WO2017135471A1 - INTEGRIN α4β7 INHIBITOR - Google Patents

INTEGRIN α4β7 INHIBITOR Download PDF

Info

Publication number
WO2017135471A1
WO2017135471A1 PCT/JP2017/004277 JP2017004277W WO2017135471A1 WO 2017135471 A1 WO2017135471 A1 WO 2017135471A1 JP 2017004277 W JP2017004277 W JP 2017004277W WO 2017135471 A1 WO2017135471 A1 WO 2017135471A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
lower alkyl
alkyl group
pharmaceutically acceptable
Prior art date
Application number
PCT/JP2017/004277
Other languages
French (fr)
Japanese (ja)
Inventor
宗孝 徳増
昌嗣 野口
瑞季 川平
佳奈 岩▲崎▼
敦彦 早川
渉 宮永
友希 斎藤
唯 山浦
綾俊 安藤
敦 鶴田
美里 野口
Original Assignee
Eaファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaファーマ株式会社 filed Critical Eaファーマ株式会社
Publication of WO2017135471A1 publication Critical patent/WO2017135471A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • C07D239/96Two oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered

Definitions

  • the present invention relates to a sulfonamide derivative or a pharmaceutically acceptable salt thereof and a pharmaceutical composition containing these compounds as active ingredients.
  • the present invention relates to a compound useful as a therapeutic or prophylactic agent for inflammatory diseases in which an ⁇ 4 integrin-dependent adhesion process is involved in the disease state.
  • Patent Document 1 discloses a phenylalanine derivative represented by the following formula or a pharmaceutically acceptable salt thereof, and a typical compound thereof has the following chemical structure.
  • Patent Document 1 shows the results of VCAM inhibitory activity (VCAM-1 / ⁇ 4 ⁇ 1 binding assay) and (VCAM-1 / ⁇ 4 ⁇ 7 binding assay).
  • Patent Document 2 discloses a phenylalanine derivative represented by the following formula having a terminal R12 (R13) N—X1-group or a pharmaceutically acceptable salt thereof. This compound has been shown to have a higher VCAM-1 / ⁇ 4 ⁇ 1 integrin inhibitory activity in the presence of serum than the compound of Example 1 of Patent Document 1.
  • Patent Document 3 also discloses a compound having an ⁇ 4 integrin inhibitory action.
  • Patent Document 4 (WO2005 / 077915) describes a phenylalanine derivative having an ⁇ 4 integrin inhibitory action as represented by the following formula, but a 2,6-dichlorobenzoyl group or amino acid residue is present at the N-terminus of phenylalanine. A group is bound.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003-321358 describes a phenylalanine derivative having an ⁇ 4 integrin inhibitory activity represented by the following formula. Are joined.
  • Patent Document 6 (WO01 / 56994) describes a phenylalanine derivative having an ⁇ 4 integrin inhibitory action represented by the following formula, and proline and the like are bonded to the N-terminus of phenylalanine.
  • Patent Document 7 (WO 2006/127584) describes a phenylalanine derivative having an ⁇ 4 integrin inhibitory action represented by the following formula, and a pyrimidine ring or the like is directly bonded to the N-terminus of phenylalanine.
  • Patent Document 8 (WO01 / 42215) describes a phenylalanine derivative having an ⁇ 4 integrin inhibitory action represented by the following formula, and the phenylalanine has an N-terminus such as a 2-chloro-6-methylbenzoyl group.
  • Patent Document 9 (WO2013 / 161904) describes a phenylalanine derivative having an ⁇ 4 ⁇ 7 integrin inhibitory action represented by the following formula. This document shows the results of a VCAM-1 / ⁇ 4 ⁇ 1 integrin binding inhibitory activity evaluation of a specific phenylalanine derivative and a MAdCAM-1 / ⁇ 4 ⁇ 7 integrin binding inhibitory activity evaluation test in the presence of serum. Has a low effect and is described as having a high effect on ⁇ 4 ⁇ 7 integrin.
  • Patent Document 10 (WO2015 / 064580) describes a phenylalanine derivative having an ⁇ 4 ⁇ 7 integrin inhibitory action represented by the following formula. This document also shows the results of VCAM-1 / ⁇ 4 ⁇ 1 integrin binding inhibitory activity evaluation of specific phenylalanine derivatives and MAdCAM-1 / ⁇ 4 ⁇ 7 integrin binding inhibitory activity evaluation test in the presence of serum. Has a low effect and is described as having a high effect on ⁇ 4 ⁇ 7 integrin.
  • An object of the present invention is to provide a novel compound having a chemical structural formula that has not been known so far and having an excellent ⁇ 4 integrin inhibitory action.
  • an object of the present invention is to provide a novel compound having an ⁇ 4 integrin inhibitory action with high selectivity, which has a low effect on ⁇ 4 ⁇ 1 and a high effect on ⁇ 4 ⁇ 7.
  • Another object of the present invention is to provide a compound having an excellent ⁇ 4 integrin inhibitory action that can be administered orally.
  • Another object of the present invention is to provide a compound having an ⁇ 4 integrin inhibitory activity excellent in safety.
  • Another object of the present invention is to provide a compound having a long-lasting ⁇ 4 integrin inhibitory activity.
  • Another object of the present invention is to provide a novel compound having an excellent ⁇ 4 integrin inhibitory action in human whole blood. Another object of the present invention is to provide a pharmaceutical composition containing the above novel compound and a pharmaceutically acceptable carrier. Another object of the present invention is to provide a medicament containing the novel compound. Another object of the present invention is to provide a therapeutic or prophylactic agent for inflammatory diseases in which an ⁇ 4 ⁇ 7 integrin-dependent adhesion process is involved in the disease state. Another object of the present invention is to provide an ⁇ 4 integrin inhibitor.
  • the present inventors examined the inhibitory activity of ⁇ 4 ⁇ 7 integrin in human whole blood for compounds having various structures. As a result, a sulfonamide derivative having a specific chemical structure having a heterocyclic group having an aminocarbonyl group as a substituent or a sulfonamide group to which a phenyl group is bonded or a pharmaceutically acceptable salt thereof is excellent in human whole blood. It was found to have ⁇ 4 ⁇ 7 integrin inhibitory activity.
  • a sulfonamide derivative represented by the following general formula (I) or a pharmaceutically acceptable salt thereof (In the formula Represents a single bond or a double bond, R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, lower alkenyl group, a lower alkoxy group, a lower alkoxy-lower alkyl group, hydroxy group, or a hydroxy lower alkyl group, R 1 And R 2 are bonded to each other to form a benzene ring which may have a substituent, an alicyclic hydrocarbon having 4 to 7 carbon atoms which may have a substituent, or a heteroaryl ring which may have a substituent Or may form a heterocyclic ring which may have a substituent, R 3 represents a lower alkyl group, e, f, g, and h each independently represent C—H or a nitrogen
  • a heteroaryl ring or a hetero ring that may have a substituent is a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group, or a lower alkoxymethyl group, and R 1 and R 2 may be bonded to each other to have a substituent.
  • the alicyclic hydrocarbon of formula 4 to 7, a heteroaryl ring which may have a substituent, or a heterocycle which may have a substituent may be formed, and the substituent is a lower alkyl group
  • R 1 and R 2 are bonded to each other to have a cyclohexene which may have a substituent, pyridine which may have a substituent, dihydropyran which may have a substituent, or a substituent.
  • a tetrahydropyridine may be formed, and the substituent is selected from a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and a lower alkylamino lower alkyl group,
  • the sulfonamide derivative according to 1] or [2], or a pharmaceutically acceptable salt thereof is selected from a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and a lower alkylamino lower alkyl group.
  • D represents an benzene ring which may have a substituent, and the substituent is selected from a halogen atom, a lower alkyl group, a lower alkoxy group, and a hydroxy group. Or a pharmaceutically acceptable salt thereof.
  • R 4 and R 5 may each independently have a hydrogen atom, a lower alkyl group that may have a substituent, a lower alkenyl group that may have a substituent, or a substituent.
  • R 4 and R 5 may be bonded to form a heterocyclic group which may have a substituent, and the substituent is a lower alkyl group, a lower alkoxy group, or a hydroxy group.
  • R 4 and R 5 each independently represent a hydrogen atom, a lower alkyl group which may have a substituent, or a heterocyclic group which may have a substituent, wherein the substituent is , A halogen atom, a cyano group, a hydroxy group, a lower alkoxy group, a trifluoromethyl group, and a heterocyclic group, R 4 and R 5 may be bonded to each other to have a lower alkyl group as a substituent.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a lower alkoxy lower alkyl group, and R 1 and R 2 are bonded to form a carbon number of 4 to 7 alicyclic hydrocarbons, heteroaryl rings, or heterocycles that may be substituted with lower alkyl groups
  • D represents a benzene ring or a heteroaryl ring which may be substituted with a substituent selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and a hydroxy group
  • R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent selected from the group consisting of a lower alkoxy group, a heterocyclic group, a
  • a novel compound having a chemical structural formula that has not been known so far and having an excellent ⁇ 4 integrin inhibitory action is provided.
  • the present invention also provides a compound having an excellent ⁇ 4 integrin inhibitory action that can be administered orally.
  • a compound having ⁇ 4 integrin inhibitory activity excellent in safety is also provided.
  • a compound having a long-lasting ⁇ 4 integrin inhibitory activity is also provided.
  • the present invention also provides a novel compound having an excellent ⁇ 4 integrin inhibitory action in human blood.
  • a pharmaceutical composition comprising the novel compound and a pharmaceutically acceptable carrier.
  • the pharmaceutical containing the said novel compound is also provided.
  • the present invention also provides a therapeutic or prophylactic agent for inflammatory diseases in which an ⁇ 4 ⁇ 7 integrin-dependent adhesion process is involved in the disease state.
  • an ⁇ 4 integrin inhibitor is also provided.
  • substituent means “substituted or unsubstituted”.
  • position and number of substituents are arbitrary and are not particularly limited. When substituted with two or more substituents, these substituents may be the same or different.
  • substituents include a halogen atom, a nitro group, a cyano group, a hydroxyl group, a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group, a lower alkylthio group, a hydroxy lower alkyl group, a hydroxy lower alkenyl group, and a hydroxy lower group.
  • the term “lower” means a group having 1 to 6 carbon atoms
  • the “lower alkyl group” means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms.
  • the “lower alkenyl group” refers to a linear or branched alkenyl group having 2 to 6 carbon atoms including each isomer. Examples thereof include a vinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group, and a vinyl group, an allyl group, and a propenyl group are preferable.
  • the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and preferably a fluorine atom and a chlorine atom.
  • the “lower alkoxy group” refers to an alkoxy group having a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms.
  • methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentyloxy group, n-hexyloxy group isopropoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, cyclopropyloxy Group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group, and a methoxy group, an ethoxy group, and an n-propoxy group are preferable.
  • lower alkoxymethyl group refers to a methyl group that is mono-substituted or further substituted with the above-mentioned “lower alkoxy group”. Examples thereof include a methoxymethyl group, an ethoxymethyl group, an isopropoxymethyl group, a tert-butoxymethyl group, and the like, and a methoxymethyl group and an ethoxymethyl group are preferable.
  • hydroxy lower alkyl group refers to a lower alkyl group substituted with a hydroxyl group, and examples thereof include a hydroxymethyl group and a hydroxyethyl group, and a hydroxymethyl group is preferred.
  • lower alkylamino lower alkyl group refers to a lower alkyl group substituted with the above-mentioned “lower alkyl group” mono- or di-substituted amino group.
  • Examples include a methylaminomethyl group, an ethylaminomethyl group, a propylaminomethyl group, an isopropylaminomethyl group, a methylaminoethyl group, an ethylaminoethyl group, a dimethylaminomethyl group, and a methylethylaminomethyl group, preferably methyl An aminomethyl group, an ethylaminomethyl group, and a methylaminoethyl group;
  • the “alicyclic hydrocarbon” refers to a cyclic structure composed of carbon atoms and hydrogen atoms, and includes cycloalkanes that are all formed by single bonds and cycloalkenes that may contain double bonds.
  • cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclohexene and the like can be mentioned, and cyclohexane and cyclohexene are preferable.
  • heteroaryl ring refers to a 4- to 10-membered aromatic ring containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atoms as ring atoms.
  • Heterocycle refers to a 4- to 10-membered monocyclic to bicyclic heterocycle containing 1 to 4 heteroatoms selected from an oxygen atom, a sulfur atom and a nitrogen atom as ring atoms.
  • any carbon atom which is a ring atom may be substituted with an oxo group, and a sulfur atom or a nitrogen atom may be oxidized to form an oxide. Further, it may be condensed with a benzene ring.
  • Heterocyclic group refers to a 4- to 10-membered monocyclic to bicyclic heterocyclic group containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atoms as ring atoms. .
  • any carbon atom which is a ring atom may be substituted with an oxo group, and a sulfur atom or a nitrogen atom may be oxidized to form an oxide. Further, it may be condensed with a benzene ring.
  • the sulfonamide derivative represented by the general formula (I) or a pharmaceutically acceptable salt thereof is preferably the following:
  • R 1 and R 2 are each independently preferably a hydrogen atom, a lower alkyl group or a lower alkoxymethyl group, more preferably a hydrogen atom or a lower alkyl group, a hydrogen atom or a methyl group. Is particularly preferred.
  • the ring formed by combining R 1 and R 2 is preferably pyridine, cyclohexene, dihydropyran and tetrahydropyridine, more preferably cyclohexene, dihydropyran and tetrahydropyridine, and dihydropyran.
  • R 3 is preferably a lower alkyl group, particularly preferably a methyl group.
  • e, f, g and h are preferably C—H 2 or a nitrogen atom, more preferably any one is a nitrogen atom, and particularly preferably e or f is a nitrogen atom. preferable.
  • B is preferably a hydroxy group or a lower alkoxy group, more preferably a hydroxy group, a methoxy group, an ethoxy group, an isopropoxy group, or a cyclohexyl group, and a hydroxy group, a methoxy group, an ethoxy group, or an isopropoxy group.
  • D is preferably a benzene ring which may have a substituent or a heteroaryl ring which may have a substituent, more preferably a benzene ring or a pyridine ring, and particularly preferably a benzene ring.
  • the substituent of D is preferably a halogen atom, a lower alkyl group, a lower alkoxy group or a hydroxy group, more preferably a fluorine atom, a methyl group, a methoxy group or a hydroxy group.
  • D when D represents a benzene ring or a pyridine ring, the substitution position of the aminosulfonyl group and aminocarbonyl group bonded to D is preferably the para position.
  • R 4 and R 5 are each independently a lower alkyl group which may have a substituent or a heterocyclic group which may have a substituent, preferably a methyl group or an ethyl group.
  • the substituents of R 4 and R 5 are preferably a methoxy group, a morpholino group, a trifluoromethyl group, a hydroxy group or a cyano group, and particularly preferably a morpholino group, a trifluoromethyl group or a cyano group.
  • the ring formed by combining R 4 and R 5 is preferably a heterocyclic ring which may have a substituent, and morpholine and piperazine are particularly preferable.
  • R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a lower alkoxy lower alkyl group, and R 1 and R 2 are bonded to form an alicyclic group having 4 to 7 carbon atoms.
  • D represents a benzene ring or a heteroaryl ring which may be substituted with a substituent selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and a hydroxy group
  • R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent selected from the group consisting of a lower alkoxy group, a heterocyclic group, a hydroxy group, a cyano group and a halogen atom, provided that R 4 and R 4 5 may be bonded to form a heterocyclic group which may be substituted with a lower alkyl group;
  • R 1 and R 2 each represent a lower alkyl group
  • D is a benzene ring having a substituent selected from the group consisting of a halogen atom
  • R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent
  • the salt may be pharmaceutically acceptable, for example, for an acidic group such as a carboxyl group in the formula
  • Organic salts such as ammonium salts, salts with alkali metals such as sodium and potassium, salts with alkaline earth metals such as calcium and magnesium, organic salts such as aluminum salts, zinc salts, triethylamine, ethanolamine, morpholine, piperidine and dicyclohexylamine Examples thereof include salts with amines and salts with basic amino acids such as arginine and lysine.
  • salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid
  • organic carboxylic acids such as acids and salts with organic sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid.
  • a method for forming a salt a compound of the general formula (I) and a necessary acid or base are mixed in an appropriate amount ratio in a solvent or a dispersing agent, or cation exchange or anion is performed based on other salt forms. It can also be obtained by ion exchange.
  • the compound of the present invention may also contain a solvate of the compound represented by the general formula (I), for example, a hydrate, an alcohol adduct and the like.
  • the compound of the present invention includes a prodrug form of the compound represented by formula (I).
  • the prodrug of the compound of the present invention is a compound that is converted into a compound represented by the general formula (I) by a reaction with an enzyme, gastric acid, or the like under physiological conditions in vivo, that is, enzymatically causes oxidation, reduction, hydrolysis, etc.
  • the prodrug of the compound represented by the general formula (I) are not limited to those exemplified in the compounds of Examples.
  • the prodrug may be a compound in which the amino group is acylated, alkylated or phosphorylated (eg, a compound represented by the general formula (I)
  • examples thereof include methylated, tert-butylated compounds, etc.
  • the prodrug includes acylated, alkylated, phosphorylated, borated.
  • the compound represented by the general formula (I) is acetylated, palmitoylated, propano
  • a compound having a carboxy group as a prodrug such as a compound having a carboxy group, and a pivaloylated, succinylated, fumarylated, alanylated, dimethylaminomethylcarbonylated compound, etc.
  • the prodrug includes a compound in which the carboxy group is esterified with a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. These compounds are preferably represented by the formula (I) by a method known per se. ).
  • the prodrug of compound (I) changes to compound (I) under physiological conditions as described in Hirokawa Shoten, 1990, “Development of Drugs”, Volume 7, Molecular Design, pages 163 to 198. There may be.
  • the present invention includes all isotopes of the compounds represented by formula (I).
  • the isotope of the compound of the present invention is one in which at least one atom is substituted with an atom having the same atomic number (number of protons) and a different mass number (sum of the number of protons and neutrons).
  • Examples of isotopes contained in the present compound a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, a fluorine atom, include a chlorine atom, respectively, 2 H, 3 H, 13 C , 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl, and the like.
  • unstable radioisotopes that emit radioactivity and emit neutrons are useful in tests of tissue distribution of drugs or compounds.
  • Stable isotopes can be used safely because they do not decay, their abundances are almost unchanged, and there is no radioactivity.
  • the isotope of the compound of the present invention can be converted according to a conventional method by replacing the reagent used in the synthesis with a reagent containing the corresponding isotope.
  • the compound represented by the general formula (I) or a salt thereof is administered as it is or as various pharmaceutical compositions.
  • a dosage form of such a pharmaceutical composition for example, it may be a tablet, powder, pill, granule, capsule, suppository, solution, sugar coating, devoted, or syrup, and a usual formulation aid.
  • tablets may contain phenylalanine derivatives, which are the active ingredients of the present invention, known auxiliary substances such as inert diluents such as lactose, calcium carbonate or calcium phosphate, binders such as gum arabic, corn starch or gelatin, alginic acid, corn starch or the like Gelatinized starch and other leavening agents, sweeteners such as sucrose, lactose and saccharin, flavoring agents such as peppermint, red mono oil and cherry, lubricants such as magnesium stearate, talc and carboxymethylcellulose, fats, waxes and semi-solids And liquid gelatin, soft gelatin capsules such as natural or hardened oils and excipients for suppositories, water, alcohol, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Obtained by.
  • inert diluents such as lactose, calcium carbonate or calcium phosphate
  • binders such as gum
  • An inhibitor comprising a compound represented by the general formula (I) or a salt thereof as an active ingredient can be used as a therapeutic or prophylactic agent for inflammatory diseases in which an ⁇ 4 integrin-dependent adhesion process is involved in the pathological state.
  • inflammatory diseases include, for example, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, multiple sclerosis, Sjogren's syndrome, asthma, psoriasis, allergy, diabetes, cardiovascular disease, arteriosclerosis, relapse Examples include stenosis, tumor growth, tumor metastasis, transplant rejection, and / or human immunodeficiency virus infection (see Non-Patent Document 1).
  • the dose to be used for the above purpose is determined by the intended therapeutic effect, administration method, treatment period, age, weight, etc., but it is usually given orally as a daily dose for adults by the oral or parenteral route.
  • administration 1 ⁇ g to 5 g may be used, and in the case of parenteral administration, 0.01 ⁇ g to 1 g may be used.
  • an aminocarbonyl group is provided as a substituent of D.
  • excellent ⁇ 4 ⁇ 7 integrin inhibitory activity can be obtained in human whole blood.
  • the sulfonamide derivative of the present invention has a high concentration to the portal vein and the amount of exposure in the circulating blood increases, a stronger effect can be obtained. From this viewpoint, the ⁇ 4 ⁇ 7 integrin-dependent adhesion process is useful as a therapeutic or prophylactic agent for inflammatory diseases in which the disease state is involved.
  • the 2-position and 5-position of phenyl in the phenylalanine moiety are substituted with fluorine atoms.
  • the compound represented by the general formula (I) of the present invention includes, for example, an intermediate having a carboxyl group at the terminal represented by the general formula (MI) and an amino group at the terminal represented by the general formula (M-II). And an intermediate having an amidation reaction.
  • the amidation reaction is known, and examples thereof include (1) a method using a condensing agent and (2) a method using an acid halide.
  • a method using a condensing agent is, for example, a method in which a carboxylic acid and an amine or a salt thereof are mixed with, for example, dichloromethane, tetrahydrofuran (THF), 1,4-dioxane, N, N-dimethylformamide (DMF) or acetonitrile.
  • a solvent that does not adversely influence the reaction for example, in the presence or absence of a base such as pyridine, triethylamine or N, N-diisopropylethylamine, for example, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7
  • condensation aids such as azabenzotriazole (HOAt) or N-hydroxysuccinimide (HOSu), for example 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide (WSC) ), 1,3-dicyclohexylcarbodiimide (DCC)
  • DCC 1,3-dicyclohexylcarbodiimide
  • 7-azabenzotriazole-1-yl) -N, N, N ' is carried out by reacting with a condensing agent such as N'- tetramethyluronium hexafluorophosphate (HATU).
  • a condensing agent such as N'- t
  • the carboxylic acid is used in a solvent that does not adversely influence the reaction, such as dichloromethane, or in the absence or presence of a catalyst such as DMF in the absence of a solvent.
  • a solvent that does not adversely influence the reaction such as dichloromethane, or in the absence or presence of a catalyst.
  • an acid halide obtained by reacting with thionyl chloride, oxalyl chloride, thionyl bromide, etc., for example, dichloromethane, THF, etc., in a solvent that does not adversely affect this reaction, for example, pyridine, triethylamine, or
  • the reaction is carried out by reacting with an amine or a salt thereof in the presence of a base such as N, N-diisopropylethylamine.
  • the intermediate having a carboxyl group at the terminal represented by the general formula (MI) can be produced, for example, by the following method.
  • the production method of a representative compound among the intermediates having a carboxyl group at the terminal represented by the general formula (MI) which is the compound of the present invention is shown below.
  • D is a phenyl group that may have a substituent selected from the group consisting of a lower alkyl group, a lower alkoxy group, a hydroxy group, and a halogen atom, or a pyridyl group.
  • the intermediate body (S8) which has a carboxyl group at the terminal is compoundable by using the method (manufacturing method A, B, and C) etc. which are described below, for example.
  • D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection
  • R 21 represents, for example, a lower alkyl group or the like.
  • X 1 represents a halogen atom such as chlorine, bromine or iodine, or a leaving group such as trifluoromethanesulfonyloxy group.
  • the sulfonyl chloride derivative (S1) and the aniline derivative (S2) are reacted in a solvent that does not adversely affect the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine.
  • a base such as pyridine or triethylamine.
  • the obtained sulfonamide derivative (S3) is obtained in the presence of a base such as triethylamine or N, N-diisopropylethylamine in a solvent that does not adversely affect the reaction such as DMF or N-methylpyrrolidone (NMP).
  • the aldehyde derivative (S4) can be synthesized by performing a coupling reaction in a carbon dioxide atmosphere using a metal catalyst such as 1,1′-bis (diphenylphosphinoferrocene) dichloropalladium (II).
  • the obtained aldehyde derivative (S4) can synthesize a carboxylic acid derivative (S5) by performing an oxidation reaction such as Pinnick oxidation.
  • a base such as triethylamine or N, N-diisopropylethylamine
  • a condensation aid such as HOBt, HOAt or HOSu, for example, WSC
  • a condensing agent such as DCC or HATU
  • the amide derivative (S7) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, using a base such as sodium hydroxide or lithium hydroxide.
  • the target carboxylic acid derivative (S8) can be produced by performing alkaline hydrolysis or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
  • D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection
  • R 21 represents, for example, a lower alkyl group or the like.
  • the sulfonyl chloride derivative (S9) and the aniline derivative (S2) are reacted in a solvent that does not adversely affect the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine.
  • a base such as pyridine or triethylamine.
  • the obtained sulfonamide derivative (S5) and amine derivative (S6) or a salt thereof in a solvent that does not adversely affect the reaction such as dichloromethane, THF, 1,4-dioxane, DMF or acetonitrile, for example,
  • a solvent such as dichloromethane, THF, 1,4-dioxane, DMF or acetonitrile
  • a base such as pyridine, triethylamine, or N, N-diisopropylethylamine
  • a condensation aid such as HOBt, HOAt or HOSu, for example WSC
  • a condensing agent such as DCC or HATU
  • the amide derivative (S7) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, using a base such as sodium hydroxide or lithium hydroxide.
  • the target carboxylic acid derivative (S8) can be produced by performing alkaline hydrolysis or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
  • D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection
  • R 21 represents, for example, a lower alkyl group or the like.
  • the sulfonyl chloride derivative (S10) and the aniline derivative (S2) are reacted in a solvent that does not adversely influence the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine.
  • a base such as pyridine or triethylamine.
  • the sulfonamide derivative (S7) is treated with a base such as sodium hydroxide or lithium hydroxide in a solvent that does not adversely affect the reaction such as THF, 1,4-dioxane, methanol or ethanol.
  • a base such as sodium hydroxide or lithium hydroxide
  • the target carboxylic acid derivative (S8) can be produced by carrying out the alkaline hydrolysis used or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
  • D is a phenyl group which may have a substituent selected from the group consisting of a lower alkyl group, a lower alkoxy group, a hydroxy group and a halogen atom, or a pyridyl group
  • the intermediate (S8) having a carboxyl group at the terminal where R 5 is a hydrogen atom can be synthesized by using, for example, the method described below (Production Method D).
  • D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection
  • R 21 represents, for example, a lower alkyl group or the like.
  • X 1 represents a halogen atom such as chlorine, bromine or iodine, or a leaving group such as trifluoromethanesulfonyloxy group.
  • the halogenaryl derivative (S3) and the isocyanide reagent (S11) are mixed with, for example, a base such as cesium carbonate in a solvent that does not adversely affect the reaction such as DMSO, for example, in the presence or absence of water.
  • the tert-butylamide derivative (S12) can be synthesized by reacting in the presence using, for example, a metal catalyst such as bistriphenylphosphine dichloropalladium (II).
  • the obtained tert-butylamide derivative (S12) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, a base such as sodium hydroxide or lithium hydroxide.
  • the target carboxylic acid derivative (S8) can be produced by carrying out alkaline hydrolysis using, acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
  • Each process can be synthesized by using generally replaceable reaction conditions, and should be selected in a timely manner according to the type of raw material compound.
  • the compound of the present invention obtained by the above method can be purified using techniques such as extraction, distillation, crystallization, column chromatography and the like usually used in organic synthesis.
  • the intermediate (S17) having an amino group at the terminal represented by the general formula (M-II), which is the compound of the present invention, may be produced by, for example, the following production methods (Production Methods E, F, and G). It can be synthesized by using.
  • Production Methods E, F, and G production methods
  • symbols in the formula are the same as defined in the formula (I).
  • R 31 is, for example, tert- butoxycarbonyl group, such as benzyloxycarbonyl group, for example, a substituent of the general amines which can removed by manipulation of deprotection such as, wherein X 3 is, for example, chlorine, bromine, represents a leaving group such as a halogen atom or for example, trifluoromethanesulfonyloxy group iodine, wherein B 1 represents, by operation of deprotection such, represents a readily converted can substituents B.
  • the halogenated aryl derivative (S13) and a borane derivative such as bis (pinacolato) diborane for example, in a solvent that does not adversely affect the reaction such as DMF, for example, in the presence of a base such as potassium acetate, for example,
  • a metal catalyst such as 1,1′-bis (diphenylphosphinoferrocene) dichloropalladium (II)
  • the corresponding boronic acid ester derivative is derived, and then the boronic acid obtained
  • the boronic ester is deprotected by treating the ester derivative with, for example, sodium periodate or ammonium acetate and water in a solvent that does not adversely affect the reaction, such as acetone.
  • the corresponding boronic acid derivative (S14) can be synthesized.
  • the obtained boronic acid derivative (S14) and uracil derivative (S15) are mixed with a solvent that does not adversely affect the reaction, such as dichloromethane, dimethyl sulfoxide (DMSO), or DMF, such as pyridine or triethylamine.
  • a solvent that does not adversely affect the reaction such as dichloromethane, dimethyl sulfoxide (DMSO), or DMF, such as pyridine or triethylamine.
  • the amino acid derivative (S16) can be synthesized by performing a coupling reaction using a metal catalyst such as copper (II) acetate or copper (II) trifluoromethanesulfonate in the presence of a base.
  • amino acid derivative (S16) is subjected to deprotection such as acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis to produce the target carboxylic acid derivative (S17). be able to.
  • R 31 is, for example, tert- butoxycarbonyl group, such as benzyloxycarbonyl group, for example, a substituent of the general amines which can removed by manipulation of deprotection such as, wherein R 32 and R 33 Each independently represents, for example, a lower alkyl group or a substituent of a general ester such as a benzene ring which may have a substituent, wherein B 1 is converted to B by an operation such as deprotection. Represents a substituent that can be easily converted.
  • the nitro derivative (S18) is, for example, a catalytic reduction reaction using a metal catalyst such as palladium carbon, palladium hydroxide, or Raney nickel in a solvent that does not adversely affect the reaction such as methanol, ethanol, or isopropyl alcohol.
  • a metal catalyst such as palladium carbon, palladium hydroxide, or Raney nickel in a solvent that does not adversely affect the reaction such as methanol, ethanol, or isopropyl alcohol.
  • the aniline derivative (S19) can be synthesized by reacting a metal such as zinc under acidic conditions (for example, hydrochloric acid, acetic acid, or ammonium chloride).
  • the obtained aniline derivative (S19) and carbamate derivative (S20) are mixed with triethylamine, pyridine, or diaza in a solvent that does not adversely affect the reaction, such as dichloromethane, 1,4-dioxane, THF, or DMF.
  • the amino acid derivative (S16) can be synthesized by reacting with a base such as bicycloundecene (DBU).
  • DBU bicycloundecene
  • the target carboxylic acid derivative (S17) is produced by deprotecting the amino acid derivative (S16) by, for example, acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis. Can do.
  • R 31 represents a general amine substituent which can be removed by an operation such as deprotection, for example, a tert-butoxycarbonyl group, a benzyloxycarbonyl group, etc., wherein X 3 , X 4 and X 5 each independently represents, for example, a halogen atom such as chlorine, bromine, iodine or the like, or a leaving group such as trifluoromethanesulfonyloxy group, wherein B 1 represents B by the operation such as deprotection.
  • halogenated aryl derivative (S21) and the uracil derivative (S15) are mixed in a solvent that does not adversely influence the reaction, such as DMSO, NMP, or DMF, for example, triethylamine, N, N-diisopropylethylamine, DBU, or the like.
  • a solvent that does not adversely influence the reaction such as DMSO, NMP, or DMF, for example, triethylamine, N, N-diisopropylethylamine, DBU, or the like.
  • a compound (S22) is synthesized by performing a coupling reaction using a metal catalyst such as copper (I) iodide, copper (I) bromide, or copper (I) chloride. Can do.
  • the obtained compound (S22) and halide (S23) are treated with, for example, tris (di-acid) in the presence of zinc powder activated with, for example, iodine in a solvent that does not adversely affect the reaction such as DMF.
  • a metal catalyst such as benzylideneacetone
  • dipalladium (0) dipalladium (0)
  • a ligand commonly used in organic synthesis such as 2-dicyclohexyl-2 ′, 6′-dimethoxybiphenyl (SPhos).
  • amino acid derivative (S16) is subjected to deprotection such as acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis to produce the target carboxylic acid derivative (S17). be able to.
  • reaction solution was adjusted to about pH 6 with 2M hydrochloric acid, and extracted with ethyl acetate. After washing with saturated brine and drying over anhydrous magnesium sulfate, the residue was slurry washed with acetonitrile to give the title compound (0.56 g, quant.).
  • the compounds of [Synthesis Example 9], [Synthesis Example 10], [Synthesis Example 22], and [Synthesis Example 27] are methyl 4-amino-2, 5-difluoro in [Synthesis Example 1] (Step 1). It can be synthesized in the same manner as the compound of [Synthesis Example 1] by allowing 5-benzopyridin-2-sulfonyl chloride or 6-iodopyridine-3-sulfonyl chloride to act on -benzoate.
  • the compound of [Synthesis Example 21] can be synthesized in the same manner as the compound of [Synthesis Example 19] by using the compound of [Synthesis Example 18].
  • the mixture was stirred at room temperature for 1 hour and 30 minutes.
  • the reaction solution was concentrated under reduced pressure, and water (20 ml) and ethyl acetate (30 ml) were added. Extraction was performed three times with ethyl acetate, and the organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain the title compound (0.64 g, 75%).
  • the reaction solution was concentrated under reduced pressure, and the residue was slurry washed with ethyl acetate.
  • the obtained solid was dissolved in dichloromethane (50 ml), and N, N-diisopropylethylamine (7.9 ml, 45 mmol) was added. Under ice-cooling, benzoyl chloride (5.3 g, 37 mmol) was added, and the mixture was stirred at room temperature for 12 hours. Water was added to the reaction solution, followed by extraction twice with dichloromethane. The organic layer was washed successively with 0.5M hydrochloric acid and a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate.
  • the reaction solution was concentrated under reduced pressure, and the residue was dissolved in acetonitrile (50 ml). Potassium carbonate (4.5 g, 33 mmol) and methyl iodide (2.8 ml, 45 mmol) were sequentially added, and the mixture was stirred at room temperature for 12 hours. Water (30 ml) was added to the reaction solution, and the mixture was stirred at room temperature for 30 minutes. The title compound was obtained by filtering the solid (7.4 g, quant.).
  • the reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the title compound mixture (1: 1) (0.29 g).
  • This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 18 hours.
  • the reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the title compound (0.21 g).
  • Step 6 Synthesis of Methyl (2S) -2-amino-3- [6- (3-methyl-2,6-dioxo-pyrimidin-1-yl) -3-pyridine] propanoate
  • the compound (0.21 g, 0.52 mmol) obtained in (Step 5) was dissolved in 1,4-dioxane (2.0 ml) and methanol (1.0 ml).
  • 4M Hydrochloric acid / 1,4-dioxane solution (2.0 ml) was added, and the mixture was stirred at room temperature for 5 hr, and concentrated under reduced pressure to give the hydrochloride of the title compound (0.18 g, quant.).
  • MS (ESI) m / z 305 [M + H] + .
  • the compound of [Synthesis Example 33] can be synthesized in the same manner as the compound of [Synthesis Example 32] by using thymine in (Step 1) of [Synthesis Example 32].
  • the compound of [Synthesis Example 34] is the same as the compound of [Synthesis Example 31] by using 6- (ethoxymethyl) -1H-pyrimidine-2,4-dione in (Step 1) of [Synthesis Example 31]. It can synthesize
  • the residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid.
  • the desired fraction was freeze-dried to obtain the trifluoroacetate salt of the title compound.
  • the reaction solution was concentrated under reduced pressure, and ethyl acetate and water were added. Extraction was performed twice with ethyl acetate, and the organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler and purified in the same manner as in (Step 2) to obtain the trifluoroacetate salt of the title compound (0.40 g, 51%).
  • reaction solution was cooled to room temperature, filtered through celite, and concentrated under reduced pressure.
  • residue was subjected to reverse phase HPLC using ODS as a filler, and water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid.
  • the title compound was obtained by elution with a mixed solution and lyophilization of the desired fraction (0.26 g, 26%).
  • reaction solution was concentrated under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. Lyophilization gave the title compound (0.20 g, 74%).
  • This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 18 hours. After cooling the reaction solution to room temperature and concentrating under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. The desired fraction was lyophilized to give the title compound (0.12 g, 45%).
  • Step 6 Methyl (2S) -2-amino-3- [6- (1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano [4,3-d] pyrimidin-3-yl) -3- pyridyl] propanoate
  • the compound obtained in (Step 5) (0.12 g, 0.26 mmol) was dissolved in 1,4-dioxane (1.0 ml) and methanol (1.0 ml).
  • the compound of [Synthesis Example 46] and [Synthesis Example 47] is obtained by using 6-methyluracil or 5,6-dimethyluracil in [Step 3] of [Synthesis Example 43]. It can be synthesized by a method similar to that of the compound.
  • This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 15 hours.
  • the reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. The extract was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the title compound (223 mg, 57.3%).
  • N, N-diisopropylamine (58 ⁇ l, 0.34 mmol) were sequentially added and stirred at room temperature for 5 hours. Concentrate under reduced pressure, subject the residue to reverse phase HPLC using ODS as a filler, elute with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid, and freeze-dry the desired fraction. This gave the title compound (47 mg, 67%).
  • the compound shown in Table 1 is any one selected from [Synthesis Example 1] to [Synthesis Example 27], any carboxylic acid intermediate, and [Synthesis Example 28] to [Synthesis Example 48]. Can be synthesized in the same manner as the compound of [Example 1].
  • reaction solution was allowed to reach room temperature. After cooling and concentration under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, eluting with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. Fractions were lyophilized to give the title compound (34 g, 91%).
  • the compound shown in Table 2 is a method similar to the compound of [Example 2] by using any sulfonamide derivative selected from A1 to A58 and the corresponding alcohol (isopropyl alcohol or cyclohexyl alcohol). Can be synthesized.
  • VCAM-1 / ⁇ 4 ⁇ 1 integrin binding inhibitory activity evaluation test Measures the ability of a test substance to inhibit binding of human T cell line Jurkat, which is known to express ⁇ 4 ⁇ 1 integrin, to VCAM-1 did.
  • buffer A carbonate buffer, pH 9.6
  • Block Ace Snow Brand Milk Products
  • Various concentrations of test substances diluted in binding buffer (DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2 ) and Jurkat cells (2 ⁇ 10 6 cells / mL) were 100 ⁇ L each of VCAM-1 / Fc was added to the coated plate (5 ⁇ 10 5 cells / well) and incubated at 30 ° C. for 15-30 minutes. After binding the cells to the wells, unbound cells were removed by washing with PBS. Buffer C (PBS containing 1.5% Triton X-100) was added to the plate at 50 ⁇ L / well to lyse the bound Jurkat cells.
  • binding buffer containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2
  • Jurkat cells 2 ⁇ 10 6 cells / mL
  • Test example 2 (2) MAdCAM-1 / ⁇ 4 ⁇ 7 integrin binding inhibitory activity evaluation test Ability of test substance to inhibit binding of human B cell line cell line RPMI-8866 known to express ⁇ 4 ⁇ 7 integrin to MAdCAM-1 was measured. 50 ⁇ L / well of a recombinant mouse MAdCAM-1 / Fc (R & D systems) solution (1 ⁇ g / mL) diluted with buffer A (carbonate buffer, pH 9.6) was added to a 96-well microtiter plate at 4 ° C. Incubated overnight. After washing once with PBS, Block Ace (Snow Brand Milk Products) was added at 150 ⁇ L / well and incubated at room temperature for 2 hours. After removal, washing was performed once with PBS.
  • buffer A carbonate buffer, pH 9.6
  • Test example 3 (3) MAdCAM-1 / ⁇ 4 ⁇ 7 integrin binding inhibitory activity evaluation test in the presence of serum (1) The ability of test substances to inhibit binding of human B cell line cell line RPMI-8866, known to express ⁇ 4 ⁇ 7 integrin, to MAdCAM-1 was determined. 50 ⁇ L / well of a recombinant mouse MAdCAM-1 / Fc (R & D systems) solution (1 ⁇ g / mL) diluted with buffer A (carbonate buffer, pH 9.6) was added to a 96-well microtiter plate at 4 ° C. Incubated overnight. After washing once with PBS, Block Ace (Snow Brand Milk Products) was added at 150 ⁇ L / well and incubated at room temperature for 2 hours.
  • buffer A carbonate buffer, pH 9.6
  • test substances and RPMI-8866 cells (2 ⁇ 10 6 cells / mL) diluted in binding buffer (DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2 ) were added at 50% final concentration. 100 ⁇ L each was added to a plate coated with MAdCAM-1 / Fc to contain human serum (7.5 ⁇ 10 5 cells / well) and incubated at 30 ° C. for about 60 minutes. After binding the cells to the wells, unbound cells were removed by washing with PBS.
  • binding buffer DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2
  • Buffer C PBS containing 1.5% Triton X-100 was added to the plate at 50 ⁇ L / well to lyse bound RPMI-8866 cells.
  • 30 ⁇ L of Substrate Buffer Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay
  • 30 ⁇ L of Stop Solution was added, and the absorbance at 490 nm was measured using a plate reader.
  • the absorbance obtained here was obtained by detecting the lactate dehydrogenase (LDH) activity eluted in the supernatant of each well, that is, the number of RPMI-8866 cells remaining on the plate after binding to MAdCAM-1. Is proportional to The test was performed in duplicate, and the cell binding rate at various concentrations when the absorbance of wells not containing the test substance was taken as 100% was determined, and the concentration IC 50 that caused 50% binding inhibition was calculated. The results obtained are summarized in Table 3.
  • LDH lactate dehydrogenase
  • the compound of the present invention has high selectivity such that the effect on ⁇ 4 ⁇ 1 is low and the effect on ⁇ 4 ⁇ 7 is high. .
  • the high selectivity for ⁇ 4 ⁇ 1 is low and the effect is high for ⁇ 4 ⁇ 7 reduces the effect on ⁇ 4 ⁇ 1 which suppresses the infiltration of lymphocytes around the whole body and is expressed specifically in the intestinal tract. Since the action on ⁇ 4 ⁇ 7 can be greatly suppressed, there is an advantage that the adaptive disease can be treated more efficiently.
  • Test example 4 (4) MAdCAM-1 / ⁇ 4 ⁇ 7 integrin binding inhibitory activity evaluation test in human whole blood The binding inhibitory activity of T cell ⁇ 4 ⁇ 7 integrin and MAdCAM-1 in human whole blood was measured by a test substance. Blood samples were obtained by donating blood from healthy volunteers. 4 mM MnCl2 solution and various test substance dilutions were added to human whole blood and incubated for 10 minutes. 10 ⁇ g / mL recombinant mouse MAdCAM-1 / Fc (R & D Systems) was added and incubated for a total volume of 50 ⁇ L for 30 minutes. 950 ⁇ L of Lyse / Fix (BD Biosciences) was added, and hemolysis and fixation were performed at 37 ° C.
  • Lyse / Fix BD Biosciences
  • PE Rat Anti-Mouse CD4 (BD Pharmigen) was added and incubated for 30 minutes or more. After washing with the medium, the ratio of the MAdCAM-1-positive cell ratio in the CD4-positive cells was measured using flow cytometry. Tests are based on the results of independent tests using 2 to 3 different blood samples. From wells containing no test substance, the absence of ligand is 100% inhibition and the presence of ligand is 0% inhibition. The inhibition rate of MAdCAM-1 binding was determined and the concentration IC 50 resulting in 50% binding inhibition was calculated.
  • Test Example 5 The mouse portal vein concentration of the test substance was measured and the oral absorbability was evaluated.
  • the test substance was dissolved or uniformly suspended in a 0.5% (w / v) aqueous solution of methylcellulose, and 3 compounds (3 mg / 10 mL / kg) were added to female mice (BALB / cAnNCrlCrlj, 7-9 weeks old) using a gastric tube. ) was orally administered in a cassette. 30 minutes after administration, the abdomen was opened under isoflurane anesthesia, and about 0.2 mL of blood was collected from the portal vein using a syringe treated with DDVP (esterase inhibitor) and heparin sodium, and stored on ice.
  • DDVP esterase inhibitor
  • the collected blood was centrifuged at 18,000 g ⁇ 3 minutes using a refrigerated centrifuge to obtain a plasma sample. After extracting the test substance with acetonitrile, the plasma concentration was quantified by LC / MS / MS. The plasma concentration was the sum of the test substance and its active metabolite. The calculated plasma concentrations are shown in Table 5.

Abstract

Provided is a compound having an excellent integrin α4 inhibiting action. A sulfonamide derivative represented by general formula (I) or a pharmaceutically acceptable salt thereof. (In the formula, R1-R5, e-h, D, and B are as defined in the specification.)

Description

α4β7インテグリン阻害剤α4β7 integrin inhibitor
 本発明は、スルホンアミド誘導体またはその医薬的に許容しうる塩並びにこれらの化合物を有効成分として含有する医薬組成物に関する。特に、α4インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療薬または予防薬として有用な化合物に関する。 The present invention relates to a sulfonamide derivative or a pharmaceutically acceptable salt thereof and a pharmaceutical composition containing these compounds as active ingredients. In particular, the present invention relates to a compound useful as a therapeutic or prophylactic agent for inflammatory diseases in which an α4 integrin-dependent adhesion process is involved in the disease state.
 α4インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療薬または予防薬として有用なα4インテグリン阻害作用を有する、経口投与可能な化合物は既に知られている。例えば、特許文献1には、下記式で示されるフェニルアラニン誘導体またはその医薬的に許容しうる塩が開示されており、その代表的な化合物は以下の化学構造を有するものである。
Figure JPOXMLDOC01-appb-I000007
 そして、特許文献1には、VCAM阻害活性(VCAM-1/α4β1結合アッセイ)及び(VCAM-1/α4β7結合アッセイ)の結果が示されている。
 さらに、特許文献2にも、R12(R13)N-X1-基を末端に有する下記式で示されるフェニルアラニン誘導体またはその医薬的に許容しうる塩が開示されている。
Figure JPOXMLDOC01-appb-I000008
 この化合物は、特許文献1の実施例1の化合物に比べて、血清存在下でのVCAM-1/α4β1インテグリン阻害活性が高いことが示されている。又、特許文献3にも、α4インテグリン阻害作用を有する化合物が開示されている。
An orally administrable compound having an α4 integrin inhibitory action useful as a therapeutic or prophylactic agent for inflammatory diseases in which an α4 integrin-dependent adhesion process is involved in the pathological state is already known. For example, Patent Document 1 discloses a phenylalanine derivative represented by the following formula or a pharmaceutically acceptable salt thereof, and a typical compound thereof has the following chemical structure.
Figure JPOXMLDOC01-appb-I000007
Patent Document 1 shows the results of VCAM inhibitory activity (VCAM-1 / α4β1 binding assay) and (VCAM-1 / α4β7 binding assay).
Further, Patent Document 2 discloses a phenylalanine derivative represented by the following formula having a terminal R12 (R13) N—X1-group or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-I000008
This compound has been shown to have a higher VCAM-1 / α4β1 integrin inhibitory activity in the presence of serum than the compound of Example 1 of Patent Document 1. Patent Document 3 also discloses a compound having an α4 integrin inhibitory action.
 特許文献4(WO2005/077915)には、下記式で表されるようなα4インテグリン阻害作用を有するフェニルアラニン誘導体が記載されているが、フェニルアラニンのN末端には2,6-ジクロロベンゾイル基やアミノ酸残基などが結合している。
Figure JPOXMLDOC01-appb-I000009
 特許文献5(特開2003-321358)には、下記式で表されるようなα4インテグリン阻害作用を有するフェニルアラニン誘導体が記載されているが、フェニルアラニンのN末端には2,6-ジクロロベンゾイル基などが結合している。
Figure JPOXMLDOC01-appb-I000010
Patent Document 4 (WO2005 / 077915) describes a phenylalanine derivative having an α4 integrin inhibitory action as represented by the following formula, but a 2,6-dichlorobenzoyl group or amino acid residue is present at the N-terminus of phenylalanine. A group is bound.
Figure JPOXMLDOC01-appb-I000009
Patent Document 5 (Japanese Patent Application Laid-Open No. 2003-321358) describes a phenylalanine derivative having an α4 integrin inhibitory activity represented by the following formula. Are joined.
Figure JPOXMLDOC01-appb-I000010
 特許文献6(WO01/56994)には、下記式で表されるようなα4インテグリン阻害作用を有するフェニルアラニン誘導体が記載されているが、フェニルアラニンのN末端にはプロリンなどが結合している。
Figure JPOXMLDOC01-appb-I000011
 特許文献7(WO2006/127584)には、下記式で表されるようなα4インテグリン阻害作用を有するフェニルアラニン誘導体が記載されているが、フェニルアラニンのN末端にはピリミジン環などが直接結合している。
Figure JPOXMLDOC01-appb-I000012
Patent Document 6 (WO01 / 56994) describes a phenylalanine derivative having an α4 integrin inhibitory action represented by the following formula, and proline and the like are bonded to the N-terminus of phenylalanine.
Figure JPOXMLDOC01-appb-I000011
Patent Document 7 (WO 2006/127584) describes a phenylalanine derivative having an α4 integrin inhibitory action represented by the following formula, and a pyrimidine ring or the like is directly bonded to the N-terminus of phenylalanine.
Figure JPOXMLDOC01-appb-I000012
 特許文献8(WO01/42215)には、下記式で表されるようなα4インテグリン阻害作用を有するフェニルアラニン誘導体が記載されているが、フェニルアラニンのN末端には2-クロロ-6-メチルベンゾイル基などが結合している。
Figure JPOXMLDOC01-appb-I000013
 特許文献9(WO2013/161904)には下記式で表されるようなα4β7インテグリン阻害作用を有するフェニルアラニン誘導体が記載されている。この文献には、特定のフェニルアラニン誘導体のVCAM-1/α4β1インテグリン結合阻害活性評価、及び血清存在下におけるMAdCAM-1/α4β7インテグリン結合阻害活性評価試験の結果が示されており、α4β1インテグリンに対しては効果が低く、α4β7インテグリンに対しては効果が高かったことが記載されている。
Figure JPOXMLDOC01-appb-I000014
Patent Document 8 (WO01 / 42215) describes a phenylalanine derivative having an α4 integrin inhibitory action represented by the following formula, and the phenylalanine has an N-terminus such as a 2-chloro-6-methylbenzoyl group. Are joined.
Figure JPOXMLDOC01-appb-I000013
Patent Document 9 (WO2013 / 161904) describes a phenylalanine derivative having an α4β7 integrin inhibitory action represented by the following formula. This document shows the results of a VCAM-1 / α4β1 integrin binding inhibitory activity evaluation of a specific phenylalanine derivative and a MAdCAM-1 / α4β7 integrin binding inhibitory activity evaluation test in the presence of serum. Has a low effect and is described as having a high effect on α4β7 integrin.
Figure JPOXMLDOC01-appb-I000014
 特許文献10(WO2015/064580)には下記式で表されるようなα4β7インテグリン阻害作用を有するフェニルアラニン誘導体が記載されている。この文献においても、特定のフェニルアラニン誘導体のVCAM-1/α4β1インテグリン結合阻害活性評価、及び血清存在下におけるMAdCAM-1/α4β7インテグリン結合阻害活性評価試験の結果が示されており、α4β1インテグリンに対しては効果が低く、α4β7インテグリンに対しては効果が高かったことが記載されている。
Figure JPOXMLDOC01-appb-I000015
Patent Document 10 (WO2015 / 064580) describes a phenylalanine derivative having an α4β7 integrin inhibitory action represented by the following formula. This document also shows the results of VCAM-1 / α4β1 integrin binding inhibitory activity evaluation of specific phenylalanine derivatives and MAdCAM-1 / α4β7 integrin binding inhibitory activity evaluation test in the presence of serum. Has a low effect and is described as having a high effect on α4β7 integrin.
Figure JPOXMLDOC01-appb-I000015
WO02/16329号公報WO02 / 16329 WO05/061466号公報WO05 / 061466 WO03/070709号公報WO03 / 070709 WO2005/077915号公報WO2005 / 077915 特開2003-321358号公報JP 2003-321358 A WO01/56994号公報WO01 / 56994 WO2006/127584号公報WO2006 / 127484 WO01/42215号公報WO01 / 42215 WO2013/161904号公報WO2013 / 161904 WO2015/064580号公報WO2015 / 064580
 本発明は、これまでに知られていない化学構造式を有し、優れたα4インテグリン阻害作用を有する新規化合物を提供することを目的とする。
 特に、本発明は、α4β1に対しては効果が低く、α4β7に対しては効果が高いという選択性が高いα4インテグリン阻害作用を有する新規化合物を提供することを目的とする。
 本発明は、又、経口投与可能な優れたα4インテグリン阻害作用を有する化合物を提供することを目的とする。
 本発明は、又、安全性に優れたα4インテグリン阻害活性を有する化合物を提供することを目的とする。
 本発明は、又、持続性が長いα4インテグリン阻害活性を有する化合物を提供することを目的とする。
 本発明は、又、ヒト全血中で優れたα4インテグリン阻害作用を有する新規化合物を提供することを目的とする。
 本発明は、又、上記新規化合物と医薬的に許容しうる担体を含有する医薬組成物を提供することを目的とする。
 本発明は、又、上記新規化合物を含有する医薬を提供することを目的とする。
 本発明は、又、α4β7インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤または予防剤を提供することを目的とする。
 本発明は、又、α4インテグリン阻害剤を提供することを目的とする。
An object of the present invention is to provide a novel compound having a chemical structural formula that has not been known so far and having an excellent α4 integrin inhibitory action.
In particular, an object of the present invention is to provide a novel compound having an α4 integrin inhibitory action with high selectivity, which has a low effect on α4β1 and a high effect on α4β7.
Another object of the present invention is to provide a compound having an excellent α4 integrin inhibitory action that can be administered orally.
Another object of the present invention is to provide a compound having an α4 integrin inhibitory activity excellent in safety.
Another object of the present invention is to provide a compound having a long-lasting α4 integrin inhibitory activity.
Another object of the present invention is to provide a novel compound having an excellent α4 integrin inhibitory action in human whole blood.
Another object of the present invention is to provide a pharmaceutical composition containing the above novel compound and a pharmaceutically acceptable carrier.
Another object of the present invention is to provide a medicament containing the novel compound.
Another object of the present invention is to provide a therapeutic or prophylactic agent for inflammatory diseases in which an α4β7 integrin-dependent adhesion process is involved in the disease state.
Another object of the present invention is to provide an α4 integrin inhibitor.
 本願発明者らは、様々な構造を有する化合物について、ヒト全血中におけるα4β7インテグリンの阻害活性を検討した。その結果、アミノカルボニル基を置換基として有するヘテロ環基又はフェニル基が結合したスルホンアミド基を有する特定の化学構造のスルホンアミド誘導体又はその医薬的に許容しうる塩が、ヒト全血中において優れたα4β7インテグリン阻害活性を有していることを見出した。 The present inventors examined the inhibitory activity of α4β7 integrin in human whole blood for compounds having various structures. As a result, a sulfonamide derivative having a specific chemical structure having a heterocyclic group having an aminocarbonyl group as a substituent or a sulfonamide group to which a phenyl group is bonded or a pharmaceutically acceptable salt thereof is excellent in human whole blood. It was found to have α4β7 integrin inhibitory activity.
 すなわち、本発明は、以下の[1]~[17]の態様を含む。
〔1〕下記一般式(I)で示されるスルホンアミド誘導体、又はその医薬的に許容しうる塩。
Figure JPOXMLDOC01-appb-I000016
(式中
Figure JPOXMLDOC01-appb-I000017
は、単結合、又は、二重結合を表し、
 R1及びR2は、それぞれ独立して、水素原子、ハロゲン原子、低級アルキル基、低級アルケニル基、低級アルコキシ基、低級アルコキシ低級アルキル基、ヒドロキシ基、又は、ヒドロキシ低級アルキル基を表し、R1とR2は結合して、置換基を有しても良いベンゼン環、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成しても良く、
 R3は、低級アルキル基を表し、
 e、f、g、及び、hは、それぞれ独立して、C-H、又は、窒素原子を表し、
 Bは、ヒドロキシ基、炭素数が1~10のアルコキシ基、-O-ヘテロ環基、シレキセチルオキシ基、又は、メドキソミルオキシ基を表し、
 Dは、置換基を有してもよい、ベンゼン環又はヘテロアリール環を表し、
 R4及びR5は、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、置換基を有しても良い低級アルケニル基、置換基を有しても良いフェニル基、又は、置換基を有しても良いヘテロ環基を表し、R4とR5は結合して、置換基を有しても良いヘテロ環を形成しても良い。)
〔2〕
Figure JPOXMLDOC01-appb-I000018
が二重結合を表す、前記〔1〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔3〕R1及びR2は結合して、置換基を有しても良いベンゼン環、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成し、該置換基が、低級アルキル基、低級アルコキシ基、ヒドロキシ低級アルキル基、アミノ基、低級アルキルアミノ基、及び、低級アルキルアミノ低級アルキル基から選ばれる、前記〔1〕又は〔2〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔4〕R1及びR2が、それぞれ独立して、水素原子、低級アルキル基、又は、低級アルコキシメチル基を表し、R1とR2は結合して、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成しても良く、該置換基が、低級アルキル基及び低級アルコキシ基から選ばれる、前記〔1〕又は〔2〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔5〕R1及びR2が、それぞれ独立して、水素原子、低級アルキル基、又は、低級アルコキシメチル基を表す、前記〔1〕又は〔2〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔6〕R1とR2が結合して、置換基を有しても良いシクロヘキセン、置換基を有しても良いピリジン、置換基を有しても良いジヒドロピラン、又は、置換基を有しても良いテトラヒドロピリジンを形成し、該置換基が、低級アルキル基、低級アルコキシ基、ヒドロキシ低級アルキル基、アミノ基、低級アルキルアミノ基、及び、低級アルキルアミノ低級アルキル基から選ばれる、前記〔1〕又は〔2〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔7〕eが窒素原子を表し、f、g、及び、hが、C-Hを表す、前記〔1〕~〔6〕のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔8〕Bが、ヒドロキシ基、又は、炭素数が1~6のアルコキシ基を表す、前記〔1〕~〔7〕のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔9〕Dの置換基が、ハロゲン原子、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、前記〔1〕~〔8〕のいずれかに記載されたスルホンアミド誘導体、又は医薬的に許容しうる塩。
〔10〕Dが、置換基を有してもよいベンゼン環を表し、該置換基が、ハロゲン原子、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、前記〔1〕~〔8〕のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔11〕R4及びR5が、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、置換基を有しても良い低級アルケニル基、置換基を有しても良いフェニル基、又は、置換基を有しても良いヘテロ環基を表し、該置換基が、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルキル基、低級アルコキシ基、トリフルオロメチル基、及び、ヘテロ環基から選ばれ、R4とR5は結合して、置換基を有しても良いヘテロ環基を形成しても良く、該置換基が、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、前記〔1〕~〔10〕のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔12〕R4及びR5が、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、又は、置換基を有しても良いヘテロ環基を表し、該置換基が、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、トリフルオロメチル基、及び、ヘテロ環基から選ばれ、R4とR5は結合して、置換基として低級アルキル基を有しても良いヘテロ環基を形成しても良い、前記〔1〕~〔10〕のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔13〕R1及びR2は、それぞれ独立して、水素原子、低級アルキル基、低級アルコキシ基、又は低級アルコキシ低級アルキル基、を表し、R1とR2は結合して、炭素数4~7の脂環式炭化水素、ヘテロアリール環、又は、低級アルキル基で置換されていてもよいヘテロ環を形成しても良く、
 Dは、ハロゲン原子、低級アルキル基、低級アルコキシ基及びヒドロキシ基からなる群から選ばれる置換基で置換されていてもよい、ベンゼン環又はヘテロアリール環を表し、 R4及びR5は、それぞれ独立して、水素原子、又は、低級アルコキシ基、ヘテロ環基、ヒドロキシ基、シアノ基及びハロゲン原子からなる群から選ばれる置換基を有しても良い低級アルキル基を表し、但し、R4とR5は結合して、低級アルキル基により置換されていてもよいヘテロ環基を形成しても良く、
 但し、
  Dがハロゲン原子で置換されたベンゼン環を表す場合、R1とR2はそれぞれ低級アルキル基を表し、
  Dが低級アルキル基、低級アルコキシ基又はヒドロキシ基を置換基として有するベンゼン環である場合、その置換基は、Sに結合した炭素原子に隣接する炭素原子でDに結合し、
  R4又はR5がヒドロキシ基で置換された低級アルキル基を表す場合、そのヒドロキシ基で置換された低級アルキル基は、下記式(a)又は(b)で表され、
Figure JPOXMLDOC01-appb-I000019
  但し、R4又はR5が式(b)で表される場合、R1とR2はそれぞれ低級アルキル基を表し、
  R4又はR5がシアノ基で置換された低級アルキル基である場合、Dはベンゼン環を表す、前記〔1〕に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
〔14〕下記式で表される、前記〔1〕に記載のスルホンアミド誘導体又はその医薬的に許容しうる塩。
Figure JPOXMLDOC01-appb-I000020
(式中、R1、R2、R3、e、f、g、h及びBは、前記〔1〕において定義したとおりである)
〔15〕下記式で表される、前記〔1〕に記載のスルホンアミド誘導体、又はその医薬的に許容しうる塩。
Figure JPOXMLDOC01-appb-I000021
(式中、Bは、〔1〕において定義したとおりである)
〔16〕前記〔1〕~〔15〕のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有する医薬組成物。
〔17〕前記〔1〕~〔15〕のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有するα4β7インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤又は予防剤。
〔18〕前記〔1〕~〔15〕のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有するα4β7インテグリン阻害剤。
That is, the present invention includes the following aspects [1] to [17].
[1] A sulfonamide derivative represented by the following general formula (I) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-I000016
(In the formula
Figure JPOXMLDOC01-appb-I000017
Represents a single bond or a double bond,
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, lower alkenyl group, a lower alkoxy group, a lower alkoxy-lower alkyl group, hydroxy group, or a hydroxy lower alkyl group, R 1 And R 2 are bonded to each other to form a benzene ring which may have a substituent, an alicyclic hydrocarbon having 4 to 7 carbon atoms which may have a substituent, or a heteroaryl ring which may have a substituent Or may form a heterocyclic ring which may have a substituent,
R 3 represents a lower alkyl group,
e, f, g, and h each independently represent C—H or a nitrogen atom;
B represents a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, an —O-heterocyclic group, a cilexetyloxy group, or a medoxomiloxy group;
D represents a benzene ring or a heteroaryl ring which may have a substituent,
R 4 and R 5 are each independently a hydrogen atom, a lower alkyl group which may have a substituent, a lower alkenyl group which may have a substituent, a phenyl group which may have a substituent, Or it represents the heterocyclic group which may have a substituent, R < 4 > and R < 5 > may couple | bond together and it may form the heterocyclic ring which may have a substituent. )
[2]
Figure JPOXMLDOC01-appb-I000018
The sulfonamide derivative according to the above [1], or a pharmaceutically acceptable salt thereof, wherein represents a double bond.
[3] R 1 and R 2 are bonded to each other to have a benzene ring which may have a substituent, an alicyclic hydrocarbon having 4 to 7 carbon atoms which may have a substituent, and a substituent. A heteroaryl ring or a hetero ring that may have a substituent, and the substituent is a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and The sulfonamide derivative described in the above [1] or [2], or a pharmaceutically acceptable salt thereof, selected from a lower alkylamino lower alkyl group.
[4] R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group, or a lower alkoxymethyl group, and R 1 and R 2 may be bonded to each other to have a substituent. The alicyclic hydrocarbon of formula 4 to 7, a heteroaryl ring which may have a substituent, or a heterocycle which may have a substituent may be formed, and the substituent is a lower alkyl group And a sulfonamide derivative described in the above [1] or [2], or a pharmaceutically acceptable salt thereof, selected from the group consisting of:
[5] The sulfonamide derivative according to [1] or [2] above, wherein R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, or a lower alkoxymethyl group, or a pharmaceutical thereof Acceptable salt.
[6] R 1 and R 2 are bonded to each other to have a cyclohexene which may have a substituent, pyridine which may have a substituent, dihydropyran which may have a substituent, or a substituent. A tetrahydropyridine may be formed, and the substituent is selected from a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and a lower alkylamino lower alkyl group, The sulfonamide derivative according to 1] or [2], or a pharmaceutically acceptable salt thereof.
[7] The sulfonamide derivative according to any one of the above [1] to [6], wherein e represents a nitrogen atom, and f, g, and h represent CH, or a pharmaceutically acceptable derivative thereof Possible salt.
[8] The sulfonamide derivative according to any one of [1] to [7], or a pharmaceutically acceptable salt thereof, wherein B represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms salt.
[9] The sulfonamide derivative according to any one of [1] to [8] above, wherein the substituent of D is selected from a halogen atom, a lower alkyl group, a lower alkoxy group, and a hydroxy group, or a pharmaceutical Acceptable salt.
[10] D represents an benzene ring which may have a substituent, and the substituent is selected from a halogen atom, a lower alkyl group, a lower alkoxy group, and a hydroxy group. Or a pharmaceutically acceptable salt thereof.
[11] R 4 and R 5 may each independently have a hydrogen atom, a lower alkyl group that may have a substituent, a lower alkenyl group that may have a substituent, or a substituent. Represents a phenyl group or a heterocyclic group which may have a substituent, and the substituent is a halogen atom, a cyano group, a hydroxy group, a lower alkyl group, a lower alkoxy group, a trifluoromethyl group, or a heterocyclic ring; R 4 and R 5 may be bonded to form a heterocyclic group which may have a substituent, and the substituent is a lower alkyl group, a lower alkoxy group, or a hydroxy group. The sulfonamide derivative according to any one of [1] to [10], or a pharmaceutically acceptable salt thereof, selected from the group consisting of:
[12] R 4 and R 5 each independently represent a hydrogen atom, a lower alkyl group which may have a substituent, or a heterocyclic group which may have a substituent, wherein the substituent is , A halogen atom, a cyano group, a hydroxy group, a lower alkoxy group, a trifluoromethyl group, and a heterocyclic group, R 4 and R 5 may be bonded to each other to have a lower alkyl group as a substituent. The sulfonamide derivative according to any one of [1] to [10], or a pharmaceutically acceptable salt thereof, which may form a heterocyclic group.
[13] R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a lower alkoxy lower alkyl group, and R 1 and R 2 are bonded to form a carbon number of 4 to 7 alicyclic hydrocarbons, heteroaryl rings, or heterocycles that may be substituted with lower alkyl groups,
D represents a benzene ring or a heteroaryl ring which may be substituted with a substituent selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and a hydroxy group, and R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent selected from the group consisting of a lower alkoxy group, a heterocyclic group, a hydroxy group, a cyano group and a halogen atom, provided that R 4 and R 4 5 may be bonded to form a heterocyclic group which may be substituted with a lower alkyl group;
However,
When D represents a benzene ring substituted with a halogen atom, R 1 and R 2 each represent a lower alkyl group,
When D is a benzene ring having a lower alkyl group, a lower alkoxy group or a hydroxy group as a substituent, the substituent is bonded to D at a carbon atom adjacent to the carbon atom bonded to S;
When R 4 or R 5 represents a lower alkyl group substituted with a hydroxy group, the lower alkyl group substituted with the hydroxy group is represented by the following formula (a) or (b):
Figure JPOXMLDOC01-appb-I000019
However, when R 4 or R 5 is represented by the formula (b), R 1 and R 2 each represent a lower alkyl group,
When R 4 or R 5 is a lower alkyl group substituted with a cyano group, D represents a benzene ring, or the sulfonamide derivative according to the above [1], or a pharmaceutically acceptable salt thereof.
[14] The sulfonamide derivative of the above-mentioned [1] represented by the following formula or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-I000020
(Wherein R1, R2, R3, e, f, g, h and B are as defined in [1] above)
[15] The sulfonamide derivative according to the above [1] represented by the following formula, or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-I000021
(Wherein B is as defined in [1])
[16] A pharmaceutical composition comprising the sulfonamide derivative according to any one of [1] to [15], or a pharmaceutically acceptable salt thereof.
[17] Treatment of an inflammatory disease in which an α4β7 integrin-dependent adhesion process containing the sulfonamide derivative according to any one of the above [1] to [15] or a pharmaceutically acceptable salt thereof is involved in a disease state Agent or preventive agent.
[18] An α4β7 integrin inhibitor comprising the sulfonamide derivative according to any one of [1] to [15] above or a pharmaceutically acceptable salt thereof.
 本発明によれば、これまでに知れていない化学構造式を有し、優れたα4インテグリン阻害作用を有する新規化合物が提供される。
 特に、本発明によれば、α4β1に対しては効果が低く、α4β7に対しては効果が高いという選択性が高いα4インテグリン阻害作用を有する新規化合物が提供される。
 本発明によれば、又、経口投与可能な優れたα4インテグリン阻害作用を有する化合物が提供される。
 本発明によれば、又、安全性に優れたα4インテグリン阻害活性を有する化合物が提供される。
 本発明によれば、又、持続性が長いα4インテグリン阻害活性を有する化合物が提供される。
 本発明によれば、又、ヒトの血液中で優れたα4インテグリン阻害作用を有する新規化合物が提供される。
 本発明によれば、又、上記新規化合物と医薬的に許容しうる担体を含有する医薬組成物が提供される。
 本発明によれば、又、上記新規化合物を含有する医薬が提供される。
 本発明によれば、又、α4β7インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤又は予防剤が提供される。
 本発明によれば、又、α4インテグリン阻害剤が提供される。
According to the present invention, a novel compound having a chemical structural formula that has not been known so far and having an excellent α4 integrin inhibitory action is provided.
In particular, according to the present invention, there is provided a novel compound having an α4 integrin inhibitory action with high selectivity, which is low in effect on α4β1 and high in effect on α4β7.
The present invention also provides a compound having an excellent α4 integrin inhibitory action that can be administered orally.
According to the present invention, a compound having α4 integrin inhibitory activity excellent in safety is also provided.
According to the present invention, a compound having a long-lasting α4 integrin inhibitory activity is also provided.
The present invention also provides a novel compound having an excellent α4 integrin inhibitory action in human blood.
According to the present invention, there is also provided a pharmaceutical composition comprising the novel compound and a pharmaceutically acceptable carrier.
According to this invention, the pharmaceutical containing the said novel compound is also provided.
The present invention also provides a therapeutic or prophylactic agent for inflammatory diseases in which an α4β7 integrin-dependent adhesion process is involved in the disease state.
According to the present invention, an α4 integrin inhibitor is also provided.
 本明細書において、「置換基を有しても良い」とは、「置換又は無置換である」ことを意味する。特に断りのない限り置換基の位置および数は任意であって、特に限定されるものではない。2個以上の置換基で置換されている場合、それらの置換基は同一であっても異なっていても良い。置換基としては、例えば、ハロゲン原子、ニトロ基、シアノ基、水酸基、低級アルキル基、低級アルケニル基、低級アルキニル基、低級アルコキシ基、低級アルキルチオ基、ヒドロキシ低級アルキル基、ヒドロキシ低級アルケニル基、ヒドロキシ低級アルコキシ基、低級アルコキシアルキル基、ハロゲノ低級アルキル基、ハロゲノ低級アルケニル基、ハロゲノ低級アルコキシ基、ハロゲノ低級アルキルチオ基、アミノ基、低級アルキルアミノ基、低級アルキルアミノカルボニル基、カルボキシ基、低級アルキルオキシカルボニル基、カルバモイル基、低級アルカノイル基、アロイル基、低級アルキルスルフィニル基、低級アルキルスルホニル基、スルファモイル基、アンモニウム基、アリール基、ヘテロ環基、アリール低級アルキル基、ヘテロ環低級アルキル基、アリールオキシ基、ヘテロ環オキシ基、アリールスルホニル基、ヘテロ環スルホニル基、ジヒドロキシボリル基、低級アルキルアミノ低級アルキル基、アリール低級アルコキシカルボニル基、低級アルケニルオキシ基、低級アシルオキシ基、及び低級アシルアミノ基等が挙げられる。 In the present specification, “may have a substituent” means “substituted or unsubstituted”. Unless otherwise specified, the position and number of substituents are arbitrary and are not particularly limited. When substituted with two or more substituents, these substituents may be the same or different. Examples of the substituent include a halogen atom, a nitro group, a cyano group, a hydroxyl group, a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group, a lower alkylthio group, a hydroxy lower alkyl group, a hydroxy lower alkenyl group, and a hydroxy lower group. Alkoxy group, lower alkoxyalkyl group, halogeno lower alkyl group, halogeno lower alkenyl group, halogeno lower alkoxy group, halogeno lower alkylthio group, amino group, lower alkylamino group, lower alkylaminocarbonyl group, carboxy group, lower alkyloxycarbonyl group Carbamoyl group, lower alkanoyl group, aroyl group, lower alkylsulfinyl group, lower alkylsulfonyl group, sulfamoyl group, ammonium group, aryl group, heterocyclic group, aryl lower alkyl group, hete Ring lower alkyl group, aryloxy group, heterocyclic oxy group, arylsulfonyl group, heterocyclic sulfonyl group, dihydroxyboryl group, lower alkylamino lower alkyl group, aryl lower alkoxycarbonyl group, lower alkenyloxy group, lower acyloxy group, and And lower acylamino group.
 本明細書において「低級」という語は、炭素数が1~6の基を意味し、「低級アルキル基」とは、炭素数1~6の直鎖もしくは分岐鎖又は環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、2-ペンチル基、3-ペンチル基、n-ヘキシル基、2-ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、シクロプロピルエチル基等が挙げられ、好ましくは、メチル基、エチル基、n-プロピル基である。 In this specification, the term “lower” means a group having 1 to 6 carbon atoms, and the “lower alkyl group” means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms. For example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, tert-pentyl Group, neopentyl group, 2-pentyl group, 3-pentyl group, n-hexyl group, 2-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopropylmethyl group, cyclopropylethyl group, etc. And preferably a methyl group, an ethyl group, or an n-propyl group.
 「低級アルケニル基」とは、各異性体を含む炭素数2~6の直鎖もしくは分岐鎖状のアルケニル基を示す。例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基及びヘキセニル基等が挙げられ、好ましくは、ビニル基、アリル基、プロペニル基である。
 「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられ、好ましくは、フッ素原子、塩素原子である。
The “lower alkenyl group” refers to a linear or branched alkenyl group having 2 to 6 carbon atoms including each isomer. Examples thereof include a vinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group, and a vinyl group, an allyl group, and a propenyl group are preferable.
Examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and preferably a fluorine atom and a chlorine atom.
 「低級アルコキシ基」とは、炭素数1~6の直鎖又は分岐鎖、又は、環状のアルキル基を有するアルコキシ基を示す。例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、イソプロポキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロプロピルオキシ基、シクロブトキシ基、シクロペンチルオキシ基、及び、シクロヘキシルオキシ基が挙げられ、好ましくは、メトキシ基、エトキシ基、n-プロポキシ基である。 The “lower alkoxy group” refers to an alkoxy group having a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms. For example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentyloxy group, n-hexyloxy group, isopropoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, cyclopropyloxy Group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group, and a methoxy group, an ethoxy group, and an n-propoxy group are preferable.
 「低級アルコキシメチル基」とは、前述の「低級アルコキシ基」で一置換、もしくは、それ以上置換されたメチル基を示す。例えば、メトキシメチル基、エトキシメチル基、イソプロポキシメチル基、tert-ブトキシメチル基等が挙げられ、好ましくは、メトキシメチル基、エトキシメチル基である。 The “lower alkoxymethyl group” refers to a methyl group that is mono-substituted or further substituted with the above-mentioned “lower alkoxy group”. Examples thereof include a methoxymethyl group, an ethoxymethyl group, an isopropoxymethyl group, a tert-butoxymethyl group, and the like, and a methoxymethyl group and an ethoxymethyl group are preferable.
 「ヒドロキシ低級アルキル基」とは、水酸基で置換された低級アルキル基を示し、例えば、ヒドロキシメチル基、ヒドロキシエチル基等が挙げられ、好ましくは、ヒドロキシメチル基である。 The “hydroxy lower alkyl group” refers to a lower alkyl group substituted with a hydroxyl group, and examples thereof include a hydroxymethyl group and a hydroxyethyl group, and a hydroxymethyl group is preferred.
 「低級アルキルアミノ低級アルキル基」とは、前述の「低級アルキル基」で一置換、もしくは、二置換されたアミノ基で置換された低級アルキル基を示す。例えばメチルアミノメチル基、エチルアミノメチル基、プロピルアミノメチル基、イソプロピルアミノメチル基、メチルアミノエチル基、エチルアミノエチル基、ジメチルアミノメチル基、メチルエチルアミノメチル基等が挙げられ、好ましくは、メチルアミノメチル基、エチルアミノメチル基、メチルアミノエチル基である。 The “lower alkylamino lower alkyl group” refers to a lower alkyl group substituted with the above-mentioned “lower alkyl group” mono- or di-substituted amino group. Examples include a methylaminomethyl group, an ethylaminomethyl group, a propylaminomethyl group, an isopropylaminomethyl group, a methylaminoethyl group, an ethylaminoethyl group, a dimethylaminomethyl group, and a methylethylaminomethyl group, preferably methyl An aminomethyl group, an ethylaminomethyl group, and a methylaminoethyl group;
 「脂環式炭化水素」とは、炭素原子と水素原子で構成される環状構造を示し、すべて単結合で形成されるシクロアルカン、及び、二重結合を含んでも良いシクロアルケンなどがある。例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロヘキセン等が挙げられ、好ましくはシクロヘキサン、シクロヘキセンである。 The “alicyclic hydrocarbon” refers to a cyclic structure composed of carbon atoms and hydrogen atoms, and includes cycloalkanes that are all formed by single bonds and cycloalkenes that may contain double bonds. For example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclohexene and the like can be mentioned, and cyclohexane and cyclohexene are preferable.
 「ヘテロアリール環」とは、環原子として、酸素原子、硫黄原子及び窒素原子から選択されるヘテロ原子を1~4個含有する4~10員の芳香環を示す。例えば。ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、フラン環、チオフェン環、ピロール環、イソオキサゾール環、オキサゾール環、イソチアゾール環、チアゾール環、ピラゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ベンゾフラン環、ベンゾチオフェン環、インドール環、イソインドール環、ベンズオキサゾール環、ベンズイソキザゾール環、ベンズチアゾール環、ベンズイソチアゾール環、ベンズイミダゾール環、インダゾール環、プリン環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、プテリジン環が挙げられ、好ましくは、ピリジン環、ピリミジン環である。 The “heteroaryl ring” refers to a 4- to 10-membered aromatic ring containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atoms as ring atoms. For example. Pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, furan ring, thiophene ring, pyrrole ring, isoxazole ring, oxazole ring, isothiazole ring, thiazole ring, pyrazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole Ring, tetrazole ring, benzofuran ring, benzothiophene ring, indole ring, isoindole ring, benzoxazole ring, benzisoxazole ring, benzthiazole ring, benzisothiazole ring, benzimidazole ring, indazole ring, purine ring, quinoline ring , Isoquinoline ring, cinnoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, and pteridine ring, preferably a pyridine ring and a pyrimidine ring.
 「ヘテロ環」とは、環原子として、酸素原子、硫黄原子及び窒素原子から選択されるヘテロ原子を1~4個含有する4~10員の単環~2環式へテロ環を示す。なお、環原子である任意の炭素原子がオキソ基で置換されていてもよく、硫黄原子、又は、窒素原子が酸化されオキシドを形成してもよい。また、ベンゼン環と縮環していてもよい。例えば、オキセタン環、テトラヒドロフラン環、ジヒドロピラン環、テトラヒドロピラン環、ジオキソラン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、チアゾリジン環、アゼチジン環、ピロリジン環、ピペリジン環、ピペラジン環、ホモピペリジン環、ホモピペラジン環、ピラゾリジン環、イミダゾリジン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、モルホリン環、チオモルホリン環、インドリン環、イソインドリン環、クロマン環、イソクロマン環、アザインドリン環、ピペリジノン環、イミダゾオキサジン環、イミダゾチアゾリン環、ピリミドン環、ヒダントイン環、キヌクリジン環等が挙げられ、好ましくは、ピペリジン環、ピペラジン環、テトラヒドロピラン環、モルホリン環である。 “Heterocycle” refers to a 4- to 10-membered monocyclic to bicyclic heterocycle containing 1 to 4 heteroatoms selected from an oxygen atom, a sulfur atom and a nitrogen atom as ring atoms. In addition, any carbon atom which is a ring atom may be substituted with an oxo group, and a sulfur atom or a nitrogen atom may be oxidized to form an oxide. Further, it may be condensed with a benzene ring. For example, oxetane ring, tetrahydrofuran ring, dihydropyran ring, tetrahydropyran ring, dioxolane ring, tetrahydrothiophene ring, tetrahydrothiopyran ring, thiazolidine ring, azetidine ring, pyrrolidine ring, piperidine ring, piperazine ring, homopiperidine ring, homopiperazine ring , Pyrazolidine ring, imidazolidine ring, tetrahydropyridine ring, tetrahydropyrimidine ring, morpholine ring, thiomorpholine ring, indoline ring, isoindoline ring, chroman ring, isochroman ring, azaindoline ring, piperidinone ring, imidazoloxazine ring, imidazolothiazoline ring , Pyrimidone ring, hydantoin ring, quinuclidine ring and the like, and piperidine ring, piperazine ring, tetrahydropyran ring and morpholine ring are preferable.
 「ヘテロ環基」とは、環原子として、酸素原子、硫黄原子及び窒素原子から選択されるヘテロ原子を1~4個含有する4~10員の単環~2環式へテロ環基を示す。なお、環原子である任意の炭素原子がオキソ基で置換されていてもよく、硫黄原子、又は、窒素原子が酸化されオキシドを形成してもよい。また、ベンゼン環と縮環していてもよい。オキセタニル基、テトラヒドロフラニル基、ジヒドロピラニル基、テトラヒドロピラニル基、ジオキソラニル基、テトラヒドロチオフェニル基、テトラヒドロチオピラニル基、チアゾリジニル基、アゼチジニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、ホモピペリジニル基、ホモピペラジニル基、ピラゾリジニル基、イミダゾリジニル基、テトラヒドロピリジル基、テトラヒドロピリミジル基、モルホリニル基、チオモルホリニル基、インドリニル基、イソインドリニル基、クロマニル基、イソクロマニル基、アザインドリル基、ピペリジノニル基、イミダゾオキサゾリル基、イミダゾチアゾリル基、ピリミドニル基、ヒダントイニル基、キヌクリジニル基等が挙げられ、好ましくは、ピペリジニル基、ピペラジニル基、テトラヒドロピラニル基、モルホリニル基、ピペリジノニル基、ヒダントイニル基である。 “Heterocyclic group” refers to a 4- to 10-membered monocyclic to bicyclic heterocyclic group containing 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen atoms as ring atoms. . In addition, any carbon atom which is a ring atom may be substituted with an oxo group, and a sulfur atom or a nitrogen atom may be oxidized to form an oxide. Further, it may be condensed with a benzene ring. Oxetanyl group, tetrahydrofuranyl group, dihydropyranyl group, tetrahydropyranyl group, dioxolanyl group, tetrahydrothiophenyl group, tetrahydrothiopyranyl group, thiazolidinyl group, azetidinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, homopiperidinyl group, homopiperazinyl group Group, pyrazolidinyl group, imidazolidinyl group, tetrahydropyridyl group, tetrahydropyrimidyl group, morpholinyl group, thiomorpholinyl group, indolinyl group, isoindolinyl group, chromanyl group, isochromanyl group, azaindolyl group, piperidinonyl group, imidazoloxazolyl group, imidazolothia A zolyl group, a pyrimidinyl group, a hydantoinyl group, a quinuclidinyl group, etc., preferably a piperidinyl group, a piperazinyl group, a teto Hidoropiraniru group, a morpholinyl group, piperidinonyl group, a hydantoinyl group.
 本発明において、一般式(I)で表されるスルホンアミド誘導体又はその医薬的に許容される塩としては、式中、次のものが好ましい。
 一般式(I)において、R1及びR2は、それぞれ独立して、水素原子、低級アルキル基、低級アルコキシメチル基が好ましく、水素原子、低級アルキル基がより好ましく、水素原子、及び、メチル基が特に好ましい。
 一般式(I)において、R1とR2が結合して形成する環は、ピリジン、シクロヘキセン、ジヒドロピラン、及び、テトラヒドロピリジンが好ましく、シクロヘキセン、ジヒドロピラン、及び、テトラヒドロピリジンがより好ましく、ジヒドロピラン、及び、テトラヒドロピリジンが特に好ましい。
 一般式(I)において、R3は、低級アルキル基が好ましく、メチル基が特に好ましい。
 一般式(I)において、e、f、g、及びhは、C-H窒素原子が好ましく、いずれかひとつが窒素原子であることがより好ましく、e又はfが窒素原子であることが特に好ましい。
 一般式(I)において、Bは、ヒドロキシ基、低級アルコキシ基が好ましく、ヒドロキシ基、メトキシ基、エトキシ基、イソプロポキシ基、シクロヘキシル基がより好ましく、ヒドロキシ基、メトキシ基、エトキシ基、イソプロポキシ基が特に好ましい。
 一般式(I)において、Dは、置換基を有しても良いベンゼン環、置換基を有してもよいヘテロアリール環が好ましく、ベンゼン環、ピリジン環がより好ましく、ベンゼン環が特に好ましい。
 一般式(I)において、Dの置換基は、ハロゲン原子、低級アルキル基、低級アルコキシ基、ヒドロキシ基が好ましく、フッ素原子、メチル基、メトキシ基、ヒドロキシ基がより好ましい。
 一般式(I)において、Dがベンゼン環、又は、ピリジン環を表す場合、Dに結合したアミノスルホニル基とアミノカルボニル基の置換位置はパラ位が好ましい。
 一般式(I)において、R4及びR5は、それぞれ独立して、置換基を有しても良い低級アルキル基、置換基を有しても良いヘテロ環基が好ましく、メチル基、エチル基、tert-ブチル基、シクロプロピル基、2-イソペンチル基、3,3-ジメチル-2-ブチル基、テトラヒドロピラニル基がより好ましく、エチル基、tert-ブチル基、シクロプロピル基が特に好ましい。
 一般式(I)において、R4及びR5の置換基は、メトキシ基、モルホリノ基、トリフルオロメチル基、ヒドロキシ基、シアノ基が好ましく、モルホリノ基、トリフルオロメチル基、シアノ基が特に好ましい。
 一般式(I)において、R4及びR5が結合して形成する環は、置換基を有しても良いヘテロ環が好ましく、モリホリン、ピペラジンが特に好ましい。
In the present invention, the sulfonamide derivative represented by the general formula (I) or a pharmaceutically acceptable salt thereof is preferably the following:
In general formula (I), R 1 and R 2 are each independently preferably a hydrogen atom, a lower alkyl group or a lower alkoxymethyl group, more preferably a hydrogen atom or a lower alkyl group, a hydrogen atom or a methyl group. Is particularly preferred.
In the general formula (I), the ring formed by combining R 1 and R 2 is preferably pyridine, cyclohexene, dihydropyran and tetrahydropyridine, more preferably cyclohexene, dihydropyran and tetrahydropyridine, and dihydropyran. And tetrahydropyridine are particularly preferred.
In general formula (I), R 3 is preferably a lower alkyl group, particularly preferably a methyl group.
In the general formula (I), e, f, g and h are preferably C—H 2 or a nitrogen atom, more preferably any one is a nitrogen atom, and particularly preferably e or f is a nitrogen atom. preferable.
In general formula (I), B is preferably a hydroxy group or a lower alkoxy group, more preferably a hydroxy group, a methoxy group, an ethoxy group, an isopropoxy group, or a cyclohexyl group, and a hydroxy group, a methoxy group, an ethoxy group, or an isopropoxy group. Is particularly preferred.
In general formula (I), D is preferably a benzene ring which may have a substituent or a heteroaryl ring which may have a substituent, more preferably a benzene ring or a pyridine ring, and particularly preferably a benzene ring.
In general formula (I), the substituent of D is preferably a halogen atom, a lower alkyl group, a lower alkoxy group or a hydroxy group, more preferably a fluorine atom, a methyl group, a methoxy group or a hydroxy group.
In the general formula (I), when D represents a benzene ring or a pyridine ring, the substitution position of the aminosulfonyl group and aminocarbonyl group bonded to D is preferably the para position.
In the general formula (I), R 4 and R 5 are each independently a lower alkyl group which may have a substituent or a heterocyclic group which may have a substituent, preferably a methyl group or an ethyl group. Tert-butyl group, cyclopropyl group, 2-isopentyl group, 3,3-dimethyl-2-butyl group and tetrahydropyranyl group are more preferable, and ethyl group, tert-butyl group and cyclopropyl group are particularly preferable.
In the general formula (I), the substituents of R 4 and R 5 are preferably a methoxy group, a morpholino group, a trifluoromethyl group, a hydroxy group or a cyano group, and particularly preferably a morpholino group, a trifluoromethyl group or a cyano group.
In the general formula (I), the ring formed by combining R 4 and R 5 is preferably a heterocyclic ring which may have a substituent, and morpholine and piperazine are particularly preferable.
 また、一般式(I)において、
 R1及びR2は、それぞれ独立して、水素原子、低級アルキル基、低級アルコキシ基、又は低級アルコキシ低級アルキル基を表し、R1とR2は結合して、炭素数4~7の脂環式炭化水素、ヘテロアリール環、又は、低級アルキル基で置換されていてもよいヘテロ環を形成しても良く、
 Dは、ハロゲン原子、低級アルキル基、低級アルコキシ基及びヒドロキシ基からなる群から選ばれる置換基で置換されていてもよい、ベンゼン環又はヘテロアリール環を表し、 R4及びR5は、それぞれ独立して、水素原子、又は、低級アルコキシ基、ヘテロ環基、ヒドロキシ基、シアノ基及びハロゲン原子からなる群から選ばれる置換基を有しても良い低級アルキル基を表し、但し、R4とR5は結合して、低級アルキル基により置換されていてもよいヘテロ環基を形成しても良く、
 但し、
  Dがハロゲン原子で置換されたベンゼン環を表す場合、R1とR2はそれぞれ低級アルキル基を表し、
  Dが低級アルキル基、低級アルコキシ基又はヒドロキシ基を置換基として有するベンゼン環である場合、その置換基は、Sに結合した炭素原子に隣接する炭素原子でDに結合し、
  R4又はR5がヒドロキシ基で置換された低級アルキル基を表す場合、そのヒドロキシ基で置換された低級アルキル基は、下記式(a)又は(b)で表され、
Figure JPOXMLDOC01-appb-I000022
  但し、R4又はR5が式(b)で表される場合、R1とR2はそれぞれ低級アルキル基を表し、
  R4又はR5がシアノ基で置換された低級アルキル基である場合、Dはベンゼン環を表す、
化合物が好ましい。このような化合物は、特に高い選択性を有する。
In the general formula (I),
R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a lower alkoxy lower alkyl group, and R 1 and R 2 are bonded to form an alicyclic group having 4 to 7 carbon atoms. May form a hydrocarbon, heteroaryl ring, or heterocycle optionally substituted with a lower alkyl group,
D represents a benzene ring or a heteroaryl ring which may be substituted with a substituent selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and a hydroxy group, and R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent selected from the group consisting of a lower alkoxy group, a heterocyclic group, a hydroxy group, a cyano group and a halogen atom, provided that R 4 and R 4 5 may be bonded to form a heterocyclic group which may be substituted with a lower alkyl group;
However,
When D represents a benzene ring substituted with a halogen atom, R 1 and R 2 each represent a lower alkyl group,
When D is a benzene ring having a lower alkyl group, a lower alkoxy group or a hydroxy group as a substituent, the substituent is bonded to D at a carbon atom adjacent to the carbon atom bonded to S;
When R 4 or R 5 represents a lower alkyl group substituted with a hydroxy group, the lower alkyl group substituted with the hydroxy group is represented by the following formula (a) or (b):
Figure JPOXMLDOC01-appb-I000022
However, when R 4 or R 5 is represented by the formula (b), R 1 and R 2 each represent a lower alkyl group,
When R 4 or R 5 is a lower alkyl group substituted with a cyano group, D represents a benzene ring;
Compounds are preferred. Such compounds have a particularly high selectivity.
 本発明の一般式(I)で示される化合物が塩の形態を成し得る場合、その塩は医薬的に許容しうるものであればよく、例えば、式中のカルボキシル基等の酸性基に対しては、アンモニウム塩、ナトリウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩、アルミニウム塩、亜鉛塩、トリエチルアミン、エタノールアミン、モルホリン、ピペリジン、ジシクロヘキシルアミン等の有機アミンとの塩、アルギニン、リジン等の塩基性アミノ酸との塩が挙げることができる。式中に塩基性基が存在する場合の塩基性基に対しては、塩酸、硫酸、リン酸などの無機酸との塩、酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸等の有機カルボン酸との塩、メタンスルホン酸、p-トルエンスルホン酸等の有機スルホン酸との塩が挙げることができる。塩を形成する方法としては、一般式(I)の化合物と必要な酸または塩基とを適当な量比で溶媒、分散剤中で混合することや、他の塩の形より陽イオン交換または陰イオン交換を行うことによっても得られる。 When the compound represented by the general formula (I) of the present invention can be in the form of a salt, the salt may be pharmaceutically acceptable, for example, for an acidic group such as a carboxyl group in the formula Organic salts such as ammonium salts, salts with alkali metals such as sodium and potassium, salts with alkaline earth metals such as calcium and magnesium, organic salts such as aluminum salts, zinc salts, triethylamine, ethanolamine, morpholine, piperidine and dicyclohexylamine Examples thereof include salts with amines and salts with basic amino acids such as arginine and lysine. When a basic group is present in the formula, for a basic group, salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid Examples thereof include salts with organic carboxylic acids such as acids and salts with organic sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid. As a method for forming a salt, a compound of the general formula (I) and a necessary acid or base are mixed in an appropriate amount ratio in a solvent or a dispersing agent, or cation exchange or anion is performed based on other salt forms. It can also be obtained by ion exchange.
 本発明化合物は一般式(I)で示される化合物の溶媒和物、例えば水和物、アルコール付加物等も含んでいてもよい。
 本発明化合物は、一般式(I)で示される化合物のプロドラッグの形態を包含する。本発明化合物のプロドラッグとは、生体内における生理条件下で酵素や胃酸等による反応により一般式(I)で示される化合物に変換する化合物、即ち酵素的に酸化、還元、加水分解等を起こして一般式(I)で示される化合物に変化する化合物、胃酸等により加水分解等を起こして一般式(I)で示される化合物に変化する化合物をいう。一般式(I)で示される化合物のプロドラッグとしては、実施例の化合物に例示されるがこれらに限られない。例えば一般式(I)で示される化合物がアミノ基を有する場合、そのプロドラッグとしては、該アミノ基がアシル化、アルキル化、リン酸化された化合物(例、一般式(I)で示される化合物のアミノ基がエイコサノイル化、アラニル化、ペンチルアミノカルボニル化、(5-メチル-2一オキソ-1,3-ジオキソレン-4-イル)メトキシカルボニル化、テトラヒドロフラニル化、ピロリジルメチル化ピバロイルオキシメチル化、tert-ブチル化された化合物等が挙げられる。一般式(I)で示される化合物がヒドロキシを有する場合、そのプロドラッグとしては、該ヒドロキシがアシル化、アルキル化、リン酸化、ホウ酸化された化合物(例、一般式(I)で示される化合物のヒドロキシがアセチル化、パルミトイル化、プロパノイル化、ピバロイル化、スクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化された化合物等が挙げられる。一般式(I)で示される化合物がカルボキシ基を有する場合、そのプロドラッグとしては、該カルボキシ基がエステル化、アミド化された化合物(例、一般式(I)で示される化合物のカルボキシルが、メチルエステル化、エチルエステル化、ノルマルプロピルエステル化、フェニルエステル化、イソプルピルエステル化、イソブチルエステル化、シクロブチルエステル化、シクロペンチルエステル化、シクロヘキシルエステル化、シクロヘプチルエステル化、シクロブチルメチルエステル化、シクロヘキシルメチルエステル化、ノルマルヘキシルエステル化、sec-ブチルエステル化、tert-ブチルエステル化、(4-テトラヒドロピラニル)メチルエステル化、(4-テトラヒドロピラニル)エステル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエステル化、(5-メチル-2一オキソ-1,3-ジオキソレン-4一イル)メチルエステル化、シクロへキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物等が挙げられる。特に、一般式(I)で示される化合物がカルボキシ基を有する場合、そのプロドラッグとしては、該カルボキシ基が、炭素数1~10の直鎖、分岐鎖、又は環状のアルキル基によってエステル化された化合物が好ましい。これらの化合物は自体公知の方法によって一般式(I)で示される化合物から製造することができる。
 また、化合物(I)のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような生理的条件で化合物(I)に変化するものであってもよい。
The compound of the present invention may also contain a solvate of the compound represented by the general formula (I), for example, a hydrate, an alcohol adduct and the like.
The compound of the present invention includes a prodrug form of the compound represented by formula (I). The prodrug of the compound of the present invention is a compound that is converted into a compound represented by the general formula (I) by a reaction with an enzyme, gastric acid, or the like under physiological conditions in vivo, that is, enzymatically causes oxidation, reduction, hydrolysis, etc. A compound that changes to a compound represented by the general formula (I), a compound that undergoes hydrolysis or the like by gastric acid or the like and changes to a compound represented by the general formula (I). Examples of the prodrug of the compound represented by the general formula (I) are not limited to those exemplified in the compounds of Examples. For example, when the compound represented by the general formula (I) has an amino group, the prodrug may be a compound in which the amino group is acylated, alkylated or phosphorylated (eg, a compound represented by the general formula (I) The amino group of eicosanoylation, alanylation, pentylaminocarbonylation, (5-methyl-2monooxo-1,3-dioxolen-4-yl) methoxycarbonylation, tetrahydrofuranylation, pyrrolidylmethylated pivaloyloxy Examples thereof include methylated, tert-butylated compounds, etc. When the compound represented by the general formula (I) has hydroxy, the prodrug includes acylated, alkylated, phosphorylated, borated. Of the compound represented by the general formula (I) is acetylated, palmitoylated, propano And a compound having a carboxy group as a prodrug, such as a compound having a carboxy group, and a pivaloylated, succinylated, fumarylated, alanylated, dimethylaminomethylcarbonylated compound, etc. Compounds in which the carboxy group is esterified or amidated (eg, carboxyl of the compound represented by the general formula (I) is methyl esterified, ethyl esterified, normal propyl esterified, phenyl esterified, or isopropyl esterified. , Isobutyl esterification, cyclobutyl esterification, cyclopentyl esterification, cyclohexyl esterification, cycloheptyl esterification, cyclobutylmethyl esterification, cyclohexylmethyl esterification, normal hexyl esterification, sec-butyl esterification, tert-butyl Stealization, (4-tetrahydropyranyl) methyl esterification, (4-tetrahydropyranyl) esterification, carboxymethyl esterification, dimethylaminomethyl esterification, pivaloyloxymethyl esterification, ethoxycarbonyloxyethyl esterification, Examples include phthalidyl esterification, (5-methyl-2 monooxo-1,3-dioxolen-4 monoyl) methyl esterification, cyclohexyloxycarbonylethyl esterification, methylamidated compounds, etc. When the compound represented by the formula (I) has a carboxy group, the prodrug includes a compound in which the carboxy group is esterified with a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. These compounds are preferably represented by the formula (I) by a method known per se. ).
The prodrug of compound (I) changes to compound (I) under physiological conditions as described in Hirokawa Shoten, 1990, “Development of Drugs”, Volume 7, Molecular Design, pages 163 to 198. There may be.
 本発明は式(I)で表される化合物の全ての同位体を含む。本発明化合物の同位体は、少なくとも1の原子が、原子番号(陽子数)が同じで,質量数(陽子と中性子の数の和)が異なる原子で置換されたものである。本発明化合物に含まれる同位体の例としては、水素原子、炭素原子、窒素原子、酸素原子、リン原子、硫黄原子、フッ素原子、塩素原子などがあり、それぞれ、2H,3H,13C,14C,15N,17O,18O,31P,32P,35S,18F,36Cl等が含まれる。特に、3Hや14Cのような、放射能を発して中性子を放つ不安定な放射性同位体は、医薬品あるいは化合物の体内組織分布試験等の際、有用である。安定同位体は、崩壊を起こさず、存在量がほとんど変わらず、放射能もないため、安全に使用することができる。本発明の化合物の同位体は、合成で用いている試薬を、対応する同位体を含む試薬に置き換えることにより、常法に従って変換することができる。 The present invention includes all isotopes of the compounds represented by formula (I). The isotope of the compound of the present invention is one in which at least one atom is substituted with an atom having the same atomic number (number of protons) and a different mass number (sum of the number of protons and neutrons). Examples of isotopes contained in the present compound, a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, a fluorine atom, include a chlorine atom, respectively, 2 H, 3 H, 13 C , 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl, and the like. In particular, unstable radioisotopes that emit radioactivity and emit neutrons, such as 3 H and 14 C, are useful in tests of tissue distribution of drugs or compounds. Stable isotopes can be used safely because they do not decay, their abundances are almost unchanged, and there is no radioactivity. The isotope of the compound of the present invention can be converted according to a conventional method by replacing the reagent used in the synthesis with a reagent containing the corresponding isotope.
 一般式(I)で示される化合物またはその塩は、そのままあるいは各種の医薬組成物として投与される。このような医薬組成物の剤形としては、例えば錠剤、散剤、丸剤、顆粒剤、カプセル剤、坐剤、溶液剤、糖衣剤、デボー剤、またはシロップ剤にしてよく、普通の製剤助剤を用いて常法に従って製造することができる。
 例えば錠剤は、本発明の有効成分であるフェニルアラニン誘導体を既知の補助物質、例えば乳糖、炭酸カルシウムまたは燐酸カルシウム等の不活性希釈剤、アラビアゴム、コーンスターチまたはゼラチン等の結合剤、アルギン酸、コーンスターチまたは前ゼラチン化デンプン等の膨化剤、ショ糖、乳糖またはサッカリン等の甘味剤、ペパーミント、アカモノ油またはチェリー等の香味剤、ステアリン酸マグネシウム、タルクまたはカルボキシメチルセルロース等の滑湿剤、脂肪、ワックス、半固形及び液体のポリオール、天然油または硬化油等のソフトゼラチンカプセル及び坐薬用の賦形剤、水、アルコール、グリセロール、ポリオール、スクロース、転化糖、グルコース、植物油等の溶液用賦形剤と混合することによって得られる。
The compound represented by the general formula (I) or a salt thereof is administered as it is or as various pharmaceutical compositions. As a dosage form of such a pharmaceutical composition, for example, it may be a tablet, powder, pill, granule, capsule, suppository, solution, sugar coating, devoted, or syrup, and a usual formulation aid. Can be produced according to a conventional method.
For example, tablets may contain phenylalanine derivatives, which are the active ingredients of the present invention, known auxiliary substances such as inert diluents such as lactose, calcium carbonate or calcium phosphate, binders such as gum arabic, corn starch or gelatin, alginic acid, corn starch or the like Gelatinized starch and other leavening agents, sweeteners such as sucrose, lactose and saccharin, flavoring agents such as peppermint, red mono oil and cherry, lubricants such as magnesium stearate, talc and carboxymethylcellulose, fats, waxes and semi-solids And liquid gelatin, soft gelatin capsules such as natural or hardened oils and excipients for suppositories, water, alcohol, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Obtained by.
 一般式(I)で示される化合物またはその塩を有効成分とする阻害剤はα4インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤または予防剤に利用できる。そのような炎症性疾患としては、例えば、リウマチ様関節炎、炎症性腸疾患、全身性エリテマトーデス、多発性硬化症、シェーグレン症候群、喘息、乾せん、アレルギー、糖尿病、心臓血管性疾患、動脈硬化症、再狭窄、腫瘍増殖、腫瘍転移、移植拒絶、及び/又はヒト免疫不全ウイルス感染症(非特許文献1参照)が挙げられる。
 上記目的のために用いる投与量は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより決定されるが、経口もしくは非経口のルートにより、通常成人一日あたりの投与量として経口投与の場合で1μg~5g、非経口投与の場合で0.01μg~1gを用いるのがよい。
An inhibitor comprising a compound represented by the general formula (I) or a salt thereof as an active ingredient can be used as a therapeutic or prophylactic agent for inflammatory diseases in which an α4 integrin-dependent adhesion process is involved in the pathological state. Such inflammatory diseases include, for example, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, multiple sclerosis, Sjogren's syndrome, asthma, psoriasis, allergy, diabetes, cardiovascular disease, arteriosclerosis, relapse Examples include stenosis, tumor growth, tumor metastasis, transplant rejection, and / or human immunodeficiency virus infection (see Non-Patent Document 1).
The dose to be used for the above purpose is determined by the intended therapeutic effect, administration method, treatment period, age, weight, etc., but it is usually given orally as a daily dose for adults by the oral or parenteral route. In the case of administration, 1 μg to 5 g may be used, and in the case of parenteral administration, 0.01 μg to 1 g may be used.
 一般式(I)で表されるスルホンアミド誘導体によれば、Dの置換基としてアミノカルボニル基が設けられている。このような構造を採用することにより、ヒト全血中において優れたα4β7インテグリン阻害活性を得ることができる。加えて、本発明のスルホンアミド誘導体は、門脈への移行濃度が高く、循環血中の暴露量が増えるため、より強い効果が得られる。この観点からもα4β7インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤または予防剤として有用である。更に、一般式(I)のスルホンアミド誘導体では、フェニルアラニン部分のフェニルの2位と5位が、フッ素原子により置換されている。これにより、α4β1インテグリンに対しては効果が低く、α4β7インテグリンに対して選択的に高い阻害活性を得ることができる。 According to the sulfonamide derivative represented by the general formula (I), an aminocarbonyl group is provided as a substituent of D. By adopting such a structure, excellent α4β7 integrin inhibitory activity can be obtained in human whole blood. In addition, since the sulfonamide derivative of the present invention has a high concentration to the portal vein and the amount of exposure in the circulating blood increases, a stronger effect can be obtained. From this viewpoint, the α4β7 integrin-dependent adhesion process is useful as a therapeutic or prophylactic agent for inflammatory diseases in which the disease state is involved. Furthermore, in the sulfonamide derivative of general formula (I), the 2-position and 5-position of phenyl in the phenylalanine moiety are substituted with fluorine atoms. Thereby, the effect is low with respect to α4β1 integrin, and high inhibitory activity can be selectively obtained with respect to α4β7 integrin.
  本発明の一般式(I)で示される化合物は、例えば、一般式(M-I)で示される末端にカルボキシル基を有する中間体と、一般式(M-II)で示される末端にアミノ基を有する中間体とをアミド化反応に付して製造することができる。
 アミド化反応は公知であり、例えば、(1)縮合剤を用いる方法、(2)酸ハロゲン化物を用いる方法等が挙げられる。
The compound represented by the general formula (I) of the present invention includes, for example, an intermediate having a carboxyl group at the terminal represented by the general formula (MI) and an amino group at the terminal represented by the general formula (M-II). And an intermediate having an amidation reaction.
The amidation reaction is known, and examples thereof include (1) a method using a condensing agent and (2) a method using an acid halide.
 (1)縮合剤を用いる方法は、例えば、カルボン酸とアミン又はその塩とを例えば、ジクロロメタン、テトラヒドロフラン(THF)、1,4-ジオキサン、N,N-ジメチルホルムアミド(DMF)又はアセトニトリル等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、トリエチルアミン又はN,N-ジイソプロピルエチルアミン等の塩基の存在下、又は、非存在下で、例えば1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)又はN-ヒドロキシスクシンイミド(HOSu)等の縮合補助剤の存在下、又は、非存在下で、例えば、1-エチル-3-(3’-ジメチルアミノプロピル)カルボジイミド(WSC)、1,3-ジシクロヘキシルカルボジイミド(DCC)、又は(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロリン酸塩(HATU)等の縮合剤を用いて反応させることにより行われる。 (1) A method using a condensing agent is, for example, a method in which a carboxylic acid and an amine or a salt thereof are mixed with, for example, dichloromethane, tetrahydrofuran (THF), 1,4-dioxane, N, N-dimethylformamide (DMF) or acetonitrile. In a solvent that does not adversely influence the reaction, for example, in the presence or absence of a base such as pyridine, triethylamine or N, N-diisopropylethylamine, for example, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7 In the presence or absence of condensation aids such as azabenzotriazole (HOAt) or N-hydroxysuccinimide (HOSu), for example 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide (WSC) ), 1,3-dicyclohexylcarbodiimide (DCC) Or (7-azabenzotriazole-1-yl) -N, N, N ', is carried out by reacting with a condensing agent such as N'- tetramethyluronium hexafluorophosphate (HATU).
 (2)酸ハロゲン化物を用いる方法は、カルボン酸を例えば、ジクロロメタン等の本反応に悪影響を及ぼさない溶媒中、又は、無溶媒で例えば、DMF等の触媒の存在下、又は、非存在下で、例えば、塩化チオニル、塩化オキサリル又は臭化チオニル等と反応させて得られる酸ハロゲン化物を例えば、ジクロロメタン、又は、THF等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジンやトリエチルアミン、又は、N,N-ジイソプロピルエチルアミンのような塩基の存在下でアミン、又は、その塩と反応させることにより行われる。
Figure JPOXMLDOC01-appb-I000023
 このうち、一般式(M-I)で示される末端にカルボキシル基を有する中間体は、例えば、下記の方法により製造することができる。
(2) In the method using an acid halide, the carboxylic acid is used in a solvent that does not adversely influence the reaction, such as dichloromethane, or in the absence or presence of a catalyst such as DMF in the absence of a solvent. For example, an acid halide obtained by reacting with thionyl chloride, oxalyl chloride, thionyl bromide, etc., for example, dichloromethane, THF, etc., in a solvent that does not adversely affect this reaction, for example, pyridine, triethylamine, or The reaction is carried out by reacting with an amine or a salt thereof in the presence of a base such as N, N-diisopropylethylamine.
Figure JPOXMLDOC01-appb-I000023
Among these, the intermediate having a carboxyl group at the terminal represented by the general formula (MI) can be produced, for example, by the following method.
 本発明の化合物である一般式(M-I)で表される末端にカルボキシル基を有する中間体のうち代表的な化合物の製造方法を以下に示す。なお、以下の説明において、特に記載のない場合は、式中の記号は、前記式(I)における定義と同様である。
 一般式(M-I)において、Dが、低級アルキル基、低級アルコキシ基、ヒドロキシ基、及び、ハロゲン原子からなる群から選ばれる置換基を有してもよいフェニル基、又は、ピリジル基である末端にカルボキシル基を有する中間体(S8)は、例えば、以下に記載する方法(製造方法A、B、及びC)等を用いることで合成することができる。
The production method of a representative compound among the intermediates having a carboxyl group at the terminal represented by the general formula (MI) which is the compound of the present invention is shown below. In the following description, unless otherwise specified, symbols in the formula are the same as defined in the formula (I).
In the general formula (MI), D is a phenyl group that may have a substituent selected from the group consisting of a lower alkyl group, a lower alkoxy group, a hydroxy group, and a halogen atom, or a pyridyl group. The intermediate body (S8) which has a carboxyl group at the terminal is compoundable by using the method (manufacturing method A, B, and C) etc. which are described below, for example.
<製造方法A>
Figure JPOXMLDOC01-appb-I000024
 式中D1は、上述のDで表される置換基、又は、例えば、脱保護等の操作によりDに容易に変換できる置換基を表し、式中R21は、例えば、低級アルキル基等の一般的なエステルの置換基を表し、式中X1は、例えば、塩素、臭素、ヨウ素等のハロゲン原子や例えば、トリフルオロメタンスルホニルオキシ基等の脱離基を表す。
 スルホニルクロリド誘導体(S1)とアニリン誘導体(S2)とを、例えば、ジクロロメタン、アセトニトリル、THF、またはDMF等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、またはトリエチルアミン等の塩基存在下で反応させることでスルホンアミド誘導体(S3)を合成できる。得られたスルホンアミド誘導体(S3)は、例えば、DMF、N-メチルピロリドン(NMP)等の本反応に悪影響を及ぼさない溶媒中、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン等の塩基の存在下、例えば、1,1’-ビス(ジフェニルホスフィノフェロセン)ジクロロパラジウム(II)等の金属触媒を用いて、二酸化炭素雰囲気下、カップリング反応を行うことで、アルデヒド誘導体(S4)を合成できる。得られたアルデヒド誘導体(S4)は、例えば、Pinnick酸化等の酸化反応を行うことで、カルボン酸誘導体(S5)を合成できる。得られたカルボン酸誘導体(S5)とアミン誘導体(S6)又はその塩とを、例えば、ジクロロメタン、THF、1,4-ジオキサン、DMF又はアセトニトリル等の本反応に悪影響を及ぼさない溶媒中、例えばピリジン、トリエチルアミン又はN,N-ジイソプロピルエチルアミン等の塩基の存在下、又は、非存在下で、例えば、HOBt、HOAt又はHOSu等の縮合補助剤の存在下、又は、非存在下で、例えば、WSC、DCC又はHATU等の縮合剤を用いて反応させることにより、対応するアミド誘導体(S7)へと誘導することができる。続いて、アミド誘導体(S7)を、例えば、THF、1,4-ジオキサン、メタノール又はエタノール等の本反応に悪影響を及ぼさない溶媒中、例えば、水酸化ナトリウム、又は水酸化リチウム等の塩基を用いたアルカリ加水分解や、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解を行うことで、目的とするカルボン酸誘導体(S8)を製造することができる。
<Production method A>
Figure JPOXMLDOC01-appb-I000024
In the formula, D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection, and R 21 represents, for example, a lower alkyl group or the like. It represents a general ester substituent, and in the formula, X 1 represents a halogen atom such as chlorine, bromine or iodine, or a leaving group such as trifluoromethanesulfonyloxy group.
The sulfonyl chloride derivative (S1) and the aniline derivative (S2) are reacted in a solvent that does not adversely affect the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine. To synthesize the sulfonamide derivative (S3). The obtained sulfonamide derivative (S3) is obtained in the presence of a base such as triethylamine or N, N-diisopropylethylamine in a solvent that does not adversely affect the reaction such as DMF or N-methylpyrrolidone (NMP). For example, the aldehyde derivative (S4) can be synthesized by performing a coupling reaction in a carbon dioxide atmosphere using a metal catalyst such as 1,1′-bis (diphenylphosphinoferrocene) dichloropalladium (II). The obtained aldehyde derivative (S4) can synthesize a carboxylic acid derivative (S5) by performing an oxidation reaction such as Pinnick oxidation. The obtained carboxylic acid derivative (S5) and amine derivative (S6) or a salt thereof, for example, pyridine, in a solvent that does not adversely affect the reaction, such as dichloromethane, THF, 1,4-dioxane, DMF, or acetonitrile. In the presence or absence of a base such as triethylamine or N, N-diisopropylethylamine, for example, in the presence or absence of a condensation aid such as HOBt, HOAt or HOSu, for example, WSC, By reacting with a condensing agent such as DCC or HATU, it can be derived into the corresponding amide derivative (S7). Subsequently, the amide derivative (S7) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, using a base such as sodium hydroxide or lithium hydroxide. The target carboxylic acid derivative (S8) can be produced by performing alkaline hydrolysis or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
 <製造方法B>
Figure JPOXMLDOC01-appb-I000025
 式中D1は、上述のDで表される置換基、又は、例えば、脱保護等の操作によりDに容易に変換できる置換基を表し、式中R21は、例えば、低級アルキル基等の一般的なエステルの置換基を表す。
 スルホニルクロリド誘導体(S9)とアニリン誘導体(S2)とを、例えば、ジクロロメタン、アセトニトリル、THF、又はDMF等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、又はトリエチルアミン等の塩基存在下で反応させることでスルホンアミド誘導体(S5)を合成できる。得られたスルホンアミド誘導体(S5)とアミン誘導体(S6)又はその塩とを、例えば、ジクロロメタン、THF、1,4-ジオキサン、DMF又はアセトニトリル等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、トリエチルアミン、又はN,N-ジイソプロピルエチルアミン等の塩基の存在下、又は、非存在下で、例えば、HOBt、HOAt又はHOSu等の縮合補助剤の存在下、又は、非存在下で、例えばWSC、DCC又はHATU等の縮合剤を用いて反応させることにより、対応するアミド誘導体(S7)へと誘導することができる。続いて、アミド誘導体(S7)を、例えば、THF、1,4-ジオキサン、メタノール又はエタノール等の本反応に悪影響を及ぼさない溶媒中、例えば、水酸化ナトリウム、又は水酸化リチウム等の塩基を用いたアルカリ加水分解や、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解を行うことで、目的とするカルボン酸誘導体(S8)を製造することができる。
<Production method B>
Figure JPOXMLDOC01-appb-I000025
In the formula, D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection, and R 21 represents, for example, a lower alkyl group or the like. Represents a general ester substituent.
The sulfonyl chloride derivative (S9) and the aniline derivative (S2) are reacted in a solvent that does not adversely affect the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine. To synthesize a sulfonamide derivative (S5). The obtained sulfonamide derivative (S5) and amine derivative (S6) or a salt thereof in a solvent that does not adversely affect the reaction, such as dichloromethane, THF, 1,4-dioxane, DMF or acetonitrile, for example, In the presence or absence of a base such as pyridine, triethylamine, or N, N-diisopropylethylamine, for example, in the presence or absence of a condensation aid such as HOBt, HOAt or HOSu, for example WSC By reacting with a condensing agent such as DCC or HATU, it can be derived into the corresponding amide derivative (S7). Subsequently, the amide derivative (S7) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, using a base such as sodium hydroxide or lithium hydroxide. The target carboxylic acid derivative (S8) can be produced by performing alkaline hydrolysis or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
 <製造方法C>
Figure JPOXMLDOC01-appb-I000026
 式中D1は、上述のDで表される置換基、又は、例えば、脱保護等の操作によりDに容易に変換できる置換基を表し、式中R21は、例えば、低級アルキル基等の一般的なエステルの置換基を表す。
 スルホニルクロリド誘導体(S10)とアニリン誘導体(S2)とを、例えば、ジクロロメタン、アセトニトリル、THF、又はDMF等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、またはトリエチルアミン等の塩基存在下で反応させることでスルホンアミド誘導体(S7)を合成できる。続いて、スルホンアミド誘導体(S7)を、例えば、THF、1,4-ジオキサン、メタノール又はエタノール等の本反応に悪影響を及ぼさない溶媒中、例えば、水酸化ナトリウム、又は水酸化リチウム等の塩基を用いたアルカリ加水分解や、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解等を行うことで、目的とするカルボン酸誘導体(S8)を製造することができる。
<Manufacturing method C>
Figure JPOXMLDOC01-appb-I000026
In the formula, D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection, and R 21 represents, for example, a lower alkyl group or the like. Represents a general ester substituent.
The sulfonyl chloride derivative (S10) and the aniline derivative (S2) are reacted in a solvent that does not adversely influence the reaction such as dichloromethane, acetonitrile, THF, or DMF, for example, in the presence of a base such as pyridine or triethylamine. To synthesize a sulfonamide derivative (S7). Subsequently, the sulfonamide derivative (S7) is treated with a base such as sodium hydroxide or lithium hydroxide in a solvent that does not adversely affect the reaction such as THF, 1,4-dioxane, methanol or ethanol. The target carboxylic acid derivative (S8) can be produced by carrying out the alkaline hydrolysis used or acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
 一般式(M-I)において、Dが低級アルキル基、低級アルコキシ基、ヒドロキシ基、及び、ハロゲン原子からなる群から選ばれる置換基を有してもよいフェニル基、又は、ピリジル基であり、R5が水素原子である末端にカルボキシル基を有する中間体(S8)は、例えば、以下に記載する方法(製造方法D)等を用いることで合成することができる。 In the general formula (MI), D is a phenyl group which may have a substituent selected from the group consisting of a lower alkyl group, a lower alkoxy group, a hydroxy group and a halogen atom, or a pyridyl group, The intermediate (S8) having a carboxyl group at the terminal where R 5 is a hydrogen atom can be synthesized by using, for example, the method described below (Production Method D).
<製造方法D>
Figure JPOXMLDOC01-appb-I000027
 式中D1は、上述のDで表される置換基、又は、例えば、脱保護等の操作によりDに容易に変換できる置換基を表し、式中R21は、例えば、低級アルキル基等の一般的なエステルの置換基を表し、式中X1は、例えば、塩素、臭素、ヨウ素等のハロゲン原子や例えば、トリフルオロメタンスルホニルオキシ基等の脱離基を表す。 
 ハロゲンアリール誘導体(S3)とイソシアニド試薬(S11)とを、例えば、DMSO等の本反応に悪影響を及ぼさない溶媒中、例えば、水の存在下、又は非存在下で、例えば、炭酸セシウム等の塩基存在下、例えば、ビストリフェニルホスフィンジクロロパラジウム(II)等の金属触媒を用いて反応させることで、tert-ブチルアミド誘導体(S12)を合成できる。得られたtert-ブチルアミド誘導体(S12)は、例えば、THF、1,4-ジオキサン、メタノール又はエタノール等の本反応に悪影響を及ぼさない溶媒中、例えば、水酸化ナトリウム、又は水酸化リチウム等の塩基を用いたアルカリ加水分解や、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解等を行うことで、目的とするカルボン酸誘導体(S8)を製造することができる。
<Manufacturing method D>
Figure JPOXMLDOC01-appb-I000027
In the formula, D 1 represents the above-described substituent represented by D, or a substituent that can be easily converted to D by an operation such as deprotection, and R 21 represents, for example, a lower alkyl group or the like. It represents a general ester substituent, and in the formula, X 1 represents a halogen atom such as chlorine, bromine or iodine, or a leaving group such as trifluoromethanesulfonyloxy group.
The halogenaryl derivative (S3) and the isocyanide reagent (S11) are mixed with, for example, a base such as cesium carbonate in a solvent that does not adversely affect the reaction such as DMSO, for example, in the presence or absence of water. The tert-butylamide derivative (S12) can be synthesized by reacting in the presence using, for example, a metal catalyst such as bistriphenylphosphine dichloropalladium (II). The obtained tert-butylamide derivative (S12) is used in a solvent that does not adversely influence the reaction such as THF, 1,4-dioxane, methanol or ethanol, for example, a base such as sodium hydroxide or lithium hydroxide. The target carboxylic acid derivative (S8) can be produced by carrying out alkaline hydrolysis using, acid hydrolysis using, for example, hydrochloric acid or trifluoroacetic acid.
 それぞれの工程においては、一般的に置き換えることのできる反応条件を使用することで合成でき、原料化合物の種類等に従い適時選択されるべきである。なお、上記の方法で得られる本発明の化合物は通常有機合成で用いられる抽出、蒸留、結晶化、カラムクロマトグラフィー等の手法を用いて精製することができる。 Each process can be synthesized by using generally replaceable reaction conditions, and should be selected in a timely manner according to the type of raw material compound. In addition, the compound of the present invention obtained by the above method can be purified using techniques such as extraction, distillation, crystallization, column chromatography and the like usually used in organic synthesis.
 本発明の化合物である一般式(M-II)で表される末端にアミノ基を有する中間体(S17)は、例えば、以下に示した製造方法(製造方法E、F、及びG)等を用いることで合成することができる。なお、以下の説明において、特に記載のない場合は、式中の記号は、前記式(I)における定義と同様である。 The intermediate (S17) having an amino group at the terminal represented by the general formula (M-II), which is the compound of the present invention, may be produced by, for example, the following production methods (Production Methods E, F, and G). It can be synthesized by using. In the following description, unless otherwise specified, symbols in the formula are the same as defined in the formula (I).
 <製造方法E>
Figure JPOXMLDOC01-appb-I000028
 式中R31は、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基等の、例えば、脱保護等の操作により除去ができる一般的なアミンの置換基を表し、式中X3は、例えば、塩素、臭素、ヨウ素等のハロゲン原子や例えば、トリフルオロメタンスルホニルオキシ基等の脱離基を表し、式中B1は、脱保護等の操作により、Bに容易に変換できる置換基を表す。
 ハロゲン化アリール誘導体(S13)と例えば、ビス(ピナコラート)ジボラン等のボラン誘導体とを、例えば、DMF等の本反応に悪影響を及ぼさない溶媒中、例えば、酢酸カリウム等の塩基の存在下、例えば、1,1’-ビス(ジフェニルホスフィノフェロセン)ジクロロパラジウム(II)等の金属触媒を用いてカップリング反応を行うことで、対応するボロン酸エステル誘導体へと誘導し、続いて得られたボロン酸エステル誘導体に対して、例えば、アセトン等の本反応に悪影響を及ぼさない溶媒中、例えば、過ヨウ素酸ナトリウム、又は酢酸アンモニウム、及び、水を加えて処理をすることでボロン酸エステルを脱保護し、対応するボロン酸誘導体(S14)を合成することができる。得られたボロン酸誘導体(S14)とウラシル誘導体(S15)とを、例えば、ジクロロメタン、ジメチルスルホキシド(DMSO)、又はDMF等の本反応に悪影響を及ぼさない溶媒中、例えば、ピリジン、又はトリエチルアミン等の塩基存在下、例えば、酢酸銅(II)、又はトリフルオロメタンスルホン酸銅(II)等の金属触媒を用いてカップリング反応を行うことで、アミノ酸誘導体(S16)を合成することができる。続いて、アミノ酸誘導体(S16)を、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解、又は加水素分解等の脱保護を行うことで、目的とするカルボン酸誘導体(S17)を製造することができる。
<Manufacturing method E>
Figure JPOXMLDOC01-appb-I000028
Wherein R 31 is, for example, tert- butoxycarbonyl group, such as benzyloxycarbonyl group, for example, a substituent of the general amines which can removed by manipulation of deprotection such as, wherein X 3 is, for example, chlorine, bromine, represents a leaving group such as a halogen atom or for example, trifluoromethanesulfonyloxy group iodine, wherein B 1 represents, by operation of deprotection such, represents a readily converted can substituents B.
The halogenated aryl derivative (S13) and a borane derivative such as bis (pinacolato) diborane, for example, in a solvent that does not adversely affect the reaction such as DMF, for example, in the presence of a base such as potassium acetate, for example, By performing a coupling reaction using a metal catalyst such as 1,1′-bis (diphenylphosphinoferrocene) dichloropalladium (II), the corresponding boronic acid ester derivative is derived, and then the boronic acid obtained The boronic ester is deprotected by treating the ester derivative with, for example, sodium periodate or ammonium acetate and water in a solvent that does not adversely affect the reaction, such as acetone. The corresponding boronic acid derivative (S14) can be synthesized. The obtained boronic acid derivative (S14) and uracil derivative (S15) are mixed with a solvent that does not adversely affect the reaction, such as dichloromethane, dimethyl sulfoxide (DMSO), or DMF, such as pyridine or triethylamine. The amino acid derivative (S16) can be synthesized by performing a coupling reaction using a metal catalyst such as copper (II) acetate or copper (II) trifluoromethanesulfonate in the presence of a base. Subsequently, the amino acid derivative (S16) is subjected to deprotection such as acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis to produce the target carboxylic acid derivative (S17). be able to.
 <製造方法F>
Figure JPOXMLDOC01-appb-I000029
 式中R31は、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基等の、例えば、脱保護等の操作により除去ができる一般的なアミンの置換基を表し、式中R32およびR33は、それぞれ独立して、例えば、低級アルキル基、又は置換基を有しても良いベンゼン環等の一般的なエステルの置換基を表し、式中B1は、脱保護等の操作により、Bに容易に変換できる置換基を表す。
 ニトロ誘導体(S18)は、例えば、メタノール、エタノール、又はイソプロピルアルコール等の本反応に悪影響を及ぼさない溶媒中、例えば、パラジウムカーボン、水酸化パラジウム、又はラネーニッケル等の金属触媒を用いた接触還元反応、又は酸性条件下(例えば、塩酸、酢酸、又は塩化アンモニウム等)、例えば、亜鉛等の金属を作用させることで、アニリン誘導体(S19)を合成することができる。得られたアニリン誘導体(S19)とカルバメート誘導体(S20)とを、例えば、ジクロロメタン、1,4-ジオキサン、THF、又はDMF等の本反応に悪影響を及ぼさない溶媒中、トリエチルアミン、ピリジン、又はジアザビシクロウンデセン(DBU)等の塩基を用いて反応させることにより、アミノ酸誘導体(S16)を合成することができる。続いて、アミノ酸誘導体(S16)を、例えば、塩酸やトリフルオロ酢酸を用いた酸加水分解、又は加水素分解等の脱保護を行うことで、目的とするカルボン酸誘導体(S17)を製造することができる。
<Manufacturing method F>
Figure JPOXMLDOC01-appb-I000029
Wherein R 31 is, for example, tert- butoxycarbonyl group, such as benzyloxycarbonyl group, for example, a substituent of the general amines which can removed by manipulation of deprotection such as, wherein R 32 and R 33 Each independently represents, for example, a lower alkyl group or a substituent of a general ester such as a benzene ring which may have a substituent, wherein B 1 is converted to B by an operation such as deprotection. Represents a substituent that can be easily converted.
The nitro derivative (S18) is, for example, a catalytic reduction reaction using a metal catalyst such as palladium carbon, palladium hydroxide, or Raney nickel in a solvent that does not adversely affect the reaction such as methanol, ethanol, or isopropyl alcohol. Alternatively, the aniline derivative (S19) can be synthesized by reacting a metal such as zinc under acidic conditions (for example, hydrochloric acid, acetic acid, or ammonium chloride). The obtained aniline derivative (S19) and carbamate derivative (S20) are mixed with triethylamine, pyridine, or diaza in a solvent that does not adversely affect the reaction, such as dichloromethane, 1,4-dioxane, THF, or DMF. The amino acid derivative (S16) can be synthesized by reacting with a base such as bicycloundecene (DBU). Subsequently, the target carboxylic acid derivative (S17) is produced by deprotecting the amino acid derivative (S16) by, for example, acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis. Can do.
 <製造方法G>
Figure JPOXMLDOC01-appb-I000030
 式中R31は、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基等の、例えば、脱保護等の操作により除去ができる一般的なアミンの置換基を表し、式中X3、X4およびX5は、それぞれ独立して、例えば、塩素、臭素、ヨウ素等のハロゲン原子や例えば、トリフルオロメタンスルホニルオキシ基等の脱離基を表し、式中B1は、脱保護等の操作により、Bに容易に変換できる置換基を表す。
 ハロゲン化アリール誘導体(S21)とウラシル誘導体(S15)とを、例えば、DMSO、NMP、又はDMF等の本反応に悪影響を及ぼさない溶媒中、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、又はDBU等の塩基存在下、例えば、ヨウ化銅(I)、臭化銅(I)、又は塩化銅(I)等の金属触媒を用いてカップリング反応を行うことにより、化合物(S22)を合成することができる。得られた化合物(S22)とハロゲン化物(S23)とを、例えば、DMF等の本反応に悪影響を及ぼさない溶媒中、例えば、ヨウ素等によって活性化させた亜鉛粉末存在下、例えば、トリス(ジベンジリデンアセトン)ジパラジウム(0)等の金属触媒と例えば、2-ジシクロヘキシル-2’,6’-ジメトキシビフェニル(SPhos)等の有機合成で一般的に用いられる配位子を用いて、根岸カップリング反応を行うことにより、アミノ酸誘導体(S16)を合成
することができる。続いて、アミノ酸誘導体(S16)を、例えば、塩酸、又はトリフルオロ酢酸を用いた酸加水分解、又は加水素分解等の脱保護を行うことで、目的とするカルボン酸誘導体(S17)を製造することができる。
<Manufacturing method G>
Figure JPOXMLDOC01-appb-I000030
In the formula, R 31 represents a general amine substituent which can be removed by an operation such as deprotection, for example, a tert-butoxycarbonyl group, a benzyloxycarbonyl group, etc., wherein X 3 , X 4 and X 5 each independently represents, for example, a halogen atom such as chlorine, bromine, iodine or the like, or a leaving group such as trifluoromethanesulfonyloxy group, wherein B 1 represents B by the operation such as deprotection. Represents a substituent which can be easily converted into
The halogenated aryl derivative (S21) and the uracil derivative (S15) are mixed in a solvent that does not adversely influence the reaction, such as DMSO, NMP, or DMF, for example, triethylamine, N, N-diisopropylethylamine, DBU, or the like. In the presence of a base, for example, a compound (S22) is synthesized by performing a coupling reaction using a metal catalyst such as copper (I) iodide, copper (I) bromide, or copper (I) chloride. Can do. The obtained compound (S22) and halide (S23) are treated with, for example, tris (di-acid) in the presence of zinc powder activated with, for example, iodine in a solvent that does not adversely affect the reaction such as DMF. Negishi coupling using a metal catalyst such as benzylideneacetone) dipalladium (0) and a ligand commonly used in organic synthesis such as 2-dicyclohexyl-2 ′, 6′-dimethoxybiphenyl (SPhos). By carrying out the reaction, an amino acid derivative (S16) can be synthesized. Subsequently, the amino acid derivative (S16) is subjected to deprotection such as acid hydrolysis using hydrochloric acid or trifluoroacetic acid or hydrogenolysis to produce the target carboxylic acid derivative (S17). be able to.
 以下の合成例、実施例及び試験例に基づいて本発明をより詳細に説明する。これらは本発明の好ましい実施態様であり、本発明は合成例、実施例、試験例により限定されるものではなく本発明の範囲を逸脱しない範囲で変化させてもよい。また、本発明において使用する試薬や装置、材料は特に言及されない限り、商業的に入手可能である The present invention will be described in more detail based on the following synthesis examples, examples and test examples. These are preferred embodiments of the present invention, and the present invention is not limited by the synthesis examples, examples and test examples, and may be changed without departing from the scope of the present invention. In addition, the reagents, devices, and materials used in the present invention are commercially available unless otherwise specified.
  共通中間体であるmethyl 4-amino-2,5-difluoro-benzoateは、特許文献(WO2013/161904)に記載の方法にて合成することができる。
Figure JPOXMLDOC01-appb-I000031
The common intermediate methyl 4-amino-2,5-difluoro-benzoate can be synthesized by the method described in the patent document (WO2013 / 161904).
Figure JPOXMLDOC01-appb-I000031
 以下に、実施例化合物の合成に使用される中間体の合成例を示す。
[合成例1]
4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000032
(工程1)
Methyl 2,5-difluoro-4-[(4-iodophenyl)sulfonylamino]benzoateの合成
Figure JPOXMLDOC01-appb-I000033
 Methyl 4-amino-2,5-difluoro-benzoate(3.0g,16.0mmоl)をピリジン(30ml)へ溶解し、4-iodobenzenesulfonyl chloride(12.1g,40.1mmоl)を加え、50℃で一晩撹拌した。減圧濃縮し、得られた残渣をアセトニトリルにてスラリー洗浄し、真空乾燥することで、methyl 4-[bis[(4-iodophenyl)sulfonyl]amino]-2,5-difluoro-benzoate(11.6g)を得た。THF(24mL)を加え、0℃に冷却し、1Mのテトラブチルアンモニウムフロリド/THF溶液(24mL)を加え、室温で1時間半撹拌した。飽和塩化アンモニウム水溶液を加え、減圧濃縮しTHFを除去した。酢酸エチルで希釈し、0.5Mの塩酸で4回、1Mの塩酸で1回洗浄し、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣を、ヘキサン/酢酸エチル=7:3でスラリー洗浄を行った。真空乾燥し、表題化合物を得た(5.9g,収率:82%)。
(工程2)
Methyl 2,5-difluoro-4-[(4-formylphenyl)sulfonylamino]benzoateの合成
Figure JPOXMLDOC01-appb-I000034
 (工程1)で得られた化合物(1.0g,2.2mmоl)をDMF(20mL)に溶解し、1,1’-ビス(ジフェニルホスフィノフェロセン)ジクロロパラジウム(II)(0.16g,0.22mmоl)を加え、アルゴン雰囲気下、70℃で10分撹拌した。室温に戻し、N,N-ジイソプロピルエチルアミン(1.1ml,6.6mmоl)とトリエチルシラン(0.88mL,5.5mmоl)を加え、一酸化炭素で置換した後、70℃で一晩撹拌した。減圧下溶媒を留去して得られた残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(0.53g,68%)。
(工程3)
4-[(2,5-difluoro-4-methoxycarbonyl-phenyl)sulfamoyl]benzoic acidの合成
Figure JPOXMLDOC01-appb-I000035
 (工程2)で得られた化合物(0.53g,1.5mmоl)にtert-ブチルアルコール(15.6ml)、水(3.7mL)を加え、2-メチル-2-ブテン(1.6ml,15mmоl)を加え、室温で撹拌した。水(4.5mL)に溶解させたリン酸水素ジナトリウム(1.1g,7.5mmоl)、水(4.5mL)に溶解させた亜塩素酸ナトリウム(0.41g,4.5mmоl)を順次加え、室温で一晩撹拌した。反応液を2Mの塩酸を用いてpH6程度に調整し、酢酸エチルを加え、抽出した。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、残渣をアセトニトリルにてスラリー洗浄を行うことで、表題化合物を得た(0.56g,quant.)。
(工程4)
4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoic acidの合成
Figure JPOXMLDOC01-appb-I000036
 (工程3)で得られた化合物(0.56g,1.5mmоl)、WSC塩酸塩(0.58g,3.0mmоl)、HOBt(0.20g,1.5mmоl)にDMF(1mL)、ジクロロメタン(5mL)を加え室温で2時間撹拌した。ジクロロメタンで希釈後、飽和食塩水を加え、ジクロロメタンと少量のメタノールを用いて抽出、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣を1,4-ジオキサン(4mL)に溶解し、2Mの水酸化リチウム水溶液(2.3mL)を加え、室温で一晩撹拌した。反応終了を確認後、1Mのトリフルオロ酢酸水溶液で中和し、減圧下溶媒を留去した。残渣を(工程2)と同様の方法にて精製し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(0.38g,61%)。
Below, the synthesis example of the intermediate body used for the synthesis | combination of an Example compound is shown.
[Synthesis Example 1]
4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000032
(Process 1)
Synthesis of Methyl 2,5-difluoro-4-[(4-iodophenyl) sulfonylamino] benzoate
Figure JPOXMLDOC01-appb-I000033
Methyl 4-amino-2,5-difluoro-benzoate (3.0 g, 16.0 mmol) was dissolved in pyridine (30 ml), 4-iodobenzenesulfonyl chloride (12.1 g, 40.1 mmol) was added, and the mixture was mixed at 50 ° C. Stir overnight. Concentrated under reduced pressure, and the resulting residue was slurry washed with acetonitrile and vacuum dried to give methyl 4- [bis [(4-iodophenyl) sulfonyl] amino] -2,5-difluoro-benzoate (11.6 g) Got. THF (24 mL) was added, cooled to 0 ° C., 1M tetrabutylammonium fluoride / THF solution (24 mL) was added, and the mixture was stirred at room temperature for 1.5 hours. Saturated aqueous ammonium chloride solution was added and concentrated under reduced pressure to remove THF. The mixture was diluted with ethyl acetate, washed 4 times with 0.5 M hydrochloric acid, once with 1 M hydrochloric acid, and washed with saturated brine. The extract was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The obtained residue was slurry-washed with hexane / ethyl acetate = 7: 3. Vacuum drying gave the title compound (5.9 g, yield: 82%).
(Process 2)
Synthesis of Methyl 2,5-difluoro-4-[(4-formylphenyl) sulfonylamino] benzoate
Figure JPOXMLDOC01-appb-I000034
The compound (1.0 g, 2.2 mmol) obtained in (Step 1) was dissolved in DMF (20 mL), and 1,1′-bis (diphenylphosphinoferrocene) dichloropalladium (II) (0.16 g, 0 .22 mmol) was added, and the mixture was stirred at 70 ° C. for 10 minutes under an argon atmosphere. After returning to room temperature, N, N-diisopropylethylamine (1.1 ml, 6.6 mmol) and triethylsilane (0.88 mL, 5.5 mmol) were added, and the mixture was replaced with carbon monoxide, followed by stirring at 70 ° C. overnight. The residue obtained by distilling off the solvent under reduced pressure was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid, The desired fraction was lyophilized to give the title compound (0.53 g, 68%).
(Process 3)
Synthesis of 4-[(2,5-difluoro-4-methoxycarbon-phenyl) sulfamoyl] benzoic acid
Figure JPOXMLDOC01-appb-I000035
To the compound obtained in (Step 2) (0.53 g, 1.5 mmol), tert-butyl alcohol (15.6 ml) and water (3.7 mL) were added, and 2-methyl-2-butene (1.6 ml, 15 mmol) was added and stirred at room temperature. Disodium hydrogen phosphate (1.1 g, 7.5 mmol) dissolved in water (4.5 mL) and sodium chlorite (0.41 g, 4.5 mmol) dissolved in water (4.5 mL) in this order In addition, the mixture was stirred overnight at room temperature. The reaction solution was adjusted to about pH 6 with 2M hydrochloric acid, and extracted with ethyl acetate. After washing with saturated brine and drying over anhydrous magnesium sulfate, the residue was slurry washed with acetonitrile to give the title compound (0.56 g, quant.).
(Process 4)
Synthesis of 4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000036
The compound obtained in (Step 3) (0.56 g, 1.5 mmol), WSC hydrochloride (0.58 g, 3.0 mmol), HOBt (0.20 g, 1.5 mmol), DMF (1 mL), dichloromethane ( 5 mL) was added and stirred at room temperature for 2 hours. After diluting with dichloromethane, saturated brine was added, extracted with dichloromethane and a small amount of methanol, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was dissolved in 1,4-dioxane (4 mL), 2M aqueous lithium hydroxide solution (2.3 mL) was added, and the mixture was stirred at room temperature overnight. After confirming the completion of the reaction, the reaction mixture was neutralized with 1M aqueous trifluoroacetic acid solution, and the solvent was distilled off under reduced pressure. The residue was purified in the same manner as in (Step 2), and the desired fraction was lyophilized to give the title compound (0.38 g, 61%).
 [合成例2]~[合成例8]、[合成例11]、[合成例13]、[合成例14]、[合成例20]、及び[合成例23]~[合成例26]の化合物は、[合成例1]の(工程3)で得られた化合物に対して、対応するアミン試薬を作用させることにより、[合成例1]の化合物と同様の方法にて合成することができる。 [Synthesis Example 2] to [Synthesis Example 8], [Synthesis Example 11], [Synthesis Example 13], [Synthesis Example 14], [Synthesis Example 20], and [Synthesis Example 23] to [Synthesis Example 26] Can be synthesized in the same manner as the compound of [Synthesis Example 1] by allowing the corresponding amine reagent to act on the compound obtained in (Step 3) of [Synthesis Example 1].
 [合成例2]
2,5-difluoro-4-[[4-(morpholine-4-carbonyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000037
[合成例3]
2,5-difluoro-4-[[4-(4-isopropylpiperazine-1-carbonyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000038
[合成例4]
4-[[4-(cyclopropylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000039
[合成例5]
2,5-difluoro-4-[[4-(methylcarbamoyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000040
[合成例6]
2,5-difluoro-4-[[4-(ethylcarbamoyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000041
[合成例7]
2,5-difluoro-4-[[4-(2-methoxyethylcarbamoyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000042
[合成例8]
2,5-difluoro-4-[[4-(2-morpholinoethylcarbamoyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000043
[Synthesis Example 2]
2,5-difluoro-4-[[[4- (morpholine-4-carbonyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000037
[Synthesis Example 3]
2,5-difluoro-4-[[4- (4-isopropylpiperazine-1-carbonyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000038
[Synthesis Example 4]
4-[[4- (cyclopropylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000039
[Synthesis Example 5]
2,5-difluoro-4-[[[4- (methylcarbamoyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000040
[Synthesis Example 6]
2,5-difluoro-4-[[[4- (ethylcarbamoyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000041
[Synthesis Example 7]
2,5-difluoro-4-[[[4- (2-methoxyethylcarbamoyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000042
[Synthesis Example 8]
2,5-difluoro-4-[[[4- (2-morpholinoethylcarbamoyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000043
 [合成例9]、[合成例10]、[合成例22]、及び[合成例27]の化合物は、[合成例1]の(工程1)において、Methyl 4-amino-2,5-difluoro-benzoateに対して、5-iodopyridine-2-sulfonyl chloride、又は6-iodopyridine-3-sulfonyl chlorideを作用させることで、[合成例1]の化合物と同様の方法にて合成することができる。 The compounds of [Synthesis Example 9], [Synthesis Example 10], [Synthesis Example 22], and [Synthesis Example 27] are methyl 4-amino-2, 5-difluoro in [Synthesis Example 1] (Step 1). It can be synthesized in the same manner as the compound of [Synthesis Example 1] by allowing 5-benzopyridin-2-sulfonyl chloride or 6-iodopyridine-3-sulfonyl chloride to act on -benzoate.
 [合成例9]
4-[[5-(tert-butylcarbamoyl)-2-pyridyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000044
[合成例10]
2,5-difluoro-4-[[5-(tetrahydropyran-4-ylcarbamoyl)-2-pyridyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000045
[合成例11]
2,5-difluoro-4-[[4-(tetrahydropyran-4-ylcarbamoyl)phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000046
[Synthesis Example 9]
4-[[5- (tert-butylcarbamoyl) -2-pyrylyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000044
[Synthesis Example 10]
2,5-difluoro-4-[[[5- (tetrahydropyran-4-ylcarbamoyl) -2-pyrylyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000045
[Synthesis Example 11]
2,5-difluoro-4-[[[4- (tetrahydropyran-4-ylcarbamoyl) phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000046
 [合成例12]
4-[[4-(tert-butylcarbamoyl)-3-methoxy-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000047
(工程1)
Methyl 4-[(4-bromo-3-methoxy-phenyl)sulfonylamino]-2,5-difluoro-benzoateの合成
Figure JPOXMLDOC01-appb-I000048
 Methyl 4-amino-2,5-difluoro-benzoate(1.5g,18.0mmоl)をピリジン(15ml)へ溶解し、4-bromo-3-methoxybenzenesulfonyl chloride(4.6g,16mmоl)を加え、室温で一晩撹拌した後、酢酸エチル(20ml)、及び水(50ml)を加えた。酢酸エチルにて2回抽出し、有機層を飽和塩化アンモニウム水溶液、及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をTHF(10mL)に溶解させ、0℃に冷却し、テトラブチルアンモニウムフロリド(3.0mL)を加え、室温で1時間半撹拌した。水(50ml)を加え、酢酸エチルにて3回抽出し、有機層を1Mの塩酸、及び飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣を、ジエチルエーテルでスラリー洗浄することにより、表題化合物を得た(2.0g,収率:57%)。
1H NMR (CDCl3, 300 MHz): δ 7.69-7.59 (m, 2H), 7.47-7.41 (m, 1H), 7.34-7.31 (m, 2H), 7.03 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H)
(工程2)
Methyl 4-[[4-(tert-butylcarbamoyl)-3-methoxy-phenyl]sulfonylamino]-2,5-difluoro-benzoateの合成
Figure JPOXMLDOC01-appb-I000049
 (工程1)で得られた化合物(0.10g,0.23mmоl)のDMSO溶液(0.90ml)に、水(0.10ml)、tert-ブチルイソシアニド(57mg,0.69mmоl)、炭酸セシウム(75mg,0.23mmоl)、及びビストリフェニルホスフィンジクロロパラジウム(II)(8.0mg,0.012mmоl)を順次加え、封管中、180℃で30分間撹拌した。室温まで冷却し、飽和塩化アンモニウム水溶液(30ml)を加えた。酢酸エチルで2回抽出し、有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、減圧濃縮した後、プレパラティブ薄層クロマトグラフィーにて精製することにより、表題化合物を得た(24mg,23%)。
1H NMR (DMSO-d6, 300 MHz): δ 11.12 (s, 1H), 7.86 (s, 1H), 7.69-7.64 (m, 2H), 7.51-7.46 (m, 2H), 7.33-7.2 (m, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 1.33 (s, 9H).
(工程3)
4-[[4-(tert-butylcarbamoyl)-3-methoxy-phenyl]sulfonylamino]-2,5-difluoro-benzoic acidの合成
Figure JPOXMLDOC01-appb-I000050
 (工程2)で得られた化合物(0.48g,1.1mmоl)のメタノール溶液(6.0ml)に、4Mの水酸化リチウム水溶液(2.0ml)を加え、室温で2時間撹拌した。塩酸を加え、pHを1.0から2.0に調製し、固体をろ取することにより、表題化合物を得た(0.42g,90%)。
1H NMR (DMSO-d6, 300 MHz): δ 11.07 (s, 1H), 7.87 (s, 1H), 7.67-7.61 (m, 2H), 7.50-7.46 (m, 2H), 7.28-7.24 (m, 1H), 3.87 (s, 3H), 1.33 (s, 9H).
[Synthesis Example 12]
4-[[4- (tert-butylcarbamoyl) -3-methoxy-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000047
(Process 1)
Synthesis of Methyl 4-[(4-bromo-3-methoxy-phenyl) sulfonylamino] -2,5-difluoro-benzoate
Figure JPOXMLDOC01-appb-I000048
Methyl 4-amino-2,5-difluoro-benzoate (1.5 g, 18.0 mmol) is dissolved in pyridine (15 ml), and 4-bromo-3-methoxybenzenesulfonyl chloride (4.6 g, 16 mmol) is added at room temperature. After stirring overnight, ethyl acetate (20 ml) and water (50 ml) were added. The mixture was extracted twice with ethyl acetate, and the organic layer was washed successively with a saturated aqueous ammonium chloride solution and saturated brine, and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the obtained residue was dissolved in THF (10 mL), cooled to 0 ° C., tetrabutylammonium fluoride (3.0 mL) was added, and the mixture was stirred at room temperature for 1.5 hours. Water (50 ml) was added, and the mixture was extracted 3 times with ethyl acetate. The organic layer was washed successively with 1M hydrochloric acid and saturated brine, and dried over anhydrous sodium sulfate. Concentration under reduced pressure, and the resulting residue was slurry washed with diethyl ether to give the title compound (2.0 g, yield: 57%).
1H NMR (CDCl 3 , 300 MHz): δ 7.69-7.59 (m, 2H), 7.47-7.41 (m, 1H), 7.34-7.31 (m, 2H), 7.03 (s, 1H), 3.93 (s, 3H ), 3.90 (s, 3H)
(Process 2)
Synthesis of Methyl 4-[[4- (tert-butylcarbamoyl) -3-methoxy-phenyl] sulfonylamino] -2,5-difluoro-benzoate
Figure JPOXMLDOC01-appb-I000049
In a DMSO solution (0.90 ml) of the compound (0.10 g, 0.23 mmol) obtained in (Step 1), water (0.10 ml), tert-butyl isocyanide (57 mg, 0.69 mmol), cesium carbonate ( 75 mg, 0.23 mmol) and bistriphenylphosphine dichloropalladium (II) (8.0 mg, 0.012 mmol) were sequentially added, and the mixture was stirred at 180 ° C. for 30 minutes in a sealed tube. Cool to room temperature and add saturated aqueous ammonium chloride (30 ml). The mixture was extracted twice with ethyl acetate, and the organic layer was washed with saturated brine. The extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by preparative thin layer chromatography to obtain the title compound (24 mg, 23%).
1H NMR (DMSO-d 6 , 300 MHz): δ 11.12 (s, 1H), 7.86 (s, 1H), 7.69-7.64 (m, 2H), 7.51-7.46 (m, 2H), 7.33-7.2 (m , 1H), 3.87 (s, 3H), 3.81 (s, 3H), 1.33 (s, 9H).
(Process 3)
Synthesis of 4-[[4- (tert-butylcarbamoyl) -3-methoxy-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000050
To a methanol solution (6.0 ml) of the compound (0.48 g, 1.1 mmol) obtained in (Step 2) was added 4M lithium hydroxide aqueous solution (2.0 ml), and the mixture was stirred at room temperature for 2 hours. Hydrochloric acid was added to adjust the pH to 1.0 to 2.0, and the solid was collected by filtration to give the title compound (0.42 g, 90%).
1H NMR (DMSO-d6, 300 MHz): δ 11.07 (s, 1H), 7.87 (s, 1H), 7.67-7.61 (m, 2H), 7.50-7.46 (m, 2H), 7.28-7.24 (m, 1H), 3.87 (s, 3H), 1.33 (s, 9H).
 [合成例13]
2,5-difluoro-4-[[4-[[1-(trifluoromethyl)cyclopropyl]carbamoyl]phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000051
[合成例14]
2,5-difluoro-4-[[4-[(2-hydroxy-1,1-dimethyl-ethyl)carbamoyl]phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000052
[Synthesis Example 13]
2,5-difluoro-4-[[4-[[1- (trifluoromethyl) cyclopropyl] carbamoyl] phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000051
[Synthesis Example 14]
2,5-difluoro-4-[[4-[(2-hydroxy-1,1-dimethyl-ethyl) carbamoyl] phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000052
 [合成例15]~[合成例18]の化合物は、[合成例12]の(工程1)において、Methyl 4-amino-2,5-difluoro-benzoateに対して、対応するアリールブロミド試薬を作用させることで、[合成例12]の化合物と同様の方法にて合成することができる。 The compounds of [Synthesis Example 15] to [Synthesis Example 18] have the corresponding aryl bromide reagent acting on Methyl 4-amino-2,5-difluoro-benzoate in (Step 1) of [Synthesis Example 12]. Can be synthesized in the same manner as the compound of [Synthesis Example 12].
 [合成例15]
4-[[4-(tert-butylcarbamoyl)-2-methyl-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000053
[合成例16]
4-[[4-(tert-butylcarbamoyl)-3-methyl-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000054
[合成例17]
4-[[4-(tert-butylcarbamoyl)-3-fluoro-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000055
[合成例18]
4-[[4-(tert-butylcarbamoyl)-2-methoxy-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000056
[Synthesis Example 15]
4-[[4- (tert-butylcarbamoyl) -2-methyl-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000053
[Synthesis Example 16]
4-[[4- (tert-butylcarbamoyl) -3-methyl-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000054
[Synthesis Example 17]
4-[[4- (tert-butylcarbamoyl) -3-fluoro-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000055
[Synthesis Example 18]
4-[[4- (tert-butylcarbamoyl) -2-methoxy-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000056
 [合成例19]
4-[[4-(tert-butylcarbamoyl)-3-hydroxy-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000057
 [合成例12]の(工程2)で得られた化合物(0.24g,0.54mmоl)のジクロロメタン溶液(3.0ml)に、1Mのトリブロモボラン/ジクロロメタン溶液(15ml)を加え、室温で18時間撹拌した。氷水を加え、室温で15分間撹拌した後、酢酸エチルで3回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣を酢酸エチル/ジエチルエーテル(3/1)でスラリー洗浄することにより、表題化合物を得た(85mg,37%)。
1H NMR (DMSO-d6, 300 MHz): δ 12.27 (s, 1H), 11.08 (s, 1H), 8.24 (s, 1H), 7.98-7.95 (m, 1H), 7.65-7.59 (m, 1H), 7.32-7.20 (m, 3H), 1.40 (s, 9H)
[合成例20]
4-[[4-[(1-cyanocyclopropyl)carbamoyl]phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000058
[Synthesis Example 19]
4-[[4- (tert-butylcarbamoyl) -3-hydroxy-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000057
A 1M tribromoborane / dichloromethane solution (15 ml) was added to a dichloromethane solution (3.0 ml) of the compound (0.24 g, 0.54 mmol) obtained in (Step 2) of [Synthesis Example 12], and at room temperature. Stir for 18 hours. Ice water was added, and the mixture was stirred at room temperature for 15 minutes, and then extracted with ethyl acetate three times. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was slurry washed with ethyl acetate / diethyl ether (3/1) to give the title compound (85 mg, 37%).
1H NMR (DMSO-d 6 , 300 MHz): δ 12.27 (s, 1H), 11.08 (s, 1H), 8.24 (s, 1H), 7.98-7.95 (m, 1H), 7.65-7.59 (m, 1H ), 7.32-7.20 (m, 3H), 1.40 (s, 9H)
[Synthesis Example 20]
4-[[4-[(1-Cyanocyclopropyl) carbamoyl] phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000058
 [合成例21]の化合物は、[合成例18]の化合物を用いることで、[合成例19]の化合物と同様の方法にて合成することができる。 The compound of [Synthesis Example 21] can be synthesized in the same manner as the compound of [Synthesis Example 19] by using the compound of [Synthesis Example 18].
[合成例21]
4-[[4-(tert-butylcarbamoyl)-2-hydroxy-phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000059
[合成例22]
4-[[6-(tert-butylcarbamoyl)-3-pyridyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000060
[合成例23]
4-[[4-[(2-cyano-1,1-dimethyl-ethyl)carbamoyl]phenyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000061
[合成例24]
2,5-difluoro-4-[[4-[[(1S)-1-(hydroxymethyl)-2-methyl-propyl]carbamoyl]phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000062
[合成例25]
2,5-difluoro-4-[[4-[[(1R)-1-(hydroxymethyl)-2-methyl-propyl]carbamoyl]phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000063
[合成例26]
2,5-difluoro-4-[[4-[[(1S)-1-(hydroxymethyl)-2,2-dimethyl-propyl]carbamoyl]phenyl]sulfonylamino]benzoic acid
Figure JPOXMLDOC01-appb-I000064
[合成例27]
4-[[5-[(1-cyanocyclopropyl)carbamoyl]-2-pyridyl]sulfonylamino]-2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000065
[Synthesis Example 21]
4-[[4- (tert-butylcarbamoyl) -2-hydroxy-phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000059
[Synthesis Example 22]
4-[[6- (tert-butylcarbamoyl) -3-pyrylyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000060
[Synthesis Example 23]
4-[[4-[(2-Cyano-1,1-dimethyl-ethyl) carbamoyl] phenyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000061
[Synthesis Example 24]
2,5-difluoro-4-[[4-[[(1S) -1- (hydroxymethyl) -2-methyl-propyyl] carbamoyl] phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000062
[Synthesis Example 25]
2,5-difluoro-4-[[4-[[(1R) -1- (hydroxymethyl) -2-methyl-propyyl] carbamoyl] phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000063
[Synthesis Example 26]
2,5-difluoro-4-[[4-[[(1S) -1- (hydroxymethyl) -2,2-dimethyl-propyyl] carbamoyl] phenyl] sulfonylamino] benzoic acid
Figure JPOXMLDOC01-appb-I000064
[Synthesis Example 27]
4-[[5-[(1-Cyanocyclopropyl) carbamoyl] -2-pyrylyl] sulfonylamino] -2,5-difluoro-benzoic acid
Figure JPOXMLDOC01-appb-I000065
 [合成例28]~[合成例30]、[合成例35]~[合成例37]、[合成例41]、及び[合成例45]の化合物は、特許文献(WO2013/161904)に記載の方法にて合成することができる。 The compounds of [Synthesis Example 28] to [Synthesis Example 30], [Synthesis Example 35] to [Synthesis Example 37], [Synthesis Example 41], and [Synthesis Example 45] are described in Patent Document (WO2013 / 161904). It can be synthesized by the method.
 [合成例28]
Methyl (2S)-2-amino-3-[4-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000066
[合成例29]
Methyl (2S)-2-amino-3-[6-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000067
[合成例30]
Methyl (2S)-2-amino-3-[4-(3-methyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000068
[Synthesis Example 28]
Methyl (2S) -2-amino-3- [4- (1-methyl-2,4-dioxo-pyrido [3,4-d] pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000066
[Synthesis Example 29]
Methyl (2S) -2-amino-3- [6- (1-methyl-2,4-dioxo-pyrido [3,4-d] pyrimidin-3-yl) -3-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000067
[Synthesis Example 30]
Methyl (2S) -2-amino-3- [4- (3-methyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000068
 [合成例31]
Methyl (2S)-2-amino-3-[4-(3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000069
(工程1)
Methyl (2S)-2-(tert-butoxycarbonylamino)-3-[4-(5,6-dimethyl-2,4-dioxo-1H-pyrimidin-3-yl)phenyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000070
 特許文献(WO2013/161904)に製法が記載されている[4-[(2S)-2-(tert-butoxycarbonylamino)-3-methoxy-3-oxo-propyl]phenyl]boronic acid(9.2g,29mmol)のジクロロメタン溶液(100ml)に、酢酸銅(5.2g,29mmol)、5,6-ジメチルウラシル(4.0g,29mmol)、及びトリエチルアミン(10ml)を順次加え、室温にて18時間撹拌した。反応溶液をセライトろ過し、減圧濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=5:1~1:1)にて精製することにより、表題化合物を得た(0.83g,7%)。
1H NMR (CDCl3, 400 MHz) δ 8.90 (s, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 5.06 (d, J = 8.7 Hz , 1H), 4.64-4.59 (m, 1H), 3.72 (s, 3H), 3.15 (d, J = 6.3 Hz, 2H), 2.16 (s, 3H), 1.95 (s, 3H), 1.44 (s, 9H).; MS (ESI) m/z 418[M+H]+
(工程2)
Methyl (2S)-2-(tert-butoxycarbonylamino)-3-[4-(3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000071
 (工程1)で得られた化合物(0.83g,2.0mmol)のDMF溶液(15ml)に、炭酸カリウム(0.85g,6.0mmol)、及びヨウ化メチル(0.4ml)を順次加え、室温にて1時間30分撹拌した。反応溶液を減圧濃縮し、水(20ml)、及び酢酸エチル(30ml)を加えた。酢酸エチルにて3回抽出し、有機層を硫酸ナトリウムで乾燥した後、減圧濃縮することにより、表題化合物を得た(0.64g,75%)。
1H NMR (CDCl3, 400 MHz) δ 8.02 (s, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 5.05 (d, J = 8.0 Hz , 1H), 4.63-4.58 (m, 1H), 3.71 (s, 3H), 3.47 (s, 3H), 3.13 (d, J = 6.0 Hz, 2H), 2.33 (s, 3H), 2.02 (s, 3H), 1.43 (s, 9H).; MS (ESI) m/z 432[M+H]+
(工程3)
Methyl (2S)-2-amino-3-[4-(3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000072
 (工程2)で得られた化合物(0.64g,1.5mmol)を4Mの塩酸/酢酸エチル溶液(40ml)に溶解させ、室温にて1時間撹拌した。反応溶液を減圧濃縮し、酢酸エチル(30ml)を加えた。室温にて30分撹拌した後、固体をろ取することにより、表題化合物の塩酸塩を得た(0.46g,93%)。
1H NMR (CD3OD, 400 MHz) δ 7.31 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 4.31-4.27 (m, 1H), 3.78 (s, 3H), 3.38 (s, 3H), 3.37-3.32 (m, 1H), 3.09-3.03 (m, 1H), 2.30 (s, 3H), 1.91 (s, 3H).; MS (ESI) m/z 332[M+H]+
[Synthesis Example 31]
Methyl (2S) -2-amino-3- [4- (3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000069
(Process 1)
Synthesis of Methyl (2S) -2- (tert-butoxycarbonylamino) -3- [4- (5,6-dimethyl-2,4-dioxo-1H-pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000070
The manufacturing method is described in a patent document (WO2013 / 161904) [4-[(2S) -2- (tert-butycarbonylamino) -3-methoxy-3-propoxy] phenyl] bornic acid (9.2 g, 29 mmol). ) In dichloromethane solution (100 ml), copper acetate (5.2 g, 29 mmol), 5,6-dimethyluracil (4.0 g, 29 mmol), and triethylamine (10 ml) were sequentially added and stirred at room temperature for 18 hours. The reaction solution was filtered through celite and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 5: 1 to 1: 1) to give the title compound (0.83 g, 7%).
1H NMR (CDCl 3 , 400 MHz) δ 8.90 (s, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 5.06 (d, J = 8.7 Hz, 1H), 4.64-4.59 (m, 1H), 3.72 (s, 3H), 3.15 (d, J = 6.3 Hz, 2H), 2.16 (s, 3H), 1.95 (s, 3H), 1.44 (s, 9H ) .; MS (ESI) m / z 418 [M + H] +
(Process 2)
Synthesis of Methyl (2S) -2- (tert-butoxycarbonylamino) -3- [4- (3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000071
To a DMF solution (15 ml) of the compound (0.83 g, 2.0 mmol) obtained in (Step 1), potassium carbonate (0.85 g, 6.0 mmol) and methyl iodide (0.4 ml) were sequentially added. The mixture was stirred at room temperature for 1 hour and 30 minutes. The reaction solution was concentrated under reduced pressure, and water (20 ml) and ethyl acetate (30 ml) were added. Extraction was performed three times with ethyl acetate, and the organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain the title compound (0.64 g, 75%).
1H NMR (CDCl 3 , 400 MHz) δ 8.02 (s, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 5.05 (d, J = 8.0 Hz, 1H), 4.63-4.58 (m, 1H), 3.71 (s, 3H), 3.47 (s, 3H), 3.13 (d, J = 6.0 Hz, 2H), 2.33 (s, 3H), 2.02 (s, 3H ), 1.43 (s, 9H) .; MS (ESI) m / z 432 [M + H] +
(Process 3)
Synthesis of Methyl (2S) -2-amino-3- [4- (3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000072
The compound (0.64 g, 1.5 mmol) obtained in (Step 2) was dissolved in 4M hydrochloric acid / ethyl acetate solution (40 ml) and stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, and ethyl acetate (30 ml) was added. After stirring at room temperature for 30 minutes, the solid was collected by filtration to give the hydrochloride of the title compound (0.46 g, 93%).
1H NMR (CD 3 OD, 400 MHz) δ 7.31 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 4.31-4.27 (m, 1H), 3.78 (s, 3H) , 3.38 (s, 3H), 3.37-3.32 (m, 1H), 3.09-3.03 (m, 1H), 2.30 (s, 3H), 1.91 (s, 3H) .; MS (ESI) m / z 332 [ M + H] +
[合成例32]
Methyl (2S)-2-amino-3-[6-(3-methyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000073
(工程1)
tert-butyl 3-benzoyl-2,4-dioxo-pyrimidine-1-carboxylateの合成
Figure JPOXMLDOC01-appb-I000074
 ウラシル(5.0g,45mmol)のアセトニトリル溶液(50ml)に、二炭酸ジ-tert-ブチル(10.2g,47mmol)、及び4-ジメチルアミノピリジン(55mg,0.45mmol)を順次加え、室温にて18時間撹拌した。反応溶液を減圧濃縮し、残渣を酢酸エチルにてスラリー洗浄した。得られた固体をジクロロメタン(50ml)に溶解させ、N,N-ジイソプロピルエチルアミン(7.9ml,45mmol)を加えた。氷冷下、ベンゾイルクロリド(5.3g,37mmol)を加え、室温にて12時間撹拌した。反応溶液に水を加え、ジクロロメタンにて2回抽出し、有機層を0.5Mの塩酸、及び飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮した後、残渣を酢酸エチルにてスラリー洗浄することにより、表題化合物を得た(9.4g,66%)。
1H NMR (400 MHz, DMSO-d6) δ 8.15 (dd, J = 8.5, 1.6 Hz, 1H), 8.11 - 8.04 (m, 2H), 7.87 - 7.76 (m, 1H), 7.68 - 7.56 (m, 2H), 5.98 (dd, J = 8.4, 1.7 Hz, 1H), 1.54 (d, J = 1.6 Hz, 9H) ; MS (ESI) m/z 317[M+H]+
(工程2)
3-benzoyl-1-methyl-pyrimidine-2,4-dioneの合成
Figure JPOXMLDOC01-appb-I000075
 (工程1)で得られた化合物(9.4g,30mmol)のジクロロメタン溶液(5.0ml)に、トリフルオロ酢酸(8.0ml)を加え、室温にて3時間撹拌した。反応溶液を減圧濃縮し、残渣をアセトニトリル(50ml)に溶解させた。炭酸カリウム(4.5g,33mmol)、及びヨウ化メチル(2.8ml,45mmol)を順次加え、室温にて12時間撹拌した。反応溶液に水(30ml)を加え、室温にて30分間撹拌した。固体をろ取することにより、表題化合物を得た(7.4g,quant.)。
 1H NMR (400 MHz, DMSO-d6) δ 7.96 (dd, J = 8.0, 1.3 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.83 - 7.72 (m, 1H), 7.60 (dd, J = 8.4, 7.2 Hz, 2H), 5.81 (dd, J = 7.9, 0.6 Hz, 1H), 3.32 (s, 3H) ; MS (ESI) m/z 231[M+H]+.
(工程3)
1-methyluracilの合成
Figure JPOXMLDOC01-appb-I000076
 (工程2)で得られた化合物(7.4g,30mmol)に、8Mのアンモニア/メタノール溶液(50ml)を加え、室温にて5時間撹拌した。固体をろ取した後(一番晶)、ろ液を減圧濃縮した。残渣を酢酸エチルにてスラリー洗浄し(二番晶)、得られた固体を集めることにより、表題化合物を得た(4.2g,quant.)。
1H NMR (400 MHz, DMSO-d6) δ 11.21 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 5.51 (d, J = 7.8 Hz, 1H), 3.22 (s, 3H) ; MS (ESI) m/z 127[M+H]+.
(工程4)
3-(5-bromo-2-pyridyl)-1-methyl-pyrimidine-2,4-dione、及び3-(5-iodo-2-pyridyl)-1-methyl-pyrimidine-2,4-dioneの混合物の合成
Figure JPOXMLDOC01-appb-I000077
 (工程3)で得られた化合物(0.22g,1.7mmol)のDMF溶液(5.0ml)に、5-ブロモ-2-ヨードピリジン(0.74g,2.6mmol)、ヨウ化銅(0.50g,2.6mmol)、及びトリエチルアミン(1.0ml,6.9mmol)を順次加え、140℃にて18時間撹拌した。反応溶液を室温まで冷却し、水(25ml)、及びジクロロメタン(25ml)を加えた。セライトろ過し、ジクロロメタンにて2回抽出した後、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥した後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製することにより、表題化合物の混合物(1:1)を得た(0.29g)。
(工程5)
Methyl (2S)-2-(tert-butoxycarbonylamino)-3-[6-(3-methyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000078
 亜鉛粉末(96mg,1.5mmol)をDMF(2.0ml)に懸濁させ、ヨウ素(26mg,0.10mmol)を加えた後、室温にて15分間撹拌した。methyl (2R)-2-(tert-butoxycarbonylamino)-3-iodo-propanoate(0.19g,0.59mmol)、及びヨウ素(26mg,0.10mmol)を順次加え、室温にて30分間撹拌した。
 別の容器に、(工程4)で得られた混合物(0.29g)を入れ、DMF(1.0ml)に溶解させた。トリス(ジベンジリデンアセトン)ジパラジウム(0)(22mg,0.024mmol)、SPhos(20mg,0.049mmol)を順次加え、10分間撹拌した。この混合溶液を先に調製した混合溶液に加え、脱気とアルゴン置換操作を3回行った後、60℃にて18時間撹拌した。反応溶液を室温まで冷却し、水(25ml)、及びジクロロメタン(25ml)を加えた。セライトろ過し、ジクロロメタンにて2回抽出した後、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥した後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製することにより、表題化合物を得た(0.21g)。
1H NMR (400 MHz, DMSO-d6) δ 8.42 (d, J = 2.3 Hz, 1H), 7.92 - 7.72 (m, 2H), 7.44 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 5.77 (d, J = 7.9 Hz, 1H), 4.35 - 4.20 (m, 1H), 3.64 (s, 3H), 3.31 (s, 3H), 3.11 (dd, J = 13.9, 4.8 Hz, 1H), 2.94 (dd, J = 14.1, 10.6 Hz, 1H), 1.34 (s, 9H) ; MS (ESI) m/z 405[M+H]+.
(工程6)
Methyl (2S)-2-amino-3-[6-(3-methyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000079
 (工程5)で得られた化合物(0.21g,0.52mmol)を1,4-ジオキサン(2.0ml)とメタノール(1.0ml)に溶解させた。4Mの塩酸/1,4-ジオキサン溶液(2.0ml)を加え、室温にて5時間撹拌した後、減圧濃縮することにより、表題化合物の塩酸塩を得た(0.18g,quant.)。
MS (ESI) m/z 305[M+H]+.
[Synthesis Example 32]
Methyl (2S) -2-amino-3- [6- (3-methyl-2,6-dioxo-pyrimidin-1-yl) -3-pyridine] propanoate
Figure JPOXMLDOC01-appb-I000073
(Process 1)
Synthesis of tert-butyl 3-benzoyl-2,4-dioxo-pyrimidine-1-carboxylate
Figure JPOXMLDOC01-appb-I000074
To an acetonitrile solution (50 ml) of uracil (5.0 g, 45 mmol), di-tert-butyl dicarbonate (10.2 g, 47 mmol) and 4-dimethylaminopyridine (55 mg, 0.45 mmol) were sequentially added and brought to room temperature. And stirred for 18 hours. The reaction solution was concentrated under reduced pressure, and the residue was slurry washed with ethyl acetate. The obtained solid was dissolved in dichloromethane (50 ml), and N, N-diisopropylethylamine (7.9 ml, 45 mmol) was added. Under ice-cooling, benzoyl chloride (5.3 g, 37 mmol) was added, and the mixture was stirred at room temperature for 12 hours. Water was added to the reaction solution, followed by extraction twice with dichloromethane. The organic layer was washed successively with 0.5M hydrochloric acid and a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was slurry washed with ethyl acetate to give the title compound (9.4 g, 66%).
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.15 (dd, J = 8.5, 1.6 Hz, 1H), 8.11-8.04 (m, 2H), 7.87-7.76 (m, 1H), 7.68-7.56 (m , 2H), 5.98 (dd, J = 8.4, 1.7 Hz, 1H), 1.54 (d, J = 1.6 Hz, 9H); MS (ESI) m / z 317 [M + H] +
(Process 2)
Synthesis of 3-benzoyl-1-methyl-pyrimidine-2,4-dione
Figure JPOXMLDOC01-appb-I000075
Trifluoroacetic acid (8.0 ml) was added to a dichloromethane solution (5.0 ml) of the compound (9.4 g, 30 mmol) obtained in (Step 1), and the mixture was stirred at room temperature for 3 hours. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in acetonitrile (50 ml). Potassium carbonate (4.5 g, 33 mmol) and methyl iodide (2.8 ml, 45 mmol) were sequentially added, and the mixture was stirred at room temperature for 12 hours. Water (30 ml) was added to the reaction solution, and the mixture was stirred at room temperature for 30 minutes. The title compound was obtained by filtering the solid (7.4 g, quant.).
1 H NMR (400 MHz, DMSO-d 6 ) δ 7.96 (dd, J = 8.0, 1.3 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.83-7.72 (m, 1H), 7.60 ( dd, J = 8.4, 7.2 Hz, 2H), 5.81 (dd, J = 7.9, 0.6 Hz, 1H), 3.32 (s, 3H); MS (ESI) m / z 231 [M + H] + .
(Process 3)
Synthesis of 1-methyluracil
Figure JPOXMLDOC01-appb-I000076
To the compound (7.4 g, 30 mmol) obtained in (Step 2), 8M ammonia / methanol solution (50 ml) was added and stirred at room temperature for 5 hours. After filtering the solid (first crystal), the filtrate was concentrated under reduced pressure. The residue was slurry washed with ethyl acetate (second crystal), and the resulting solid was collected to give the title compound (4.2 g, quant.).
1 H NMR (400 MHz, DMSO-d 6 ) δ 11.21 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 5.51 (d, J = 7.8 Hz, 1H), 3.22 (s, 3H) ; MS (ESI) m / z 127 [M + H] + .
(Process 4)
Mixtures of 3- (5-bromo-2-pyridyl) -1-methyl-pyrimidine-2,4-dione and 3- (5-iodo-2-pyridyl) -1-methyl-pyrimidine-2,4-dione Synthesis of
Figure JPOXMLDOC01-appb-I000077
To a DMF solution (5.0 ml) of the compound (0.22 g, 1.7 mmol) obtained in (Step 3), 5-bromo-2-iodopyridine (0.74 g, 2.6 mmol), copper iodide ( 0.50 g, 2.6 mmol) and triethylamine (1.0 ml, 6.9 mmol) were sequentially added, and the mixture was stirred at 140 ° C. for 18 hours. The reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the title compound mixture (1: 1) (0.29 g).
(Process 5)
Synthesis of Methyl (2S) -2- (tert-butycarbonylcarbonyl) -3- [6- (3-methyl-2,6-dioxo-pyrimidin-1-yl) -3-pyridine] propanoate
Figure JPOXMLDOC01-appb-I000078
Zinc powder (96 mg, 1.5 mmol) was suspended in DMF (2.0 ml), iodine (26 mg, 0.10 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. methyl (2R) -2- (tert-butycarbonylcarbonyl) -3-iodo-propanoate (0.19 g, 0.59 mmol) and iodine (26 mg, 0.10 mmol) were sequentially added, and the mixture was stirred at room temperature for 30 minutes.
In a separate container, the mixture (0.29 g) obtained in (Step 4) was placed and dissolved in DMF (1.0 ml). Tris (dibenzylideneacetone) dipalladium (0) (22 mg, 0.024 mmol) and SPhos (20 mg, 0.049 mmol) were sequentially added and stirred for 10 minutes. This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 18 hours. The reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the title compound (0.21 g).
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.42 (d, J = 2.3 Hz, 1H), 7.92-7.72 (m, 2H), 7.44 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 5.77 (d, J = 7.9 Hz, 1H), 4.35-4.20 (m, 1H), 3.64 (s, 3H), 3.31 (s, 3H), 3.11 (dd, J = 13.9 , 4.8 Hz, 1H), 2.94 (dd, J = 14.1, 10.6 Hz, 1H), 1.34 (s, 9H); MS (ESI) m / z 405 [M + H] + .
(Step 6)
Synthesis of Methyl (2S) -2-amino-3- [6- (3-methyl-2,6-dioxo-pyrimidin-1-yl) -3-pyridine] propanoate
Figure JPOXMLDOC01-appb-I000079
The compound (0.21 g, 0.52 mmol) obtained in (Step 5) was dissolved in 1,4-dioxane (2.0 ml) and methanol (1.0 ml). 4M Hydrochloric acid / 1,4-dioxane solution (2.0 ml) was added, and the mixture was stirred at room temperature for 5 hr, and concentrated under reduced pressure to give the hydrochloride of the title compound (0.18 g, quant.).
MS (ESI) m / z 305 [M + H] + .
 [合成例33]の化合物は、[合成例32]の(工程1)において、チミンを用いることにより、[合成例32]の化合物と同様の方法にて合成することができる。 The compound of [Synthesis Example 33] can be synthesized in the same manner as the compound of [Synthesis Example 32] by using thymine in (Step 1) of [Synthesis Example 32].
 [合成例33]
Isopropyl (2S)-2-amino-3-[6-(3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000080
1H NMR (400 MHz, DMSO-d6) δ 8.58 (s, 3H), 8.45 (d, J = 2.4 Hz, 1H), 7.87 (dd, J = 8.1, 2.4 Hz, 1H), 7.71 (d, J = 1.3 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 4.91 (p, J = 6.2 Hz, 1H), 4.40 (s, 1H), 3.29 (s, 3H), 3.24 (dd, J = 14.3, 5.9 Hz, 1H), 3.11 (dd, J = 14.3, 8.6 Hz, 1H), 1.83 (d, J = 1.0 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H) ; MS (ESI) m/z 437[M+H]+.
[Synthesis Example 33]
Isopropyl (2S) -2-amino-3- [6- (3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl) -3-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000080
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.58 (s, 3H), 8.45 (d, J = 2.4 Hz, 1H), 7.87 (dd, J = 8.1, 2.4 Hz, 1H), 7.71 (d, J = 1.3 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 4.91 (p, J = 6.2 Hz, 1H), 4.40 (s, 1H), 3.29 (s, 3H), 3.24 (dd, J = 14.3, 5.9 Hz, 1H), 3.11 (dd, J = 14.3, 8.6 Hz, 1H), 1.83 (d, J = 1.0 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H), 1.06 ( d, J = 6.2 Hz, 3H); MS (ESI) m / z 437 [M + H] + .
 [合成例34]の化合物は、[合成例31]の(工程1)において、6-(ethoxymethyl)-1H-pyrimidine-2,4-dioneを用いることにより、[合成例31]の化合物と同様の方法にて合成することができる。 The compound of [Synthesis Example 34] is the same as the compound of [Synthesis Example 31] by using 6- (ethoxymethyl) -1H-pyrimidine-2,4-dione in (Step 1) of [Synthesis Example 31]. It can synthesize | combine by the method of.
 [合成例34]
Methyl (2S)-2-amino-3-[4-[4-(ethoxymethyl)-3-methyl-2,6-dioxo-pyrimidin-1-yl]phenyl]propanoate
Figure JPOXMLDOC01-appb-I000081
MS (ESI) m/z 362[M+H]+.
[合成例35]
Methyl (2S)-2-amino-3-[5-(3-methyl-2,6-dioxo-pyrimidin-1-yl)-2-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000082
[合成例36]
Methyl (2S)-2-amino-3-[4-(3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000083
[合成例37]
Methyl (2S)-2-amino-3-[5-(3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl)-2-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000084
[Synthesis Example 34]
Methyl (2S) -2-amino-3- [4- [4- (ethoxymethyl) -3-methyl-2,6-dioxo-pyrimidin-1-yl] phenyl] propanoate
Figure JPOXMLDOC01-appb-I000081
MS (ESI) m / z 362 [M + H] + .
[Synthesis Example 35]
Methyl (2S) -2-amino-3- [5- (3-methyl-2,6-dioxo-pyrimidin-1-yl) -2-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000082
[Synthesis Example 36]
Methyl (2S) -2-amino-3- [4- (3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000083
[Synthesis Example 37]
Methyl (2S) -2-amino-3- [5- (3,5-dimethyl-2,6-dioxo-pyrimidin-1-yl) -2-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000084
[合成例38]
Isopropyl (2S)-2-amino-3-[4-(1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000085
(工程1)
Ethyl 1-benzyl-5-[(4-nitrophenoxy)carbonylamino]-3,6-dihydro-2H-pyridine-4-carboxylateの合成
Figure JPOXMLDOC01-appb-I000086
 Ethyl 1-benzyl-3-oxo-piperidine-4-carboxylateの塩酸塩(2.0g,6.7mmol)のエタノール溶液(20ml)に、酢酸アンモニウム(5.2g,67mmol)を加え、室温にて18時間撹拌した。反応溶液を減圧濃縮し、ジクロロメタンと飽和重層水を加えた。ジクロロメタンにて2回抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をジクロロメタン(50ml)に溶解させた。ピリジン(0.6ml)を加え、氷冷下、クロロギ酸4-ニトロフェニル(1.4g,6.7mmol)を加え、同温にて5時間撹拌した。反応溶液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、表題化合物を得た(0.49g,16%)。
(工程2)
Isopropyl (2S)-3-(4-aminophenyl)-2-(tert-butoxycarbonylamino)propanoateの合成
Figure JPOXMLDOC01-appb-I000087
(2S)-2-(tert-butoxycarbonylamino)-3-(4-nitrophenyl)propanoic acid(2g,6.4mmol)のDMF溶液(15ml)に、炭酸カリウム(3g,22mmol)、及び2-ヨードプロパン(2.0ml)を順次加え、室温にて18時間撹拌した。反応溶液に水を加え、酢酸エチルとヘキサンの混合溶液(1:1)で3回抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をメタノール(40ml)と水(4.0ml)に溶解させた。亜鉛粉末(3.5g,54mmol)、及び塩化アンモニウム(0.52g,9.7mmol)を順次加え、70℃にて1時間30分撹拌した。反応溶液をセライトろ過した後、減圧濃縮し、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物のトリフルオロ酢酸塩を得た。
(工程3)
isopropyl (2S)-3-[4-(7-benzyl-2,4-dioxo-1,5,6,8-tetrahydropyrido[3,4-d]pyrimidin-3-yl)phenyl]-2-(tert-butoxycarbonylamino)propanoateの合成
Figure JPOXMLDOC01-appb-I000088
 (工程1)で得られた化合物(0.49g,1.2mmol)の1,4-ジオキサン溶液(20ml)に、(工程2)で得られた化合物(0.50g,1.1mmol)、及びDBU(0.42ml)を順次加え、60℃にて18時間撹拌した。反応溶液を減圧濃縮し、酢酸エチルと水を加えた。酢酸エチルにて2回抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮した後、残渣をODSを充填剤とする逆相HPLCに付し、(工程2)と同様の方法にて精製することにより、表題化合物のトリフルオロ酢酸塩を得た(0.40g,51%)。
(工程4)
Isopropyl (2S)-3-[4-(7-benzyl-1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-7-ium-3-yl)phenyl]-2-(tert-butoxycarbonylamino)propanoateの合成
Figure JPOXMLDOC01-appb-I000089
 (工程3)で得られた化合物(0.40g,0.59mmol)のDMF溶液(3.5ml)に、炭酸カリウム(0.30g,2.2mmol)、及びヨウ化メチル(0.22ml,3.5mmol)を順次加え、室温にて3時間撹拌した。反応溶液を減圧濃縮した後、残渣をODSを充填剤とする逆相HPLCに付し、(工程2)と同様の方法にて精製することにより、表題化合物のトリフルオロ酢酸塩を得た(0.30g,71%)。
(工程5)
Isopropyl (2S)-2-amino-3-[4-(1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-3-yl)phenyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000090
  (工程4)で得られた化合物(0.30g,0.43mmol)のイソプロピルアルコール溶液(5.0ml)に、10%パラジウムカーボン(50mg)を加え、水素雰囲気下、室温にて18時間撹拌した。反応溶液をセライトろ過し、減圧濃縮した後、残渣を1,4-ジオキサン(2.0ml)とイソプロピルアルコール(1.0ml)に溶解させた。4Mの塩酸/1,4-ジオキサン溶液(2.0ml)を加え、室温にて5時間撹拌した後、減圧濃縮することにより、表題化合物の塩酸塩を得た(0.15g,74%)。
MS (ESI) m/z 401 [M+H]+
[Synthesis Example 38]
Isopropyl (2S) -2-amino-3- [4- (1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido [3,4-d] pyrimidin-3-yl) phenyl ] Propanoate
Figure JPOXMLDOC01-appb-I000085
(Process 1)
Synthesis of Ethyl 1-benzyl-5-[(4-nitrophenoxy) carbonylamino] -3,6-dihydro-2H-pyridine-4-carboxylate
Figure JPOXMLDOC01-appb-I000086
Ammonium acetate (5.2 g, 67 mmol) was added to an ethanol solution (20 ml) of hydrochloride of hydrochloride (2.0 g, 6.7 mmol) of Ethyl 1-benzyl-3-piperidine-4-carboxylate at room temperature, and 18% at room temperature. Stir for hours. The reaction solution was concentrated under reduced pressure, and dichloromethane and saturated multistory water were added. Extraction was performed twice with dichloromethane, and the organic layer was washed with a saturated aqueous sodium chloride solution. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure, and the residue was dissolved in dichloromethane (50 ml). Pyridine (0.6 ml) was added, and 4-nitrophenyl chloroformate (1.4 g, 6.7 mmol) was added under ice cooling, and the mixture was stirred at the same temperature for 5 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the title compound (0.49 g, 16%).
(Process 2)
Synthesis of Isopropyl (2S) -3- (4-aminophenyl) -2- (tert-butoxycarbonylamino) propanoate
Figure JPOXMLDOC01-appb-I000087
To a DMF solution (15 ml) of (2S) -2- (tert-butoxycarbonylamino) -3- (4-nitrophenyl) propanoic acid (2 g, 6.4 mmol), potassium carbonate (3 g, 22 mmol), and 2-iodopropane ( 2.0 ml) was sequentially added and stirred at room temperature for 18 hours. Water was added to the reaction solution, followed by extraction three times with a mixed solution of ethyl acetate and hexane (1: 1), and the organic layer was washed with a saturated aqueous sodium chloride solution. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was dissolved in methanol (40 ml) and water (4.0 ml). Zinc powder (3.5 g, 54 mmol) and ammonium chloride (0.52 g, 9.7 mmol) were sequentially added, and the mixture was stirred at 70 ° C. for 1 hour 30 minutes. The reaction solution was filtered through Celite and then concentrated under reduced pressure. The residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. The desired fraction was freeze-dried to obtain the trifluoroacetate salt of the title compound.
(Process 3)
isopropyl (2S) -3- [4- (7-benzyl-2,4-dioxo-1,5,6,8-tetrahydropyrido [3,4-d] pyrimidin-3-yl) phenyl] -2- (tert -Butoxycarbonylamino) propanoate synthesis
Figure JPOXMLDOC01-appb-I000088
To a 1,4-dioxane solution (20 ml) of the compound (0.49 g, 1.2 mmol) obtained in (Step 1), the compound (0.50 g, 1.1 mmol) obtained in (Step 2), and DBU (0.42 ml) was sequentially added and stirred at 60 ° C. for 18 hours. The reaction solution was concentrated under reduced pressure, and ethyl acetate and water were added. Extraction was performed twice with ethyl acetate, and the organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler and purified in the same manner as in (Step 2) to obtain the trifluoroacetate salt of the title compound (0.40 g, 51%).
(Process 4)
Isopropyl (2S) -3- [4- (7-benzyl-1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido [3,4-d] pyrimidin-7-ium-3 -Yl) phenyl] -2- (tert-butoxycarbonylamino) propanoate synthesis
Figure JPOXMLDOC01-appb-I000089
To a DMF solution (3.5 ml) of the compound (0.40 g, 0.59 mmol) obtained in (Step 3), potassium carbonate (0.30 g, 2.2 mmol) and methyl iodide (0.22 ml, 3 0.5 mmol) was added sequentially, and the mixture was stirred at room temperature for 3 hours. After the reaction solution was concentrated under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and purified by the same method as in (Step 2) to obtain the trifluoroacetate salt of the title compound (0 .30 g, 71%).
(Process 5)
Isopropyl (2S) -2-amino-3- [4- (1,7-dimethyl-2,4-dioxo-6,8-dihydro-5H-pyrido [3,4-d] pyrimidin-3-yl) phenyl ] Synthesis of propanoate
Figure JPOXMLDOC01-appb-I000090
10% palladium carbon (50 mg) was added to an isopropyl alcohol solution (5.0 ml) of the compound (0.30 g, 0.43 mmol) obtained in (Step 4), and the mixture was stirred at room temperature for 18 hours in a hydrogen atmosphere. . The reaction solution was filtered through Celite and concentrated under reduced pressure, and the residue was dissolved in 1,4-dioxane (2.0 ml) and isopropyl alcohol (1.0 ml). 4M Hydrochloric acid / 1,4-dioxane solution (2.0 ml) was added, and the mixture was stirred at room temperature for 5 hr, and concentrated under reduced pressure to give the hydrochloride of the title compound (0.15 g, 74%).
MS (ESI) m / z 401 [M + H] +
  [合成例39]、[合成例40]、[合成例42]、及び[合成例44]の化合物は、[合成例38]の(工程1)において、対応する1,2-ケトエステル試薬を用いることで、[合成例38]の化合物と同様の方法にて合成することができる。 For the compounds of [Synthesis Example 39], [Synthesis Example 40], [Synthesis Example 42], and [Synthesis Example 44], the corresponding 1,2-ketoester reagent is used in (Step 1) of [Synthesis Example 38]. Thus, it can be synthesized in the same manner as in the compound of [Synthesis Example 38].
 [合成例39]
Isopropyl (2S)-2-amino-3-[4-(1,6-dimethyl-2,4-dioxo-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000091
MS (ESI) m/z 401 [M+H]+
[合成例40]
Isopropyl (2S)-2-amino-3-[4-(1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000092
MS (ESI) m/z 386 [M+H]+
[Synthesis Example 39]
Isopropyl (2S) -2-amino-3- [4- (1,6-dimethyl-2,4-dioxo-7,8-dihydro-5H-pyrido [4,3-d] pyrimidin-3-yl) phenyl ] Propanoate
Figure JPOXMLDOC01-appb-I000091
MS (ESI) m / z 401 [M + H] +
[Synthesis Example 40]
Isopropyl (2S) -2-amino-3- [4- (1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000092
MS (ESI) m / z 386 [M + H] +
[合成例41]
Methyl (2S)-2-amino-3-[4-(3,4-dimethyl-2,6-dioxo-pyrimidin-1-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000093
[Synthesis Example 41]
Methyl (2S) -2-amino-3- [4- (3,4-dimethyl-2,6-dioxo-pyrimidin-1-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000093
 [合成例42]
Isopropyl (2S)-2-amino-3-[4-(1-methyl-2,4-dioxo-6,8-dihydro-5H-pyrano[3,4-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000094
MS (ESI) m/z 388 [M+H]+
[Synthesis Example 42]
Isopropyl (2S) -2-amino-3- [4- (1-methyl-2,4-dioxo-6,8-dihydro-5H-pyrano [3,4-d] pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000094
MS (ESI) m / z 388 [M + H] +
[合成例43]
Methyl (2S)-2-amino-3-[6-(1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-3-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000095
(工程1)
Ethyl 4-amino-3,6-dihydro-2H-pyran-5-carboxylateの合成
Figure JPOXMLDOC01-appb-I000096
  Ethyl 4-oxotetrahydropyran-3-carboxylate(0.54g,3.1mmol)のエタノール溶液(10ml)に、酢酸アンモニウム(2.4g,31mmol)を加え、60℃にて18時間撹拌した。反応溶液を減圧濃縮し、ジクロロメタンと飽和重層水を加えた。ジクロロメタンにて2回抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥した後、減圧濃縮することにより、表題化合物を得た(0.49g,quant.)。
(工程2)
1,5,7,8-tetrahydropyrano[4,3-d]pyrimidine-2,4-dioneの合成
Figure JPOXMLDOC01-appb-I000097
 (工程1)で得られた化合物(0.49g,3.1mmol)のアセトニトリル溶液(6.0ml)に、トリクロロアセチルイソシアネート(0.74ml,6.2mmol)を加え、室温にて30分間撹拌した。固体をろ取し、8Mのアンモニア/メタノール溶液(5.0ml)に懸濁させた。70℃にて18時間撹拌し、固体をろ取することにより、表題化合物を得た(0.30g,57%)。
(工程3)
3-(5-bromo-2-pyridyl)-1,5,7,8-tetrahydropyrano[4,3-d]pyrimidine-2,4-dioneの合成
Figure JPOXMLDOC01-appb-I000098
 (工程2)で得られた化合物(0.53g,3.2mmol)のアセトニトリル溶液(10.0ml)に、5-ブロモ-2-ヨードピリジン(1.1g,3.7mmol)、ヨウ化銅(0.30g,1.6mmol)、及びDBU(0.93ml,6.4mmol)を順次加え、70℃にて18時間撹拌した。反応溶液を室温まで冷却し、セライトろ過した後、減圧濃縮し、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(0.26g,26%)。
(工程4)
3-(5-bromo-2-pyridyl)-1-methyl-7,8-dihydro-5H-pyrano[4,3-d]pyrimidine-2,4-dioneの合成
 (工程3)で得られた化合物(0.26g,0.80mmol)のDMF溶液(2.0ml)に、炭酸カリウム(0.33g,2.4mmol)、及びヨウ化メチル(0.25ml)を順次加え、室温にて5時間撹拌した。反応溶液を減圧濃縮し、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(0.20g,74%)。
(工程5)
Methyl (2S)-2-(tert-butoxycarbonylamino)-3-[6-(1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-3-yl)-3-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000100
 亜鉛粉末(0.12g,1.8mmol)をDMF(2.0ml)に懸濁させ、ヨウ素(34mg,0.13mmol)を加えた後、室温にて15分間撹拌した。methyl (2R)-2-(tert-butoxycarbonylamino)-3-iodo-propanoate(0.23g,0.70mmol)、及びヨウ素(34mg,0.13mmol)を順次加え、室温にて30分間撹拌した。
 別の容器に、(工程4)で得られた化合物(0.20g,0.59mmol)を入れ、DMF(1.0ml)に溶解させた。トリス(ジベンジリデンアセトン)ジパラジウム(0)(14mg,0.015mmol)、SPhos(24mg,0.058mmol)を順次加え、10分間撹拌した。この混合溶液を先に調製した混合溶液に加え、脱気とアルゴン置換操作を3回行った後、60℃にて18時間撹拌した。反応溶液を室温まで冷却し、減圧濃縮した後、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(0.12g,45%)。
(工程6)
Methyl (2S)-2-amino-3-[6-(1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-3-yl)-3-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000101
 (工程5)で得られた化合物(0.12g,0.26mmol)を1,4-ジオキサン(1.0ml)とメタノール(1.0ml)に溶解させた。4Mの塩酸/1,4-ジオキサン溶液(1.0ml)を加え、室温にて5時間撹拌した後、減圧濃縮することにより、表題化合物の塩酸塩を得た(0.10g,quant.)。
MS (ESI) m/z 361 [M+H]+
[Synthesis Example 43]
Methyl (2S) -2-amino-3- [6- (1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano [4,3-d] pyrimidin-3-yl) -3- pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000095
(Process 1)
Synthesis of Ethyl 4-amino-3,6-dihydro-2H-pyran-5-carboxylate
Figure JPOXMLDOC01-appb-I000096
Ammonium acetate (2.4 g, 31 mmol) was added to an ethanol solution (10 ml) of ethyl 4-oxotetrahydropyran-3-carboxylate (0.54 g, 3.1 mmol), and the mixture was stirred at 60 ° C. for 18 hours. The reaction solution was concentrated under reduced pressure, and dichloromethane and saturated multistory water were added. Extraction was performed twice with dichloromethane, and the organic layer was washed with a saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the title compound was obtained by concentration under reduced pressure (0.49 g, quant.).
(Process 2)
Synthesis of 1,5,7,8-tetrahydropyrano [4,3-d] pyrimidine-2,4-dione
Figure JPOXMLDOC01-appb-I000097
Trichloroacetyl isocyanate (0.74 ml, 6.2 mmol) was added to an acetonitrile solution (6.0 ml) of the compound (0.49 g, 3.1 mmol) obtained in (Step 1), and the mixture was stirred at room temperature for 30 minutes. . The solid was collected by filtration and suspended in an 8M ammonia / methanol solution (5.0 ml). The mixture was stirred at 70 ° C. for 18 hours, and the solid was collected by filtration to give the title compound (0.30 g, 57%).
(Process 3)
Synthesis of 3- (5-bromo-2-pyridyl) -1,5,7,8-tetrahydropyrano [4,3-d] pyrimidine-2,4-dione
Figure JPOXMLDOC01-appb-I000098
To the acetonitrile solution (10.0 ml) of the compound (0.53 g, 3.2 mmol) obtained in (Step 2), 5-bromo-2-iodopyridine (1.1 g, 3.7 mmol), copper iodide ( 0.30 g, 1.6 mmol) and DBU (0.93 ml, 6.4 mmol) were sequentially added, and the mixture was stirred at 70 ° C. for 18 hours. The reaction solution was cooled to room temperature, filtered through celite, and concentrated under reduced pressure. The residue was subjected to reverse phase HPLC using ODS as a filler, and water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. The title compound was obtained by elution with a mixed solution and lyophilization of the desired fraction (0.26 g, 26%).
(Process 4)
Synthesis of 3- (5-bromo-2-pyridyl) -1-methyl-7,8-dihydro-5H-pyrano [4,3-d] pyrimidine-2,4-dione
To a DMF solution (2.0 ml) of the compound (0.26 g, 0.80 mmol) obtained in (Step 3), potassium carbonate (0.33 g, 2.4 mmol) and methyl iodide (0.25 ml) were added. Sequentially added and stirred at room temperature for 5 hours. The reaction solution was concentrated under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. Lyophilization gave the title compound (0.20 g, 74%).
(Process 5)
Methyl (2S) -2- (tert-butoxycarbonylamino) -3- [6- (1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano [4,3-d] pyrimidin-3-yl ) -3-pyridyl] propanoate synthesis
Figure JPOXMLDOC01-appb-I000100
Zinc powder (0.12 g, 1.8 mmol) was suspended in DMF (2.0 ml), iodine (34 mg, 0.13 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. methyl (2R) -2- (tert-butycarbonylcarbonyl) -3-iodo-propanoate (0.23 g, 0.70 mmol) and iodine (34 mg, 0.13 mmol) were sequentially added, and the mixture was stirred at room temperature for 30 minutes.
In a separate container, the compound obtained in (Step 4) (0.20 g, 0.59 mmol) was placed and dissolved in DMF (1.0 ml). Tris (dibenzylideneacetone) dipalladium (0) (14 mg, 0.015 mmol) and SPhos (24 mg, 0.058 mmol) were sequentially added and stirred for 10 minutes. This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 18 hours. After cooling the reaction solution to room temperature and concentrating under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and eluted with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. The desired fraction was lyophilized to give the title compound (0.12 g, 45%).
(Step 6)
Methyl (2S) -2-amino-3- [6- (1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano [4,3-d] pyrimidin-3-yl) -3- pyridyl] propanoate
Figure JPOXMLDOC01-appb-I000101
The compound obtained in (Step 5) (0.12 g, 0.26 mmol) was dissolved in 1,4-dioxane (1.0 ml) and methanol (1.0 ml). 4M Hydrochloric acid / 1,4-dioxane solution (1.0 ml) was added, and the mixture was stirred at room temperature for 5 hr, and concentrated under reduced pressure to give the hydrochloride of the title compound (0.10 g, quant.).
MS (ESI) m / z 361 [M + H] +
[合成例44]
Isopropyl (2S)-2-amino-3-[4-(1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000102
MS (ESI) m/z 388 [M+H]+
[合成例45]
Methyl (2S)-2-amino-3-[4-(6-methoxy-1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000103
[Synthesis Example 44]
Isopropyl (2S) -2-amino-3- [4- (1-methyl-2,4-dioxo-7,8-dihydro-5H-pyrano [4,3-d] pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000102
MS (ESI) m / z 388 [M + H] +
[Synthesis Example 45]
Methyl (2S) -2-amino-3- [4- (6-methoxy-1-methyl-2,4-dioxo-pyrido [3,4-d] pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000103
 [合成例46]、及び[合成例47]の化合物は、[合成例43]の(工程3)において、6-メチルウラシル、又は5,6-ジメチルウラシルを用いることにより、[合成例43]の化合物と同様の方法にて合成することができる。 The compound of [Synthesis Example 46] and [Synthesis Example 47] is obtained by using 6-methyluracil or 5,6-dimethyluracil in [Step 3] of [Synthesis Example 43]. It can be synthesized by a method similar to that of the compound.
 [合成例46]
Methyl (2S)-2-amino-3-[6-(3,4-dimethyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000104
MS (ESI) m/z 319 [M+H]+
[合成例47]
Methyl (2S)-2-amino-3-[6-(3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl)-3-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000105
MS (ESI) m/z 333 [M+H]+
[Synthesis Example 46]
Methyl (2S) -2-amino-3- [6- (3,4-dimethyl-2,6-dioxo-pyrimidin-1-yl) -3-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000104
MS (ESI) m / z 319 [M + H] +
[Synthesis Example 47]
Methyl (2S) -2-amino-3- [6- (3,4,5-trimethyl-2,6-dioxo-pyrimidin-1-yl) -3-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000105
MS (ESI) m / z 333 [M + H] +
[合成例48]
Isopropyl (2S)-2-amino-3-[5-(1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl)-2-pyridyl]propanoate
Figure JPOXMLDOC01-appb-I000106
(工程1)
Ethyl 2-[(4-nitrophenoxy)carbonylamino]cyclohexene-1-carboxylateの合成
Figure JPOXMLDOC01-appb-I000107
 Ethyl 2-oxocyclohexanecarboxylate(1.5mL,8.823mmol)をメタノール(90mL)に溶解した。その溶液に酢酸アンモニウム(6.80g,88.23mmol)を加えて60℃で14時間撹拌した。反応溶液の溶媒を減圧除去後、残渣に酢酸エチルを加えて有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、得られた有機層を無水硫酸ナトリウムで乾燥した。不溶物をろ過後、残渣をジクロロメタン(45mL)に溶解した。その溶液にピリジン(0.86mL,10.65mmol)を加えて0℃に冷却した後、(4-nitrophenyl) carbonochloridate(1.879g,9.322mmol)を加えて徐々に室温に戻しながら14時間撹拌した。反応溶液の溶媒を減圧除去後、得られた残渣をシリカゲルカラムクロマトグラフィー(SiO2, ヘキサン/酢酸エチル)を用いて精製することで表題化合物を淡黄色固体として得た(2.72g,94.0%)。
MS (ESI) m/z 335[M+H]+ 
(工程2)
3-(6-bromo-3-pyridyl)-5,6,7,8-tetrahydro-1H-quinazoline-2,4-dioneの合成
Figure JPOXMLDOC01-appb-I000108
 (工程1)で得られた化合物(1.47g,4.401mmol)を1,4-ジオキサン(45mL)に溶解し、6-bromopyridin-3-amine(0.795g,4.621mmol)と1,8-diazabicyclo[5.4.0]undec-7-ene(1.31mL,8.802mmol)を加えて、室温で17時間撹拌した。反応溶液の溶媒を減圧除去後、得られた残渣をODSを充填剤とする逆相HPLCに付し、[合成例1]の(工程2)と同様の方法にて精製することにより、表題化合物を得た(719mg,30.2%)。
MS (ESI) m/z 322[M+H]+
(工程3)
3-(6-bromo-3-pyridyl)-1-methyl-5,6,7,8-tetrahydroquinazoline-2,4-dioneの合成
Figure JPOXMLDOC01-appb-I000109
 (工程2)で得られた化合物(719mg,2.232mmol)をジメチルホルムアミド(8mL)に溶解し、炭酸カリウム(770mg,5.580mmol)とヨウ化メチル(207uL,3.348mmol)を加えて室温で3時間撹拌した。反応溶液に酢酸エチルを加えて、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。不溶物をろ過した後、溶媒を減圧除去することで残渣を得た。得られた残渣をODSを充填剤とする逆相HPLCに付し、[合成例1]の(工程2)と同様の方法にて精製することにより、表題化合物(269mg,35.9%)を得た。
MS (ESI) m/z 336[M+H]+
(工程4)
Isopropyl (2S)-2-(tert-butoxycarbonylamino)-3-[5-(1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl)-2-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000110
 亜鉛粉末(157mg,2.40mmol)をDMF(2.0ml)に懸濁させ、ヨウ素(46.3mg,0.18mmol)を加えた後、室温にて15分間撹拌した。Methyl (2R)-2-(tert-butoxycarbonylamino)-3-iodo-propanoate(269mg,0.801mmol)、及びヨウ素(46.3mg,0.18mmol)を順次加え、室温にて30分間撹拌した。
 別の容器に、(工程3)で得られた化合物(256mg、0.801mmol)を入れ、DMF(2.0ml)に溶解させた。トリス(ジベンジリデンアセトン)ジパラジウム(0)(18.3mg,0.020mmol)、SPhos(32.9mg,0.0801mmol)を順次加え、10分間撹拌した。この混合溶液を先に調製した混合溶液に加え、脱気とアルゴン置換操作を3回行った後、60℃にて15時間撹拌した。反応溶液を室温まで冷却し、水(25ml)、及びジクロロメタン(25ml)を加えた。セライトろ過し、ジクロロメタンにて2回抽出した後、有機層を飽和塩化ナトリウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥した後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製することにより、表題化合物を得た(223mg、57.3%)。
MS (ESI) m/z 487[M+H]+
(工程5)
Isopropyl (2S)-2-amino-3-[5-(1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl)-2-pyridyl]propanoate塩酸塩の合成
Figure JPOXMLDOC01-appb-I000111
 (工程4)で得られた化合物(223mg,0.459mmol)を酢酸エチル(3mL)に溶解した。その溶液に4N塩酸/酢酸エチル溶液(1.2mL)を加えて、室温で7時間撹拌した。溶媒を減圧除去した後、凍結乾燥することで表題化合物(219mg,quant.)を得た。
MS (ESI) m/z 387[M+H]+
[Synthesis Example 48]
Isopropyl (2S) -2-amino-3- [5- (1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl) -2-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000106
(Process 1)
Synthesis of Ethyl 2-[(4-nitrophenoxy) carbonyllamino] cyclohexene-1-carboxylate
Figure JPOXMLDOC01-appb-I000107
Ethyl 2-oxocyclohexane carbonate (1.5 mL, 8.823 mmol) was dissolved in methanol (90 mL). Ammonium acetate (6.80 g, 88.23 mmol) was added to the solution and stirred at 60 ° C. for 14 hours. After removing the solvent of the reaction solution under reduced pressure, ethyl acetate was added to the residue, the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, and the obtained organic layer was dried over anhydrous sodium sulfate. The insoluble material was filtered off, and the residue was dissolved in dichloromethane (45 mL). After adding pyridine (0.86 mL, 10.65 mmol) to the solution and cooling to 0 ° C., (4-nitrophenyl) carbonochloridate (1.879 g, 9.322 mmol) was added and stirred for 14 hours while gradually returning to room temperature. did. The solvent of the reaction solution was removed under reduced pressure, and the obtained residue was purified using silica gel column chromatography (SiO2, hexane / ethyl acetate) to give the title compound as a pale yellow solid (2.72 g, 94.0). %).
MS (ESI) m / z 335 [M + H] +
(Process 2)
Synthesis of 3- (6-bromo-3-pyridyl) -5,6,7,8-tetrahydro-1H-quinazoline-2,4-dione
Figure JPOXMLDOC01-appb-I000108
The compound obtained in (Step 1) (1.47 g, 4.401 mmol) was dissolved in 1,4-dioxane (45 mL), and 6-bromopyridin-3-amine (0.795 g, 4.621 mmol) and 1, 8-diazabiccyclo [5.4.0] undec-7-ene (1.31 mL, 8.802 mmol) was added, and the mixture was stirred at room temperature for 17 hours. After removing the solvent of the reaction solution under reduced pressure, the obtained residue was subjected to reverse phase HPLC using ODS as a filler and purified in the same manner as in (Synthesis Example 1) (Step 2) to give the title compound. (719 mg, 30.2%) was obtained.
MS (ESI) m / z 322 [M + H] +
(Process 3)
Synthesis of 3- (6-bromo-3-pyridyl) -1-methyl-5,6,7,8-tetrahydroquinazoline-2,4-dione
Figure JPOXMLDOC01-appb-I000109
The compound obtained in (Step 2) (719 mg, 2.232 mmol) is dissolved in dimethylformamide (8 mL), and potassium carbonate (770 mg, 5.580 mmol) and methyl iodide (207 uL, 3.348 mmol) are added to room temperature. For 3 hours. Ethyl acetate was added to the reaction solution, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After filtering the insoluble matter, the solvent was removed under reduced pressure to obtain a residue. The obtained residue was subjected to reverse phase HPLC using ODS as a filler and purified in the same manner as in (Synthesis Example 1) (Step 2) to give the title compound (269 mg, 35.9%). Obtained.
MS (ESI) m / z 336 [M + H] +
(Process 4)
Isopropyl (2S) -2- (tert-butyoxycarbonylamino) -3- [5- (1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl) -2-pyrylyl] propanoate Composition
Figure JPOXMLDOC01-appb-I000110
Zinc powder (157 mg, 2.40 mmol) was suspended in DMF (2.0 ml), iodine (46.3 mg, 0.18 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. Methyl (2R) -2- (tert-butycarbonylcarbonyl) -3-iodo-propanoate (269 mg, 0.801 mmol) and iodine (46.3 mg, 0.18 mmol) were sequentially added, and the mixture was stirred at room temperature for 30 minutes.
In a separate container, the compound obtained in (Step 3) (256 mg, 0.801 mmol) was placed and dissolved in DMF (2.0 ml). Tris (dibenzylideneacetone) dipalladium (0) (18.3 mg, 0.020 mmol) and SPhos (32.9 mg, 0.0801 mmol) were sequentially added and stirred for 10 minutes. This mixed solution was added to the previously prepared mixed solution, degassed and purged with argon three times, and then stirred at 60 ° C. for 15 hours. The reaction solution was cooled to room temperature, and water (25 ml) and dichloromethane (25 ml) were added. After filtration through celite and extraction twice with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution. The extract was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the title compound (223 mg, 57.3%).
MS (ESI) m / z 487 [M + H] +
(Process 5)
Synthesis of Isopropyl (2S) -2-amino-3- [5- (1-methyl-2,4-dioxo-5,6,7,8-tetrahydroquinazolin-3-yl) -2-pyrylyl] propanoate hydrochloride
Figure JPOXMLDOC01-appb-I000111
The compound obtained in (Step 4) (223 mg, 0.459 mmol) was dissolved in ethyl acetate (3 mL). A 4N hydrochloric acid / ethyl acetate solution (1.2 mL) was added to the solution, and the mixture was stirred at room temperature for 7 hours. After removing the solvent under reduced pressure, the title compound (219 mg, quant.) Was obtained by lyophilization.
MS (ESI) m / z 387 [M + H] +
[実施例1]
(2S)-2-[[4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoyl]amino]-3-[6-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)-3-pyridyl]propanoic acid
Figure JPOXMLDOC01-appb-I000112
(工程1)
Methyl (2S)-2-[[4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoyl]amino]-3-[6-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)-3-pyridyl]propanoateの合成
Figure JPOXMLDOC01-appb-I000113
 [合成例1]の化合物(40mg,0.097mmol)、及び[合成例29]の化合物の塩酸塩(42mg,0.11mmol)のDMF溶液(1.5ml)に、HATU(44mg,0.12mmol)、及びN,N-ジイソプロピルアミン(58μl,0.34mmol)を順次加え、室温にて5時間撹拌した。
減圧下濃縮し、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(47mg,67%)。
(工程2)
(2S)-2-[[4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoyl]amino]-3-[6-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)-3-pyridyl]propanoic acidの合成
Figure JPOXMLDOC01-appb-I000114
 (工程1)で得られた化合物(47mg,0.063mmol)の1,4-ジオキサン溶液(1.0ml)に、水(1.0ml)、及び1Mの水酸化ナトリウム水溶液(0.19ml)を順次加え、室温にて5時間撹拌した。1Mの塩酸を加えて中和し、減圧濃縮した後、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(40mg,87%)。
1H NMR (400 MHz, DMSO-d6) δ 10.92 (brs, 1H), 8.99 (s, 1H), 8.69 (dd, J = 8.1, 2.2 Hz, 1H), 8.57 (d, J = 5.0 Hz, 1H), 8.46 (d, J = 2.3 Hz, 1H), 8.02 (s, 1H), 7.97 - 7.81 (m, 6H), 7.40 (d, J = 8.0 Hz, 1H), 7.32 - 7.17 (m, 2H), 4.72 - 4.63 (m, 1H), 3.60 (s, 3H), 3.33 - 3.26 (m, 1H), 3.14 - 3.04 (m, 1H), 1.35 (s, 9H).; MS (ESI) m/z 736[M+H]+
[Example 1]
(2S) -2-[[4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoyl] amino] -3- [6- (1-methyl-2,4-dioxo -Pyrido [3,4-d] pyrimidin-3-yl) -3-pyrylyl] propanoic acid
Figure JPOXMLDOC01-appb-I000112
(Process 1)
Methyl (2S) -2-[[4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoyl] amino] -3- [6- (1-methyl-2,4- synthesis of dioxo-pyrido [3,4-d] pyrimidin-3-yl) -3-pyrylyl] propanoate
Figure JPOXMLDOC01-appb-I000113
In a DMF solution (1.5 ml) of the compound of [Synthesis Example 1] (40 mg, 0.097 mmol) and the hydrochloride of the compound of [Synthesis Example 29] (42 mg, 0.11 mmol), HATU (44 mg, 0.12 mmol) was added. ) And N, N-diisopropylamine (58 μl, 0.34 mmol) were sequentially added and stirred at room temperature for 5 hours.
Concentrate under reduced pressure, subject the residue to reverse phase HPLC using ODS as a filler, elute with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid, and freeze-dry the desired fraction. This gave the title compound (47 mg, 67%).
(Process 2)
(2S) -2-[[4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoyl] amino] -3- [6- (1-methyl-2,4-dioxo Synthesis of pyrido [3,4-d] pyrimidin-3-yl) -3-pyrylyl] propanoic acid
Figure JPOXMLDOC01-appb-I000114
To a 1,4-dioxane solution (1.0 ml) of the compound (47 mg, 0.063 mmol) obtained in (Step 1), water (1.0 ml) and 1M aqueous sodium hydroxide solution (0.19 ml) were added. Sequentially added and stirred at room temperature for 5 hours. After neutralizing with 1M hydrochloric acid and concentrating under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, and a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. And the desired fraction was lyophilized to give the title compound (40 mg, 87%).
1H NMR (400 MHz, DMSO-d6) δ 10.92 (brs, 1H), 8.99 (s, 1H), 8.69 (dd, J = 8.1, 2.2 Hz, 1H), 8.57 (d, J = 5.0 Hz, 1H) , 8.46 (d, J = 2.3 Hz, 1H), 8.02 (s, 1H), 7.97-7.81 (m, 6H), 7.40 (d, J = 8.0 Hz, 1H), 7.32-7.17 (m, 2H), 4.72-4.63 (m, 1H), 3.60 (s, 3H), 3.33-3.26 (m, 1H), 3.14-3.04 (m, 1H), 1.35 (s, 9H) .; MS (ESI) m / z 736 [M + H] +
 表1に示す化合物は、[合成例1]~[合成例27]から選択される、いずれかのカルボン酸中間体、及び[合成例28]~[合成例48]から選択される、いずれかのアミン中間体、又はその塩を用いることにより、[実施例1]の化合物と同様の方法にて合成することができる。
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
The compound shown in Table 1 is any one selected from [Synthesis Example 1] to [Synthesis Example 27], any carboxylic acid intermediate, and [Synthesis Example 28] to [Synthesis Example 48]. Can be synthesized in the same manner as the compound of [Example 1].
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
[実施例2]
Isopropyl (2S)-2-[[4-[[4-(tert-butylcarbamoyl)phenyl]sulfonylamino]-2,5-difluoro-benzoyl]amino]-3-[4-(1-methyl-2,4-dioxo-pyrido[3,4-d]pyrimidin-3-yl)phenyl]propanoate
Figure JPOXMLDOC01-appb-I000127
 A4(35mg,0.048mmol)のイソプロピルアルコール溶液(2.0mlに、4Mの塩酸/1,4-ジオキサン溶液(1.0ml)を加え、60℃にて5時間撹拌した。反応溶液を室温まで冷却し、減圧下濃縮した後、残渣をODSを充填剤とする逆相HPLCに付し、トリフルオロ酢酸0.1%(v/v)含有する水とアセトニトリルの混合溶液で溶出し、目的のフラクションを凍結乾燥することにより、表題化合物を得た(34g,91%)。
[Example 2]
Isopropyl (2S) -2-[[4-[[4- (tert-butylcarbamoyl) phenyl] sulfonylamino] -2,5-difluoro-benzoyl] amino] -3- [4- (1-methyl-2,4- dioxo-pyrido [3,4-d] pyrimidin-3-yl) phenyl] propanoate
Figure JPOXMLDOC01-appb-I000127
A solution of A4 (35 mg, 0.048 mmol) in isopropyl alcohol (2.0 ml was added with 4M hydrochloric acid / 1,4-dioxane solution (1.0 ml) and stirred for 5 hours at 60 ° C. The reaction solution was allowed to reach room temperature. After cooling and concentration under reduced pressure, the residue was subjected to reverse phase HPLC using ODS as a filler, eluting with a mixed solution of water and acetonitrile containing 0.1% (v / v) trifluoroacetic acid. Fractions were lyophilized to give the title compound (34 g, 91%).
 表2に示す化合物は、A1~A58から選択される、いずれかのスルホンアミド誘導体、及び対応するアルコール(イソプロピルアルコール、又はシクロヘキシルアルコール)を用いることにより、[実施例2]の化合物と同様の方法にて合成することができる。
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
The compound shown in Table 2 is a method similar to the compound of [Example 2] by using any sulfonamide derivative selected from A1 to A58 and the corresponding alcohol (isopropyl alcohol or cyclohexyl alcohol). Can be synthesized.
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
試験例1
(1)VCAM-1/α4β1インテグリン結合阻害活性評価試験
 α4β1インテグリンを発現していることが知られているヒトT細胞系細胞株JurkatのVCAM-1への結合を阻害する試験物質の能力を測定した。
 96ウェルのマイクロタイタープレートに、緩衝液A(炭酸緩衝液、pH9.6)で希釈した組み換えヒトVCAM-1/Fc(R&D systems)溶液(1μg/mL)を50μL/ウェル加え、4℃で一晩インキュベートした。PBSで1回洗浄後、ブロックエース(雪印乳業)を150μL/ウェル加え、室温で2時間インキュベートした。
除去後に、PBSで1回洗浄を実施した。
 結合緩衝液(40 mM HEPES、0.2% BSAおよび4 mM MnCl2を含むDMEM)で希釈した種々の濃度の試験物質及びJurkat細胞(2x106細胞/mL)を100 μLずつVCAM-1/Fcがコーティングされたプレートに添加し(5x105細胞/ウェル)、30℃で15分~30分間インキュベートした。細胞をウェルに結合させた後、PBSで洗浄することにより、結合していない細胞を除いた。プレートに緩衝液C(1.5% Triton X-100を含むPBS)を50 μL/ウェルで加え、結合したJurkat細胞を溶解した。細胞溶解液30 μLに、30 μLのSubstrate Buffer(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、室温、暗所で30分反応させた。各々30 μLのStop Solution(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、プレートリーダーを用いて490 nmの吸光度を測定した。ここで得られた吸光度は、各ウェルの上清に溶出したlactate dehydrogenase(LDH)活性を検出しているものであり、すなわちVCAM-1に結合してプレート上に残ったJurkat細胞の数に比例する。試験はduplicateで行い、試験物質を含まないウェルの吸光度を100%とした時の種々の濃度における細胞の結合率を求め、50%結合阻害をもたらす濃度IC50を計算した。得られた結果を、表3にまとめて示す。
Test example 1
(1) VCAM-1 / α4β1 integrin binding inhibitory activity evaluation test Measures the ability of a test substance to inhibit binding of human T cell line Jurkat, which is known to express α4β1 integrin, to VCAM-1 did.
To a 96-well microtiter plate, 50 μL / well of recombinant human VCAM-1 / Fc (R & D systems) solution (1 μg / mL) diluted with buffer A (carbonate buffer, pH 9.6) was added at 4 ° C. Incubated overnight. After washing once with PBS, Block Ace (Snow Brand Milk Products) was added at 150 μL / well and incubated at room temperature for 2 hours.
After removal, washing was performed once with PBS.
Various concentrations of test substances diluted in binding buffer (DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2 ) and Jurkat cells (2 × 10 6 cells / mL) were 100 μL each of VCAM-1 / Fc Was added to the coated plate (5 × 10 5 cells / well) and incubated at 30 ° C. for 15-30 minutes. After binding the cells to the wells, unbound cells were removed by washing with PBS. Buffer C (PBS containing 1.5% Triton X-100) was added to the plate at 50 μL / well to lyse the bound Jurkat cells. 30 μL of Substrate Buffer (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added to 30 μL of the cell lysate and allowed to react at room temperature in the dark for 30 minutes. 30 μL each of Stop Solution (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added, and the absorbance at 490 nm was measured using a plate reader. The absorbance obtained here was obtained by detecting lactate dehydrogenase (LDH) activity eluted in the supernatant of each well, that is, proportional to the number of Jurkat cells remaining on the plate after binding to VCAM-1. To do. The test was performed in duplicate, and the cell binding rate at various concentrations when the absorbance of wells not containing the test substance was taken as 100% was determined, and the concentration IC 50 that caused 50% binding inhibition was calculated. The results obtained are summarized in Table 3.
試験例2
(2)MAdCAM-1/α4β7インテグリン結合阻害活性評価試験
 α4β7インテグリンを発現していることが知られているヒトB細胞系細胞株RPMI-8866のMAdCAM-1への結合を阻害する試験物質の能力を測定した。
 96ウェルのマイクロタイタープレートに、緩衝液A(炭酸緩衝液、pH9.6)で希釈した組み換えマウスMAdCAM-1/Fc(R&D systems)溶液(1 μg/mL)を50 μL/ウェル加え、4℃で一晩インキュベートした。PBSで1回洗浄後、ブロックエース(雪印乳業)を150 μL/ウェル加え、室温で2時間インキュベートした。除去後に、PBSで1回洗浄を実施した。
 結合緩衝液(40 mM HEPES、0.2% BSAおよび4 mM MnCl2を含むDMEM)で希釈した種々の濃度の試験物質及びRPMI-8866細胞(2x106細胞/mL)を100 μLずつMAdCAM-1/Fcがコーティングされたプレートに添加し(5x105細胞/ウェル)、30℃で約60分間インキュベートした。細胞をウェルに結合させた後、PBSで洗浄することにより、結合していない細胞を除いた。プレートに緩衝液C(1.5% Triton X-100を含むPBS)を50 μL/ウェルで加え、結合したRPMI-8866細胞を溶解した。細胞溶解液30 μLに、30 μLのSubstrate Buffer(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、室温、暗所で30分反応させた。各々30 μLのStop Solution(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、プレートリーダーを用いて490 nmの吸光度を測定した。ここで得られた吸光度は、各ウェルの上清に溶出したlactate dehydrogenase(LDH)活性を検出しているものであり、すなわちMAdCAM-1に結合してプレート上に残ったRPMI-8866細胞の数に比例する。試験はduplicateで行い、試験物質を含まないウェルの吸光度を100%とした時の種々の濃度における細胞の結合率を求め、50%結合阻害をもたらす濃度IC50を計算した。得られた結果を、表3にまとめて示す。
Test example 2
(2) MAdCAM-1 / α4β7 integrin binding inhibitory activity evaluation test Ability of test substance to inhibit binding of human B cell line cell line RPMI-8866 known to express α4β7 integrin to MAdCAM-1 Was measured.
50 μL / well of a recombinant mouse MAdCAM-1 / Fc (R & D systems) solution (1 μg / mL) diluted with buffer A (carbonate buffer, pH 9.6) was added to a 96-well microtiter plate at 4 ° C. Incubated overnight. After washing once with PBS, Block Ace (Snow Brand Milk Products) was added at 150 μL / well and incubated at room temperature for 2 hours. After removal, washing was performed once with PBS.
Various concentrations of test substances diluted in binding buffer (DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2 ) and RPMI-8866 cells (2 × 10 6 cells / mL) in 100 μL MAdCAM-1 / Fc was added to the coated plate (5 × 10 5 cells / well) and incubated at 30 ° C. for about 60 minutes. After binding the cells to the wells, unbound cells were removed by washing with PBS. Buffer C (PBS containing 1.5% Triton X-100) was added to the plate at 50 μL / well to lyse bound RPMI-8866 cells. 30 μL of Substrate Buffer (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added to 30 μL of the cell lysate and allowed to react at room temperature in the dark for 30 minutes. 30 μL each of Stop Solution (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added, and the absorbance at 490 nm was measured using a plate reader. The absorbance obtained here was obtained by detecting the lactate dehydrogenase (LDH) activity eluted in the supernatant of each well, that is, the number of RPMI-8866 cells remaining on the plate after binding to MAdCAM-1. Is proportional to The test was performed in duplicate, and the cell binding rate at various concentrations when the absorbance of wells not containing the test substance was taken as 100% was determined, and the concentration IC 50 that caused 50% binding inhibition was calculated. The results obtained are summarized in Table 3.
試験例3
(3)血清存在下におけるMAdCAM-1/α4β7インテグリン結合阻害活性評価試験(1)
 α4β7インテグリンを発現していることが知られているヒトB細胞系細胞株RPMI-8866のMAdCAM-1への結合を阻害する試験物質の能力を測定した。
 96ウェルのマイクロタイタープレートに、緩衝液A(炭酸緩衝液、pH9.6)で希釈した組み換えマウスMAdCAM-1/Fc(R&D systems)溶液(1 μg/mL)を50 μL/ウェル加え、4℃で一晩インキュベートした。PBSで1回洗浄後、ブロックエース(雪印乳業)を150 μL/ウェル加え、室温で2時間インキュベートした。除去後に、PBSで1回洗浄を実施した。
 結合緩衝液(40 mM HEPES、0.2% BSAおよび4 mM MnCl2を含むDMEM)で希釈した種々の濃度の試験物質及びRPMI-8866細胞(2x106細胞/mL)を、最終濃度で50%ヒト血清を含むように、100 μLずつMAdCAM-1/Fcがコーティングされたプレートに添加し(7.5x105細胞/ウェル)、30℃で約60分間インキュベートした。細胞をウェルに結合させた後、PBSで洗浄することにより、結合していない細胞を除いた。プレートに緩衝液C(1.5% Triton X-100を含むPBS)を50 μL/ウェルで加え、結合したRPMI-8866細胞を溶解した。細胞溶解液30 μLに、30 μLのSubstrate Buffer(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、室温、暗所で30分反応させた。各々30 μLのStop Solution(Promega、CytoTox 96 Non-Radioactive Cytotoxicity Assay)を加え、プレートリーダーを用いて490 nmの吸光度を測定した。ここで得られた吸光度は、各ウェルの上清に溶出したlactate dehydrogenase(LDH)活性を検出しているものであり、すなわちMAdCAM-1に結合してプレート上に残ったRPMI-8866細胞の数に比例する。試験はduplicateで行い、試験物質を含まないウェルの吸光度を100%とした時の種々の濃度における細胞の結合率を求め、50%結合阻害をもたらす濃度IC50を計算した。得られた結果を、表3にまとめて示す。
Test example 3
(3) MAdCAM-1 / α4β7 integrin binding inhibitory activity evaluation test in the presence of serum (1)
The ability of test substances to inhibit binding of human B cell line cell line RPMI-8866, known to express α4β7 integrin, to MAdCAM-1 was determined.
50 μL / well of a recombinant mouse MAdCAM-1 / Fc (R & D systems) solution (1 μg / mL) diluted with buffer A (carbonate buffer, pH 9.6) was added to a 96-well microtiter plate at 4 ° C. Incubated overnight. After washing once with PBS, Block Ace (Snow Brand Milk Products) was added at 150 μL / well and incubated at room temperature for 2 hours. After removal, washing was performed once with PBS.
Various concentrations of test substances and RPMI-8866 cells (2 × 10 6 cells / mL) diluted in binding buffer (DMEM containing 40 mM HEPES, 0.2% BSA and 4 mM MnCl 2 ) were added at 50% final concentration. 100 μL each was added to a plate coated with MAdCAM-1 / Fc to contain human serum (7.5 × 10 5 cells / well) and incubated at 30 ° C. for about 60 minutes. After binding the cells to the wells, unbound cells were removed by washing with PBS. Buffer C (PBS containing 1.5% Triton X-100) was added to the plate at 50 μL / well to lyse bound RPMI-8866 cells. 30 μL of Substrate Buffer (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added to 30 μL of the cell lysate and allowed to react at room temperature in the dark for 30 minutes. 30 μL each of Stop Solution (Promega, CytoTox 96 Non-Radioactive Cytotoxicity Assay) was added, and the absorbance at 490 nm was measured using a plate reader. The absorbance obtained here was obtained by detecting the lactate dehydrogenase (LDH) activity eluted in the supernatant of each well, that is, the number of RPMI-8866 cells remaining on the plate after binding to MAdCAM-1. Is proportional to The test was performed in duplicate, and the cell binding rate at various concentrations when the absorbance of wells not containing the test substance was taken as 100% was determined, and the concentration IC 50 that caused 50% binding inhibition was calculated. The results obtained are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000138
 試験例(1)と試験例(2)の結果と比較した結果、本発明の化合物は、α4β1に対しては効果が低く、α4β7に対しては効果が高いという選択性が高いことが判った。このようにα4β1に対しては効果が低く、α4β7に対しては効果が高いという選択性が高いと、全身を廻るリンパ球の浸潤を抑制するα4β1に対する作用を少なくし、腸管に特異的に発現するα4β7に対する作用を大きく抑制できるので、適応疾患をより効率的に治療できるという利点がある。 As a result of comparison with the results of Test Example (1) and Test Example (2), it was found that the compound of the present invention has high selectivity such that the effect on α4β1 is low and the effect on α4β7 is high. . Thus, the high selectivity for α4β1 is low and the effect is high for α4β7 reduces the effect on α4β1 which suppresses the infiltration of lymphocytes around the whole body and is expressed specifically in the intestinal tract. Since the action on α4β7 can be greatly suppressed, there is an advantage that the adaptive disease can be treated more efficiently.
試験例4
(4)ヒト全血におけるMAdCAM-1/α4β7インテグリン結合阻害活性評価試験 試験物質によるヒト全血中におけるT細胞α4β7インテグリンとMAdCAM-1の結合阻害活性を測定した。血液サンプルは健康人ボランティアの血液提供により入手した。
 ヒト全血に、4mM MnCl2溶液と各種試験物質希釈液を添加し10分間インキュベートした。10μg/mLの組み換えマウスMAdCAM-1/Fc(R&D Systems)を添加し、全量50μLとして30分間インキュベートした。Lyse/Fix(BD Biosciences)を950μL添加し、37℃で10分間溶血及び固定した。5分間遠心分離後、上清を除き、10% 非働化ウシ胎仔血清添加RPMI-1640培地(以下、培地とする)を600μL添加し、5分間遠心分離後、上清を除き洗浄した。再び培地で洗浄後、0.625μg/mLのRat Anti-Mouse MAdCAM-1抗体(SouthernBiotech)を添加し、30分以上インキュベートした。培地で洗浄後、50μg/mLのGoat Anti-Rat IgG(H+L)Antibody, FITC(Life Technologies)を添加し、30分以上インキュベートした。培地で洗浄後、10μg/mLのPE Rat Anti-Mouse CD4(BD Pharmigen)を添加し、30分以上インキュベートした。培地で洗浄後、フローサイトメトリーを用いてCD4陽性細胞中に占めるMAdCAM-1陽性細胞率の割合を測定した。
 試験は異なる2~3人の血液を用いた独立した試験結果から、試験物質を含まないウェルのうちリガンド無しを阻害100%、リガンド有りを阻害0%としたときの種々の濃度における試験物質のMAdCAM-1結合阻害率を求め、50%結合阻害をもたらす濃度IC50を計算した。
Figure JPOXMLDOC01-appb-T000139
Test example 4
(4) MAdCAM-1 / α4β7 integrin binding inhibitory activity evaluation test in human whole blood The binding inhibitory activity of T cell α4β7 integrin and MAdCAM-1 in human whole blood was measured by a test substance. Blood samples were obtained by donating blood from healthy volunteers.
4 mM MnCl2 solution and various test substance dilutions were added to human whole blood and incubated for 10 minutes. 10 μg / mL recombinant mouse MAdCAM-1 / Fc (R & D Systems) was added and incubated for a total volume of 50 μL for 30 minutes. 950 μL of Lyse / Fix (BD Biosciences) was added, and hemolysis and fixation were performed at 37 ° C. for 10 minutes. After centrifugation for 5 minutes, the supernatant was removed, and 600 μL of 10% inactivated fetal bovine serum-added RPMI-1640 medium (hereinafter referred to as medium) was added. After centrifugation for 5 minutes, the supernatant was removed and washed. After washing with the medium again, 0.625 μg / mL Rat Anti-Mouse MAdCAM-1 antibody (Southern Biotech) was added and incubated for 30 minutes or more. After washing with the medium, 50 μg / mL Goat Anti-Rat IgG (H + L) Antibody, FITC (Life Technologies) was added and incubated for 30 minutes or more. After washing with the medium, 10 μg / mL PE Rat Anti-Mouse CD4 (BD Pharmigen) was added and incubated for 30 minutes or more. After washing with the medium, the ratio of the MAdCAM-1-positive cell ratio in the CD4-positive cells was measured using flow cytometry.
Tests are based on the results of independent tests using 2 to 3 different blood samples. From wells containing no test substance, the absence of ligand is 100% inhibition and the presence of ligand is 0% inhibition. The inhibition rate of MAdCAM-1 binding was determined and the concentration IC 50 resulting in 50% binding inhibition was calculated.
Figure JPOXMLDOC01-appb-T000139
試験例5
試験物質のマウス門脈移行濃度を測定し、経口吸収性を評価した。
試験物質を0.5%(w/v)メチルセルロース水溶液に溶解又は均一に懸濁させ、胃ゾンデを用いて雌性マウス(BALB/cAnNCrlCrlj、 7~9週齢)に3化合物(3mg/10mL/kg)をカセット経口投与した。
投与30分後にイソフルラン麻酔下にて開腹し、門脈からDDVP(エステラーゼ阻害剤)及びヘパリンナトリウムで処理したシリンジを用いて、約0.2mLを採血し、氷上で保管した。
採取した血液は冷却遠心機を用いて18,000 g x 3分間遠心分離することで血漿サンプルを取得し、アセトニトリルで試験物質を抽出後、LC/MS/MSにて血漿中濃度を定量した。
なお,血漿中濃度は試験物質とその活性代謝物を合算した濃度とした。算出した血漿中濃度を表5に示す。
Test Example 5
The mouse portal vein concentration of the test substance was measured and the oral absorbability was evaluated.
The test substance was dissolved or uniformly suspended in a 0.5% (w / v) aqueous solution of methylcellulose, and 3 compounds (3 mg / 10 mL / kg) were added to female mice (BALB / cAnNCrlCrlj, 7-9 weeks old) using a gastric tube. ) Was orally administered in a cassette.
30 minutes after administration, the abdomen was opened under isoflurane anesthesia, and about 0.2 mL of blood was collected from the portal vein using a syringe treated with DDVP (esterase inhibitor) and heparin sodium, and stored on ice.
The collected blood was centrifuged at 18,000 g × 3 minutes using a refrigerated centrifuge to obtain a plasma sample. After extracting the test substance with acetonitrile, the plasma concentration was quantified by LC / MS / MS.
The plasma concentration was the sum of the test substance and its active metabolite. The calculated plasma concentrations are shown in Table 5.
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000140

Claims (18)

  1.  下記一般式(I)で示されるスルホンアミド誘導体、又はその医薬的に許容しうる塩。
    Figure JPOXMLDOC01-appb-I000001
    (式中
    Figure JPOXMLDOC01-appb-I000002
    は、単結合、又は、二重結合を表し、
     R1及びR2は、それぞれ独立して、水素原子、ハロゲン原子、低級アルキル基、低級アルケニル基、低級アルコキシ基、低級アルコキシ低級アルキル基、ヒドロキシ基、又は、ヒドロキシ低級アルキル基を表し、R1とR2は結合して、置換基を有しても良いベンゼン環、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成しても良く、
     R3は、低級アルキル基を表し、
     e、f、g、及び、hは、それぞれ独立して、C-H、又は、窒素原子を表し、
     Bは、ヒドロキシ基、炭素数が1~10のアルコキシ基、-O-ヘテロ環基、シレキセチルオキシ基、又は、メドキソミルオキシ基を表し、
     Dは、置換基を有してもよい、ベンゼン環又はヘテロアリール環を表し、
     R4及びR5は、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、置換基を有しても良い低級アルケニル基、置換基を有しても良いフェニル基、又は、置換基を有しても良いヘテロ環基を表し、R4とR5は結合して、置換基を有しても良いヘテロ環を形成しても良い。)
    A sulfonamide derivative represented by the following general formula (I) or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-I000001
    (In the formula
    Figure JPOXMLDOC01-appb-I000002
    Represents a single bond or a double bond,
    R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a lower alkyl group, lower alkenyl group, a lower alkoxy group, a lower alkoxy-lower alkyl group, hydroxy group, or a hydroxy lower alkyl group, R 1 And R 2 are bonded to each other to form a benzene ring which may have a substituent, an alicyclic hydrocarbon having 4 to 7 carbon atoms which may have a substituent, or a heteroaryl ring which may have a substituent Or may form a heterocyclic ring which may have a substituent,
    R 3 represents a lower alkyl group,
    e, f, g, and h each independently represent C—H or a nitrogen atom;
    B represents a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, an —O-heterocyclic group, a cilexetyloxy group, or a medoxomiloxy group;
    D represents a benzene ring or a heteroaryl ring which may have a substituent,
    R 4 and R 5 are each independently a hydrogen atom, a lower alkyl group which may have a substituent, a lower alkenyl group which may have a substituent, a phenyl group which may have a substituent, Or it represents the heterocyclic group which may have a substituent, R < 4 > and R < 5 > may couple | bond together and it may form the heterocyclic ring which may have a substituent. )
  2. Figure JPOXMLDOC01-appb-I000003
    が二重結合を表す、請求項1に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
    Figure JPOXMLDOC01-appb-I000003
    The sulfonamide derivative according to claim 1, or a pharmaceutically acceptable salt thereof, wherein represents a double bond.
  3.  R1及びR2は結合して、置換基を有しても良いベンゼン環、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成し、該置換基が、低級アルキル基、低級アルコキシ基、ヒドロキシ低級アルキル基、アミノ基、低級アルキルアミノ基、及び、低級アルキルアミノ低級アルキル基から選ばれる、請求項1又は2に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 R 1 and R 2 are bonded to each other to form a benzene ring which may have a substituent, an alicyclic hydrocarbon having 4 to 7 carbon atoms which may have a substituent, or a hetero ring which may have a substituent. An aryl ring or a heterocyclic ring which may have a substituent is formed, and the substituent is a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and a lower alkylamino. The sulfonamide derivative according to claim 1 or 2, which is selected from lower alkyl groups, or a pharmaceutically acceptable salt thereof.
  4.  R1及びR2が、それぞれ独立して、水素原子、低級アルキル基、又は、低級アルコキシメチル基を表し、R1とR2は結合して、置換基を有しても良い炭素数4~7の脂環式炭化水素、置換基を有しても良いヘテロアリール環、又は、置換基を有しても良いヘテロ環を形成しても良く、該置換基が、低級アルキル基及び低級アルコキシ基から選ばれる、請求項1又は2に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, or a lower alkoxymethyl group, and R 1 and R 2 may be bonded to each other to have a substituent. 7 an alicyclic hydrocarbon, a heteroaryl ring which may have a substituent, or a heterocycle which may have a substituent may be formed, and the substituent may be a lower alkyl group and a lower alkoxy group. The sulfonamide derivative according to claim 1 or 2, which is selected from a group, or a pharmaceutically acceptable salt thereof.
  5.  R1及びR2が、それぞれ独立して、水素原子、低級アルキル基、又は、低級アルコキシメチル基を表す、請求項1又は2に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 The sulfonamide derivative according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, or a lower alkoxymethyl group. .
  6.  R1とR2が結合して、置換基を有しても良いシクロヘキセン、置換基を有しても良いピリジン、置換基を有しても良いジヒドロピラン、又は、置換基を有しても良いテトラヒドロピリジンを形成し、該置換基が、低級アルキル基、低級アルコキシ基、ヒドロキシ低級アルキル基、アミノ基、低級アルキルアミノ基、及び、低級アルキルアミノ低級アルキル基から選ばれる、請求項1又は2に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 R 1 and R 2 may be bonded to each other to have an optionally substituted cyclohexene, an optionally substituted pyridine, an optionally substituted dihydropyran, or an optionally substituted group. 3. A good tetrahydropyridine is formed, and the substituent is selected from a lower alkyl group, a lower alkoxy group, a hydroxy lower alkyl group, an amino group, a lower alkylamino group, and a lower alkylamino lower alkyl group. Or a pharmaceutically acceptable salt thereof.
  7.  eが窒素原子を表し、f、g、及び、hが、C-Hを表す、請求項1~6のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 The sulfonamide derivative according to any one of claims 1 to 6, or a pharmaceutically acceptable salt thereof, wherein e represents a nitrogen atom, and f, g, and h represent C—H.
  8.  Bが、ヒドロキシ基、又は、炭素数が1~6のアルコキシ基を表す、請求項1~7のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 The sulfonamide derivative according to any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, wherein B represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms.
  9.  Dの置換基が、ハロゲン原子、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、請求項1~8のいずれかに記載されたスルホンアミド誘導体、又は医薬的に許容しうる塩。 The sulfonamide derivative according to any one of claims 1 to 8, or a pharmaceutically acceptable salt, wherein the substituent of D is selected from a halogen atom, a lower alkyl group, a lower alkoxy group, and a hydroxy group.
  10.  Dが、置換基を有しても良いベンゼン環を表し、該置換基が、ハロゲン原子、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、請求項1~8のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 9. D represents an optionally substituted benzene ring, and the substituent is selected from a halogen atom, a lower alkyl group, a lower alkoxy group, and a hydroxy group. Sulfonamide derivatives, or pharmaceutically acceptable salts thereof.
  11.  R4及びR5が、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、置換基を有しても良い低級アルケニル基、置換基を有しても良いフェニル基、又は、置換基を有しても良いヘテロ環基を表し、該置換基が、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルキル基、低級アルコキシ基、トリフルオロメチル基、及び、ヘテロ環基から選ばれ、R4とR5は結合して、置換基を有しても良いヘテロ環基を形成しても良く、該置換基が、低級アルキル基、低級アルコキシ基、及び、ヒドロキシ基から選ばれる、請求項1~10のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 R 4 and R 5 are each independently a hydrogen atom, a lower alkyl group that may have a substituent, a lower alkenyl group that may have a substituent, a phenyl group that may have a substituent, Alternatively, it represents a heterocyclic group which may have a substituent, and the substituent is selected from a halogen atom, a cyano group, a hydroxy group, a lower alkyl group, a lower alkoxy group, a trifluoromethyl group, and a heterocyclic group. R 4 and R 5 may combine to form a heterocyclic group which may have a substituent, and the substituent is selected from a lower alkyl group, a lower alkoxy group and a hydroxy group The sulfonamide derivative according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
  12.  R4及びR5が、それぞれ独立して、水素原子、置換基を有しても良い低級アルキル基、又は、置換基を有しても良いヘテロ環基を表し、該置換基が、ハロゲン原子、シアノ基、ヒドロキシ基、低級アルコキシ基、トリフルオロメチル基、及び、ヘテロ環基から選ばれ、R4とR5は結合して、置換基として低級アルキル基を有しても良いヘテロ環基を形成しても良い、請求項1~10のいずれかに記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。 R 4 and R 5 each independently represents a hydrogen atom, a lower alkyl group which may have a substituent, or a heterocyclic group which may have a substituent, wherein the substituent is a halogen atom , A cyano group, a hydroxy group, a lower alkoxy group, a trifluoromethyl group, and a heterocyclic group, and R 4 and R 5 may be bonded to each other to have a lower alkyl group as a substituent. The sulfonamide derivative according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
  13.  R1及びR2は、それぞれ独立して、水素原子、低級アルキル基、低級アルコキシ基、又は低級アルコキシ低級アルキル基を表し、R1とR2は結合して、炭素数4~7の脂環式炭化水素、ヘテロアリール環、又は、低級アルキル基で置換されていてもよいヘテロ環を形成しても良く、
     Dは、ハロゲン原子、低級アルキル基、低級アルコキシ基及びヒドロキシ基からなる群から選ばれる置換基で置換されていてもよい、ベンゼン環又はヘテロアリール環を表し、 R4及びR5は、それぞれ独立して、水素原子、又は、低級アルコキシ基、ヘテロ環基、ヒドロキシ基、シアノ基及びハロゲン原子からなる群から選ばれる置換基を有しても良い低級アルキル基を表し、但し、R4とR5は結合して、低級アルキル基により置換されていてもよいヘテロ環基を形成しても良く、
     但し、
      Dがハロゲン原子で置換されたベンゼン環を表す場合、R1とR2はそれぞれ低級アルキル基を表し、
      Dが低級アルキル基、低級アルコキシ基又はヒドロキシ基を置換基として有するベンゼン環である場合、その置換基は、Sに結合した炭素原子に隣接する炭素原子でDに結合し、
      R4又はR5がヒドロキシ基で置換された低級アルキル基を表す場合、そのヒドロキシ基で置換された低級アルキル基は、下記式(a)又は(b)で表され、
    Figure JPOXMLDOC01-appb-I000004
      但し、R4又はR5が式(b)で表される場合、R1とR2はそれぞれ低級アルキル基を表し、
      R4又はR5がシアノ基で置換された低級アルキル基である場合、Dはベンゼン環を表す、請求項1に記載されたスルホンアミド誘導体、又はその医薬的に許容しうる塩。
    R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a lower alkoxy lower alkyl group, and R 1 and R 2 are bonded to form an alicyclic group having 4 to 7 carbon atoms. May form a hydrocarbon, heteroaryl ring, or heterocycle optionally substituted with a lower alkyl group,
    D represents a benzene ring or a heteroaryl ring which may be substituted with a substituent selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and a hydroxy group, and R 4 and R 5 are each independently Represents a hydrogen atom or a lower alkyl group which may have a substituent selected from the group consisting of a lower alkoxy group, a heterocyclic group, a hydroxy group, a cyano group and a halogen atom, provided that R 4 and R 4 5 may be bonded to form a heterocyclic group which may be substituted with a lower alkyl group;
    However,
    When D represents a benzene ring substituted with a halogen atom, R 1 and R 2 each represent a lower alkyl group,
    When D is a benzene ring having a lower alkyl group, a lower alkoxy group or a hydroxy group as a substituent, the substituent is bonded to D at a carbon atom adjacent to the carbon atom bonded to S;
    When R 4 or R 5 represents a lower alkyl group substituted with a hydroxy group, the lower alkyl group substituted with the hydroxy group is represented by the following formula (a) or (b):
    Figure JPOXMLDOC01-appb-I000004
    However, when R 4 or R 5 is represented by the formula (b), R 1 and R 2 each represent a lower alkyl group,
    The sulfonamide derivative according to claim 1, or a pharmaceutically acceptable salt thereof, wherein when R 4 or R 5 is a lower alkyl group substituted with a cyano group, D represents a benzene ring.
  14.  下記式で表される、請求項1に記載のスルホンアミド誘導体、又はその医薬的に許容しうる塩。
    Figure JPOXMLDOC01-appb-I000005
    (式中、R1、R2、R3、e、f、g、h及びBは、請求項1において定義したとおりである)
    The sulfonamide derivative according to claim 1, which is represented by the following formula, or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-I000005
    (Wherein R1, R2, R3, e, f, g, h and B are as defined in claim 1).
  15.  下記式で表される、請求項1に記載のスルホンアミド誘導体、又はその医薬的に許容しうる塩。
    Figure JPOXMLDOC01-appb-I000006
    (式中、Bは、請求項1において定義したとおりである)
    The sulfonamide derivative according to claim 1, which is represented by the following formula, or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-I000006
    (Wherein B is as defined in claim 1)
  16.  請求項1~15のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有する医薬組成物。 A pharmaceutical composition comprising the sulfonamide derivative according to any one of claims 1 to 15, or a pharmaceutically acceptable salt thereof.
  17.  請求項1~15のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有するα4β7インテグリン依存性の接着過程が病態に関与する炎症性疾患の治療剤又は予防剤。 A therapeutic or prophylactic agent for inflammatory diseases in which an α4β7 integrin-dependent adhesion process involving the sulfonamide derivative according to any one of claims 1 to 15 or a pharmaceutically acceptable salt thereof is involved in a disease state.
  18.  請求項1~15のいずれかに記載のスルホンアミド誘導体、又はその医薬的に許容し得る塩を含有するα4β7インテグリン阻害剤。 An α4β7 integrin inhibitor comprising the sulfonamide derivative according to any one of claims 1 to 15, or a pharmaceutically acceptable salt thereof.
PCT/JP2017/004277 2016-02-05 2017-02-06 INTEGRIN α4β7 INHIBITOR WO2017135471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021054 2016-02-05
JP2016021054 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135471A1 true WO2017135471A1 (en) 2017-08-10

Family

ID=59500425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004277 WO2017135471A1 (en) 2016-02-05 2017-02-06 INTEGRIN α4β7 INHIBITOR

Country Status (2)

Country Link
TW (1) TW201731824A (en)
WO (1) WO2017135471A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019147824A1 (en) 2018-01-26 2019-08-01 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a pde4 inhibitor
WO2019246455A1 (en) 2018-06-20 2019-12-26 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an integrin inhibitor
TWI717080B (en) * 2018-10-30 2021-01-21 美商基利科學股份有限公司 Imidazopyridine derivatives
WO2021030438A1 (en) * 2019-08-14 2021-02-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
WO2021174024A1 (en) 2020-02-28 2021-09-02 First Wave Bio, Inc. Methods of treating iatrogenic autoimmune colitis
US11116760B2 (en) 2018-10-30 2021-09-14 Gilead Sciences, Inc. Quinoline derivatives
US11179383B2 (en) 2018-10-30 2021-11-23 Gilead Sciences, Inc. Compounds for inhibition of α4β7 integrin
US11224600B2 (en) 2018-10-30 2022-01-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
WO2023058645A1 (en) * 2021-10-05 2023-04-13 Eaファーマ株式会社 Method for producing compound or pharmaceutically acceptable salt thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161904A1 (en) * 2012-04-24 2013-10-31 味の素株式会社 Sulfonamide derivative and medicinal use thereof
WO2015064580A1 (en) * 2013-10-29 2015-05-07 味の素株式会社 Sulfonamide derivative and medicinal use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161904A1 (en) * 2012-04-24 2013-10-31 味の素株式会社 Sulfonamide derivative and medicinal use thereof
WO2015064580A1 (en) * 2013-10-29 2015-05-07 味の素株式会社 Sulfonamide derivative and medicinal use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019147824A1 (en) 2018-01-26 2019-08-01 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with a pde4 inhibitor
WO2019246455A1 (en) 2018-06-20 2019-12-26 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an integrin inhibitor
TWI717080B (en) * 2018-10-30 2021-01-21 美商基利科學股份有限公司 Imidazopyridine derivatives
US11116760B2 (en) 2018-10-30 2021-09-14 Gilead Sciences, Inc. Quinoline derivatives
US11174256B2 (en) 2018-10-30 2021-11-16 Gilead Sciences, Inc. Imidazopyridine derivatives
US11179383B2 (en) 2018-10-30 2021-11-23 Gilead Sciences, Inc. Compounds for inhibition of α4β7 integrin
US11224600B2 (en) 2018-10-30 2022-01-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
WO2021030438A1 (en) * 2019-08-14 2021-02-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
JP2022543465A (en) * 2019-08-14 2022-10-12 ギリアード サイエンシーズ, インコーポレイテッド Compounds for inhibition of α4β7 integrin
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin
WO2021174024A1 (en) 2020-02-28 2021-09-02 First Wave Bio, Inc. Methods of treating iatrogenic autoimmune colitis
WO2023058645A1 (en) * 2021-10-05 2023-04-13 Eaファーマ株式会社 Method for producing compound or pharmaceutically acceptable salt thereof

Also Published As

Publication number Publication date
TW201731824A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
WO2017135471A1 (en) INTEGRIN α4β7 INHIBITOR
JP6820282B2 (en) Sulfonamide derivative and pharmaceutical composition containing it
US10919890B2 (en) Salts and pharmaceutical compositions thereof for the treatment of inflammatory disorders
JP6873433B2 (en) Imid modifiers for proteolysis and related uses
EP3490989B1 (en) Covalent inhibitors of pad4
US20080021024A1 (en) Metalloprotease inhibitors
KR101424013B1 (en) 1-(3-cyano-1-isopropyl-indol-5-yl)pyrazole-4-carboxylic acid crystalline form and the producing method thereof
KR101780140B1 (en) Bace inhibitors
EP3715341A1 (en) Halo-allylamine ssao/vap-1 inhibitor and use thereof
KR20160055190A (en) Spirocyclic compounds as tryptophan hydroxylase inhibitors
US9533989B2 (en) Substituted pyrimidine-5-carboxamides as spleen tyrosine kinase inhibitors
CN109651359B (en) Substituted nicotinamide compound, pharmaceutical composition and application thereof
KR20200051646A (en) AHR inhibitors and uses thereof
JP2019031449A (en) Sulfonamide derivative and pharmaceutical composition containing the same
KR20200010440A (en) Glucuronide Prodrug of Janus Kinase Inhibitor
JP2016037468A (en) Sulfonamide derivatives and pharmaceutical applications thereof
US10550125B2 (en) Prodrugs of imidazotriazine compounds as CK2 inhibitors
KR20240031347A (en) Azetidinyl pyrimidine and its uses
EP4079724A1 (en) Fused ring compound and application thereof
WO2001023363A1 (en) Sulfonamide derivatives
CN101809014A (en) Method for producing pyrazol-3-yl-benzamide derivative
WO2023185864A1 (en) Compounds for Targeted Degradation of KRAS
CN111559982B (en) 2- (2-substituted-4-hydroxypyrimidine-5-formamido) acetic acid compound and preparation method and application thereof
US20230026696A1 (en) Trpv4 receptor ligands
CN110494435B (en) Solid forms of azetidine derivatives, processes for their preparation and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP