、いずれも効果のわりに高価であって、対費用効果の点で採用されないのが現状である。このような事情から、民生用に供し得る、小型、中型で、再生エネルギー環境が悪い民生環境でも実用できる発電システムが求められていた。
On the other hand, in the case of wave power generation using wave ups and downs (wave height) as an energy source, the average number of sea bays, etc. in the installation environment that is practically used for civilian use is compared to the annual average wave height of several meters offshore. There is no question that the wave height is 10 centimeters, and that if the wave height is read as wind speed, the same problem as wind power generation will occur.
To solve these problems, multipolar generator motors that can generate electricity at low speeds and battery chargers that use computer control of electric power have been proposed, but none of them are expensive and cost-effective. is the current situation. Under such circumstances, there has been a demand for a power generation system that can be used in consumer use, and can be used in a consumer environment that is small, medium, and has a poor renewable energy environment.
 特許文献1には、外力により弾性体を歪ませることにより外部エネルギーを蓄積するとともに蓄積した外部エネルギーを略一定の仕事率で出力する力学的エネルギー蓄積手段と、前記力学的エネルギー蓄積手段より出力される外部エネルギーを電力に変換する発電手段と、前記発電手段により変換された電力を整流する整流手段とを具備した力学的エネルギー蓄積式発電装置が開示され、弾性体としてゼンマイ、つるまきバネ、板バネ、ゴム、形状記憶合金等が例示されている。
 この発明では、蓄積手段に力学的エネルギーを蓄積させる外力は人力であり、例えば、回動摘みを指で摘んで回動させることにより、ゼンマイが動力入力軸に巻き付けられ、外部エネルギーはゼンマイに蓄積されることが記載されている。
In Patent Document 1, external energy is accumulated by distorting an elastic body by an external force, and the external energy accumulated is output at a substantially constant power, and output from the mechanical energy accumulation unit. Disclosed is a mechanical energy storage type power generation device comprising a power generation means for converting external energy into electric power and a rectification means for rectifying the power converted by the power generation means, and a spring, a helical spring, a plate as an elastic body Examples are springs, rubber, shape memory alloys and the like.
In this invention, the external force for accumulating the mechanical energy in the accumulating means is human power. For example, when the rotary knob is picked and rotated, the mainspring is wound around the power input shaft, and the external energy is stored in the mainspring. It is described that it is done.
 特許文献2には、それ自体が移動されることにより生じる運動エネルギーを電気エネルギーに変換するカード型発電機であって、前記運動エネルギーを受けて機械的なエネルギーに変換する機械エネルギー変換手段と、この機械エネルギー変換手段が変換した機械エネルギーを蓄積する機械エネルギー蓄積手段と、この機械エネルギー蓄積手段から出力される機械エネルギーにより駆動されて電力を発生する発電手段とを備えた発電機構が、カード型に形成されたケースに内蔵されていることを特徴とするカード型発電機が開示されている。そして、機械エネルギー蓄積手段として、回転錘の回転により変形し、その変形により前記機械エネルギーを蓄積する弾性体(例えばゼンマイ)が例示されている。そして、利用する運動エネルギーは、携帯者の歩行等により生じる運動エネルギーであり、間接的ではあるが人力である。 Patent Document 2 is a card-type generator that converts kinetic energy generated by being moved into electrical energy into mechanical energy conversion means that receives the kinetic energy and converts it into mechanical energy; A power generation mechanism comprising mechanical energy storage means for storing mechanical energy converted by the mechanical energy conversion means and power generation means for generating electric power driven by mechanical energy output from the mechanical energy storage means is a card type A card-type generator characterized in that it is built in a case formed in the above. An example of the mechanical energy storage means is an elastic body (for example, a spring) that is deformed by rotation of a rotary weight and stores the mechanical energy by the deformation. The kinetic energy to be used is kinetic energy generated by the walking of the wearer and the like, but indirectly, is human power.
 特許文献3には、水の運動エネルギー(通水路中に流れる水の運動エネルギー)を一時的に力学的エネルギーとして蓄積する力学的エネルギー蓄積手段と、前記力学的エネルギーを電気エネルギーへ変換する発電手段と、前記発電手段により得られる電気エネルギーを蓄える蓄電手段とを備えるよう構成した自動吐水装置へ電気エネルギーを供給する為の電源装置が開示され、力学的エネルギー蓄積手段として、力学的エネルギーをゼンマイやゴム、バネなどの弾性体が例示されている。そして、使用される運動エネルギーは、通水路中に流れる水の運動エネルギーである。 Patent Document 3 discloses mechanical energy storage means for temporarily storing water kinetic energy (kinetic energy of water flowing in a water passage) as mechanical energy, and power generation means for converting the mechanical energy into electric energy. And a power supply device for supplying electrical energy to an automatic water discharge device configured to include an electrical storage device that stores electrical energy obtained by the power generation device, and as a mechanical energy storage device, Examples are elastic bodies such as rubber and springs. And the kinetic energy used is the kinetic energy of the water which flows in a water channel.
 特許文献4には、一方向に長手方向を有するラックバーと、ラックバーに対する相対移動にて回動されるピニオンと、ピニオンの回転力を利用して発電する発電手段とを備え、一方向の成分を有する運動力が与えられると、ラックバーとピニオンとが一方向に沿って相対移動を行い、この相対移動によりピニオンが回転される。ピニオンの回転により発電手段で発電される発電機が開示されている。そして、ラックバーおよびピニオンの少なくともいずれか一方には、このいずれか一方の相対移動方向に対して反対方向の反力を付与する反力付与手段(弾性体)を設けられ、弾性体として、コイルバネ、板バネ、ゴム等が例示されている。 Patent Document 4 includes a rack bar having a longitudinal direction in one direction, a pinion that is rotated by relative movement with respect to the rack bar, and a power generation means that generates electric power using the rotational force of the pinion. When a kinetic force having a component is applied, the rack bar and the pinion perform relative movement along one direction, and the pinion is rotated by this relative movement. A generator that generates power by means of power generation by rotation of a pinion is disclosed. At least one of the rack bar and the pinion is provided with a reaction force applying means (elastic body) that applies a reaction force in the opposite direction to the relative movement direction of either one of the rack bar and the pinion. Examples are leaf springs, rubbers and the like.
特開平10-131841号公報JP 10-131841 A 特開2002-84726号公報JP 2002-84726 A 特開2003-278216号公報Japanese Patent Laid-Open No. 2003-278216 特開2004-260896公報JP 2004-260896 JP
 本発明者は、従来の再生エネルギーの発電システムの前述した問題点が、再生エネルギーから取り出した運動エネルギーを発電機に直接接続し、再生エネルギーの取出しと発電とを同一の時系列で処理していることに起因していることを見出した。すなわち、再生エネルギーの取出しと発電とを同一の時系列で処理する場合、電力変換の効率は、再生エネルギーの高さと発電モーターの変換効率で決まってしまい、低い再生エネルギーの入力は前述の問題にあるように著しく不利である。また、エネルギーの継続性には何ら対策がないため、バッテリ等の蓄電装置における自然放電も回避できない。 The present inventor has found that the above-mentioned problem of the conventional renewable energy power generation system is that the kinetic energy extracted from the renewable energy is directly connected to the generator, and the extraction of the renewable energy and the power generation are processed in the same time series. I found out that it is due to being. That is, when the extraction of renewable energy and power generation are processed in the same time series, the efficiency of power conversion is determined by the height of the renewable energy and the conversion efficiency of the generator motor, and the input of low renewable energy is a problem described above. There is a marked disadvantage as it is. In addition, since there is no countermeasure against energy continuity, natural discharge in a power storage device such as a battery cannot be avoided.
 そこで、本発明者は、再生エネルギーの取出しと発電とを同一の時系列で処理せず、発電の前に一旦再生エネルギーを弾性エネルギーとして蓄積し、この弾性エネルギーを所定量蓄積した後に発電する機構を鋭意検討した。その結果、発電機の前に再生エネルギーを弾性エネルギーとしの蓄積する装置を備え、弾性エネルギーを積み上げることにより、小さな弾性エネルギーや断続的な弾性エネルギーを、大きな連続する弾性エネルギーに変換し、発電機に供給しうることに思い至り、都市部の風力発電や入り江での波力発電など民生用の再生エネルギーの実現に障害となっている再生エネルギーの低さ、断続的なエネルギーの発生といった環境の問題を克服しうることを見出した。 Therefore, the present inventor does not process the extraction of regenerative energy and power generation in the same time series, but temporarily stores regenerative energy as elastic energy before power generation, and generates power after accumulating a predetermined amount of this elastic energy. We have studied earnestly. As a result, a generator is installed in front of the generator to store the regenerative energy as elastic energy. By accumulating elastic energy, small elastic energy and intermittent elastic energy are converted into large continuous elastic energy, and the generator The low renewable energy, which is an obstacle to the realization of renewable energy for civilian use, such as wind power generation in urban areas and wave power generation at the bay, and the generation of intermittent energy I found that the problem could be overcome.
 すなわち、本発明は、上記事情に鑑みてなされたもので、再生エネルギーの取出しと発電とを同一の時系列で処理せず、発電の前に一旦再生エネルギーを弾性エネルギーとして蓄積し、その再生エネルギー(弾性エネルギー)が発電に有効な所定量蓄積された後に発電することにより、民生用に供し得る、小型、中型で、再生エネルギー環境が悪い民生環境でも実用できる発電システム及びこの発電システムに適用される弾性エネルギー蓄積装置を提供することである。 That is, the present invention has been made in view of the above circumstances, and does not process the extraction of the regenerative energy and the power generation in the same time series, and temporarily stores the regenerative energy as elastic energy before the power generation. It is applied to this power generation system and a power generation system that can be used for consumer use by generating electricity after a predetermined amount of (elastic energy) is accumulated for power generation, and that can be used in a consumer environment that is small, medium-sized, and has a poor renewable energy environment. An elastic energy storage device is provided.
 しかし、引用文献1~4の方法では、いずれもエネルギー蓄積の大きさに限界がある。 However, in the methods of Cited Documents 1 to 4, there is a limit to the magnitude of energy storage.
 本発明は、上記課題を解決するためになされたもので、以下の構成を具備している。
 発明1は、入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生する蓄積装置と、前記第2動力を電力に変換する発電装置と、を備え、前記蓄積装置は、帯状の部材により構成され半径方向に弾性変形可能な環体を含む弾性体を備え、前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換する、発電システムである。
The present invention has been made to solve the above-described problems, and has the following configuration.
The first aspect of the invention is to store elastic energy using the input first power, and to use the stored elastic energy to generate a second power larger than the first power, and to store the second power as electric power. A power generation device for conversion, and the storage device includes an elastic body that includes a ring-shaped member that is elastically deformable in a radial direction, and elastically deforms the elastic body by the first power. The power generation system stores elastic energy and converts elastic energy into the second power when the elastic body is released from elastic deformation.
 発明2は、前記蓄積装置は、レールと、前記レールに沿って外周面を互いに接触させて配列された複数の前記環体と、各前記環体を前記レールに対してスライド自在に取り付けるスライダと、各前記環体のうち、一方の端の前記環体に接触するストッパと、をさらに備え、前記第1動力により各前記環体を前記ストッパに向けて圧縮させるか、或いは前記ストッパから離れる方向に伸張させることで、各前記環体が弾性変形する、発明1に記載の発電システムである。 In the second aspect of the present invention, the storage device includes a rail, a plurality of the annular bodies arranged so that outer peripheral surfaces thereof are in contact with each other along the rail, and a slider for slidably attaching the annular bodies to the rail. A stopper that contacts the annular body at one end of each of the annular bodies, and compresses each annular body toward the stopper by the first power or moves away from the stopper. The power generation system according to claim 1, wherein each of the annular bodies is elastically deformed by being stretched to the right.
 発明3は、エネルギーを受容して前記第1動力を発生する受容装置を更に備え、前記受容装置と前記蓄積装置とを接続する第1シャフトと、前記蓄積装置と前記発電装置とを接続する第2シャフトと、をさらに備え、前記第1動力は、前記第1シャフトの回転運動により前記蓄積装置に伝達され、前記第2動力は、前記第2シャフトの回転運動により前記発電装置に伝達される、発明1又は2に記載の発電システムである。 A third aspect of the present invention further includes a receiving device that receives energy and generates the first power, a first shaft that connects the receiving device and the storage device, and a first shaft that connects the storage device and the power generation device. Two shafts, wherein the first power is transmitted to the storage device by the rotational motion of the first shaft, and the second power is transmitted to the power generation device by the rotational motion of the second shaft. The power generation system according to claim 1 or 2.
 発明4は、エネルギーを受容して第1動力を発生する受容装置と、前記第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生する蓄積装置と、前記第2動力を電力に変換する発電装置と、前記受容装置と前記蓄積装置とを接続し、前記受容装置が発生した前記第1動力を回転運動により前記蓄積装置に伝達する第1シャフトと、前記蓄積装置と前記発電装置とを接続し、前記蓄積装置が発生した前記第2動力を回転運動により前記発電装置に伝達する第2シャフトと、前記第1シャフトに設けられ、前記第1シャフトの回転速度を変速する変速機と、を備え、前記蓄積装置は、弾性体を備え、前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換し、前記変速機による変速後の前記第1シャフトのトルクは、前記発電装置による発電に必要な前記第2シャフトのトルクよりも小さい、発電システムである。 The invention 4 is a receiving device that receives energy and generates first power, stores elastic energy using the first power, and generates second power that is larger than the first power using the stored elastic energy. An accumulating device that generates power, a power generating device that converts the second power into electric power, and the receiving device and the accumulating device are connected, and the first power generated by the receiving device is transmitted to the accumulating device by rotational movement. A first shaft that connects the storage device and the power generation device, a second shaft that transmits the second power generated by the storage device to the power generation device by a rotational motion, and the first shaft. A transmission that changes the rotational speed of the first shaft, and the storage device includes an elastic body, and elastically deforms the elastic body by the first power to generate elastic energy. When the elastic deformation of the elastic body is released, elastic energy is converted into the second power, and the torque of the first shaft after the shift by the transmission is the second shaft necessary for power generation by the power generation device. It is a power generation system that is smaller than the torque.
 発明5は、前記蓄積装置は、第3シャフトと、前記第3シャフトを軸として回転するカムと、前記第1シャフトの回転運動を前記第3シャフトに伝達する第1ギア列と、前記第3シャフトの回転運動を前記第2シャフトに伝達する第2ギア列と、をさらに備え、前記第1動力による前記第1シャフト、前記第1ギア列、及び前記第3シャフトの回転運動により前記カムが前記弾性体を弾性変形させ、前記弾性体の弾性変形の解消に伴う前記カム、前記第3シャフト、及び前記第2ギア列の回転運動により前記第2シャフトを回転させる前記第2動力が発生する、発明4に記載の発電システムである。 According to a fifth aspect of the present invention, the storage device includes a third shaft, a cam that rotates about the third shaft, a first gear train that transmits the rotational motion of the first shaft to the third shaft, and the third shaft. A second gear train that transmits the rotational motion of the shaft to the second shaft, and the cam is caused by the rotational motion of the first shaft, the first gear train, and the third shaft by the first power. The elastic body is elastically deformed, and the second power for rotating the second shaft is generated by the rotational movement of the cam, the third shaft, and the second gear train accompanying the cancellation of the elastic deformation of the elastic body. The power generation system according to claim 4.
 発明6は、前記蓄積装置は、前記弾性体に接続されたラックと、前記第1シャフトに接続された第1ギア及び前記第2シャフトに接続された第2ギアを含み、前記ラックに噛み合ったギア列と、をさらに備え、前記第1動力により前記第1ギアが回転して前記ラックが第1方向に移動するとともに前記弾性体が弾性変形し、前記弾性体の弾性変形の解放時に前記ラックが前記第1方向と反対の第2方向に移動するとともに前記第2ギアが回転して前記第2動力が発生する、発明4に記載の発電システムである。 According to a sixth aspect of the present invention, the storage device includes a rack connected to the elastic body, a first gear connected to the first shaft, and a second gear connected to the second shaft, and meshed with the rack. A gear train, wherein the first gear is rotated by the first power to move the rack in the first direction, the elastic body is elastically deformed, and the rack is released when the elastic deformation of the elastic body is released. The power generation system according to claim 4, wherein the second power is generated by rotating the second gear while moving in a second direction opposite to the first direction.
 発明7は、前記蓄積装置は、前記第1動力による前記弾性体の弾性変形を許容する第1状態と、前記弾性体の弾性変形を解放する第2状態と、を切り換える切換機構をさらに備える、発明1乃至6のうちいずれかに記載の発電システムである。 According to a seventh aspect of the present invention, the storage device further includes a switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released. It is an electric power generation system in any one of invention 1 thru | or 6.
 発明8は、入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生し、この第2動力を電力に変換する発電装置に対して動力伝達可能に接続される発電システム用弾性エネルギー蓄積装置であって、帯状の部材により構成され半径方向に弾性変形可能な環体を含む弾性体を備え、前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換する、発電システム用弾性エネルギー蓄積装置である。 Invention 8 stores the elastic energy using the input first power, generates the second power larger than the first power using the stored elastic energy, and converts the second power into electric power. An elastic energy storage device for a power generation system that is connected to a device so as to be capable of transmitting power, comprising an elastic body that includes a ring-shaped member and is elastically deformable in a radial direction. An elastic energy storage device for a power generation system that stores elastic energy by elastically deforming an elastic body and converts the elastic energy into the second power when releasing the elastic deformation of the elastic body.
 発明9は、レールと、前記レールに沿って外周面を互いに接触させて配列された複数の前記環体と、各前記環体を前記レールに対してスライド自在に取り付けるスライダと、各前記環体のうち、一方の端の前記環体に接触するストッパと、をさらに備え、前記第1動力により各前記環体を前記ストッパに向けて圧縮させるか、或いは前記ストッパから離れる方向に伸張させることで、各前記環体が弾性変形する、発明8に記載の発電システム用弾性エネルギー蓄積装置である。 The invention 9 includes a rail, a plurality of the annular bodies arranged with their outer peripheral surfaces in contact with each other along the rail, a slider for slidably attaching the annular bodies to the rail, and the annular bodies. A stopper that contacts the ring body at one end, and compresses each ring body toward the stopper by the first power, or extends in a direction away from the stopper. The elastic energy storage device for a power generation system according to claim 8, wherein each of the annular bodies is elastically deformed.
 発明10は、エネルギーを受容して前記第1動力を発生する受容装置からの前記第1動力を伝達する第1シャフト、及び、前記第2動力を前記発電装置に伝達する第2シャフトの各々が接続された、発明8又は9に記載の発電システム用弾性エネルギー蓄積装置である。 According to a tenth aspect of the present invention, each of the first shaft that transmits the first power from the receiving device that receives the energy and generates the first power, and the second shaft that transmits the second power to the power generator It is the elastic energy storage device for power generation systems of the invention 8 or 9 connected.
 発明11は、前記第1シャフトのトルクは、前記発電装置による発電に必要な前記第2シャフトのトルクよりも小さい、発明10に記載の発電システム用弾性エネルギー蓄積装置である。 Invention 11 is the elastic energy storage device for a power generation system according to Invention 10, wherein the torque of the first shaft is smaller than the torque of the second shaft required for power generation by the power generation device.
 発明12は、前記弾性体に接続されたラックと、前記第1シャフトに接続された第1ギア及び前記第2シャフトに接続された第2ギアを含み、前記ラックに噛み合ったギア列と、をさらに備え、前記第1動力により前記第1ギアが回転して前記ラックが第1方向に移動するとともに前記弾性体が弾性変形し、前記弾性体の弾性変形の解放時に前記ラックが前記第1方向と反対の第2方向に移動するとともに前記第2ギアが回転して前記第2動力が発生する、発明10又は11に記載の発電システム用弾性エネルギー蓄積装置である。 The invention 12 includes a rack connected to the elastic body, a gear train including a first gear connected to the first shaft and a second gear connected to the second shaft, and meshed with the rack. Further, the first gear is rotated by the first power to move the rack in the first direction, and the elastic body is elastically deformed. When the elastic body is released from elastic deformation, the rack is moved to the first direction. The elastic energy storage device for a power generation system according to claim 10 or 11, wherein the second power is generated by rotating the second gear while moving in a second direction opposite to the first direction.
 発明13は、入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生し、この第2動力を電力に変換する発電装置に対して動力伝達可能に接続される発電システム用弾性エネルギー蓄積装置であって、エネルギーを受容して前記第1動力を発生する受容装置からの前記第1動力を伝達する第1シャフト、及び、前記第2動力を前記発電装置に伝達する第2シャフトの各々が接続され、弾性体と、第3シャフトと、前記第3シャフトを軸として回転するカムと、前記第1シャフトの回転運動を前記第3シャフトに伝達する第1ギア列と、前記第3シャフトの回転運動を前記第2シャフトに伝達する第2ギア列と、を備え、前記第1動力による前記第1シャフト、前記第1ギア列、及び前記第3シャフトの回転運動により前記カムが前記弾性体を弾性変形させ、前記弾性体の弾性変形の解消に伴う前記カム、前記第3シャフト、及び前記第2ギア列の回転運動により前記第2シャフトを回転させる前記第2動力が発生する、発電システム用弾性エネルギー蓄積装置である。 In the invention 13, the elastic energy is stored using the input first power, the second power larger than the first power is generated using the stored elastic energy, and the second power is converted into electric power. An elastic energy storage device for a power generation system connected to the device so as to be capable of transmitting power, the first shaft transmitting the first power from the receiving device that receives the energy and generates the first power; and Each of the second shafts that transmit the second power to the power generation device is connected, and an elastic body, a third shaft, a cam that rotates around the third shaft, and a rotational motion of the first shaft. A first gear train for transmitting to the third shaft; and a second gear train for transmitting rotational motion of the third shaft to the second shaft, wherein the first shaft is driven by the first power. The cam causes the elastic body to be elastically deformed by the rotational movement of the first gear train and the third shaft, and the cam, the third shaft, and the second gear train are accompanied by the cancellation of the elastic deformation of the elastic body. This is an elastic energy storage device for a power generation system in which the second power for rotating the second shaft is generated by the rotational movement of the power generation system.
 発明14は、前記第1動力による前記弾性体の弾性変形を許容する第1状態と、前記弾性体の弾性変形を解放する第2状態と、を切り換える切換機構をさらに備える、発明8乃至13のうちいずれかに記載の発電システム用弾性エネルギー蓄積装置である。 The invention 14 further includes a switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released. An elastic energy storage device for a power generation system according to any one of the above.
 本発明によれば、民生用に供し得る、小型、中型で、再生エネルギー環境が悪い民生環境でも実用できる発電システム及びこの発電システムに適用される弾性エネルギー蓄積装置を提供することができる。 According to the present invention, it is possible to provide a small-sized, medium-sized power generation system that can be used for consumer use and that can be used in a consumer environment with a poor renewable energy environment, and an elastic energy storage device applied to this power generation system.
図1は、第1実施形態に係る発電システムの概略的な構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a power generation system according to the first embodiment. 図2は、蓄積装置3の一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the storage device 3. 図3は、蓄積装置3の一構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the storage device 3. 図4は、弾性エネルギー蓄積時における蓄積装置を示す図である。FIG. 4 is a diagram showing a storage device during elastic energy storage. 図5は、弾性エネルギー蓄積量が最大となった蓄積装置を示す図である。FIG. 5 is a diagram showing a storage device having the maximum elastic energy storage amount. 図6は、弾性エネルギー利用時における蓄積装置を示す図である。FIG. 6 is a diagram illustrating the storage device when using elastic energy. 図7は、第2実施形態に係る発電システムの概略的な構成を示す図である。FIG. 7 is a diagram illustrating a schematic configuration of a power generation system according to the second embodiment. 図8は、第3実施形態に係る発電システムの概略的な構成を示す図である。FIG. 8 is a diagram illustrating a schematic configuration of a power generation system according to the third embodiment. 図9は、第4実施形態に係る発電システムの概略的な構成を示す図である。FIG. 9 is a diagram illustrating a schematic configuration of a power generation system according to the fourth embodiment. 図10は、第5実施形態に係る蓄積装置の概略的な構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of a storage device according to the fifth embodiment. 図11は、弾性エネルギー蓄積時における蓄積装置を示す図である。FIG. 11 is a diagram showing a storage device during elastic energy storage. 図12は、弾性エネルギー蓄積量が最大となった蓄積装置を示す図である。FIG. 12 is a diagram illustrating a storage device in which the elastic energy storage amount is maximized. 図13は、弾性エネルギー利用時における蓄積装置を示す図である。FIG. 13 is a diagram showing a storage device when using elastic energy.
 いくつかの実施形態につき、図面を参照しながら説明する。 
 (第1実施形態) 
 図1は、第1実施形態に係る発電システム1の概略的な構成を示す図である。この発電システム1は、再生エネルギー受容装置2(以下、受容装置2と呼ぶ)と、蓄積装置3と、発電装置4とを備えている。
 受容装置2は、再生エネルギーを受容して第1動力を発生する。再生エネルギーは、例えば、風力、海などの水面が上下動する力である波力、ダムの放水や河川において水が流れる力である水力など、流体の流動により生じる種々のエネルギーを利用し得る。また、再生エネルギーとして、潮の満ち引きの力である潮力や、地熱を利用して発生させた水蒸気などを利用しても良い。再生エネルギーは、再生可能エネルギーと呼ばれることもある。これら再生エネルギー受容装置自体は、例えば、特開2015-17614号公報や特開2015-17622号公報などにより当業者に知られている。なお、本発明の再生エネルギー受容装置は、特開2015-17614号公報や特開2015-17622号公報に記載された装置に限定されるものではないことは勿論である。
Several embodiments will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram illustrating a schematic configuration of a power generation system 1 according to the first embodiment. The power generation system 1 includes a renewable energy receiving device 2 (hereinafter referred to as a receiving device 2), a storage device 3, and a power generating device 4.
The receiving device 2 receives the regenerative energy and generates first power. As the regenerative energy, for example, wave energy, which is a force that moves the water surface up and down, such as wind power and the sea, and various energy generated by fluid flow such as water discharge from a dam or water through which water flows in a river can be used. Further, as regenerative energy, tidal power that is the power of tide filling, steam generated by using geothermal heat, or the like may be used. Renewable energy is sometimes called renewable energy. These regenerative energy receiving devices themselves are known to those skilled in the art, for example, from Japanese Unexamined Patent Application Publication Nos. 2015-17614 and 2015-17622. Of course, the regenerative energy receiving apparatus of the present invention is not limited to the apparatus described in Japanese Patent Application Laid-Open No. 2015-17614 or 2015-17622.
 受容装置2と蓄積装置3は、第1シャフト5によって接続されている。図1の例において、受容装置2が発生した第1動力は、第1シャフト5を介して蓄積装置3に伝達される。
 詳しくは第2乃至第4実施形態にて後述するが、受容装置2が再生エネルギーを受容して第1動力を発生する機構としては、種々のものを採用し得る。例えば再生エネルギーが風力である場合、受容装置2は、風力を受けて回転するブレードと、このブレードの回転に伴って第1シャフト5を回転させる動力発生機構とを備える。また、再生エネルギーが波力である場合、受容装置2は、水面とともに上下運動する浮体と、この浮体の上下運動に伴って第1シャフト5を回転させる動力発生機構とを備える。また、再生エネルギーが水力である場合、受容装置2は、水力を受けて回転するタービンと、このタービンの回転に伴って第1シャフト5を回転させる動力発生機構とを備える。
 上記動力発生機構の構成は、特に限定されるものではない。例えば、風力や水力の場合には、ブレードやタービンの回転運動を第1シャフト5に伝達するギア列を含み得る。また、波力の場合には、浮体の上下運動に伴い往復運動するラックと、このラックに噛み合い、ラックの往復運動に伴って回転して第1シャフト5を回転させるギア列とを含み得る。
The receiving device 2 and the storage device 3 are connected by a first shaft 5. In the example of FIG. 1, the first power generated by the receiving device 2 is transmitted to the storage device 3 via the first shaft 5.
Although details will be described later in the second to fourth embodiments, various mechanisms may be employed as the mechanism that the receiving device 2 receives the regeneration energy and generates the first power. For example, when the regenerative energy is wind power, the receiving device 2 includes a blade that rotates by receiving the wind power, and a power generation mechanism that rotates the first shaft 5 as the blade rotates. When the regenerative energy is wave power, the receiving device 2 includes a floating body that moves up and down together with the water surface, and a power generation mechanism that rotates the first shaft 5 as the floating body moves up and down. In addition, when the regenerative energy is hydraulic, the receiving device 2 includes a turbine that rotates by receiving hydraulic power, and a power generation mechanism that rotates the first shaft 5 as the turbine rotates.
The configuration of the power generation mechanism is not particularly limited. For example, in the case of wind power or hydraulic power, a gear train that transmits the rotational motion of blades and turbines to the first shaft 5 may be included. In the case of wave power, a rack that reciprocates as the floating body moves up and down, and a gear train that meshes with the rack and rotates as the rack reciprocates to rotate the first shaft 5 can be included.
 ブレードやタービンの回転運動及び浮体の上下運動は、ケーブルの往復運動に変換された後に、第1シャフト5の回転運動に変換されても良い。上記ケーブルとしては、例えば、中空のアウターケーブルと、このアウターケーブルの内部に通されたインナーケーブルとを含み、インナーケーブルがアウターケーブルの内部で往復運動する構造を採用し得る。アウターケーブル及びインナーケーブルに柔軟性を持たせることで、インナーケーブルの往復運動を回転運動に変換する機構がブレード、タービン、或いは浮体の設置位置から離れた位置に設置された場合であっても、両者を容易に接続することができる。 Rotational motion of the blade or turbine and vertical motion of the floating body may be converted into rotational motion of the first shaft 5 after being converted into reciprocating motion of the cable. As the cable, for example, a structure including a hollow outer cable and an inner cable passed through the outer cable, and the inner cable reciprocatingly moves inside the outer cable can be adopted. Even if the mechanism that converts the reciprocating motion of the inner cable into the rotational motion is installed at a position away from the installation position of the blade, turbine, or floating body by giving flexibility to the outer cable and the inner cable, Both can be easily connected.
 図1の例においては、受容装置2と蓄積装置3の間に変速機6が介在している。さらに、第1シャフト5は、受容装置2と変速機6を接続するシャフト5Aと、変速機6と蓄積装置3を接続するシャフト5Bとを含む。この構成においては、受容装置2の第1動力により、シャフト5Aが回転する。変速機6は、シャフト5Aの回転速度を変速(増速或いは減速)し、変速後の回転速度でシャフト5Bを回転させる。変速機6の増速比或いは減速比は、受容装置2で得られる回転数及びトルクや、蓄積装置3で必要な回転数及びトルクなどを考慮して、適宜に定めれば良い。 In the example of FIG. 1, a transmission 6 is interposed between the receiving device 2 and the storage device 3. Further, the first shaft 5 includes a shaft 5 </ b> A that connects the receiving device 2 and the transmission 6, and a shaft 5 </ b> B that connects the transmission 6 and the storage device 3. In this configuration, the shaft 5 </ b> A is rotated by the first power of the receiving device 2. The transmission 6 shifts (increases or decreases) the rotational speed of the shaft 5A, and rotates the shaft 5B at the rotational speed after the shift. The speed increasing ratio or the speed reducing ratio of the transmission 6 may be appropriately determined in consideration of the rotational speed and torque obtained by the receiving device 2 and the rotational speed and torque necessary for the storage device 3.
 蓄積装置3と発電装置4は、第2シャフト7によって接続されている。蓄積装置3は、詳しくは後述するが、第1シャフト5を介して伝達される第1動力を用いて弾性エネルギーを蓄え、蓄えた弾性エネルギーを用いて第2動力を発生する。第2動力は、第2シャフト7の回転運動として発電装置4に伝達される。
 発電装置4は、第2動力を電力に変換する。発電装置4の具体的な構成としては種々のものを採用し得る。一例として、図1に示す発電装置4は、調速機41と、発電部42と、蓄電部43と、送電部44とを備えている。
The storage device 3 and the power generation device 4 are connected by a second shaft 7. As will be described in detail later, the storage device 3 stores elastic energy using the first power transmitted via the first shaft 5 and generates second power using the stored elastic energy. The second power is transmitted to the power generation device 4 as the rotational motion of the second shaft 7.
The power generation device 4 converts the second power into electric power. Various specific configurations of the power generation device 4 can be employed. As an example, the power generation device 4 illustrated in FIG. 1 includes a speed governor 41, a power generation unit 42, a power storage unit 43, and a power transmission unit 44.
 第2シャフト7は、調速機41及び発電部42に接続されている。調速機41は、第2シャフト7の回転速度を発電に適した速度範囲内に調整する。調速機41としては、例えば遠心ガバナーなどを用いることができる。発電部42は、第2シャフト7の回転運動に基づき、電力を発生する。このような発電部42の構成としては、公知の種々の構成を採用し得る。蓄電部43は、発電部42で発生した電力を蓄電するバッテリを含む。送電部44は、蓄電部43に蓄えられた電力を所定の電圧及び電流にて送電線に供給する。送電線は、既存の送電網の一部であっても良いし、工場、ビル、或いは家屋などの特定の建造物における用途に特化して設けられたものであっても良い。 The second shaft 7 is connected to the speed governor 41 and the power generation unit 42. The governor 41 adjusts the rotation speed of the second shaft 7 within a speed range suitable for power generation. For example, a centrifugal governor can be used as the governor 41. The power generation unit 42 generates electric power based on the rotational motion of the second shaft 7. Various known configurations can be adopted as the configuration of the power generation unit 42. The power storage unit 43 includes a battery that stores power generated by the power generation unit 42. The power transmission unit 44 supplies the power stored in the power storage unit 43 to the power transmission line with a predetermined voltage and current. The power transmission line may be a part of an existing power transmission network, or may be specially provided for use in a specific building such as a factory, a building, or a house.
 蓄積装置3は、弾性体を備えており、第1動力を用いて弾性体を弾性変形させることで、弾性体の弾性係数と変形量に応じた弾性エネルギーを蓄える。さらに、蓄積装置3は、弾性体が弾性変形を解消する際に、弾性体に蓄えられた弾性エネルギーを用いて第2動力を発生する。このように、蓄積装置3は、弾性体の弾性変形とその解消により、弾性エネルギーの蓄積と、利用とを行う。このような機能を発揮するものであれば、蓄積装置3の構造は特に限定されない。 The storage device 3 includes an elastic body, and stores elastic energy corresponding to the elastic coefficient and deformation amount of the elastic body by elastically deforming the elastic body using the first power. Furthermore, the storage device 3 generates second power using elastic energy stored in the elastic body when the elastic body cancels elastic deformation. As described above, the storage device 3 stores and uses elastic energy by elastic deformation of the elastic body and its elimination. The structure of the storage device 3 is not particularly limited as long as it exhibits such a function.
 本実施形態において、第2動力は第1動力よりも大きい。また、第2動力は、少なくとも発電装置4の負荷を上回る。ここで、動力は、例えば単位時間当たりの仕事量であり、回転体に関して言えばトルクと回転速度の積に比例する値として定義することができる。 In the present embodiment, the second power is larger than the first power. Further, the second power exceeds at least the load of the power generation device 4. Here, the power is, for example, a work amount per unit time, and can be defined as a value proportional to the product of the torque and the rotational speed in terms of the rotating body.
 なお、第1動力は不安定な再生エネルギーに基づいて発生するものであり、再生エネルギーの大きさに応じて変動する。そのため、第1動力が一時的に第2動力より大きくなる場合もあり得る。本実施形態において、「第2動力が第1動力よりも大きい」とは、このように一時的に第1動力が第2動力を超える場合を排除するものではなく、第1動力の時間的な平均値が第2動力より小さいことを意図している。 Note that the first power is generated based on unstable regenerative energy, and fluctuates according to the magnitude of the regenerative energy. Therefore, the first power may be temporarily larger than the second power. In the present embodiment, the phrase “the second power is greater than the first power” does not exclude the case where the first power temporarily exceeds the second power in this way. It is intended that the average value is smaller than the second power.
 図2及び図3は、蓄積装置3の一構成例を示す図である。この例における蓄積装置3は、図2に示すように、カム30と、第3シャフト31と、第1ギア列32と、第2ギア列33とを備えている。さらに、蓄積装置3は、図3に示すように、弾性体34と、レール35と、ストッパ36と、スライダ37とを備えている。
 第1ギア列32は、第1シャフト5(シャフト5B)の回転運動を第3シャフト31に伝達する。第2ギア列33は、第3シャフト31の回転運動を第2シャフト7に伝達する。
 図2の例において、第1ギア列32は、互いに噛み合ったギア32A,32B(第1ギア)を含む。ギア32Aは、第1シャフト5(シャフト5B)に取り付けられており、シャフト5Bを軸として回転する。ギア32Bは、第3シャフト31に取り付けられており、第3シャフト31を軸として回転する。ギア32Aは、ギア32Bよりも小径である。ギア32Aは例えば1方向性のクラッチ機構を有しており、第1動力によりシャフト5Bがある方向に回転する際にはこの回転をギア32Bに伝達するが、他の方向に回転する際には空転する。
2 and 3 are diagrams showing an example of the configuration of the storage device 3. The storage device 3 in this example includes a cam 30, a third shaft 31, a first gear train 32, and a second gear train 33, as shown in FIG. Furthermore, as shown in FIG. 3, the storage device 3 includes an elastic body 34, a rail 35, a stopper 36, and a slider 37.
The first gear train 32 transmits the rotational motion of the first shaft 5 (shaft 5 </ b> B) to the third shaft 31. The second gear train 33 transmits the rotational motion of the third shaft 31 to the second shaft 7.
In the example of FIG. 2, the first gear train 32 includes gears 32A and 32B (first gears) meshing with each other. The gear 32A is attached to the first shaft 5 (shaft 5B) and rotates about the shaft 5B. The gear 32B is attached to the third shaft 31, and rotates around the third shaft 31. The gear 32A has a smaller diameter than the gear 32B. The gear 32A has, for example, a unidirectional clutch mechanism. When the shaft 5B rotates in a certain direction by the first power, this rotation is transmitted to the gear 32B, but when the shaft 5B rotates in the other direction. Idle.
 一方、第2ギア列33は、互いに噛み合ったギア33A,33B(第2ギア)を含む。ギア33Aは、第2シャフト7に取り付けられており、第2シャフト7を軸として回転する。ギア33Bは、第3シャフト31に取り付けられており、第3シャフト31を軸として回転する。ギア33Aは、ギア33Bよりも小径である。
 カム30は、第3シャフト31に取り付けられており、第3シャフト31を軸として回転する。例えば、カム30は、曲面である円周面と第3シャフト31との距離が回転角度に応じて変化する円板カムである。
On the other hand, the second gear train 33 includes gears 33A and 33B (second gears) meshed with each other. The gear 33A is attached to the second shaft 7 and rotates about the second shaft 7 as an axis. The gear 33 </ b> B is attached to the third shaft 31 and rotates about the third shaft 31. The gear 33A has a smaller diameter than the gear 33B.
The cam 30 is attached to the third shaft 31 and rotates around the third shaft 31. For example, the cam 30 is a disc cam in which the distance between the circumferential surface that is a curved surface and the third shaft 31 changes according to the rotation angle.
 弾性体34は、例えば帯状の部材により構成された環体38を含む。環体38は、半径方向において弾性変形可能である。環体38は、例えばばね用鋼材などの金属材料又はゴム等で形成することができる。図3の例において、弾性体34は5つの環体38を含んでいる。但し、弾性体34に含まれる環体38の数は4つ以下であっても良いし、6つ以上であっても良い。環体38は、例えば弾性変形していない自然状態において、正円形である。但し、環体38は、自然状態において、楕円形や多角形状などの他の形状であっても良い。なお、環体38の具体的な材料、肉厚、円周方向の幅、及び直径などは、求められる弾性力、設置スペース、及び製造コストなどを考慮して適宜に定め得る。 The elastic body 34 includes an annular body 38 formed of, for example, a band-shaped member. The ring body 38 is elastically deformable in the radial direction. The ring body 38 can be formed of, for example, a metal material such as spring steel or rubber. In the example of FIG. 3, the elastic body 34 includes five ring bodies 38. However, the number of ring bodies 38 included in the elastic body 34 may be four or less, or may be six or more. The annular body 38 is, for example, a perfect circle in a natural state where it is not elastically deformed. However, the ring body 38 may have another shape such as an elliptical shape or a polygonal shape in a natural state. Note that the specific material, thickness, circumferential width, diameter, and the like of the ring body 38 can be determined as appropriate in consideration of required elastic force, installation space, manufacturing cost, and the like.
 弾性体34は、環体38に代えて、例えばU字型の部材、V字型の部材、或いはU字型の部材を2つ結合した環状の部材を含んでも良い。これらの部材は、環体38と同じく、鋼材などの金属材料で形成することができる。
 各環体38は、スライダ37を介してレール35に取り付けられている。スライダ37は、レール35に沿ってスライド自在である。各環体38は、レール35に沿って直線状に並んでいる。隣り合う環体38の外周面は、互いに接触している。例えば、レール35とスライダ37との接触部にローラ或いはボールを配置することにより、摩擦によるロスを小さくできる。このようなローラ或いはボールは、レール35及びスライダ37のいずれに設けても良い。
The elastic body 34 may include, for example, a U-shaped member, a V-shaped member, or an annular member in which two U-shaped members are coupled instead of the ring body 38. These members can be formed of a metal material such as steel, like the ring body 38.
Each ring 38 is attached to the rail 35 via a slider 37. The slider 37 is slidable along the rail 35. Each ring 38 is arranged in a straight line along the rail 35. The outer peripheral surfaces of the adjacent ring bodies 38 are in contact with each other. For example, by disposing a roller or a ball at the contact portion between the rail 35 and the slider 37, loss due to friction can be reduced. Such a roller or ball may be provided on either the rail 35 or the slider 37.
 カム30の外周面は、図3における左端の環体38の外周面に接触している。図3における右端の環体38の外周面は、ストッパ36に接触している。ストッパ36、レール35、及び第3シャフト31の位置関係は固定的であり、カム30の回転によって変化しない。
 続いて、蓄積装置3の動作につき、図3乃至図6を用いて説明する。 
 シャフト5Bが第1動力により回転すると、ギア32A,32B、第3シャフト31、カム30、ギア33A,33B、第2シャフト7が回転する。このとき、カム30の回転角度に応じて各環体38が弾性変形(弾性エネルギーの蓄積)とその解消(弾性エネルギーの利用)とを繰り返す。
The outer peripheral surface of the cam 30 is in contact with the outer peripheral surface of the ring body 38 at the left end in FIG. The outer peripheral surface of the ring body 38 at the right end in FIG. 3 is in contact with the stopper 36. The positional relationship among the stopper 36, the rail 35, and the third shaft 31 is fixed and does not change with the rotation of the cam 30.
Next, the operation of the storage device 3 will be described with reference to FIGS.
When the shaft 5B is rotated by the first power, the gears 32A and 32B, the third shaft 31, the cam 30, the gears 33A and 33B, and the second shaft 7 are rotated. At this time, each ring 38 repeats elastic deformation (accumulation of elastic energy) and cancellation (utilization of elastic energy) according to the rotation angle of the cam 30.
 図4は、弾性エネルギー蓄積時の状態を示している。カム30の外周面が環体38に接触する位置と、第3シャフト31との間の距離が増加する期間においては、カム30が各環体38をストッパ36に向けて押す。これにより各環体38が図中の矢印で示す方向に弾性変形し、弾性エネルギーが蓄えられる。
 なお、弾性エネルギー蓄積時において、弾性体34がカム30を押す力は、シャフト5Bの負荷(受容装置2及び変速機6の負荷)と、第2シャフト7の負荷(発電装置4の負荷)との合計よりも小さい。したがって、カム30が逆回転することはない。或いは、弾性エネルギー蓄積時においてカム30が逆回転しないように、別途の機構を蓄積装置3に設けても良い。
 やがて、図5に示すように、カム30の外周面が環体38に接触する位置と、第3シャフト31との間の距離が最大距離に到達すると、弾性エネルギーの蓄積量が最大となる。
FIG. 4 shows a state when elastic energy is accumulated. In a period in which the distance between the position where the outer peripheral surface of the cam 30 contacts the ring body 38 and the third shaft 31 increases, the cam 30 pushes each ring body 38 toward the stopper 36. As a result, each ring 38 is elastically deformed in the direction indicated by the arrow in the figure, and elastic energy is stored.
During elastic energy accumulation, the force with which the elastic body 34 pushes the cam 30 includes the load on the shaft 5B (the load on the receiving device 2 and the transmission 6) and the load on the second shaft 7 (the load on the power generation device 4). Less than the sum of Therefore, the cam 30 does not reversely rotate. Alternatively, a separate mechanism may be provided in the storage device 3 so that the cam 30 does not reversely rotate during elastic energy storage.
Eventually, as shown in FIG. 5, when the distance between the position where the outer peripheral surface of the cam 30 contacts the ring body 38 and the third shaft 31 reaches the maximum distance, the accumulated amount of elastic energy becomes maximum.
 図6は、弾性エネルギー利用時の状態を示している。カム30の外周面が環体38に接触する位置と、第3シャフト31との間の距離が減少する期間においては、各環体38の弾性変形が解消するので、カム30が図中の矢印で示す方向に押される。すなわち、弾性体34に蓄えられた弾性エネルギーが利用される。
 このとき、カム30は、第1動力による回転に加え、弾性体34に押される力によって回転する。このようなカム30の回転に伴い生じる動力が、上述の第2動力に相当する。この第2動力は第2シャフト7を介して発電装置4に伝達され、発電装置4が発電する。その後、カム30の外周面が環体38に接触する位置と、第3シャフト31との間の距離が最低距離に到達すると、再び弾性エネルギーの蓄積が開始される。
FIG. 6 shows a state when using elastic energy. In a period in which the distance between the position where the outer peripheral surface of the cam 30 contacts the ring body 38 and the third shaft 31 decreases, the elastic deformation of each ring body 38 is eliminated. It is pushed in the direction indicated by. That is, the elastic energy stored in the elastic body 34 is used.
At this time, the cam 30 rotates by the force pushed by the elastic body 34 in addition to the rotation by the first power. The power generated with the rotation of the cam 30 corresponds to the second power described above. The second power is transmitted to the power generation device 4 via the second shaft 7 and the power generation device 4 generates power. Thereafter, when the distance between the position where the outer peripheral surface of the cam 30 contacts the ring body 38 and the third shaft 31 reaches the minimum distance, accumulation of elastic energy is started again.
 なお、弾性エネルギー蓄積時においては第2シャフト7も回転するが、回転速度及びトルクが小さいために発電装置4は発電しない。或いは発電したとしても、極めて小さい電力しか発生しない。一般に、発生する電力が大きいほど発電装置の負荷が大きくなる。したがって、弾性エネルギー蓄積時における発電装置4の負荷は極めて小さいものとなる。 Note that the second shaft 7 also rotates during elastic energy accumulation, but the power generation device 4 does not generate power because the rotational speed and torque are small. Or even if it generates electric power, only very small electric power is generated. In general, the larger the generated power, the greater the load on the power generator. Therefore, the load of the power generation device 4 at the time of elastic energy accumulation is extremely small.
 他の観点から言えば、弾性エネルギー蓄積時には弾性体34が弾性変形するとともに発電装置4が発電しないように、変速機6の変速比が定められている。
 すなわち、シャフト5Bを回転させるトルクN1は、発電装置4による発電に必要なトルクN2よりも小さい(N1<N2)。或いは、シャフト5Bを介して伝達される第1動力W1は、発電装置4による発電に必要な第3動力W3よりも小さく、且つ蓄積装置3による弾性エネルギーの蓄積に必要な第4動力W4と同等かそれ以上である(W4≦W1<W3)。なお、弾性エネルギー利用時に蓄積装置3で発生する第2動力W2は、第3動力W3と同等かそれ以上である(W3≦W2)。
From another viewpoint, the gear ratio of the transmission 6 is determined so that the elastic body 34 is elastically deformed and the power generation device 4 does not generate power when elastic energy is accumulated.
That is, the torque N1 for rotating the shaft 5B is smaller than the torque N2 required for power generation by the power generation device 4 (N1 <N2). Alternatively, the first power W1 transmitted through the shaft 5B is smaller than the third power W3 required for power generation by the power generation device 4, and is equivalent to the fourth power W4 required for elastic energy storage by the storage device 3. Or more (W4 ≦ W1 <W3). The second power W2 generated in the storage device 3 when using elastic energy is equal to or greater than the third power W3 (W3 ≦ W2).
 以上のように、本実施形態に係る発電システム1は、弾性エネルギーの蓄積と利用を繰り返す。再生エネルギーから得られる第1動力は不安定であり、発電に適した値を常に得られるとは限らないし、時には停止することもある。従来の発電システムにおいては、受容装置からの動力が発電装置の負荷を下回る場合などには、発電装置が稼働せず、電力を得られない場合があった。この場合には、受容装置が発生する動力は無駄になる。
 これに対し、本実施形態に係る発電システム1においては、受容装置2が発生する第1動力が小さい場合であっても、この第1動力を有効に活用して発電できる。すなわち、受容装置2からの第1動力は、一旦、蓄積装置3において弾性エネルギーとして蓄えられる。そして、弾性エネルギーが十分に蓄えられると、蓄積装置3はこの弾性エネルギーを用いて、発電装置4の負荷を上回る第2動力を発生する。この第2動力は、弾性体34が弾性変形を解放する際のエネルギーに相当するため極めて安定的である。 
 この他にも、本実施形態からは既述の種々の効果を得ることができる。
As described above, the power generation system 1 according to this embodiment repeats accumulation and use of elastic energy. The first power obtained from the renewable energy is unstable, and a value suitable for power generation cannot always be obtained, and sometimes it stops. In the conventional power generation system, when the power from the receiving device is less than the load of the power generation device, the power generation device does not operate and power may not be obtained. In this case, the power generated by the receiving device is wasted.
In contrast, in the power generation system 1 according to the present embodiment, even when the first power generated by the receiving device 2 is small, the first power can be effectively utilized to generate power. That is, the first power from the receiving device 2 is temporarily stored as elastic energy in the storage device 3. When the elastic energy is sufficiently stored, the storage device 3 uses the elastic energy to generate the second power that exceeds the load of the power generation device 4. This second power is extremely stable because it corresponds to energy when the elastic body 34 releases elastic deformation.
In addition, the various effects described above can be obtained from this embodiment.
 (第2実施形態) 
 第2実施形態について説明する。本実施形態では、第1実施形態における受容装置2の具体例を開示する。第1実施形態と同一又は類似する要素には同一の符号を付し、主に第1実施形態との相違点について述べる。
(Second Embodiment)
A second embodiment will be described. In the present embodiment, a specific example of the receiving device 2 in the first embodiment is disclosed. Elements that are the same as or similar to those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
 図7は、第2実施形態に係る発電システム1の要部構成を示す図である。ここでは、第1実施形態における受容装置2が波力を受けて第1動力を発生する構成を例示している。受容装置2は、浮体20と、ラック21と、ギア22とを備えている。
 浮体20は、例えば海や湖などの水面WFに浮かべられている。浮体20は、波による水面WFの位置変化に応じて上下動する。ラック21は、浮体20に固定されている。ラック21は、浮体20の上下動の方向において直線状に並ぶ刃列21aを有している。ギア22は、ラック列21aに噛み合っている。ギア22は、シャフト5Aを軸として回転可能である。
FIG. 7 is a diagram illustrating a main configuration of the power generation system 1 according to the second embodiment. Here, a configuration in which the receiving device 2 in the first embodiment receives the wave force and generates the first power is illustrated. The receiving device 2 includes a floating body 20, a rack 21, and a gear 22.
The floating body 20 is floated on a water surface WF such as a sea or a lake. The floating body 20 moves up and down according to a change in the position of the water surface WF due to waves. The rack 21 is fixed to the floating body 20. The rack 21 has a blade row 21 a arranged in a straight line in the vertical movement direction of the floating body 20. The gear 22 meshes with the rack row 21a. The gear 22 is rotatable about the shaft 5A.
 浮体20の上下動に伴い、ラック21が上下動する。ギア22は、例えば1方向性のクラッチ機構を備えており、ラック22の上昇時における回転をシャフト5Aに伝達し、ラック22の下降時における回転をシャフト5Aに伝達しない。この場合、ラック22の上昇時におけるシャフト5Aの回転運動が第1動力に相当する。これとは逆に、ギア22は、ラック22の下降時における回転をシャフト5Aに伝達しても良い。この場合は、ラック22の下降時におけるシャフト5Aの回転運動が第1動力に相当する。さらに他の例として、複数のギアを用いることで、ラック22の上昇時と下降時の双方における回転をシャフト5Aに伝達しても良い。この場合は、ラック22の上昇時及び下降時の双方におけるシャフト5Aの回転運動が第1動力に相当する。
 なお、図7では、浮体20とラック21が固定される例を示した。しかしながら、浮体とラック21とは上述のインナーケーブル及びアウターケーブルによって接続されても良い。この場合には、浮体20及び蓄積装置3などの設置位置の自由度が高まる。
As the floating body 20 moves up and down, the rack 21 moves up and down. The gear 22 includes, for example, a one-way clutch mechanism, and transmits the rotation when the rack 22 is raised to the shaft 5A and does not transmit the rotation when the rack 22 is lowered to the shaft 5A. In this case, the rotational motion of the shaft 5A when the rack 22 is raised corresponds to the first power. On the contrary, the gear 22 may transmit the rotation when the rack 22 is lowered to the shaft 5A. In this case, the rotational motion of the shaft 5A when the rack 22 is lowered corresponds to the first power. As yet another example, by using a plurality of gears, rotation when the rack 22 is raised and lowered may be transmitted to the shaft 5A. In this case, the rotational motion of the shaft 5A both when the rack 22 is raised and lowered corresponds to the first power.
FIG. 7 shows an example in which the floating body 20 and the rack 21 are fixed. However, the floating body and the rack 21 may be connected by the inner cable and the outer cable described above. In this case, the freedom degree of installation positions, such as the floating body 20 and the storage device 3, increases.
 (第3実施形態)
 第3実施形態について説明する。本実施形態では、第1実施形態における受容装置2の他の具体例を開示する。第1実施形態と同一又は類似する要素には同一の符号を付し、主に第1実施形態との相違点について述べる。
 図8は、第3実施形態に係る発電システム1の要部構成を示す図である。ここでは、第1実施形態における受容装置2が風力を受けて第1動力を発生する構成を例示している。受容装置2は、ブレード23を備えている。蓄積装置3、発電装置4、及び変速機6は、支柱100により高所に支持されたナセル101に収容されている。発電装置4の一部、例えば蓄電部43や送電部44は、ナセル101の外部に設けられても良い。図8の例では、弾性体34の各環体38及びストッパが、上下方向(重力方向,支柱100の延出方向)に並んでいる。
(Third embodiment)
A third embodiment will be described. In the present embodiment, another specific example of the receiving device 2 in the first embodiment is disclosed. Elements that are the same as or similar to those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
FIG. 8 is a diagram illustrating a main configuration of the power generation system 1 according to the third embodiment. Here, the configuration in which the receiving device 2 in the first embodiment receives the wind force to generate the first power is illustrated. The receiving device 2 includes a blade 23. The storage device 3, the power generation device 4, and the transmission 6 are accommodated in a nacelle 101 supported at a high place by a support column 100. A part of the power generation device 4, for example, the power storage unit 43 and the power transmission unit 44 may be provided outside the nacelle 101. In the example of FIG. 8, each ring body 38 and the stopper of the elastic body 34 are arranged in the vertical direction (the direction of gravity, the extending direction of the column 100).
 ブレード23は、シャフト5Aを軸として回転可能である。この構成においては、ブレード23が風を受けて回転した際にシャフト5Aが回転する。このシャフト5Aの回転運動が第1動力に相当する。
 なお、図8では、ブレード23の回転運動がシャフト5Aに直接伝達される例を示した。しかしながら、ブレード23とシャフト5Aの間に上述のインナーケーブル及びアウターケーブルが介在しても良い。この場合、例えばブレード23の回転運動をインナーケーブルの往復運動に変換する機構と、インナーケーブルの往復運動をシャフト5Aの回転運動に変換する機構とを設ける。このような構成であれば、蓄積装置3や発電装置4はナセル101の外部に配置することができる。
The blade 23 is rotatable about the shaft 5A. In this configuration, the shaft 5A rotates when the blade 23 rotates by receiving wind. This rotational movement of the shaft 5A corresponds to the first power.
FIG. 8 shows an example in which the rotational motion of the blade 23 is directly transmitted to the shaft 5A. However, the inner cable and the outer cable described above may be interposed between the blade 23 and the shaft 5A. In this case, for example, a mechanism for converting the rotational motion of the blade 23 into the reciprocating motion of the inner cable and a mechanism for converting the reciprocating motion of the inner cable into the rotational motion of the shaft 5A are provided. With such a configuration, the storage device 3 and the power generation device 4 can be arranged outside the nacelle 101.
 (第4実施形態) 
 第4実施形態について説明する。本実施形態では、第1実施形態における受容装置2のさらに他の具体例を開示する。第1実施形態と同一又は類似する要素には同一の符号を付し、主に第1実施形態との相違点について述べる。
(Fourth embodiment)
A fourth embodiment will be described. In the present embodiment, still another specific example of the receiving device 2 in the first embodiment is disclosed. Elements that are the same as or similar to those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
 図9は、第4実施形態に係る発電システム1の要部構成を示す図である。ここでは、第1実施形態における受容装置2が河川などで流れる水の水力を受けて第1動力を発生する構成を例示している。受容装置2は、河川などに流れる流水Rに下方が浸かったタービン24を備えている。タービン24は、流水Rの力を受けて、シャフト5Aを軸として回転する。このシャフト5Aの回転運動が第1動力に相当する。 FIG. 9 is a diagram illustrating a main configuration of the power generation system 1 according to the fourth embodiment. Here, a configuration in which the receiving device 2 in the first embodiment receives the hydraulic power of water flowing in a river or the like to generate the first power is illustrated. The receiving device 2 includes a turbine 24 whose lower part is immersed in running water R flowing in a river or the like. The turbine 24 receives the force of the flowing water R and rotates about the shaft 5A. This rotational movement of the shaft 5A corresponds to the first power.
 なお、図9では、タービン24の回転運動がシャフト5Aに直接伝達される例を示した。しかしながら、タービン24とシャフト5Aの間に上述のインナーケーブル及びアウターケーブルが介在しても良い。この場合、例えばタービン24の回転運動をインナーケーブルの往復運動に変換する機構と、インナーケーブルの往復運動をシャフト5Aの回転運動に変換する機構とを設ける。このような構成であれば、タービン24及び蓄積装置3などの設置位置の自由度が高まる。 FIG. 9 shows an example in which the rotational motion of the turbine 24 is directly transmitted to the shaft 5A. However, the inner cable and the outer cable described above may be interposed between the turbine 24 and the shaft 5A. In this case, for example, a mechanism for converting the rotational motion of the turbine 24 into the reciprocating motion of the inner cable and a mechanism for converting the reciprocating motion of the inner cable into the rotational motion of the shaft 5A are provided. With such a configuration, the degree of freedom of the installation positions of the turbine 24 and the storage device 3 is increased.
 (第5実施形態) 
 第5実施形態について説明する。本実施形態では、蓄積装置3の他の例を開示する。第1実施形態と同一又は類似する要素には同一の符号を付し、主に第1実施形態との相違点について述べる。
(Fifth embodiment)
A fifth embodiment will be described. In the present embodiment, another example of the storage device 3 is disclosed. Elements that are the same as or similar to those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
 図10は、第5実施形態に係る蓄積装置3の概略的な構成を示す図である。この蓄積装置3は、ギア130(第1ギア)と、ギア131(第2ギア)と、ギア132(第3ギア)と、ラック133と、可動部材134と、センサ135と、制御装置136とを備えている。さらに、蓄積装置3は、第1実施形態と同じくレール35と、ストッパ36と、弾性体34と、スライダ37とを備えている。図10の例では、弾性体34が3つの環体38を含む。但し、環体38の数や形状は特に限定されない。 FIG. 10 is a diagram showing a schematic configuration of the storage device 3 according to the fifth embodiment. The storage device 3 includes a gear 130 (first gear), a gear 131 (second gear), a gear 132 (third gear), a rack 133, a movable member 134, a sensor 135, a control device 136, It has. Further, the storage device 3 includes a rail 35, a stopper 36, an elastic body 34, and a slider 37, as in the first embodiment. In the example of FIG. 10, the elastic body 34 includes three ring bodies 38. However, the number and shape of the ring 38 are not particularly limited.
 ギア130は、シャフト5Bを軸として回転可能である。ギア131は、第2シャフト7を軸として回転可能である。ギア132は、シャフト137を軸として回転可能である。
 ラック133は、直線状に並ぶ刃列133aを有している。可動部材134は、ラック133の一端に接続されている。さらに、可動部材134は、図中の左端に配置された環体38の外周面と接触している。
 ギア132は、ギア130、ギア131、及び刃列133aと噛み合っている。ギア132の回転に伴い、ラック133及び可動部材134は、ストッパ36に近づく方向と、ストッパ36から離れる方向とに往復運動する。
The gear 130 can rotate around the shaft 5B. The gear 131 can rotate around the second shaft 7. The gear 132 can rotate around the shaft 137.
The rack 133 has a blade row 133a arranged in a straight line. The movable member 134 is connected to one end of the rack 133. Furthermore, the movable member 134 is in contact with the outer peripheral surface of the ring body 38 disposed at the left end in the drawing.
The gear 132 meshes with the gear 130, the gear 131, and the blade row 133a. As the gear 132 rotates, the rack 133 and the movable member 134 reciprocate in a direction approaching the stopper 36 and a direction away from the stopper 36.
 本実施形態において、ギア130は、駆動方向と空転方向とを切り換えることが可能な2方向性の第1クラッチ機構CL1を有している。この第1クラッチ機構CL1は、例えば電磁的な制御により駆動方向と空転方向を切り替えるもので、制御装置136によって制御される。
 例えば、センサ135は、ラック133或いは可動部材134が第1基準位置及び第2基準位置に到達したことを検出する。第1基準位置は、例えばラック133に付されたマーカM1とセンサ135が正対する位置である。第2基準位置は、例えばラック133に付されたマーカM2とセンサ135が正対する位置である。センサ135は、マーカM1,M2を検出した際に、検出信号を出力する。例えば、センサ135は、マーカM1,M2を光学的に検出する光学センサである。センサ135は、マーカM1,M2を磁気的に検出する磁気センサなど、他種のセンサであっても良い。
In the present embodiment, the gear 130 has a bi-directional first clutch mechanism CL1 capable of switching between the driving direction and the idling direction. The first clutch mechanism CL1 switches the driving direction and the idling direction by electromagnetic control, for example, and is controlled by the control device 136.
For example, the sensor 135 detects that the rack 133 or the movable member 134 has reached the first reference position and the second reference position. The first reference position is, for example, a position where the marker M1 attached to the rack 133 and the sensor 135 face each other. The second reference position is, for example, a position where the marker M2 attached to the rack 133 and the sensor 135 face each other. The sensor 135 outputs a detection signal when detecting the markers M1 and M2. For example, the sensor 135 is an optical sensor that optically detects the markers M1 and M2. The sensor 135 may be another type of sensor such as a magnetic sensor that magnetically detects the markers M1 and M2.
 制御装置136は、センサ135の検出信号に基づいて、第1クラッチ機構CL1を制御する。すなわち、ギア130は、2方向性クラッチギアとして機能する。第1クラッチ機構CL1において、駆動方向はシャフト5Bとギア132の間で動力を伝達するギア130の回転方向であり、空転方向はシャフト5Bとギア132の間で動力を伝達しないギア130の回転方向である。
 また、本実施形態において、ギア131は、駆動方向と空転方向を有するがこれらを切り換えることができない1方向性の第2クラッチ機構CL2を有している。すなわち、ギア131は、1方向性クラッチギアとして機能する。但し、第2クラッチ機構CL2として、2方向性のクラッチ機構を用いても良い。第2クラッチ機構CL2において、駆動方向は第2シャフト7とギア132の間で動力を伝達するギア131の回転方向であり、空転方向は第2シャフト7とギア132の間で動力を伝達しないギア131の回転方向である。
 第1クラッチ機構CL1と第2クラッチ機構CL2とは、切換機構140を構成する。切換機構140は、弾性体34の弾性変形を許容する第1状態と、弾性体34の弾性変形を解放する第2状態とを切り換える。
The control device 136 controls the first clutch mechanism CL1 based on the detection signal of the sensor 135. That is, the gear 130 functions as a two-way clutch gear. In the first clutch mechanism CL1, the driving direction is the rotation direction of the gear 130 that transmits power between the shaft 5B and the gear 132, and the idling direction is the rotation direction of the gear 130 that does not transmit power between the shaft 5B and the gear 132. It is.
In the present embodiment, the gear 131 has a unidirectional second clutch mechanism CL2 that has a driving direction and an idling direction but cannot switch between them. That is, the gear 131 functions as a one-way clutch gear. However, a bi-directional clutch mechanism may be used as the second clutch mechanism CL2. In the second clutch mechanism CL2, the driving direction is the rotation direction of the gear 131 that transmits power between the second shaft 7 and the gear 132, and the idling direction is a gear that does not transmit power between the second shaft 7 and the gear 132. 131 is the direction of rotation.
The first clutch mechanism CL1 and the second clutch mechanism CL2 constitute a switching mechanism 140. The switching mechanism 140 switches between a first state that allows elastic deformation of the elastic body 34 and a second state that releases elastic deformation of the elastic body 34.
 図10において実線で示す矢印は、弾性エネルギー蓄積時における各ギアの回転方向を示す。一方、破線で示す矢印は、弾性エネルギー利用時における各ギアの回転方向を示す。
 シャフト5Bは、弾性エネルギー蓄積時と利用時のいずれにおいても同じ方向に回転する。弾性エネルギー蓄積時においては、ギア130がシャフト5Bの回転を受けて実線矢印の方向へ回転するように、第1クラッチ機構CL1の駆動方向と空転方向とが設定される。このギア130の回転を受けて、ギア132、ギア131、及びギア131が実線矢印で示す方向へ回転する。このとき、ギア131が空転して、第2シャフト7が回転しないように、第2クラッチ機構CL2の駆動方向と回転方向とが設定されている。ギア132の回転に伴い、ラック133及び可動部材134がストッパ36に向けて移動する。さらに、可動部材134に押されて各環体38が弾性変形する。
In FIG. 10, an arrow indicated by a solid line indicates the rotation direction of each gear when elastic energy is accumulated. On the other hand, the arrow shown with a broken line shows the rotation direction of each gear at the time of elastic energy utilization.
The shaft 5B rotates in the same direction both when elastic energy is accumulated and when it is used. At the time of accumulating elastic energy, the driving direction and idling direction of the first clutch mechanism CL1 are set so that the gear 130 rotates in the direction of the solid arrow in response to the rotation of the shaft 5B. In response to the rotation of the gear 130, the gear 132, the gear 131, and the gear 131 rotate in the direction indicated by the solid arrow. At this time, the drive direction and the rotation direction of the second clutch mechanism CL2 are set so that the gear 131 does not rotate and the second shaft 7 does not rotate. As the gear 132 rotates, the rack 133 and the movable member 134 move toward the stopper 36. Further, each ring 38 is elastically deformed by being pushed by the movable member 134.
 弾性エネルギー利用時においては、弾性体34に可動部材134及びラック133がストッパ36から離れる方向に押され、これによりギア132が破線矢印で示す方向に回転する。このギア132の回転を受けて、ギア130及びギア131が破線矢印で示す方向へ回転する。
 弾性エネルギー利用時においては、制御装置136の制御により、第1クラッチ機構CL1の駆動方向と空転方向とが逆転している。したがって、ギア130が空転するので、ギア130の回転はシャフト5Bには伝わらない。一方で、ギア131の回転は第2クラッチ機構CL2の駆動方向と一致するので、ギア131の回転を受けて第2シャフト7が回転する。第2シャフト7の回転(第2動力)を受けて、発電装置4が発電可能となる。
 なお、弾性エネルギー蓄積時においては、弾性体34の弾性変形の解放を防ぐ必要がある。本実施形態では、シャフト5Bの負荷(受容装置2及び変速機6の負荷)と、第2シャフト7の負荷(発電装置4の負荷)とを用いて、弾性体34の弾性変形の解放を防いでいる。すなわち、弾性エネルギー蓄積時において弾性体34が可動部材134及びラック133をストッパ36から離れる方向に押そうとしても、このときのギア130及びギア131の回転方向はいずれも駆動方向と一致する。したがって、シャフト5B及び第2シャフト7の負荷が同時に作用して、可動部材134及びラック133の移動が防がれる。
 なお、ここではシャフト5B及び第2シャフト7の負荷を用いて弾性体34の弾性変形の解放を防ぐ例を示したが、別途の機構を設けることにより、エネルギー蓄積時における弾性変形の解放を防いでも良い。
When elastic energy is used, the elastic member 34 pushes the movable member 134 and the rack 133 away from the stopper 36, thereby rotating the gear 132 in the direction indicated by the dashed arrow. In response to the rotation of the gear 132, the gear 130 and the gear 131 rotate in the direction indicated by the broken line arrow.
When the elastic energy is used, the drive direction of the first clutch mechanism CL1 and the idling direction are reversed by the control of the control device 136. Therefore, since the gear 130 idles, the rotation of the gear 130 is not transmitted to the shaft 5B. On the other hand, since the rotation of the gear 131 coincides with the driving direction of the second clutch mechanism CL2, the second shaft 7 is rotated by the rotation of the gear 131. In response to the rotation (second power) of the second shaft 7, the power generation device 4 can generate power.
It should be noted that it is necessary to prevent the elastic deformation of the elastic body 34 from being released during elastic energy accumulation. In this embodiment, release of elastic deformation of the elastic body 34 is prevented by using the load of the shaft 5B (the load of the receiving device 2 and the transmission 6) and the load of the second shaft 7 (the load of the power generation device 4). It is out. That is, even when the elastic body 34 tries to push the movable member 134 and the rack 133 away from the stopper 36 during the accumulation of elastic energy, the rotational directions of the gear 130 and the gear 131 at this time coincide with the driving direction. Therefore, the load of the shaft 5B and the second shaft 7 acts simultaneously, and the movable member 134 and the rack 133 are prevented from moving.
In this example, the load of the shaft 5B and the second shaft 7 is used to prevent release of elastic deformation of the elastic body 34. However, by providing a separate mechanism, release of elastic deformation during energy storage is prevented. But it ’s okay.
 続いて、蓄積装置3の動作につき、図10乃至図13を用いて説明する。 
 弾性エネルギー蓄積時、蓄積装置3は上述の第1状態に設定されている。このとき、図11に示すように、シャフト5Bを介して伝達される第1動力によりギア130,132が回転し、ラック133及び可動部材134がストッパ36に向けて移動する。これに伴い各環体38が弾性変形し、この弾性変形に応じた弾性エネルギーが蓄積装置3に蓄積される。
Next, the operation of the storage device 3 will be described with reference to FIGS.
At the time of elastic energy storage, the storage device 3 is set to the first state described above. At this time, as shown in FIG. 11, the gears 130 and 132 are rotated by the first power transmitted via the shaft 5 </ b> B, and the rack 133 and the movable member 134 move toward the stopper 36. Accordingly, each ring 38 is elastically deformed, and elastic energy corresponding to the elastic deformation is accumulated in the accumulation device 3.
 やがて、図12に示すようにセンサ135がマーカM1に正対すると、センサ135が検出信号を出力する。センサ135からの検出信号の入力を受けて、制御装置136は切換機構140(主に第1クラッチ機構CL1)を制御し、蓄積装置3を上述の第2状態に切り換える。
 第2状態に切り換わると、図13に示すように、弾性体34の弾性変形の解放により可動部材134及びラック133が押され、可動部材134及びラック133がストッパ36から離れる方向に移動する。このときのギア132の回転を受けてギア131が回転し、さらにギア131の回転が第2シャフト7に伝達され、第2シャフト7が回転する。第2シャフト7の回転運動、すなわち第2動力を受けて、発電装置4は電力を発生する。
Eventually, as shown in FIG. 12, when the sensor 135 faces the marker M1, the sensor 135 outputs a detection signal. Upon receiving the detection signal from the sensor 135, the control device 136 controls the switching mechanism 140 (mainly the first clutch mechanism CL1) and switches the storage device 3 to the second state described above.
When switched to the second state, as shown in FIG. 13, the movable member 134 and the rack 133 are pushed by releasing the elastic deformation of the elastic body 34, and the movable member 134 and the rack 133 move away from the stopper 36. In response to the rotation of the gear 132 at this time, the gear 131 rotates, and further, the rotation of the gear 131 is transmitted to the second shaft 7 and the second shaft 7 rotates. In response to the rotational movement of the second shaft 7, that is, the second power, the power generation device 4 generates electric power.
 その後、図10に示すように、センサ135がマーカM2に正対すると、センサ135が検出信号を出力する。センサ135からの検出信号の入力を受けて、制御装置136は切換機構140(主に第1クラッチ機構CL1)を制御し、蓄積装置3を上述の第1状態に切り換える。これにより、再び蓄積装置3が第1動力を用いて弾性エネルギーを蓄える。 Thereafter, as shown in FIG. 10, when the sensor 135 faces the marker M2, the sensor 135 outputs a detection signal. Upon receiving the detection signal from the sensor 135, the control device 136 controls the switching mechanism 140 (mainly the first clutch mechanism CL1), and switches the storage device 3 to the first state described above. Thereby, the storage device 3 again stores elastic energy using the first power.
 以上のように、本実施形態に係る発電システム1においても、弾性エネルギーの蓄積と利用が繰り返される。本実施形態にて開示した蓄積装置3の構成は、第2乃至第4実施形態のいずれにも適用することができる。 As described above, also in the power generation system 1 according to the present embodiment, accumulation and use of elastic energy are repeated. The configuration of the storage device 3 disclosed in this embodiment can be applied to any of the second to fourth embodiments.
 本発明は、以上説明した各実施形態の構成に対し種々の変形を加えて実施することができる。例えば、各実施形態にて開示した構成は、適宜に組み合わされても良い。発明の要旨を逸脱しない範囲で変形された形態は、特許請求の範囲に記載された発明及びその均等の範囲に含まれる。
 例えば、各実施形態においては、蓄積装置3が弾性体34を圧縮することにより弾性エネルギーを蓄える例を開示した。しかしながら、蓄積装置3は、弾性体34を伸張することで弾性エネルギーを蓄えても良いし、圧縮と伸長を連続的に行って蓄えてもよい。
The present invention can be implemented by adding various modifications to the configurations of the embodiments described above. For example, the configurations disclosed in the embodiments may be combined as appropriate. The forms modified without departing from the gist of the invention are included in the invention described in the claims and the equivalents thereof.
For example, in each embodiment, the storage device 3 disclosed the example which stores elastic energy by compressing the elastic body 34. However, the storage device 3 may store elastic energy by expanding the elastic body 34 or may store it by continuously compressing and expanding.
 蓄積装置3は、受容装置2からの第1動力を、そのまま発電装置4に伝達する機構を備え、この機構と弾性エネルギーを蓄積する機構とを切り換え可能であっても良い。この場合、例えば強風が吹いているときなど再生エネルギーが十分に強い場合に、第1動力を用いて発電することができる。
 第5実施形態において、制御装置136が第1状態と第2状態とを切り換える制御方式は、上述のものに限られない。例えば、センサ135がマーカM1を検出して第2状態に切り換えられた後、一定時間が経過した際に第1状態に切り換えても良い。この場合においては、マーカM2の検出が不要となる。また、センサ135がマーカM2を検出して第1状態に切り換えられた後、一定時間が経過した際に第2状態に切り換えても良い。この場合においては、マーカM1の検出が不要となる。また、一定時間ごとに第1状態と第2状態とを切り換えても良い。この場合には、センサ136が不要となる。また、ギア132などの回転数をカウントし、このカウント値に応じて第1状態と第2状態とを切り換えても良い。その他、種々の制御方式を採用し得る。
 蓄積装置3において弾性体34を弾性変形させる方式は、カム30やラック133を用いたものに限られない。例えば、シャフト5Bの回転に伴い回転するスクリューと、このスクリューにボールを介してねじ込まれたナットとを含むボールスクリュー機構を利用することもできる。すなわち、このボールスクリュー機構において、ナットの移動に伴い弾性体34が圧縮或いは伸張するようにすれば、弾性体34を弾性変形させることができる。
The storage device 3 may include a mechanism for transmitting the first power from the receiving device 2 to the power generation device 4 as it is, and the mechanism and a mechanism for storing elastic energy may be switched. In this case, for example, when the regenerative energy is sufficiently strong such as when a strong wind is blowing, power can be generated using the first power.
In the fifth embodiment, the control method in which the control device 136 switches between the first state and the second state is not limited to the above. For example, after the sensor 135 detects the marker M1 and is switched to the second state, it may be switched to the first state when a certain time has elapsed. In this case, it is not necessary to detect the marker M2. Further, after the sensor 135 detects the marker M2 and is switched to the first state, the sensor 135 may be switched to the second state when a certain time has elapsed. In this case, it is not necessary to detect the marker M1. Moreover, you may switch a 1st state and a 2nd state for every fixed time. In this case, the sensor 136 is not necessary. Further, the number of rotations of the gear 132 or the like may be counted, and the first state and the second state may be switched according to the count value. In addition, various control methods can be adopted.
The method of elastically deforming the elastic body 34 in the storage device 3 is not limited to that using the cam 30 or the rack 133. For example, a ball screw mechanism including a screw that rotates as the shaft 5B rotates and a nut that is screwed into the screw via a ball can be used. That is, in this ball screw mechanism, the elastic body 34 can be elastically deformed if the elastic body 34 is compressed or stretched as the nut moves.
 本発明によれば、従来の再生エネルギーを利用する発電システムが抱えている多くの問題のうち、すくなくとも、エネルギー受容部の稼働開始閾値の問題、発電システムの閾値の問題、発電効率の問題、発電の非継続性によるバッテリ等の蓄電装置の蓄電性能の問題を解決することができる。すなわち、
(エネルギー受容部の稼働開始閾値の問題の解決)
 従来の風力発電機は、運動エネルギーを発電機側の負荷に負けないトルクを持ったものとするためブレードは頑丈なものとする必要があり、重くなる傾向があった。このことにより、ブレードが回り始めるまでの風力の閾値は上がることになる。
 本発明では、再生エネルギーの運動エネルギーを発電機ではなく、変速機を入口とすることで、エネルギー受容部の受ける負荷を、変速率により自由に軽くできる。このため、ブレードは極端に言えば布のような素材でつくり、微風でも簡単に回転できるような設計が可能になる。
According to the present invention, among the many problems that power generation systems using conventional renewable energy have, at least the problem of the threshold value for starting the energy receiving unit, the problem of the threshold value of the power generation system, the problem of power generation efficiency, The problem of the power storage performance of a power storage device such as a battery due to the discontinuity of the battery can be solved. That is,
(Solving the problem of the threshold for starting energy reception)
Conventional wind power generators have a torque that does not lose the kinetic energy to the load on the generator side, so the blades need to be sturdy and tend to be heavy. This increases the threshold of wind power until the blades begin to rotate.
In the present invention, the kinetic energy of the regenerative energy is not the generator but the transmission is used as the inlet, so that the load received by the energy receiving unit can be freely reduced by the transmission rate. For this reason, the blade can be made of a material such as cloth in an extreme case, and can be designed so that it can be easily rotated even by a slight wind.
(発電システムの閾値の問題の解決)
 従来は、ブレード(羽)が回る風速に達しても、発電機のモーターが発電するまでの回転スピードに達しなければ利用できる電力とならない。これに対して、本発明では、再生エネルギーの運動エネルギーは、一方向にのみ回転するように設定された回転子を回し連動するカムなどによって変形した弾性体の弾性エネルギーとして堆積するので、運動エネルギーの大小、非継続性に関わらず蓄積され、蓄積ロスを低減できる。
(発電効率の問題の解決)
 従来のシステムでは、受容部によって発電機が発電できる回転スピードに達しても、そのスピードが低レベルでは、システム内の負荷による電力ロスによってそのエネルギーは消費されてしまう。これに対し、本発明では、発電機は、蓄えられた弾性体の発生する弾性エネルギーによって、発電に必要な駆動条件を満たしつつ、理想的な状態で稼働し発電する。従って、本発明では、発電システムの閾値の問題は発生しない。
(発電の非継続性によるバッテリ等の蓄電装置の蓄電性能の問題の解決)
 従来のシステムでは、十分な電力が発生してバッテリ等の蓄電装置に蓄えられても、風がなく発電しない時間が長引けばバッテリ内で自然放電してしまう。これに対し、本発明では、弾性エネルギーの量を高く、あるいは並列させることでエネルギーを蓄え、バッテリに蓄電するタイミングを最適に制御できるので、自然放電の問題を低減可能である。
(Solution of threshold problem of power generation system)
Conventionally, even if the wind speed at which the blades (wings) turn is reached, the electric power that can be used cannot be obtained unless the rotation speed until the motor of the generator generates power is reached. In contrast, in the present invention, the kinetic energy of the regenerative energy is accumulated as elastic energy of an elastic body deformed by a cam or the like that rotates and rotates a rotor that is set to rotate only in one direction. Regardless of the size and non-continuity, it is accumulated and the accumulation loss can be reduced.
(Solution of power generation efficiency problem)
In the conventional system, even when the rotational speed at which the generator can generate power is reached by the receiving portion, if the speed is low, the energy is consumed due to the power loss due to the load in the system. On the other hand, in the present invention, the generator operates and generates power in an ideal state while satisfying drive conditions necessary for power generation by the elastic energy generated by the stored elastic body. Therefore, in the present invention, the problem of the threshold value of the power generation system does not occur.
(Solution of power storage performance problems of power storage devices such as batteries due to non-continuity of power generation)
In a conventional system, even if sufficient electric power is generated and stored in a power storage device such as a battery, if there is no wind and power generation is prolonged, the battery spontaneously discharges in the battery. On the other hand, in the present invention, the amount of elastic energy can be increased or stored in parallel by optimizing the timing of storing energy and storing in the battery, so that the problem of spontaneous discharge can be reduced.
 以上説明したように、本発明によれば、比較的簡単な構成で発電効率を向上させることができ、安価に高効率の発電システムの実現が可能である。このことがシステムのパフォーマンスの向上ととともに民生用の風力発電や波力発電に大きく貢献することは論を待たない。 As described above, according to the present invention, power generation efficiency can be improved with a relatively simple configuration, and a highly efficient power generation system can be realized at low cost. There is no doubt that this will greatly contribute to the improvement of system performance and to wind power and wave power generation for consumer use.
 さらに、本発明の弾性エネルギー蓄積装置は、再生エネルギー受容装置側の受けるトルクを必要に応じて軽くし得る変速機を配置しているので、再生エネルギー受容装置との組み合わせのほかに、人力やクレーン車のような外部動力と組んで、へき地用、緊急用の発電装置としても使用可能である。すなわち、ジャングルの中のようなへき地では、再生エネルギーの代わりに、人力を合力することで弾性エネルギーを蓄え、発電させることもできるし、緊急時には、クレーン車のような外部の力で装置の重りを持ち上げ、弾性エネルギーを加えることで、長時間の安定した発電を供給することもできる。
 換言すれば、本明細書記載の発明には、特許請求の範囲に記載された発明と共に「外部動力である第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生する蓄積装置と、前記第2動力を電力に変換する発電装置と、を備える発電システム」、及び「外部動力である第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生して、これを発電に利用できるようにした発電システム用弾性エネルギー蓄積装置」を包含している。
Furthermore, since the elastic energy storage device of the present invention is provided with a transmission that can reduce the torque received on the regeneration energy receiving device side as necessary, in addition to the combination with the regeneration energy receiving device, human power and crane In combination with external power like a car, it can also be used as a power generator for remote areas and emergency use. In other words, in remote areas such as in the jungle, elastic energy can be stored and generated by combining human power instead of renewable energy. By lifting up and applying elastic energy, stable power generation for a long time can be supplied.
In other words, in the invention described in the present specification, together with the invention described in the claims, the first energy is stored using the first power that is external power, and the first energy is stored using the stored elastic energy. A power generation system including a storage device that generates second power that is larger than power and a power generation device that converts the second power into electric power, and “stores elastic energy using the first power that is external power” , An elastic energy storage device for a power generation system that generates second power that is larger than the first power by using the stored elastic energy and that can be used for power generation.
 1…発電システム、2…再生エネルギー受容装置、3…蓄積装置、4…発電装置、5…第1シャフト、6…変速機、7…第2シャフト、30…カム、31…第3シャフト、34…弾性体、35…レール、36…ストッパ、37…スライダ、38…環体、133…ラック、134…可動部材、135…センサ、136…制御装置、140…切換機構。 DESCRIPTION OF SYMBOLS 1 ... Electric power generation system, 2 ... Regenerative energy acceptance apparatus, 3 ... Accumulation apparatus, 4 ... Electric power generation apparatus, 5 ... 1st shaft, 6 ... Transmission, 7 ... 2nd shaft, 30 ... Cam, 31 ... 3rd shaft, 34 DESCRIPTION OF SYMBOLS ... Elastic body, 35 ... Rail, 36 ... Stopper, 37 ... Slider, 38 ... Ring, 133 ... Rack, 134 ... Movable member, 135 ... Sensor, 136 ... Control apparatus, 140 ... Switching mechanism.

Claims (14)

  1.  入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生する蓄積装置と、
     前記第2動力を電力に変換する発電装置と、
     を備え、
     前記蓄積装置は、帯状の部材により構成され半径方向に弾性変形可能な環体を含む弾性体を備え、前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換する、
     発電システム。
    An accumulator that stores elastic energy using the input first power and generates a second power larger than the first power using the stored elastic energy;
    A power generator for converting the second power into electric power;
    With
    The storage device includes an elastic body including an annular body that is configured by a band-shaped member and is elastically deformable in a radial direction, stores elastic energy by elastically deforming the elastic body by the first power, and stores the elastic energy of the elastic body. Converting elastic energy into the second power when releasing elastic deformation;
    Power generation system.
  2.  前記蓄積装置は、
     レールと、
     前記レールに沿って外周面を互いに接触させて配列された複数の前記環体と、
     各前記環体を前記レールに対してスライド自在に取り付けるスライダと、
     各前記環体のうち、一方の端の前記環体に接触するストッパと、
     をさらに備え、
     前記第1動力により各前記環体を前記ストッパに向けて圧縮させるか、或いは前記ストッパから離れる方向に伸張させることで、各前記環体が弾性変形する、
     請求項1に記載の発電システム。
    The storage device
    Rails,
    A plurality of the rings arranged in contact with each other along the rails, and
    A slider for slidably attaching each ring to the rail;
    A stopper that contacts the ring at one end of each of the rings,
    Further comprising
    Each ring body is elastically deformed by compressing each ring body toward the stopper by the first power or by extending in a direction away from the stopper.
    The power generation system according to claim 1.
  3.  エネルギーを受容して前記第1動力を発生する受容装置を更に備え、
     前記受容装置と前記蓄積装置とを接続する第1シャフトと、
     前記蓄積装置と前記発電装置とを接続する第2シャフトと、
     をさらに備え、
     前記第1動力は、前記第1シャフトの回転運動により前記蓄積装置に伝達され、
     前記第2動力は、前記第2シャフトの回転運動により前記発電装置に伝達される、
     請求項1又は2に記載の発電システム。
    A receiving device for receiving energy and generating the first power;
    A first shaft connecting the receiving device and the storage device;
    A second shaft connecting the storage device and the power generation device;
    Further comprising
    The first power is transmitted to the storage device by a rotational movement of the first shaft,
    The second power is transmitted to the power generation device by a rotational motion of the second shaft.
    The power generation system according to claim 1 or 2.
  4.  エネルギーを受容して第1動力を発生する受容装置と、
     前記第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生する蓄積装置と、
     前記第2動力を電力に変換する発電装置と、
     前記受容装置と前記蓄積装置とを接続し、前記受容装置が発生した前記第1動力を回転運動により前記蓄積装置に伝達する第1シャフトと、
     前記蓄積装置と前記発電装置とを接続し、前記蓄積装置が発生した前記第2動力を回転運動により前記発電装置に伝達する第2シャフトと、
     前記第1シャフトに設けられ、前記第1シャフトの回転速度を変速する変速機と、
     を備え、
     前記蓄積装置は、弾性体を備え、前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換し、
     前記変速機による変速後の前記第1シャフトのトルクは、前記発電装置による発電に必要な前記第2シャフトのトルクよりも小さい、
     発電システム。
    A receiving device for receiving energy and generating first power;
    An accumulator that stores elastic energy using the first power and generates a second power larger than the first power using the stored elastic energy;
    A power generator for converting the second power into electric power;
    A first shaft for connecting the receiving device and the storage device, and transmitting the first power generated by the receiving device to the storage device by rotational movement;
    A second shaft that connects the storage device and the power generation device, and transmits the second power generated by the storage device to the power generation device by rotational movement;
    A transmission provided on the first shaft and configured to change a rotation speed of the first shaft;
    With
    The storage device includes an elastic body, stores elastic energy by elastically deforming the elastic body by the first power, and converts the elastic energy to the second power when releasing the elastic deformation of the elastic body,
    The torque of the first shaft after shifting by the transmission is smaller than the torque of the second shaft required for power generation by the power generation device,
    Power generation system.
  5.  前記蓄積装置は、
     第3シャフトと、
     前記第3シャフトを軸として回転するカムと、
     前記第1シャフトの回転運動を前記第3シャフトに伝達する第1ギア列と、
     前記第3シャフトの回転運動を前記第2シャフトに伝達する第2ギア列と、
     をさらに備え、
     前記第1動力による前記第1シャフト、前記第1ギア列、及び前記第3シャフトの回転運動により前記カムが前記弾性体を弾性変形させ、
     前記弾性体の弾性変形の解消に伴う前記カム、前記第3シャフト、及び前記第2ギア列の回転運動により前記第2シャフトを回転させる前記第2動力が発生する、
     請求項4に記載の発電システム。
    The storage device
    A third shaft;
    A cam that rotates about the third shaft;
    A first gear train for transmitting the rotational movement of the first shaft to the third shaft;
    A second gear train for transmitting the rotational movement of the third shaft to the second shaft;
    Further comprising
    The cam elastically deforms the elastic body by the rotational movement of the first shaft, the first gear train, and the third shaft by the first power,
    The second power for rotating the second shaft is generated by the rotational movement of the cam, the third shaft, and the second gear train accompanying cancellation of elastic deformation of the elastic body.
    The power generation system according to claim 4.
  6.  前記蓄積装置は、
     前記弾性体に接続されたラックと、
     前記第1シャフトに接続された第1ギア及び前記第2シャフトに接続された第2ギアを含み、前記ラックに噛み合ったギア列と、
     をさらに備え、
     前記第1動力により前記第1ギアが回転して前記ラックが第1方向に移動するとともに前記弾性体が弾性変形し、前記弾性体の弾性変形の解放時に前記ラックが前記第1方向と反対の第2方向に移動するとともに前記第2ギアが回転して前記第2動力が発生する、
     請求項4に記載の発電システム。
    The storage device
    A rack connected to the elastic body;
    A gear train including a first gear connected to the first shaft and a second gear connected to the second shaft, and meshed with the rack;
    Further comprising
    The first gear is rotated by the first power to move the rack in the first direction and the elastic body is elastically deformed. When the elastic deformation of the elastic body is released, the rack is opposite to the first direction. The second power is generated by moving in the second direction and rotating the second gear.
    The power generation system according to claim 4.
  7.  前記蓄積装置は、前記第1動力による前記弾性体の弾性変形を許容する第1状態と、前記弾性体の弾性変形を解放する第2状態と、を切り換える切換機構をさらに備える、
     請求項1乃至6のうちいずれか1項に記載の発電システム。
    The storage device further includes a switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released.
    The power generation system according to any one of claims 1 to 6.
  8.  入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生し、この第2動力を電力に変換する発電装置に対して動力伝達可能に接続される発電システム用弾性エネルギー蓄積装置であって、
     帯状の部材により構成され半径方向に弾性変形可能な環体を含む弾性体を備え、
     前記第1動力により前記弾性体を弾性変形させることで弾性エネルギーを蓄え、前記弾性体の弾性変形の解放時において弾性エネルギーを前記第2動力に変換する、
     発電システム用弾性エネルギー蓄積装置。
    A power generator that stores elastic energy using the input first power, generates second power that is larger than the first power using the stored elastic energy, and converts the second power into electric power. An elastic energy storage device for a power generation system connected to transmit power,
    An elastic body including an annular body configured by a belt-shaped member and elastically deformable in the radial direction,
    Storing elastic energy by elastically deforming the elastic body with the first power, and converting the elastic energy into the second power when releasing the elastic deformation of the elastic body;
    Elastic energy storage device for power generation systems.
  9.  レールと、
     前記レールに沿って外周面を互いに接触させて配列された複数の前記環体と、
     各前記環体を前記レールに対してスライド自在に取り付けるスライダと、
     各前記環体のうち、一方の端の前記環体に接触するストッパと、
     をさらに備え、
     前記第1動力により各前記環体を前記ストッパに向けて圧縮させるか、或いは前記ストッパから離れる方向に伸張させることで、各前記環体が弾性変形する、
     請求項8に記載の発電システム用弾性エネルギー蓄積装置。
    Rails,
    A plurality of the rings arranged in contact with each other along the rails, and
    A slider for slidably attaching each ring to the rail;
    A stopper that contacts the ring at one end of each of the rings,
    Further comprising
    Each ring body is elastically deformed by compressing each ring body toward the stopper by the first power or by extending in a direction away from the stopper.
    The elastic energy storage device for a power generation system according to claim 8.
  10.  エネルギーを受容して前記第1動力を発生する受容装置からの前記第1動力を伝達する第1シャフト、及び、前記第2動力を前記発電装置に伝達する第2シャフトの各々が接続された、
     請求項8又は9に記載の発電システム用弾性エネルギー蓄積装置。
    Each of a first shaft that transmits the first power from a receiving device that receives energy and generates the first power, and a second shaft that transmits the second power to the power generation device are connected.
    The elastic energy storage device for a power generation system according to claim 8 or 9.
  11.  前記第1シャフトのトルクは、前記発電装置による発電に必要な前記第2シャフトのトルクよりも小さい、
     請求項10に記載の発電システム用弾性エネルギー蓄積装置。
    The torque of the first shaft is smaller than the torque of the second shaft required for power generation by the power generation device,
    The elastic energy storage device for a power generation system according to claim 10.
  12.  前記弾性体に接続されたラックと、
     前記第1シャフトに接続された第1ギア及び前記第2シャフトに接続された第2ギアを含み、前記ラックに噛み合ったギア列と、
     をさらに備え、
     前記第1動力により前記第1ギアが回転して前記ラックが第1方向に移動するとともに前記弾性体が弾性変形し、前記弾性体の弾性変形の解放時に前記ラックが前記第1方向と反対の第2方向に移動するとともに前記第2ギアが回転して前記第2動力が発生する、
     請求項10又は11に記載の発電システム用弾性エネルギー蓄積装置。
    A rack connected to the elastic body;
    A gear train including a first gear connected to the first shaft and a second gear connected to the second shaft, and meshed with the rack;
    Further comprising
    The first gear is rotated by the first power to move the rack in the first direction and the elastic body is elastically deformed. When the elastic deformation of the elastic body is released, the rack is opposite to the first direction. The second power is generated by moving in the second direction and rotating the second gear.
    The elastic energy storage device for a power generation system according to claim 10 or 11.
  13.  入力された第1動力を用いて弾性エネルギーを蓄えるとともに、蓄えた弾性エネルギーを用いて前記第1動力よりも大きい第2動力を発生し、この第2動力を電力に変換する発電装置に対して動力伝達可能に接続される発電システム用弾性エネルギー蓄積装置であって、
     エネルギーを受容して前記第1動力を発生する受容装置からの前記第1動力を伝達する第1シャフト、及び、前記第2動力を前記発電装置に伝達する第2シャフトの各々が接続され、
     弾性体と、
     第3シャフトと、
     前記第3シャフトを軸として回転するカムと、
     前記第1シャフトの回転運動を前記第3シャフトに伝達する第1ギア列と、
     前記第3シャフトの回転運動を前記第2シャフトに伝達する第2ギア列と、
     を備え、
     前記第1動力による前記第1シャフト、前記第1ギア列、及び前記第3シャフトの回転運動により前記カムが前記弾性体を弾性変形させ、
     前記弾性体の弾性変形の解消に伴う前記カム、前記第3シャフト、及び前記第2ギア列の回転運動により前記第2シャフトを回転させる前記第2動力が発生する、
     発電システム用弾性エネルギー蓄積装置。
    A power generator that stores elastic energy using the input first power, generates second power that is larger than the first power using the stored elastic energy, and converts the second power into electric power. An elastic energy storage device for a power generation system connected to transmit power,
    Each of a first shaft that transmits the first power from a receiving device that receives energy and generates the first power, and a second shaft that transmits the second power to the power generation device are connected,
    An elastic body,
    A third shaft;
    A cam that rotates about the third shaft;
    A first gear train for transmitting the rotational movement of the first shaft to the third shaft;
    A second gear train for transmitting the rotational movement of the third shaft to the second shaft;
    With
    The cam elastically deforms the elastic body by the rotational movement of the first shaft, the first gear train, and the third shaft by the first power,
    The second power for rotating the second shaft is generated by the rotational movement of the cam, the third shaft, and the second gear train accompanying cancellation of elastic deformation of the elastic body.
    Elastic energy storage device for power generation systems.
  14.  前記第1動力による前記弾性体の弾性変形を許容する第1状態と、前記弾性体の弾性変形を解放する第2状態と、を切り換える切換機構をさらに備える、
     請求項8乃至13のうちいずれか1項に記載の発電システム用弾性エネルギー蓄積装置。
    A switching mechanism that switches between a first state in which elastic deformation of the elastic body by the first power is allowed and a second state in which elastic deformation of the elastic body is released;
    The elastic energy storage device for a power generation system according to any one of claims 8 to 13.
PCT/JP2017/000390 2016-02-12 2017-01-10 Power generation system, and elastic energy storage device for power generation system WO2017138280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024348 2016-02-12
JP2016024348A JP6074081B1 (en) 2016-02-12 2016-02-12 Power generation system and elastic energy storage device for power generation system

Publications (1)

Publication Number Publication Date
WO2017138280A1 true WO2017138280A1 (en) 2017-08-17

Family

ID=57937531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000390 WO2017138280A1 (en) 2016-02-12 2017-01-10 Power generation system, and elastic energy storage device for power generation system

Country Status (2)

Country Link
JP (1) JP6074081B1 (en)
WO (1) WO2017138280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294283A (en) * 2021-07-22 2021-08-24 山东省科学院海洋仪器仪表研究所 Wave energy power generation device with flexible transduction-seal structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539499A (en) * 2020-12-01 2021-03-23 廖悦 Unpowered roof ventilator capable of automatically adjusting rotating speed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716270A (en) * 1980-07-02 1982-01-27 Sakuji Kajiyama Wind power generating device
JPH10131841A (en) * 1996-10-29 1998-05-19 Home Support:Kk Mechanical energy accumulating type power generating device
JP2003056451A (en) * 2001-08-20 2003-02-26 Seiko Epson Corp Windmill power generating device
JP2004260896A (en) * 2003-02-25 2004-09-16 Seiko Epson Corp Generator and electronic apparatus
JP2008223747A (en) * 2007-03-08 2008-09-25 Itbox Co Ltd Energy conservation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716270A (en) * 1980-07-02 1982-01-27 Sakuji Kajiyama Wind power generating device
JPH10131841A (en) * 1996-10-29 1998-05-19 Home Support:Kk Mechanical energy accumulating type power generating device
JP2003056451A (en) * 2001-08-20 2003-02-26 Seiko Epson Corp Windmill power generating device
JP2004260896A (en) * 2003-02-25 2004-09-16 Seiko Epson Corp Generator and electronic apparatus
JP2008223747A (en) * 2007-03-08 2008-09-25 Itbox Co Ltd Energy conservation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294283A (en) * 2021-07-22 2021-08-24 山东省科学院海洋仪器仪表研究所 Wave energy power generation device with flexible transduction-seal structure
CN113294283B (en) * 2021-07-22 2022-08-09 山东省科学院海洋仪器仪表研究所 Wave energy power generation device with flexible transduction-seal structure

Also Published As

Publication number Publication date
JP2017141756A (en) 2017-08-17
JP6074081B1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6210245B2 (en) Power converter
CN102132034B (en) An oceanic wave energy utilization system
EP1960660B1 (en) Wave energy recovery system
US20060028026A1 (en) Wave-power generation system
JP6001798B1 (en) Power generation system and potential energy storage device for power generation system
CN101290001B (en) Tide generation station
EP2770194A1 (en) Wave-power electricity generation system
CN111183297B (en) Accumulation and rotation device
US4524283A (en) Energy converter
GB2479348A (en) Wave power converter with one way clutch
JP2015530522A (en) Wave energy converter
KR101751218B1 (en) Power Converting Apparatus for Wave-force Generation
CN102392775A (en) Pitch varying mechanism for horizontal shaft ocean current energy generator
JP6074081B1 (en) Power generation system and elastic energy storage device for power generation system
CN105484959A (en) One-way conversion device and power generation system adopting same
CN107923370A (en) Drive component
CN101922403B (en) Wave energy generating system
WO2024093363A1 (en) Wave energy power generation apparatus
US10208732B2 (en) Intelligent wind turbine generator
WO2011034876A1 (en) System and method for energy generation
CN101749168A (en) Sea wave-powered ship
CN108394528B (en) Floating type wind, wave and current hybrid power generation platform
WO2020199301A1 (en) Sea wave power generation device
CN203321741U (en) Wave generation device
CN113482844A (en) Tidal power driven elastic energy storage power generation device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750005

Country of ref document: EP

Kind code of ref document: A1