WO2017135956A1 - Method and apparatus for color measurement of non-solid colors - Google Patents
Method and apparatus for color measurement of non-solid colors Download PDFInfo
- Publication number
- WO2017135956A1 WO2017135956A1 PCT/US2016/016599 US2016016599W WO2017135956A1 WO 2017135956 A1 WO2017135956 A1 WO 2017135956A1 US 2016016599 W US2016016599 W US 2016016599W WO 2017135956 A1 WO2017135956 A1 WO 2017135956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- integrating sphere
- port
- camera
- images
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 20
- 238000005259 measurement Methods 0.000 title description 25
- 239000003086 colorant Substances 0.000 title description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 238000005286 illumination Methods 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 6
- 238000000411 transmission spectrum Methods 0.000 claims description 5
- 229910052724 xenon Inorganic materials 0.000 claims description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0251—Colorimeters making use of an integrating sphere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/52—Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
- G01J3/524—Calibration of colorimeters
Definitions
- the present invention generally relates to the field of imaging, and more specifically relates to color measurement.
- Color measurement systems help to improve operational efficiency and product quality in supply chains.
- color approval offices for the global apparel supply chain apparel mills and dye houses, paint stores, textile printing shops, carpet manufacturers, manufacturers of wood panels, tiles, vinyl sheets, and laminates, and other industries relying on the digital color workflow require accurate color evaluation and visualization.
- Measurement of non-solid colors is typically more complicated than the measurement of solid colors.
- Conventional approaches to measuring non-solid colors often cannot produce repeatable results. For example, some approaches rely on a lighting geometry that varies with the position relative to the sample. Furthermore, such approaches fail to adequately capture the spectral diversity needed to estimate the spectral reflectance of the sample's surfaces.
- an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, and a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and camera.
- An optical axis of the camera extends from the camera, through at least one of the plurality of filters, through the sensor port, to the sample port.
- a method for measuring a color of a non-solid colored sample includes positioning the sample near a sample port of an integrating sphere, illuminating the sample with diffuse illumination, using the integrating sphere, capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter, wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere, and computing a reflectance of a portion of the sample, based on the plurality of images.
- a computer readable storage device contains an executable program for measuring a color of a non-solid colored sample, where the program performs steps including positioning the sample near a sample port of an integrating sphere, illuminating the sample with diffuse illumination, using the integrating sphere, capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter, wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere, and computing a reflectance of a portion of the sample, based on the plurality of images.
- an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port, and a light port, a light positioned near the light port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and the light source, wherein an optical axis of the camera extends from the camera, through the sensor port, to the sample port.
- FIG. 1 is a block diagram illustrating one embodiment of a system for color measurement, according to the present invention
- FIG. 2 is a schematic diagram illustrating an image of the sample port of the integrating sphere of FIG. 1 in greater detail
- FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for color measurement of non-solid colors, according to the present invention
- FIG. 4 is a high-level block diagram of the present invention that is implemented using a general purpose computing device.
- FIG. 5 is a block diagram illustrating another embodiment of a system for color measurement, according to the present invention.
- the present invention is a method and apparatus for color measurement of non-solid colors.
- Embodiments of the invention use an integrating sphere to diffuse light, and then measure the color of a non-solid color sample using a monochrome camera that captures sequential images of the sample through multiple interference filters. The diffuse reflectance of individual pixels of pixel averages can then be inferred from the images.
- FIG. 1 is a block diagram illustrating one embodiment of a system 100 for color measurement, according to the present invention.
- the system 100 is designed to measure the color of a sample, and may be especially suited for the measurement of non-solid colors (e.g., multiple colors or color patterns) in the sample.
- the system 100 generally comprises a camera 102, a set of filters 104, and an integrating sphere 106.
- the camera 102 is a monochrome camera.
- the camera 102 may be a scientific complementary metal oxide semiconductor (sCMOS) camera.
- the lens configuration of the camera 102 may be optimized to reduce the specular reflection from the other optical components of the system 100.
- the set of filters 104 is positioned in front of the lens of the camera 102, i.e. , along the optical axis O of the camera 102.
- the set of filters 104 is positioned between the lens and the camera 102.
- the set of filters 104 includes a set of multiple different interference filters.
- the set of filters 104 may be implemented as a filter wheel, for example.
- the transmission spectra of the filters are evenly spaced over substantially the entirety of the visible wavelength range (e.g., approximately 400 to approximately 700 nanometers). In a further embodiment, the transmission spectrum of each filter is approximately twenty nanometers wide.
- the filter wheel includes at least sixteen possible positions, but may include more or less positions in other embodiments. In one embodiment, the filter wheel is configured such that only one position of the wheel (i.e., only one filter) may be positioned in the optical axis O of the camera 102 at a time.
- the integrating sphere 106 is also positioned along the optical axis O of the camera 102, on the opposite side of the set of filters 104 from the camera 102 (i.e., such that the set of filters 104 is positioned between the camera 102 and the integrating sphere 106).
- the integrating sphere 106 has a d/8° measurement geometry.
- the integrated sphere 106 includes a sensor port 1 12, a sample port 1 14, and a light port 1 16. The sensor port 1 12 and the sample port 1 14 are aligned with the optical axis O of the camera 102.
- the sample port 1 14 is a large area of view (LAV) port (e.g., a port having an area of view of at least approximately thirty millimeters).
- LAV large area of view
- the light port 1 16 of the integrating sphere 106 includes one or more baffles (not shown) positioned to deflect illumination provided by a light source 108.
- the light source 108 is positioned near the light port 1 16 to illuminate the interior of the integrating sphere 106.
- the light source 108 is a full-spectrum light source, such as a xenon flash lamp or a full- spectrum light emitting diode (LED).
- the light source 108 may be an LED light source mounted in a luminaire whose front surface is flush with a diffuser, which is in turn flush with the light port 1 16.
- the LED itself may be positioned one to two centimeters outside the integrating sphere 106.
- the light source 108 may be a xenon flash mounted in a cavity that is placed nearly flush with the light port 1 16.
- the light source 108 may be a xenon flash mounted in a cavity and coupled to the light port 1 16 via a fiber optic light guide.
- the integrating sphere 106 may include a baffle to prevent direct illumination of the sample port 1 14 by the light source 108.
- the camera 102, the set of filters 104, and the integrating sphere 106 are all coupled to a microprocessor 1 10 (or other computing device).
- the microprocessor 1 10 may control operation of the camera 102, the set of filters 104, and the integrating sphere 106.
- the components of the system 100 are arranged so that that optical axis O of the camera 102 - which passes from the camera 102, through the filter wheel 104, and through the integrating sphere 106 to the sample positioned at the sample port 1 14 - extends in a substantially parallel orientation (i.e. , parallel within a few degrees of tolerance) relative to the ground or to a support surface upon which the system 100 is placed.
- This horizontal arrangement of components facilitates sample loading and unloading when the system 100 is in use.
- FIG. 2 is a schematic diagram illustrating an image of the sample port 1 14 of the integrating sphere 106 of FIG. 1 in greater detail.
- FIG. 2 illustrates an image of the sample port 1 14 as captured through the sensor port 1 12 of the integrating sphere 106.
- the image depicts the sample port 1 14 as seen from within the integrating sphere 106.
- the sample port 1 14 mainly comprises an aperture 200 formed in the body of the integrating sphere 106 and configured to receive the sample whose color is to be measured.
- the sample port 1 14 includes a set of image registration marks 202i- 2023 (hereinafter collectively referred to as "image registration marks 202").
- two of the image registration marks 202 are positioned outside a periphery of the aperture 200, on the interior surface of the integrating sphere 106 (i.e., image registration marks 202i and 2022 in FIG. 2). These image registration marks 202 are used to correct for registration errors due to drift of the system 100 between capture of images. For instance, misalignment of the set of filters 104 may cause drift in the position and/or size of the images captured by the camera 102.
- the two registration marks 202 may be used to track the size and position of each image.
- the two image registration marks 202 provide four constraints (i.e., two constraints along the x axis, and two constraints along the y axis) and can correct for up to four registration errors (e.g., displacement along the x axis, displacement along the y axis, and image dilation/zoom).
- a third image registration mark 2023 may be positioned below aperture 200 and used to correct for rotation drift.
- a reference channel is adopted as an imaged part of the integrating sphere outside the sample area. Light from the reference channel 204 is used to compensate for the intensity variations from one flash of light to the next.
- the reference channel 204 does not replace the white tile, because: (1 ) the reference channel 204 is not calibrated white; and 2) the white tile is acquired on a different flash than the sample, and so still requires compensation.
- the reference channel area 204 is positioned outside a periphery of the aperture 200, and comprises a portion of the interior surface of the integrating sphere 106.
- the reference channel area 204 compensates for image-to-image variation in the intensity of the light source 108.
- the reference channel area 204 allows the reference channel to be measured simultaneously with the sample.
- the reference channel area 204 does not necessarily need to be a calibrated white.
- the light intensity distributed over the sample port 1 14 may be nonuniform.
- the uneven distribution of illumination can be compensated for using images that are captured during conventional white tile calibration of the system 100.
- the white tile is used as a grey card to calibrate the reflectance measurement at each pixel in an image of the sample port 1 14.
- FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for color measurement of non-solid colors, according to the present invention.
- the method 300 may be implemented, for example, by the system 100 of FIG. 1 (e.g., under the control of the microprocessor 1 10).
- the system 100 of FIG. 1 e.g., under the control of the microprocessor 1 10.
- the method 300 could be implemented by a system having a configuration that differs from the configuration illustrated in FIG. 1 .
- the method 300 assumes that certain steps have been performed in advance, including preparation and loading of the sample whose color is to be measured, and white reference target (e.g., tile) and black trap calibration of the color measurement system 100. Each of these steps may be performed in multiple different ways without departing from the scope of the present invention.
- the method 300 begins in step 302.
- the interior of the integrating sphere 106 is illuminated.
- the interior of the integrating sphere 106 is illuminated by the light source 108 positioned near the light port 1 16 of the integrating sphere.
- the illumination shines into the integrating sphere 106 in such a way that there is no direct path from the light source 108 to the sensor port 1 12 or to the sample port 1 14.
- the illumination may be deflected by one or more baffles. The illumination is thus diffused by multiple reflections from the interior of the integrating sphere 106 before it is incident on the sample positioned at the sample port 1 14.
- the sample is a non- solid colored sample, such as a multi-colored or patterned textile sample.
- the camera 102 captures a plurality of images of the sample.
- the images are captured through the sensor port 1 12 of the integrating sphere 106.
- each of the plurality of images is captured in a different band of the visible wavelength range (e.g., 400 to 700 nanometers).
- each image may be captured in a different twenty nanometer band of the visible wavelength range (e.g., 400 nm, 420 nm, 700 nm).
- each image is captured by placing a different filter in the set of filters 104 in front of the lens of the camera 102.
- the microprocessor 1 10 computes the reflectance for at least one pixel of the images.
- the reflectance of a pixel is computed by first computing the ratio of the light intensity reflected from the pixel to the light intensity reflected from a white reference target or tile (e.g. , obtained during calibration) for each captured image.
- the ratio is computed through each filter in the set of filters 104.
- the reference channel is used to correct this computation for fluctuations in light intensity that may occur between the time of white tile calibration and the time the images of the sample are captured.
- the sample reflectance, Rs may be calculated from a known white reflectance , Rw (measured by some reference instrument), and light intensities (various quantities I) measured by the camera 102 as:
- Is2 is the intensity from the test sample, measured at time 2.
- I and Ir2 are the intensities from the reference channel measured at times 1 and 2, respectively.
- Ik is the intensity measured from the black trap, assumed to be independent of measurement time.
- EQN. 1 is expressed entirely in terms of measured light intensities and one known white reflectance (Rw). It can be derived from the ratio of the following:
- b is a scale factor that includes two effects: (1 ) the reference channel signal is measured at a different location than the sample port; and (2) the reference channel reflectance is not a perfect reflecting diffuser. Evaluating the ratio of EQN. 3 to EQN. 2 eliminates the factor b.
- step 310 the microprocessor 1 10 outputs the reflectance values, e.g. , to another computing device or tool.
- FIG. 4 is a high-level block diagram of the present invention that is implemented using a general purpose computing device 400.
- the general purpose computing device 400 may comprise, for example, the microprocessor 1 10 illustrated in FIG. 1 .
- the general purpose computing device 400 may be part of another computing device that is coupled to the system 100.
- a general purpose computing device 400 comprises a processor 402, a memory 404, a measurement module 405 and various input/output (I/O) devices 406 such as a display, a keyboard, a mouse, a stylus, a wireless network access card, an image capturing device, and the like.
- I/O input/output
- At least one I/O device is a storage device (e.g., a disk drive, an optical disk drive, a floppy disk drive). It should be understood that the measurement module 405 can be implemented as a physical device or subsystem that is coupled to a processor through a communication channel.
- a storage device e.g., a disk drive, an optical disk drive, a floppy disk drive.
- the measurement module 405 can be represented by one or more software applications (or even a combination of software and hardware, e.g., using Application Specific Integrated Circuits (ASIC)), where the software is loaded from a storage medium (e.g., I/O devices 306) and operated by the processor 402 in the memory 404 of the general purpose computing device 300.
- a storage medium e.g., I/O devices 306
- the measurement module 405 for color measurement of non-solid colors as described herein with reference to the preceding Figures can be stored on a computer readable storage device (e.g., RAM, magnetic or optical drive or diskette, and the like).
- one or more steps of the methods described herein may include a storing, displaying and/or outputting step as required for a particular application.
- any data, records, fields, and/or intermediate results discussed in the methods can be stored, displayed, and/or outputted to another device as required for a particular application.
- steps or blocks in the accompanying Figures that recite a determining operation or involve a decision do not necessarily require that both branches of the determining operation be practiced. In other words, one of the branches of the determining operation can be deemed as an optional step.
- FIG. 5 is a block diagram illustrating another embodiment of a system 500 for color measurement, according to the present invention.
- the system 500 is designed to measure the color of a sample, and, like the system 100, may be especially suited for the measurement of non-solid colors (e.g., multiple colors or color patterns) in the sample.
- the system 500 generally comprises a camera 502, a set of filters 504, and an integrating sphere 506.
- the camera 502 is a monochrome camera.
- the camera 502 may be a scientific complementary metal oxide semiconductor (sCMOS) camera.
- sCMOS scientific complementary metal oxide semiconductor
- the integrating sphere 506 is positioned along the optical axis O of the camera 502.
- the integrating sphere 506 has a d/8° measurement geometry.
- the integrated sphere 506 includes a sensor port 512, a sample port 514, and a light port 516.
- the sensor port 512 and the sample port 514 are aligned with the optical axis O of the camera 502.
- the sample port 514 is a large area of view (LAV) port (e.g., a port having an area of view of at least approximately thirty millimeters).
- the light port 516 of the integrating sphere 506 includes one or more baffles (not shown) positioned to deflect illumination provided by a light source 508.
- the light source 508 is positioned near the light port 516 to illuminate the interior of the integrating sphere 506.
- the light source 508 is a full-spectrum light source, such as a xenon flash lamp or a full- spectrum light emitting diode (LED).
- the set of filters 504 is positioned between the light source 508 and the integrating sphere 506.
- the set of filters 504 includes a set of multiple different interference filters.
- the set of filters 504 may be implemented as a filter wheel, for example.
- the transmission spectra of the filters are evenly spaced over substantially the entirety of the visible wavelength range (e.g., approximately 400 to approximately 700 nanometers).
- the transmission spectrum of each filter is approximately twenty nanometers wide.
- the filter wheel includes at least sixteen possible positions, but may include more or fewer positions in other embodiments.
- the filter wheel is configured such that only one position of the wheel (i.e., only one filter) may be positioned at the light port 516 of the integrating sphere 506 at a time.
- the camera 502, the set of filters 504, and the integrating sphere 506 are all coupled to a microprocessor 510 (or other computing device).
- the microprocessor 510 may control operation of the camera 502, the set of filters 504, and the integrating sphere 506.
- the system 500 is configured in a manner similar to the system 100, except that the filters 504 are positioned at the light input (i.e. , between the light source 508 and the integrating sphere 506), rather than at the sensor output (i.e., between the camera 102 and the integrating sphere 106). Positioning the filters 504 to filter the light source 508 may limit the amount of light that enters the integrating sphere 506, thereby minimizing the amount by which the integrating sphere 506 heats up. The filters themselves are unlikely to heat up despite their proximity to the light source 508, because they are interference filters which reflect (i.e., do not absorb) light that is not transmitted.
- the system 500 may be operated in a manner substantially similar to the system 100.
- the method 300 discussed above, may also be implemented by the system 500 of FIG. 5 (e.g., under the control of the microprocessor 510).
- each image is captured by placing a different filter in the set of filters 104 in front of the light port 516 of the integrating sphere 506, rather than in front of the lens of the camera.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
In one embodiment, an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, and a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and camera. An optical axis of the camera extends from the camera, through at least one of the plurality of filters, through the sensor port, to the sample port.
Description
METHOD AND APPARATUS FOR COLOR MEASUREMENT OF
NON-SOLID COLORS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of United States Patent Application 14/820,077, filed August 6, 2015 and United States Provisional Patent Application 62/1 13,684, filed February 9, 2015, which is herein incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention generally relates to the field of imaging, and more specifically relates to color measurement.
BACKGROUND
[0003] Color measurement systems help to improve operational efficiency and product quality in supply chains. For example, color approval offices for the global apparel supply chain, apparel mills and dye houses, paint stores, textile printing shops, carpet manufacturers, manufacturers of wood panels, tiles, vinyl sheets, and laminates, and other industries relying on the digital color workflow require accurate color evaluation and visualization.
[0004] Measurement of non-solid colors (e.g., multiple colors or color patterns) in a sample is typically more complicated than the measurement of solid colors. Conventional approaches to measuring non-solid colors often cannot produce repeatable results. For example, some approaches rely on a lighting geometry that varies with the position relative to the sample. Furthermore, such approaches fail to adequately capture the spectral diversity needed to estimate the spectral reflectance of the sample's surfaces.
SUMMARY OF THE INVENTION
[0005] In one embodiment, an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, and a plurality of registration marks affixed to an interior surface of the
integrating sphere, outside a periphery of the sample port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and camera. An optical axis of the camera extends from the camera, through at least one of the plurality of filters, through the sensor port, to the sample port.
[0006] In one embodiment, a method for measuring a color of a non-solid colored sample includes positioning the sample near a sample port of an integrating sphere, illuminating the sample with diffuse illumination, using the integrating sphere, capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter, wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere, and computing a reflectance of a portion of the sample, based on the plurality of images.
[0007] In one embodiment, a computer readable storage device contains an executable program for measuring a color of a non-solid colored sample, where the program performs steps including positioning the sample near a sample port of an integrating sphere, illuminating the sample with diffuse illumination, using the integrating sphere, capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter, wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere, and computing a reflectance of a portion of the sample, based on the plurality of images.
[0008] In one embodiment, an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port, and a light port, a light positioned near the light port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and the light source, wherein an optical axis of the camera extends from the camera, through the sensor port, to the sample port.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
[0010] FIG. 1 is a block diagram illustrating one embodiment of a system for color measurement, according to the present invention;
[0011] FIG. 2 is a schematic diagram illustrating an image of the sample port of the integrating sphere of FIG. 1 in greater detail
[0012] FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for color measurement of non-solid colors, according to the present invention;
[0013] FIG. 4 is a high-level block diagram of the present invention that is implemented using a general purpose computing device; and
[0014] FIG. 5 is a block diagram illustrating another embodiment of a system for color measurement, according to the present invention.
DETAILED DESCRIPTION
[0015] In one embodiment, the present invention is a method and apparatus for color measurement of non-solid colors. Embodiments of the invention use an integrating sphere to diffuse light, and then measure the color of a non-solid color sample using a monochrome camera that captures sequential images of the sample through multiple interference filters. The diffuse reflectance of individual pixels of pixel averages can then be inferred from the images.
[0016] FIG. 1 is a block diagram illustrating one embodiment of a system 100 for color measurement, according to the present invention. The system 100 is designed to measure the color of a sample, and may be especially suited for the measurement of non-solid colors (e.g., multiple colors or color patterns) in the sample. The system 100 generally comprises a camera 102, a set of filters 104, and an integrating sphere 106.
[0017] In one embodiment, the camera 102 is a monochrome camera. For instance, the camera 102 may be a scientific complementary metal oxide semiconductor (sCMOS) camera. In one embodiment, the lens configuration of the camera 102 may be optimized to reduce the specular reflection from the other optical components of the system 100.
[0018] The set of filters 104 is positioned in front of the lens of the camera 102, i.e. , along the optical axis O of the camera 102. In an alternative embodiment, the set of filters 104 is positioned between the lens and the camera 102. In one embodiment the set of filters 104 includes a set of multiple different interference filters. The set of filters 104 may be implemented as a filter wheel, for example. In one embodiment, the transmission spectra of the filters are evenly spaced over substantially the entirety of the visible wavelength range (e.g., approximately 400 to approximately 700 nanometers). In a further embodiment, the transmission spectrum of each filter is approximately twenty nanometers wide. Thus, in one particular embodiment, the filter wheel includes at least sixteen possible positions, but may include more or less positions in other embodiments. In one embodiment, the filter wheel is configured such that only one position of the wheel (i.e., only one filter) may be positioned in the optical axis O of the camera 102 at a time.
[0019] The integrating sphere 106 is also positioned along the optical axis O of the camera 102, on the opposite side of the set of filters 104 from the camera 102 (i.e., such that the set of filters 104 is positioned between the camera 102 and the integrating sphere 106). In one embodiment, the integrating sphere 106 has a d/8° measurement geometry. The integrated sphere 106 includes a sensor port 1 12, a sample port 1 14, and a light port 1 16. The sensor port 1 12 and the sample port 1 14 are aligned with the optical axis O of the camera 102. In one embodiment, the sample port 1 14 is a large area of view (LAV) port (e.g., a port having an area of view of at least approximately thirty millimeters). In one embodiment, the light port 1 16 of the integrating sphere 106 includes one or more baffles (not shown) positioned to deflect illumination provided by a light source 108.
[0020] The light source 108 is positioned near the light port 1 16 to illuminate the interior of the integrating sphere 106. In one embodiment, the light source 108 is a full-spectrum light source, such as a xenon flash lamp or a full- spectrum light emitting diode (LED). For instance, the light source 108 may be an LED light source mounted in a luminaire whose front surface is flush with a diffuser, which is in turn flush with the light port 1 16. The LED itself may be positioned one to two centimeters outside the integrating sphere 106.
Alternatively, the light source 108 may be a xenon flash mounted in a cavity that is placed nearly flush with the light port 1 16. Or, the light source 108 may be a xenon flash mounted in a cavity and coupled to the light port 1 16 via a fiber optic light guide. In any one of these configurations, the integrating sphere 106 may include a baffle to prevent direct illumination of the sample port 1 14 by the light source 108.
[0021] The camera 102, the set of filters 104, and the integrating sphere 106 are all coupled to a microprocessor 1 10 (or other computing device). The microprocessor 1 10 may control operation of the camera 102, the set of filters 104, and the integrating sphere 106.
[0022] In the illustrated embodiment, the components of the system 100 are arranged so that that optical axis O of the camera 102 - which passes from the camera 102, through the filter wheel 104, and through the integrating sphere 106 to the sample positioned at the sample port 1 14 - extends in a substantially parallel orientation (i.e. , parallel within a few degrees of tolerance) relative to the ground or to a support surface upon which the system 100 is placed. This horizontal arrangement of components facilitates sample loading and unloading when the system 100 is in use.
[0023] FIG. 2 is a schematic diagram illustrating an image of the sample port 1 14 of the integrating sphere 106 of FIG. 1 in greater detail. In particular, FIG. 2 illustrates an image of the sample port 1 14 as captured through the sensor port 1 12 of the integrating sphere 106. Thus, the image depicts the sample port 1 14 as seen from within the integrating sphere 106. As illustrated, the sample port 1 14 mainly comprises an aperture 200 formed in the body of the integrating sphere 106 and configured to receive the sample whose color is to be measured. In addition, the sample port 1 14 includes a set of image registration marks 202i- 2023 (hereinafter collectively referred to as "image registration marks 202").
[0024] In one embodiment, two of the image registration marks 202 are positioned outside a periphery of the aperture 200, on the interior surface of the integrating sphere 106 (i.e., image registration marks 202i and 2022 in FIG. 2). These image registration marks 202 are used to correct for registration errors due to drift of the system 100 between capture of images. For instance,
misalignment of the set of filters 104 may cause drift in the position and/or size of the images captured by the camera 102. The two registration marks 202 may be used to track the size and position of each image. In particular, the two image registration marks 202 provide four constraints (i.e., two constraints along the x axis, and two constraints along the y axis) and can correct for up to four registration errors (e.g., displacement along the x axis, displacement along the y axis, and image dilation/zoom). In a further embodiment, a third image registration mark 2023 may be positioned below aperture 200 and used to correct for rotation drift.
[0025] Because the intensity of the light source varies from one acquisition to the next, a reflecting area that doesn't change from flash-to-flash or from one sample to another is needed to compensate for the intensity variations. Accordingly, a reference channel is adopted as an imaged part of the integrating sphere outside the sample area. Light from the reference channel 204 is used to compensate for the intensity variations from one flash of light to the next. The reference channel 204 does not replace the white tile, because: (1 ) the reference channel 204 is not calibrated white; and 2) the white tile is acquired on a different flash than the sample, and so still requires compensation.
[0026] The reference channel area 204 is positioned outside a periphery of the aperture 200, and comprises a portion of the interior surface of the integrating sphere 106. The reference channel area 204 compensates for image-to-image variation in the intensity of the light source 108. The reference channel area 204 allows the reference channel to be measured simultaneously with the sample. The reference channel area 204 does not necessarily need to be a calibrated white.
[0027] The light intensity distributed over the sample port 1 14 may be nonuniform. The uneven distribution of illumination can be compensated for using images that are captured during conventional white tile calibration of the system 100. In one embodiment, the white tile is used as a grey card to calibrate the reflectance measurement at each pixel in an image of the sample port 1 14.
[0028] FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for color measurement of non-solid colors, according to the present invention.
The method 300 may be implemented, for example, by the system 100 of FIG. 1 (e.g., under the control of the microprocessor 1 10). Thus, reference is made in the discussion of the method 300 to various elements of FIG. 1 . It will be appreciated, however, that the method 300 could be implemented by a system having a configuration that differs from the configuration illustrated in FIG. 1 .
[0029] The method 300 assumes that certain steps have been performed in advance, including preparation and loading of the sample whose color is to be measured, and white reference target (e.g., tile) and black trap calibration of the color measurement system 100. Each of these steps may be performed in multiple different ways without departing from the scope of the present invention.
[0030] The method 300 begins in step 302.
[0031] In step 304, the interior of the integrating sphere 106 is illuminated. In one embodiment, the interior of the integrating sphere 106 is illuminated by the light source 108 positioned near the light port 1 16 of the integrating sphere. The illumination shines into the integrating sphere 106 in such a way that there is no direct path from the light source 108 to the sensor port 1 12 or to the sample port 1 14. For instance, the illumination may be deflected by one or more baffles. The illumination is thus diffused by multiple reflections from the interior of the integrating sphere 106 before it is incident on the sample positioned at the sample port 1 14. In one embodiment, the sample is a non- solid colored sample, such as a multi-colored or patterned textile sample.
[0032] In step 306, the camera 102 captures a plurality of images of the sample. The images are captured through the sensor port 1 12 of the integrating sphere 106. In one embodiment, each of the plurality of images is captured in a different band of the visible wavelength range (e.g., 400 to 700 nanometers). For instance, each image may be captured in a different twenty nanometer band of the visible wavelength range (e.g., 400 nm, 420 nm, 700 nm). In one embodiment, each image is captured by placing a different filter in the set of filters 104 in front of the lens of the camera 102.
[0033] In step 308, the microprocessor 1 10 computes the reflectance for at least one pixel of the images. In one embodiment, the reflectance of a pixel is computed by first computing the ratio of the light intensity reflected from the
pixel to the light intensity reflected from a white reference target or tile (e.g. , obtained during calibration) for each captured image. Thus, the ratio is computed through each filter in the set of filters 104. In one embodiment, the reference channel is used to correct this computation for fluctuations in light intensity that may occur between the time of white tile calibration and the time the images of the sample are captured.
[0034] In one particular embodiment, the sample reflectance, Rs, may be calculated from a known white reflectance , Rw (measured by some reference instrument), and light intensities (various quantities I) measured by the camera 102 as:
- Ik) (In - Ik)] / [(Ir2 - Ik) (Iw1 (EQN. 1 ) where a subscript of "2" denotes a time of acquisition of a test sample, and a subscript of "1 " denotes a time of acquisition of the white tile W. The light intensities, I , are defined as follows: lwi is the intensity from the white tile, measured at time 1 .
Is2 is the intensity from the test sample, measured at time 2.
I and Ir2 are the intensities from the reference channel measured at times 1 and 2, respectively.
Ik is the intensity measured from the black trap, assumed to be independent of measurement time.
[0035] EQN. 1 is expressed entirely in terms of measured light intensities and one known white reflectance (Rw). It can be derived from the ratio of the following:
Rw = b (lwi - lk) / (ln - l k) (EQN. 2)
Rs = b (Is2- Ik) (Ir2 - Ik) (EQN. 3)
Where b is a scale factor that includes two effects: (1 ) the reference channel signal is measured at a different location than the sample port; and (2) the
reference channel reflectance is not a perfect reflecting diffuser. Evaluating the ratio of EQN. 3 to EQN. 2 eliminates the factor b.
[0036] Referring back to FIG. 3, in step 310, the microprocessor 1 10 outputs the reflectance values, e.g. , to another computing device or tool.
[0037] The method 300 ends in step 312.
[0038] FIG. 4 is a high-level block diagram of the present invention that is implemented using a general purpose computing device 400. The general purpose computing device 400 may comprise, for example, the microprocessor 1 10 illustrated in FIG. 1 . Alternatively, the general purpose computing device 400 may be part of another computing device that is coupled to the system 100. In one embodiment, a general purpose computing device 400 comprises a processor 402, a memory 404, a measurement module 405 and various input/output (I/O) devices 406 such as a display, a keyboard, a mouse, a stylus, a wireless network access card, an image capturing device, and the like. In one embodiment, at least one I/O device is a storage device (e.g., a disk drive, an optical disk drive, a floppy disk drive). It should be understood that the measurement module 405 can be implemented as a physical device or subsystem that is coupled to a processor through a communication channel.
[0039] Alternatively, as discussed above, the measurement module 405 can be represented by one or more software applications (or even a combination of software and hardware, e.g., using Application Specific Integrated Circuits (ASIC)), where the software is loaded from a storage medium (e.g., I/O devices 306) and operated by the processor 402 in the memory 404 of the general purpose computing device 300. Thus, in one embodiment, the measurement module 405 for color measurement of non-solid colors as described herein with reference to the preceding Figures, can be stored on a computer readable storage device (e.g., RAM, magnetic or optical drive or diskette, and the like).
[0040] It should be noted that although not explicitly specified, one or more steps of the methods described herein may include a storing, displaying and/or outputting step as required for a particular application. In other words, any data, records, fields, and/or intermediate results discussed in the methods can be stored, displayed, and/or outputted to another device as required for a particular
application. Furthermore, steps or blocks in the accompanying Figures that recite a determining operation or involve a decision, do not necessarily require that both branches of the determining operation be practiced. In other words, one of the branches of the determining operation can be deemed as an optional step.
[0041] FIG. 5 is a block diagram illustrating another embodiment of a system 500 for color measurement, according to the present invention. The system 500 is designed to measure the color of a sample, and, like the system 100, may be especially suited for the measurement of non-solid colors (e.g., multiple colors or color patterns) in the sample. The system 500 generally comprises a camera 502, a set of filters 504, and an integrating sphere 506.
[0042] In one embodiment, the camera 502 is a monochrome camera. For instance, the camera 502 may be a scientific complementary metal oxide semiconductor (sCMOS) camera.
[0043] The integrating sphere 506 is positioned along the optical axis O of the camera 502. In one embodiment, the integrating sphere 506 has a d/8° measurement geometry. The integrated sphere 506 includes a sensor port 512, a sample port 514, and a light port 516. The sensor port 512 and the sample port 514 are aligned with the optical axis O of the camera 502. In one embodiment, the sample port 514 is a large area of view (LAV) port (e.g., a port having an area of view of at least approximately thirty millimeters). In one embodiment, the light port 516 of the integrating sphere 506 includes one or more baffles (not shown) positioned to deflect illumination provided by a light source 508.
[0044] The light source 508 is positioned near the light port 516 to illuminate the interior of the integrating sphere 506. In one embodiment, the light source 508 is a full-spectrum light source, such as a xenon flash lamp or a full- spectrum light emitting diode (LED).
[0045] The set of filters 504 is positioned between the light source 508 and the integrating sphere 506. In one embodiment the set of filters 504 includes a set of multiple different interference filters. The set of filters 504 may be implemented as a filter wheel, for example. In one embodiment, the transmission spectra of the filters are evenly spaced over substantially the
entirety of the visible wavelength range (e.g., approximately 400 to approximately 700 nanometers). In a further embodiment, the transmission spectrum of each filter is approximately twenty nanometers wide. Thus, in one particular embodiment, the filter wheel includes at least sixteen possible positions, but may include more or fewer positions in other embodiments. In one embodiment, the filter wheel is configured such that only one position of the wheel (i.e., only one filter) may be positioned at the light port 516 of the integrating sphere 506 at a time.
[0046] The camera 502, the set of filters 504, and the integrating sphere 506 are all coupled to a microprocessor 510 (or other computing device). The microprocessor 510 may control operation of the camera 502, the set of filters 504, and the integrating sphere 506.
[0047] Thus, the system 500 is configured in a manner similar to the system 100, except that the filters 504 are positioned at the light input (i.e. , between the light source 508 and the integrating sphere 506), rather than at the sensor output (i.e., between the camera 102 and the integrating sphere 106). Positioning the filters 504 to filter the light source 508 may limit the amount of light that enters the integrating sphere 506, thereby minimizing the amount by which the integrating sphere 506 heats up. The filters themselves are unlikely to heat up despite their proximity to the light source 508, because they are interference filters which reflect (i.e., do not absorb) light that is not transmitted.
[0048] The system 500 may be operated in a manner substantially similar to the system 100. Thus, the method 300, discussed above, may also be implemented by the system 500 of FIG. 5 (e.g., under the control of the microprocessor 510). However, where the plurality of images is captured in step 306, each image is captured by placing a different filter in the set of filters 104 in front of the light port 516 of the integrating sphere 506, rather than in front of the lens of the camera.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. Various embodiments presented herein, or portions thereof, may be combined to create further embodiments. Furthermore, terms such as top, side, bottom, front, back, and the like are
relative or positional terms and are used with respect to the exemplary embodiments illustrated in the Figures, and as such these terms may be interchangeable.
Claims
1 . An apparatus for measuring a color of a non-solid colored sample, the apparatus comprising:
an integrating sphere comprising:
a sensor port;
a sample port; and
a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port;
a camera positioned near the sensor port; and
a plurality of filters positioned between the integrating sphere and camera.
2. The apparatus of claim 1 , wherein the camera is a monochrome camera.
3. The apparatus of claim 1 , wherein the plurality of filters is configured as a filter wheel.
4. The apparatus of claim 1 , wherein transmission spectra of the plurality of filters are spaced over a range covering all visible wavelengths of light.
5. The apparatus of claim 4, wherein the range is approximately 400 to approximately 700 nanometers.
6. The apparatus of claim 1 , further comprising:
a light source positioned near a light port of the integrating sphere.
7. The apparatus of claim 6, wherein the light source is a full-spectrum light source.
8. The apparatus of claim 6, wherein the light source is a xenon flash lamp.
9. The apparatus of claim 6, wherein the light source is a full-spectrum light emitting diode.
10. The apparatus of claim 1 , further comprising:
a reference channel comprising a portion of the interior surface of the integrating sphere and positioned outside the periphery of the sample port.
1 1 . The apparatus of claim 1 , wherein an optical axis of the camera extends in a parallel orientation relative to a support surface upon which the apparatus is positioned and passes from the camera, through at least one of the plurality of filters, through the sensor port, to the sample port.
12. A method for measuring a color of a non-solid colored sample, the method comprising:
positioning the sample near a sample port of an integrating sphere;
illuminating the sample with diffuse illumination, using the integrating sphere;
capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter of a plurality of color filters, and wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere; and computing a reflectance of a portion of the sample, based on the plurality of images.
13. The method of claim 12, wherein the capturing is performed using a monochrome camera, and an optical axis of the monochrome camera extends in a parallel orientation relative to a support surface upon which the integrating sphere is positioned and passes from the monochrome camera, through the color filter, through the sensor port, to the sample port.
14. The method of claim 12, wherein at least one of the plurality of images depicts a reference channel comprising a portion of an interior surface of the integrating sphere
15. The method of claim 12, wherein the computing comprises:
for at least one pixel of the plurality of images, computing a ratio for the at least one pixel, where the ratio relates a light intensity reflected from the at least one pixel to a light intensity reflected from a white calibration target.
16. A computer readable storage device containing an executable program for measuring a color of a non-solid colored sample, where the program performs steps comprising:
positioning the sample near a sample port of an integrating sphere;
illuminating the sample with diffuse illumination, using the integrating sphere;
capturing a plurality of images of the sample through a sensor port of the integrating sphere, subsequent to the illuminating, wherein each image of the plurality of images is captured using a different color filter of a plurality of color filters, and wherein at least one of the plurality of images depicts a set of registration marks affixed to an interior surface of the integrating sphere; and computing a reflectance of a portion of the sample, based on the plurality of images.
17. The computer readable storage device of claim 16, wherein at least one of the plurality of images depicts a reference channel comprising a portion of an interior surface of the integrating sphere.
18. An apparatus for measuring a color of a non-solid colored sample, the apparatus comprising:
an integrating sphere comprising:
a sensor port;
a sample port;
a light port; and
a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port
a light positioned near the light port;
a camera positioned near the sensor port; and
a plurality of filters positioned between the integrating sphere and the light source,
wherein an optical axis of the camera extends from the camera, through the sensor port, to the sample port.
19. The apparatus of claim 18, further comprising:
a reference channel comprising a portion of the interior surface of the integrating sphere and positioned outside the periphery of the sample port.
20. The apparatus of claim 18, wherein the plurality of filters is configured as a filter wheel.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2016/016599 WO2017135956A1 (en) | 2016-02-04 | 2016-02-04 | Method and apparatus for color measurement of non-solid colors |
EP16889604.1A EP3256825B1 (en) | 2015-02-09 | 2016-02-04 | Method and apparatus for color measurement of non-solid colors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2016/016599 WO2017135956A1 (en) | 2016-02-04 | 2016-02-04 | Method and apparatus for color measurement of non-solid colors |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017135956A1 true WO2017135956A1 (en) | 2017-08-10 |
Family
ID=59500908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/016599 WO2017135956A1 (en) | 2015-02-09 | 2016-02-04 | Method and apparatus for color measurement of non-solid colors |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017135956A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12007282B2 (en) | 2022-03-04 | 2024-06-11 | Datacolor Inc. | Instrument monitoring |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020018203A1 (en) * | 2000-08-11 | 2002-02-14 | Battle David R. | Spectrophotometer system having active pixel array |
US6583879B1 (en) * | 2002-01-11 | 2003-06-24 | X-Rite, Incorporated | Benchtop spectrophotometer with improved targeting |
US20050134853A1 (en) * | 2003-12-19 | 2005-06-23 | Applied Color Systems, Inc. | Spectrophotometer with digital camera |
US7119930B1 (en) | 1998-02-06 | 2006-10-10 | Videometer Aps | Apparatus and a method of recording an image of an object |
US20140111985A1 (en) * | 2013-01-03 | 2014-04-24 | Xicato, Inc. | Color tuning of a multi-color led based illumination device |
US20150198522A1 (en) * | 2014-01-15 | 2015-07-16 | Datacolor Holding Ag | Method and apparatus for image-based color measurement using a smart phone |
-
2016
- 2016-02-04 WO PCT/US2016/016599 patent/WO2017135956A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7119930B1 (en) | 1998-02-06 | 2006-10-10 | Videometer Aps | Apparatus and a method of recording an image of an object |
US20020018203A1 (en) * | 2000-08-11 | 2002-02-14 | Battle David R. | Spectrophotometer system having active pixel array |
US6583879B1 (en) * | 2002-01-11 | 2003-06-24 | X-Rite, Incorporated | Benchtop spectrophotometer with improved targeting |
US20050134853A1 (en) * | 2003-12-19 | 2005-06-23 | Applied Color Systems, Inc. | Spectrophotometer with digital camera |
US20140111985A1 (en) * | 2013-01-03 | 2014-04-24 | Xicato, Inc. | Color tuning of a multi-color led based illumination device |
US20150198522A1 (en) * | 2014-01-15 | 2015-07-16 | Datacolor Holding Ag | Method and apparatus for image-based color measurement using a smart phone |
Non-Patent Citations (1)
Title |
---|
See also references of EP3256825A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12007282B2 (en) | 2022-03-04 | 2024-06-11 | Datacolor Inc. | Instrument monitoring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10302485B2 (en) | Method and apparatus for color measurement of non-solid colors | |
CN105865630B (en) | For showing the colorimetric system of test | |
JP4323991B2 (en) | Spectral reflectance measuring device, film thickness measuring device, and spectral reflectance measuring method | |
CN1831519B (en) | Brightness measuring apparatus and measuring method thereof | |
US7189984B2 (en) | Object data input apparatus and object reconstruction apparatus | |
US9188431B2 (en) | Backlit vision machine | |
JP2018151165A (en) | Color measurement device, color information processing device, color measurement system, color measurement method, and program | |
US20120026512A1 (en) | Apparatus and method for determining surface characteristics using multiple measurements | |
KR101630596B1 (en) | Photographing apparatus for bottom of car and operating method thereof | |
US7224446B2 (en) | Apparatus, method, and computer program for wafer inspection | |
US20130208285A1 (en) | Method and device for measuring the colour and other properties of a surface | |
US20170336263A1 (en) | Reflected light detecting device and reflected light detecting method | |
US7659994B2 (en) | Apparatus for the determination of surface properties | |
EP3256825B1 (en) | Method and apparatus for color measurement of non-solid colors | |
US11994476B2 (en) | Multi-color surface inspection system, method for inspecting a surface, and method for calibrating the multi-color surface inspection system | |
WO2017135956A1 (en) | Method and apparatus for color measurement of non-solid colors | |
JP6096173B2 (en) | High luminous flux collimated illumination device and method for illumination of uniform reading field | |
CN214951807U (en) | Color measurement device based on multicolor LED spectral imaging | |
WO2008120882A1 (en) | Apparatus for inspection of three-dimensional shape and method for inspection using the same | |
KR102022836B1 (en) | Apparatus for measuring light, system and method thereof | |
KR20150057255A (en) | Transmittance inspection device for printed pattern for ir sensor | |
CN110174351B (en) | Color measuring device and method | |
TW201441589A (en) | Two-dimensional time sequence type chromometer inspection method and the chromometer | |
US7623240B2 (en) | Optical measuring device for test strips | |
US11940328B2 (en) | System and method for controlling the colour of a moving article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2016889604 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16889604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |