WO2017138248A1 - Solar power generation device - Google Patents

Solar power generation device Download PDF

Info

Publication number
WO2017138248A1
WO2017138248A1 PCT/JP2016/087332 JP2016087332W WO2017138248A1 WO 2017138248 A1 WO2017138248 A1 WO 2017138248A1 JP 2016087332 W JP2016087332 W JP 2016087332W WO 2017138248 A1 WO2017138248 A1 WO 2017138248A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
buffer member
solar cell
cell panel
power generation
Prior art date
Application number
PCT/JP2016/087332
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 修
中島 丈温
稔 樋口
吉田 朋秀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017138248A1 publication Critical patent/WO2017138248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This disclosure relates to a photovoltaic power generation apparatus.
  • a solar power generation device is generally configured by arranging a plurality of solar cell modules having a solar cell panel and a module frame provided at an edge of the panel on a roof or the like.
  • the solar cell panel may be bent by the weight of snow accumulated on the solar cell panel.
  • the solar cell module is installed on the roof, for example, the module frame is placed on a long frame frame attached to the roof, but when the solar cell panel is greatly bent, the back surface of the panel comes into contact with the frame and the back There is a risk of sheet breakage, cell cracking, and the like.
  • the solar cell module is raised with a spacer and installed, the appearance of the solar power generation device is deteriorated, and the design is deteriorated. Moreover, when the bending of the solar battery panel becomes too large, there is a concern that, for example, cell cracking is likely to occur, or the panel is dropped from the module frame.
  • a photovoltaic power generation apparatus which is one embodiment of the present disclosure is a solar cell module having a solar cell panel, a module frame provided at an edge of the panel, and a long pedestal frame attached to a roof.
  • the gantry frame is disposed on the back side of the solar cell panel and on which the module frame is placed, and the buffer member provided between the back surface of the solar cell panel and the gantry frame at a position away from the module frame.
  • the photovoltaic power generation apparatus that is one aspect of the present disclosure, it is possible to prevent contact between the back surface of the solar cell panel and the gantry frame without deteriorating the design. Moreover, the excessive bending of a solar cell panel can be prevented.
  • the buffer member provided between the back surface of the solar cell panel and the gantry frame prevents contact between the back surface of the panel and the gantry frame. That is, when the solar cell panel is bent due to the weight of snow, the back surface of the panel abuts against a buffer member interposed between the frame and the frame. Since the buffer member is softer than the gantry frame and is elastically deformed by contact with the panel, for example, the panel can be sufficiently prevented from being damaged.
  • the module since the spacer for raising the solar cell module is not necessary, the module does not rise significantly from the roof, and the design is not deteriorated due to the use of the spacer.
  • the buffer member widely contacts the back surface of the solar cell panel to support the panel, and prevents excessive bending of the panel.
  • an elongated frame is arranged along the eaves direction of the roof.
  • the direction of the buffer member along the eaves direction of the roof may be referred to as “vertical direction”
  • the direction of the buffer member along the girder direction of the roof (direction perpendicular to the eaves direction of the roof) is “lateral direction”
  • the direction of the buffer member along the direction perpendicular to the roof base plate is referred to as “vertical direction”.
  • the longitudinal direction of the gantry frame and the vertical direction are the same direction
  • the width direction of the gantry frame and the horizontal direction are the same direction.
  • the direction of the eaves and the vertical direction of the roof are indicated by an arrow ⁇
  • the girder and horizontal directions are indicated by an arrow ⁇
  • the vertical direction is indicated by an arrow ⁇ .
  • FIG. 1 is a perspective view of a photovoltaic power generation apparatus 10 which is an example of an embodiment.
  • the solar power generation device 10 includes a solar cell module 11 and an elongated frame 30 attached to the roof.
  • the solar cell module 11 includes a solar cell panel 12 and a module frame 13 provided at an edge portion of the panel.
  • the gantry frame 30 is a long frame that is disposed on the back side of the solar cell panel 12 and on which the module frame 13 is placed.
  • the solar power generation device 10 includes a buffer member 14 provided between the back surface of the solar cell panel 12 and the gantry frame 30 at a position away from the module frame 13.
  • the solar power generation device 10 is configured by arranging a plurality of solar cell modules 11 side by side on a long frame frame 30 attached to a roof.
  • the solar power generation device 10 includes a first metal fitting 40, a second metal fitting 50, and a third metal fitting 60 as metal fittings for fixing the module frame 13 to the gantry frame 30.
  • a fixing bracket (not shown) is used to attach the gantry frame 30 to the roof. The type of the fixing bracket is appropriately selected according to the structure of the roof.
  • the solar battery panel 12 is a substantially flat panel in which, for example, a plurality of solar battery cells are sandwiched between a glass plate and a resin back sheet.
  • the solar cell panel 12 is bent by the weight of snow accumulated on the panel, and the back surface comes into contact with the buffer member 14 when the deflection becomes large.
  • the solar cell module 11 and the solar cell panel 12 have a substantially rectangular shape in plan view.
  • the solar cell module 11 is arranged in a state in which the short sides thereof are substantially parallel to the eaves-ridge direction and the short sides of the adjacent solar cell modules 11 are substantially in contact with each other.
  • the solar cell module 11 may have a plan view shape other than a rectangle, or may have another shape such as a square.
  • the module frame 13 protects the edge of the solar cell panel 12 and is used for fixing the solar cell module 11 to the gantry frame 30.
  • the module frame 13 is a long member formed by extruding a metal material such as aluminum.
  • the module frame 13 includes two long side frames 20 provided along two long sides of the solar cell panel 12 and two short side frames 21 provided along two short sides.
  • the long side frame 20 and the short side frame 21 are connected to each other by, for example, a corner piece and surround the four sides of the solar cell panel 12.
  • the gantry frame 30 is installed on the roof so that its longitudinal direction is along the eaves direction.
  • the gantry frame 30 has a length that allows a plurality of solar cell modules 11 to be placed in the eaves-ridge direction.
  • One solar cell module 11 is placed on two gantry frames 30 arranged substantially parallel to each other with an appropriate interval in the direction of the roof girder, for example.
  • the gantry frame 30 is disposed over each long side frame 20, that is, over the entire length in the short side direction of the module.
  • the gantry frame 30 has an upper wall portion 31, a pair of side wall portions 32 formed substantially perpendicular to the upper wall portion 31, and a lower end of each side wall portion 32 formed substantially parallel to the upper wall portion 31. It is a frame of the hollow structure which has the lower wall part 33 to do. On the upper wall portion 31, a pair of flange portions 34 are erected.
  • the upper wall portion 31 is longer in the width direction of the frame than the lower wall portion 33, and projects outward from the connection portion with each side wall portion 32, and a collar portion 34 is formed at the tip of the projected portion (described later). (See FIG. 3).
  • the gantry frame 30 includes a guide rail portion 35 that slidably supports the first metal fitting 40, the second metal fitting 50, and the third metal fitting 60 along the longitudinal direction of the frame.
  • the guide rail portion 35 includes an upper wall portion 31 and a flange portion 34 that stands on the upper wall portion 31.
  • the buffer member 14 is provided on the upper surface of the gantry frame 30 facing the back surface of the solar cell panel 12. As will be described in detail later, the buffer member 14 is mounted on the gantry frame 30 using the guide rail portion 35. The buffer member 14 is provided at a position facing the back surface of the solar cell panel 12 away from the long side frame 20. On the back side of one solar cell panel 12, at least the number of the buffer members 14 equal to or more than the number of the pedestal frames 30 arranged on the back side of the panel is provided and attached to all of the pedestal frames. In the solar power generation device 10, two buffer members 14 are provided on the back side of each solar cell panel 12. Each buffer member 14 is arranged side by side in the long side direction of the solar cell panel 12.
  • the buffer member 14 is provided in the central portion in the short side direction of the panel where the bending of the solar cell panel 12 is increased.
  • the buffer member 14 is provided on each gantry frame 30 at a position approximately equidistant from each long side frame 20 (both ends in the short side direction of the solar cell panel 12).
  • the buffer member 14 is not disposed under the long side frame 20, but may be disposed so as to contact the long side frame 20.
  • the central portion in the short side direction of the back surface of the panel It is preferable to arrange the buffer member 14 only at the facing position.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the long side frame 20 placed on the gantry frame 30 includes a main body portion 22, an inner groove 24 that houses the edge of the solar cell panel 12, and an outer side provided on the opposite side of the panel. It has the groove
  • the main body 22 has a hollow prismatic shape.
  • the inner groove 24 is formed in the upper part of the long side frame 20, and the outer groove 26 and the inner collar 27 are formed in the lower part of the long side frame 20.
  • the inner groove 24 is a groove opened on one side (inner side) in the width direction of the long side frame 20, and the outer groove 26 is a groove opened on the other side (outer side) in the width direction opposite to the inner groove 24.
  • the long side frame 20 has a flange portion 23 erected on the upper surface of the main body portion 22.
  • the flange portion 23 extends straight upward from the outside of the main body portion 22 and is bent inward to have a substantially L-shaped cross section.
  • an inner groove 24 that is a gap into which the solar cell panel 12 can be inserted is formed.
  • the long side frame 20 has a flange portion 25 erected on the lower surface of the main body portion 22.
  • the flange portion 25 extends straight downward from the inside of the main body portion 22, and is bent outward so as to have a substantially L-shaped cross section.
  • An outer groove 26 is formed between the lower surface of the main body portion 22 and the flange portion 25 as a gap into which the first fixing bracket 40 and the second bracket 50 can be inserted.
  • the inner collar 27 extends from the lower side of the long side frame 20 toward the inside of the module, and is formed substantially perpendicular to the inner side wall of the long side frame 20.
  • An inner collar 27 extends from the lower end of the portion along the vertical direction constituting the inner wall of the long side frame 20 in the collar portion 25, and the inner collar 27 is long along with the portion along the width direction of the collar portion 25.
  • the bottom of the side frame 20 is configured.
  • the first metal fitting 40, the second metal fitting 50, and the third metal fitting 60 are installed on the guide rail portion 35 of the gantry frame 30.
  • Each of the metal fittings is inserted between the upper wall portion 31 and the flange portion 34 constituting the guide rail portion 35, and is supported so as to be slidable in a state where it does not come out upward.
  • a through hole through which the bolt 36 is inserted is formed in the first metal fitting 40, the third metal fitting 60, and the upper wall portion 31, and each metal fitting is positioned at a specific location on the upper wall portion 31 using the bolt 36. Is done.
  • the long frame 20 provided at the eaves side end of the solar cell module 11 is fixed to the gantry frame 30 using the first metal fitting 40.
  • the long frame 20 provided at the ridge side end of the solar cell module 11 is fixed to the gantry frame 30 using the second metal fitting 50.
  • Both the first metal fitting 40 and the second metal fitting 50 are inserted into the outer groove 26 of the long frame 20.
  • the third metal fitting 60 is disposed inside the module from the long frame 20 at the ridge side end. The third metal fitting 60 projects over the inner collar 27 and engages with the second metal fitting 50.
  • the buffer member 14 is attached on the upper wall portion 31 of the gantry frame 30.
  • the buffer member 14 is made of resin as a main component, elastically deforms when the back surface of the solar cell panel 12 comes into contact, and supports the panel in a state where a load applied to the back surface of the panel is dispersed. That is, no large pressure is locally applied to the back surface of the solar cell panel 12 supported by the buffer member 14.
  • the resin constituting the buffer member 14 may contain an inorganic filler or the like, but is preferably substantially composed only of a resin.
  • the buffer member 14 is made of an elastomer, rubber, or resin foam (including elastomer and rubber foam) that has elasticity at room temperature.
  • resin foam include foamed ethylene propylene rubber, foamed butyl rubber, and foamed urethane.
  • the buffer member 14 is longer in the vertical direction than in the horizontal direction and has a substantially rectangular shape in plan view (see FIG. 1 and the like).
  • the buffer member 14 covers the upper surface of the gantry frame 30 including the flange 34 so that the back surface of the solar cell panel 12 does not come into contact with the gantry frame 30.
  • the lateral length of the buffer member 14 is longer than the width of the gantry frame 30 and protrudes laterally from both sides of the gantry frame 30 in the width direction. By projecting the buffer member 14 from the gantry frame 30 in the lateral direction, the solar cell panel 12 can be prevented from coming into contact with the corners (the flanges 34) of the gantry frame 30 even when the buffer member 14 is greatly deformed.
  • the overhang portion of the buffer member 14 extends downward and covers the side surface of the flange portion 34.
  • the buffer member 14 may have a shape that goes around the lower surface side of the upper wall portion 31 and is hooked on the lower surface of the upper wall portion 31.
  • the length in the vertical direction of the buffer member 14 is, for example, 10% to 50%, preferably 20% to 40% of the length of the short side of the solar cell panel 12.
  • the thickness (length in the vertical direction) of the buffer member 14 is set to such a thickness that the back surface of the panel does not contact the gantry frame 30 even when the buffer member 14 is greatly deformed by the contact of the solar cell panel 12.
  • the thickness of the buffer member 14 is, for example, 5 mm to 20 mm at the thinnest portion.
  • the buffer member 14 is preferably provided away from the back surface of the panel when the solar cell panel 12 is not bent (see FIG. 2). Since the temperature of the solar cell panel 12 is increased by receiving sunlight, it is possible to suppress deterioration due to heat or the like of the buffer member 14 by separating the buffer member 14 from the back surface of the panel.
  • the distance between the back surface of the solar cell panel 12 and the buffer member 14 is, for example, approximately the same as the vertical length of the main body 22 of the long side frame 20.
  • the buffer member 14 is inserted into the guide rail portion 35.
  • the buffer member 14 is inserted between the pair of flange portions 34 and restrained in the lateral movement.
  • the buffer member 14 has a convex portion 15 that is inserted between the upper wall portion 31 and the flange portion 34. Since the convex portions 15 formed on both sides in the lateral direction of the buffer member 14 are inserted between the upper wall portion 31 and the flange portion 34, the buffer member 14 is difficult to be pulled upward. In other words, grooves in which the flanges 34 are inserted over the entire length in the vertical direction are formed at both ends in the horizontal direction of the buffer member 14.
  • the buffer member 14 is fixed to the upper surface of the gantry frame 30 using an adhesive 18.
  • the adhesive 18 is not particularly limited as long as the buffer member 14 and the gantry frame 30 can be bonded.
  • a liquid or paste adhesive or a double-sided tape is used.
  • the adhesive 18 is provided in a range that does not overlap with the lower groove 16 described later.
  • the buffer member 14 is joined to, for example, the upper surface of the upper wall portion 31 and the upper surface of the flange portion 34.
  • the upper surface of the buffer member 14 is curved upward.
  • the shape of the buffer member 14 is bilaterally symmetric with respect to the center line X, and the thickness of the buffer member 14 is thicker at the center in the horizontal direction than at both ends in the horizontal direction.
  • the contact area can also be increased by increasing the elasticity of the buffer member 14 to reduce the compressive stress. If the contact area of the back surface of the solar cell panel 12 and the buffer member 14 becomes large, the pressure concerning the back surface of a panel can further be relieve
  • a lower groove 16 is formed on the lower surface of the buffer member 14 in the vertical direction, that is, in the longitudinal direction of the gantry frame 30.
  • the lower groove 16 serves as a flow path for rainwater, snowmelt, and the like.
  • the lower groove 16 forms a flow path of rainwater or the like between the buffer member 14 and the upper wall portion 31 of the gantry frame 30 and prevents the rainwater or the like from being blocked by the buffer member 14.
  • the cross-sectional shape of the lower groove 16 is preferably a substantially semicircular shape in order to ensure the strength of the buffer member 14 and improve the shape stability. It is preferable to form a plurality of small lower grooves 16 on the lower surface of the buffer member 14 instead of forming one large groove.
  • the buffer member 14 is manufactured by a conventionally known method such as injection molding, compression molding, or transfer molding.
  • a plurality of upper grooves 17 are formed on the upper surface of the buffer member 14 in order to improve shape stability during molding.
  • the upper groove 17 is preferably formed over the entire length in the longitudinal direction of the buffer member 14.
  • FIG. 4 is a diagram showing a state in which the solar cell panel 12 is bent due to the weight of snow.
  • the solar cell panel 12 may be bent and greatly curved toward the back side. Since the module frame 13 provided at the edge of the solar cell panel 12 is placed on the gantry frame 30, a space is formed between the back surface of the solar cell panel 12 and the gantry frame 30.
  • the space becomes narrower, and the back surface of the panel approaches the upper surface of the gantry frame 30 particularly at the center in the short side direction of the panel.
  • the buffer member 14 is provided on the gantry frame 30 at a position facing the central portion in the short side direction on the back surface of the solar cell panel 12. For this reason, when the amount of snow accumulation increases and the deflection of the solar cell panel 12 increases, the back surface of the panel contacts the buffer member 14. That is, the buffer member 14 always exists between the back surface of the solar cell panel 12 and the gantry frame 30, and the back surface of the panel and the gantry frame 30 are not in direct contact. Further, since the buffer member 14 is provided on the two frame frames 30 arranged on the back side of the solar cell panel 12 along the long side direction of the panel, the back surface of the solar cell panel 12 has two buffer members. The member 14 is stably supported.
  • the buffer member 14 is elastically deformed by contact with the solar cell panel 12 and supports the panel so that a large pressure is not locally applied. Moreover, since the upper surface of the buffer member 14 is curved upward so as to follow the shape of the back surface of the solar cell panel 12, a large contact area between the back surface of the panel and the buffer member 14 is obtained, and the back surface of the panel is applied. The pressure is further relaxed. In addition, since the solar cell panel 12 abuts against the buffer member 14 and is supported in this manner when bent to some extent, excessive bending of the solar cell panel 12 is prevented. Thereby, generation
  • the spacer for raising the solar cell module 11 since the spacer for raising the solar cell module 11 is not necessary, the module does not rise significantly from the roof, and the design property is prevented from being lowered due to the use of the spacer.
  • 5A to 5E are cross-sectional views showing buffer members 70, 75, 80, 85, 88 which are other examples of the embodiment.
  • symbol is used for the component similar to the component of the buffer member 14, and a difference with the buffer member 14 is mainly demonstrated.
  • the buffer member 70 has a two-layer structure including a first resin portion 71 and a second resin portion 72. Different.
  • the overall shape of the buffer member 70 is the same as that of the buffer member 14.
  • the first resin portion 71 is elastically deformed by the contact of the solar cell panel 12.
  • the first resin portion 71 is preferably made of an elastomer, rubber, or resin foam having elasticity at room temperature.
  • the second resin portion 72 is provided on the back side (lower) of the first resin portion 71 and is harder than the first resin portion 71.
  • the second resin part 72 is mainly composed of a resin having a higher elastic modulus and a larger compressive stress than the resin constituting the first resin part 71.
  • the second resin portion 72 may not be elastically deformed by the contact of the solar cell panel 12.
  • the buffer member 70 the upper part on the solar cell panel 12 side is constituted by the first resin part 71, and the lower part on the gantry frame 30 side is constituted by the second resin part 72, respectively.
  • the buffer member 70 may be manufactured by separately manufacturing the first resin portion 71 and the second resin portion 72 and then joining them with an adhesive or the like.
  • the buffer member 70 includes two kinds of resin portions. It is integrally molded by injection molding using a resin material.
  • the second resin portion 72 is fixed to the gantry frame 30.
  • the fixing property and durability of the buffer member 70 are improved.
  • the second resin portion 72 is inserted into the guide rail portion 35 and joined to the upper surface of the gantry frame 30 using the adhesive material 18.
  • the convex part 15 is formed in the 2nd resin part 72, and since the convex part 15 is inserted between the upper wall part 31 and the collar part 34, the buffer member 14 becomes difficult to remove
  • the buffer member 75 is common to the buffer member 70 in that it includes a first resin portion 76 and a second resin portion 77.
  • the buffer member 75 is different from the buffer member 70 in that the second resin portion 77 is fixed to the gantry frame 30 using screws 90.
  • the second resin portion 77 has a lateral length that is substantially the same as the interval between the tips of the pair of flange portions 34, and is fitted into the guide rail portion 35.
  • the buffer member 75 can be easily detached from the guide rail portion 35 before screwing. In other words, the buffer member 75 can be easily installed on the gantry frame 30.
  • a recess 79 is formed in the central portion in the horizontal direction of the buffer member 75, and a screw 90 is attached to the recess 79.
  • the concave portion 79 is formed by reducing the thickness of the second resin portion 77 without providing the first resin portion 76 at the central portion in the lateral direction of the buffer member 75.
  • the head of the screw 90 is accommodated in the recess 79.
  • the buffer member 75 is configured such that the screw 90 does not come into contact with the back surface of the panel even when the solar cell panel 12 comes into contact and the first resin portion 76 is greatly elastically deformed.
  • the screw 90 penetrates the second resin portion 77 and the upper wall portion 31 of the gantry frame 30 and fixes the second resin portion 77 to the upper wall portion 31.
  • the recess 79 is formed, for example, over the entire length in the vertical direction of the buffer member 75, and the buffer member 75 is attached with screws 90 at a plurality of locations separated in the vertical direction.
  • the buffer member 80 includes a first resin portion 81 and a second resin portion 82 that is harder than the first resin portion 81, and the second resin portion 82 uses screws 90. It is fixed to the upper wall portion 31 of the gantry frame 30.
  • the form illustrated in FIG. 5C is different from the other embodiments in that the two buffer members 80 are separately fixed to both sides in the width direction of the gantry frame 30. In this case, the freedom degree of installation of the buffer member 80 improves.
  • the buffer members 80 are fixed to both sides in the width direction of the single frame 30, but the buffer members 80 may be provided only on one side in the width direction.
  • the buffer member 80 may be installed only on the side closer to the center of the solar cell panel 12. That is, the buffer member 80 may be installed only on the side of the gantry frame 30 in the width direction where the solar cell panel 12 is easy to contact.
  • the buffer member 80 may be installed only on the left side on the gantry frame 30 on the right side of the paper, and the buffer member 80 may be installed on the right side of the gantry frame 30 on the left side of the paper.
  • a metal plate 91 is joined to the back side (lower) of the buffer member 85.
  • a metal plate 91 is fixed to the gantry frame 30.
  • the metal plate 91 has a substantially flat base 92 and two legs 93 extending downward from both lateral ends of the base 92.
  • the buffer member 85 to which the metal plate 91 is joined is provided on the gantry frame 30 with the base portion 92 placed on the flange portion 34 and the two leg portions 93 hooked on the side surfaces of the flange portions 34. .
  • the metal plate 91 is joined to the upper surface of each flange 34 by the adhesive 18.
  • the buffer member 85 is made of an elastomer or the like and covers the entire surface of the metal plate 91 including the leg portion 93.
  • the upper surface of the buffer member 85 is curved upward, and a plurality of upper grooves 86 are formed on the upper surface.
  • FIG. 5E The form illustrated in FIG. 5E is common to the form illustrated in FIG. 5D in that a metal plate 94 is joined to the back side of the buffer member 88.
  • the metal plate 94 is different from the metal plate 91 shown in FIG. 5D in that the metal plate 94 is fixed to the upper wall portion 31 of the gantry frame 30 using screws 90.
  • a concave portion 96 is formed in the base portion 95 of the metal plate 94 in the central portion in the horizontal direction.
  • a screw 90 is attached to the recess 96. The head of the screw 90 is accommodated in the recess 96 as in the case of the buffer member 75.
  • the buffer member is provided on the gantry frame 30.
  • the buffer member 19 may be bonded to the back surface of the solar cell panel 12 using the adhesive 18. Good.
  • the buffer member 19 is provided at a position facing the upper surface of the gantry frame 30 in the central portion in the short side direction of the solar cell panel 12. There is a space between the buffer member 19 and the gantry frame 30, and the buffer member 19 contacts the gantry frame 30 when the solar cell panel 12 is bent by the weight of snow.
  • the buffer member 19 has, for example, a substantially rectangular parallelepiped shape, and is mainly composed of a resin that is elastically deformed by contact with the solar cell panel 12, for example, a resin that constitutes the first resin portion described above.

Abstract

According to one embodiment of the present invention, a solar power generation device 10 is provided with: a solar cell module 11, which has a solar cell panel 12, and a module frame 13 that is provided at an end portion of the panel; a mounting frame 30 to be attached to a roof, said mounting frame 30 having a long shape, being disposed on the rear side of the solar cell panel 12, and having the module frame 13 mounted thereon; and a cushioning member 14 that is provided between the mounting frame 30 and the rear surface of the solar cell panel 12, said cushioning member being at a position separated from the module frame 13.

Description

太陽光発電装置Solar power plant
 本開示は、太陽光発電装置に関する。 This disclosure relates to a photovoltaic power generation apparatus.
 太陽光発電装置は、一般的に、太陽電池パネルと当該パネルの端縁部に設けられたモジュールフレームとを有する太陽電池モジュールを屋根等に複数並べて構成される。ところで、雪の多い地域に設置される太陽光発電装置では、太陽電池パネル上に積もった雪の重量で太陽電池パネルが撓むことがある。太陽電池モジュールを屋根に設置する場合、例えば、屋根に取り付けた長尺状の架台フレーム上にモジュールフレームを載置するが、太陽電池パネルが大きく撓むとパネルの裏面が架台フレームに接触し、バックシートの破損、セル割れなどを招くおそれがある。 A solar power generation device is generally configured by arranging a plurality of solar cell modules having a solar cell panel and a module frame provided at an edge of the panel on a roof or the like. By the way, in the solar power generation device installed in a snowy area, the solar cell panel may be bent by the weight of snow accumulated on the solar cell panel. When the solar cell module is installed on the roof, for example, the module frame is placed on a long frame frame attached to the roof, but when the solar cell panel is greatly bent, the back surface of the panel comes into contact with the frame and the back There is a risk of sheet breakage, cell cracking, and the like.
 かかる接触を防止するため、モジュールフレームと架台フレームとの間にスペーサを設けて太陽電池モジュールをかさ上げし、太陽電池パネルと架台フレームの間の空間を大きくした太陽光発電装置が提案されている(例えば、特許文献1参照)。 In order to prevent such contact, there has been proposed a solar power generation device in which a spacer is provided between the module frame and the gantry frame to raise the solar cell module and increase the space between the solar cell panel and the gantry frame. (For example, refer to Patent Document 1).
特開2012-251304号公報JP 2012-251304 A
 しかしながら、太陽電池モジュールをスペーサでかさ上げして設置すると、太陽光発電装置の見映えが悪くなり、意匠性を低下させる。また、太陽電池パネルの撓みが大きくなり過ぎると、例えばセル割れが発生し易くなること、或いはモジュールフレームからパネルが脱落することが懸念される。 However, if the solar cell module is raised with a spacer and installed, the appearance of the solar power generation device is deteriorated, and the design is deteriorated. Moreover, when the bending of the solar battery panel becomes too large, there is a concern that, for example, cell cracking is likely to occur, or the panel is dropped from the module frame.
 本開示の一態様である太陽光発電装置は、太陽電池パネルと、当該パネルの端縁部に設けられたモジュールフレームとを有する太陽電池モジュールと、屋根に取り付けられる長尺状の架台フレームであって、太陽電池パネルの裏側に配置され、モジュールフレームが載せられる架台フレームと、モジュールフレームから離れた位置において、太陽電池パネルの裏面と架台フレームとの間に設けられた緩衝部材とを備える。 A photovoltaic power generation apparatus which is one embodiment of the present disclosure is a solar cell module having a solar cell panel, a module frame provided at an edge of the panel, and a long pedestal frame attached to a roof. The gantry frame is disposed on the back side of the solar cell panel and on which the module frame is placed, and the buffer member provided between the back surface of the solar cell panel and the gantry frame at a position away from the module frame.
 本開示の一態様である太陽光発電装置によれば、意匠性を低下させることなく、太陽電池パネルの裏面と架台フレームとの接触を防止することができる。また、太陽電池パネルの過剰な撓みを防止できる。 According to the photovoltaic power generation apparatus that is one aspect of the present disclosure, it is possible to prevent contact between the back surface of the solar cell panel and the gantry frame without deteriorating the design. Moreover, the excessive bending of a solar cell panel can be prevented.
実施形態の一例である太陽光発電装置の分解斜視図である。It is a disassembled perspective view of the solar power generation device which is an example of embodiment. 図1中のAA線断面図である。It is AA sectional view taken on the line in FIG. 実施形態の一例である架台フレーム及び緩衝部材の幅方向断面図である。It is width direction sectional drawing of the mount frame which is an example of embodiment, and a buffer member. 実施形態の一例である太陽光発電装置において、太陽電池パネルが撓んだ様子を示す図である。It is a figure which shows a mode that the solar cell panel bent in the solar power generation device which is an example of embodiment. 実施形態の他の一例である緩衝部材を示す図である。It is a figure which shows the buffer member which is another example of embodiment. 実施形態の他の一例である緩衝部材を示す図である。It is a figure which shows the buffer member which is another example of embodiment. 実施形態の他の一例である緩衝部材を示す図である。It is a figure which shows the buffer member which is another example of embodiment. 実施形態の他の一例である緩衝部材を示す図である。It is a figure which shows the buffer member which is another example of embodiment. 実施形態の他の一例である緩衝部材を示す図である。It is a figure which shows the buffer member which is another example of embodiment. 実施形態の他の一例である太陽光発電装置を示す図である。It is a figure which shows the solar power generation device which is another example of embodiment.
 本開示の一態様である太陽光発電装置によれば、太陽電池パネルの裏面と架台フレームとの間に設けられた緩衝部材によって、パネルの裏面と架台フレームとの接触が防止される。つまり、雪の重量で太陽電池パネルが撓んだ場合に、パネルの裏面は架台フレームとの間に介在する緩衝部材に当接する。緩衝部材は、架台フレームと比べて柔らかく、例えばパネルとの接触により弾性変形するため、パネルの破損を十分に抑制できる。本開示の一態様である太陽光発電装置によれば、太陽電池モジュールをかさ上げするスペーサが不要であるため、モジュールが屋根から大きく浮き上がらず、スペーサの使用による意匠性の低下が防止される。また、緩衝部材は太陽電池パネルの裏面に広く接触してパネルを支持し、パネルの過剰な撓みを防止する。 According to the photovoltaic power generation apparatus that is one aspect of the present disclosure, the buffer member provided between the back surface of the solar cell panel and the gantry frame prevents contact between the back surface of the panel and the gantry frame. That is, when the solar cell panel is bent due to the weight of snow, the back surface of the panel abuts against a buffer member interposed between the frame and the frame. Since the buffer member is softer than the gantry frame and is elastically deformed by contact with the panel, for example, the panel can be sufficiently prevented from being damaged. According to the photovoltaic power generation apparatus which is one aspect of the present disclosure, since the spacer for raising the solar cell module is not necessary, the module does not rise significantly from the roof, and the design is not deteriorated due to the use of the spacer. In addition, the buffer member widely contacts the back surface of the solar cell panel to support the panel, and prevents excessive bending of the panel.
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。
 実施形態において参照する図面は、模式的に記載されたものであるから、図面に描画された構成要素の寸法比率などは、以下の説明を参酌して判断されるべきである。本明細書において、「略~」との記載は、略同一を例に挙げて説明すると、完全に同一はもとより、実質的に同一と認められる場合を含む意図である。
Hereinafter, an example of an embodiment will be described in detail with reference to the drawings.
Since the drawings referred to in the embodiments are schematically described, the dimensional ratios of the components drawn in the drawings should be determined in consideration of the following description. In the present specification, the description of “substantially to” is intended to include the case where substantially the same is recognized as substantially the same as the case where substantially the same is described as an example.
 以下に例示する実施形態では、長尺状の架台フレームが屋根の軒棟方向に沿って配置される。そして、屋根の軒棟方向に沿う緩衝部材の方向を「縦方向」という場合があり、屋根の桁方向(屋根の軒棟方向に垂直な方向)に沿う緩衝部材の方向を「横方向」、屋根の野地板に垂直な方向に沿う緩衝部材の方向を「上下方向」という。なお、架台フレームの長手方向と当該縦方向は同じ方向であり、架台フレームの幅方向と当該横方向は同じ方向である。図面には、屋根の軒棟方向・縦方向を矢印α、桁方向・横方向を矢印β、上下方向を矢印γで示す。 In the embodiment illustrated below, an elongated frame is arranged along the eaves direction of the roof. And the direction of the buffer member along the eaves direction of the roof may be referred to as “vertical direction”, the direction of the buffer member along the girder direction of the roof (direction perpendicular to the eaves direction of the roof) is “lateral direction”, The direction of the buffer member along the direction perpendicular to the roof base plate is referred to as “vertical direction”. The longitudinal direction of the gantry frame and the vertical direction are the same direction, and the width direction of the gantry frame and the horizontal direction are the same direction. In the drawing, the direction of the eaves and the vertical direction of the roof are indicated by an arrow α, the girder and horizontal directions are indicated by an arrow β, and the vertical direction is indicated by an arrow γ.
 図1は、実施形態の一例である太陽光発電装置10の斜視図である。図1に例示するように、太陽光発電装置10は、太陽電池モジュール11と、屋根に取り付けられる長尺状の架台フレーム30とを備える。太陽電池モジュール11は、太陽電池パネル12と、当該パネルの端縁部に設けられたモジュールフレーム13とを有する。架台フレーム30は、太陽電池パネル12の裏側に配置され、モジュールフレーム13が載せられる長尺状のフレームである。また、太陽光発電装置10は、モジュールフレーム13から離れた位置において、太陽電池パネル12の裏面と架台フレーム30との間に設けられた緩衝部材14を備える。 FIG. 1 is a perspective view of a photovoltaic power generation apparatus 10 which is an example of an embodiment. As illustrated in FIG. 1, the solar power generation device 10 includes a solar cell module 11 and an elongated frame 30 attached to the roof. The solar cell module 11 includes a solar cell panel 12 and a module frame 13 provided at an edge portion of the panel. The gantry frame 30 is a long frame that is disposed on the back side of the solar cell panel 12 and on which the module frame 13 is placed. Further, the solar power generation device 10 includes a buffer member 14 provided between the back surface of the solar cell panel 12 and the gantry frame 30 at a position away from the module frame 13.
 太陽光発電装置10は、屋根に取り付けられた長尺状の架台フレーム30上に複数の太陽電池モジュール11を並べて設置することで構成されている。詳しくは後述するが、太陽光発電装置10は、モジュールフレーム13を架台フレーム30に固定するための金具として、第1金具40、第2金具50、及び第3金具60を備える。また、屋根への架台フレーム30の取り付けには、図示しない固定金具が用いられる。当該固定金具の種類は、屋根の構造などに応じて適宜選定される。 The solar power generation device 10 is configured by arranging a plurality of solar cell modules 11 side by side on a long frame frame 30 attached to a roof. As will be described in detail later, the solar power generation device 10 includes a first metal fitting 40, a second metal fitting 50, and a third metal fitting 60 as metal fittings for fixing the module frame 13 to the gantry frame 30. In addition, a fixing bracket (not shown) is used to attach the gantry frame 30 to the roof. The type of the fixing bracket is appropriately selected according to the structure of the roof.
 太陽電池パネル12は、例えば複数の太陽電池セルがガラス板と樹脂製のバックシートで挟持された略平坦なパネルである。太陽電池パネル12は、例えば、パネル上に積もった雪の重量で撓み、撓みが大きくなった場合には裏面が緩衝部材14に当接する。太陽電池モジュール11及び太陽電池パネル12は、平面視で略長方形状を有する。太陽電池モジュール11は、短辺が軒棟方向に略平行であり、隣り合う太陽電池モジュール11の短辺同士が略接触した状態で配置されている。なお、太陽電池モジュール11は、長方形以外の平面視形状を有していてもよく、正方形等の他の形状であってもよい。 The solar battery panel 12 is a substantially flat panel in which, for example, a plurality of solar battery cells are sandwiched between a glass plate and a resin back sheet. For example, the solar cell panel 12 is bent by the weight of snow accumulated on the panel, and the back surface comes into contact with the buffer member 14 when the deflection becomes large. The solar cell module 11 and the solar cell panel 12 have a substantially rectangular shape in plan view. The solar cell module 11 is arranged in a state in which the short sides thereof are substantially parallel to the eaves-ridge direction and the short sides of the adjacent solar cell modules 11 are substantially in contact with each other. Note that the solar cell module 11 may have a plan view shape other than a rectangle, or may have another shape such as a square.
 モジュールフレーム13は、太陽電池パネル12の端縁部を保護し、架台フレーム30に対する太陽電池モジュール11の固定に利用される。モジュールフレーム13は、例えばアルミニウム等の金属材料を押出成形して形成される長尺状の部材である。モジュールフレーム13は、太陽電池パネル12の2つの長辺に沿って設けられた2つの長辺フレーム20と、2つの短辺に沿って設けられた2つの短辺フレーム21とを含む。長辺フレーム20と短辺フレーム21は、例えばコーナーピースにより互いに接続されて、太陽電池パネル12の四方を囲む。 The module frame 13 protects the edge of the solar cell panel 12 and is used for fixing the solar cell module 11 to the gantry frame 30. The module frame 13 is a long member formed by extruding a metal material such as aluminum. The module frame 13 includes two long side frames 20 provided along two long sides of the solar cell panel 12 and two short side frames 21 provided along two short sides. The long side frame 20 and the short side frame 21 are connected to each other by, for example, a corner piece and surround the four sides of the solar cell panel 12.
 架台フレーム30は、その長手方向が軒棟方向に沿うように屋根に設置される。架台フレーム30は、軒棟方向に複数の太陽電池モジュール11を載置可能な長さを有する。1枚の太陽電池モジュール11は、例えば屋根の桁方向に適当な間隔をあけて互いに略平行に配置された2本の架台フレーム30上に載置される。1枚の太陽電池モジュール11において、架台フレーム30は各長辺フレーム20にわたって、即ちモジュールの短辺方向の全長にわたって配置されている。 The gantry frame 30 is installed on the roof so that its longitudinal direction is along the eaves direction. The gantry frame 30 has a length that allows a plurality of solar cell modules 11 to be placed in the eaves-ridge direction. One solar cell module 11 is placed on two gantry frames 30 arranged substantially parallel to each other with an appropriate interval in the direction of the roof girder, for example. In one solar cell module 11, the gantry frame 30 is disposed over each long side frame 20, that is, over the entire length in the short side direction of the module.
 架台フレーム30は、上壁部31と、上壁部31に対して略垂直に形成された一対の側壁部32と、上壁部31と略平行に形成され各側壁部32の下端同士を接続する下壁部33とを有する中空構造のフレームである。上壁部31上には、一対の鉤部34が立設している。上壁部31は、下壁部33よりもフレームの幅方向に長く、各側壁部32との接続部分より外側に張り出し、この張り出した部分の先端に鉤部34が形成されている(後述の図3参照)。架台フレーム30は、フレームの長手方向に沿って第1金具40、第2金具50、及び第3金具60をスライド可能に支持するガイドレール部35を有する。ガイドレール部35は、上壁部31と、上壁部31に立設する鉤部34とで構成される。 The gantry frame 30 has an upper wall portion 31, a pair of side wall portions 32 formed substantially perpendicular to the upper wall portion 31, and a lower end of each side wall portion 32 formed substantially parallel to the upper wall portion 31. It is a frame of the hollow structure which has the lower wall part 33 to do. On the upper wall portion 31, a pair of flange portions 34 are erected. The upper wall portion 31 is longer in the width direction of the frame than the lower wall portion 33, and projects outward from the connection portion with each side wall portion 32, and a collar portion 34 is formed at the tip of the projected portion (described later). (See FIG. 3). The gantry frame 30 includes a guide rail portion 35 that slidably supports the first metal fitting 40, the second metal fitting 50, and the third metal fitting 60 along the longitudinal direction of the frame. The guide rail portion 35 includes an upper wall portion 31 and a flange portion 34 that stands on the upper wall portion 31.
 緩衝部材14は、太陽電池パネル12の裏面と対向する架台フレーム30の上面に設けられている。詳しくは後述するが、緩衝部材14はガイドレール部35を利用して架台フレーム30上に取り付けられる。緩衝部材14は、長辺フレーム20から離れた太陽電池パネル12の裏面と対向する位置に設けられる。1枚の太陽電池パネル12の裏側には、少なくとも当該パネルの裏側に配置される架台フレーム30の本数以上の数の緩衝部材14が設けられ、当該架台フレームの全てに取り付けられる。太陽光発電装置10では、各太陽電池パネル12の裏側に緩衝部材14が2つずつ設けられている。各緩衝部材14は、太陽電池パネル12の長辺方向に並んで配置されている。 The buffer member 14 is provided on the upper surface of the gantry frame 30 facing the back surface of the solar cell panel 12. As will be described in detail later, the buffer member 14 is mounted on the gantry frame 30 using the guide rail portion 35. The buffer member 14 is provided at a position facing the back surface of the solar cell panel 12 away from the long side frame 20. On the back side of one solar cell panel 12, at least the number of the buffer members 14 equal to or more than the number of the pedestal frames 30 arranged on the back side of the panel is provided and attached to all of the pedestal frames. In the solar power generation device 10, two buffer members 14 are provided on the back side of each solar cell panel 12. Each buffer member 14 is arranged side by side in the long side direction of the solar cell panel 12.
 緩衝部材14は、太陽電池パネル12の撓みが大きくなるパネルの短辺方向中央部に設けられることが好適である。緩衝部材14は、各架台フレーム30上において、各長辺フレーム20(太陽電池パネル12の短辺方向両端)から略等距離の位置に設けられている。緩衝部材14は、長辺フレーム20の下には配置されないが、長辺フレーム20と接触するように配置されてもよい。但し、緩衝部材14を効率良く配置するためには、太陽電池パネル12が撓んだときにパネルの裏面と接触する位置及びその近傍のみに、本実施形態ではパネル裏面の短辺方向中央部と対向する位置のみに緩衝部材14を配置することが好ましい。 It is preferable that the buffer member 14 is provided in the central portion in the short side direction of the panel where the bending of the solar cell panel 12 is increased. The buffer member 14 is provided on each gantry frame 30 at a position approximately equidistant from each long side frame 20 (both ends in the short side direction of the solar cell panel 12). The buffer member 14 is not disposed under the long side frame 20, but may be disposed so as to contact the long side frame 20. However, in order to arrange the buffer member 14 efficiently, only the position in the vicinity of the back surface of the panel when the solar cell panel 12 bends and the vicinity thereof, in this embodiment, the central portion in the short side direction of the back surface of the panel It is preferable to arrange the buffer member 14 only at the facing position.
 図2は、図1中のAA線断面図である。図2に例示するように、架台フレーム30上に載せられる長辺フレーム20は、本体部22と、太陽電池パネル12の端縁部を収納する内溝24と、パネルと反対側に設けられる外溝26と、モジュールの内側に張り出した内鍔27とを有する。本体部22は、中空の角柱形状を有する。内溝24は長辺フレーム20の上部に形成され、外溝26及び内鍔27は長辺フレーム20の下部に形成されている。内溝24は長辺フレーム20の幅方向一方側(内側)に開口した溝であって、外溝26は内溝24と反対側である幅方向他方側(外側)に開口した溝である。 FIG. 2 is a cross-sectional view taken along line AA in FIG. As illustrated in FIG. 2, the long side frame 20 placed on the gantry frame 30 includes a main body portion 22, an inner groove 24 that houses the edge of the solar cell panel 12, and an outer side provided on the opposite side of the panel. It has the groove | channel 26 and the inner collar 27 protruded inside the module. The main body 22 has a hollow prismatic shape. The inner groove 24 is formed in the upper part of the long side frame 20, and the outer groove 26 and the inner collar 27 are formed in the lower part of the long side frame 20. The inner groove 24 is a groove opened on one side (inner side) in the width direction of the long side frame 20, and the outer groove 26 is a groove opened on the other side (outer side) in the width direction opposite to the inner groove 24.
 長辺フレーム20は、本体部22の上面に立設した鉤部23を有する。鉤部23は、本体部22の外側から上方に真っ直ぐ延び、内側に折れ曲がって断面略L字状に形成されている。本体部22の上面と鉤部23との間に、太陽電池パネル12を挿入可能な隙間である内溝24が形成される。また、長辺フレーム20は、本体部22の下面に立設した鉤部25を有する。鉤部25は、本体部22の内側から下方に真っ直ぐ延び、外側に折れ曲がって断面略L字状に形成されている。本体部22の下面と鉤部25との間に、第1固定金具40及び第2金具50を挿し込み可能な隙間である外溝26が形成される。 The long side frame 20 has a flange portion 23 erected on the upper surface of the main body portion 22. The flange portion 23 extends straight upward from the outside of the main body portion 22 and is bent inward to have a substantially L-shaped cross section. Between the upper surface of the main body portion 22 and the flange portion 23, an inner groove 24 that is a gap into which the solar cell panel 12 can be inserted is formed. Further, the long side frame 20 has a flange portion 25 erected on the lower surface of the main body portion 22. The flange portion 25 extends straight downward from the inside of the main body portion 22, and is bent outward so as to have a substantially L-shaped cross section. An outer groove 26 is formed between the lower surface of the main body portion 22 and the flange portion 25 as a gap into which the first fixing bracket 40 and the second bracket 50 can be inserted.
 内鍔27は、長辺フレーム20の下部からモジュールの内側に向かって延出し、長辺フレーム20の内側壁に対して略垂直に形成されている。鉤部25のうち長辺フレーム20の内側壁を構成する上下方向に沿った部分の下端から内鍔27が延出しており、内鍔27は鉤部25のうち幅方向に沿った部分と共に長辺フレーム20の底部を構成する。 The inner collar 27 extends from the lower side of the long side frame 20 toward the inside of the module, and is formed substantially perpendicular to the inner side wall of the long side frame 20. An inner collar 27 extends from the lower end of the portion along the vertical direction constituting the inner wall of the long side frame 20 in the collar portion 25, and the inner collar 27 is long along with the portion along the width direction of the collar portion 25. The bottom of the side frame 20 is configured.
 架台フレーム30のガイドレール部35には、上述のように第1金具40、第2金具50、及び第3金具60が設置されている。各金具はいずれも、ガイドレール部35を構成する上壁部31と鉤部34の間に挿し込まれ、上方に抜けない状態でスライド可能に支持されている。第1金具40、第3金具60、及び上壁部31には、ボルト36が挿通される貫通孔が形成されており、当該各金具はボルト36を用いて上壁部31の特定箇所に位置決めされる。 As described above, the first metal fitting 40, the second metal fitting 50, and the third metal fitting 60 are installed on the guide rail portion 35 of the gantry frame 30. Each of the metal fittings is inserted between the upper wall portion 31 and the flange portion 34 constituting the guide rail portion 35, and is supported so as to be slidable in a state where it does not come out upward. A through hole through which the bolt 36 is inserted is formed in the first metal fitting 40, the third metal fitting 60, and the upper wall portion 31, and each metal fitting is positioned at a specific location on the upper wall portion 31 using the bolt 36. Is done.
 太陽電池モジュール11の軒側端部に設けられる長尺フレーム20は、第1金具40を用いて架台フレーム30に固定される。他方、太陽電池モジュール11の棟側端部に設けられる長尺フレーム20は、第2金具50を用いて架台フレーム30に固定される。第1金具40及び第2金具50はいずれも、長尺フレーム20の外溝26に挿し込まれている。第3金具60は、棟側端部の長尺フレーム20よりモジュールの内側に配置される。第3金具60は、内鍔27上に張り出し、第2金具50と係合している。 The long frame 20 provided at the eaves side end of the solar cell module 11 is fixed to the gantry frame 30 using the first metal fitting 40. On the other hand, the long frame 20 provided at the ridge side end of the solar cell module 11 is fixed to the gantry frame 30 using the second metal fitting 50. Both the first metal fitting 40 and the second metal fitting 50 are inserted into the outer groove 26 of the long frame 20. The third metal fitting 60 is disposed inside the module from the long frame 20 at the ridge side end. The third metal fitting 60 projects over the inner collar 27 and engages with the second metal fitting 50.
 以下、図3をさらに参照し、緩衝部材14について詳説する。図3に例示するように、緩衝部材14は、架台フレーム30の上壁部31上に取り付けられている。緩衝部材14は、樹脂を主成分として構成され、太陽電池パネル12の裏面が当接したときに弾性変形し、パネルの裏面にかかる荷重が分散された状態でパネルを支持する。即ち、緩衝部材14により支持される太陽電池パネル12の裏面には局所的に大きな圧力がかからない。緩衝部材14を構成する樹脂には無機物フィラー等が含有されていてもよいが、好ましくは実質的に樹脂のみから構成される。具体的には、常温で弾性を有するエラストマ―、ゴム、又は樹脂発泡体(エラストマ―、ゴムの発泡体を含む)によって緩衝部材14を構成することが好適である。樹脂発泡体としては、発泡エチレンプロピレンゴム、発泡ブチルゴム、発泡ウレタン等が例示できる。 Hereinafter, the buffer member 14 will be described in detail with further reference to FIG. As illustrated in FIG. 3, the buffer member 14 is attached on the upper wall portion 31 of the gantry frame 30. The buffer member 14 is made of resin as a main component, elastically deforms when the back surface of the solar cell panel 12 comes into contact, and supports the panel in a state where a load applied to the back surface of the panel is dispersed. That is, no large pressure is locally applied to the back surface of the solar cell panel 12 supported by the buffer member 14. The resin constituting the buffer member 14 may contain an inorganic filler or the like, but is preferably substantially composed only of a resin. Specifically, it is preferable that the buffer member 14 is made of an elastomer, rubber, or resin foam (including elastomer and rubber foam) that has elasticity at room temperature. Examples of the resin foam include foamed ethylene propylene rubber, foamed butyl rubber, and foamed urethane.
 緩衝部材14は、横方向よりも縦方向に長く、平面視略矩形形状を有する(図1等参照)。緩衝部材14は、太陽電池パネル12の裏面が架台フレーム30と接触しないように、鉤部34を含む架台フレーム30の上面を覆っている。緩衝部材14の横方向長さは、架台フレーム30の幅よりも長く、架台フレーム30の幅方向両側から横方向に張り出している。緩衝部材14を架台フレーム30上から横方向に張り出させることで、緩衝部材14が大きく変形した場合でも架台フレーム30の角(鉤部34)に太陽電池パネル12が接触することを防止できる。緩衝部材14の当該張り出し部は、下方に延びて鉤部34の側面を覆っている。なお、緩衝部材14は上壁部31の下面側に回り込み、上壁部31の下面に引っ掛けられる形状を有していてもよい。 The buffer member 14 is longer in the vertical direction than in the horizontal direction and has a substantially rectangular shape in plan view (see FIG. 1 and the like). The buffer member 14 covers the upper surface of the gantry frame 30 including the flange 34 so that the back surface of the solar cell panel 12 does not come into contact with the gantry frame 30. The lateral length of the buffer member 14 is longer than the width of the gantry frame 30 and protrudes laterally from both sides of the gantry frame 30 in the width direction. By projecting the buffer member 14 from the gantry frame 30 in the lateral direction, the solar cell panel 12 can be prevented from coming into contact with the corners (the flanges 34) of the gantry frame 30 even when the buffer member 14 is greatly deformed. The overhang portion of the buffer member 14 extends downward and covers the side surface of the flange portion 34. The buffer member 14 may have a shape that goes around the lower surface side of the upper wall portion 31 and is hooked on the lower surface of the upper wall portion 31.
 緩衝部材14の縦方向長さは、例えば太陽電池パネル12の短辺の長さの10%~50%であり、好ましくは20%~40%である。緩衝部材14の厚み(上下方向長さ)は、太陽電池パネル12の接触により緩衝部材14が大きく変形した場合でもパネルの裏面が架台フレーム30と接触しない厚みに設定される。緩衝部材14の厚みは、例えば最も薄い部分で5mm~20mmである。 The length in the vertical direction of the buffer member 14 is, for example, 10% to 50%, preferably 20% to 40% of the length of the short side of the solar cell panel 12. The thickness (length in the vertical direction) of the buffer member 14 is set to such a thickness that the back surface of the panel does not contact the gantry frame 30 even when the buffer member 14 is greatly deformed by the contact of the solar cell panel 12. The thickness of the buffer member 14 is, for example, 5 mm to 20 mm at the thinnest portion.
 緩衝部材14は、太陽電池パネル12が撓んでいない状態において、パネルの裏面から離れて設けられていることが好ましい(図2参照)。太陽電池パネル12は太陽光を受けて温度が上昇するため、緩衝部材14をパネルの裏面から離すことで緩衝部材14の熱等による劣化を抑制することができる。太陽電池パネル12の裏面と緩衝部材14との間隔は、例えば長辺フレーム20の本体部22の上下方向長さと同程度である。 The buffer member 14 is preferably provided away from the back surface of the panel when the solar cell panel 12 is not bent (see FIG. 2). Since the temperature of the solar cell panel 12 is increased by receiving sunlight, it is possible to suppress deterioration due to heat or the like of the buffer member 14 by separating the buffer member 14 from the back surface of the panel. The distance between the back surface of the solar cell panel 12 and the buffer member 14 is, for example, approximately the same as the vertical length of the main body 22 of the long side frame 20.
 緩衝部材14は、ガイドレール部35に挿入されている。緩衝部材14は、一対の鉤部34の間に挿入されて横方向の動きが拘束されている。また、緩衝部材14は上壁部31と鉤部34の間に挿し込まれる凸状部15を有する。緩衝部材14の横方向両側に形成された凸状部15が上壁部31と鉤部34の間に挿し込まれることで、緩衝部材14が上方に抜け難くなっている。換言すると、緩衝部材14の横方向両端部には縦方向全長にわたって鉤部34が挿通される溝が形成されている。 The buffer member 14 is inserted into the guide rail portion 35. The buffer member 14 is inserted between the pair of flange portions 34 and restrained in the lateral movement. Further, the buffer member 14 has a convex portion 15 that is inserted between the upper wall portion 31 and the flange portion 34. Since the convex portions 15 formed on both sides in the lateral direction of the buffer member 14 are inserted between the upper wall portion 31 and the flange portion 34, the buffer member 14 is difficult to be pulled upward. In other words, grooves in which the flanges 34 are inserted over the entire length in the vertical direction are formed at both ends in the horizontal direction of the buffer member 14.
 緩衝部材14は、接着材18を用いて架台フレーム30の上面に固定されている。接着材18としては、緩衝部材14と架台フレーム30を接着できるものであれば特に限定されず、例えば液状又はペースト状の接着剤、又は両面テープなどが用いられる。接着材18は、後述する下溝16と重ならない範囲に設けられる。緩衝部材14は、例えば上壁部31の上面と鉤部34の上面に接合されている。 The buffer member 14 is fixed to the upper surface of the gantry frame 30 using an adhesive 18. The adhesive 18 is not particularly limited as long as the buffer member 14 and the gantry frame 30 can be bonded. For example, a liquid or paste adhesive or a double-sided tape is used. The adhesive 18 is provided in a range that does not overlap with the lower groove 16 described later. The buffer member 14 is joined to, for example, the upper surface of the upper wall portion 31 and the upper surface of the flange portion 34.
 緩衝部材14の上面は、上方に向かって湾曲している。緩衝部材14の形状は中心線Xに対して左右対称であり、緩衝部材14の厚みは横方向両端部よりも横方向中央部で厚くなっている。このように上面を湾曲させることで、撓んだ太陽電池パネル12の裏面に沿って緩衝部材14が接触し易くなり、パネルの裏面と緩衝部材14との接触面積を大きくすることができる。なお、緩衝部材14の弾性を高めて圧縮応力を小さくすることによっても当該接触面積を大きくできる。太陽電池パネル12の裏面と緩衝部材14の接触面積が大きくなれば、パネルの裏面にかかる圧力をさらに緩和できる。 The upper surface of the buffer member 14 is curved upward. The shape of the buffer member 14 is bilaterally symmetric with respect to the center line X, and the thickness of the buffer member 14 is thicker at the center in the horizontal direction than at both ends in the horizontal direction. By curving the upper surface in this way, the buffer member 14 can easily come into contact along the back surface of the bent solar cell panel 12, and the contact area between the back surface of the panel and the buffer member 14 can be increased. The contact area can also be increased by increasing the elasticity of the buffer member 14 to reduce the compressive stress. If the contact area of the back surface of the solar cell panel 12 and the buffer member 14 becomes large, the pressure concerning the back surface of a panel can further be relieve | moderated.
 緩衝部材14の下面には、縦方向、即ち架台フレーム30の長手方向に沿った下溝16が形成されている。下溝16は、雨水、雪解け水等の流路となる。下溝16は、緩衝部材14と架台フレーム30の上壁部31との間に雨水等の流路を形成し、緩衝部材14によって雨水等が堰き止められることを防止する。下溝16の断面形状は、緩衝部材14の強度を確保し形状安定性を高めるため、略半円形状であることが好ましい。緩衝部材14の下面には、1つの大きな溝を形成するのではなく、小さな下溝16を複数形成することが好適である。 A lower groove 16 is formed on the lower surface of the buffer member 14 in the vertical direction, that is, in the longitudinal direction of the gantry frame 30. The lower groove 16 serves as a flow path for rainwater, snowmelt, and the like. The lower groove 16 forms a flow path of rainwater or the like between the buffer member 14 and the upper wall portion 31 of the gantry frame 30 and prevents the rainwater or the like from being blocked by the buffer member 14. The cross-sectional shape of the lower groove 16 is preferably a substantially semicircular shape in order to ensure the strength of the buffer member 14 and improve the shape stability. It is preferable to form a plurality of small lower grooves 16 on the lower surface of the buffer member 14 instead of forming one large groove.
 緩衝部材14は、例えば射出成形、コンプレッション成形、トランスファー成形など、従来公知の方法によって製造される。緩衝部材14の上面には、成形時における形状安定性を向上させるために、複数の上溝17が形成されている。上溝17は、下溝16と同様に、緩衝部材14の縦方向全長にわたって形成されることが好ましい。 The buffer member 14 is manufactured by a conventionally known method such as injection molding, compression molding, or transfer molding. A plurality of upper grooves 17 are formed on the upper surface of the buffer member 14 in order to improve shape stability during molding. As with the lower groove 16, the upper groove 17 is preferably formed over the entire length in the longitudinal direction of the buffer member 14.
 図4は、雪の重量で太陽電池パネル12が撓んだ様子を示す図である。図4に例示するように、太陽電池パネル12の上に雪が積もると、太陽電池パネル12が撓み裏側に向かって大きく湾曲する場合がある。架台フレーム30上には太陽電池パネル12の端縁部に設けられたモジュールフレーム13が載せられているため、太陽電池パネル12の裏面と架台フレーム30の間に空間が形成されている。積雪量が多くなり太陽電池パネル12の撓みが大きくなると、かかる空間が狭くなり、特にパネルの短辺方向中央部でパネルの裏面が架台フレーム30の上面に接近することになる。 FIG. 4 is a diagram showing a state in which the solar cell panel 12 is bent due to the weight of snow. As illustrated in FIG. 4, when snow accumulates on the solar cell panel 12, the solar cell panel 12 may be bent and greatly curved toward the back side. Since the module frame 13 provided at the edge of the solar cell panel 12 is placed on the gantry frame 30, a space is formed between the back surface of the solar cell panel 12 and the gantry frame 30. When the amount of snow accumulation increases and the deflection of the solar cell panel 12 increases, the space becomes narrower, and the back surface of the panel approaches the upper surface of the gantry frame 30 particularly at the center in the short side direction of the panel.
 太陽光発電装置10では、上述のように、架台フレーム30上において、太陽電池パネル12の裏面の短辺方向中央部に対向する位置に緩衝部材14が設けられている。このため、積雪量が多くなり太陽電池パネル12の撓みが大きくなると、パネルの裏面は緩衝部材14に当接する。つまり、太陽電池パネル12の裏面と架台フレーム30との間には必ず緩衝部材14が存在し、パネルの裏面と架台フレーム30とが直接接触することはない。また、緩衝部材14は、太陽電池パネル12の裏側に配置される2本の架台フレーム30に、パネルの長辺方向に並んでそれぞれ設けられているので、太陽電池パネル12の裏面は2つの緩衝部材14によって安定に支持される。 In the solar power generation device 10, as described above, the buffer member 14 is provided on the gantry frame 30 at a position facing the central portion in the short side direction on the back surface of the solar cell panel 12. For this reason, when the amount of snow accumulation increases and the deflection of the solar cell panel 12 increases, the back surface of the panel contacts the buffer member 14. That is, the buffer member 14 always exists between the back surface of the solar cell panel 12 and the gantry frame 30, and the back surface of the panel and the gantry frame 30 are not in direct contact. Further, since the buffer member 14 is provided on the two frame frames 30 arranged on the back side of the solar cell panel 12 along the long side direction of the panel, the back surface of the solar cell panel 12 has two buffer members. The member 14 is stably supported.
 緩衝部材14は、太陽電池パネル12との接触により弾性変形し、局所的に大きな圧力がかからないようにパネルを支持する。また、緩衝部材14の上面は太陽電池パネル12の裏面形状に沿うように上方に向かって湾曲しているため、パネルの裏面と緩衝部材14との大きな接触面積が得られ、パネルの裏面にかかる圧力がさらに緩和される。なお、太陽電池パネル12は、ある程度撓んだときに緩衝部材14に当接してこのように支持されるため、太陽電池パネル12の過剰な撓みが防止される。これにより、セル割れの発生、パネルの脱落等が防止される。 The buffer member 14 is elastically deformed by contact with the solar cell panel 12 and supports the panel so that a large pressure is not locally applied. Moreover, since the upper surface of the buffer member 14 is curved upward so as to follow the shape of the back surface of the solar cell panel 12, a large contact area between the back surface of the panel and the buffer member 14 is obtained, and the back surface of the panel is applied. The pressure is further relaxed. In addition, since the solar cell panel 12 abuts against the buffer member 14 and is supported in this manner when bent to some extent, excessive bending of the solar cell panel 12 is prevented. Thereby, generation | occurrence | production of a cell crack, drop-off | omission of a panel, etc. are prevented.
 太陽光発電装置10によれば、太陽電池モジュール11をかさ上げするスペーサが不要であるため、モジュールが屋根から大きく浮き上がらず、スペーサの使用による意匠性の低下が防止される。 According to the solar power generation device 10, since the spacer for raising the solar cell module 11 is not necessary, the module does not rise significantly from the roof, and the design property is prevented from being lowered due to the use of the spacer.
 図5A~図5Eは、実施形態の他の一例である緩衝部材70,75,80,85,88を示す断面図である。以下では、緩衝部材14の構成要素と同様の構成要素には同じ符号を用い、主に緩衝部材14との相違点について説明する。 5A to 5E are cross-sectional views showing buffer members 70, 75, 80, 85, 88 which are other examples of the embodiment. Below, the same code | symbol is used for the component similar to the component of the buffer member 14, and a difference with the buffer member 14 is mainly demonstrated.
 図5Aに例示するように、緩衝部材70は、第1樹脂部71と、第2樹脂部72とで構成された2層構造を有する点で、1種類の材料で構成される緩衝部材14と異なる。なお、緩衝部材70の全体の形状は緩衝部材14と同じである。第1樹脂部71は、太陽電池パネル12の接触により弾性変形する。第1樹脂部71は、緩衝部材14と同様に、常温で弾性を有するエラストマ―、ゴム、又は樹脂発泡体によって構成されることが好適である。第2樹脂部72は、第1樹脂部71の裏側(下)に設けられ、第1樹脂部71より硬質である。第2樹脂部72は、第1樹脂部71を構成する樹脂より弾性率が高く圧縮応力が大きな樹脂を主成分として構成される。第2樹脂部72は、太陽電池パネル12の接触により弾性変形しなくてもよい。 As illustrated in FIG. 5A, the buffer member 70 has a two-layer structure including a first resin portion 71 and a second resin portion 72. Different. The overall shape of the buffer member 70 is the same as that of the buffer member 14. The first resin portion 71 is elastically deformed by the contact of the solar cell panel 12. As with the buffer member 14, the first resin portion 71 is preferably made of an elastomer, rubber, or resin foam having elasticity at room temperature. The second resin portion 72 is provided on the back side (lower) of the first resin portion 71 and is harder than the first resin portion 71. The second resin part 72 is mainly composed of a resin having a higher elastic modulus and a larger compressive stress than the resin constituting the first resin part 71. The second resin portion 72 may not be elastically deformed by the contact of the solar cell panel 12.
 緩衝部材70は、太陽電池パネル12側である上部が第1樹脂部71によって、架台フレーム30側である下部が第2樹脂部72によってそれぞれ構成されている。緩衝部材70は、第1樹脂部71と第2樹脂部72を別々に作製した後、接着剤等でそれらを接合して製造されてもよいが、好ましくは各樹脂部を構成する2種類の樹脂材料を用いて射出成形等により一体成形される。 In the buffer member 70, the upper part on the solar cell panel 12 side is constituted by the first resin part 71, and the lower part on the gantry frame 30 side is constituted by the second resin part 72, respectively. The buffer member 70 may be manufactured by separately manufacturing the first resin portion 71 and the second resin portion 72 and then joining them with an adhesive or the like. Preferably, the buffer member 70 includes two kinds of resin portions. It is integrally molded by injection molding using a resin material.
 緩衝部材70では、第2樹脂部72が架台フレーム30に固定されている。硬質の第2樹脂部72を架台フレーム30の固定に利用することで、例えば緩衝部材70の固定性、耐久性が向上する。第2樹脂部72は、ガイドレール部35に挿入されており、接着材18を用いて架台フレーム30の上面に接合されている。また、第2樹脂部72には凸状部15が形成されており、凸状部15が上壁部31と鉤部34の間に挿し込まれることで、緩衝部材14が上方に抜け難くなっている。 In the buffer member 70, the second resin portion 72 is fixed to the gantry frame 30. By using the hard second resin portion 72 for fixing the gantry frame 30, for example, the fixing property and durability of the buffer member 70 are improved. The second resin portion 72 is inserted into the guide rail portion 35 and joined to the upper surface of the gantry frame 30 using the adhesive material 18. Moreover, the convex part 15 is formed in the 2nd resin part 72, and since the convex part 15 is inserted between the upper wall part 31 and the collar part 34, the buffer member 14 becomes difficult to remove | deviate upwards. ing.
 図5Bに例示するように、緩衝部材75は、第1樹脂部76と、第2樹脂部77とで構成されている点で、緩衝部材70と共通する。一方、緩衝部材75では、架台フレーム30に対して第2樹脂部77がネジ90を用いて固定されている点で、緩衝部材70と異なる。第2樹脂部77は、横方向長さが一対の鉤部34の先端同士の間隔と略同一であり、ガイドレール部35に嵌り込んでいる。但し、緩衝部材70のように凸状部15を有さないため、ネジ止め前において緩衝部材75はガイドレール部35から容易に外すことができる。換言すると、緩衝部材75は架台フレーム30に対する設置も容易である。 As illustrated in FIG. 5B, the buffer member 75 is common to the buffer member 70 in that it includes a first resin portion 76 and a second resin portion 77. On the other hand, the buffer member 75 is different from the buffer member 70 in that the second resin portion 77 is fixed to the gantry frame 30 using screws 90. The second resin portion 77 has a lateral length that is substantially the same as the interval between the tips of the pair of flange portions 34, and is fitted into the guide rail portion 35. However, since the convex portion 15 is not provided unlike the buffer member 70, the buffer member 75 can be easily detached from the guide rail portion 35 before screwing. In other words, the buffer member 75 can be easily installed on the gantry frame 30.
 緩衝部材75の横方向中央部には凹部79が形成されており、凹部79にネジ90が取り付けられている。凹部79は、緩衝部材75の横方向中央部に第1樹脂部76を設けず、第2樹脂部77の厚みを薄くして形成されている。ネジ90の頭部は、凹部79内に収容されている。緩衝部材75は、太陽電池パネル12が接触して第1樹脂部76が大きく弾性変形した場合であってもネジ90がパネルの裏面と接触しないように構成されている。ネジ90は、第2樹脂部77及び架台フレーム30の上壁部31を貫通して第2樹脂部77を上壁部31に固定する。凹部79は、例えば緩衝部材75の縦方向全長にわたって形成され、緩衝部材75は縦方向に離れた複数箇所にネジ90が取り付けられる。 A recess 79 is formed in the central portion in the horizontal direction of the buffer member 75, and a screw 90 is attached to the recess 79. The concave portion 79 is formed by reducing the thickness of the second resin portion 77 without providing the first resin portion 76 at the central portion in the lateral direction of the buffer member 75. The head of the screw 90 is accommodated in the recess 79. The buffer member 75 is configured such that the screw 90 does not come into contact with the back surface of the panel even when the solar cell panel 12 comes into contact and the first resin portion 76 is greatly elastically deformed. The screw 90 penetrates the second resin portion 77 and the upper wall portion 31 of the gantry frame 30 and fixes the second resin portion 77 to the upper wall portion 31. The recess 79 is formed, for example, over the entire length in the vertical direction of the buffer member 75, and the buffer member 75 is attached with screws 90 at a plurality of locations separated in the vertical direction.
 図5Cに例示するように、緩衝部材80は、第1樹脂部81と、第1樹脂部81よりも硬質な第2樹脂部82とで構成され、第2樹脂部82がネジ90を用いて架台フレーム30の上壁部31に固定されている。図5Cに例示する形態では、2つの緩衝部材80が架台フレーム30の幅方向両側に別れてそれぞれ独立に固定されている点で、他の実施形態と異なる。この場合、緩衝部材80の設置の自由度が向上する。 As illustrated in FIG. 5C, the buffer member 80 includes a first resin portion 81 and a second resin portion 82 that is harder than the first resin portion 81, and the second resin portion 82 uses screws 90. It is fixed to the upper wall portion 31 of the gantry frame 30. The form illustrated in FIG. 5C is different from the other embodiments in that the two buffer members 80 are separately fixed to both sides in the width direction of the gantry frame 30. In this case, the freedom degree of installation of the buffer member 80 improves.
 図5Cでは、1本の架台フレーム30の幅方向両側に緩衝部材80を固定しているが、緩衝部材80は幅方向片側だけに設置されていてもよい。例えば、太陽電池パネル12の真ん中に近い方だけに緩衝部材80を設置してもよい。即ち、架台フレーム30の幅方向両端部のうち太陽電池パネル12が接触し易い方だけに緩衝部材80を設置してもよい。図4を用いて説明すると、紙面右側の架台フレーム30上には左側だけに緩衝部材80を設置し、紙面左側の架台フレーム30上には右側だけに緩衝部材80を設置してもよい。 In FIG. 5C, the buffer members 80 are fixed to both sides in the width direction of the single frame 30, but the buffer members 80 may be provided only on one side in the width direction. For example, the buffer member 80 may be installed only on the side closer to the center of the solar cell panel 12. That is, the buffer member 80 may be installed only on the side of the gantry frame 30 in the width direction where the solar cell panel 12 is easy to contact. Referring to FIG. 4, the buffer member 80 may be installed only on the left side on the gantry frame 30 on the right side of the paper, and the buffer member 80 may be installed on the right side of the gantry frame 30 on the left side of the paper.
 図5Dに例示するように、緩衝部材85の裏側(下)には、金属板91が接合されている。そして、金属板91が架台フレーム30に固定されている。金属板91を架台フレーム30の固定に利用することで、第2樹脂部を設けた形態と同様に、例えば緩衝部材85の固定性、耐久性が向上する。金属板91は、略平坦な基部92と、基部92の横方向両端から下方に延びた2つの脚部93とを有する。金属板91が接合された緩衝部材85は、鉤部34上に基部92が載せられ、2つの脚部93が各鉤部34の側面にそれぞれ引っ掛かった状態で架台フレーム30上に設けられている。金属板91は、接着材18によって各鉤部34の上面に接合されている。なお、緩衝部材85はエラストマ―等によって構成され、脚部93を含む金属板91の表面全体を覆っている。緩衝部材85の上面は上方に向かって湾曲しており、上面には複数の上溝86が形成されている。 5D, a metal plate 91 is joined to the back side (lower) of the buffer member 85. A metal plate 91 is fixed to the gantry frame 30. By using the metal plate 91 for fixing the gantry frame 30, for example, the fixability and durability of the buffer member 85 are improved in the same manner as the embodiment in which the second resin portion is provided. The metal plate 91 has a substantially flat base 92 and two legs 93 extending downward from both lateral ends of the base 92. The buffer member 85 to which the metal plate 91 is joined is provided on the gantry frame 30 with the base portion 92 placed on the flange portion 34 and the two leg portions 93 hooked on the side surfaces of the flange portions 34. . The metal plate 91 is joined to the upper surface of each flange 34 by the adhesive 18. The buffer member 85 is made of an elastomer or the like and covers the entire surface of the metal plate 91 including the leg portion 93. The upper surface of the buffer member 85 is curved upward, and a plurality of upper grooves 86 are formed on the upper surface.
 図5Eに例示する形態は、緩衝部材88の裏側に金属板94が接合されている点で、図5Dに例示する形態と共通する。一方、金属板94はネジ90を用いて架台フレーム30の上壁部31に固定されている点で、図5Dに示す金属板91と異なる。金属板94の基部95には、横方向中央部に凹部96が形成されている。そして、凹部96にネジ90が取り付けられている。ネジ90の頭部は、緩衝部材75の場合と同様に、凹部96内に収容されている。 The form illustrated in FIG. 5E is common to the form illustrated in FIG. 5D in that a metal plate 94 is joined to the back side of the buffer member 88. On the other hand, the metal plate 94 is different from the metal plate 91 shown in FIG. 5D in that the metal plate 94 is fixed to the upper wall portion 31 of the gantry frame 30 using screws 90. A concave portion 96 is formed in the base portion 95 of the metal plate 94 in the central portion in the horizontal direction. A screw 90 is attached to the recess 96. The head of the screw 90 is accommodated in the recess 96 as in the case of the buffer member 75.
 上述の各実施形態では、緩衝部材を架台フレーム30上に設けているが、図6に例示するように、緩衝部材19は接着材18を用いて太陽電池パネル12の裏面に接合されていてもよい。緩衝部材19は、太陽電池パネル12の短辺方向中央部において、架台フレーム30の上面と対向する位置に設けられる。緩衝部材19と架台フレーム30との間には空間が存在し、緩衝部材19は雪の重量で太陽電池パネル12が撓んだときに架台フレーム30に当接する。緩衝部材19は、例えば略直方体形状を有し、太陽電池パネル12との接触により弾性変形する樹脂、例えば上述の第1樹脂部を構成する樹脂を主成分として構成される。 In each of the above-described embodiments, the buffer member is provided on the gantry frame 30. However, as illustrated in FIG. 6, the buffer member 19 may be bonded to the back surface of the solar cell panel 12 using the adhesive 18. Good. The buffer member 19 is provided at a position facing the upper surface of the gantry frame 30 in the central portion in the short side direction of the solar cell panel 12. There is a space between the buffer member 19 and the gantry frame 30, and the buffer member 19 contacts the gantry frame 30 when the solar cell panel 12 is bent by the weight of snow. The buffer member 19 has, for example, a substantially rectangular parallelepiped shape, and is mainly composed of a resin that is elastically deformed by contact with the solar cell panel 12, for example, a resin that constitutes the first resin portion described above.
 10 太陽光発電装置、11 太陽電池モジュール、12 太陽電池パネル、13 モジュールフレーム、14,19 緩衝部材、15 凸状部、16 下溝、17 上溝、18 接着材、20 長辺フレーム、21 短辺フレーム、22 本体部、23,25 鉤部、24 内溝、26 外溝、27 内鍔、30 架台フレーム、31 上壁部、32 側壁部、33 下壁部、34 鉤部、35 ガイドレール部、36 ボルト、40 第1金具、50 第2金具、60 第3金具、70,75,80,85,88 緩衝部材、71,76,81 第1樹脂部、72,77,82 第2樹脂部、78 下溝、86 上溝、79,96 凹部、90 ネジ、91,94 金属板、92,95 基部、93 脚部 10 solar power generation device, 11 solar cell module, 12 solar cell panel, 13 module frame, 14, 19 cushioning member, 15 convex portion, 16 lower groove, 17 upper groove, 18 adhesive, 20 long side frame, 21 short side frame , 22 body part, 23, 25 collar part, 24 inner groove, 26 outer groove, 27 inner collar, 30 frame, 31 upper wall part, 32 side wall part, 33 lower wall part, 34 collar part, 35 guide rail part, 36 bolts, 40 first fitting, 50 second fitting, 60 third fitting, 70, 75, 80, 85, 88 buffer member, 71, 76, 81 first resin part, 72, 77, 82 second resin part, 78 lower groove, 86 upper groove, 79, 96 recess, 90 screw, 91, 94 metal plate, 92, 95 base, 93 leg

Claims (8)

  1.  太陽電池パネルと、当該パネルの端縁部に設けられたモジュールフレームとを有する太陽電池モジュールと、
     屋根に取り付けられる長尺状の架台フレームであって、前記太陽電池パネルの裏側に配置され、前記モジュールフレームが載せられる架台フレームと、
     前記モジュールフレームから離れた位置において、前記太陽電池パネルの裏面と前記架台フレームとの間に設けられた緩衝部材と、
     を備える、太陽光発電装置。
    A solar cell module having a solar cell panel and a module frame provided at an edge of the panel;
    A long frame frame attached to the roof, disposed on the back side of the solar cell panel, and the frame on which the module frame is mounted;
    A buffer member provided between the back surface of the solar cell panel and the gantry frame at a position away from the module frame;
    A solar power generation device comprising:
  2.  前記緩衝部材は、前記太陽電池パネルの裏面と対向する前記架台フレームの上面に設けられている、請求項1に記載の太陽光発電装置。 The solar power generation device according to claim 1, wherein the buffer member is provided on an upper surface of the mount frame facing the back surface of the solar cell panel.
  3.  前記モジュールフレームは、前記太陽電池パネルの2つの長辺に沿って設けられた2つの長辺フレームと、2つの短辺に沿って設けられた2つの短辺フレームとを含み、
     前記架台フレームは、前記各長辺フレームにわたって配置され、
     前記緩衝部材は、前記架台フレーム上において、前記各長辺フレームから略等距離の位置に設けられている、請求項2に記載の太陽光発電装置。
    The module frame includes two long side frames provided along two long sides of the solar cell panel, and two short side frames provided along two short sides,
    The gantry frame is arranged over each long side frame,
    The solar power generation device according to claim 2, wherein the buffer member is provided at a substantially equidistant position from the long-side frames on the gantry frame.
  4.  前記緩衝部材は、前記太陽電池パネルの接触により弾性変形する第1樹脂部と、前記第1樹脂部の裏側に設けられ、前記第1樹脂部より硬質な第2樹脂部とで構成され、
     前記第2樹脂部が前記架台フレームに固定されている、請求項2又は3に記載の太陽光発電装置。
    The buffer member includes a first resin portion that is elastically deformed by contact of the solar cell panel, and a second resin portion that is provided on the back side of the first resin portion and is harder than the first resin portion.
    The solar power generation device of Claim 2 or 3 with which the said 2nd resin part is being fixed to the said mount frame.
  5.  前記緩衝部材の裏側には、金属板が接合されており、
     前記金属板が前記架台フレームに固定されている、請求項2又は3に記載の太陽光発電装置。
    A metal plate is joined to the back side of the buffer member,
    The solar power generation device according to claim 2 or 3, wherein the metal plate is fixed to the gantry frame.
  6.  前記モジュールフレームを前記架台フレームに固定するための金具を備え、
     前記架台フレームは、フレームの長手方向に沿って前記金具をスライド可能に支持するガイドレール部を有し、
     前記緩衝部材は、前記ガイドレール部に挿入されている、請求項2~5のいずれか1項に記載の太陽光発電装置。
    A metal fitting for fixing the module frame to the gantry frame is provided,
    The gantry frame has a guide rail portion that slidably supports the metal fitting along the longitudinal direction of the frame,
    The solar power generation device according to any one of claims 2 to 5, wherein the buffer member is inserted into the guide rail portion.
  7.  前記緩衝部材の上面は、上方に向かって湾曲している、請求項1~6のいずれか1項に記載の太陽光発電装置。 The solar power generation device according to any one of claims 1 to 6, wherein an upper surface of the buffer member is curved upward.
  8.  前記緩衝部材の下面には、前記架台フレームの長手方向に沿った溝が形成されている、請求項1~7のいずれか1項に記載の太陽光発電装置。 The solar power generation device according to any one of claims 1 to 7, wherein a groove along a longitudinal direction of the gantry frame is formed on a lower surface of the buffer member.
PCT/JP2016/087332 2016-02-08 2016-12-15 Solar power generation device WO2017138248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021457 2016-02-08
JP2016-021457 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138248A1 true WO2017138248A1 (en) 2017-08-17

Family

ID=59563262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087332 WO2017138248A1 (en) 2016-02-08 2016-12-15 Solar power generation device

Country Status (1)

Country Link
WO (1) WO2017138248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022140682A1 (en) * 2020-12-23 2022-06-30 Array Technologies, Inc. Photovoltaic module deflection limiter
US11581846B2 (en) 2020-12-23 2023-02-14 Array Technologies, Inc. Photovoltaic module deflection limiter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105940A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Structure for installing solar-battery module
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
WO2012017957A1 (en) * 2010-08-03 2012-02-09 昭和シェル石油株式会社 Solar cell module
WO2015151455A1 (en) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 Solar cell apparatus
JP2015227558A (en) * 2014-05-30 2015-12-17 パナソニックIpマネジメント株式会社 Photovoltaic power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105940A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Structure for installing solar-battery module
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
WO2012017957A1 (en) * 2010-08-03 2012-02-09 昭和シェル石油株式会社 Solar cell module
WO2015151455A1 (en) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 Solar cell apparatus
JP2015227558A (en) * 2014-05-30 2015-12-17 パナソニックIpマネジメント株式会社 Photovoltaic power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022140682A1 (en) * 2020-12-23 2022-06-30 Array Technologies, Inc. Photovoltaic module deflection limiter
US11581846B2 (en) 2020-12-23 2023-02-14 Array Technologies, Inc. Photovoltaic module deflection limiter
US20230188089A1 (en) * 2020-12-23 2023-06-15 Array Technologies, Inc. Photovoltaic module deflection limiter
CN116762271A (en) * 2020-12-23 2023-09-15 阵列科技股份有限公司 Photovoltaic module deflection limiter
US11949371B2 (en) 2020-12-23 2024-04-02 Array Technologies, Inc. Photovoltaic module deflection limiter

Similar Documents

Publication Publication Date Title
JP5159770B2 (en) Solar cell module device
JP2007503729A (en) PV module mounting bracket
JP5881823B2 (en) Reinforcing frame and solar cell module
US20110155127A1 (en) Frame for solar module
US10337765B2 (en) Solar cell module
WO2017138248A1 (en) Solar power generation device
WO2010122638A1 (en) Solar battery module
JP6350859B2 (en) Solar power plant
KR101120478B1 (en) Device for supporting solar-cell module on assembled roof
WO2018101193A1 (en) Solar cell device
JP5446829B2 (en) Solar cell module
JP2011238761A (en) Solar cell module
US11012028B2 (en) Reinforcing member for solar cell modules, and solar cell module
KR101421808B1 (en) Frame for installing solar cell module and installing structure of the solar cell module using the same
JP6744088B2 (en) Photovoltaic power generation system and supporting member
JP7159009B2 (en) MODULE INSTALLATION TOOL AND SOLAR MODULE INSTALLATION STRUCTURE USING THE SAME
JP2014234588A (en) Installation structure and installation method of solar panel
JP6260765B2 (en) Solar cell module
JP6688963B2 (en) Solar power generator
CN214851087U (en) Photovoltaic device
CN216641194U (en) Color steel tile
CN112713855B (en) Aluminum alloy profile for photovoltaic module
CN219204430U (en) Frame for photovoltaic module and photovoltaic module
CN109361340B (en) Photovoltaic module bracket and photovoltaic module installation method
JP6671014B2 (en) Solar power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP