WO2017135396A1 - Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法 - Google Patents

Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法 Download PDF

Info

Publication number
WO2017135396A1
WO2017135396A1 PCT/JP2017/003902 JP2017003902W WO2017135396A1 WO 2017135396 A1 WO2017135396 A1 WO 2017135396A1 JP 2017003902 W JP2017003902 W JP 2017003902W WO 2017135396 A1 WO2017135396 A1 WO 2017135396A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
probe set
probe
typing
gene
Prior art date
Application number
PCT/JP2017/003902
Other languages
English (en)
French (fr)
Inventor
一善 細道
猪子 英俊
敦 田嶋
逸朗 井ノ上
Original Assignee
ジェノダイブファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェノダイブファーマ株式会社 filed Critical ジェノダイブファーマ株式会社
Publication of WO2017135396A1 publication Critical patent/WO2017135396A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a novel probe set used in HLA genotyping using a sequence capture method. More specifically, it is possible to comprehensively capture HLA region genes, and at the same time include probes for HLA pseudogenes, enabling specific and efficient capture of HLA genes, and simultaneous typing of multiple samples. It relates to a probe set.
  • HLA Human leukocyte antigen
  • MHC major histocompatibility complex
  • HLA-A, HLA-B, HLA-C Class I molecules expressed in almost all cells and mainly expressed in cells of the immune system
  • Class II molecules HLA-DR, HLA-DQ, HLA-DP.
  • the gene region encoding HLA is located in human chromosome 6 short arm 6p21.3, class I region (HLA-A, HLA-C, HLA-B, etc.) from the telomere side toward the centromere side, Class III region, class II region (HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1, etc.) are arranged in this order, and many genes are encoded at very high density. The relationship between transplantation, blood transfusion, drug side effects and various diseases has been reported. There is no HLA gene in the class III region, and genes such as complement components and tumor necrosis factor (TNF) are present.
  • TNF tumor necrosis factor
  • HLA-DRB gene region encoding the ⁇ chain of the HLA-DR antigen.
  • pseudogenes such as HLA-DRB6 and HLA-DRB9 are located on the same chromosome in addition to HLA-DRB1.
  • HLA-DRB5 (DR51) gene and pseudogenes such as HLA-DRB6 and HLA-DRB9 are located on the same chromosome in addition to HLA-DRB1.
  • DR3 DR52
  • HLA-DRB2 HLA-DRB9
  • DR4 DR7 and DR9 types
  • pseudogenes such as HLA-DRB4 (DR53) gene
  • HLA-DRB7, HLA-DRB8 and HLA-DRB9 are located on the same chromosome.
  • DR8 type no HLA-DRB gene other than HLA-DRB1 is located on the same chromosome.
  • Each allele exon has a plurality of polymorphic regions, and the base sequence (amino acid sequence) of a polymorphic region is often common to a plurality of alleles. That is, each HLA allele is defined by a combination of multiple polymorphic regions. In the HLA class I antigen, exon 2 or exon 3 having the same base sequence as well as the polymorphic region in the exon may be common to a plurality of alleles. Recently, it is becoming clear that the 5 'terminal promoter / enhancer region, 5' UT region, 3 'UT region, intron, and the like of the HLA gene have many functional polymorphisms related to transcriptional regulation. There are many pseudo-HLA genes with defects in these gene structures in the HLA region, but whether these pseudo-genes are simply the remnants of genes that have no biological function or have some biological function. Is not clear.
  • HLA has an extremely high number of alleles due to the presence of advanced polymorphisms.
  • DNA typing to determine HLA allele is not only related to the matching of histocompatibility between donor and recipient at the time of transplantation, but also protects and severely affects lifestyle-related diseases, autoimmune diseases, cancer, and viral infections. There are also reports that correlate with chemical side effects and drug side effects.
  • Non-Patent Document 1 discloses that specific HLA alleles involved in disease development or are non-HLA genes in strong linkage disequilibrium with specific HLA alleles involved? Often unknown. This is considered to be caused by the fact that the entire picture of the HLA genomic region is unclear.
  • NGS Next Generation Sequencer
  • This DNA typing method by NGS is based on the positional relationship of multiple polymorphic cis-trans, which is a problem in the conventional PCR-SSO (Sequence Specific Oligonucleotide) -Luminex method and PCR-SBT (Sanga method-based Sequence Based Typing) method. Since it cannot be determined accurately, so-called phase ambiguity does not occur, and polymorphisms in the intron region and promoter region can be detected, so the gene structure is the same as other expressed HLA genes, but the expression is It has the advantage of being able to detect a null allele that is suppressed, and of being able to type many samples at once.
  • the RCR method which is essential in these conventional methods including the NGS method, involves misbase incorporation by DNA polymerase during PCR amplification, and DNA extension is transferred from other chromosomes (for example, from maternally derived chromosomes to paternally derived chromosomes). ) And the production of chimeric molecules by switching to other genes with high homology, and the phenomenon that specific alleles are not amplified due to polymorphisms in the genomic region corresponding to PCR primers (allelic drops) .
  • One of the objects of the present invention is to develop an accurate HLA typing that replaces the PCR method, which has various problems that cause such an HLA typing error.
  • the sequence capture method in which DNA from a sample is made into a library, and then the DNA fragments derived from the HLA gene are selectively concentrated and PCR amplified with a small number of cycles, is difficult to solve the conventional PCR method. Is effective as a method for selectively concentrating a plurality of HLA genes.
  • the probes used in the conventional sequence capture method for example, it is difficult to comprehensively type gene loci existing in the HLA region and simultaneously type multiple samples.
  • an object of the present invention is to design a novel probe set specialized in the HLA region that can overcome the HLA typing error in the PCR method as described above and the disadvantages of the conventional sequence capture method.
  • a further object of the present invention is to provide a typing method that can simultaneously process multiple specimens and comprehensively capture genes in the HLA region by using the probe set.
  • Another object of the typing method of the present invention is to enable precise typing that enables specific and efficient capture of each HLA gene by including a probe for an HLA pseudogene in the probe set.
  • the present inventors have conducted intensive research, and as a result, 355 oligonucleotides having a base sequence specific to 37 HLA genes or HLA-like genes in the HLA region, which will be described in detail below. It was found that 37 HLA genes or base sequences of HLA-like genes can be determined simultaneously for multiple specimens by using a probe set consisting of, and the present invention was completed. That is, the present invention provides a probe set for HLA genotyping comprising oligonucleotides each having the base sequence shown in SEQ ID NOs: 1 to 355. Furthermore, the present invention provides a method for typing an HLA gene using the probe set.
  • the probe set of the present invention also includes probes designed for pseudogenes (hereinafter referred to as “pseudoprobes”). By appropriately removing DNA fragments bound to the pseudoprobes, important HLA genes can be efficiently used. Typing.
  • the probe of the present invention comprises 32 genes contained in the HLA region (HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA -DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6, HLA-DRB7, HLA-DRB8, HLA-DRB9, HLA-E , HLA-F, HLA-G, HLA-H, HLA-J, HLA-K, HLA-L, HLA-V, HLA-Y,
  • Each HLA gene in the reference sequence HG19 / GRCh37 of the human genome is present in the region described in Table 1 below, and it is common to design a probe that covers that region.
  • each of the above regions includes a region where it is difficult to design an effective probe due to the presence of repeat sequences and GC, and it is necessary to design a probe based on a sequence that is somewhat unique.
  • 333 novel probes effective for specifically capturing each gene were designed based on the regions shown in Table 2 below, based on the regions described in Table 1 above.
  • the probe design start position and probe design end position in Table 2 indicate positions in the reference sequence (HG19 / GRCh37).
  • the base sequences shown in Tables 3 to 8 are synthetic sequences prepared by selecting a majority base from the allele base sequences of HLA genes registered so far and making them all intermediate. By adding probes designed based on these sequences, it is possible to prevent a decrease in capture efficiency in a sample having an HLA genotype having a large difference from the reference sequence, and to obtain a stable sequence yield.
  • each probe of the present invention is basically based on the nucleotide sequence shown in SEQ ID NO: 1 to 355, but one to several (for example, within 10%, preferably within 5%, more preferably within the total length of the probe) 3% or less, more preferably 1% or less) may have a base sequence substituted, deleted, or inserted. However, it is limited to those that exhibit the probe function intended in the present invention.
  • the probe set according to the present invention includes probes consisting of 355 oligonucleotides including 333 probes designed based on the reference sequence and 22 additional probes designed based on the customized sequence.
  • Each probe has a base sequence shown in SEQ ID NOs: 1 to 355.
  • the reason for including many pseudo HLA gene probes is to enable typing of the pseudo HLA gene and to capture the expressed HLA gene specifically and efficiently.
  • the present invention provides an HLA gene typing method including sequence capture using the above probe set.
  • An outline of a typing method using the sequence capture method is shown in FIG. Specifically, the method includes the following steps. (1) A step of fragmenting DNA contained in a sample obtained from a subject. (2) A step of mixing and hybridizing the DNA fragment fragmented in the step (1) with the probe set of the present invention. (3) A step of concentrating the DNA fragment hybridized with the probe. (4) A step of detaching the probe from the concentrated DNA fragment and sequencing the obtained DNA fragment.
  • the step of fragmenting DNA contained in a sample obtained from a subject is performed using a conventional method in this field. Both ends of the fragmented DNA are smoothed as necessary, and preferably an adapter containing a unique index for each subject (specimen) is ligated.
  • each probe included in the probe set needs to be attached with a label capable of binding to a label carried on a separation carrier such as beads in a subsequent concentration step.
  • Biotin is preferably used as the substance for labeling the probe.
  • the DNA fragment hybridized with the probe is concentrated by binding to a separation carrier.
  • a separation carrier when the probe is labeled with biotin, magnetic beads having streptavidin immobilized on the surface are preferably used.
  • the DNA fragment hybridized with the probe is immobilized on the surface of the carrier for separation (magnetic beads) by interaction with biotin and streptavidin, and the target DNA fragments are concentrated by adsorbing the magnetic beads to a magnet.
  • DNA fragments that have not hybridized with the probe are removed by washing.
  • the concentrated DNA fragment and the probe are desorbed using a conventional method.
  • the desorbed DNA fragment is subjected to PCR amplification as necessary, and the base sequence is determined using a sequence analyzer or the like. Thereafter, data analysis or mapping based on the base sequence information is performed as necessary.
  • 355 probes SEQ ID NOs: 1 to 355 were designed and synthesized.
  • the target DNA was concentrated by the sequence capture method, the probes were desorbed, and then sequenced using NGS.
  • Tables 10 to 29 below. Although all HLA loci were capable of typing up to the 4th section (8 digits) level, the information on the reference sequence for many alleles was poor, and the 3rd section (6 digits) level or the 2nd section Since only names up to (4 digits) level are shown, Tables 10 to 29 all indicate alleles at the third zone (6 digits) level or the second zone (4 digits) level.
  • a DNA library for HLA gene sequencing was prepared using a commercially available kit. That is, 100 ng of DNA was cleaved into fragments centered at 300 bp using a Covaris S2 acoustic solver (Covaris), and used as a library in the steps of DNA fragment end repair, adenine addition, and adapter ligation. At this time, the adapter was adjusted so as to have a maximum of 96 types of index arrays that differ from sample to sample.
  • Covaris Covaris
  • Ligated DNA library was measured for fragment length by Bioanalyzer (Agilent) and DNA concentration by Qubit2.0 (Thermo Fisher Scientific). Based on the measurement information, adjusted DNA library of up to 96 samples was measured. Mixed at molarity.
  • the mixed DNA library was used for sequence capture for region enrichment targeted by the probe of the present invention.
  • SeqCap EZ choice (Roche Diagnostics) synthesized by the above custom design was used, and the mixed DNA library and SeqCap EZ choice custom oligo probe were hybridized at 47 ° C. for 64 hours. All hybridization and subsequent washing steps were performed according to the SeqCap EZ protocol.
  • the DNA fragment of the target region hybridized with the custom oligo probe was PCR-amplified with an adapter sequence and specific primers to obtain a library for sequencing.
  • MiSeq was used as the sequence of a mixed library of up to 96 samples, and nucleotide sequence data was obtained at 300 bp paired ends.
  • HLA-DQA2, HLA-DQB2, HLA-DQB3, HLA-DPA2, HLA-DPB2, and HLA-DQB2, which do not have an allyl name, are used.
  • HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB by adding HLA-Y gene to 31 genes excluding 6 genes of HLA-DPA3 , HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6, HLA-DRB7, HLA -DRB8, HLA-DRB9, HLA-E, HLA-F, HLA-G, HLA H, HLA-J, HLA-K, HLA-L, HLA-V, HLA-Y, determination of allyl MICA and MICB) was possible.
  • HLA-DQA2, HLA-DQB2, HLA-DQB3, HLA-DPA2, HLA-DPB2, and HLA-DPA3 have been determined, but all of them are reference sequences in the IMGT / HLA database. Since no allyl name is named, the allyl name cannot be determined and is not included in Tables 10 to 29.
  • HLA-Y is a pseudogene.
  • DRB1 * 14: 01 and DRB1 * 14: 54: 01 differ only in the single nucleotide polymorphism (SNP) of exon 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本不明は、PCR法におけるHLAタイピングのエラー並びに従来のシークエンスキャプチャー法の欠点を克服した、HLA領域に特化された新規なプローブセットをデザインした。当該プローブセットを用いることによって、多検体を同時に処理できるとともに、HLA領域の遺伝子を網羅的に捕捉できる。当該プローブセットにHLA偽遺伝子に対するプローブも含めることにより、各HLA遺伝子の捕捉をそれぞれ特異的、かつ効率よく行える精密なタイピングが可能になる。本発明は、配列番号:1~355に示す塩基配列を各々有するオリゴヌクレオチドからなる、偽遺伝子を含むHLA遺伝子タイピング用プローブセット及び当該プローブセットを用いた、偽遺伝子を含むHLA遺伝子タイピング方法に関する。

Description

PCRを用いないキャプチャー法によるHLA遺伝子タイピング用プローブセット及びそれを用いたタイピング方法
 本発明は、シークエンスキャプチャー法を用いたHLA遺伝子タイピングにおいて使用する新規なプローブセットに関する。より詳細には、HLA領域の遺伝子を網羅的に捕捉できると同時に、HLA偽遺伝子に対するプローブも含めることにより、HLA遺伝子の捕捉を特異的、かつ効率よく行え、なおかつ多検体の同時タイピングを可能にするプローブセットに関する。
 ヒトの主要組織適合遺伝子複合体(Major Histocompatibility Complex;MHC)であるヒト白血球抗原(Human Leukocyte Antigen;HLA)は、病原体等の外来タンパク質由来ペプチド、および自己タンパク質由来ペプチドをT細胞に提示することにより免疫応答の誘導に深く関わっている。主なものとして6種類の抗原が知られており、ほぼすべての細胞で発現しているクラスI分子(HLA-A、HLA-B、HLA-C)と、主として免疫系の細胞で発現しているクラスII分子(HLA-DR、HLA-DQ、HLA-DP)が含まれる。
 HLAをコードしている遺伝子領域はヒト第6染色体短腕部6p21.3に位置し、テロメア側からセントロメア側に向けて、クラスI領域(HLA-A、HLA-C、HLA-B等)、クラスIII領域、クラスII領域(HLA-DRA、HLA-DRB1、HLA-DQA1、HLA-DQB1、HLA-DPA1、HLA-DPB1等)の順に並び、多くの遺伝子が非常に高い密度でコードされており、移植、輸血、薬剤副作用及び様々な疾患との関連性が報告されてきている。クラスIII領域にはHLA遺伝子は存在せず、補体成分や腫瘍壊死因子(Tumor Necrosis Factor;TNF)等の遺伝子が存在している。
 HLA-DR抗原のβ鎖をコードするHLA-DRB遺伝子領域には5種類の構造多型が確認されている。DR1型やDR10型では、同一染色体上にHLA-DRB1の他にHLA-DRB6やHLA-DRB9などの偽遺伝子が位置する。DR2型では、同一染色体上にHLA-DRB1の他にHLA-DRB5(DR51)遺伝子やHLA-DRB6やHLA-DRB9などの偽遺伝子が位置する。DR3、DR5およびDR6型では、HLA-DRB1の他に同一染色体上にHLA-DRB3(DR52)遺伝子やHLA-DRB2やHLA-DRB9などの偽遺伝子が位置する。DR4、DR7およびDR9型では、HLA-DRB1の他に同一染色体上にHLA-DRB4(DR53)遺伝子やHLA-DRB7、HLA-DRB8やHLA-DRB9などの偽遺伝子が位置する。これらに対して、DR8型では、同一染色体上にHLA-DRB1以外のHLA-DRB遺伝子は位置しない。
 各アリルのエクソンには多型性を示す複数の領域が存在し、ある多型領域の塩基配列(アミノ酸配列)が、複数のアリルに共通であることも多い。すなわち各HLAアリルは複数の多型領域の組み合わせにより規定される。HLAクラスI抗原ではエクソン内の多型領域のみならず、同一の塩基配列をもつエクソン2あるいはエクソン3が、複数のアリルに共通であることもある。最近では、HLA遺伝子の5‘末端のプロモーター・エンハンサー領域、5’UT領域、3‘UT領域、イントロンなどにも多くの転写調節に関わる機能的な多型を有することも明らかになりつつある。HLA領域には、これらの遺伝子構造に欠陥をもつ偽HLA遺伝子も数多く存在するが、これらの偽遺伝子が生物学的機能を持たない単なる遺伝子の残骸か、何らかの生物学的機能を持っているかは、明らかでない。
 HLAには高度な多型が存在するため対立遺伝子(アリル)の種類が極めて多いことも知られている。一方、HLAアリルを判定するDNAタイピングは、移植の際のドナーとレシピエントとの組織適合性の一致に関連するのみならず、生活習慣病や自己免疫疾患、癌、ウイルス感染症における防御と重症化、薬剤副作用等と相関するとの報告もある。
 しかしながら、従来のDNAタイピング法で解明される情報の範囲では、特定のHLAアリルが疾患発症にかかわっているのか、あるいは特定のHLAアリルと強い連鎖不平衡にある非HLA遺伝子が関与しているのか不明な場合が多い。これは、HLAゲノム領域の全体像が未解明であることが原因であると考えられる(非特許文献1)。
 近年、いわゆる「次世代シークエンサー(Next Generation Sequencer:NGS)」の出現により、高スループットでのDNAタイピングが可能となっているが、次世代シークエンサーで採用されているDNAタイピング法の主流は、ポリメラーゼ連鎖反応(Polymerase Chain Reaction;PCR)よって産生されるPCR産物をNGSにより塩基配列決定する方式である。
 このNGSによるDNAタイピング法は、従来のPCR―SSO(Sequence Specific Oligonucleotide)-Luminex法やPCR-SBT(サンガ法によりSequence Based Typing)法で問題となる複数の多型のシス・トランスの位置関係を正確に決めることができない、いわゆるフェーズ・アンビギュイティ(phase ambiguity)が生じないこと、イントロン領域やプロモーター領域における多型をも検出できるため、遺伝子構造は他の発現HLA遺伝子と変わらないが発現が抑制されるヌル(null)アリルの検出が可能であること、さらには多数の検体を一度にタイピングできること、という長所をもつ。
 NGS法を含めてこれらの従来法で必須とされているRCR法は、PCR増幅時のDNAポリメラーゼによる誤塩基取り込み、DNA伸長が他の染色体(例えば、母方由来染色体から、父方由来染色体への乗り換え)や相同性の高い他の遺伝子への乗り換えによるキメラ分子の産生、PCRプライマーに相当するゲノム領域の多型による特定のアリルが増幅されない現象(アリルドロップ)といった解決困難な問題を有している。本発明の目的の一つは、このようなHLAタイピングのエラーの原因となる諸問題をかかえるPCR法に代わる、正確なHLAタイピングを開発することである。
 一方、検体からのDNAをライブラリ化した後、HLA遺伝子由来のDNA断片を選択的に濃縮し、これを少ないサイクル数でPCR増幅をするシークエンスキャプチャー法は、従来法におけるPCR法の解決困難な問題を解消でき、複数のHLA遺伝子を選択的に濃縮する方法として有効である。しかしながら、従来のシークエンスキャプチャー法で用いられていたプローブでは、例えばHLA領域に存在する遺伝子座を網羅的に、かつ多検体を同時にタイピングすることが困難であった。
WO2013/011734号パンフレット
「次世代シークエンサーによるHLA領域のターゲットリシークエンス」、細道一善、他、医学のあゆみ、Vol.233、No.13(2010年)1187~1191頁
 よって本発明は、上記のようなPCR法におけるHLAタイピングエラー並びに従来のシークエンスキャプチャー法の欠点を克服できるHLA領域に特化された新規なプローブセットをデザインすることを目的とする。さらに本発明は、前記プローブセットを用いることによって、多検体を同時に処理できるとともに、HLA領域の遺伝子を網羅的に捕捉できるタイピング方法を提供することを目的とする。本発明のタイピング方法では、当該プローブセットにHLA偽遺伝子に対するプローブも含めることにより、各HLA遺伝子の捕捉をそれぞれ特異的、かつ効率よく行える精密なタイピングを可能にすることも目的としている。
 前記の課題を解決するために本発明者等は鋭意研究を重ねた結果、下記に詳述する、HLA領域の37個のHLA遺伝子またはHLA様遺伝子に特有の塩基配列を持つ355個のオリゴヌクレオチドからなるプローブセットを用いることにより、多検体について同時に37個のHLA遺伝子、またはHLA様遺伝子の塩基配列の決定が可能であり、タイピングできることを見出し、本発明を完成するに至った。
 即ち、本発明は、配列番号1~355に示す塩基配列を各々有するオリゴヌクレオチドからなるHLA遺伝子タイピング用プローブセットを提供する。さらに本発明は、前記プローブセットを用いたHLA遺伝子のタイピング方法を提供する。
 本発明のプローブセットは偽遺伝子に対してデザインされたプローブ(以下、「偽プローブ」と称する)も含んでおり、偽プローブに結合したDNA断片を適宜除去することにより、重要なHLA遺伝子を効率的にタイピングできる。本発明のプローブはHLA領域に含まれる32遺伝子(HLA-A、HLA-B、HLA-C、HLA-DMA、HLA-DMB、HLA-DOA、HLA-DOB、HLA-DPA1、HLA-DPB1、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB2、HLA-DRB3、HLA-DRB4、HLA-DRB5、HLA-DRB6、HLA-DRB7、HLA-DRB8、HLA-DRB9、HLA-E、HLA-F、HLA-G、HLA-H、HLA-J、HLA-K、HLA-L、HLA-V、HLA-Y、MICAおよびMICB)を網羅的にタイピングできるようにデザインされているため、多検体(現時点で最大96検体)のこれら32遺伝子座を同時にアリル(IMGT/HLAのデータベースで命名されているアリル名)を決定することが可能になる。また、特定のHLA遺伝子のみを増幅するPCRの行程を含まないので、HLAタイピングの日常検査に欠かせない全自動化が可能になる。さらには、PCRを用いた従来法(NGSを用いた方法も含む)に比較して操作が簡易であり費用も安価にすることができる。
シーケンスキャプチャー法を用いた遺伝子タイピング方法の概略を示す図である(日本組織適合性学会誌、第22巻、第2号、2015年、第89頁から引用)。
 ヒトゲノムのリファレンス配列HG19/GRCh37における各HLA遺伝子は、およそ下記の表1に記載の領域に存在しており、その領域をカバーするようなプローブを設計するのが一般的である。
Figure JPOXMLDOC01-appb-T000001
 しかしながら、上記各領域には、リピート配列やGCが存在するために有効なプローブ設計が困難な領域が含まれ、或る程度ユニークな配列を基礎としてプローブ設計をすることが必要である。また、各HLA遺伝子間の配列に類似する部分が存在するため、各遺伝子を特異的に捕捉するプローブの設計には困難が伴う。
 本発明では、上記表1に記載の領域を基礎としながら、下記の表2に示した領域に基づいて各遺伝子を特異的に捕捉するのに有効な333個の新規なプローブを設計した。
 なお、表2におけるプローブ設計開始位置及びプローブ設計終端位置は、リファレンス配列(HG19/GRCh37)における位置を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 さらに本発明では、表1において「*」を付した遺伝子について、独自にカスタマイズした以下の表3~表8に示す塩基配列を用いて追加的なプローブを設計した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 前記表3~表8に示す塩基配列に基づいて、以下の表9に示す領域で22個の追加的プローブを設計した。前記表3~8に示した塩基配列は、これまでに登録されているHLA遺伝子のアリル塩基配列から多数派となる塩基を選び、全アリルで中間的となるように作成した合成配列である。これらの配列に基づいて設計したプローブを追加することにより、リファレンス配列との違いが大きいHLA遺伝子型をもつサンプルにおけるキャプチャー効率の低下を防ぎ、安定したシーケンス収量を得ることができる。
Figure JPOXMLDOC01-appb-T000018
 本明細書に記載したプローブ設計開始(又は終端)位置の表記は、UCSCのBEDフォーマットに従って記載されている。また、表2及び表9における「No.」の数字は配列表における配列番号に対応している。
 本発明の各プローブは、配列番号:1~355に示す塩基配列を持つことを基本とするが、1個から数個(例えば、プローブ全長の10%以内、好ましくは5%以内、より好ましくは3%以内、さらに好ましくは1%以内)の塩基が置換、欠失、又は挿入された塩基配列を有するものであってもよい。ただし、本発明で意図するプローブ機能を発揮するものに限られる。
 即ち、本発明に係るプローブセットは、リファレンス配列に基づいて設計した333個のプローブと、カスタマイズされた配列に基づいて設計した22個の追加的プローブを含む355個のオリゴヌクレオチドからなるプローブを含み、各々のプローブは配列番号1~355に示す塩基配列を有する。多くの偽HLA遺伝子のプローブを含めた理由は、偽HLA遺伝子のタイピングを可能にするとともに、発現HLA遺伝子の捕捉をそれぞれ、特異的、かつ効率よく行うためである。
 さらに本発明は、上記のプローブセットを用いたシーケンスキャプチャーを含むHLA遺伝子のタイピング方法を提供する。
シーケンスキャプチャー法を用いたタイピング方法の概略を図1に示す。当該方法は、具体的には、以下の工程を含む。
(1)被験者から得たサンプル中に含まれるDNAを断片化する工程。
(2)行程(1)で断片化したDNA断片を上記本発明のプローブセットと混合してハイブリダイズさせる工程。
(3)プローブとハイブリダイズしたDNA断片を濃縮する工程。
(4)濃縮したDNA断片からプローブを脱離させ、得られたDNA断片の配列決定をする工程。
 (1)被験者から得たサンプル中に含まれるDNAを断片化する工程は、当該分野のおける常法を用いて実施される。断片化されたDNAの両末端は必要に応じて平滑化し、好ましくは、被験者(検体)毎に特有のインデックスを含むアダプターをライゲーションする。
 (2)(1)で得られたDNA断片を、本発明のプローブセットと混合してハイブリダイズさせる。ハイブリダイズさせる条件は以下の通りである。
 ハイブリダイゼーションの温度:47℃
 反応時間:24時間以内
 その他の条件は従来通りである。
 なお、ハイブリダイズさせる前に、プローブセットに含まれる各プローブには後の濃縮工程においてビーズ等の分離用担体に担持された標識と結合可能な標識を付加しておくことが必要である。プローブを標識する物質としては、ビオチンを用いるのが好ましい。
 (3)次いで、プローブとハイブリダイズしたDNA断片を分離用担体に結合させることにより濃縮する。分離用担体としては、プローブがビオチン標識されている場合には、表面にストレプトアビジンを固定化した磁気ビーズが好ましく用いられる。
 プローブとハイブリダイズしたDNA断片は、ビオチンとストレプトアビジンと相互作用により分離用担体(磁気ビーズ)表面に固定化され、当該磁気ビーズを磁石に吸着させることにより目的とするDNA断片が濃縮される。一方、プローブとハイブリダイズしなかった(HLA遺伝子関連以外の)DNA断片は洗浄により除去される。
 (4)次に、濃縮したDNA断片とプローブとを、常法を用いて脱離させる。脱離したDNA断片は、必要に応じてPCR増幅した後、シークエンス解析装置等を用いて塩基配列が決定される。その後、必要に応じて塩基配列情報に基づくデータ分析又はマッピングなどを実施する。
 表2及び表9に記載した領域に基づいて、355個のプローブ(配列番号:1~355)を設計して合成した。
 40検体のDNAサンプルについて、得られた355個のプローブを用いて、シーケンスキャプチャー法により目的とするDNAを濃縮し、プローブを脱離させた後に、NGSを用いて配列決定した。その結果を以下の表10~表29に示す。なお、いずれのHLA遺伝子座についても第4区域(8桁)レベルまでのタイピングが可能であったが、多くのアリルについてリファレンス配列の情報が乏しく、第3区域(6桁)レベルあるいは第2区域(4桁)レベルまでしか命名されていないので、表10~表29ではすべて第3区域(6桁)レベルあるいは第2区域(4桁)レベルでのアリルを表記した。
 具体的な工程は以下の通りである。
 HLA遺伝子のシーケンスのためのDNAライブラリーを市販のキットを用いて調整した。すなわち、DNA100ngを、Covaris S2アコースティックソルビライザー(Covaris)にて300bpを中心とした断片に切断し、DNA断片の末端修復、アデニン付加、アダプターライゲーションの工程にてライブラリーとした。このときアダプターはサンプルごとに異なる最大96種類のインデックス配列を持つように調整した。
 ライゲーションしたDNAライブラリーはバイオアナライザー(アジレント)により断片長を、Qubit2.0(サーモフィッシャーサイエンティフィック)によりDNA濃度を測定し、測定情報にもとづいて、最大96サンプルの調整済みDNAライブラリーを等モル濃度にて混合した。
 混合したDNAライブラリーを本発明プローブが対象とする領域濃縮のためのシーケンスキャプチャーに用いた。シーケンスキャプチャーには上述のカスタムデザインにより合成したSeqCapEZ choice(ロシュ・ダイアグノスティックス)を用い、混合DNAライブラリーとSeqCapEZ choiceのカスタムオリゴプローブを47℃で64時間ハイブリダイゼーションさせた。ハイブリダイゼーションならびにその後の洗浄の工程は全てSeqCapEZのプロトコールに従って行った。
 カスタムオリゴプローブにハイブリダイズした目的領域のDNA断片はアダプター配列と特異的プライマーによりPCR増幅してシーケンスのためのライブラリーとした。最大96サンプルの混合ライブラリーのシーケンスはMiSeqを用い、300bpのペアエンドにて塩基配列のデータを得た。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 表10~29に示されるように、表1に示したプローブに用いた37遺伝子のなかで、アリル名を持たないHLA-DQA2,HLA-DQB2,HLA-DQB3,HLA-DPA2,HLA-DPB2,及びHLA-DPA3の6遺伝子を除く31遺伝子に、HLA-Y遺伝子を加えた32遺伝子(HLA-A、HLA-B、HLA-C、HLA-DMA、HLA-DMB、HLA-DOA、HLA-DOB、HLA-DPA1、HLA-DPB1、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB2、HLA-DRB3、HLA-DRB4、HLA-DRB5、HLA-DRB6、HLA-DRB7、HLA-DRB8、HLA-DRB9、HLA-E、HLA-F、HLA-G、HLA-H、HLA-J、HLA-K、HLA-L、HLA-V、HLA-Y、MICAおよびMICB)のアリルの決定が可能であった。
 HLA-DQA2,HLA―DQB2,HLA-DQB3,HLA-DPA2,HLA-DPB2,及びHLA-DPA3の6遺伝子は、それぞれ塩基配列は決定されたが、いずれもIMGT/HLAデータべースにリファレンス配列がなく、アリル名も命名されていないので、アリル名を決定できず、表10~29には含まれていない。
 プローブに含まれていないHLA-Y遺伝子のアリルが決定できたのは、他のクラスI遺伝子プローブとの相同性の高さにより、HLA-Y遺伝子も捕捉されたものと思われる。なお、このHLA-Yは全てのヒトに存在するわけではなく、HLA-A31や-A33ハプロタイプにのみに特異的に存在していた。なお、HLA-Yは偽遺伝子である。
 次に、PCRを用いる従来法であるLuminex法を用いて同一の検体の配列タイピングを行った。HLA-A、HLA-B、HLA-C及びHLA-DRB1における結果を対比して以下の表30~34に示す。
 表30~34に示した結果から明らかなように、HLA-A及びHLA-B遺伝子については、本発明の方法で得られたタイピング結果とLuminex法で得られた結果とが完全に一致した。
 一方、T320およびT334検体のHLA-Cについては、本発明の方法においては、従来法では検出できなかった頻度が稀なアリル(HLA-C*08:22およびHLA-C*04:82)を正確にタイピングすることができたため、Luminexのタイピング結果とは相違している。
 また、エクソン3の多型を検出していないLuminex法では「DRB1*14:01」とタイピングされたアリルについて、本発明では「DRB1*14:54:01」と正しくタイピングされた。なお、DRB1*14:01と DRB1*14:54:01はエクソン3の一塩基多型(SNP)のみに違いがある。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043

Claims (5)

  1. 配列番号:1~355に示す塩基配列を各々有するオリゴヌクレオチドからなる、偽遺伝子を含むHLA遺伝子タイピング用プローブセット。
  2. ビオチン付加されている、請求項1に記載のプローブセット。
  3. 被験者から得たサンプル中に含まれるDNAを断片化する工程、
    前記行程で断片化したDNA断片を請求項1に記載のプローブセットと混合してハイブリダイズさせる工程、
    プローブとハイブリダイズしたDNA断片を濃縮する工程、
    濃縮したDNA断片からプローブを脱離させ、得られたDNA断片の配列決定をする工程、
    を含む、HLA遺伝子のタイピング方法。
  4. 前記プローブセットに含まれる各オリゴヌクレオチドがビオチン標識され、前記濃縮する工程が、ストレプトアビジン固定化ビーズを添加することにより実施される、請求項3に記載のタイピング方法。
  5. DNA断片の配列決定をする前に、DNA断片をPCR増幅する工程を更に含む、請求項3又は4に記載のタイピング方法。
PCT/JP2017/003902 2016-02-03 2017-02-03 Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法 WO2017135396A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016018942A JP2019058071A (ja) 2016-02-03 2016-02-03 Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法
JP2016-018942 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017135396A1 true WO2017135396A1 (ja) 2017-08-10

Family

ID=59499681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003902 WO2017135396A1 (ja) 2016-02-03 2017-02-03 Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法

Country Status (2)

Country Link
JP (1) JP2019058071A (ja)
WO (1) WO2017135396A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005002A1 (en) * 2019-07-05 2021-01-14 Intellexon Gmbh Methods for diagnosing the effectiveness of anti-tumor treatment
WO2021144903A1 (ja) * 2020-01-16 2021-07-22 株式会社日立ハイテク Dna検出方法およびdna検出システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265091B (zh) * 2023-10-31 2024-06-14 江苏伟禾生物科技有限公司 一种用于hla-drb3/4/5基因分型的引物组、试剂盒及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092572A1 (fr) * 2000-06-01 2001-12-06 Nisshinbo Industries, Inc. Ensemble et procede de determination du type de hla
JP2005185176A (ja) * 2003-12-25 2005-07-14 Canon Inc Hla−aアレルを同定するためのプローブセット及び特定方法
WO2015085350A1 (en) * 2013-12-10 2015-06-18 Conexio Genomics Pty Ltd Methods and probes for identifying gene alleles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092572A1 (fr) * 2000-06-01 2001-12-06 Nisshinbo Industries, Inc. Ensemble et procede de determination du type de hla
JP2005185176A (ja) * 2003-12-25 2005-07-14 Canon Inc Hla−aアレルを同定するためのプローブセット及び特定方法
WO2015085350A1 (en) * 2013-12-10 2015-06-18 Conexio Genomics Pty Ltd Methods and probes for identifying gene alleles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAO, H. ET AL.: "An Integrated Tool to Study MHC Region: Accurate SNV Detection and HLA Genes Typing in Human MHC Region Using Targeted High-Throughput Sequencing", PLOS ONE, vol. 8, no. 7, 2013, pages e69388, XP055406279, ISSN: 1932-6203 *
ERI YOSHIKAWA ET AL.: "PCR-Luminex-ho o Mochiita, HLA-A, HLA-B Oyobi HLA-DRB1 Idenshi no Nipponjin Taio 4 Keta DNA Typing Hoho no Kento", MHC, vol. 10, no. 1, 2003, pages 21 - 31, ISSN: 2186-9995 *
TAKASHI SHIINA: "Next generation sequencing based HLA genomic and polymorphism analyses", MHC, vol. 22, no. 2, 2015, pages 84 - 94, XP055406277, ISSN: 2186-9995 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005002A1 (en) * 2019-07-05 2021-01-14 Intellexon Gmbh Methods for diagnosing the effectiveness of anti-tumor treatment
WO2021144903A1 (ja) * 2020-01-16 2021-07-22 株式会社日立ハイテク Dna検出方法およびdna検出システム

Also Published As

Publication number Publication date
JP2019058071A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6809977B2 (ja) Hla遺伝子のdnaタイピング方法及びキット
Cereb et al. Advances in DNA sequencing technologies for high resolution HLA typing
RU2587606C2 (ru) Новый способ пцр-секвенирования и его применение в генотипировании hla
JP6308724B2 (ja) Hla遺伝子のマルチプレックスdnaタイピング方法及びキット
AU2014355369B2 (en) Simple method and kit for DNA profiling of HLA genes by high-throughput massively parallel sequencer
Smith et al. Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors
WO2014065410A1 (ja) Hla遺伝子のdnaタイピング方法及びキット
WO2012000150A1 (zh) Hla-a,b基因分型用pcr引物及其使用方法
WO2017135396A1 (ja) Pcrを用いないキャプチャー法によるhla遺伝子タイピング用プローブセット及びそれを用いたタイピング方法
US20220228212A1 (en) Major histocompatibility complex single nucleotide polymorphisms
CN116323979A (zh) 用于hla分型的方法、组合物和试剂盒
Kulski et al. In phase HLA genotyping by next generation sequencing-a comparison between two massively parallel sequencing bench-top systems, the Roche GS Junior and ion torrent PGM
US20220298571A1 (en) Super hla typing method and kit thereof
TW201300528A (zh) Hla-dqb1基因分型的方法及其相關引子
KR102475292B1 (ko) Hla 유전자 증폭용 조성물 및 이의 용도
Middleton HLA typing from serology to sequencing era
TW201300543A (zh) Hla-c基因分型的方法及其相關引子
CN116179671A (zh) 一种用于hla基因分型的扩增引物组、试剂盒及方法
JP2010162020A (ja) 新規hla−drb1遺伝子およびその用途
JP2015027283A (ja) カニクイザルmhc遺伝子のマルチプレックスdnaタイピング方法及びプライマーセット
JP2011050377A (ja) 新規hla−drb1遺伝子およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP