WO2017135278A1 - Tomographic-image image pickup device - Google Patents

Tomographic-image image pickup device Download PDF

Info

Publication number
WO2017135278A1
WO2017135278A1 PCT/JP2017/003541 JP2017003541W WO2017135278A1 WO 2017135278 A1 WO2017135278 A1 WO 2017135278A1 JP 2017003541 W JP2017003541 W JP 2017003541W WO 2017135278 A1 WO2017135278 A1 WO 2017135278A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
tomographic
imaging
examined
imaging apparatus
Prior art date
Application number
PCT/JP2017/003541
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 雅和
昌明 羽根渕
康寛 古内
佳史 村田
一 並木
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2017565573A priority Critical patent/JP7104516B2/en
Publication of WO2017135278A1 publication Critical patent/WO2017135278A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes

Definitions

  • the present disclosure relates to a tomographic imaging apparatus for imaging a tomographic image of an eye to be examined.
  • an optical coherence tomography that acquires an optical coherence tomographic image of a subject.
  • a tomographic image capturing apparatus using OCT divides light emitted from a light source into measurement light and reference light, and irradiates the tissue of the subject with the divided measurement light. Then, the tomographic imaging apparatus combines the measurement light reflected by the tissue with the reference light, and acquires information in the depth direction of the tissue from the interference signal of the combined light. The tomographic imaging apparatus generates a tomographic image using the acquired information in the depth direction (see Patent Document 1).
  • the tomographic imaging apparatus was used to photograph the subject's eyes from the front, the measurement light was blocked by the iris, making it difficult to photograph ciliary bodies, chin strips, and the like. As a result, the examiner could not fully grasp the structure of the eye to be examined.
  • the present disclosure has been made in view of at least one of the problems of the prior art, and provides a tomographic imaging apparatus capable of suitably acquiring the structure of the eye to be examined.
  • the present disclosure is characterized by having the following configuration.
  • a tomographic imaging apparatus for imaging a tomographic image of an eye to be examined, the imaging means for imaging the anterior segment tomographic image of the eye to be examined from two or more different directions, and two or more different directions depending on the imaging means And an arithmetic means for synthesizing a plurality of anterior segment tomographic images taken based on the positional relationship of the images.
  • the tomographic imaging apparatus (for example, the tomographic imaging apparatus 1) of the present embodiment mainly includes, for example, an imaging unit (for example, the measurement optical system 100) and a calculation unit (for example, the control unit 70).
  • the imaging unit images the eye to be examined from two or more different directions, for example.
  • the calculation unit synthesizes a plurality of anterior segment tomographic images captured by the imaging unit.
  • the plurality of anterior segment tomographic images are images captured by the imaging unit from two or more different directions.
  • the calculation unit synthesizes a plurality of anterior segment tomographic images based on the positional relationship between the images.
  • the calculation unit may acquire the structural information of the eye to be examined based on the composite image, for example.
  • the composite image is an image obtained by combining a plurality of anterior ocular segment tomographic images taken from two or more different directions.
  • the structure information may be information such as the position or shape of at least one part of the eye to be examined. As a result, it is easy to obtain structural information regarding a part that is difficult to image from one direction.
  • the calculation unit calculates a position (for example, postoperative predicted anterior chamber depth) at which the intraocular lens is inserted based on the position of the corneal apex of the eye to be examined and the position of the ciliary body obtained from the structure information. Also good.
  • the calculation unit may calculate the postoperative predicted anterior chamber depth based on the position of the intersection point between the normal of the corneal surface passing through the corneal apex and the plane including the ciliary protrusion in the composite image. .
  • the calculation unit is based on the position of the intersection of the straight line in the measurement optical axis direction (depth direction) in the frontal tomographic image and the line connecting the left and right ciliary protrusions in the synthesized tomogram in the composite image.
  • the postoperative predicted anterior chamber depth may be calculated.
  • the calculation unit may obtain the structure of the eye to be examined by various methods based on the composite image.
  • the calculation unit may measure the ciliary groove distance based on the composite image.
  • the calculation unit may determine the size of the posterior chamber type phakic intraocular lens (ICL) based on the measured inter-ciliary distance. By acquiring the composite image, the present apparatus can select an appropriate intraocular lens size.
  • ICL posterior chamber type phakic intraocular lens
  • the imaging unit may shoot from the front direction of the subject eye and the oblique direction of the subject eye when photographing the subject eye from two or more different directions.
  • the front direction may be, for example, the fixation direction of the eye to be examined.
  • the oblique direction may be, for example, a direction inclined with respect to the front direction.
  • the imaging unit may image the eye to be examined from a direction inclined by 25 ° to 30 ° with respect to the front direction.
  • the oblique direction may be, for example, a direction inclined to at least one of left and right with respect to the front direction.
  • the calculation unit may perform noise reduction processing on the anterior segment tomographic image.
  • the calculation unit may perform noise reduction of the anterior segment tomographic image by analyzing a statistic of signal intensity of a plurality of anterior segment tomographic images captured from the same direction.
  • the imaging unit may capture a plurality of anterior segment tomographic images in each imaging direction.
  • the arithmetic unit may correct the composite image by correcting the refraction in consideration of the shape of the boundary and the refractive index of the photographed object.
  • the calculation unit may correct the image based on a refractive index of a cornea, a sclera, a crystalline lens, a ciliary body, a chin band, a vitreous body, or the like set in advance.
  • a refractive index of a cornea, a sclera, a crystalline lens, a ciliary body, a chin band, a vitreous body, or the like set in advance.
  • the refractive index of each part a value obtained in advance by measurement or the like may be used.
  • this apparatus may be provided with a fixation guidance part (for example, the 1st fixation optical system 150, the 2nd fixation optical system 10, etc.).
  • the fixation guidance unit guides fixation of the eye to be examined, for example.
  • the imaging unit may capture the anterior ocular segment tomographic image from two or more different directions by inducing fixation of the eye to be examined by the fixation induction unit.
  • the fixation guidance unit may guide the fixation direction by switching lighting of a plurality of fixation light sources (for example, the light source 151, the light source 11, and the light source 12), or move the fixation light source.
  • the fixation direction may be guided with.
  • the fixation guidance section may include a presentation distance variable section (for example, the presentation distance variable sections 13 and 14).
  • the presentation distance variable unit changes the presentation distance of the fixation target, for example.
  • the calculation unit may detect a change in the form of the eye to be inspected caused by a change in the fixation target presentation distance. For example, the calculation unit detects a change in the shape of the eye based on two or more anterior segment tomographic images captured by the imaging unit before and after the presentation distance of the fixation target is changed by the presentation distance variable unit. May be.
  • the present apparatus may further include an anterior ocular segment observation unit (for example, an observation system 140).
  • the anterior ocular segment observation unit captures, for example, an anterior ocular segment observation image of the eye to be examined.
  • the imaging unit may capture the anterior ocular segment tomographic image by tracking with reference to the characteristic part of the subject eye detected from the anterior ocular segment observation image.
  • the imaging unit may include a first interference optical system (for example, the OCT system 110).
  • the first interference optical system captures an anterior tomographic image of the eye to be examined by detecting an interference state between the reflected light of the measurement light irradiated on the eye to be examined and the reference light corresponding to the measurement light.
  • the imaging unit may include a second interference optical system (for example, the OCT system 210, the OCT system 310, etc.).
  • the second interference optical system captures an anterior tomographic image of the eye to be examined from a direction different from that of the first interference optical system.
  • the present apparatus may further include a control unit (for example, the control unit 70) that controls the imaging unit.
  • the control unit may change the wavelength band of the measurement light when changing the imaging direction of the imaging unit with respect to the eye to be examined.
  • the control unit may change the polarization state of the measurement light when the imaging direction of the imaging unit with respect to the eye to be examined is changed. Thereby, appropriate imaging can be performed according to the region of the eye to be examined.
  • the control unit may change at least one of the working distance between the imaging unit and the eye to be examined and the light collection position of the imaging unit when switching the imaging direction of the imaging unit with respect to the eye to be examined.
  • the photographing unit may be equipped with a Shine proof camera.
  • the imaging unit may capture a tomographic image of the eye to be examined using a Scheimpflug camera.
  • the photographing unit may include an ultrasonic camera.
  • the imaging unit may capture a tomographic image of the eye to be examined using an ultrasonic camera.
  • the tomographic imaging apparatus 1 shown in FIG. 1 mainly includes, for example, a measurement optical system 100 and a second fixation optical system 10.
  • the measurement optical system 100 includes, for example, an optical system for measuring the eye E.
  • the second fixation optical system 10 fixes the eye E to be examined.
  • the measurement optical system 100 includes, for example, an OCT system 110, a scanning system 120, a light guide system 130, an observation system 140, a first fixation optical system 150, and the like.
  • the OCT system 110 irradiates the eye E with measurement light and detects an interference signal between the reflected light and the reference light.
  • the OCT system 100 is an optical system of a so-called optical coherence tomography (OCT).
  • OCT system 110 includes, for example, a light source 111, a coupler (light splitter) 112, a reference system 113, a detection system 115, and the like.
  • the light source 111 emits, for example, low coherent light.
  • the coupler 112 divides the light emitted from the light source 111 into measurement light and reference light.
  • the reference system 113 includes, for example, a reference mirror.
  • the reference system 113 reflects the reference light divided by the coupler 112 and makes it incident on the coupler 112 again.
  • the reference system 113 may be a Michelson type or a Mach-Zehnder type.
  • the detection system 115 detects, for example, an interference state between the measurement light and the reference light. For example, a depth profile (A scan signal) in a predetermined range is acquired by Fourier transform on the interference signal detected by the detection system 115.
  • Spectral-domain OCT SD-OCT
  • Swept-source OCT SS-OCT
  • Time-domain OCT TD-OCT
  • SD-OCT Spectral-domain OCT
  • SS-OCT Swept-source OCT
  • TD-OCT Time-domain OCT
  • the scanning system 120 scans the measurement light from the OCT system 110.
  • the scanning system 120 includes, for example, a galvanometer mirror 121, a galvanometer mirror 122, a drive unit 123, a drive unit 124, and the like.
  • the galvanometer mirror 121 scans the measurement light in the X direction by driving the drive unit 123.
  • the galvanometer mirror 122 scans the measurement light in the Y direction by driving the driving unit 124. Therefore, for example, the scanning system 120 scans the measurement light from the OCT system 100 two-dimensionally.
  • the light guide system 130 guides the measurement light scanned by the scanning system 120 toward the eye E.
  • the light guide system 130 includes, for example, an objective lens 131 and the like.
  • the observation system 140 observes the eye E from the direction of the measurement optical axis L1, for example.
  • the observation system 140 is arranged on the measurement optical axis L1 of the measurement optical system 100, and images the eye E from the direction of the measurement optical axis L1.
  • the observation system 140 may include, for example, a light receiving element.
  • the observation system 140 may have, for example, a scanning laser ophthalmoscope (SLO) device configuration (see, for example, Japanese Patent Application Laid-Open No. 2015-66242) or a so-called fundus camera type configuration (special feature). (See Open 2011-10944).
  • SLO scanning laser ophthalmoscope
  • the OCT system 110 may also be used as the observation system 140, and a front image may be acquired based on a detection signal from the detection system 115.
  • the first fixation optical system 150 fixes the eye E to be examined in the direction of the measurement optical axis L1.
  • the first fixation optical system 150 includes a fixation light source 151 that emits visible light.
  • the measurement optical system 100 may include a dichroic mirror 101, a dichroic mirror 102, and the like.
  • the dichroic mirror 101 for example, the measurement optical axis L1 of the measurement optical system 100 and the optical axis L2 of the scanning system 120 are coaxial.
  • the dichroic mirror 102 for example, the measurement optical axis L1 of the measurement optical system 100 and the optical axis L3 of the first fixation optical system 150 are coaxial.
  • the second fixation optical system 10 fixes the eye E to be examined in an oblique direction.
  • the second fixation optical system 10 causes the eye E to be fixed in an oblique direction by ⁇ with respect to the measurement optical axis L1 of the measurement optical system 100.
  • the second fixation optical system 10 includes, for example, a light source 11 and a light source 12 that emit visible light.
  • the light source 11 and the light source 12 are fixed to the outside of the casing of the device 1.
  • the light source 11 fixes the eye E with the eye E facing leftward.
  • the emission direction of the fixation light beam emitted from the light source 11 is tilted by ⁇ in the right direction with respect to the measurement optical axis L 1 of the measurement optical system 100. Therefore, when the eye E examinees the light source 11, the fixation direction of the eye E is tilted by ⁇ in the left direction with respect to the measurement optical axis L1.
  • the light source 12 fixes the eye E, for example, with the eye E facing rightward.
  • the emission direction of the fixation light beam emitted from the light source 12 is inclined to the right by ⁇ with respect to the measurement optical axis L1 of the measurement optical system 100. Therefore, when the subject eye E fixes the light source 12, the fixation direction of the subject eye E is inclined to the right by ⁇ with respect to the measurement optical axis L1.
  • the angle at which the fixation direction is inclined may be set to an angle at which the ciliary body of the eye to be examined is positioned on the measurement optical axis L1, for example.
  • the second fixation optical system may include the light source 11 and the light source 12 so that ⁇ is in the range of 25 ° to 30 °.
  • the tomographic imaging apparatus 1 can arrange the ciliary body in the center of the imaging area of the tomographic image.
  • This angle is such that when the human eye axis length is around 26 mm, the distance between ciliary grooves is around 14 mm, and the eyeball rotation point is located at half the distance of the eye axis length, the ciliary groove is the measurement optical axis. It is an angle for positioning on L1.
  • the tilt angle in the fixation direction may be changed between the light source 11 and the light source 12.
  • the tomographic imaging apparatus 1 includes a control unit 70, for example.
  • the control unit 70 is realized by, for example, a CPU (Central Processing Unit) 71, a ROM 72, a RAM 73, and the like.
  • the ROM 72 stores, for example, a program for controlling the operation of acquiring an OCT signal, a program for processing a tomographic image, an initial value, and the like.
  • the RAM 73 temporarily stores various information, for example.
  • the control unit 70 includes, for example, a storage unit (for example, a non-volatile memory) 74, a display unit 75, an operation unit 76, a measurement optical system 100, a second fixation optical system, and the like.
  • the storage unit 74 is, for example, a non-transitory storage medium that can retain stored contents even when power supply is interrupted.
  • a hard disk drive, a flash ROM, a removable USB memory, or the like can be used as the storage unit 74.
  • the display unit 75 may be a display mounted on the main body of the apparatus 1 or a display connected to the main body.
  • a display of a personal computer hereinafter referred to as “PC” may be used.
  • the display unit 75 displays, for example, a tomographic image acquired by the measurement optical system 110, various operation screens, and the like.
  • the operation unit 76 receives various operation instructions from the examiner.
  • the operation unit 76 outputs a signal corresponding to the input operation instruction to the CPU 71.
  • the operation unit 76 for example, at least one of user interfaces such as a mouse, a joystick, a keyboard, and a touch panel may be used.
  • the tomographic imaging apparatus 1 having the above-described configuration, an operation when a tomographic image is acquired and analyzed will be described with reference to FIG.
  • the tomographic imaging apparatus 1 images the eye E from a plurality of directions by the measurement optical system 100 and synthesizes the acquired tomographic images.
  • the control unit 70 controls the first fixation optical system 150 to project a fixation light beam from the direction of the measurement optical axis L1 onto the subject.
  • the eye to be inspected fixes the fixation light source 151 of the first fixation optical system 150
  • the eye to be inspected is in a state in which the line of sight is aligned with the measurement optical axis L1.
  • a corneal apex or a crystalline lens of the eye E is disposed in the center of the imaging region A1 of the measurement optical system 100.
  • control unit 70 controls a drive unit (not shown) so that the measurement optical axis L1 is at the center of the pupil of the eye E based on an anterior eye image captured by a camera for observing the anterior eye part (not shown). Align automatically.
  • the control unit 70 controls the measurement optical system 100 to measure the eye E.
  • the control unit 70 captures a tomographic image of the eye E.
  • the control unit 70 controls driving of the scanning system 120 to scan the eye E with the measurement light.
  • the controller 70 acquires an interference signal based on the measurement light detected by the detection system 115 and the reference light.
  • the control unit 70 captures a frontal tomographic image 91 obtained by capturing the eye E from the front direction (for example, the fixation direction of the eye to be examined). For example, the control unit 70 stores the captured frontal tomographic image 91 in the storage unit 74 or the like.
  • Step S2 First oblique photographing>
  • the control unit 70 images the eye E from a direction different from the front direction. Therefore, for example, the control unit 70 controls the second fixation optical system 10 to switch the fixation direction of the eye E.
  • the control unit 70 turns off the fixation light source 151 of the first fixation optical system 150 and turns on the light source 11 of the second fixation optical system 10.
  • the fixation direction of the eye E coincides with the direction of the optical axis L4 of the target luminous flux from the light source 11.
  • the fixation direction of the eye E is tilted ⁇ to the left with respect to the measurement optical axis L1.
  • the right ciliary body of the eye E enters the imaging region A1 of the measurement optical system 100.
  • the controller 70 performs alignment with the anterior eye image as appropriate in a state where the light source 11 is fixed to the eye E, and performs imaging by the measurement optical system 100.
  • the control unit 70 acquires a right tomographic image 92 obtained by photographing the eye E from an oblique right direction.
  • the control unit 70 stores the captured right tomographic image 92 in the storage unit 74 or the like.
  • Step S3 Second oblique photographing>
  • the control unit 70 controls the second fixation optical system 10 again to switch the fixation direction of the eye E.
  • the control unit 70 turns on the light source 12.
  • the fixation direction of the eye E coincides with the direction of the optical axis L5 of the target luminous flux from the light source 12. Therefore, the fixation direction of the eye E is tilted ⁇ to the right with respect to the measurement optical axis L1.
  • the ciliary body on the left side of the eye E enters the imaging region A1 of the measurement optical system 100.
  • the control unit 70 performs imaging by the measurement optical system 100 in a state where the light source 12 is fixed to the eye E. For example, as illustrated in FIG. 5C, the control unit 70 acquires a left tomographic image 93 obtained by photographing the eye E from an oblique left direction. For example, the control unit 70 stores the captured left tomographic image 93 in the storage unit 74 or the like.
  • the measurement light is substantially perpendicular to the cornea or sclera of the eye E by tilting the fixation direction of the subject with respect to the measurement optical axis L1 as in Steps S2 and S3 described above. Since it is incident and heads toward the ciliary body, the ciliary body or the chin strip is suitably photographed.
  • Step S4 Image Composition>
  • the control unit 70 combines the tomographic images photographed from the plurality of directions.
  • the control unit 70 may perform alignment when combining each image using tracking information obtained when the eye to be examined is photographed.
  • the tracking information is, for example, information obtained from the anterior eye image when the eye E is imaged.
  • the tracking information may be, for example, deviation information of the eye E from the proper alignment position.
  • the control unit 70 based on the tracking information when the front tomographic image 91 is captured and the tracking information when the right tomographic image 92 or the left tomographic image 93 is captured, the position of the eye when each image is captured. May be obtained respectively. Then, the combined position of the images may be determined so that the positions of the eyes of the images match.
  • the control unit 70 may rotate the left and right tomographic images in consideration of the fixation direction of the eye E.
  • the control unit 70 stores the combined tomographic image (the combined tomographic image 90) in the storage unit 74 or the like.
  • the control unit 70 may analyze the composite tomographic image 90 as shown in FIG. For example, the control unit 70 may predict the ELP (postoperative anterior chamber depth) by analyzing the composite tomographic image 90.
  • ELP postoperative anterior chamber depth
  • control unit 70 detects the ciliary protrusions TR and TL from the right tomographic image 92 and the left tomographic image 93, respectively, and a straight line L6 connecting the ciliary protrusions TR and the ciliary protrusions TL; The position of the intersection point i with the perpendicular line V1 passing through the corneal vertex Ca of the frontal tomographic image 91 is obtained. Then, the control unit 70 may predict ELP based on the distance between the corneal vertex Ca and the intersection point i.
  • the control unit 70 may measure the ciliary interstitial distance (STS: Sulcus to ul sulcus) based on the composite tomographic image 90.
  • the controller 70 may determine the size of the posterior chamber type phakic intraocular lens (ICL) based on the measured ciliary inter-groove distance.
  • the ICL is a lens implanted between the iris and the lens to correct myopia or astigmatism.
  • the tomographic imaging apparatus 1 can acquire the positional relationship of parts that are difficult to be imaged from one direction by synthesizing tomographic images of the eye E to be inspected from a plurality of directions. That is, the tomographic imaging apparatus 1 of the present embodiment can acquire the positional relationship between a part that appears in an image taken from a certain direction and a part that appears in an image taken from another direction.
  • the tomographic imaging apparatus 1 captures a ciliary body or a chin band that is difficult to capture from the front direction from an oblique direction, and combines the tomographic image captured from the oblique direction and the tomographic image captured from the front.
  • the position of the ciliary body / chin band with respect to the cornea shape or the entire eyeball can be specified. Thereby, information for selecting an intraocular lens to be inserted into the eye E can be suitably acquired.
  • the tomographic imaging apparatus 1 includes the second fixation optical system 10 and images the eye E from a plurality of directions by switching the fixation direction of the subject. Not exclusively.
  • the eye E may be photographed from a plurality of directions by switching the direction of the measurement optical axis L1 of the measurement optical system 100.
  • the measurement optical system 100 may include a plurality of tomographic imaging systems.
  • the tomographic imaging apparatus 1 may include an OCT system 110, an OCT system 210, and an OCT system 310.
  • the OCT system 110 images the eye E from the direction of the optical axis L1 via the scanning system 120 and the light guide system 130.
  • the OCT system 210 images the eye E from the direction of the optical axis L4 via the scanning system 220 and the light guide system 230, for example.
  • the OCT system 310 images the eye E from the direction of the optical axis L5 via the scanning system 320 and the light guide system 330, for example.
  • the tomographic imaging apparatus 1 may photograph the eye E from a plurality of directions by including a plurality of tomographic imaging systems having different measurement optical axis directions.
  • control unit 70 may synthesize an image based on the positional relationship between the imaging regions of each OCT system obtained from the design of the apparatus.
  • the wavelength band of the OCT system that captures images from the front direction and the OCT system that captures images from an oblique direction may be changed.
  • an OCT system that captures images from the front direction may use a light source having a center wavelength of about 1300 nm
  • an OCT system that captures images from an oblique direction may use a light source having a center wavelength of approximately 1700 nm.
  • the tomographic imaging apparatus 1 may switch the direction of the measurement optical axis L1 by moving the measurement optical system 100, for example.
  • the tomographic imaging apparatus 1 may include a drive unit 50.
  • the drive unit 50 drives the measurement optical system 100, for example.
  • the control unit 70 may control the driving of the driving unit 50 and rotate the measuring optical system 100 so that the optical axis L1 of the measuring optical system 100 rotates ⁇ with respect to the fixation direction of the subject.
  • the tomographic image photographing apparatus 1 may photograph the eye E from a plurality of directions.
  • the second fixation optical system 10 may include an external fixation light source 13 that fixes the eye E in a fixed direction regardless of the movement of the measurement optical system 100.
  • the external fixation light source 13 is held by, for example, a base (not shown) of the tomographic imaging apparatus 1 or a face support (not shown) provided on the base for fixing the subject's face. Also good.
  • the tomographic imaging apparatus 1 may change the direction of the measurement optical axis L1 on the horizontal plane in order to prevent the measurement light from being blocked by the scissors.
  • the tomographic imaging apparatus 1 may switch the polarization state of the OCT system 110 between imaging from the front direction and imaging from an oblique direction.
  • the tomographic imaging apparatus 1 may include the polarization system 116.
  • the polarization system 116 may include, for example, an optical element that splits the measurement light of the OCT system 110 into P waves and S waves.
  • the control unit 70 may divide the measurement light into a P wave and an S wave by a polarization system and irradiate the eye to be examined with the separated P wave.
  • the P wave has a lower reflectance when entering the object from an oblique direction than the S wave. Therefore, by using the P wave as the measurement light, the measurement light can be prevented from being reflected by the cornea or the sclera, and the amount of the measurement light reaching the ciliary body or the chin band can be secured.
  • control unit 70 may perform oblique imaging using tracking information in imaging from the front direction.
  • the control unit 70 may perform imaging from an oblique direction when the eye E is positioned at the same position as the imaging position in the front direction.
  • the control unit 70 may synthesize each tomographic image at a synthesis position determined in advance from the relationship between the imaging region of the measurement optical system 100 and the second fixation optical system 10.
  • control unit 70 may capture a plurality of tomographic images while gradually shifting the imaging position from the same direction. For example, when photographing from an oblique direction, the control unit 70 performs photographing a plurality of times while gradually moving the scanning position of the measurement light. As a result, an image whose shooting position is slightly shifted is shot. In this case, the control unit 70 may select and synthesize the one closest to the synthesis position using the tracking information.
  • the tomographic image imaging device 1 image
  • the control unit 70 specifies a characteristic part (for example, an iris pattern, a scleral blood vessel, etc.) of the eye to be examined from the anterior eye part image of the eye to be photographed by the observation system 140, and the position is the anterior eye part. Tracking may be performed by moving the tomographic imaging apparatus 1 so that it is captured at the same position of the image.
  • control unit 70 may determine the image synthesis position by edge detection. For example, the control unit 70 may detect the edges of the images, perform matching processing so that the edge shapes of the cornea, sclera, iris, and the like match, and synthesize the images. In addition, for example, the control unit 70 may determine the synthesis position so that the edge of the tomographic image captured from the oblique direction overlaps the ellipse approximated from the edge of the frontal tomographic image. Of course, the iris edges may coincide.
  • the edge detection may use a change in luminance value of adjacent pixels.
  • control unit 70 may determine an image combining position using the correlation between the images. For example, image alignment may be performed using a phase only correlation method.
  • control unit 70 may use the alignment based on the tracking information described in the above embodiment and the alignment method such as edge detection and phase-only correlation.
  • the controller 70 may rotate the images in advance in consideration of the fixation direction of the eye E and the inclination of the measurement optical axis L1 in the alignment of the images. For example, in the case of the above embodiment, when the subject is correctly fixing, the right tomographic image 92 is rotated counterclockwise by ⁇ and the left tomographic image is rotated clockwise by ⁇ with respect to the frontal tomographic image 91. is doing. Therefore, for example, the control unit 70 may rotate the right tomographic image 92 by clockwise ⁇ rotation and the left tomographic image 93 by counterclockwise ⁇ rotation.
  • control unit 70 may reduce noise by taking a plurality of images and statistically processing the image information.
  • Statistic processing includes, for example, addition processing, MAP (Maximum aposteriori) processing, and the like.
  • the MAP process is a process for reducing noise by utilizing the fact that the intensity of an interference signal detected by the OCT system follows a Rice distribution, for example.
  • the control unit 70 may correct each tomographic image by performing refractive correction based on the shape of the boundary and the refractive index of the imaging region. For example, the control unit 70 may correct the image based on a preset refractive index of the cornea, sclera, crystalline lens, ciliary body, chin band, vitreous body, or the like. Thereby, the control unit 70 may reduce the distortion of the tomographic image.
  • control unit 70 may control the working distance of the tomographic imaging apparatus 1, the condensing position of the measurement optical system 100, and the like according to switching of the imaging direction.
  • control unit 70 may control the driving unit 50 that moves the measurement optical system 100 according to switching of the photographing direction, or may move, insert, and remove the optical element of the light guide system 130. .
  • the second fixation optical system may include, for example, a presentation distance variable unit.
  • the second fixation optical system 10 may include presentation distance variable units 13 and 14.
  • the presentation distance variable unit 13 may adjust the presentation distance of the fixation target by the light source 11, for example.
  • the presentation distance variable unit 14 may adjust the presentation distance of the fixation target by the light source 12, for example.
  • the presentation distance variable unit 13 may adjust the presentation distance of the fixation target by moving the light source 11 in the direction of the optical axis L4, for example.
  • the presentation distance variable unit 14 may adjust the presentation distance of the fixation target by moving the light source 12 in the direction of the optical axis L5, for example.
  • the control unit 70 may control the presentation distance variable units 13 and 14 to adjust the presentation distance of the fixation target.
  • control unit 70 may adjust the presenting distance of the fixation target when the measurement optical system 100 is photographing the eye to be examined. Thereby, the control unit 70 can photograph the change of the ciliary body due to the visual acuity adjustment (Accommodation) of the eye to be examined.
  • the control unit 70 controls the presentation distance variable units 13 and 14 to capture tomographic images of the eye to be examined when the presentation distance of the light sources 11 and 12 is increased or decreased.
  • the control part 70 may detect a change, such as a ciliary body or a chin band, from the change of the tomographic image each image
  • control unit 70 may detect a change in the ciliary body or the chin band by taking the intensity difference between the tomographic images.
  • the control unit 70 may acquire position information of the ciliary body or the chin band based on the detection result of the change of the ciliary body or the chin band.
  • the control unit 70 may acquire positional information of the ciliary body when the ciliary body contracts or relaxes.
  • the control unit 70 may change the presentation distance of the fixation target by the presentation distance variable units 13 and 14 during photographing with the measurement optical system 100, or the measurement optical optics before and after changing the presentation distance. Shooting with the system 100 may be performed. Note that noise reduction as described above may also be performed on an image captured by changing the fixation target presentation distance.
  • control unit 70 may acquire a motion contrast by processing a complex OCT signal obtained by Fourier transforming the OCT signal acquired by the OCT system 110, for example.
  • the motion contrast is information indicating the movement of the test object, for example.
  • the control unit 70 may detect the movement of the ciliary body when the presenting distance of the fixation lamp changes by acquiring the motion contrast.
  • a processing method of the complex OCT signal for obtaining the motion contrast for example, a method of calculating the intensity difference of the complex OCT signal, a method of calculating the variance of the intensity of the complex OCT signal, and a method of calculating the phase difference of the complex OCT signal , A method of calculating a vector difference of a complex OCT signal, a method of using correlation (or non-correlation) of an OCT signal (correlation mapping, decorrelation mapping), a method of combining motion contrast data obtained thereby, and the like Conceivable.
  • the presentation distance variable unit includes, for example, an optical element disposed between the fixation light source (for example, the light sources 11 and 12) and the eye E, and moves the optical element to move the fixation target.
  • the structure which adjusts presentation distance may be sufficient.
  • the tomographic imaging apparatus 1 may capture a fundus tomographic image of the eye to be examined.
  • the control unit 70 may align the anterior ocular segment tomographic image and the fundus tomographic image of the eye to be examined.
  • the control unit 70 may align the synthesized tomographic image of the anterior segment tomographic image captured from the front direction and the oblique direction of the eye to be examined and the fundus tomographic image, and synthesize these.
  • the structure information of the eye of the eye E may be acquired based on the alignment information between the anterior segment tomographic image and the fundus tomographic image.
  • the anterior segment tomographic image and the fundus tomographic image may be captured simultaneously or separately.
  • the measurement optical system 110 is provided.
  • the present invention is not limited to this, and a configuration in which a Scheimpflug camera, an ultrasonic camera, or the like is provided and a tomographic image of the eye to be examined may be taken.
  • the second fixation optical system 10 may be fixed to the apparatus main body, or may be movably held by an arm or the like provided in the apparatus main body.
  • the second fixation optical system 10 is configured to tilt the fixation direction of the eye to be examined right and left, but is not limited thereto.
  • a light source may be disposed at a position where the eye E is tilted in the vertical direction.
  • the photographing may be performed while being tilted in the vertical direction.
  • the control unit 70 obtains the postoperative predicted anterior chamber depth based on the combined tomographic image obtained by combining the tomographic images captured from a plurality of directions, but is not limited thereto. .
  • the control unit 70 may obtain the postoperative predicted anterior chamber depth based on one tomographic image taken from an oblique direction.
  • the control unit 70 may obtain the postoperative predicted anterior chamber depth based on a part of the ciliary body and the position of the corneal apex shown in one tomographic image.
  • the control unit 70 may obtain the postoperative anterior chamber depth based on a part of the ciliary body shown in the tomographic image and the tracking information.

Abstract

The present invention addresses the technical problem of providing a tomographic-image image pickup device that can suitably acquire the structure of an eye under test. Provided is a tomographic-image image pickup device that picks up tomographic images of an eye under test, wherein the device is characterized by being provided with the following: an image pickup means for picking up anterior eye portion tomographic images of the eye under test, from at least two different directions; and a calculation means for synthesizing a plurality of the anterior eye portion tomographic images which were picked up by the image pickup means from at least two different directions, such synthesis carried out on the basis of the positional relationships of the images. Due to this configuration, the structure of the eye under test can be suitably acquired.

Description

断層画像撮影装置Tomographic imaging system
 本開示は、被検眼の断層画像を撮影するための断層画像撮影装置に関する。 The present disclosure relates to a tomographic imaging apparatus for imaging a tomographic image of an eye to be examined.
 従来において、被検体の光干渉断層像を取得する光干渉断層計(OCT:Optical coherence tomography)が知られている。OCTを用いた断層画像像撮影装置は、光源から出射された光を測定光と参照光に分割し、分割した測定光を被検体の組織に照射する。そして、断層画像撮影装置は、組織によって反射された測定光を参照光と合成し、合成した光の干渉信号から、組織の深さ方向の情報を取得する。断層画像撮影装置は、取得した深さ方向の情報を用いて断層画像を生成する(特許文献1参照)。 Conventionally, an optical coherence tomography (OCT) that acquires an optical coherence tomographic image of a subject is known. A tomographic image capturing apparatus using OCT divides light emitted from a light source into measurement light and reference light, and irradiates the tissue of the subject with the divided measurement light. Then, the tomographic imaging apparatus combines the measurement light reflected by the tissue with the reference light, and acquires information in the depth direction of the tissue from the interference signal of the combined light. The tomographic imaging apparatus generates a tomographic image using the acquired information in the depth direction (see Patent Document 1).
特開2012-223435号公報JP2012-223435A
 ところで、断層画像撮影装置において被検者の眼を正面方向から撮影した場合、虹彩によって測定光が遮られ、毛様体、チン小帯等の撮影が困難であった。これによって、検者は、被検眼の構造を十分に把握することができなかった。 By the way, when the tomographic imaging apparatus was used to photograph the subject's eyes from the front, the measurement light was blocked by the iris, making it difficult to photograph ciliary bodies, chin strips, and the like. As a result, the examiner could not fully grasp the structure of the eye to be examined.
 本開示は、従来技術の問題点の少なくとも一つを鑑み、被検眼の構造を好適に取得できる断層画像撮影装置を提供することを技術課題とする。 The present disclosure has been made in view of at least one of the problems of the prior art, and provides a tomographic imaging apparatus capable of suitably acquiring the structure of the eye to be examined.
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。 In order to solve the above problems, the present disclosure is characterized by having the following configuration.
 (1) 被検眼の断層画像を撮影する断層画像撮影装置であって、前記被検眼の前眼部断層画像を2以上の異なる方向から撮影する撮影手段と、前記撮影手段によって2以上の異なる方向から撮影された複数の前眼部断層画像を、各画像の位置関係に基づいて合成する演算手段と、を備えることを特徴とする。 (1) A tomographic imaging apparatus for imaging a tomographic image of an eye to be examined, the imaging means for imaging the anterior segment tomographic image of the eye to be examined from two or more different directions, and two or more different directions depending on the imaging means And an arithmetic means for synthesizing a plurality of anterior segment tomographic images taken based on the positional relationship of the images.
本実施例の断層画像撮影装置の光学系を示す光学図である。It is an optical diagram which shows the optical system of the tomographic imaging apparatus of a present Example. 本実施例の制御系を示すブロック図である。It is a block diagram which shows the control system of a present Example. 本実施例の制御を示すフローチャートである。It is a flowchart which shows the control of a present Example. 本実施例の撮影方向の切り換えについて説明するための図である。It is a figure for demonstrating the switching of the imaging | photography direction of a present Example. 本実施例の撮影方向の切り換えについて説明するための図である。It is a figure for demonstrating the switching of the imaging | photography direction of a present Example. 本実施例の撮影方向の切り換えについて説明するための図である。It is a figure for demonstrating the switching of the imaging | photography direction of a present Example. 本実施例の断層画像撮影装置によって撮影された断層画像の例を示す図である。It is a figure which shows the example of the tomographic image image | photographed by the tomographic image imaging apparatus of a present Example. 本実施例の断層画像撮影装置によって撮影された断層画像の例を示す図である。It is a figure which shows the example of the tomographic image image | photographed by the tomographic image imaging apparatus of a present Example. 本実施例の断層画像撮影装置によって撮影された断層画像の例を示す図である。It is a figure which shows the example of the tomographic image image | photographed by the tomographic image imaging apparatus of a present Example. 本実施例の断層画像撮影装置によって合成された断層画像の例を示す図である。It is a figure which shows the example of the tomographic image synthesize | combined by the tomographic imaging apparatus of a present Example. 本実施例の断層画像撮影装置によって撮影方向を切り換える方法の変容例について説明する図である。It is a figure explaining the example of a change of the method of switching an imaging direction with the tomographic imaging apparatus of a present Example. 本実施例の断層画像撮影装置によって撮影方向を切り換える方法の変容例について説明する図である。It is a figure explaining the example of a change of the method of switching an imaging direction with the tomographic imaging apparatus of a present Example. 本実施例の固視光学系について説明する図である。It is a figure explaining the fixation optical system of a present Example.
 本開示に係る実施形態を図面に基づいて簡単に説明する。本実施形態の断層画像撮影装置(例えば、断層画像撮影装置1)は、例えば、撮影部(例えば、測定光学系100)と、演算部(例えば、制御部70)を主に備える。撮影部は、例えば、2以上の異なる方向から被検眼を撮影する。演算部は、撮影部によって撮影された複数の前眼部断層画像を合成する。例えば、複数の前眼部断層画像は、撮影部によって、2以上の異なる方向から撮影された画像である。演算部は、各画像の位置関係に基づいて、複数の前眼部断層画像を合成する。 Embodiments according to the present disclosure will be briefly described based on the drawings. The tomographic imaging apparatus (for example, the tomographic imaging apparatus 1) of the present embodiment mainly includes, for example, an imaging unit (for example, the measurement optical system 100) and a calculation unit (for example, the control unit 70). The imaging unit images the eye to be examined from two or more different directions, for example. The calculation unit synthesizes a plurality of anterior segment tomographic images captured by the imaging unit. For example, the plurality of anterior segment tomographic images are images captured by the imaging unit from two or more different directions. The calculation unit synthesizes a plurality of anterior segment tomographic images based on the positional relationship between the images.
 演算部は、例えば、合成画像に基づいて、被検眼の構造情報を取得してもよい。合成画像は、2以上の異なる方向から撮影された複数の前眼部断層画像を合成した画像である。構造情報は、例えば、被検眼の少なくとも1つの部位の位置または形状等の情報であってもよい。これによって、1方向からでは撮影が困難な部位に関する構造情報を取得しやすい。 The calculation unit may acquire the structural information of the eye to be examined based on the composite image, for example. The composite image is an image obtained by combining a plurality of anterior ocular segment tomographic images taken from two or more different directions. The structure information may be information such as the position or shape of at least one part of the eye to be examined. As a result, it is easy to obtain structural information regarding a part that is difficult to image from one direction.
 演算部は、構造情報から求めた被検眼の角膜頂点の位置と、毛様体の位置と、に基づいて眼内レンズが挿入される位置(例えば、術後予測前房深度)を算出してもよい。例えば、演算部は、合成画像において、角膜頂点を通る角膜表面の法線と、毛様体突起部を含む平面との交点の位置に基づいて、術後予測前房深度を算出してもよい。例えば、演算部は、合成画像において、角膜頂点を通り、正面断層画像における測定光軸方向(深さ方向)の直線と、左右の毛様体突起部を結ぶ線との交点の位置に基づいて、術後予測前房深度を算出してもよい。演算部は、合成画像に基づいて種々の方法で被検眼の構造を求めてもよい。 The calculation unit calculates a position (for example, postoperative predicted anterior chamber depth) at which the intraocular lens is inserted based on the position of the corneal apex of the eye to be examined and the position of the ciliary body obtained from the structure information. Also good. For example, the calculation unit may calculate the postoperative predicted anterior chamber depth based on the position of the intersection point between the normal of the corneal surface passing through the corneal apex and the plane including the ciliary protrusion in the composite image. . For example, the calculation unit is based on the position of the intersection of the straight line in the measurement optical axis direction (depth direction) in the frontal tomographic image and the line connecting the left and right ciliary protrusions in the synthesized tomogram in the composite image. The postoperative predicted anterior chamber depth may be calculated. The calculation unit may obtain the structure of the eye to be examined by various methods based on the composite image.
 演算部は、合成画像に基づいて、毛様溝間距離を測定してもよい。演算部は、測定された毛様体間距離に基づいて、後房型有水晶体眼内レンズ(ICL)のサイズを決定してもよい。合成画像が取得されることで、本装置は的確な眼内レンズのサイズを選定することができる。 The calculation unit may measure the ciliary groove distance based on the composite image. The calculation unit may determine the size of the posterior chamber type phakic intraocular lens (ICL) based on the measured inter-ciliary distance. By acquiring the composite image, the present apparatus can select an appropriate intraocular lens size.
 なお、撮影部は、被検眼を2以上の異なる方向から撮影する場合、被検眼の正面方向と、被検眼の斜め方向から撮影してもよい。正面方向は、例えば、被検眼の固視方向であってもよい。斜め方向は、例えば、正面方向に対して傾斜した方向であってもよい。例えば、撮影部は、被検眼を、正面方向に対して25°~30°傾斜した方向から撮影してもよい。なお、斜め方向は、例えば、正面方向に対して左右の少なくともいずれかに傾斜した方向であってもよい。 Note that the imaging unit may shoot from the front direction of the subject eye and the oblique direction of the subject eye when photographing the subject eye from two or more different directions. The front direction may be, for example, the fixation direction of the eye to be examined. The oblique direction may be, for example, a direction inclined with respect to the front direction. For example, the imaging unit may image the eye to be examined from a direction inclined by 25 ° to 30 ° with respect to the front direction. The oblique direction may be, for example, a direction inclined to at least one of left and right with respect to the front direction.
 なお、演算部は、前眼部断層画像に対してノイズ低減処理を行ってもよい。例えば、演算部は、同じ方向から撮影された複数枚の前眼部断層画像の信号強度の統計量を解析することで、前眼部断層画像のノイズ低減を行ってもよい。この場合、例えば、撮影部は、各撮影方向において複数枚の前眼部断層画像を撮影してもよい。 Note that the calculation unit may perform noise reduction processing on the anterior segment tomographic image. For example, the calculation unit may perform noise reduction of the anterior segment tomographic image by analyzing a statistic of signal intensity of a plurality of anterior segment tomographic images captured from the same direction. In this case, for example, the imaging unit may capture a plurality of anterior segment tomographic images in each imaging direction.
 なお、演算部は、境界の形状と撮影物の屈折率を考慮して屈折補正することで、合成画像を補正してもよい。例えば、演算部は、予め設定された角膜、強膜、水晶体、毛様体、チン小帯、硝子体等の屈折率に基づいて画像を補正してもよい。これによって、断層画像の歪みが低減され、より好適な被検眼の構造情報を取得できる。各部位の屈折率は、予め測定などで求められた値が用いられてもよい。 Note that the arithmetic unit may correct the composite image by correcting the refraction in consideration of the shape of the boundary and the refractive index of the photographed object. For example, the calculation unit may correct the image based on a refractive index of a cornea, a sclera, a crystalline lens, a ciliary body, a chin band, a vitreous body, or the like set in advance. As a result, distortion of the tomographic image is reduced, and more preferable structure information of the eye to be examined can be acquired. As the refractive index of each part, a value obtained in advance by measurement or the like may be used.
 なお、本装置は、固視誘導部(例えば、第1固視光学系150、第2固視光学系10など)を備えてもよい。固視誘導部は、例えば、被検眼の固視を誘導する。この場合、撮影部は、固視誘導部によって被検眼の固視が誘導されることによって、2以上の異なる方向から前眼部断層画像を撮影してもよい。例えば、固視誘導部は、複数の固視光源(例えば、光源151、光源11、光源12など)の点灯を切り換えることによって固視方向を誘導してもよいし、固視光源を移動させることで固視方向を誘導してもよい。 In addition, this apparatus may be provided with a fixation guidance part (for example, the 1st fixation optical system 150, the 2nd fixation optical system 10, etc.). The fixation guidance unit guides fixation of the eye to be examined, for example. In this case, the imaging unit may capture the anterior ocular segment tomographic image from two or more different directions by inducing fixation of the eye to be examined by the fixation induction unit. For example, the fixation guidance unit may guide the fixation direction by switching lighting of a plurality of fixation light sources (for example, the light source 151, the light source 11, and the light source 12), or move the fixation light source. The fixation direction may be guided with.
 固視誘導部は、呈示距離可変部(例えば、呈示距離可変部13,14など)を備えてもよい。呈示距離可変部は、例えば、固視標の呈示距離を変化させる。この場合、演算部は、固視標の呈示距離の変化によって生じた被検眼の形態の変化を検出してもよい。例えば、演算部は、呈示距離可変部によって固視標の呈示距離が変化される前後に撮影部によって撮影された2以上の前眼部断層画像に基づいて、被検眼の形態の変化を検出してもよい。 The fixation guidance section may include a presentation distance variable section (for example, the presentation distance variable sections 13 and 14). The presentation distance variable unit changes the presentation distance of the fixation target, for example. In this case, the calculation unit may detect a change in the form of the eye to be inspected caused by a change in the fixation target presentation distance. For example, the calculation unit detects a change in the shape of the eye based on two or more anterior segment tomographic images captured by the imaging unit before and after the presentation distance of the fixation target is changed by the presentation distance variable unit. May be.
 なお、本装置は、前眼部観察部(例えば、観察系140など)をさらに備えてもよい。前眼部観察部は、例えば、被検眼の前眼部観察画像を撮影する。この場合、撮影部は、前眼部観察画像から検出された被検眼の特徴部位を基準にトラッキングすることで前眼部断層画像を撮影してもよい。 Note that the present apparatus may further include an anterior ocular segment observation unit (for example, an observation system 140). The anterior ocular segment observation unit captures, for example, an anterior ocular segment observation image of the eye to be examined. In this case, the imaging unit may capture the anterior ocular segment tomographic image by tracking with reference to the characteristic part of the subject eye detected from the anterior ocular segment observation image.
 なお、撮影部は、第1干渉光学系(例えば、OCT系110など)を備えてもよい。第1干渉光学系は、例えば、被検眼に照射された測定光の反射光と、測定光に対応する参照光と、の干渉状態を検出することによって被検眼の前眼部断層画像を撮影する。また、撮影部は、第2干渉光学系(例えば、OCT系210,OCT系310など)を備えてもよい。第2干渉光学系は、例えば、第1干渉光学系とは異なる方向から被検眼の前眼部断層画像を撮影する。 Note that the imaging unit may include a first interference optical system (for example, the OCT system 110). For example, the first interference optical system captures an anterior tomographic image of the eye to be examined by detecting an interference state between the reflected light of the measurement light irradiated on the eye to be examined and the reference light corresponding to the measurement light. . Further, the imaging unit may include a second interference optical system (for example, the OCT system 210, the OCT system 310, etc.). For example, the second interference optical system captures an anterior tomographic image of the eye to be examined from a direction different from that of the first interference optical system.
 なお、本装置は、撮影部を制御する制御部(例えば、制御部70)をさらに備えてもよい。制御部は、被検眼に対する撮影部の撮影方向を変更する場合、測定光の波長帯域を変更してもよい。なお、制御部は、被検眼に対する撮影部の撮影方向を変更する場合、測定光の偏光状態を変更してもよい。これによって、被検眼の部位に応じて適切な撮影を行える。なお、制御部は、被検眼に対する撮影部の撮影方向を切り換える場合、撮影部と被検眼との作動距離、および撮影部の集光位置の少なくとも一つを変更してもよい。 Note that the present apparatus may further include a control unit (for example, the control unit 70) that controls the imaging unit. The control unit may change the wavelength band of the measurement light when changing the imaging direction of the imaging unit with respect to the eye to be examined. Note that the control unit may change the polarization state of the measurement light when the imaging direction of the imaging unit with respect to the eye to be examined is changed. Thereby, appropriate imaging can be performed according to the region of the eye to be examined. The control unit may change at least one of the working distance between the imaging unit and the eye to be examined and the light collection position of the imaging unit when switching the imaging direction of the imaging unit with respect to the eye to be examined.
 なお、撮影部は、シャインプルーフカメラを備えてもよい。この場合、撮影部は、シャインプルーフカメラによって被検眼の断層画像を撮影してもよい。また、撮影部は、超音波カメラを備えてもよい。この場合、撮影部は、超音波カメラによって被検眼の断層画像を撮影してもよい。 Note that the photographing unit may be equipped with a Shine proof camera. In this case, the imaging unit may capture a tomographic image of the eye to be examined using a Scheimpflug camera. Further, the photographing unit may include an ultrasonic camera. In this case, the imaging unit may capture a tomographic image of the eye to be examined using an ultrasonic camera.
 <実施例>
 以下、本実施例の断層画像撮影装置について図面を用いて説明する。図1に示す断層画像撮影装置1は、例えば、測定光学系100と、第2固視光学系10を主に備える。測定光学系100は、例えば、被検眼Eを測定するための光学系を備える。第2固視光学系10は、例えば、被検眼Eを固視させる。
<Example>
Hereinafter, the tomographic imaging apparatus of the present embodiment will be described with reference to the drawings. The tomographic imaging apparatus 1 shown in FIG. 1 mainly includes, for example, a measurement optical system 100 and a second fixation optical system 10. The measurement optical system 100 includes, for example, an optical system for measuring the eye E. For example, the second fixation optical system 10 fixes the eye E to be examined.
 <測定光学系>
 測定光学系100は、例えば、OCT系110、走査系120、導光系130、観察系140、第1固視光学系150等を備える。OCT系110は、例えば、被検眼Eに測定光を照射し、その反射光と参照光との干渉信号を検出する。OCT系100は、いわゆる光断層干渉計(OCT:Optical coherence tomography)の光学系である。OCT系110は、例えば、光源111、カップラー(光分割器)112、参照系113、検出系115等を備える。光源111は、例えば、低コヒーレント光を出射する。カップラー112は、光源111から出射された光を測定光と参照光に分割する。参照系113は、例えば、参照ミラー等を備える。例えば、参照系113は、カップラー112によって分割された参照光を反射し、再びカップラー112へと入射させる。参照系113は、マイケルソンタイプであってもよいし、マッハツェンダタイプであっても良い。検出系115は、例えば、測定光と参照光との干渉状態を検出する。例えば、検出系115によって検出された干渉信号に対するフーリエ変換によって所定範囲における深さプロファイル(Aスキャン信号)が取得される。
<Measurement optical system>
The measurement optical system 100 includes, for example, an OCT system 110, a scanning system 120, a light guide system 130, an observation system 140, a first fixation optical system 150, and the like. For example, the OCT system 110 irradiates the eye E with measurement light and detects an interference signal between the reflected light and the reference light. The OCT system 100 is an optical system of a so-called optical coherence tomography (OCT). The OCT system 110 includes, for example, a light source 111, a coupler (light splitter) 112, a reference system 113, a detection system 115, and the like. The light source 111 emits, for example, low coherent light. The coupler 112 divides the light emitted from the light source 111 into measurement light and reference light. The reference system 113 includes, for example, a reference mirror. For example, the reference system 113 reflects the reference light divided by the coupler 112 and makes it incident on the coupler 112 again. The reference system 113 may be a Michelson type or a Mach-Zehnder type. The detection system 115 detects, for example, an interference state between the measurement light and the reference light. For example, a depth profile (A scan signal) in a predetermined range is acquired by Fourier transform on the interference signal detected by the detection system 115.
 なお、OCT系110として、例えば、Spectral-domain OCT(SD-OCT)、Swept-source OCT(SS-OCT)、Time-domain OCT(TD-OCT)等が用いられてもよい。 As the OCT system 110, for example, Spectral-domain OCT (SD-OCT), Swept-source OCT (SS-OCT), Time-domain OCT (TD-OCT), or the like may be used.
 <走査系>
 走査系120は、OCT系110からの測定光を走査させる。走査系120は、例えば、ガルバノミラー121、ガルバノミラー122、駆動部123、駆動部124等を備える。例えば、ガルバノミラー121は、駆動部123の駆動によって測定光をX方向に走査する。例えば、ガルバノミラー122は、駆動部124の駆動によって測定光をY方向に走査する。したがって、例えば、走査系120は、OCT系100からの測定光を2次元的に走査する。
<Scanning system>
The scanning system 120 scans the measurement light from the OCT system 110. The scanning system 120 includes, for example, a galvanometer mirror 121, a galvanometer mirror 122, a drive unit 123, a drive unit 124, and the like. For example, the galvanometer mirror 121 scans the measurement light in the X direction by driving the drive unit 123. For example, the galvanometer mirror 122 scans the measurement light in the Y direction by driving the driving unit 124. Therefore, for example, the scanning system 120 scans the measurement light from the OCT system 100 two-dimensionally.
 <導光系>
 導光系130は、走査系120によって走査された測定光を被検眼Eに向けて導光する。導光系130は、例えば、対物レンズ131等を備える。
<Light guide system>
The light guide system 130 guides the measurement light scanned by the scanning system 120 toward the eye E. The light guide system 130 includes, for example, an objective lens 131 and the like.
 <観察系>
 観察系140は、例えば、測定光軸L1の方向から被検眼Eを観察する。例えば、観察系140は、測定光学系100の測定光軸L1に配置され、測定光軸L1の方向から被検眼Eを撮影する。観察系140は、例えば、受光素子等を備えてもよい。観察系140は、例えば、走査型レーザ検眼鏡(SLO)の装置構成であってもよいし(例えば、特開2015-66242号公報参照)、いわゆる眼底カメラタイプの構成であってもよい(特開2011-10944参照)。なお、観察系140としては、OCT系110が兼用してもよく、検出系115からの検出信号に基づいて正面画像が取得されてもよい。
<Observation system>
The observation system 140 observes the eye E from the direction of the measurement optical axis L1, for example. For example, the observation system 140 is arranged on the measurement optical axis L1 of the measurement optical system 100, and images the eye E from the direction of the measurement optical axis L1. The observation system 140 may include, for example, a light receiving element. The observation system 140 may have, for example, a scanning laser ophthalmoscope (SLO) device configuration (see, for example, Japanese Patent Application Laid-Open No. 2015-66242) or a so-called fundus camera type configuration (special feature). (See Open 2011-10944). Note that the OCT system 110 may also be used as the observation system 140, and a front image may be acquired based on a detection signal from the detection system 115.
 <第1固視光学系>
 第1固視光学系150は、例えば、被検眼Eを測定光軸L1の方向に固視させる。例えば、第1固視光学系150は、可視光を発する固視光源151等を備える。
<First fixation optical system>
For example, the first fixation optical system 150 fixes the eye E to be examined in the direction of the measurement optical axis L1. For example, the first fixation optical system 150 includes a fixation light source 151 that emits visible light.
 なお、測定光学系100は、ダイクロイックミラー101、ダイクロイックミラー102等を備えてもよい。ダイクロイックミラー101は、例えば、測定光学系100の測定光軸L1と走査系120の光軸L2とを同軸とする。ダイクロイックミラー102は、例えば、測定光学系100の測定光軸L1と第1固視光学系150の光軸L3を同軸とする。 Note that the measurement optical system 100 may include a dichroic mirror 101, a dichroic mirror 102, and the like. In the dichroic mirror 101, for example, the measurement optical axis L1 of the measurement optical system 100 and the optical axis L2 of the scanning system 120 are coaxial. In the dichroic mirror 102, for example, the measurement optical axis L1 of the measurement optical system 100 and the optical axis L3 of the first fixation optical system 150 are coaxial.
 <第2固視光学系>
 第2固視光学系10は、例えば、被検眼Eを斜め方向に固視させる。例えば、第2固視光学系10は、測定光学系100の測定光軸L1に対してθだけ斜め方向に被検眼Eを固視させる。第2固視光学系10は、例えば、可視光を照射する光源11と光源12を備える。光源11,光源12は、例えば、装置1の筐体外部に固定される。
<Second fixation optical system>
For example, the second fixation optical system 10 fixes the eye E to be examined in an oblique direction. For example, the second fixation optical system 10 causes the eye E to be fixed in an oblique direction by θ with respect to the measurement optical axis L1 of the measurement optical system 100. The second fixation optical system 10 includes, for example, a light source 11 and a light source 12 that emit visible light. For example, the light source 11 and the light source 12 are fixed to the outside of the casing of the device 1.
 光源11は、例えば、被検眼Eを左方向に向けた状態で固視させる。例えば、光源11から出射された固視光束の出射方向は、測定光学系100の測定光軸L1に対して右方向にθだけ傾いている。したがって、被検眼Eが光源11を固視した場合、被検眼Eの固視方向は、測定光軸L1に対して左方向にθだけ傾く。 For example, the light source 11 fixes the eye E with the eye E facing leftward. For example, the emission direction of the fixation light beam emitted from the light source 11 is tilted by θ in the right direction with respect to the measurement optical axis L 1 of the measurement optical system 100. Therefore, when the eye E examinees the light source 11, the fixation direction of the eye E is tilted by θ in the left direction with respect to the measurement optical axis L1.
 光源12は、例えば、被検眼Eを右方向に向けた状態で固視させる。例えば、光源12から出射された固視光束の出射方向は、測定光学系100の測定光軸L1に対して右方向にθだけ傾いている。したがって、被検眼Eが光源12を固視した場合、被検眼Eの固視方向は、測定光軸L1に対して右方向にθだけ傾く。 The light source 12 fixes the eye E, for example, with the eye E facing rightward. For example, the emission direction of the fixation light beam emitted from the light source 12 is inclined to the right by θ with respect to the measurement optical axis L1 of the measurement optical system 100. Therefore, when the subject eye E fixes the light source 12, the fixation direction of the subject eye E is inclined to the right by θ with respect to the measurement optical axis L1.
 なお、固視方向を傾斜させるときの角度は、例えば、被検眼の毛様体が測定光軸L1上に位置する角度に設定されてもよい。例えば、第2固視光学系は、θが25°~30°の範囲になるように光源11、光源12を備えてもよい。これによって、断層画像撮影装置1は、断層画像の撮影領域の中央部に毛様体を配置させることができる。この角度は、人の眼軸長が26mm前後、毛様溝間距離が14mm前後であり、眼球回旋点が眼軸長の半分の距離に位置すると仮定したときに、毛様溝が測定光軸L1上に位置するための角度である。もちろん、光源11と光源12とで固視方向の傾斜角度を変化させてもよい。 Note that the angle at which the fixation direction is inclined may be set to an angle at which the ciliary body of the eye to be examined is positioned on the measurement optical axis L1, for example. For example, the second fixation optical system may include the light source 11 and the light source 12 so that θ is in the range of 25 ° to 30 °. Thereby, the tomographic imaging apparatus 1 can arrange the ciliary body in the center of the imaging area of the tomographic image. This angle is such that when the human eye axis length is around 26 mm, the distance between ciliary grooves is around 14 mm, and the eyeball rotation point is located at half the distance of the eye axis length, the ciliary groove is the measurement optical axis. It is an angle for positioning on L1. Of course, the tilt angle in the fixation direction may be changed between the light source 11 and the light source 12.
 <制御系>
 次いで、図2に基づいて、断層画像撮影装置1の制御系について説明する。断層画像撮影装置1は、例えば、制御部70を備える。制御部70は、例えば、CPU(Central Processing Unit)71、ROM72、RAM73、等で実現される。ROM72には、例えば、OCT信号の取得動作を制御するためのプログラム、断層画像を処理するためのプログラム、初期値等が記憶される。RAM73は、例えば、各種情報を一時的に記憶する。
<Control system>
Next, a control system of the tomographic imaging apparatus 1 will be described with reference to FIG. The tomographic imaging apparatus 1 includes a control unit 70, for example. The control unit 70 is realized by, for example, a CPU (Central Processing Unit) 71, a ROM 72, a RAM 73, and the like. The ROM 72 stores, for example, a program for controlling the operation of acquiring an OCT signal, a program for processing a tomographic image, an initial value, and the like. The RAM 73 temporarily stores various information, for example.
 制御部70には、図2に示すように、例えば、記憶部(例えば、不揮発性メモリ)74、表示部75、および操作部76、測定光学系100、及び第2固視光学系等が電気的に接続されている。記憶部74は、例えば、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、フラッシュROM、着脱可能なUSBメモリ等を記憶部74として使用することができる。 As shown in FIG. 2, the control unit 70 includes, for example, a storage unit (for example, a non-volatile memory) 74, a display unit 75, an operation unit 76, a measurement optical system 100, a second fixation optical system, and the like. Connected. The storage unit 74 is, for example, a non-transitory storage medium that can retain stored contents even when power supply is interrupted. For example, a hard disk drive, a flash ROM, a removable USB memory, or the like can be used as the storage unit 74.
 表示部75は、装置1の本体に搭載されたディスプレイであってもよいし、本体に接続されたディスプレイであってもよい。例えば、パーソナルコンピュータ(以下、「PC」という)のディスプレイを用いてもよい。表示部75は、例えば、測定光学系110によって取得された断層画像、各種操作画面等が表示される。 The display unit 75 may be a display mounted on the main body of the apparatus 1 or a display connected to the main body. For example, a display of a personal computer (hereinafter referred to as “PC”) may be used. The display unit 75 displays, for example, a tomographic image acquired by the measurement optical system 110, various operation screens, and the like.
 操作部76には、検者による各種操作指示が入力される。操作部76は、入力された操作指示に応じた信号をCPU71に出力する。操作部76には、例えば、マウス、ジョイスティック、キーボード、タッチパネル等の少なくともいずれかのユーザーインターフェイスを用いればよい。 The operation unit 76 receives various operation instructions from the examiner. The operation unit 76 outputs a signal corresponding to the input operation instruction to the CPU 71. For the operation unit 76, for example, at least one of user interfaces such as a mouse, a joystick, a keyboard, and a touch panel may be used.
 <制御動作>
 以上のような構成を備える断層画像撮影装置1において、断層画像を取得し、解析を行うときの動作を図3に基づいて説明する。以下の例において、断層画像撮影装置1は、測定光学系100によって複数の方向から被検眼Eを撮影し、取得された断層画像を合成する。
<Control action>
In the tomographic imaging apparatus 1 having the above-described configuration, an operation when a tomographic image is acquired and analyzed will be described with reference to FIG. In the following example, the tomographic imaging apparatus 1 images the eye E from a plurality of directions by the measurement optical system 100 and synthesizes the acquired tomographic images.
 <ステップS1:正面撮影>
 例えば、制御部70は、第1固視光学系150を制御して被検者に測定光軸L1の方向から固視光束を投影する。図4Aに示すように、被検眼が第1固視光学系150の固視光源151を固視することによって、被検眼は測定光軸L1に視線を合わせた状態になる。この場合、測定光学系100の撮影領域A1の中央部には、例えば、被検眼Eの角膜頂点または水晶体等が配置される。
<Step S1: Front shooting>
For example, the control unit 70 controls the first fixation optical system 150 to project a fixation light beam from the direction of the measurement optical axis L1 onto the subject. As shown in FIG. 4A, when the eye to be inspected fixes the fixation light source 151 of the first fixation optical system 150, the eye to be inspected is in a state in which the line of sight is aligned with the measurement optical axis L1. In this case, for example, a corneal apex or a crystalline lens of the eye E is disposed in the center of the imaging region A1 of the measurement optical system 100.
 制御部70は、例えば、図示無き前眼部観察用カメラで撮影される前眼部画像に基づいて、被検眼Eの瞳孔中心に測定光軸L1がくるように図示無き駆動部を制御して自動でアライメントを行う。 For example, the control unit 70 controls a drive unit (not shown) so that the measurement optical axis L1 is at the center of the pupil of the eye E based on an anterior eye image captured by a camera for observing the anterior eye part (not shown). Align automatically.
 アライメント完了すると、制御部70は、測定光学系100を制御して被検眼Eの測定を行う。例えば、制御部70は、被検眼Eの断層画像を撮影する。例えば、制御部70は、走査系120の駆動を制御し、被検眼Eに対して測定光を走査させる。制御部70は、検出系115によって検出された測定光と参照光とに基づく干渉信号を取得する。 When the alignment is completed, the control unit 70 controls the measurement optical system 100 to measure the eye E. For example, the control unit 70 captures a tomographic image of the eye E. For example, the control unit 70 controls driving of the scanning system 120 to scan the eye E with the measurement light. The controller 70 acquires an interference signal based on the measurement light detected by the detection system 115 and the reference light.
 制御部70は、例えば、図5Aに示すように、被検眼Eを正面方向(例えば、被検眼の固視方向)から撮影した正面断層画像91を撮影する。制御部70は、例えば、撮影した正面断層画像91を記憶部74等に記憶させる。 For example, as shown in FIG. 5A, the control unit 70 captures a frontal tomographic image 91 obtained by capturing the eye E from the front direction (for example, the fixation direction of the eye to be examined). For example, the control unit 70 stores the captured frontal tomographic image 91 in the storage unit 74 or the like.
 なお、被検眼を正面方向から撮影した場合、毛様体またはチン小帯の手前に位置する角膜または強膜において、その法線が測定光軸L1に対して大きく傾斜する。このため、毛様体またはチン小帯を被検眼の正面から撮影しようとすると、角膜または強膜での反射光が測定光軸L1とは異なる方向に反射してしまい、上手く反射光を検出できない場合が多い(図5A参照)。このような場合、毛様体またはチン小帯等の位置または構造を十分に取得することができない。このため、制御部70は、以降のステップS2およびステップS3において、毛様体またはチン小帯の撮影に適した条件で撮影を行う。 When the subject's eye is photographed from the front direction, the normal of the cornea or sclera located in front of the ciliary body or chin band is greatly inclined with respect to the measurement optical axis L1. For this reason, when an attempt is made to photograph the ciliary body or chin band from the front of the eye to be examined, the reflected light from the cornea or sclera is reflected in a direction different from the measurement optical axis L1, and the reflected light cannot be detected well. In many cases (see FIG. 5A). In such a case, the position or structure of the ciliary body or chin band cannot be obtained sufficiently. For this reason, the control part 70 image | photographs on conditions suitable for imaging | photography of a ciliary body or a chin strip in subsequent step S2 and step S3.
 <ステップS2:第1斜め撮影>
 正面方向からの撮影を完了すると、制御部70は、正面方向とは異なる方向から被検眼Eを撮影する。このため、制御部70は、例えば、第2固視光学系10を制御し、被検眼Eの固視方向を切り換える。例えば、図4Bに示すように、制御部70は、第1固視光学系150の固視光源151を消灯させ、第2固視光学系10の光源11を点灯させる。光源11が点灯され、被検者が光源11による固視標を固視すると、被検眼Eの固視方向は、光源11からの視標光束の光軸L4の方向と一致する。したがって、被検眼Eの固視方向は、測定光軸L1に対して左にθ傾く。この場合、測定光学系100の撮影領域A1には、被検眼Eの右側の毛様体が入る。制御部70は、被検眼Eに光源11を固視させた状態で、適宜前眼部画像でのアライメントを行い、測定光学系100による撮影を行う。制御部70は、例えば、図5Bに示すように被検眼Eを斜め右方向から撮影された右断層画像92を取得する。制御部70は、例えば、撮影した右断層画像92を記憶部74等に記憶させる。
<Step S2: First oblique photographing>
When the imaging from the front direction is completed, the control unit 70 images the eye E from a direction different from the front direction. Therefore, for example, the control unit 70 controls the second fixation optical system 10 to switch the fixation direction of the eye E. For example, as illustrated in FIG. 4B, the control unit 70 turns off the fixation light source 151 of the first fixation optical system 150 and turns on the light source 11 of the second fixation optical system 10. When the light source 11 is turned on and the subject fixes the fixation target by the light source 11, the fixation direction of the eye E coincides with the direction of the optical axis L4 of the target luminous flux from the light source 11. Therefore, the fixation direction of the eye E is tilted θ to the left with respect to the measurement optical axis L1. In this case, the right ciliary body of the eye E enters the imaging region A1 of the measurement optical system 100. The controller 70 performs alignment with the anterior eye image as appropriate in a state where the light source 11 is fixed to the eye E, and performs imaging by the measurement optical system 100. For example, as illustrated in FIG. 5B, the control unit 70 acquires a right tomographic image 92 obtained by photographing the eye E from an oblique right direction. For example, the control unit 70 stores the captured right tomographic image 92 in the storage unit 74 or the like.
 <ステップS3:第2斜め撮影>
 制御部70は、例えば、再び第2固視光学系10を制御し、被検眼Eの固視方向を切り換える。例えば、図4Cに示すように、制御部70は、光源12を点灯させる。光源12が点灯され、被検者が光源12による固視標を固視すると、被検眼Eの固視方向は、光源12からの視標光束の光軸L5の方向と一致する。したがって、被検眼Eの固視方向は、測定光軸L1に対して右にθ傾く。この場合、測定光学系100の撮影領域A1には、被検眼Eの左側の毛様体が入る。制御部70は、被検眼Eに光源12を固視させた状態で、測定光学系100による撮影を行う。制御部70は、例えば、図5Cに示すように被検眼Eを斜め左方向から撮影された左断層画像93を取得する。制御部70は、例えば、撮影した左断層画像93を記憶部74等に記憶させる。
<Step S3: Second oblique photographing>
For example, the control unit 70 controls the second fixation optical system 10 again to switch the fixation direction of the eye E. For example, as illustrated in FIG. 4C, the control unit 70 turns on the light source 12. When the light source 12 is turned on and the subject fixes the fixation target by the light source 12, the fixation direction of the eye E coincides with the direction of the optical axis L5 of the target luminous flux from the light source 12. Therefore, the fixation direction of the eye E is tilted θ to the right with respect to the measurement optical axis L1. In this case, the ciliary body on the left side of the eye E enters the imaging region A1 of the measurement optical system 100. The control unit 70 performs imaging by the measurement optical system 100 in a state where the light source 12 is fixed to the eye E. For example, as illustrated in FIG. 5C, the control unit 70 acquires a left tomographic image 93 obtained by photographing the eye E from an oblique left direction. For example, the control unit 70 stores the captured left tomographic image 93 in the storage unit 74 or the like.
 例えば、上記のステップS2、ステップS3のように、測定光軸L1に対して被検者の固視方向を傾斜させることによって、測定光が被検眼Eの角膜または強膜に対して略垂直に入射して毛様体に向かうため、毛様体またはチン小帯が好適に撮影される。 For example, the measurement light is substantially perpendicular to the cornea or sclera of the eye E by tilting the fixation direction of the subject with respect to the measurement optical axis L1 as in Steps S2 and S3 described above. Since it is incident and heads toward the ciliary body, the ciliary body or the chin strip is suitably photographed.
 <ステップS4:画像合成>
 以上のように、複数の方向の断層画像が取得されると、制御部70は、複数の方向から撮影された断層画像を合成する。制御部70は、例えば、被検眼を撮影したときのトラッキング情報を用いて各画像を合成する際の位置合わせをしてもよい。
<Step S4: Image Composition>
As described above, when the tomographic images in a plurality of directions are acquired, the control unit 70 combines the tomographic images photographed from the plurality of directions. For example, the control unit 70 may perform alignment when combining each image using tracking information obtained when the eye to be examined is photographed.
 トラッキング情報とは、例えば、被検眼Eを撮影するときの前眼部画像から得られる情報である。例えば、トラッキング情報は、例えば、アライメント適正位置からの被検眼Eのずれ情報であってもよい。例えば、制御部70は、正面断層画像91を撮影したときのトラッキング情報と、右断層画像92または左断層画像93を撮影したときのトラッキング情報に基づいて、各画像を撮影したときの眼の位置をそれぞれ求めてもよい。そして、各画像の眼の位置が一致するように画像の合成位置を決定してもよい。このとき、例えば、制御部70は、被検眼Eの固視方向を考慮して左右の断層画像を回転させてもよい。制御部70は、例えば、合成した断層画像(合成断層画像90)を記憶部74等に記憶させる。 The tracking information is, for example, information obtained from the anterior eye image when the eye E is imaged. For example, the tracking information may be, for example, deviation information of the eye E from the proper alignment position. For example, the control unit 70, based on the tracking information when the front tomographic image 91 is captured and the tracking information when the right tomographic image 92 or the left tomographic image 93 is captured, the position of the eye when each image is captured. May be obtained respectively. Then, the combined position of the images may be determined so that the positions of the eyes of the images match. At this time, for example, the control unit 70 may rotate the left and right tomographic images in consideration of the fixation direction of the eye E. For example, the control unit 70 stores the combined tomographic image (the combined tomographic image 90) in the storage unit 74 or the like.
 <ステップS5:画像解析>
 制御部70は、図6に示すように、合成断層画像90を解析してもよい。例えば、制御部70は、合成断層画像90を解析することによって、ELP(術後予測前房深度)を予測してもよい。
<Step S5: Image Analysis>
The control unit 70 may analyze the composite tomographic image 90 as shown in FIG. For example, the control unit 70 may predict the ELP (postoperative anterior chamber depth) by analyzing the composite tomographic image 90.
 例えば、制御部70は、右断層画像92,左断層画像93からそれぞれ毛様体突出部TR,TLを検出し、毛様体突出部TRと毛様体突出部TLを結んだ直線L6と、正面断層画像91の角膜頂点Caを通る垂線V1と、の交点iの位置を求める。そして、制御部70は、角膜頂点Caと交点iとの距離に基づいてELPを予測してもよい。 For example, the control unit 70 detects the ciliary protrusions TR and TL from the right tomographic image 92 and the left tomographic image 93, respectively, and a straight line L6 connecting the ciliary protrusions TR and the ciliary protrusions TL; The position of the intersection point i with the perpendicular line V1 passing through the corneal vertex Ca of the frontal tomographic image 91 is obtained. Then, the control unit 70 may predict ELP based on the distance between the corneal vertex Ca and the intersection point i.
 なお、制御部70は、合成断層画像90に基づいて、毛様溝間距離(STS: Sulcus to sulcus)を測定してもよい。制御部70は、測定した毛様溝間距離に基づいて、後房型有水晶体眼内レンズ(ICL)のサイズを決定してもよい。ICLは、近視または乱視等を矯正するために、虹彩と水晶体の間に移植されるレンズである。 The control unit 70 may measure the ciliary interstitial distance (STS: Sulcus to ul sulcus) based on the composite tomographic image 90. The controller 70 may determine the size of the posterior chamber type phakic intraocular lens (ICL) based on the measured ciliary inter-groove distance. The ICL is a lens implanted between the iris and the lens to correct myopia or astigmatism.
 以上のように、本実施例の断層画像撮影装置1は、複数の方向から撮影した被検眼Eの断層画像を合成することによって、1方向からの撮影が困難な部位の位置関係を取得できる。つまり、本実施例の断層画像撮影装置1は、ある方向から撮影された画像に写る部位と、他の方向から撮影された画像に写る部位との位置関係を取得できる。 As described above, the tomographic imaging apparatus 1 according to the present embodiment can acquire the positional relationship of parts that are difficult to be imaged from one direction by synthesizing tomographic images of the eye E to be inspected from a plurality of directions. That is, the tomographic imaging apparatus 1 of the present embodiment can acquire the positional relationship between a part that appears in an image taken from a certain direction and a part that appears in an image taken from another direction.
 例えば、断層画像撮影装置1は、正面方向からの撮影が困難な毛様体またはチン小帯を斜め方向から撮影し、斜めから撮影した断層画像と正面から撮影した断層画像とを合成することで、角膜形状または眼球全体に対する毛様体・チン小帯の位置を特定することができる。これによって、被検眼Eに挿入する眼内レンズを選択するための情報を好適に取得できる。 For example, the tomographic imaging apparatus 1 captures a ciliary body or a chin band that is difficult to capture from the front direction from an oblique direction, and combines the tomographic image captured from the oblique direction and the tomographic image captured from the front. The position of the ciliary body / chin band with respect to the cornea shape or the entire eyeball can be specified. Thereby, information for selecting an intraocular lens to be inserted into the eye E can be suitably acquired.
 なお、以上の説明では、断層画像撮影装置1は、第2固視光学系10を備え、被検者の固視方向を切り換えることによって、被検眼Eを複数の方向から撮影したが、これに限らない。例えば、測定光学系100の測定光軸L1の方向を切り換えることによって、被検眼Eを複数の方向から撮影してもよい。 In the above description, the tomographic imaging apparatus 1 includes the second fixation optical system 10 and images the eye E from a plurality of directions by switching the fixation direction of the subject. Not exclusively. For example, the eye E may be photographed from a plurality of directions by switching the direction of the measurement optical axis L1 of the measurement optical system 100.
 例えば、図7に示すように、測定光学系100は、複数の断層画像撮影系を備えてもよい。例えば、断層画像撮影装置1は、OCT系110、OCT系210、OCT系310を備えてもよい。OCT系110は、例えば、走査系120、導光系130を介して光軸L1の方向から被検眼Eを撮影する。OCT系210は、例えば、走査系220、導光系230を介して光軸L4の方向から被検眼Eを撮影する。OCT系310は、例えば、走査系320、導光系330を介して光軸L5の方向から被検眼Eを撮影する。このように、断層画像撮影装置1は、測定光軸の方向が異なる複数の断層画像撮影系を備えることによって、被検眼Eを複数の方向から撮影してもよい。 For example, as shown in FIG. 7, the measurement optical system 100 may include a plurality of tomographic imaging systems. For example, the tomographic imaging apparatus 1 may include an OCT system 110, an OCT system 210, and an OCT system 310. For example, the OCT system 110 images the eye E from the direction of the optical axis L1 via the scanning system 120 and the light guide system 130. The OCT system 210 images the eye E from the direction of the optical axis L4 via the scanning system 220 and the light guide system 230, for example. The OCT system 310 images the eye E from the direction of the optical axis L5 via the scanning system 320 and the light guide system 330, for example. As described above, the tomographic imaging apparatus 1 may photograph the eye E from a plurality of directions by including a plurality of tomographic imaging systems having different measurement optical axis directions.
 複数の断層画像撮影系を備え、複数の方向から被検眼Eを同時に撮影する場合、各画像の撮影時における被検眼Eの位置が一致するため、各画像の合成を容易に行える。例えば、制御部70は、装置の設計から求まる各OCT系の撮影領域の位置関係に基づいて画像を合成すればよい。 When a plurality of tomographic imaging systems are provided and the subject eye E is photographed simultaneously from a plurality of directions, the positions of the subject eye E at the time of photographing each image coincide with each other, so that the images can be easily combined. For example, the control unit 70 may synthesize an image based on the positional relationship between the imaging regions of each OCT system obtained from the design of the apparatus.
 なお、複数のOCT系を備える場合、正面方向から撮影するOCT系と斜め方向から撮影するOCT系の光源の波長帯域を変えてもよい。例えば、正面方向から撮影するOCT系は1300nm前後の中心波長を有する光源を用い、斜め方向から撮影するOCT系は、1700nm前後の中心波長を有する光源を用いてもよい。これによって、撮影する部位に適した光線での撮影が行える。 When a plurality of OCT systems are provided, the wavelength band of the OCT system that captures images from the front direction and the OCT system that captures images from an oblique direction may be changed. For example, an OCT system that captures images from the front direction may use a light source having a center wavelength of about 1300 nm, and an OCT system that captures images from an oblique direction may use a light source having a center wavelength of approximately 1700 nm. As a result, it is possible to perform imaging with a light beam suitable for the region to be imaged.
 なお、断層画像撮影装置1は、例えば、測定光学系100を移動させることによって、測定光軸L1の方向を切り換えてもよい。例えば、図8に示すように、断層画像撮影装置1は、駆動部50を備えてもよい。駆動部50は、例えば、測定光学系100を駆動させる。例えば、制御部70は、駆動部50の駆動を制御し、測定光学系100の光軸L1が被検者の固視方向に対してθ回転するように測定光学系100を旋回させてもよい。これによって、断層画像撮影装置1は、複数の方向から被検眼Eを撮影してもよい。この場合、第2固視光学系10として、測定光学系100の移動とは関係なく被検眼Eを一定方向に固視させる外部固視光源13などを備えてもよい。外部固視光源13は、例えば、断層画像撮影装置1の基台(不図示)、または、被検者の顔を固定するために基台に設けられる顔支持部(不図示)に保持されてもよい。 Note that the tomographic imaging apparatus 1 may switch the direction of the measurement optical axis L1 by moving the measurement optical system 100, for example. For example, as shown in FIG. 8, the tomographic imaging apparatus 1 may include a drive unit 50. The drive unit 50 drives the measurement optical system 100, for example. For example, the control unit 70 may control the driving of the driving unit 50 and rotate the measuring optical system 100 so that the optical axis L1 of the measuring optical system 100 rotates θ with respect to the fixation direction of the subject. . Accordingly, the tomographic image photographing apparatus 1 may photograph the eye E from a plurality of directions. In this case, the second fixation optical system 10 may include an external fixation light source 13 that fixes the eye E in a fixed direction regardless of the movement of the measurement optical system 100. The external fixation light source 13 is held by, for example, a base (not shown) of the tomographic imaging apparatus 1 or a face support (not shown) provided on the base for fixing the subject's face. Also good.
 なお、測定光軸L1の方向を変更する場合、測定光が瞼で遮られることを防ぐため、断層画像撮影装置1は、水平面上で測定光軸L1の方向を変更してもよい。 In addition, when changing the direction of the measurement optical axis L1, the tomographic imaging apparatus 1 may change the direction of the measurement optical axis L1 on the horizontal plane in order to prevent the measurement light from being blocked by the scissors.
 なお、断層画像撮影装置1は、正面方向からの撮影と斜め方向からの撮影とで、OCT系110の偏光状態を切り換えてもよい。この場合、例えば、断層画像撮影装置1は、偏光系116を備えてもよい。偏光系116は、例えば、OCT系110の測定光をP波とS波に分光する光学素子を備えてもよい。 Note that the tomographic imaging apparatus 1 may switch the polarization state of the OCT system 110 between imaging from the front direction and imaging from an oblique direction. In this case, for example, the tomographic imaging apparatus 1 may include the polarization system 116. The polarization system 116 may include, for example, an optical element that splits the measurement light of the OCT system 110 into P waves and S waves.
 例えば、制御部70は、被検眼Eを斜めから撮影する場合、偏光系によって測定光をP波とS波に分光し、分光したP波を被検眼に照射するようにしてもよい。P波はS波に比べ、斜め方向から物体に入射するときの反射率が低い。従って、測定光にP波を用いることによって、測定光が角膜または強膜で反射することを抑えられ、毛様体またはチン小帯などに届く測定光の光量を確保することができる。 For example, when photographing the eye E to be examined obliquely, the control unit 70 may divide the measurement light into a P wave and an S wave by a polarization system and irradiate the eye to be examined with the separated P wave. The P wave has a lower reflectance when entering the object from an oblique direction than the S wave. Therefore, by using the P wave as the measurement light, the measurement light can be prevented from being reflected by the cornea or the sclera, and the amount of the measurement light reaching the ciliary body or the chin band can be secured.
 なお、制御部70は、正面方向からの撮影におけるトラッキング情報を利用して斜め方向の撮影を行ってもよい。例えば、制御部70は、正面方向での撮影位置と同じ位置に被検眼Eが位置したときに斜め方向からの撮影を行ってもよい。この場合、制御部70は、測定光学系100の撮影領域と第2固視光学系10との関係から予め定まる合成位置で各断層画像を合成してもよい。 Note that the control unit 70 may perform oblique imaging using tracking information in imaging from the front direction. For example, the control unit 70 may perform imaging from an oblique direction when the eye E is positioned at the same position as the imaging position in the front direction. In this case, the control unit 70 may synthesize each tomographic image at a synthesis position determined in advance from the relationship between the imaging region of the measurement optical system 100 and the second fixation optical system 10.
 なお、制御部70は、同じ方向からの撮影位置を徐々にずらしながら複数枚の断層画像を撮影してもよい。例えば、制御部70は、斜め方向から撮影する際に、測定光の走査位置を少しずつ移動させながら複数回の撮影を行う。これよって、撮影位置が少しずつずれた画像が撮影される。この場合、制御部70は、トラッキング情報を用いて最も合成位置に近いものを選んで合成してもよい。 Note that the control unit 70 may capture a plurality of tomographic images while gradually shifting the imaging position from the same direction. For example, when photographing from an oblique direction, the control unit 70 performs photographing a plurality of times while gradually moving the scanning position of the measurement light. As a result, an image whose shooting position is slightly shifted is shot. In this case, the control unit 70 may select and synthesize the one closest to the synthesis position using the tracking information.
 なお、本実施例のように各方向からの撮影を行うタイミングが異なる場合、断層画像撮影装置1は、被検眼Eの特徴部位を目標としてトラッキングを行うことで安定的に断層画像を撮影してもよい。例えば、制御部70は、観察系140によって撮影された被検眼の前眼部画像から被検眼の特徴部位(例えば、虹彩の模様、強膜の血管など)を特定し、その位置が前眼部画像の同じ位置に撮影されるように断層画像撮影装置1を移動させ、トラッキングを行うようにしてもよい。 In addition, when the timing which image | photographs from each direction differs like a present Example, the tomographic image imaging device 1 image | photographs a tomographic image stably by performing the tracking for the characteristic site | part of the eye E to be examined. Also good. For example, the control unit 70 specifies a characteristic part (for example, an iris pattern, a scleral blood vessel, etc.) of the eye to be examined from the anterior eye part image of the eye to be photographed by the observation system 140, and the position is the anterior eye part. Tracking may be performed by moving the tomographic imaging apparatus 1 so that it is captured at the same position of the image.
 なお、制御部70は、エッジ検出によって画像の合成位置を決定してもよい。例えば、制御部70は、各画像のエッジを検出し、角膜、強膜、虹彩等のエッジ形状が一致するようにマッチング処理を行い、各画像を合成してもよい。また、例えば、制御部70は、正面断層画像のエッジから近似される楕円に対して、斜め方向から撮影した断層画像のエッジが重なるように合成位置を決定してもよい。もちろん、虹彩のエッジが一致するようにしてもよい。なお、エッジ検出は、隣接する画素の輝度値の変化等を利用してもよい。 Note that the control unit 70 may determine the image synthesis position by edge detection. For example, the control unit 70 may detect the edges of the images, perform matching processing so that the edge shapes of the cornea, sclera, iris, and the like match, and synthesize the images. In addition, for example, the control unit 70 may determine the synthesis position so that the edge of the tomographic image captured from the oblique direction overlaps the ellipse approximated from the edge of the frontal tomographic image. Of course, the iris edges may coincide. The edge detection may use a change in luminance value of adjacent pixels.
 なお、制御部70は、各画像の相関関係を用いて画像の合成位置を決定してもよい。例えば、位相限定相関法を用いて画像の位置合わせを行ってもよい。 Note that the control unit 70 may determine an image combining position using the correlation between the images. For example, image alignment may be performed using a phase only correlation method.
 なお、制御部70は、上記の実施例において説明したトラッキング情報に基づく位置合わせと、エッジ検出,位相限定相関法等の位置合わせ方法を併用してもよい。 Note that the control unit 70 may use the alignment based on the tracking information described in the above embodiment and the alignment method such as edge detection and phase-only correlation.
 なお、制御部70は、各画像の位置合わせにおいて、被検眼Eの固視方向と測定光軸L1の傾きを考慮して、予め画像を回転させてもよい。例えば、上記の実施例の場合、被検者が正しく固視している場合は、正面断層画像91に対して、右断層画像92は左回りにθ、左断層画像は右回りにθだけ回転している。したがって、例えば、制御部70は、右断層画像92を右回りにθ回転させ、左断層画像93を左回りにθ回転させてもよい。 The controller 70 may rotate the images in advance in consideration of the fixation direction of the eye E and the inclination of the measurement optical axis L1 in the alignment of the images. For example, in the case of the above embodiment, when the subject is correctly fixing, the right tomographic image 92 is rotated counterclockwise by θ and the left tomographic image is rotated clockwise by θ with respect to the frontal tomographic image 91. is doing. Therefore, for example, the control unit 70 may rotate the right tomographic image 92 by clockwise θ rotation and the left tomographic image 93 by counterclockwise θ rotation.
 なお、画像を合成する際に、毛様体突起部など写りづらい部位を可視化するために、各画像に対してノイズ低減処理を行ってもよい。例えば、制御部70は、複数枚の画像を撮影し、それらの画像情報を統計処理することによってノイズを低減してもよい。 It should be noted that when images are synthesized, noise reduction processing may be performed on each image in order to visualize parts that are difficult to be imaged, such as ciliary protrusions. For example, the control unit 70 may reduce noise by taking a plurality of images and statistically processing the image information.
 統計処理としては、例えば、加算処理、MAP(Maximum a posteriori)処理等が挙げられる。MAP処理は、例えば、OCT系によって検出される干渉信号の強度がライス分布に従うことを利用して、ノイズ低減を行う処理である。 Statistic processing includes, for example, addition processing, MAP (Maximum aposteriori) processing, and the like. The MAP process is a process for reducing noise by utilizing the fact that the intensity of an interference signal detected by the OCT system follows a Rice distribution, for example.
 各断層画像に対してノイズ処理を行うことによって、ノイズに埋もれやすい毛様体の画像が鮮明になり、より画像合成処理を行い易くなる。 By performing noise processing on each tomographic image, the ciliary body image that is easily buried in noise becomes clear and image synthesis processing becomes easier.
 なお、制御部70は、境界の形状と撮影部位の屈折率に基づいて屈折補正することで、各断層画像を補正してもよい。例えば、制御部70は、予め設定された角膜、強膜、水晶体、毛様体、チン小帯、硝子体等の屈折率に基づいて画像を補正してもよい。これによって、制御部70は、断層画像の歪みを低減してもよい。 The control unit 70 may correct each tomographic image by performing refractive correction based on the shape of the boundary and the refractive index of the imaging region. For example, the control unit 70 may correct the image based on a preset refractive index of the cornea, sclera, crystalline lens, ciliary body, chin band, vitreous body, or the like. Thereby, the control unit 70 may reduce the distortion of the tomographic image.
 なお、制御部70は、撮影方向の切り換えに応じて断層画像撮影装置1の作動距離、測定光学系100の集光位置等を制御してもよい。この場合、例えば、制御部70は、撮影方向の切り換えに応じて測定光学系100を移動させる駆動部50を制御してもよいし、導光系130の光学素子を移動、挿脱してもよい。 Note that the control unit 70 may control the working distance of the tomographic imaging apparatus 1, the condensing position of the measurement optical system 100, and the like according to switching of the imaging direction. In this case, for example, the control unit 70 may control the driving unit 50 that moves the measurement optical system 100 according to switching of the photographing direction, or may move, insert, and remove the optical element of the light guide system 130. .
 なお、第2固視光学系は、例えば、呈示距離可変部を備えてもよい。図9に示すように、例えば、第2固視光学系10は、呈示距離可変部13,14を備えてもよい。呈示距離可変部13は、例えば、光源11による固視標の呈示距離を調整してもよい。呈示距離可変部14は、例えば、光源12による固視標の呈示距離を調整してもよい。呈示距離可変部13は、例えば、光源11を光軸L4の方向に移動させることによって、固視標の呈示距離を調整してもよい。呈示距離可変部14は、例えば、光源12を光軸L5の方向に移動させることによって、固視標の呈示距離を調整してもよい。この場合、制御部70は、呈示距離可変部13,14を制御し、固視標の呈示距離を調整してもよい。 Note that the second fixation optical system may include, for example, a presentation distance variable unit. As shown in FIG. 9, for example, the second fixation optical system 10 may include presentation distance variable units 13 and 14. The presentation distance variable unit 13 may adjust the presentation distance of the fixation target by the light source 11, for example. The presentation distance variable unit 14 may adjust the presentation distance of the fixation target by the light source 12, for example. The presentation distance variable unit 13 may adjust the presentation distance of the fixation target by moving the light source 11 in the direction of the optical axis L4, for example. The presentation distance variable unit 14 may adjust the presentation distance of the fixation target by moving the light source 12 in the direction of the optical axis L5, for example. In this case, the control unit 70 may control the presentation distance variable units 13 and 14 to adjust the presentation distance of the fixation target.
 なお、制御部70は、測定光学系100によって被検眼の撮影を行っているときに固視標の呈示距離を調整してもよい。これによって、制御部70は、被検眼の視力調節(Accommodation)による毛様体の変化を撮影することができる。例えば、制御部70は、呈示距離可変部13,14を制御し、光源11,12の呈示距離を大きくした場合と小さくした場合とで被検眼の断層画像をそれぞれ撮影する。そして、制御部70は、各呈示距離においてそれぞれ撮影された断層画像の変化から毛様体またはチン小帯等の変化を検出してもよい。例えば、制御部70は、各断層画像の強度差分を取ることによって毛様体またはチン小帯等の変化を検出してもよい。制御部70は、毛様体またはチン小帯等の変化の検出結果に基づいて、毛様体またはチン小帯等の位置情報を取得してもよい。制御部70は、例えば、毛様体が収縮または弛緩したときの毛様体の位置情報を取得してもよい。なお、制御部70は、測定光学系100での撮影中に呈示距離可変部13,14によって固視標の呈示距離を変更してもよいし、呈示距離を変更する前と後で測定光光学系100での撮影を行ってもよい。なお、固視標の呈示距離を変化させて撮影した画像についても前述のようなノイズ低減を行ってもよい。 Note that the control unit 70 may adjust the presenting distance of the fixation target when the measurement optical system 100 is photographing the eye to be examined. Thereby, the control unit 70 can photograph the change of the ciliary body due to the visual acuity adjustment (Accommodation) of the eye to be examined. For example, the control unit 70 controls the presentation distance variable units 13 and 14 to capture tomographic images of the eye to be examined when the presentation distance of the light sources 11 and 12 is increased or decreased. And the control part 70 may detect a change, such as a ciliary body or a chin band, from the change of the tomographic image each image | photographed in each presentation distance. For example, the control unit 70 may detect a change in the ciliary body or the chin band by taking the intensity difference between the tomographic images. The control unit 70 may acquire position information of the ciliary body or the chin band based on the detection result of the change of the ciliary body or the chin band. For example, the control unit 70 may acquire positional information of the ciliary body when the ciliary body contracts or relaxes. In addition, the control unit 70 may change the presentation distance of the fixation target by the presentation distance variable units 13 and 14 during photographing with the measurement optical system 100, or the measurement optical optics before and after changing the presentation distance. Shooting with the system 100 may be performed. Note that noise reduction as described above may also be performed on an image captured by changing the fixation target presentation distance.
 また、制御部70は、例えば、OCT系110によって取得されたOCT信号をフーリエ変換した複素OCT信号を処理してモーションコントラストを取得してもよい。モーションコントラストは、例えば、被検物の動きを示す情報である。制御部70は、モーションコントラストを取得することによって、固視灯の呈示距離が変化したときの毛様体の動きを検出してもよい。モーションコントラストを得るための複素OCT信号の処理方法としては、例えば、複素OCT信号の強度差を算出する方法、複素OCT信号の強度の分散を算出する方法、複素OCT信号の位相差を算出する方法、複素OCT信号のベクトル差分を算出する方法、OCT信号の相関(または非相関)を用いる方法(コリレーションマッピング、デコリレーションマッピング)を用いる方法、これによって得られたモーションコントラストデータを組み合わせる方法などが考えられる。 Further, the control unit 70 may acquire a motion contrast by processing a complex OCT signal obtained by Fourier transforming the OCT signal acquired by the OCT system 110, for example. The motion contrast is information indicating the movement of the test object, for example. The control unit 70 may detect the movement of the ciliary body when the presenting distance of the fixation lamp changes by acquiring the motion contrast. As a processing method of the complex OCT signal for obtaining the motion contrast, for example, a method of calculating the intensity difference of the complex OCT signal, a method of calculating the variance of the intensity of the complex OCT signal, and a method of calculating the phase difference of the complex OCT signal , A method of calculating a vector difference of a complex OCT signal, a method of using correlation (or non-correlation) of an OCT signal (correlation mapping, decorrelation mapping), a method of combining motion contrast data obtained thereby, and the like Conceivable.
 もちろん、呈示距離可変部は、例えば、固視光源(例えば、光源11,12)と被検眼Eとの間に配置される光学素子を備え、その光学素子を移動させることによって、固視標の呈示距離を調整する構成であってもよい。 Of course, the presentation distance variable unit includes, for example, an optical element disposed between the fixation light source (for example, the light sources 11 and 12) and the eye E, and moves the optical element to move the fixation target. The structure which adjusts presentation distance may be sufficient.
 なお、断層画像撮影装置1は、被検眼の眼底断層画像を撮影してもよい。この場合、制御部70は、被検眼の前眼部断層画像と眼底断層画像とを位置合わせしてもよい。例えば、制御部70は、被検眼の正面方向と斜め方向から撮影した前眼部断層画像の合成断層画像と、眼底断層画像とを位置合わせし、これらを合成してもよい。また、前眼部断層画像と眼底断層画像との位置合わせ情報に基づいて、被検眼Eの眼の構造情報を取得してもよい。なお、前眼部断層画像と眼底断層画像は、同時に撮影してもよいし、別々に撮影してもよい。 Note that the tomographic imaging apparatus 1 may capture a fundus tomographic image of the eye to be examined. In this case, the control unit 70 may align the anterior ocular segment tomographic image and the fundus tomographic image of the eye to be examined. For example, the control unit 70 may align the synthesized tomographic image of the anterior segment tomographic image captured from the front direction and the oblique direction of the eye to be examined and the fundus tomographic image, and synthesize these. Further, the structure information of the eye of the eye E may be acquired based on the alignment information between the anterior segment tomographic image and the fundus tomographic image. The anterior segment tomographic image and the fundus tomographic image may be captured simultaneously or separately.
 なお、以上の実施例において、測定光学系110を備えたが、これに限らず、シャインプルーフカメラ、超音波カメラ等を備え、被検眼の断層画像を撮影する構成であってもよい。 In the above embodiment, the measurement optical system 110 is provided. However, the present invention is not limited to this, and a configuration in which a Scheimpflug camera, an ultrasonic camera, or the like is provided and a tomographic image of the eye to be examined may be taken.
 なお、上記の実施例において、第2固視光学系10は、装置本体に固定されていてもよいし、装置本体に備えられたアーム等によって移動可能に保持されていてもよい。 In the above embodiment, the second fixation optical system 10 may be fixed to the apparatus main body, or may be movably held by an arm or the like provided in the apparatus main body.
 なお、上記の実施例において、第2固視光学系10は、被検眼の固視方向を左右に傾斜させる構成であったが、これに限らない。例えば、第2固視光学系10は、被検眼Eを上下方向に傾斜させる位置に光源が配置されてもよい。また、測定光学系によって被検眼を斜め方向から撮影する場合も、上下方向に傾斜した状態で撮影を行う構成であってもよい。 In the above embodiment, the second fixation optical system 10 is configured to tilt the fixation direction of the eye to be examined right and left, but is not limited thereto. For example, in the second fixation optical system 10, a light source may be disposed at a position where the eye E is tilted in the vertical direction. In addition, when the subject's eye is photographed from an oblique direction using the measurement optical system, the photographing may be performed while being tilted in the vertical direction.
 なお、上記の実施例において、制御部70は、複数の方向から撮影された断層画像を合成して得られた合成断層画像に基づいて術後予測前房深度を求めたが、これに限らない。例えば、制御部70は、斜め方向から撮影した1つの断層画像に基づいて、術後予測前房深度を求めてもよい。この場合、例えば、制御部70は、1つの断層画像に写った毛様体の一部と角膜頂点の位置に基づいて、術後予測前房深度を求めてもよい。また、例えば、制御部70は、断層画像に写った毛様体の一部とトラッキング情報に基づいて、術後前房深度を求めてもよい。 In the above-described embodiment, the control unit 70 obtains the postoperative predicted anterior chamber depth based on the combined tomographic image obtained by combining the tomographic images captured from a plurality of directions, but is not limited thereto. . For example, the control unit 70 may obtain the postoperative predicted anterior chamber depth based on one tomographic image taken from an oblique direction. In this case, for example, the control unit 70 may obtain the postoperative predicted anterior chamber depth based on a part of the ciliary body and the position of the corneal apex shown in one tomographic image. For example, the control unit 70 may obtain the postoperative anterior chamber depth based on a part of the ciliary body shown in the tomographic image and the tracking information.
 1 断層画像撮影装置
 10 第2固視光学系
 70 制御部
 100 測定光学系
 110 OCT系
 120 走査系
 130 導光系
 140 観察系
 150 第1固視光学系
DESCRIPTION OF SYMBOLS 1 Tomographic imaging apparatus 10 2nd fixation optical system 70 Control part 100 Measurement optical system 110 OCT system 120 Scanning system 130 Light guide system 140 Observation system 150 1st fixation optical system

Claims (22)

  1.  被検眼の断層画像を撮影する断層画像撮影装置であって、
     前記被検眼の前眼部断層画像を2以上の異なる方向から撮影する撮影手段と、
     前記撮影手段によって2以上の異なる方向から撮影された複数の前眼部断層画像を、各画像の位置関係に基づいて合成する演算手段と、
    を備えることを特徴とする断層画像撮影装置。
    A tomographic imaging apparatus for imaging a tomographic image of an eye to be examined,
    Imaging means for imaging the anterior segment tomographic image of the eye to be examined from two or more different directions;
    Arithmetic means for synthesizing a plurality of anterior segment tomographic images photographed from two or more different directions by the photographing means based on the positional relationship between the images;
    A tomographic imaging apparatus comprising:
  2.  前記演算手段は、前記複数の前眼部断層画像を合成して得られた合成画像に基づいて、前記被検眼の構造情報を取得することを特徴とする請求項1の断層画像撮影装置。 2. The tomographic imaging apparatus according to claim 1, wherein the calculation means acquires the structural information of the eye to be examined based on a composite image obtained by combining the plurality of anterior segment tomographic images.
  3.  前記演算手段は、前記構造情報から求めた前記被検眼の角膜頂点の位置と、毛様体の位置と、に基づいて眼内レンズが挿入される術後予測前房深度を算出することを特徴とする請求項2の断層画像撮影装置。 The computing means calculates a postoperative predicted anterior chamber depth at which an intraocular lens is inserted based on the position of the corneal apex of the eye to be examined and the position of the ciliary body obtained from the structure information. The tomographic imaging apparatus according to claim 2.
  4.  前記演算手段は、前記合成画像において、前記角膜頂点を通る角膜表面の法線と、毛様体突起部を含む平面との交点の位置に基づいて、前記術後予測前房深度を算出することを特徴とする請求項3の断層画像撮影装置。 The computing means calculates the postoperative predicted anterior chamber depth based on the position of the intersection of the normal of the corneal surface passing through the corneal apex and the plane including the ciliary protrusion in the composite image. The tomographic imaging apparatus according to claim 3.
  5.  前記演算手段は、前記合成画像に基づいて、毛様溝間距離を測定することを特徴とする請求項2~4のいずれかの断層画像撮影装置。 The tomographic imaging apparatus according to any one of claims 2 to 4, wherein the computing means measures a ciliary groove distance based on the composite image.
  6.  前記演算手段は、測定された前記毛様体間距離に基づいて、後房型有水晶体眼内レンズのサイズを決定することを特徴とする請求項5の断層画像撮影装置。 6. The tomographic imaging apparatus according to claim 5, wherein the computing means determines the size of the posterior chamber type phakic intraocular lens based on the measured ciliary distance.
  7.  前記撮影手段は、前記被検眼を、正面方向と、前記正面方向に対して左右の少なくともいずれかに傾斜した方向から撮影することを特徴とする請求項1~6のいずれかの断層画像撮影装置。 The tomographic imaging apparatus according to any one of claims 1 to 6, wherein the imaging unit images the eye to be examined from a front direction and a direction inclined at least one of right and left with respect to the front direction. .
  8.  前記撮影手段は、前記被検眼を、正面方向と、前記正面方向に対して25°~30°傾斜した方向から撮影することを特徴とする請求項1~7のいずれかの断層画像撮影装置。 8. The tomographic imaging apparatus according to claim 1, wherein the imaging unit images the eye to be examined from a front direction and a direction inclined by 25 ° to 30 ° with respect to the front direction.
  9.  前記演算手段は、前記前眼部断層画像に対してノイズ低減処理を行うことを特徴とする請求項1~8のいずれかの断層画像撮影装置。 The tomographic imaging apparatus according to any one of claims 1 to 8, wherein the calculation means performs noise reduction processing on the anterior segment tomographic image.
  10.  前記撮影手段は、各撮影方向において複数枚の前眼部断層画像を撮影し、
     前記演算手段は、同じ方向から撮影された複数枚の前眼部断層画像の信号強度の統計量を解析することで、前記前眼部断層画像のノイズ低減を行うことを特徴とする請求項9の断層画像撮影装置。
    The imaging means captures a plurality of anterior segment tomographic images in each imaging direction,
    10. The arithmetic means performs noise reduction of the anterior segment tomographic image by analyzing a statistic of signal intensity of a plurality of anterior segment tomographic images taken from the same direction. Tomographic imaging device.
  11.  前記演算手段は、境界の形状と撮影物の屈折率を考慮して屈折補正することで、前記合成画像を補正することを特徴とする請求項2~10のいずれかの断層画像撮影装置。 The tomographic imaging apparatus according to any one of claims 2 to 10, wherein the calculation means corrects the composite image by performing a refractive correction in consideration of a boundary shape and a refractive index of a photographed object.
  12.  前記被検眼の固視を誘導する固視誘導手段をさらに備え、
     前記撮影手段は、前記被検眼の固視を誘導することによって、2以上の異なる方向から前記前眼部断層画像を撮影することを特徴とする請求項1~11のいずれかの断層画像撮影装置。
    Further comprising a fixation guidance means for guiding fixation of the eye to be examined,
    12. The tomographic image photographing apparatus according to claim 1, wherein the photographing unit photographs the anterior segment tomographic image from two or more different directions by guiding fixation of the eye to be examined. .
  13.  前記固視誘導手段は、固視標の呈示距離を変化させる呈示距離可変手段を備えることを特徴とする請求項12の断層画像撮影装置。 13. The tomographic imaging apparatus according to claim 12, wherein the fixation guidance means includes a presentation distance varying means for changing a presentation distance of the fixation target.
  14.  前記演算手段は、前記呈示距離可変手段によって前記固視標の呈示距離が変化される前後に前記撮影手段によって撮影された2以上の前眼部断層画像に基づいて、前記固視標の呈示距離の変化によって生じた前記被検眼の形態の変化を検出することを特徴とする請求項13の断層画像撮影装置。 The calculating means is based on two or more anterior segment tomographic images photographed by the photographing means before and after the presenting distance of the fixation target is changed by the presenting distance varying means. The tomographic imaging apparatus according to claim 13, wherein a change in the shape of the eye to be inspected caused by a change in the tomography is detected.
  15.  被検眼の前眼部観察画像を撮影する前眼部観察手段をさらに備え、
     前記撮影手段は、前記前眼部観察画像から検出された被検眼の特徴部位を基準にトラッキングすることで前記前眼部断層画像を撮影することを特徴とする請求項1~14のいずれかの断層画像撮影装置。
    An anterior ocular segment observation means for capturing an anterior ocular segment observation image of the eye to be examined;
    15. The imaging apparatus according to claim 1, wherein the imaging unit captures the tomographic image of the anterior eye by tracking a characteristic part of the eye to be examined detected from the observation image of the anterior eye. Tomographic imaging device.
  16.  前記撮影手段は、前記被検眼に照射された測定光の反射光と、前記測定光に対応する参照光と、の干渉状態を検出することによって前記被検眼の前眼部断層画像を撮影する第1干渉光学系を備えることを特徴とする請求項1~15のいずれかの断層画像撮影装置。 The imaging means captures an anterior ocular segment tomographic image of the eye to be examined by detecting an interference state between reflected light of the measurement light applied to the eye to be examined and reference light corresponding to the measurement light. The tomographic imaging apparatus according to any one of claims 1 to 15, further comprising one interference optical system.
  17.  前記撮影手段は、前記第1干渉光学系とは異なる方向から前記被検眼の前眼部断層画像を撮影する第2干渉光学系を備えることを特徴とする請求項16の断層画像撮影装置。 17. The tomographic imaging apparatus according to claim 16, wherein the imaging unit includes a second interference optical system that captures an anterior ocular segment tomographic image of the eye to be examined from a direction different from the first interference optical system.
  18.  前記撮影手段を制御する制御手段をさらに備え、
     前記制御手段は、前記被検眼に対する前記撮影手段の撮影方向を変更する場合、前記測定光の波長帯域を変更することを特徴とする請求項16または17の断層画像撮影装置。
    Further comprising a control means for controlling the photographing means,
    18. The tomographic imaging apparatus according to claim 16, wherein the control unit changes a wavelength band of the measurement light when changing an imaging direction of the imaging unit with respect to the eye to be examined.
  19.  前記撮影手段を制御する制御手段をさらに備え、
     前記制御手段は、前記被検眼に対する前記撮影手段の撮影方向を変更する場合、前記測定光の偏光状態を変更することを特徴とする請求項16または17の断層画像撮影装置。
    Further comprising a control means for controlling the photographing means,
    The tomographic imaging apparatus according to claim 16 or 17, wherein the control means changes a polarization state of the measurement light when changing an imaging direction of the imaging means with respect to the eye to be examined.
  20.  前記撮影手段を制御する制御手段をさらに備え、
     前記制御手段は、前記被検眼に対する前記撮影手段の撮影方向を切り換える場合、前記撮影手段と前記被検眼との作動距離、および前記撮影手段の集光位置の少なくとも一つを変更することを特徴とする請求項1~19のいずれかの断層画像撮影装置。
    Further comprising a control means for controlling the photographing means,
    The control means changes at least one of a working distance between the imaging means and the eye to be examined and a condensing position of the imaging means when the imaging direction of the imaging means with respect to the eye to be examined is switched. The tomographic imaging apparatus according to any one of claims 1 to 19.
  21.  前記撮影手段は、シャインプルーフカメラ、または超音波カメラを備えることを特徴とする請求項1~20のいずれかの断層画像撮影装置。 21. The tomographic imaging apparatus according to claim 1, wherein the imaging unit includes a Scheimpflug camera or an ultrasonic camera.
  22.  被検眼の断層画像を撮影する断層画像撮影装置であって、
     前記被検眼の正面方向に対して左右のいずれかに傾斜した方向から前眼部断層画像を撮影する撮影手段と、
     前記前眼部断層画像から得られた前記被検眼の構造情報に基づいて、眼内レンズが挿入される術後予測前房深度を算出する演算手段と、
    を備えることを特徴とする断層画像撮影装置。
    A tomographic imaging apparatus for imaging a tomographic image of an eye to be examined,
    An imaging means for imaging an anterior ocular segment tomographic image from a direction inclined left or right with respect to the front direction of the eye to be examined;
    Based on the structure information of the eye to be examined obtained from the anterior ocular segment tomographic image, calculation means for calculating a postoperative predicted anterior chamber depth into which an intraocular lens is inserted;
    A tomographic imaging apparatus comprising:
PCT/JP2017/003541 2016-02-02 2017-02-01 Tomographic-image image pickup device WO2017135278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565573A JP7104516B2 (en) 2016-02-02 2017-02-01 Tomographic imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-018353 2016-02-02
JP2016018353 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017135278A1 true WO2017135278A1 (en) 2017-08-10

Family

ID=59500827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003541 WO2017135278A1 (en) 2016-02-02 2017-02-01 Tomographic-image image pickup device

Country Status (2)

Country Link
JP (1) JP7104516B2 (en)
WO (1) WO2017135278A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060394A (en) * 2018-10-05 2020-04-16 株式会社Ihi Measurement range expansion method for non-contact measurement device
JP2021062077A (en) * 2019-10-15 2021-04-22 株式会社トーメーコーポレーション Ophthalmologic apparatus
KR20210094830A (en) * 2020-01-22 2021-07-30 고려대학교 산학협력단 Optical coherence tomography for diagnosing eyeball
CN113425251A (en) * 2021-05-28 2021-09-24 云南中医药大学 Eye diagnosis image recognition system and method
US11490805B2 (en) * 2019-02-05 2022-11-08 Topcon Corporation Ophthalmic information processing device, ophthalmic device, ophthalmic information processing method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052062A1 (en) * 2009-10-29 2011-05-05 キヤノン株式会社 Information processing device, method, system, and program
JP2012161427A (en) * 2011-02-04 2012-08-30 Nidek Co Ltd Ophthalmic photographing device
JP2013094410A (en) * 2011-10-31 2013-05-20 Nidek Co Ltd Device and program for intraocular lens power determination
JP2013226383A (en) * 2012-03-30 2013-11-07 Canon Inc Anterior ocular segment tomographic image analysis method and anterior ocular segment tomographic image analysis apparatus
JP2014128306A (en) * 2012-12-27 2014-07-10 Topcon Corp Ophthalmic image capturing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762712B2 (en) * 2010-09-30 2015-08-12 株式会社ニデック Ophthalmic observation system
WO2014160116A1 (en) 2013-03-13 2014-10-02 University Of Washington Through Its Center For Commercialization Methods and systems for imaging tissue motion using optical coherence tomography
WO2014203901A1 (en) 2013-06-19 2014-12-24 株式会社トプコン Ophthalmological imaging device and ophthalmological image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052062A1 (en) * 2009-10-29 2011-05-05 キヤノン株式会社 Information processing device, method, system, and program
JP2012161427A (en) * 2011-02-04 2012-08-30 Nidek Co Ltd Ophthalmic photographing device
JP2013094410A (en) * 2011-10-31 2013-05-20 Nidek Co Ltd Device and program for intraocular lens power determination
JP2013226383A (en) * 2012-03-30 2013-11-07 Canon Inc Anterior ocular segment tomographic image analysis method and anterior ocular segment tomographic image analysis apparatus
JP2014128306A (en) * 2012-12-27 2014-07-10 Topcon Corp Ophthalmic image capturing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVID P. PINERO ET AL.: "Anterior segment biometry with 2 imaging technologies: Very-high-frequency ultrasound scanning versus optical coherence tomography", JOURNAL OF CATARACT & REFRACTIVE SURGERY, vol. 34, no. 1, 31 January 2008 (2008-01-31), pages 95 - 102, XP022402442, DOI: doi:10.1016/j.jcrs.2007.08.033 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060394A (en) * 2018-10-05 2020-04-16 株式会社Ihi Measurement range expansion method for non-contact measurement device
US11490805B2 (en) * 2019-02-05 2022-11-08 Topcon Corporation Ophthalmic information processing device, ophthalmic device, ophthalmic information processing method, and program
JP2021062077A (en) * 2019-10-15 2021-04-22 株式会社トーメーコーポレーション Ophthalmologic apparatus
JP7417981B2 (en) 2019-10-15 2024-01-19 株式会社トーメーコーポレーション ophthalmology equipment
KR20210094830A (en) * 2020-01-22 2021-07-30 고려대학교 산학협력단 Optical coherence tomography for diagnosing eyeball
KR102316572B1 (en) * 2020-01-22 2021-10-21 고려대학교 산학협력단 Optical coherence tomography for diagnosing eyeball
CN113425251A (en) * 2021-05-28 2021-09-24 云南中医药大学 Eye diagnosis image recognition system and method

Also Published As

Publication number Publication date
JPWO2017135278A1 (en) 2018-11-29
JP7104516B2 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US10105052B2 (en) Ophthalmic imaging apparatus and ophthalmic information processing apparatus
JP6009935B2 (en) Ophthalmic equipment
ES2946253T3 (en) ophthalmic apparatus
JP6685151B2 (en) Ophthalmic equipment
JP7104516B2 (en) Tomographic imaging device
US10849499B2 (en) Ophthalmologic apparatus and method of controlling the same
JP6607346B2 (en) Anterior segment optical coherence tomography apparatus and anterior segment optical coherence tomography method
JP6899632B2 (en) Ophthalmologic imaging equipment
JP6613103B2 (en) Ophthalmic equipment
JP2022040372A (en) Ophthalmologic apparatus
JP2021023686A (en) Ophthalmologic apparatus, control method thereof, program, and recording medium
JP2020081469A (en) Ophthalmologic apparatus
JP2019201951A (en) Imaging apparatus and control method thereof
JP7164679B2 (en) Ophthalmic device and its control method
JP2022027879A (en) Ophthalmologic imaging device, control method thereof, program, and recording medium
JP2016049368A (en) Ophthalmological photographing apparatus
JP2016049367A (en) Ophthalmological photographing apparatus
JP2023080218A (en) Ophthalmologic apparatus
JP6788445B2 (en) Ophthalmic equipment
JP2022060588A (en) Ophthalmologic apparatus and control method of ophthalmologic apparatus
JP2019170710A (en) Ophthalmologic apparatus
JP7417981B2 (en) ophthalmology equipment
JP2020151094A (en) Ophthalmologic apparatus
WO2022085501A1 (en) Ophthalmic device, control method therefor, program, and recording medium
JP6942627B2 (en) Ophthalmologic imaging equipment, its control method, programs, and recording media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565573

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747434

Country of ref document: EP

Kind code of ref document: A1