WO2017134928A1 - Teleconverter lens and optical apparatus - Google Patents

Teleconverter lens and optical apparatus Download PDF

Info

Publication number
WO2017134928A1
WO2017134928A1 PCT/JP2016/086673 JP2016086673W WO2017134928A1 WO 2017134928 A1 WO2017134928 A1 WO 2017134928A1 JP 2016086673 W JP2016086673 W JP 2016086673W WO 2017134928 A1 WO2017134928 A1 WO 2017134928A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
teleconverter
lens group
master
refractive power
Prior art date
Application number
PCT/JP2016/086673
Other languages
French (fr)
Japanese (ja)
Inventor
永華 陳
直己 宮川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017565416A priority Critical patent/JP6750638B2/en
Priority to CN201680079949.2A priority patent/CN109073868A/en
Publication of WO2017134928A1 publication Critical patent/WO2017134928A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/10Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment
    • G02B15/12Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment by adding telescopic attachments

Definitions

  • the present disclosure relates to a teleconverter lens mounted on the image plane side with respect to a master lens to expand a focal length of the master lens, and an optical apparatus provided with such a teleconverter lens.
  • the focal length of the master lens can be expanded by inserting a rear conversion lens (teleconverter lens) having a negative focal length between the master lens and the camera body.
  • the teleconverter lens has a function of a relay, and re-forms the primary image of the master lens incident on the teleconverter lens on the imaging device of the camera body. Therefore, in the case of mounting the teleconverter lens, it is premised that the flange back of the master lens is longer than the on-axis distance from the front lens of the teleconverter lens to the primary image formation of the master lens.
  • the long flange back of the conventional single-lens reflex camera system weakens the power of the teleconverter lens and can gently extend the light incident on the teleconverter lens.
  • a large number of imaging lenses having a short flange back and reduced in size have been developed, for example, for mirrorless camera systems.
  • the conventional teleconverter lens for a camera system with a long flange back is not suitable for a recent mirrorless camera system.
  • Patent Documents 1 to 3 disclose teleconverter lenses applicable to single-lens reflex camera systems.
  • the teleconverter lens described in Patent Document 1 has a configuration in which incident light rays are gradually extended, and its application is difficult except for a master lens with a long exit pupil or a camera system with a long flange back.
  • the teleconverter lens described in Patent Document 2 has a positive, negative, positive three-group configuration in order from the object side, since the object side principal point is located near the center of the teleconverter lens, the mirror When applied to a less camera, the front lens of the teleconverter lens interferes with the master lens.
  • the teleconverter lens described in Patent Document 3 has a configuration in which the power of the lens unit on the image plane side is weak, and when applied to a full-frame camera system, the curvature of field at the outermost periphery becomes large, resulting in a small size. And it is difficult to obtain high optical performance.
  • the teleconverter lens enlarges the focal length of the master lens and at the same time the aberration is also enlarged according to the magnification. For example, in the case of a teleconverter lens having a magnification of 2 times, the lateral aberration of the master lens is enlarged by 2 times and the longitudinal aberration is expanded by 4 times when mounted on the master lens.
  • the combined aberration of the state in which the teleconverter lens is mounted on the master lens is the aberration of the master lens expanded and the aberration of the teleconverter lens added thereto. In order to make the teleconverter lens versatile, it is preferable to bring the aberration of the teleconverter lens close to no aberration.
  • a first teleconverter lens has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from an object side to an image surface side,
  • the second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens.
  • the focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
  • Rb1 Radius of curvature of lens surface on the object side of the positive lens included in the third lens group
  • Rb2 Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
  • a first optical device includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the first teleconverter lens according to the embodiment of the present disclosure.
  • a second teleconverter lens system has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from the object side to the image side.
  • the second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens.
  • the focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
  • magnification of teleconverter lens
  • Lr distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane
  • f2 focal length of the second lens group.
  • a second optical device includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the second teleconverter lens according to the embodiment of the present disclosure.
  • a third teleconverter lens system has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from an object side to an image surface side;
  • the second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens.
  • the focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
  • et_o The distance from the object-side principal point of the teleconverter lens to the lens surface of the teleconverter lens closest to the object (however, the time when the lens surface on the most object side is closer to the object than the object-side principal point is negative)
  • Lr A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
  • a third optical device includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the third teleconverter lens according to the embodiment of the present disclosure.
  • the teleconverter lens is detachably mounted on the image plane side with respect to the master lens, thereby making the focus of the master lens Increase the distance.
  • the teleconverter lenses as a whole are configured in three groups, and the configuration of each lens group is optimized. , Miniaturization and high imaging performance can be realized.
  • FIG. 2 is a lens cross-sectional view at the time of infinity focusing on an example of the configuration of a master lens to which the teleconverter lens according to an embodiment of the present disclosure is attached. It is a lens sectional view showing the 1st example of composition of the teleconverter lens concerning one embodiment of this indication. It is lens sectional drawing which shows the 2nd structural example of a teleconverter lens. It is lens sectional drawing which shows the 3rd structural example of a teleconverter lens. It is lens sectional drawing which shows the 4th structural example of a teleconverter lens. It is lens sectional drawing which shows the 5th structural example of a teleconverter lens.
  • FIG. 2 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end of the master lens shown in FIG. 1 at infinity focusing.
  • 3 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 1) in which the teleconverter lens shown in FIG. 2 is attached to the master lens shown in FIG. is there.
  • 3 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing at infinity according to the configuration example (numerical example 2) in which the teleconverter lens shown in FIG. 3 is attached to the master lens shown in FIG. is there.
  • 6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 3) in which the teleconverter lens shown in FIG. 4 is attached to the master lens shown in FIG. is there.
  • 6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 4) in which the teleconverter lens shown in FIG.
  • 6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end in infinity focusing in the configuration example (numerical example 5) in which the teleconverter lens shown in FIG. 6 is attached to the master lens shown in FIG. is there.
  • 8 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end in infinity focusing in the configuration example (numerical example 6) in which the tele conversion lens shown in FIG. 7 is attached to the master lens shown in FIG. is there.
  • FIG. 8 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 7) in which the teleconverter lens shown in FIG. 8 is attached to the master lens shown in FIG. is there. It is a block diagram which shows the outline of the imaging device which mounted the teleconverter lens between the master lens and the camera main body. It is a lens sectional view showing an example of composition which attached a teleconverter lens to a master lens. It is a block diagram showing an example of 1 composition of a control system of an imaging device as an optical instrument.
  • FIG. 1 shows a configuration example of a master lens ML to which a teleconverter lens TCL according to an embodiment of the present disclosure is attached.
  • Z1 denotes an optical axis
  • IMG denotes an image plane.
  • the teleconverter lens TCL according to the present embodiment enlarges the focal length of the master lens ML by being detachably mounted on the image surface side with respect to the master lens ML. It is.
  • FIG. 2 shows a first configuration example of the teleconverter lens TCL according to an embodiment of the present disclosure.
  • FIG. 3 shows a second configuration example of the teleconverter lens TCL.
  • FIG. 4 shows a third configuration example of the teleconverter lens TCL.
  • FIG. 5 shows a fourth configuration example of the teleconverter lens TCL.
  • FIG. 6 shows a fifth configuration example of the teleconverter lens TCL.
  • FIG. 7 shows a sixth configuration example of the teleconverter lens TCL.
  • FIG. 8 shows a seventh configuration example of the teleconverter lens TCL. Numerical examples in which specific numerical values are applied to these configuration examples will be described later.
  • the configuration of the teleconverter lens TCL according to the present embodiment will be described as needed in association with the configuration example shown in FIG. 2 and the like, but the technology according to the present disclosure is not limited to the configuration example illustrated. .
  • the teleconverter lens TCL includes, in order from the object side to the image surface side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2. And a third lens group G3 having a refractive power of
  • the first lens group G1 and the third lens group G3 are each composed of two or less lenses including a positive lens.
  • the teleconverter lens TCL according to the present embodiment at least satisfy conditional expression (1), conditional expression (3), or conditional expression (4) described later.
  • the teleconverter lens TCL according to the present embodiment satisfy a predetermined conditional expression etc. described later.
  • the configuration is made into three groups as a whole, and optimization of the configuration of each lens group is achieved, so that downsizing and high imaging performance can be realized.
  • the teleconverter lens TCL according to the present embodiment can realize, for example, about 1.4 to 2 times as the magnification ratio of the focal length.
  • the telephoto objective lens having an F number of about 2 to 2.8 is used as the master lens ML, excellent imaging performance can be maintained.
  • the teleconverter lens TCL according to the present embodiment can be used for a mirrorless camera or the like.
  • the third lens group G3 is configured to include a single positive lens component, and includes a positive lens having a convex surface on the image plane side closest to the image plane side.
  • one positive lens component may have a configuration of only one positive lens, or may be a positive cemented lens including a negative lens and a positive lens from the object side.
  • the third lens group G3 has a configuration of only one positive lens, the correction of distortion can be well controlled.
  • the angle of the light ray from the final lens surface of the teleconverter lens TCL becomes large. While being able to shorten the exit pupil distance, it becomes possible to maintain excellent imaging performance.
  • the first lens group G1 may be configured of a single positive lens. Further, the first lens group G1 may be configured of one negative lens and one positive lens from the object side. In particular, in the case where it is desired to weaken the power of the entire system of the teleconverter lens TCL, it is effective to correct various aberrations by constructing the first lens group G1 by a combination of a negative lens and a positive lens.
  • the teleconverter lens TCL According to the present embodiment satisfy the following conditional expression (1). -3.5 ⁇ (Rb2 + Rb1) / (Rb2-Rb1) ⁇ -0.18 (1)
  • Rb1 Radius of curvature of lens surface on the object side of the positive lens included in the third lens group G3
  • Rb2 Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group G3.
  • Conditional expression (1) represents the shape of the positive lens included in the third lens group G3. If the upper limit value of the conditional expression (1) is exceeded, inward coma aberration is likely to occur in the light flux above the chief ray. In addition, it is difficult to make a balance with distortion. Conversely, when the lower limit value of the conditional expression (1) is not reached, an outgoing coma aberration is likely to be generated in the light flux on the upper side of the chief ray, and it becomes difficult to maintain good peripheral performance.
  • conditional expression (1) it is more preferable to set the numerical range of the conditional expression (1) as in the following conditional expression (1) ′. -1.5 ⁇ (Rb2 + Rb1) / (Rb2-Rb1) ⁇ -0.3 (1) '
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (2). 2.2 ⁇ f3 / (-f2) ⁇ 7.2 (2)
  • f2 focal length of second lens group G2
  • f3 focal length of third lens group G3.
  • the teleconverter lens TCL divides the lens configuration between the positive lens of the first lens group G1 and the positive lens component of the third lens group G3, and as a whole, from the object side, positive and negative , Is a positive three-group configuration. Furthermore, the negative power of the second lens group G2 is appropriately increased, and the positive power of the third lens group G3 is appropriately increased. By arranging in this manner, it is possible to bring the principal point position on the object side closer to the object side. This makes it possible to increase the number of lenses disposed in the narrow space between the master lens ML and the camera body while securing the magnification of the teleconverter lens TCL, which is advantageous for aberration correction.
  • the power of the third lens group G3 becomes weak, and the correction effect of the curvature of field in the tangential direction becomes small. Conversely, if the lower limit value of the conditional expression (2) is not reached, the power of the second lens group G2 becomes weak, and it becomes difficult to correct the curvature of field in the sagittal direction.
  • conditional expression (2) In order to realize the effect of the above-mentioned conditional expression (2) better, it is more preferable to set the numerical range of the conditional expression (2) to the following conditional expression (2) ′. 2.4 ⁇ f3 / (-f2) ⁇ 6.5 (2) '
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (3).
  • Magnification of teleconverter lens TCL
  • Lr Distance on the optical axis from the lens surface of the teleconverter lens TCL closest to the object side to the lens surface closest to the image plane
  • f2 Focal length of the second lens group G2.
  • Condition (3) defines the relationship between the power of the second lens group G2 and the total length when the magnification ⁇ of the teleconverter lens TCL is constant. If the lower limit value of the conditional expression (3) is not reached, the negative refractive power of the second lens group G2 becomes too weak, and it becomes difficult to secure the magnification. Conversely, if the upper limit value of the conditional expression (3) is exceeded, the negative refractive power of the second lens group G2 becomes too strong, and as a result, the total length becomes too short. In addition, the Petzval sum of the teleconverter lens TCL becomes too large, which makes aberration correction difficult.
  • conditional expression (3) it is more desirable to set the numerical range of the conditional expression (3) as in the following conditional expression (3) ′. 0.1 ⁇ f2 / (Lr * ⁇ ) ⁇ 0.4 (3) ′
  • the second lens group G2 includes at least one cemented lens.
  • at least one cemented lens includes a triple cemented lens including a negative lens, a positive lens, and a negative lens in order from the object side to the image surface side. This configuration is advantageous for correction of the sagittal image plane and the tangential image plane. In addition, the influence of the eccentricity can be reduced and the assembly becomes easy.
  • the cemented lens of the second lens group G2 is a double cemented lens consisting of a negative lens and a positive lens from the object side, or a positive lens from the object side
  • the relative decentering sensitivity between the respective lenses can be suppressed by the configuration in which the two lenses are cemented to each other.
  • the object-side surface of the cemented lens in the second lens group G2 be aspheric. With this configuration, on-axis and off-axis performance can be significantly improved. In particular, curvature of field can be corrected well.
  • the positive lens in the cemented lens of the second lens group G2 preferably has a biconvex shape. This configuration makes it possible to correct spherical aberration well.
  • the second lens group G2 In order to increase the magnification of the teleconverter lens TCL, it is more preferable to use two cemented lenses in the second lens group G2. In particular, it is more preferable to use two cemented lenses of a cemented doublet and a cemented triplet. By using two cemented lenses, decentration sensitivity can be reduced while astigmatism is well corrected, and assembly becomes easy.
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (4).
  • et_o The distance from the object-side principal point of the teleconverter lens TCL to the lens surface of the tele-converter lens TCL closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point) Be negative)
  • Lr A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens TCL to the lens surface closest to the image plane.
  • Conditional expression (4) defines the position of the object-side principal point of the teleconverter lens TCL.
  • the teleconverter lens TCL is disposed at a relatively large distance from the lens surface on the most image plane side of the master lens ML. Need to Therefore, it is preferable to dispose the object-side principal point of the teleconverter lens TCL closer to the object side. If the upper limit value of conditional expression (4) is exceeded, the object-side principal point of the teleconverter lens TCL will be located near the center of the teleconverter lens TCL, making it difficult to cope with the short flange back master lens ML. Become. In particular, when the magnification of the teleconverter lens TCL is lowered to about 1.4 times, the lens arrangement space becomes insufficient, and aberration correction becomes difficult.
  • the teleconverter lens TCL According to the present embodiment satisfy the following conditional expression (5). 0.3 ⁇ BF / h ⁇ 1.9 (5)
  • BF Back focus in a state in which the tele conversion lens TCL is mounted on the master lens
  • ML h Maximum image height in a state in which the tele conversion lens TCL is mounted on the master lens ML
  • the teleconverter lens TCL of the present disclosure is preferably applied to a camera system defined by conditional expression (5).
  • it is preferable to use it for a mirrorless camera system.
  • the configuration when attached to the master lens ML becomes more compact.
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (6).
  • BF Back focus in a state where the tele conversion lens TCL is mounted on the master lens
  • ML et_i Distance from the lens surface of the tele conversion lens TCL closest to the image plane to the image side principal point of the tele conversion lens TCL (tele conversion lens TCL)
  • Lr A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens TCL to the lens surface closest to the image plane.
  • Conditional expression (6) is a conditional expression for well maintaining the on-axis and off-axis optical performance when corresponding to the short flange back master lens ML. If the lower limit value of the conditional expression (6) is not reached, the angle of a ray emitted from the lens surface on the most image plane side of the teleconverter lens TCL becomes large, and the off-axis performance becomes worse.
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (7). 0.03 ⁇ d12 / (-f) ⁇ 0.2 (7)
  • d12 distance on the optical axis between the first lens group G1 and the second lens group G2 f: focal length of the entire system of the teleconverter lens TCL.
  • conditional expression (7) If the upper limit value of conditional expression (7) is exceeded, the distance between the first lens group G1 and the second lens group G2 becomes long, and the refracting power of the lens surface closest to the image plane in the first lens group G1 The refracting power of the lens surface closest to the object side in the second lens group G2 becomes weak, and the correction of various aberrations becomes insufficient.
  • conditional expression (7) In order to better realize the effect of the conditional expression (7) described above, it is more desirable to set the numerical range of the conditional expression (7) as in the following conditional expression (7) ′. 0.035 ⁇ d12 / (-f) ⁇ 0.15 (7) '
  • the teleconverter lens TCL According to the present embodiment satisfy the following conditional expression (8). 0.3 ⁇
  • f1 Focal length of the first lens group G1
  • f Focal length of the whole system of the teleconverter lens TCL.
  • Conditional expression (8) defines the relationship between the power of the first lens group G1 and the power of the entire system of the teleconverter lens TCL, and is a conditional expression for correcting the spherical aberration and the curvature of field in a well-balanced manner. If the lower limit value of the conditional expression (8) is not reached, the power of the first lens group G1 becomes too strong, and the correction of spherical aberration becomes excessive. If the upper limit value of the conditional expression (8) is exceeded, the power of the first lens group G1 becomes too weak, the correction of spherical aberration becomes insufficient, and the balance of aberration correction at the center and the periphery becomes worse.
  • conditional expression (8) it is more desirable to set the numerical range of the conditional expression (8) as in the following conditional expression (8) ′. 0.45 ⁇
  • the teleconverter lens TCL According to the present embodiment satisfy the following conditional expression (9). 0.05 ⁇ f2 / f ⁇ 0.4 (9)
  • f2 Focal length of the second lens group
  • G2 f Focal length of the entire system of the teleconverter lens TCL.
  • the conditional expression (9) is a ratio of the power of the second lens group G2 to the power of the entire system of the teleconverter lens TCL, and defines an appropriate power distribution of the second lens group G2. If the lower limit value of the conditional expression (9) is not reached, the power of the second lens group G2 becomes too strong, and correction of astigmatism becomes difficult. If the upper limit value of the conditional expression (9) is exceeded, the power of the second lens group G2 becomes too weak, and in particular, try to realize a teleconverter lens TCL of relatively high magnification with respect to the master lens ML having a short flange back. And it becomes difficult to maintain the magnification.
  • conditional expression (9) In order to better realize the effect of the conditional expression (9) described above, it is more desirable to set the numerical range of the conditional expression (9) to the following conditional expression (9) ′. 0.08 ⁇ f2 / f ⁇ 0.4 (9) '
  • the second lens group G2 includes at least one negative lens.
  • the teleconverter lens TCL satisfy the following conditional expression (10).
  • Nd_G2m The highest value of the refractive index of the d-line of at least one negative lens included in the second lens group G2.
  • a positive lens it is preferable to bond a positive lens to either the object-side lens surface of the negative lens that satisfies the conditional expression (10) or the lens surface on the image plane side.
  • the difference ⁇ Nd_G2pm of the refractive index of the d-line between the negative lens and the positive lens satisfies the following condition. ⁇ Nd_G2pm> 0.25
  • Nd_G3p A refractive index of d-line of a positive lens included in the third lens group G3.
  • conditional expressions (10) and (11) are preferable conditional expressions for satisfactorily correcting the Petzval sum. If the ranges of the conditional expressions (10) and (11) are exceeded, the Petzval sum of the entire system of the teleconverter lens TCL becomes large, and it becomes difficult to obtain good imaging performance.
  • conditional expressions (10) and (11) are set to the following conditional expressions (10) ′ and (11) ′ It is more desirable to set as follows. Nd_G2m> 1.90 (10) ' Nd_G3p ⁇ 1.60 ... (11) '
  • the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (12). 15 ⁇ d_G1 ⁇ 35 (12) However, dd_G1: Abbe's number of a positive lens included in the first lens group G1.
  • ⁇ d_G1 is the Abbe number at the d-line.
  • the Abbe number dd at the d-line is nd the refractive index for the d-line (wavelength 587.6 nm), nF the refractive index for the F-line (wavelength 486.1 nm), and the refractive index for the C-line (wavelength 656.3 nm)
  • nC refractive index for the C-line
  • Conditional expression (12) is a preferable conditional expression for satisfactorily correcting the chromatic aberration. If the upper limit value of the conditional expression (12) is exceeded, the dispersion of the positive lens included in the first lens group G1 becomes too small, and the cancellation effect with the chromatic aberration generated in the second lens group G2 of negative refractive power is weak Become.
  • the positive lens included in the first lens group G1 has a role of correcting spherical aberration, and the refractive index becomes high. If the lower limit value of the conditional expression (12) is exceeded, the cost is increased, and an appropriate glass material is limited particularly when using an aspheric surface.
  • the teleconverter lens TCL which concerns on this Embodiment has an aspherical surface.
  • the use of an aspheric surface makes the correction of spherical aberration and curvature of field better.
  • Example of application to optical equipment> An application example of the teleconverter lens TCL according to the present embodiment to an optical device will be described. Below, an example of composition of an imaging device is explained as an example of an optical instrument.
  • FIG. 17 shows an outline of the imaging device 100 in which the teleconverter lens TCL is mounted between the master lens ML and the camera body 101.
  • FIG. 19 illustrates a block configuration example of a control system of the imaging device 100.
  • the imaging device 100 is, for example, a digital still camera, and includes an imaging optical system 11 and a camera body 101 as shown in FIG.
  • An imaging element 12 is disposed in the camera body 101.
  • a subject image obtained through the imaging optical system 11 forms an image on the imaging surface of the imaging device 12.
  • the maximum image height on the imaging plane is h.
  • FIG. 18 shows a configuration example in which the teleconverter lens TCL shown in FIG. 2 is mounted on the image plane side of the master lens ML shown in FIG.
  • the imaging device 100 includes a camera block 10, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and an R / W (reader / writer) 50. , A central processing unit (CPU) 60, an input unit 70, and a lens drive control unit 80.
  • CPU central processing unit
  • the camera block 10 bears an imaging function, and includes an optical system including a photographing optical system 11 and an imaging element 12 such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • the imaging element 12 is configured to output an imaging signal (image signal) corresponding to the optical image by converting the optical image formed by the imaging optical system 11 into an electrical signal.
  • the camera signal processing unit 20 performs various signal processing such as analog-to-digital conversion, noise removal, image quality correction, conversion to luminance and color difference signals, and the like on the image signal output from the imaging device 12.
  • the image processing unit 30 performs recording / reproduction processing of an image signal, and performs compression encoding / expansion decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, etc. It has become.
  • the LCD 40 has a function of displaying various data such as an operation state of the user on the input unit 70 and a photographed image.
  • the R / W 50 writes the image data encoded by the image processing unit 30 to the memory card 1000 and reads the image data recorded on the memory card 1000.
  • the memory card 1000 is, for example, a semiconductor memory that can be attached to and detached from a slot connected to the R / W 50.
  • the CPU 60 functions as a control processing unit that controls each circuit block provided in the imaging device 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
  • the input unit 70 includes various switches and the like for which a user performs a required operation.
  • the input unit 70 includes, for example, a shutter release button for performing a shutter operation, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal according to the operation by the user to the CPU 60.
  • the lens drive control unit 80 controls the drive of the lens disposed in the camera block 10, and controls a motor (not shown) that drives each lens of the photographing optical system 11 based on a control signal from the CPU 60. It has become.
  • the image pickup apparatus 100 includes a shake detection unit that detects shake of the apparatus accompanying camera shake.
  • an image signal photographed in the camera block 10 is output to the LCD 40 via the camera signal processing unit 20 and displayed as a camera through image. Further, for example, when an instruction input signal for zooming or focusing is input from the input unit 70, the CPU 60 outputs a control signal to the lens drive control unit 80, and the photographing optical system is controlled based on the control of the lens drive control unit 80. Eleven predetermined lenses move.
  • the photographed image signal is output from the camera signal processing unit 20 to the image processing unit 30, and compression encoding processing is performed. Converted to digital data in data format. The converted data is output to the R / W 50 and written to the memory card 1000.
  • focusing is performed, for example, when the shutter release button of the input unit 70 is half-pressed or fully-pressed for recording (shooting), etc., based on the control signal from the CPU 60. It is performed by moving a predetermined lens of the photographing optical system 11.
  • predetermined image data is read from the memory card 1000 by the R / W 50 in response to an operation on the input unit 70, and the image processing unit 30 decompresses and decodes the image data. After the processing, the reproduced image signal is output to the LCD 40 and the reproduced image is displayed.
  • the CPU 60 operates the lens drive control unit 80 based on a signal output from a shake detection unit (not shown) to move the anti-vibration lens group in a direction substantially perpendicular to the optical axis Z1 according to the shake amount.
  • the optical device is applied to an imaging device such as a digital still camera
  • the application range of the optical device is not limited to the digital still camera, and various other optical Applicable to equipment.
  • the present invention can be applied to digital single-lens reflex cameras, digital non-reflex cameras, digital video cameras, surveillance cameras, and the like.
  • the present invention can be widely applied as a camera unit of a digital input / output device such as a mobile phone in which a camera is incorporated or an information terminal in which a camera is incorporated.
  • the present invention can also be applied to a lens-interchangeable camera.
  • Plane No.” indicates the number of the ith plane counted from the object side to the image plane side.
  • Ri indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
  • Di indicates the value (mm) of the distance on the optical axis between the i-th surface and the (i + 1) -th surface.
  • Ndi indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ di indicates the value of Abbe number at the d-line of the material of the optical element having the i-th surface.
  • the portion where the value of “Ri” is “ ⁇ ” indicates a flat surface or a stop surface (aperture stop St).
  • the surface marked “*" in “Surface No.” indicates that it is an aspheric surface.
  • the surface described as “STO” in “surface No.” indicates that it is the aperture stop St.
  • BF indicates back focus.
  • Fno Indicates an F number, and " ⁇ ” indicates a half angle of view.
  • the aspheric shape is defined by the following aspheric equation.
  • a power of 10 is represented using E.
  • E 1.2 ⁇ 10 ⁇ 02
  • 1.2 E-02 1.2 E-02
  • x distance in the optical axis direction from the lens surface vertex
  • y height in the direction perpendicular to the optical axis
  • c paraxial curvature at the lens vertex (reciprocal of paraxial radius of curvature)
  • Ai Ith aspheric coefficient.
  • Table 1 shows basic lens data of a numerical example in which specific numerical values are applied to the master lens ML shown in FIG.
  • the master lens ML is a zoom lens
  • FIG. 1 shows the arrangement of each lens group at the wide-angle end (short focal length end) and the telephoto end (long focal length end). Further, FIG. 1 shows a locus of movement of each lens unit when zooming from the wide-angle end to the telephoto end. During focusing, some of the lens units of the master lens ML move along the optical axis.
  • FIG. 1 also shows the moving directions of some lens groups during focusing.
  • the master lens ML of this embodiment is a telephoto zoom lens whose focal length changes in a range of about 70 mm to 200 mm and Fno is about 2.8.
  • the numerical embodiment of the teleconverter lens TCL described later shows an embodiment in the case of being attached to the master lens ML of the present embodiment
  • the master lens ML applied to the teleconverter lens TCL of the present embodiment is not limited to this embodiment. It is not limited to the configuration shown in the embodiment.
  • Table 2 shows the focal length, F number (Fno), angle of view 2 ⁇ , and back focus (BF) of the entire lens system at the wide-angle end (short focal length end) and at the telephoto end (long focal length end). , Total length, and image height values. [Table 2] also shows variable surface spacing values. In the master lens ML, the values of the surface intervals D10, D15, D17, D22, D30, and D32 change during zooming.
  • the master lens ML of the present embodiment includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • the focal length f10 of the tenth lens group G10 the focal length f20 of the 20th lens group G20, the focal length f30 of the 30th lens group G30, and the focal length f40 of the 40th lens group G40, and the 50th lens group G50
  • the master lens ML includes, in order from the object side to the image side along the optical axis Z1, a tenth lens group G10 having a positive refractive power, a twentieth lens group G20 having a negative refractive power, and a positive lens.
  • a 30th lens group G30 having a refractive power, a 40th lens group G40 having a positive refractive power, a 50th lens group G50 having a negative refractive power, and a 60th lens group G60 having a positive refractive power It consists essentially of six lens groups arranged.
  • the tenth lens group G10 is composed of, in order from the object side to the image plane side, a first F lens group G1F having positive refractive power and a first R lens group G1R having positive refractive power.
  • the twentieth lens group G20 is composed of, in order from the object side to the image plane side, a second f lens group G2F and a second R lens group G2R.
  • the first F lens group G1F, the 40th lens group G40, and the 60th lens group G60 are fixed in the optical axis direction with respect to the image plane during zooming from the wide angle end to the telephoto end.
  • the twentieth lens group G20, the thirtieth lens group G30, and the fifty lens group G50 move in the optical axis direction.
  • the first R lens group G1R, the 50th lens group G50, and the negative lens on the most image plane side of the 20th lens group G20 form a focusing lens group.
  • the first R lens group G1R moves to the object side along the optical axis at the time of focusing from an infinite distance object to a close distance object.
  • the 50th lens group G50 moves toward the image plane side along the optical axis when focusing from an infinite distance object to a close distance object.
  • the negative lens closest to the image plane in the 20th lens group G20 moves toward the object along the optical axis when focusing from an infinite distance object to a near distance object.
  • the aperture stop St is disposed between the 30th lens group G30 and the 40th lens group G40.
  • the first F lens group G1F is composed of, in order from the object side, a negative meniscus lens L1F1, a positive lens L1F2, and a positive meniscus lens L1F3.
  • the first R lens group G1R is composed of, in order from the object side, a negative meniscus lens L1R1 and a positive meniscus lens L1R2.
  • the 20th lens group G2 is composed of, in order from the object side, a negative lens L21, a cemented lens in which a negative lens L22 and a positive lens L23 are bonded, and a negative meniscus lens L24.
  • the negative lens L21 and a cemented lens in which the negative lens L22 and the positive lens L23 are cemented together constitute a second F lens group G2F.
  • a negative meniscus lens L24 which is a negative lens closest to the image plane side in the twentieth lens group G20 constitutes a second R lens group G2R. Then, during zooming, the second F lens group G2F and the second R lens group G2R move along different optical paths along the optical axis.
  • the 30th lens group G3 is composed of, in order from the object side, a positive lens L31, and a cemented lens in which a positive lens L32 and a negative lens L33 are bonded.
  • the 40th lens group G4 is composed of, in order from the object side, a positive lens L41, a positive lens L42 with an aspheric surface formed on the object side, and a cemented lens in which a negative lens L43 and a positive lens L44 are bonded. ing.
  • the 50th lens group G50 is composed of, in order from the object side, a negative lens L51 having aspheric surfaces formed on both sides.
  • the 60th lens group G60 in order from the object side, is a cemented lens in which a positive lens L61 and a negative lens L62 are cemented together, a positive lens L63 having an aspheric surface formed on the object side, a negative lens L64 and a positive lens L65. And a negative lens L66.
  • FIG. 9 shows various aberrations at the wide-angle end at the time of infinity focusing in the master lens ML of this embodiment.
  • the lower part of FIG. 9 shows various aberrations of the telephoto end in infinity focusing in the master lens ML of this embodiment.
  • FIG. 9 shows spherical aberration, astigmatism (field curvature), and distortion as various aberrations.
  • a solid line (S) indicates a sagittal image plane
  • M indicates a value on a meridional image plane.
  • the respective aberration diagrams show values at the d-line.
  • the spherical aberration diagrams also show the values of C-line (wavelength 656.3 nm) and g-line (wavelength 435.8 nm). The same applies to aberration diagrams in the other numerical examples below.
  • Each of the teleconverter lenses TCL to which the following numerical examples are applied has a configuration satisfying the above-described basic configuration of the lens. That is, in each of the teleconverter lenses TCL according to each numerical example, the first lens group G1 having positive refractive power and the second lens group having negative refractive power are sequentially arranged from the object side to the image surface side. It consists of G2 and the 3rd lens group G3 which has positive refractive power.
  • the first lens group G1 and the third lens group G3 are each composed of two or less lenses including a positive lens.
  • the following numerical examples of the teleconverter lens TCL show examples where the lens is mounted on the master lens ML shown in the above [Table 1] and [Table 2]. Up to the forty-second surface in the above [Table 1] is a substantial constituent part of the master lens ML. In the following numerical example of the teleconverter lens TCL, the forty-third surface subsequent to the master lens ML is the surface closest to the object side in the teleconverter lens TCL.
  • Numerical Embodiment 1 of Tele-Converter Lens TCL Table 3 shows basic lens data of Numerical Example 1 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 4] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
  • the teleconverter lens TCL according to Numerical Example 1 includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • magnification ⁇ of the teleconverter lens TCL according to Numerical Example 1 the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
  • Distance to master lens ML 2.6082
  • the first lens group G1 is composed of a biconvex positive lens L1.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. It is composed of a cemented doublet lens composed of a cemented doublet lens, a biconvex positive lens L5, and a negative meniscus lens L6 having a convex surface facing the image surface, and a biconcave negative lens L7. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 is composed of a biconvex positive lens L8.
  • FIG. 10 shows various aberrations at the time of focusing at infinity and in the wide-angle end in Numerical Embodiment 1 with the master lens ML attached.
  • the lower part of FIG. 10 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 1 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 2 of Tele-Converter Lens TCL Table 5 shows basic lens data of Numerical Embodiment 2 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 6] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
  • magnification ⁇ of the teleconverter lens TCL according to Numerical Example 2 the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
  • the first lens group G1 is composed of a biconvex positive lens L1.
  • the second lens group G2 has a biconcave negative lens L2, a biconvex positive lens L3, and a biconcave negative lens L4 in this order from the object side, and a biconvex positive lens It is configured of a cemented lens consisting of L5 and a negative meniscus lens L6 having a convex surface facing the image plane side. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 includes, in order from the object side, a double cemented lens of a biconcave negative lens L7 and a biconvex positive lens L8.
  • FIG. 11 shows various aberrations at the time of focusing at infinity and in the wide-angle end in Numerical Embodiment 2 with the master lens ML attached.
  • the lower part of FIG. 11 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 2 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 3 of Tele-Converter Lens TCL [Table 7] shows basic lens data of Numerical Embodiment 3 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 8] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
  • the teleconverter lens TCL according to Numerical Example 3 includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • magnification ⁇ of the teleconverter lens TCL according to Numerical Example 3 the values of focal lengths of the respective lens units, and the values of the distance between the master lens ML will be described below.
  • the first lens group G1 is composed of a biconvex positive lens L1 having an aspheric surface formed on the surface on the image plane side.
  • the second lens group G2 has a biconcave negative lens L2, a biconvex positive lens L3, and a biconcave negative lens L4 in this order from the object side, and a biconvex positive lens It is composed of a double cemented lens consisting of a negative meniscus lens L6 having a convex surface directed to L5 and the image plane side, and a negative meniscus lens L7 having a convex surface directed to the image plane side.
  • the third lens group G3 is composed of a biconvex positive lens L8.
  • FIG. 12 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 3 with the master lens ML attached.
  • the lower part of FIG. 12 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 3 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 4 of Tele Converter Lens TCL Table 9 shows basic lens data of Numerical Example 4 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 10] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
  • magnification ⁇ of the teleconverter lens TCL according to Numerical Example 4 the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L1 having a concave surface facing the image plane side, and a biconvex positive lens L2.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L3, a biconvex positive lens L4, a biconcave negative lens L5, a biconvex positive lens L6, and a biconcave shape And a cemented doublet consisting of a negative lens L7. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 is composed of a biconvex positive lens L8.
  • FIG. 13 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 4 with the master lens ML attached.
  • the lower part of FIG. 13 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 4 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 5 of Tele-Converter Lens TCL Table 11 shows basic lens data of Numerical Example 5 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 12] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
  • the teleconverter lens TCL according to Numerical Embodiment 5 includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • magnification ⁇ of the teleconverter lens TCL according to Numerical Example 5 the values of focal lengths of the respective lens units, and the values of the distance between the master lens ML will be described below.
  • Distance to master lens ML 2.6082
  • the first lens group G1 is composed of a biconvex positive lens L1.
  • the second lens group G2 is, in order from the object side, a double cemented lens consisting of a biconcave negative lens L2 and a biconvex positive lens L3, and a biconcave lens in which an aspheric surface is formed on the object side. And a negative lens L4.
  • the aspheric surface of the negative lens L4 is obtained by processing the resin joined to the surface into an aspheric shape. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 is composed of a biconvex lens L5 in which an aspheric surface is formed on the surface on the image plane side.
  • FIG. 14 shows various aberrations at the time of infinity in-focus state and at the wide-angle end in Numerical Embodiment 5 with the master lens ML attached.
  • the lower part of FIG. 14 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 5 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 6 of Tele Converter Lens TCL Table 13 shows basic lens data of Numerical Example 6 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. 7.
  • Table 14 shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
  • the teleconverter lens TCL according to Numerical Example 6 includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface facing the image plane side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a negative meniscus convex on the image surface side It is composed of a double cemented lens consisting of a lens L4 and a biconcave negative lens L5. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 is composed of a biconvex lens L6.
  • FIG. 15 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 6 with the master lens ML attached.
  • the lower part of FIG. 15 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 6 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • Numerical Embodiment 7 of Tele Converter Lens TCL Basic lens data of Numerical Example 7 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. 6 is shown in [Table 15].
  • [Table 16] shows the focal length, F number (Fno), angle of view 2 ⁇ , back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
  • the teleconverter lens TCL according to Numerical Example 7 includes an aspheric surface.
  • the values of the aspheric coefficients are shown below.
  • the first lens group G1 is composed of a biconvex positive lens L1.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a negative meniscus convex on the image surface side It is configured by a three-piece cemented lens composed of a lens L4. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
  • the third lens group G3 is composed of, in order from the object side, a double cemented lens of a negative meniscus lens L5 with a convex surface facing the image plane side and a biconvex lens L6.
  • FIG. 16 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 7 with the master lens ML attached.
  • the lower part of FIG. 16 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 7 with the master lens ML attached.
  • each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
  • the configuration consisting of substantially three lens groups has been described, but the configuration may further include a lens having substantially no refractive power.
  • the present technology can have the following configurations.
  • It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
  • Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
  • a teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
  • It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
  • Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens, The following conditional expressions are satisfied,
  • a teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
  • the second lens group includes at least one cemented lens, The teleconverter lens according to the above [3], wherein the at least one cemented lens includes, in order from the object side to the image surface side, a cemented doublet including a negative lens, a positive lens, and a negative lens.
  • It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side, Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens, The following conditional expressions are satisfied, A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
  • BF Back focus in a state in which the teleconverter lens is attached to the master lens
  • h A maximum image height in a state in which the teleconverter lens is attached to the master lens.
  • BF-et_i back focus with the teleconverter lens attached to the master lens
  • et_i distance from the lens surface closest to the image plane of the teleconverter lens to the image-side principal point of the teleconverter lens (the teleconverter lens Is negative when the image-side principal point of the lens is located on the object side of the lens surface closest to the image plane of the teleconverter lens)
  • Lr A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
  • f2 Focal length of the second lens group
  • f Focal length of the whole system of the teleconverter lens.
  • the second lens group includes at least one negative lens
  • the teleconverter lens according to any one of the above [1] to [10] which satisfies the following conditional expression.
  • Nd_G2m The highest value of the refractive index of the d-line of at least one negative lens included in the second lens group.
  • a master lens an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
  • the teleconverter lens is It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
  • Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens, The following conditional expressions are satisfied,
  • An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
  • Rb1 Radius of curvature of lens surface on the object side of the positive lens included in the third lens group
  • Rb2 Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
  • a master lens an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
  • the teleconverter lens is It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
  • Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens, The following conditional expressions are satisfied,
  • An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
  • a master lens an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
  • the teleconverter lens is It has negative refractive power as a whole, It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
  • Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens, The following conditional expressions are satisfied,
  • An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

A teleconverter lens of the disclosure of the present invention has, overall, a negative refractive power, and comprises the following, in order from the object side to the image side: a first lens group having a positive refractive power; a second lens group having a negative refractive power; and a third lens group having a positive refractive power. The first lens group and the third lens group each include a positive lens and are formed of no more than two lenses. The teleconverter lens is detachably attached to a master lens on the image side thereof, and thereby enlarge the focal length of the master lens.

Description

テレコンバータレンズおよび光学機器Teleconverter lens and optical device
 本開示は、マスターレンズに対して像面側に装着されて、マスターレンズの焦点距離を拡大するテレコンバータレンズ、およびそのようなテレコンバータレンズを備えた光学機器に関する。 The present disclosure relates to a teleconverter lens mounted on the image plane side with respect to a master lens to expand a focal length of the master lens, and an optical apparatus provided with such a teleconverter lens.
 マスターレンズとカメラ本体との間に、負の焦点距離を有するリアコンバージョンレンズ(テレコンバータレンズ)を挿入することで、マスターレンズの焦点距離を拡大することができる。テレコンバータレンズは、リレーの機能があり、テレコンバータレンズに入射したマスターレンズの1次結像をカメラ本体の撮像素子に再結像する。このため、テレコンバータレンズを装着する場合には、マスターレンズのフランジバックが、テレコンバータレンズの前玉からマスターレンズの1次結像までの軸上距離より長いことが前提になる。 The focal length of the master lens can be expanded by inserting a rear conversion lens (teleconverter lens) having a negative focal length between the master lens and the camera body. The teleconverter lens has a function of a relay, and re-forms the primary image of the master lens incident on the teleconverter lens on the imaging device of the camera body. Therefore, in the case of mounting the teleconverter lens, it is premised that the flange back of the master lens is longer than the on-axis distance from the front lens of the teleconverter lens to the primary image formation of the master lens.
特開平5-142473号公報JP-A-5-142473 特開2013-250291号公報JP, 2013-250291, A 特開2013-235217号公報JP 2013-235217 A
 従来の一眼レフレックスカメラシステムはフランジバックが長いため、テレコンバータレンズのパワーを弱くし、テレコンバータレンズに入射した光線を緩やかに伸ばすことができる。一方、近年では、例えばミラーレスカメラシステム向けに、フランジバックが短く、小型化された撮影レンズが多く開発されている。このため、従来のフランジバックが長いカメラシステム向けのテレコンバータレンズは、近年のミラーレスカメラシステムには不向きである。 The long flange back of the conventional single-lens reflex camera system weakens the power of the teleconverter lens and can gently extend the light incident on the teleconverter lens. On the other hand, in recent years, a large number of imaging lenses having a short flange back and reduced in size have been developed, for example, for mirrorless camera systems. For this reason, the conventional teleconverter lens for a camera system with a long flange back is not suitable for a recent mirrorless camera system.
 特許文献1~3には、一眼レフレックスカメラシステムに適用可能なテレコンバータレンズが開示されている。特許文献1に記載のテレコンバータレンズは、入射した光線を緩やかに伸ばす構成であり、射出瞳が長いマスターレンズまたはフランジバックが長いカメラシステム以外では適用が困難である。 Patent Documents 1 to 3 disclose teleconverter lenses applicable to single-lens reflex camera systems. The teleconverter lens described in Patent Document 1 has a configuration in which incident light rays are gradually extended, and its application is difficult except for a master lens with a long exit pupil or a camera system with a long flange back.
 特許文献2に記載のテレコンバータレンズは、物体側から順に、正、負、正の3群構成となっているが、物体側主点がテレコンバータレンズの中心付近に位置しているため、ミラーレスカメラに適用すると、テレコンバータレンズの前玉がマスターレンズと干渉してしまう。 Although the teleconverter lens described in Patent Document 2 has a positive, negative, positive three-group configuration in order from the object side, since the object side principal point is located near the center of the teleconverter lens, the mirror When applied to a less camera, the front lens of the teleconverter lens interferes with the master lens.
 特許文献3に記載のテレコンバータレンズは、像面側のレンズ群のパワーが弱めの構成となっており、フルフレームのカメラシステムに応用した場合に、最周辺の像面湾曲が大きくなり、小型化と高い光学性能を得ることが困難である。 The teleconverter lens described in Patent Document 3 has a configuration in which the power of the lens unit on the image plane side is weak, and when applied to a full-frame camera system, the curvature of field at the outermost periphery becomes large, resulting in a small size. And it is difficult to obtain high optical performance.
 テレコンバータレンズは、マスターレンズの焦点距離を拡大すると同時に収差も倍率に応じて拡大される。例えば倍率が2倍のテレコンバータレンズの場合、マスターレンズに装着時にマスターレンズの横収差が2倍に拡大され、縦収差が4倍に拡大される。テレコンバータレンズをマスターレンズに装着した状態の合成の収差は、マスターレンズの収差が拡大された上、さらにテレコンバータレンズの収差が加わったものとなる。テレコンバータレンズを汎用的なものにするためには、テレコンバータレンズの収差を無収差に近づけることが好ましい。 The teleconverter lens enlarges the focal length of the master lens and at the same time the aberration is also enlarged according to the magnification. For example, in the case of a teleconverter lens having a magnification of 2 times, the lateral aberration of the master lens is enlarged by 2 times and the longitudinal aberration is expanded by 4 times when mounted on the master lens. The combined aberration of the state in which the teleconverter lens is mounted on the master lens is the aberration of the master lens expanded and the aberration of the teleconverter lens added thereto. In order to make the teleconverter lens versatile, it is preferable to bring the aberration of the teleconverter lens close to no aberration.
 そこで、例えば、焦点距離の拡大倍率が1.4倍~2倍程度で、Fナンバーが2~2.8程度の望遠対物レンズをマスターレンズとする場合にも優れた結像性能を維持することができるテレコンバータレンズの開発が望まれる。また、ミラーレスカメラに対しても使用可能であり、小型で良好な光学性能を有するテレコンバータレンズの開発が望まれる。 Therefore, for example, maintaining excellent imaging performance even when using a telephoto objective lens with an F-number of about 2 to 2.8 and an enlargement magnification of about 1.4 to 2 times the focal length as the master lens It is desirable to develop a teleconverter lens that can In addition, development of a teleconverter lens that can be used for a mirrorless camera and has small size and good optical performance is desired.
 小型化と高い結像性能とを実現するテレコンバータレンズ、およびそのようなテレコンバータレンズを着脱可能に搭載した光学機器を提供することが望ましい。 It is desirable to provide a teleconverter lens that achieves miniaturization and high imaging performance, and an optical device that is detachably mounted with such a teleconverter lens.
 本開示の一実施の形態に係る第1のテレコンバータレンズは、全体として負の屈折力を有し、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、第1レンズ群および第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、以下の条件式を満足し、マスターレンズに対して像面側に着脱可能に装着されることにより、マスターレンズの焦点距離を拡大するものである。
 -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
ただし、
 Rb1:第3レンズ群に含まれる正レンズの物体側のレンズ面の曲率半径
 Rb2:第3レンズ群に含まれる正レンズの像面側のレンズ面の曲率半径
とする。
A first teleconverter lens according to an embodiment of the present disclosure has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from an object side to an image surface side, The second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens. The focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
-3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
However,
Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
 本開示の一実施の形態に係る第1の光学機器は、マスターレンズと、マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、マスターレンズと撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、テレコンバータレンズを、上記本開示の一実施の形態に係る第1のテレコンバータレンズによって構成したものである。 A first optical device according to an embodiment of the present disclosure includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the first teleconverter lens according to the embodiment of the present disclosure.
 本開示の一実施の形態に係る第2のテレコンバータレンズは、全体として負の屈折力を有し、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、第1レンズ群および第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、以下の条件式を満足し、マスターレンズに対して像面側に着脱可能に装着されることにより、マスターレンズの焦点距離を拡大するものである。
 0.05<-f2/(Lr*β)<0.45 ……(3)
ただし、
 β:テレコンバータレンズの倍率
 Lr:テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
 f2:第2レンズ群の焦点距離
とする。
A second teleconverter lens system according to an embodiment of the present disclosure has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from the object side to the image side. The second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens. The focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
0.05 <−f2 / (Lr * β) <0.45 (3)
However,
β: magnification of teleconverter lens Lr: distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane f2: focal length of the second lens group.
 本開示の一実施の形態に係る第2の光学機器は、マスターレンズと、マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、マスターレンズと撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、テレコンバータレンズを、上記本開示の一実施の形態に係る第2のテレコンバータレンズによって構成したものである。 A second optical device according to an embodiment of the present disclosure includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the second teleconverter lens according to the embodiment of the present disclosure.
 本開示の一実施の形態に係る第3のテレコンバータレンズは、全体として負の屈折力を有し、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、第1レンズ群および第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、以下の条件式を満足し、マスターレンズに対して像面側に着脱可能に装着されることにより、マスターレンズの焦点距離を拡大するものである。
 Lr/(et_o+Lr)<1.13 ……(4)
ただし、
 et_o:テレコンバータレンズの物体側主点からテレコンバータレンズの最も物体側のレンズ面までの距離(ただし、最も物体側のレンズ面が物体側主点よりも物体側に位置するときを負とする)
 Lr:テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
A third teleconverter lens system according to an embodiment of the present disclosure has a first lens group having a negative refractive power as a whole and having a positive refractive power in order from an object side to an image surface side; The second lens group having a negative refractive power and the third lens group having a positive refractive power, and the first lens group and the third lens group each include two or less lenses including a positive lens. The focal length of the master lens is expanded by being detachably mounted on the image plane side with respect to the master lens, by satisfying the following conditional expression.
Lr / (et_o + Lr) <1.13 (4)
However,
et_o: The distance from the object-side principal point of the teleconverter lens to the lens surface of the teleconverter lens closest to the object (however, the time when the lens surface on the most object side is closer to the object than the object-side principal point is negative) )
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
 本開示の一実施の形態に係る第3の光学機器は、マスターレンズと、マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、マスターレンズと撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、テレコンバータレンズを、上記本開示の一実施の形態に係る第3のテレコンバータレンズによって構成したものである。 A third optical device according to an embodiment of the present disclosure includes a master lens, an imaging element that outputs an imaging signal according to an optical image formed by the master lens, and a detachable lens between the master lens and the imaging element. And a teleconverter lens configured by the third teleconverter lens according to the embodiment of the present disclosure.
 本開示の一実施の形態に係る第1ないし第3のテレコンバータレンズまたは光学機器器では、テレコンバータレンズがマスターレンズに対して像面側に着脱可能に装着されることにより、マスターレンズの焦点距離を拡大する。 In the first to third teleconverter lenses or optical apparatuses according to one embodiment of the present disclosure, the teleconverter lens is detachably mounted on the image plane side with respect to the master lens, thereby making the focus of the master lens Increase the distance.
 本開示の一実施の形態に係る第1ないし第3のテレコンバータレンズまたは光学機器によれば、テレコンバータレンズを全体として3群構成とし、各レンズ群の構成の最適化を図るようにしたので、小型化と高い結像性能とを実現できる。 According to the first to third teleconverter lenses or optical devices according to the embodiment of the present disclosure, the teleconverter lenses as a whole are configured in three groups, and the configuration of each lens group is optimized. , Miniaturization and high imaging performance can be realized.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の一実施の形態に係るテレコンバータレンズが装着されるマスターレンズの一構成例を示す無限遠合焦時のレンズ断面図である。FIG. 2 is a lens cross-sectional view at the time of infinity focusing on an example of the configuration of a master lens to which the teleconverter lens according to an embodiment of the present disclosure is attached. 本開示の一実施の形態に係るテレコンバータレンズの第1の構成例を示すレンズ断面図である。It is a lens sectional view showing the 1st example of composition of the teleconverter lens concerning one embodiment of this indication. テレコンバータレンズの第2の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 2nd structural example of a teleconverter lens. テレコンバータレンズの第3の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 3rd structural example of a teleconverter lens. テレコンバータレンズの第4の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 4th structural example of a teleconverter lens. テレコンバータレンズの第5の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 5th structural example of a teleconverter lens. テレコンバータレンズの第6の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 6th structural example of a teleconverter lens. テレコンバータレンズの第7の構成例を示すレンズ断面図である。It is lens sectional drawing which shows the 7th structural example of a teleconverter lens. 図1に示したマスターレンズの無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。FIG. 2 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end of the master lens shown in FIG. 1 at infinity focusing. 図1に示したマスターレンズに図2に示したテレコンバータレンズを装着した構成例(数値実施例1)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。3 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 1) in which the teleconverter lens shown in FIG. 2 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図3に示したテレコンバータレンズを装着した構成例(数値実施例2)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。3 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing at infinity according to the configuration example (numerical example 2) in which the teleconverter lens shown in FIG. 3 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図4に示したテレコンバータレンズを装着した構成例(数値実施例3)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 3) in which the teleconverter lens shown in FIG. 4 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図5に示したテレコンバータレンズを装着した構成例(数値実施例4)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 4) in which the teleconverter lens shown in FIG. 5 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図6に示したテレコンバータレンズを装着した構成例(数値実施例5)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。6 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end in infinity focusing in the configuration example (numerical example 5) in which the teleconverter lens shown in FIG. 6 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図7に示したテレコンバータレンズを装着した構成例(数値実施例6)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。8 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end in infinity focusing in the configuration example (numerical example 6) in which the tele conversion lens shown in FIG. 7 is attached to the master lens shown in FIG. is there. 図1に示したマスターレンズに図8に示したテレコンバータレンズを装着した構成例(数値実施例7)における無限遠合焦時での広角端、および望遠端での諸収差を示す収差図である。8 is an aberration diagram showing various aberrations at the wide-angle end and at the telephoto end when focusing on infinity, in the configuration example (numerical example 7) in which the teleconverter lens shown in FIG. 8 is attached to the master lens shown in FIG. is there. テレコンバータレンズをマスターレンズとカメラ本体との間に装着した撮像装置の概略を示す構成図である。It is a block diagram which shows the outline of the imaging device which mounted the teleconverter lens between the master lens and the camera main body. マスターレンズにテレコンバータレンズを装着した一構成例を示すレンズ断面図である。It is a lens sectional view showing an example of composition which attached a teleconverter lens to a master lens. 光学機器としての撮像装置の制御系の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a control system of an imaging device as an optical instrument.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.レンズの基本構成
 2.作用・効果
 3.光学機器への適用例
 4.レンズの数値実施例
 5.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be made in the following order.
1. Basic configuration of lens Action / Effect 3. Application example to optical instrument 4. Numerical embodiment of lens 5. Other embodiments
<1.レンズの基本構成>
 図1は、本開示の一実施の形態に係るテレコンバータレンズTCLが装着されるマスターレンズMLの一構成例を示している。図1において、Z1は光軸、IMGは像面を示す。本実施の形態に係るテレコンバータレンズTCLは、例えば図18に示したように、マスターレンズMLに対して像面側に着脱可能に装着されることにより、マスターレンズMLの焦点距離を拡大するものである。
<1. Basic configuration of lens>
FIG. 1 shows a configuration example of a master lens ML to which a teleconverter lens TCL according to an embodiment of the present disclosure is attached. In FIG. 1, Z1 denotes an optical axis, and IMG denotes an image plane. For example, as shown in FIG. 18, the teleconverter lens TCL according to the present embodiment enlarges the focal length of the master lens ML by being detachably mounted on the image surface side with respect to the master lens ML. It is.
 図2は、本開示の一実施の形態に係るテレコンバータレンズTCLの第1の構成例を示している。図3は、テレコンバータレンズTCLの第2の構成例を示している。図4は、テレコンバータレンズTCLの第3の構成例を示している。図5は、テレコンバータレンズTCLの第4の構成例を示している。図6は、テレコンバータレンズTCLの第5の構成例を示している。図7は、テレコンバータレンズTCLの第6の構成例を示している。図8は、テレコンバータレンズTCLの第7の構成例を示している。これらの構成例に具体的な数値を適用した数値実施例は後述する。 FIG. 2 shows a first configuration example of the teleconverter lens TCL according to an embodiment of the present disclosure. FIG. 3 shows a second configuration example of the teleconverter lens TCL. FIG. 4 shows a third configuration example of the teleconverter lens TCL. FIG. 5 shows a fourth configuration example of the teleconverter lens TCL. FIG. 6 shows a fifth configuration example of the teleconverter lens TCL. FIG. 7 shows a sixth configuration example of the teleconverter lens TCL. FIG. 8 shows a seventh configuration example of the teleconverter lens TCL. Numerical examples in which specific numerical values are applied to these configuration examples will be described later.
 以下、本実施の形態に係るテレコンバータレンズTCLの構成を、適宜図2等に示した構成例に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。 Hereinafter, the configuration of the teleconverter lens TCL according to the present embodiment will be described as needed in association with the configuration example shown in FIG. 2 and the like, but the technology according to the present disclosure is not limited to the configuration example illustrated. .
 本実施の形態に係るテレコンバータレンズTCLは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とからなる。 The teleconverter lens TCL according to the present embodiment includes, in order from the object side to the image surface side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2. And a third lens group G3 having a refractive power of
 第1レンズ群G1および第3レンズ群G3はそれぞれ、正レンズを含む2枚以下のレンズで構成されている。 The first lens group G1 and the third lens group G3 are each composed of two or less lenses including a positive lens.
 本実施の形態に係るテレコンバータレンズTCLは、少なくとも、後述する条件式(1)、条件式(3)、または条件式(4)を満足することが望ましい。 It is desirable that the teleconverter lens TCL according to the present embodiment at least satisfy conditional expression (1), conditional expression (3), or conditional expression (4) described later.
 その他、本実施の形態に係るテレコンバータレンズTCLは、後述する所定の条件式等を満足することが望ましい。 Besides, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy a predetermined conditional expression etc. described later.
<2.作用・効果>
 次に、本実施の形態に係るテレコンバータレンズTCLの作用および効果を説明する。併せて、本実施の形態に係るテレコンバータレンズTCLにおける望ましい構成を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<2. Action / Effect>
Next, the operation and effects of the teleconverter lens TCL according to the present embodiment will be described. In addition, a desirable configuration of the teleconverter lens TCL according to the present embodiment will be described.
In addition, the effect described in this specification is an illustration to the last, is not limited, and may have other effects.
 本実施の形態に係るテレコンバータレンズTCLによれば、全体として3群構成とし、各レンズ群の構成の最適化を図るようにしたので、小型化と高い結像性能とを実現できる。本実施の形態に係るテレコンバータレンズTCLによれば、例えば、焦点距離の拡大倍率として1.4倍~2倍程度を実現できる。また、Fナンバーが2~2.8程度の望遠対物レンズをマスターレンズMLとする場合に、優れた結像性能を維持することができる。また、本実施の形態に係るテレコンバータレンズTCLは、ミラーレスカメラ等に使用可能である。 According to the teleconverter lens TCL according to the present embodiment, the configuration is made into three groups as a whole, and optimization of the configuration of each lens group is achieved, so that downsizing and high imaging performance can be realized. The teleconverter lens TCL according to the present embodiment can realize, for example, about 1.4 to 2 times as the magnification ratio of the focal length. In addition, when the telephoto objective lens having an F number of about 2 to 2.8 is used as the master lens ML, excellent imaging performance can be maintained. In addition, the teleconverter lens TCL according to the present embodiment can be used for a mirrorless camera or the like.
 本実施の形態に係るテレコンバータレンズTCLにおいて、第3レンズ群G3は、1つの正レンズ成分から構成され、最も像面側に、像面側に凸面を向けた正レンズを含む構成であることが望ましい。ここで、1つの正レンズ成分とは、1枚の正レンズのみの構成であってもよいし、物体側から負レンズおよび正レンズからなる正の接合レンズであってもよい。特に、第3レンズ群G3を1枚の正レンズのみの構成にした場合、歪曲収差の補正を良好にコントロールできる。また、第3レンズ群G3の最も像面側に、像面側に凸面を向けた正レンズを配置した構成にした場合、テレコンバータレンズTCLの最終レンズ面からの射出光線の角度が大きくなり、射出瞳距離を短くできると共に、優れた結像性能を維持することが可能となる。 In the teleconverter lens TCL according to the present embodiment, the third lens group G3 is configured to include a single positive lens component, and includes a positive lens having a convex surface on the image plane side closest to the image plane side. Is desirable. Here, one positive lens component may have a configuration of only one positive lens, or may be a positive cemented lens including a negative lens and a positive lens from the object side. In particular, when the third lens group G3 has a configuration of only one positive lens, the correction of distortion can be well controlled. Further, in the configuration in which the positive lens having a convex surface directed to the image surface side is disposed on the most image surface side of the third lens group G3, the angle of the light ray from the final lens surface of the teleconverter lens TCL becomes large. While being able to shorten the exit pupil distance, it becomes possible to maintain excellent imaging performance.
 また、本実施の形態に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、1枚の正レンズで構成してもよい。また、第1レンズ群G1を、物体側から1枚の負レンズと、1枚の正レンズとで構成してもよい。特に、テレコンバータレンズTCLの全系のパワーを弱めたい場合、第1レンズ群G1を負レンズと正レンズとの組み合わせで構成することにより、諸収差の補正に効果的である。 Further, in the teleconverter lens TCL according to the present embodiment, the first lens group G1 may be configured of a single positive lens. Further, the first lens group G1 may be configured of one negative lens and one positive lens from the object side. In particular, in the case where it is desired to weaken the power of the entire system of the teleconverter lens TCL, it is effective to correct various aberrations by constructing the first lens group G1 by a combination of a negative lens and a positive lens.
 本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(1)を満足することが望ましい。
 -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
ただし、
 Rb1:第3レンズ群G3に含まれる正レンズの物体側のレンズ面の曲率半径
 Rb2:第3レンズ群G3に含まれる正レンズの像面側のレンズ面の曲率半径
とする。
It is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (1).
-3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
However,
Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group G3 Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group G3.
 条件式(1)は、第3レンズ群G3に含まれる正レンズの形状を表している。条件式(1)の上限値を上回った場合、主光線の上側の光束に内向性のコマ収差が発生しやすくなる。また、歪曲収差とのバランスを取る補正が困難となる。逆に、条件式(1)の下限値を下回った場合、主光線の上側の光束に外向性のコマ収差が発生しやすくなり、良好な周辺性能を維持することも難しくなる。 Conditional expression (1) represents the shape of the positive lens included in the third lens group G3. If the upper limit value of the conditional expression (1) is exceeded, inward coma aberration is likely to occur in the light flux above the chief ray. In addition, it is difficult to make a balance with distortion. Conversely, when the lower limit value of the conditional expression (1) is not reached, an outgoing coma aberration is likely to be generated in the light flux on the upper side of the chief ray, and it becomes difficult to maintain good peripheral performance.
 なお、上記した条件式(1)の効果をより良好に実現するためには、条件式(1)の数値範囲を下記条件式(1)’のように設定することがより望ましい。
 -1.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.3 ……(1)’
In order to better realize the effect of the conditional expression (1) described above, it is more preferable to set the numerical range of the conditional expression (1) as in the following conditional expression (1) ′.
-1.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.3 (1) '
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(2)を満足することが望ましい。
 2.2<f3/(-f2)<7.2 ……(2)
ただし、
 f2:第2レンズ群G2の焦点距離
 f3:第3レンズ群G3の焦点距離
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (2).
2.2 <f3 / (-f2) <7.2 (2)
However,
f2: focal length of second lens group G2 f3: focal length of third lens group G3.
 本実施の形態に係るテレコンバータレンズTCLは、第1レンズ群G1の正レンズと第3レンズ群G3の正レンズ成分との間でレンズ構成を分割し、全体として、物体側から、正、負、正の3群構成とされている。さらに、第2レンズ群G2の負のパワーを適切に強くし、第3レンズ群G3の正のパワーを適切に強くしている。このように配置することで、物体側の主点位置を物体側に近づけることが可能となる。これにより、テレコンバータレンズTCLの倍率を確保しながら、マスターレンズMLとカメラ本体との間の狭いスペースに配置するレンズの枚数を増やすことができ、収差補正に有利となる。条件式(2)の上限値を上回った場合、第3レンズ群G3のパワーが弱くなり、タンジェンシャル方向の像面湾曲の補正効果が小さくなる。逆に、条件式(2)の下限値を下回った場合、第2レンズ群G2のパワーが弱くなり、サジタル方向の像面湾曲の補正が難しくなる。 The teleconverter lens TCL according to the present embodiment divides the lens configuration between the positive lens of the first lens group G1 and the positive lens component of the third lens group G3, and as a whole, from the object side, positive and negative , Is a positive three-group configuration. Furthermore, the negative power of the second lens group G2 is appropriately increased, and the positive power of the third lens group G3 is appropriately increased. By arranging in this manner, it is possible to bring the principal point position on the object side closer to the object side. This makes it possible to increase the number of lenses disposed in the narrow space between the master lens ML and the camera body while securing the magnification of the teleconverter lens TCL, which is advantageous for aberration correction. If the upper limit value of the conditional expression (2) is exceeded, the power of the third lens group G3 becomes weak, and the correction effect of the curvature of field in the tangential direction becomes small. Conversely, if the lower limit value of the conditional expression (2) is not reached, the power of the second lens group G2 becomes weak, and it becomes difficult to correct the curvature of field in the sagittal direction.
 なお、上記した条件式(2)の効果をより良好に実現するためには、条件式(2)の数値範囲を下記条件式(2)’のように設定することがより望ましい。
 2.4<f3/(-f2)<6.5 ……(2)’
In order to realize the effect of the above-mentioned conditional expression (2) better, it is more preferable to set the numerical range of the conditional expression (2) to the following conditional expression (2) ′.
2.4 <f3 / (-f2) <6.5 (2) '
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(3)を満足することが望ましい。
 0.05<-f2/(Lr*β)<0.45 ……(3)
ただし、
 β:テレコンバータレンズTCLの倍率
 Lr:テレコンバータレンズTCLの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
 f2:第2レンズ群G2の焦点距離
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (3).
0.05 <−f2 / (Lr * β) <0.45 (3)
However,
β: Magnification of teleconverter lens TCL Lr: Distance on the optical axis from the lens surface of the teleconverter lens TCL closest to the object side to the lens surface closest to the image plane f2: Focal length of the second lens group G2.
 条件式(3)はテレコンバータレンズTCLの倍率βが一定の場合における、第2レンズ群G2のパワーと全長との関係を規定している。条件式(3)の下限値を下回った場合、第2レンズ群G2の負の屈折力が弱くなりすぎ、倍率を確保することが難しくなる。逆に、条件式(3)の上限値を上回った場合、第2レンズ群G2の負の屈折力が強くなりすぎ、その結果、全長が短くなりすぎてしまう。また、テレコンバータレンズTCLのペッツバール和が大きくなりすぎてしまい、収差補正が難しくなる。 Condition (3) defines the relationship between the power of the second lens group G2 and the total length when the magnification β of the teleconverter lens TCL is constant. If the lower limit value of the conditional expression (3) is not reached, the negative refractive power of the second lens group G2 becomes too weak, and it becomes difficult to secure the magnification. Conversely, if the upper limit value of the conditional expression (3) is exceeded, the negative refractive power of the second lens group G2 becomes too strong, and as a result, the total length becomes too short. In addition, the Petzval sum of the teleconverter lens TCL becomes too large, which makes aberration correction difficult.
 なお、上記した条件式(3)の効果をより良好に実現するためには、条件式(3)の数値範囲を下記条件式(3)’のように設定することがより望ましい。
 0.1<-f2/(Lr*β)<0.4 ……(3)’
In order to better realize the effect of the conditional expression (3), it is more desirable to set the numerical range of the conditional expression (3) as in the following conditional expression (3) ′.
0.1 <−f2 / (Lr * β) <0.4 (3) ′
 また、本実施の形態に係るテレコンバータレンズTCLにおいて、第2レンズ群G2は、少なくとも1つの接合レンズを含んでいることが望ましい。この場合、少なくとも1つの接合レンズは、物体側から像面側に向かって順に、負レンズ、正レンズ、および負レンズからなる3枚接合レンズを含むことが望ましい。この構成により、サジタル像面とタンジェンシャル像面との補正に有利となる。また偏心の影響を低減でき、組み立てが容易になる。 Further, in the teleconverter lens TCL according to the present embodiment, it is desirable that the second lens group G2 includes at least one cemented lens. In this case, it is preferable that at least one cemented lens includes a triple cemented lens including a negative lens, a positive lens, and a negative lens in order from the object side to the image surface side. This configuration is advantageous for correction of the sagittal image plane and the tangential image plane. In addition, the influence of the eccentricity can be reduced and the assembly becomes easy.
 一方、特に、倍率が1.4倍程度である場合には、第2レンズ群G2の接合レンズを、物体側から負レンズおよび正レンズからなる2枚接合レンズ、または、物体側から正レンズおよび負レンズからなる2枚接合レンズで構成してもよい。この場合、2枚のレンズが互いに接合される構成となることにより、相互のレンズ間の相対偏芯感度を抑えることができる。 On the other hand, in particular, when the magnification is about 1.4, the cemented lens of the second lens group G2 is a double cemented lens consisting of a negative lens and a positive lens from the object side, or a positive lens from the object side You may comprise by 2-piece cemented lens which consists of negative lenses. In this case, the relative decentering sensitivity between the respective lenses can be suppressed by the configuration in which the two lenses are cemented to each other.
 また、本実施の形態に係るテレコンバータレンズTCLでは、第2レンズ群G2における接合レンズの物体側の面が非球面であることが望ましい。この構成により、軸上と軸外の性能を格段に向上させることができる。特に像面湾曲を良好に補正することができる。また、第2レンズ群G2の接合レンズにおける正レンズは両凸形状であることが好ましい。この構成により、球面収差を良好に補正することができる。 Further, in the teleconverter lens TCL according to the present embodiment, it is desirable that the object-side surface of the cemented lens in the second lens group G2 be aspheric. With this configuration, on-axis and off-axis performance can be significantly improved. In particular, curvature of field can be corrected well. The positive lens in the cemented lens of the second lens group G2 preferably has a biconvex shape. This configuration makes it possible to correct spherical aberration well.
 なお、テレコンバータレンズTCLの倍率を高める場合、第2レンズ群G2に接合レンズを2つ用いることがより好ましい。特に、2枚接合レンズと3枚接合レンズとの2つの接合レンズを用いることがより好ましい。接合レンズを2つ用いることにより、非点収差を良好に補正しつつ、偏芯敏感度を低減でき、組み立てが簡易になる。 In order to increase the magnification of the teleconverter lens TCL, it is more preferable to use two cemented lenses in the second lens group G2. In particular, it is more preferable to use two cemented lenses of a cemented doublet and a cemented triplet. By using two cemented lenses, decentration sensitivity can be reduced while astigmatism is well corrected, and assembly becomes easy.
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(4)を満足することが望ましい。
 Lr/(et_o+Lr)<1.13 ……(4)
ただし、
 et_o:テレコンバータレンズTCLの物体側主点からテレコンバータレンズTCLの最も物体側のレンズ面までの距離(ただし、最も物体側のレンズ面が前記物体側主点よりも物体側に位置するときを負とする)
 Lr:テレコンバータレンズTCLの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (4).
Lr / (et_o + Lr) <1.13 (4)
However,
et_o: The distance from the object-side principal point of the teleconverter lens TCL to the lens surface of the tele-converter lens TCL closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point) Be negative)
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens TCL to the lens surface closest to the image plane.
 条件式(4)は、テレコンバータレンズTCLの物体側主点の位置を規定する条件式である。フランジバックの短いマスターレンズMLに対応する際に、マスターレンズMLと干渉させないために、テレコンバータレンズTCLがマスターレンズMLの最も像面側のレンズ面に対して比較的大きい間隔を空けて配置される必要がある。このため、テレコンバータレンズTCLの物体側主点をより物体側に配置することが好ましい。条件式(4)の上限値を上回ると、テレコンバータレンズTCLの物体側主点がテレコンバータレンズTCLの中心付近に位置することになり、フランジバックの短いマスターレンズMLに対応することが困難になる。特に、テレコンバータレンズTCLの倍率を1.4倍程度と低くする場合に、レンズの配置空間が不足になり、収差補正が困難になる。 Conditional expression (4) defines the position of the object-side principal point of the teleconverter lens TCL. In order to prevent interference with the master lens ML when supporting the short flange back master lens ML, the teleconverter lens TCL is disposed at a relatively large distance from the lens surface on the most image plane side of the master lens ML. Need to Therefore, it is preferable to dispose the object-side principal point of the teleconverter lens TCL closer to the object side. If the upper limit value of conditional expression (4) is exceeded, the object-side principal point of the teleconverter lens TCL will be located near the center of the teleconverter lens TCL, making it difficult to cope with the short flange back master lens ML. Become. In particular, when the magnification of the teleconverter lens TCL is lowered to about 1.4 times, the lens arrangement space becomes insufficient, and aberration correction becomes difficult.
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(5)を満足することが望ましい。
 0.3<BF/h<1.9 ……(5)
ただし、
 BF:マスターレンズMLにテレコンバータレンズTCLを装着した状態でのバックフォーカス
 h:マスターレンズMLにテレコンバータレンズTCLを装着した状態での最大像高
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (5).
0.3 <BF / h <1.9 (5)
However,
BF: Back focus in a state in which the tele conversion lens TCL is mounted on the master lens ML h: Maximum image height in a state in which the tele conversion lens TCL is mounted on the master lens ML
 本開示のテレコンバータレンズTCLは、条件式(5)で規定されるカメラシステムに適用することが好ましい。特にミラーレスカメラシステムに使用することが好ましい。条件式(5)を満足することよりマスターレンズMLに装着時の構成がよりコンパクトになる。 The teleconverter lens TCL of the present disclosure is preferably applied to a camera system defined by conditional expression (5). In particular, it is preferable to use it for a mirrorless camera system. By satisfying the conditional expression (5), the configuration when attached to the master lens ML becomes more compact.
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(6)を満足することが望ましい。
 (BF-et_i)/(BF+Lr)>0.7 ……(6)
ただし、
 BF:マスターレンズMLにテレコンバータレンズTCLを装着した状態でのバックフォーカス
 et_i:テレコンバータレンズTCLの最も像面側のレンズ面からテレコンバータレンズTCLの像側主点までの距離(テレコンバータレンズTCLの像側主点が、テレコンバータレンズTCLの最も像面側のレンズ面よりも物体側に位置するときを負とする)
 Lr:テレコンバータレンズTCLの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
Further, it is preferable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (6).
(BF-et_i) / (BF + Lr)> 0.7 (6)
However,
BF: Back focus in a state where the tele conversion lens TCL is mounted on the master lens ML et_i: Distance from the lens surface of the tele conversion lens TCL closest to the image plane to the image side principal point of the tele conversion lens TCL (tele conversion lens TCL When the image-side principal point of the lens is located on the object side with respect to the lens surface closest to the image plane of the teleconverter lens TCL,
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens TCL to the lens surface closest to the image plane.
 条件式(6)は、フランジバックの短いマスターレンズMLに対応する際に、軸上と軸外の光学性能を良好に維持するための条件式である。条件式(6)の下限値を下回った場合、テレコンバータレンズTCLの最も像面側のレンズ面から射出した光線の角度が大きくなり、軸外の性能が悪くなる。 Conditional expression (6) is a conditional expression for well maintaining the on-axis and off-axis optical performance when corresponding to the short flange back master lens ML. If the lower limit value of the conditional expression (6) is not reached, the angle of a ray emitted from the lens surface on the most image plane side of the teleconverter lens TCL becomes large, and the off-axis performance becomes worse.
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(7)を満足することが望ましい。
 0.03<d12/(-f)<0.2 ……(7)
ただし
 d12:第1レンズ群G1と第2レンズ群G2との光軸上の間隔
 f:テレコンバータレンズTCLの全系の焦点距離
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (7).
0.03 <d12 / (-f) <0.2 (7)
However, d12: distance on the optical axis between the first lens group G1 and the second lens group G2 f: focal length of the entire system of the teleconverter lens TCL.
 テレコンバータレンズTCLは負のパワーを持つため、正の球面収差が大きい。第1レンズ群G1と第2レンズ群G2との間を比較的大きい空気間隔とすることで、光線を緩やかに収束させることができ、球面収差の補正に有利となる。条件式(7)の下限値を下回った場合、第1レンズ群G1と第2レンズ群G2との間隔が小さくなると共に、第1レンズ群G1の最も物体側のレンズ面の屈折力が強くなりすぎて球面収差の補正が過剰になる。条件式(7)の上限値を上回った場合、第1レンズ群G1と第2レンズ群G2との間隔が長くなると共に、第1レンズ群G1の最も像面側のレンズ面の屈折力と第2レンズ群G2の最も物体側のレンズ面の屈折力とが弱くなり、諸収差の補正不足になる。 Since the teleconverter lens TCL has negative power, positive spherical aberration is large. By setting a relatively large air gap between the first lens group G1 and the second lens group G2, light rays can be converged gently, which is advantageous for correction of spherical aberration. When the value goes below the lower limit value of the conditional expression (7), the distance between the first lens group G1 and the second lens group G2 decreases, and the refractive power of the lens surface closest to the object in the first lens group G1 increases. Too much correction of spherical aberration is excessive. If the upper limit value of conditional expression (7) is exceeded, the distance between the first lens group G1 and the second lens group G2 becomes long, and the refracting power of the lens surface closest to the image plane in the first lens group G1 The refracting power of the lens surface closest to the object side in the second lens group G2 becomes weak, and the correction of various aberrations becomes insufficient.
 なお、上記した条件式(7)の効果をより良好に実現するためには、条件式(7)の数値範囲を下記条件式(7)’のように設定することがより望ましい。
 0.035<d12/(-f)<0.15 ……(7)’
In order to better realize the effect of the conditional expression (7) described above, it is more desirable to set the numerical range of the conditional expression (7) as in the following conditional expression (7) ′.
0.035 <d12 / (-f) <0.15 (7) '
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(8)を満足することが望ましい。
 0.3<|f1/f|<1.5 ……(8)
ただし、
 f1:第1レンズ群G1の焦点距離
 f:テレコンバータレンズTCLの全系の焦点距離
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (8).
0.3 <| f1 / f | <1.5 (8)
However,
f1: Focal length of the first lens group G1 f: Focal length of the whole system of the teleconverter lens TCL.
 条件式(8)は、第1レンズ群G1のパワーとテレコンバータレンズTCLの全系のパワーとの関係を規定し、球面収差と像面湾曲とをバランス良く補正するための条件式である。条件式(8)の下限値を下回った場合、第1レンズ群G1のパワーが強くなりすぎ、球面収差の補正が過剰になる。条件式(8)の上限値を上回った場合、第1レンズ群G1のパワーが弱くなりすぎ、球面収差の補正不足になり、中心と周辺での収差補正のバランスが悪くなる。 Conditional expression (8) defines the relationship between the power of the first lens group G1 and the power of the entire system of the teleconverter lens TCL, and is a conditional expression for correcting the spherical aberration and the curvature of field in a well-balanced manner. If the lower limit value of the conditional expression (8) is not reached, the power of the first lens group G1 becomes too strong, and the correction of spherical aberration becomes excessive. If the upper limit value of the conditional expression (8) is exceeded, the power of the first lens group G1 becomes too weak, the correction of spherical aberration becomes insufficient, and the balance of aberration correction at the center and the periphery becomes worse.
 なお、上記した条件式(8)の効果をより良好に実現するためには、条件式(8)の数値範囲を下記条件式(8)’のように設定することがより望ましい。
 0.45<|f1/f|<1.3 ……(8)’
In order to better realize the effect of the conditional expression (8) described above, it is more desirable to set the numerical range of the conditional expression (8) as in the following conditional expression (8) ′.
0.45 <| f1 / f | <1.3 (8) '
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(9)を満足することが望ましい。
 0.05<f2/f<0.4 ……(9)
ただし、
 f2:第2レンズ群G2の焦点距離
 f:テレコンバータレンズTCLの全系の焦点距離
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (9).
0.05 <f2 / f <0.4 (9)
However,
f2: Focal length of the second lens group G2 f: Focal length of the entire system of the teleconverter lens TCL.
 条件式(9)は、第2レンズ群G2のパワーとテレコンバータレンズTCLの全系のパワーとの比であり、第2レンズ群G2の適切なパワー配分を規定するものである。条件式(9)の下限値を下回った場合、第2レンズ群G2のパワーが強くなりすぎ、非点収差の補正が難しくなる。条件式(9)の上限値を上回った場合、第2レンズ群G2のパワーが弱くなりすぎ、特に、フランジバックが短いマスターレンズMLに対して、比較的高い倍率のテレコンバータレンズTCLを実現しようとした場合に、倍率を維持することが困難になる。 The conditional expression (9) is a ratio of the power of the second lens group G2 to the power of the entire system of the teleconverter lens TCL, and defines an appropriate power distribution of the second lens group G2. If the lower limit value of the conditional expression (9) is not reached, the power of the second lens group G2 becomes too strong, and correction of astigmatism becomes difficult. If the upper limit value of the conditional expression (9) is exceeded, the power of the second lens group G2 becomes too weak, and in particular, try to realize a teleconverter lens TCL of relatively high magnification with respect to the master lens ML having a short flange back. And it becomes difficult to maintain the magnification.
 なお、上記した条件式(9)の効果をより良好に実現するためには、条件式(9)の数値範囲を下記条件式(9)’のように設定することがより望ましい。
 0.08<f2/f<0.4 ……(9)’
In order to better realize the effect of the conditional expression (9) described above, it is more desirable to set the numerical range of the conditional expression (9) to the following conditional expression (9) ′.
0.08 <f2 / f <0.4 (9) '
 本実施の形態に係るテレコンバータレンズTCLにおいて、第2レンズ群G2は、少なくとも1枚の負レンズを含んでいることが望ましい。この場合、テレコンバータレンズTCLは、以下の条件式(10)を満足することが望ましい。
 Nd_G2m>1.85 ……(10)
ただし、
 Nd_G2m:第2レンズ群G2に含まれる少なくとも1枚の負レンズのd線の屈折率の最も高い値
とする。
In the teleconverter lens TCL according to the present embodiment, it is desirable that the second lens group G2 includes at least one negative lens. In this case, it is desirable that the teleconverter lens TCL satisfy the following conditional expression (10).
Nd_G2m> 1.85 (10)
However,
Nd_G2m: The highest value of the refractive index of the d-line of at least one negative lens included in the second lens group G2.
 条件式(10)を満足する負レンズの物体側のレンズ面、または像面側のレンズ面のいずれか一方に、正レンズを接合することが好ましい。その場合、負レンズと正レンズとのd線の屈折率の差ΔNd_G2pmが以下の条件を満足することが好ましい。
 ΔNd_G2pm > 0.25
It is preferable to bond a positive lens to either the object-side lens surface of the negative lens that satisfies the conditional expression (10) or the lens surface on the image plane side. In that case, it is preferable that the difference ΔNd_G2pm of the refractive index of the d-line between the negative lens and the positive lens satisfies the following condition.
ΔNd_G2pm> 0.25
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(11)を満足することが望ましい。
 Nd_G3p<1.65 ……(11)
ただし、
 Nd_G3p:第3レンズ群G3に含まれる正レンズのd線の屈折率
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (11).
Nd_G3p <1.65 (11)
However,
Nd_G3p: A refractive index of d-line of a positive lens included in the third lens group G3.
 条件式(10),(11)のいずれも、ペッツバール和を良好に補正するための好ましい条件式である。条件式(10),(11)の範囲を越えると、テレコンバータレンズTCLの全系のペッツバール和が大きくなり、良好な結像性能を得ることが困難となる。 Both conditional expressions (10) and (11) are preferable conditional expressions for satisfactorily correcting the Petzval sum. If the ranges of the conditional expressions (10) and (11) are exceeded, the Petzval sum of the entire system of the teleconverter lens TCL becomes large, and it becomes difficult to obtain good imaging performance.
 なお、上記した条件式(10),(11)の効果をより良好に実現するためには、条件式(10),(11)の数値範囲を下記条件式(10)’,(11)’のように設定することがより望ましい。
 Nd_G2m>1.90 ……(10)’
 Nd_G3p<1.60 ……(11)’
In order to realize the effects of the conditional expressions (10) and (11) more favorably, the numerical ranges of the conditional expressions (10) and (11) are set to the following conditional expressions (10) ′ and (11) ′ It is more desirable to set as follows.
Nd_G2m> 1.90 (10) '
Nd_G3p <1.60 ... (11) '
 また、本実施の形態に係るテレコンバータレンズTCLは、以下の条件式(12)を満足することが望ましい。
 15<νd_G1<35 ……(12)
ただし、
 νd_G1:第1レンズ群G1に含まれる正レンズのアッベ数
とする。
Further, it is desirable that the teleconverter lens TCL according to the present embodiment satisfy the following conditional expression (12).
15 <νd_G1 <35 (12)
However,
dd_G1: Abbe's number of a positive lens included in the first lens group G1.
 νd_G1は、d線におけるアッベ数である。一般に、d線におけるアッベ数νdは、d線(波長587.6nm)に対する屈折率をnd、F線(波長486.1nm)に対する屈折率をnF、C線(波長656.3nm)に対する屈折率をnCとすると、以下のように定義される。
 νd=(nd-1)/(nF-nC)
νd_G1 is the Abbe number at the d-line. In general, the Abbe number dd at the d-line is nd the refractive index for the d-line (wavelength 587.6 nm), nF the refractive index for the F-line (wavelength 486.1 nm), and the refractive index for the C-line (wavelength 656.3 nm) Assuming nC, it is defined as follows.
d d = (nd-1) / (nF-nC)
 条件式(12)は、色収差を良好に補正するための好ましい条件式である。条件式(12)の上限値を上回った場合、第1レンズ群G1に含まれる正レンズの分散が小さくなりすぎ、負の屈折力の第2レンズ群G2で発生する色収差とのキャンセル効果が弱くなる。第1レンズ群G1に含まれる正レンズは球面収差を補正する役割があり、屈折率が高くなる。条件式(12)の下限値を下回った場合、コストが上がり、また、特に非球面を使う場合には適切な硝材が限定されてしまう。 Conditional expression (12) is a preferable conditional expression for satisfactorily correcting the chromatic aberration. If the upper limit value of the conditional expression (12) is exceeded, the dispersion of the positive lens included in the first lens group G1 becomes too small, and the cancellation effect with the chromatic aberration generated in the second lens group G2 of negative refractive power is weak Become. The positive lens included in the first lens group G1 has a role of correcting spherical aberration, and the refractive index becomes high. If the lower limit value of the conditional expression (12) is exceeded, the cost is increased, and an appropriate glass material is limited particularly when using an aspheric surface.
 また、本実施の形態に係るテレコンバータレンズTCLは、非球面を有することが好ましい。非球面を使用することにより、球面収差と像面湾曲の補正効果がより良好になる。レンズ面を非球面にする場合、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。 Moreover, it is preferable that the teleconverter lens TCL which concerns on this Embodiment has an aspherical surface. The use of an aspheric surface makes the correction of spherical aberration and curvature of field better. When making the lens surface aspheric, any of aspheric aspheric surfaces by grinding, a glass mold aspheric surface with a glass formed into an aspheric surface shape, and a composite aspheric surface with a resin formed into aspheric surface shape on the glass surface It may be a spherical surface.
<3.光学機器への適用例>
 本実施の形態に係るテレコンバータレンズTCLの光学機器への適用例を説明する。以下では光学機器の一例として撮像装置の構成例を説明する。
<3. Example of application to optical equipment>
An application example of the teleconverter lens TCL according to the present embodiment to an optical device will be described. Below, an example of composition of an imaging device is explained as an example of an optical instrument.
 図17は、テレコンバータレンズTCLをマスターレンズMLとカメラ本体101との間に装着した撮像装置100の概略を示している。図19は、撮像装置100の制御系のブロック構成例を示している。 FIG. 17 shows an outline of the imaging device 100 in which the teleconverter lens TCL is mounted between the master lens ML and the camera body 101. FIG. 19 illustrates a block configuration example of a control system of the imaging device 100.
 撮像装置100は、例えばデジタルスチルカメラであり、図17に示したように、撮像光学系11と、カメラ本体101とを備えている。カメラ本体101には、撮像素子12が配置されている。撮影光学系11を通して得られる被写体象は、撮像素子12の撮像面に結像する。撮像面における最大像高はhとなっている。 The imaging device 100 is, for example, a digital still camera, and includes an imaging optical system 11 and a camera body 101 as shown in FIG. An imaging element 12 is disposed in the camera body 101. A subject image obtained through the imaging optical system 11 forms an image on the imaging surface of the imaging device 12. The maximum image height on the imaging plane is h.
 撮影光学系11として、図1に示したマスターレンズMLと、図2~図8に示した各構成例のテレコンバータレンズTCLとを適用可能である。図18には、図1に示したマスターレンズMLに対して像面側に、図2に示したテレコンバータレンズTCLを装着した構成例を示す。一般的な交換レンズ等の光学機器に本開示のテレコンバータレンズTCLを含む撮影光学系11を適用することにより、マスターレンズMLの焦点距離を拡大した状態であっても、高い光学性能と小型化とを実現できる。 As the photographing optical system 11, the master lens ML shown in FIG. 1 and the teleconverter lens TCL of each configuration example shown in FIGS. 2 to 8 can be applied. FIG. 18 shows a configuration example in which the teleconverter lens TCL shown in FIG. 2 is mounted on the image plane side of the master lens ML shown in FIG. By applying the photographing optical system 11 including the teleconverter lens TCL of the present disclosure to a general interchangeable lens etc. optical apparatus, high optical performance and miniaturization can be achieved even in a state where the focal distance of the master lens ML is expanded. Can be realized.
 撮像装置100は、図19に示したように、カメラブロック10と、カメラ信号処理部20と、画像処理部30と、LCD(Liquid Crystal Display)40と、R/W(リーダ/ライタ)50と、CPU(Central Processing Unit)60と、入力部70と、レンズ駆動制御部80とを備えている。 As illustrated in FIG. 19, the imaging device 100 includes a camera block 10, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and an R / W (reader / writer) 50. , A central processing unit (CPU) 60, an input unit 70, and a lens drive control unit 80.
 カメラブロック10は、撮像機能を担うものであり、撮影光学系11を含む光学系と、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子12とを有している。撮像素子12は、撮影光学系11によって形成された光学像を電気信号へ変換することで、光学像に応じた撮像信号(画像信号)を出力するようになっている。 The camera block 10 bears an imaging function, and includes an optical system including a photographing optical system 11 and an imaging element 12 such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). The imaging element 12 is configured to output an imaging signal (image signal) corresponding to the optical image by converting the optical image formed by the imaging optical system 11 into an electrical signal.
 カメラ信号処理部20は、撮像素子12から出力された画像信号に対してアナログ-デジタル変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行うものである。 The camera signal processing unit 20 performs various signal processing such as analog-to-digital conversion, noise removal, image quality correction, conversion to luminance and color difference signals, and the like on the image signal output from the imaging device 12.
 画像処理部30は、画像信号の記録再生処理を行うものであり、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行うようになっている。 The image processing unit 30 performs recording / reproduction processing of an image signal, and performs compression encoding / expansion decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, etc. It has become.
 LCD40は、ユーザの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。R/W50は、画像処理部30によって符号化された画像データのメモリカード1000への書き込み、およびメモリカード1000に記録された画像データの読み出しを行うものである。メモリカード1000は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。 The LCD 40 has a function of displaying various data such as an operation state of the user on the input unit 70 and a photographed image. The R / W 50 writes the image data encoded by the image processing unit 30 to the memory card 1000 and reads the image data recorded on the memory card 1000. The memory card 1000 is, for example, a semiconductor memory that can be attached to and detached from a slot connected to the R / W 50.
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能するものであり、入力部70からの指示入力信号等に基づいて各回路ブロックを制御するようになっている。入力部70は、ユーザによって所要の操作が行われる各種のスイッチ等からなる。入力部70は例えば、シャッタ操作を行うためのシャッタレリーズボタンや、動作モードを選択するための選択スイッチ等によって構成され、ユーザによる操作に応じた指示入力信号をCPU60に対して出力するようになっている。レンズ駆動制御部80は、カメラブロック10に配置されたレンズの駆動を制御するものであり、CPU60からの制御信号に基づいて撮影光学系11の各レンズを駆動する図示しないモータ等を制御するようになっている。 The CPU 60 functions as a control processing unit that controls each circuit block provided in the imaging device 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70. The input unit 70 includes various switches and the like for which a user performs a required operation. The input unit 70 includes, for example, a shutter release button for performing a shutter operation, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal according to the operation by the user to the CPU 60. ing. The lens drive control unit 80 controls the drive of the lens disposed in the camera block 10, and controls a motor (not shown) that drives each lens of the photographing optical system 11 based on a control signal from the CPU 60. It has become.
 図示は省略するが、この撮像装置100は、手ぶれに伴う装置のぶれを検出するぶれ検出部を備えている。 Although not shown, the image pickup apparatus 100 includes a shake detection unit that detects shake of the apparatus accompanying camera shake.
 以下に、撮像装置100における動作を説明する。
 撮影の待機状態では、CPU60による制御の下で、カメラブロック10において撮影された画像信号が、カメラ信号処理部20を介してLCD40に出力され、カメラスルー画像として表示される。また、例えば入力部70からのズーミングやフォーカシングのための指示入力信号が入力されると、CPU60がレンズ駆動制御部80に制御信号を出力し、レンズ駆動制御部80の制御に基づいて撮影光学系11の所定のレンズが移動する。
The operation of the imaging device 100 will be described below.
In the photographing standby state, under control of the CPU 60, an image signal photographed in the camera block 10 is output to the LCD 40 via the camera signal processing unit 20 and displayed as a camera through image. Further, for example, when an instruction input signal for zooming or focusing is input from the input unit 70, the CPU 60 outputs a control signal to the lens drive control unit 80, and the photographing optical system is controlled based on the control of the lens drive control unit 80. Eleven predetermined lenses move.
 入力部70からの指示入力信号によりカメラブロック10の図示しないシャッタが動作されると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリカード1000に書き込まれる。 When the shutter (not shown) of the camera block 10 is operated by an instruction input signal from the input unit 70, the photographed image signal is output from the camera signal processing unit 20 to the image processing unit 30, and compression encoding processing is performed. Converted to digital data in data format. The converted data is output to the R / W 50 and written to the memory card 1000.
 なお、フォーカシングは、例えば、入力部70のシャッタレリーズボタンが半押しされた場合や記録(撮影)のために全押しされた場合等に、CPU60からの制御信号に基づいてレンズ駆動制御部80が撮影光学系11の所定のレンズを移動させることにより行われる。 Note that focusing is performed, for example, when the shutter release button of the input unit 70 is half-pressed or fully-pressed for recording (shooting), etc., based on the control signal from the CPU 60. It is performed by moving a predetermined lens of the photographing optical system 11.
 メモリカード1000に記録された画像データを再生する場合には、入力部70に対する操作に応じて、R/W50によってメモリカード1000から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後、再生画像信号がLCD40に出力されて再生画像が表示される。 When reproducing image data recorded in the memory card 1000, predetermined image data is read from the memory card 1000 by the R / W 50 in response to an operation on the input unit 70, and the image processing unit 30 decompresses and decodes the image data. After the processing, the reproduced image signal is output to the LCD 40 and the reproduced image is displayed.
 また、CPU60は、図示しないぶれ検出部から出力される信号に基づいてレンズ駆動制御部80を動作させ、ぶれ量に応じて防振レンズ群を光軸Z1に略垂直な方向に移動させる。 Further, the CPU 60 operates the lens drive control unit 80 based on a signal output from a shake detection unit (not shown) to move the anti-vibration lens group in a direction substantially perpendicular to the optical axis Z1 according to the shake amount.
 なお、上記した実施の形態においては、光学機器をデジタルスチルカメラ等の撮像装置に適用した例を示したが、光学機器の適用範囲はデジタルスチルカメラに限られることはなく、他の種々の光学機器に適用可能である。例えば、デジタル一眼レフカメラ、デジタルノンレフレックスカメラ、デジタルビデオカメラ、および監視カメラ等に適用することができる。また、カメラが組み込まれた携帯電話や、カメラが組み込まれた情報端末等のデジタル入出力機器のカメラ部等として広く適用することができる。また、レンズ交換式のカメラにも適用することができる。 In the above embodiment, an example is shown in which the optical device is applied to an imaging device such as a digital still camera, but the application range of the optical device is not limited to the digital still camera, and various other optical Applicable to equipment. For example, the present invention can be applied to digital single-lens reflex cameras, digital non-reflex cameras, digital video cameras, surveillance cameras, and the like. In addition, the present invention can be widely applied as a camera unit of a digital input / output device such as a mobile phone in which a camera is incorporated or an information terminal in which a camera is incorporated. The present invention can also be applied to a lens-interchangeable camera.
<4.レンズの数値実施例>
 次に、本実施の形態に係るマスターレンズMLとテレコンバータレンズTCLとの具体的な数値実施例について説明する。ここでは、図1に示したマスターレンズMLと、図2~図8に示した各構成例のテレコンバータレンズTCLとに、具体的な数値を適用した数値実施例を説明する。
<4. Numerical embodiment of lens>
Next, specific numerical examples of the master lens ML and the teleconverter lens TCL according to the present embodiment will be described. Here, numerical examples will be described in which specific numerical values are applied to the master lens ML shown in FIG. 1 and the teleconverter lens TCL of each configuration example shown in FIG. 2 to FIG.
 なお、以下の各表や説明において示した記号の意味等については、下記に示す通りである。「面No.」は、物体側から像面側へ数えたi番目の面の番号を示している。「Ri」は、i番目の面の近軸の曲率半径の値(mm)を示す。「Di」はi番目の面とi+1番目の面との間の光軸上の間隔の値(mm)を示す。「Ndi」はi番目の面を有する光学要素の材質のd線(波長587.6nm)における屈折率の値を示す。「νdi」はi番目の面を有する光学要素の材質のd線におけるアッベ数の値を示す。「Ri」の値が「∞」となっている部分は平面、または絞り面(開口絞りSt)を示す。「面No.」において「*」と記した面は非球面であることを示す。「面No.」において「STO」と記した面は開口絞りStであることを示す。「BF」はバックフォーカスを示す。「Fno.」はFナンバー、「ω」は半画角を示す。 In addition, about the meaning etc. of the symbol shown in each following table or description, it is as showing below. “Plane No.” indicates the number of the ith plane counted from the object side to the image plane side. “Ri” indicates the value (mm) of the paraxial radius of curvature of the i-th surface. “Di” indicates the value (mm) of the distance on the optical axis between the i-th surface and the (i + 1) -th surface. “Ndi” indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface. “Νdi” indicates the value of Abbe number at the d-line of the material of the optical element having the i-th surface. The portion where the value of “Ri” is “∞” indicates a flat surface or a stop surface (aperture stop St). The surface marked "*" in "Surface No." indicates that it is an aspheric surface. The surface described as "STO" in "surface No." indicates that it is the aperture stop St. "BF" indicates back focus. "Fno." Indicates an F number, and "ω" indicates a half angle of view.
 各数値実施例において、非球面形状は以下の非球面の式によって定義される。なお、後述する非球面係数を示すデータでは、10のべき乗数をEを用いて表す。例えば、「1.2×10-02」であれば、「1.2E-02」と表す。 In each numerical embodiment, the aspheric shape is defined by the following aspheric equation. In the data indicating the aspheric coefficient described later, a power of 10 is represented using E. For example, “1.2 × 10 −02 ” is represented as “1.2 E-02”.
(非球面の式)
 x=c22/[1+{1-(1+K)c221/2]+ΣAi・yi
(Expression of aspheric surface)
x = c 2 y 2 / [1+ {1- (1 + K) c 2 y 2 } 1/2 ] + ΣAi · y i
ここで、
 x:レンズ面頂点からの光軸方向の距離
 y:光軸と垂直な方向の高さ
 c:レンズ頂点での近軸曲率(近軸曲率半径の逆数)
 K:コーニック定数
 Ai:第i次の非球面係数
である。
here,
x: distance in the optical axis direction from the lens surface vertex y: height in the direction perpendicular to the optical axis c: paraxial curvature at the lens vertex (reciprocal of paraxial radius of curvature)
K: Conic constant Ai: Ith aspheric coefficient.
[マスターレンズMLの数値実施例]
 [表1]に、図1に示したマスターレンズMLに具体的な数値を適用した数値実施例の基本的なレンズデータを示す。なお、マスターレンズMLは、ズームレンズであり、図1には、広角端(短焦点距離端)と望遠端(長焦点距離端)とにおける各レンズ群の配置を示す。また、図1には、広角端から望遠端へとズーミングする際の、各レンズ群の移動の軌跡を示す。マスターレンズMLは、フォーカシングに際し、一部のレンズ群が光軸に沿って移動する。図1には、フォーカシングの際の一部のレンズ群の移動方向も示す。
[Numerical Example of Master Lens ML]
Table 1 shows basic lens data of a numerical example in which specific numerical values are applied to the master lens ML shown in FIG. The master lens ML is a zoom lens, and FIG. 1 shows the arrangement of each lens group at the wide-angle end (short focal length end) and the telephoto end (long focal length end). Further, FIG. 1 shows a locus of movement of each lens unit when zooming from the wide-angle end to the telephoto end. During focusing, some of the lens units of the master lens ML move along the optical axis. FIG. 1 also shows the moving directions of some lens groups during focusing.
 本実施例のマスターレンズMLは、焦点距離が約70mm~200mmで変化し、Fnoが約2.8の望遠ズームレンズである。なお、後述するテレコンバータレンズTCLの数値実施例では、本実施例のマスターレンズMLに装着する場合の実施例を示すが、本実施例のテレコンバータレンズTCLに適用されるマスターレンズMLは、本実施例で示す構成に限定されるものではない。 The master lens ML of this embodiment is a telephoto zoom lens whose focal length changes in a range of about 70 mm to 200 mm and Fno is about 2.8. Although the numerical embodiment of the teleconverter lens TCL described later shows an embodiment in the case of being attached to the master lens ML of the present embodiment, the master lens ML applied to the teleconverter lens TCL of the present embodiment is not limited to this embodiment. It is not limited to the configuration shown in the embodiment.
 [表2]には、広角端(短焦点距離端)と望遠端(長焦点距離端)とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。また、[表2]には、可変の面間隔の値も示す。マスターレンズMLは、ズーミングに際して、面間隔D10、D15、D17、D22、D30、およびD32の値が変化する。 Table 2 shows the focal length, F number (Fno), angle of view 2ω, and back focus (BF) of the entire lens system at the wide-angle end (short focal length end) and at the telephoto end (long focal length end). , Total length, and image height values. [Table 2] also shows variable surface spacing values. In the master lens ML, the values of the surface intervals D10, D15, D17, D22, D30, and D32 change during zooming.
 本実施例のマスターレンズMLは非球面を含んでいる。以下に非球面係数の値を示す。
第26面
 K=0,A4=-2.7344E-6,A6=1.6153E-10
第31面
 K=0,A4=1.2894E-006,A6=-2.3559E-008,A8=3.0254E-011,
第32面
 K=0,A4=-5.1807E-006,A6=-3.5426E-008,A8=-1.4272E-011,A10=3.1502E-015
第36面
 K=0,A4 =3.3738E-006,A6=7.9254E-009,A8=-2.5398E-011,A10=3.7458E-014
The master lens ML of the present embodiment includes an aspheric surface. The values of the aspheric coefficients are shown below.
The 26th plane K = 0, A4 = -2.7344E-6, A6 = 1.6153E-10
The 31st surface K = 0, A4 = 1.2894E-006, A6 = -2.3559E-008, A8 = 3.0254E-01,
The thirty-second surface K = 0, A4 = -5.1807E-006, A6 = -3.5426E-008, A8 = -1.4272E-011, A10 = 3.1502E-015
The thirty-sixth surface K = 0, A4 = 3.3738E-006, A6 = 7.9254E-009, A8 =-2.5398E-011, A10 = 3.7458E-014
 また、以下に、第10レンズ群G10の焦点距離f10、第20レンズ群G20の焦点距離f20、第30レンズ群G30の焦点距離f30、第40レンズ群G40の焦点距離f40、第50レンズ群G50の焦点距離f50、および第60レンズ群G60の焦点距離f60の値を示す。
 f10=96.9
 f20=-25.4
 f30=81.4
 f40=58.5
 f50=-61.2
 f60=285.5
In the following, the focal length f10 of the tenth lens group G10, the focal length f20 of the 20th lens group G20, the focal length f30 of the 30th lens group G30, and the focal length f40 of the 40th lens group G40, and the 50th lens group G50 And the values of the focal length f60 of the 60th lens group G60.
f10 = 96.9
f20 = -25.4
f30 = 81.4
f40 = 58.5
f50 = -61.2
f60 = 285.5
 マスターレンズMLは、光軸Z1に沿って物体側から像面側に向かって順に、正の屈折力を有する第10レンズ群G10と、負の屈折力を有する第20レンズ群G20と、正の屈折力を有する第30レンズ群G30と、正の屈折力を有する第40レンズ群G40と、負の屈折力を有する第50レンズ群G50と、正の屈折力を有する第60レンズ群G60とが配置された、実質的に6つのレンズ群で構成されている。 The master lens ML includes, in order from the object side to the image side along the optical axis Z1, a tenth lens group G10 having a positive refractive power, a twentieth lens group G20 having a negative refractive power, and a positive lens. A 30th lens group G30 having a refractive power, a 40th lens group G40 having a positive refractive power, a 50th lens group G50 having a negative refractive power, and a 60th lens group G60 having a positive refractive power It consists essentially of six lens groups arranged.
 第10レンズ群G10は、物体側から像面側に向かって順に、正の屈折力を有する第1Fレンズ群G1Fと、正の屈折力を有する第1Rレンズ群G1Rとで構成されている。 The tenth lens group G10 is composed of, in order from the object side to the image plane side, a first F lens group G1F having positive refractive power and a first R lens group G1R having positive refractive power.
 第20レンズ群G20は、物体側から像面側に向かって順に、第2Fレンズ群G2Fと、第2Rレンズ群G2Rとで構成されている。 The twentieth lens group G20 is composed of, in order from the object side to the image plane side, a second f lens group G2F and a second R lens group G2R.
 本実施例のマスターレンズMLは、広角端から望遠端へのズーミングに際しては、第1Fレンズ群G1Fと第40レンズ群G40と第60レンズ群G60とが像面に対して光軸方向に固定され、第20レンズ群G20と第30レンズ群G30と第50レンズ群G50とが光軸方向に移動する。 In the master lens ML of this embodiment, the first F lens group G1F, the 40th lens group G40, and the 60th lens group G60 are fixed in the optical axis direction with respect to the image plane during zooming from the wide angle end to the telephoto end. The twentieth lens group G20, the thirtieth lens group G30, and the fifty lens group G50 move in the optical axis direction.
 本実施例のマスターレンズMLは、第1Rレンズ群G1Rと、第50レンズ群G50と、第20レンズ群G20の最も像面側の負レンズとがフォーカシングレンズ群となっている。第1Rレンズ群G1Rは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。第50レンズ群G50は、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って像面側に移動する。第20レンズ群G20の最も像面側の負レンズは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。 In the master lens ML of this embodiment, the first R lens group G1R, the 50th lens group G50, and the negative lens on the most image plane side of the 20th lens group G20 form a focusing lens group. The first R lens group G1R moves to the object side along the optical axis at the time of focusing from an infinite distance object to a close distance object. The 50th lens group G50 moves toward the image plane side along the optical axis when focusing from an infinite distance object to a close distance object. The negative lens closest to the image plane in the 20th lens group G20 moves toward the object along the optical axis when focusing from an infinite distance object to a near distance object.
 開口絞りStは、第30レンズ群G30と第40レンズ群G40との間に配置されている。 The aperture stop St is disposed between the 30th lens group G30 and the 40th lens group G40.
 第1Fレンズ群G1Fは、物体側より順に、負メニスカスレンズL1F1および正レンズL1F2と、正メニスカスレンズL1F3とから構成されている。第1Rレンズ群G1Rは、物体側より順に、負メニスカスレンズL1R1と、正メニスカスレンズL1R2とから構成されている。 The first F lens group G1F is composed of, in order from the object side, a negative meniscus lens L1F1, a positive lens L1F2, and a positive meniscus lens L1F3. The first R lens group G1R is composed of, in order from the object side, a negative meniscus lens L1R1 and a positive meniscus lens L1R2.
 第20レンズ群G2は物体側より順に、負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズと、負メニスカスレンズL24とから構成されている。 The 20th lens group G2 is composed of, in order from the object side, a negative lens L21, a cemented lens in which a negative lens L22 and a positive lens L23 are bonded, and a negative meniscus lens L24.
 負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズとが、第2Fレンズ群G2Fを構成している。また、第20レンズ群G20の最も像面側の負レンズである負メニスカスレンズL24が、第2Rレンズ群G2Rを構成している。そして、ズーミングの際には、第2Fレンズ群G2Fと第2Rレンズ群G2Rとが、それぞれ違った軌道で光軸に沿って移動する。 The negative lens L21 and a cemented lens in which the negative lens L22 and the positive lens L23 are cemented together constitute a second F lens group G2F. Further, a negative meniscus lens L24 which is a negative lens closest to the image plane side in the twentieth lens group G20 constitutes a second R lens group G2R. Then, during zooming, the second F lens group G2F and the second R lens group G2R move along different optical paths along the optical axis.
 第30レンズ群G3は、物体側より順に、正レンズL31と、正レンズL32および負レンズL33を貼り合わせた接合レンズとから構成されている。 The 30th lens group G3 is composed of, in order from the object side, a positive lens L31, and a cemented lens in which a positive lens L32 and a negative lens L33 are bonded.
 第40レンズ群G4は、物体側より順に、正レンズL41と、物体側の面に非球面が形成された正レンズL42と、負レンズL43および正レンズL44を貼り合わせた接合レンズとから構成されている。 The 40th lens group G4 is composed of, in order from the object side, a positive lens L41, a positive lens L42 with an aspheric surface formed on the object side, and a cemented lens in which a negative lens L43 and a positive lens L44 are bonded. ing.
 第50レンズ群G50は、物体側より順に、両面に非球面が形成された負レンズL51から構成されている。 The 50th lens group G50 is composed of, in order from the object side, a negative lens L51 having aspheric surfaces formed on both sides.
 第60レンズ群G60は、物体側より順に、正レンズL61および負レンズL62を貼り合わせた接合レンズと、物体側の面に非球面が形成された正レンズL63と、負レンズL64および正レンズL65を貼り合わせた接合レンズと、負レンズL66とから構成されている。 The 60th lens group G60, in order from the object side, is a cemented lens in which a positive lens L61 and a negative lens L62 are cemented together, a positive lens L63 having an aspheric surface formed on the object side, a negative lens L64 and a positive lens L65. And a negative lens L66.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図9の上段には、本実施例のマスターレンズMLにおける無限遠合焦時での広角端の諸収差を示す。図9の下段には、本実施例のマスターレンズMLにおける無限遠合焦時での望遠端の諸収差を示す。図9には、諸収差として、球面収差、非点収差(像面湾曲)、および歪曲収差を示す。非点収差図において実線(S)はサジタル像面、破線(M)はメリディオナル像面における値を示す。各収差図には、d線における値を示す。球面収差図では、C線(波長656.3nm)と、g線(波長435.8nm)の値も示す。以降の他の数値実施例における収差図についても同様である。 In the upper part of FIG. 9, various aberrations at the wide-angle end at the time of infinity focusing in the master lens ML of this embodiment are shown. The lower part of FIG. 9 shows various aberrations of the telephoto end in infinity focusing in the master lens ML of this embodiment. FIG. 9 shows spherical aberration, astigmatism (field curvature), and distortion as various aberrations. In the astigmatism diagram, a solid line (S) indicates a sagittal image plane, and a broken line (M) indicates a value on a meridional image plane. The respective aberration diagrams show values at the d-line. The spherical aberration diagrams also show the values of C-line (wavelength 656.3 nm) and g-line (wavelength 435.8 nm). The same applies to aberration diagrams in the other numerical examples below.
(テレコンバータレンズTCLの数値実施例に共通の構成)
 以下の各数値実施例が適用されるテレコンバータレンズTCLはいずれも、上記したレンズの基本構成を満足した構成となっている。すなわち、各数値実施例に係るテレコンバータレンズTCLはいずれも、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とからなる。
(Configuration common to numerical example of tele converter lens TCL)
Each of the teleconverter lenses TCL to which the following numerical examples are applied has a configuration satisfying the above-described basic configuration of the lens. That is, in each of the teleconverter lenses TCL according to each numerical example, the first lens group G1 having positive refractive power and the second lens group having negative refractive power are sequentially arranged from the object side to the image surface side. It consists of G2 and the 3rd lens group G3 which has positive refractive power.
 第1レンズ群G1および第3レンズ群G3はそれぞれ、正レンズを含む2枚以下のレンズで構成されている。 The first lens group G1 and the third lens group G3 are each composed of two or less lenses including a positive lens.
 また、以下のテレコンバータレンズTCLの数値実施例は、上記[表1],[表2]に示したマスターレンズMLに装着される場合の実施例を示している。上記[表1]において第42面までが、マスターレンズMLの実質的な構成部分である。以下のテレコンバータレンズTCLの数値実施例では、マスターレンズMLに続く第43面が、テレコンバータレンズTCLにおける最も物体側の面となっている。 Further, the following numerical examples of the teleconverter lens TCL show examples where the lens is mounted on the master lens ML shown in the above [Table 1] and [Table 2]. Up to the forty-second surface in the above [Table 1] is a substantial constituent part of the master lens ML. In the following numerical example of the teleconverter lens TCL, the forty-third surface subsequent to the master lens ML is the surface closest to the object side in the teleconverter lens TCL.
[テレコンバータレンズTCLの数値実施例1]
 [表3]に、図2に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例1の基本的なレンズデータを示す。[表4]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 1 of Tele-Converter Lens TCL
Table 3 shows basic lens data of Numerical Example 1 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 4] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
 数値実施例1に係るテレコンバータレンズTCLは非球面を含んでいる。以下に非球面係数の値を示す。
第45面
 K=1.42,A4=8.28362E-06,A6=-3.13847E-08,A8=2.51731E-10,A10=-8.28879E-13
The teleconverter lens TCL according to Numerical Example 1 includes an aspheric surface. The values of the aspheric coefficients are shown below.
The 45th face K = 1.42, A4 = 8. 2362 E-06, A 6 = -3. 13 847 E-08, A 8 = 2.5173 1 E-10, A 10 = -8.
 また、以下に、数値実施例1に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=2.0
 f1=56.48
 f2=-9.86
 f3=36.68
 マスターレンズMLとの間隔=2.6082
In addition, the magnification β of the teleconverter lens TCL according to Numerical Example 1, the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
β = 2.0
f1 = 56.48
f2 = -9.86
f3 = 36.68
Distance to master lens ML = 2.6082
 数値実施例1に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、両凸形状の正レンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 1, the first lens group G1 is composed of a biconvex positive lens L1.
 第2レンズ群G2は、物体側から順に、物体側の面に非球面が形成された両凹形状の負レンズL2、両凸形状の正レンズL3、および両凹形状の負レンズL4からなる3枚接合レンズと、両凸形状の正レンズL5および像面側に凸面を向けた負メニスカスレンズL6からなる2枚接合レンズと、両凹形状の負レンズL7とで構成されている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. It is composed of a cemented doublet lens composed of a cemented doublet lens, a biconvex positive lens L5, and a negative meniscus lens L6 having a convex surface facing the image surface, and a biconcave negative lens L7. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、両凸形状の正レンズL8からなる。 The third lens group G3 is composed of a biconvex positive lens L8.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図10の上段には、マスターレンズMLに装着した状態での数値実施例1における無限遠合焦時、かつ広角端での諸収差を示す。図10の下段には、マスターレンズMLに装着した状態での数値実施例1における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 10 shows various aberrations at the time of focusing at infinity and in the wide-angle end in Numerical Embodiment 1 with the master lens ML attached. The lower part of FIG. 10 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 1 with the master lens ML attached.
 各収差図から分かるように、数値実施例1に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 1 is attached to the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例2]
 [表5]に、図3に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例2の基本的なレンズデータを示す。[表6]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 2 of Tele-Converter Lens TCL
Table 5 shows basic lens data of Numerical Embodiment 2 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 6] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
 また、以下に、数値実施例2に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=2.0
 f1=57.45
 f2=-15.35
 f3=92.28
 マスターレンズMLとの間隔=2.6082
In addition, the magnification β of the teleconverter lens TCL according to Numerical Example 2, the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
β = 2.0
f1 = 57.45
f2 = -15.35
f3 = 92.28
Distance to master lens ML = 2.6082
 数値実施例2に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、両凸形状の正レンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 2, the first lens group G1 is composed of a biconvex positive lens L1.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL2、両凸形状の正レンズL3、および両凹形状の負レンズL4からなる3枚接合レンズと、両凸形状の正レンズL5および像面側に凸面を向けた負メニスカスレンズL6からなる接合レンズとで構成されている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 has a biconcave negative lens L2, a biconvex positive lens L3, and a biconcave negative lens L4 in this order from the object side, and a biconvex positive lens It is configured of a cemented lens consisting of L5 and a negative meniscus lens L6 having a convex surface facing the image plane side. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、物体側から順に、両凹形状の負レンズL7と両凸形状の正レンズL8との2枚接合レンズからなる。 The third lens group G3 includes, in order from the object side, a double cemented lens of a biconcave negative lens L7 and a biconvex positive lens L8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図11の上段には、マスターレンズMLに装着した状態での数値実施例2における無限遠合焦時、かつ広角端での諸収差を示す。図11の下段には、マスターレンズMLに装着した状態での数値実施例2における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 11 shows various aberrations at the time of focusing at infinity and in the wide-angle end in Numerical Embodiment 2 with the master lens ML attached. The lower part of FIG. 11 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 2 with the master lens ML attached.
 各収差図から分かるように、数値実施例2に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 2 is mounted on the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例3]
 [表7]に、図4に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例3の基本的なレンズデータを示す。[表8]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 3 of Tele-Converter Lens TCL
[Table 7] shows basic lens data of Numerical Embodiment 3 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 8] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
 数値実施例3に係るテレコンバータレンズTCLは非球面を含んでいる。以下に非球面係数の値を示す。
第44面
 K=0.13,A4=-7.90520E-06,A6=3.13613E-10,A8=1.60328E-11
The teleconverter lens TCL according to Numerical Example 3 includes an aspheric surface. The values of the aspheric coefficients are shown below.
The forty-fourth surface K = 0.13, A4 = -7.90520E-06, A6 = 3.13613E-10, A8 = 1.60328E-11
 また、以下に、数値実施例3に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=2.0
 f1=68.22
 f2=-12.55
 f3=46.46
 マスターレンズMLとの間隔=1.6082
Further, the magnification β of the teleconverter lens TCL according to Numerical Example 3, the values of focal lengths of the respective lens units, and the values of the distance between the master lens ML will be described below.
β = 2.0
f1 = 68.22
f2 = -12.55
f3 = 46.46
Distance to master lens ML = 1.6082
 数値実施例3に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、像面側の面に非球面が形成された両凸形状の正レンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 3, the first lens group G1 is composed of a biconvex positive lens L1 having an aspheric surface formed on the surface on the image plane side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL2、両凸形状の正レンズL3、および両凹形状の負レンズL4からなる3枚接合レンズと、両凸形状の正レンズL5および像面側に凸面を向けた負メニスカスレンズL6からなる2枚接合レンズと、像面側に凸面を向けた負メニスカスレンズL7とで構成されている。 The second lens group G2 has a biconcave negative lens L2, a biconvex positive lens L3, and a biconcave negative lens L4 in this order from the object side, and a biconvex positive lens It is composed of a double cemented lens consisting of a negative meniscus lens L6 having a convex surface directed to L5 and the image plane side, and a negative meniscus lens L7 having a convex surface directed to the image plane side.
 第3レンズ群G3は、両凸形状の正レンズL8からなる。 The third lens group G3 is composed of a biconvex positive lens L8.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図12の上段には、マスターレンズMLに装着した状態での数値実施例3における無限遠合焦時、かつ広角端での諸収差を示す。図12の下段には、マスターレンズMLに装着した状態での数値実施例3における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 12 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 3 with the master lens ML attached. The lower part of FIG. 12 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 3 with the master lens ML attached.
 各収差図から分かるように、数値実施例3に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 3 is mounted on the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例4]
 [表9]に、図5に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例4の基本的なレンズデータを示す。[表10]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 4 of Tele Converter Lens TCL
Table 9 shows basic lens data of Numerical Example 4 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 10] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
 また、以下に、数値実施例4に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=2.0
 f1=70.46
 f2=-10.06
 f3=26.95
 マスターレンズMLとの間隔=3.6082
In addition, the magnification β of the teleconverter lens TCL according to Numerical Example 4, the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
β = 2.0
f1 = 70.46
f2 = -10.06
f3 = 26.95
Distance to master lens ML = 3.6082
 数値実施例4に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、物体側から順に、像面側に凹面を向けた負メニスカスレンズL1と、両凸形状の正レンズL2とからなる。 In the teleconverter lens TCL according to Numerical Example 4, the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L1 having a concave surface facing the image plane side, and a biconvex positive lens L2.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL3と、両凸形状の正レンズL4と、両凹形状の負レンズL5、両凸形状の正レンズL6、および両凹形状の負レンズL7からなる3枚接合レンズとで構成されている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L3, a biconvex positive lens L4, a biconcave negative lens L5, a biconvex positive lens L6, and a biconcave shape And a cemented doublet consisting of a negative lens L7. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、第3レンズ群G3は、両凸形状の正レンズL8からなる。 The third lens group G3 is composed of a biconvex positive lens L8.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図13の上段には、マスターレンズMLに装着した状態での数値実施例4における無限遠合焦時、かつ広角端での諸収差を示す。図13の下段には、マスターレンズMLに装着した状態での数値実施例4における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 13 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 4 with the master lens ML attached. The lower part of FIG. 13 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 4 with the master lens ML attached.
 各収差図から分かるように、数値実施例4に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 4 is attached to the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例5]
 [表11]に、図6に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例5の基本的なレンズデータを示す。[表12]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 5 of Tele-Converter Lens TCL
Table 11 shows basic lens data of Numerical Example 5 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. [Table 12] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
 数値実施例5に係るテレコンバータレンズTCLは非球面を含んでいる。以下に非球面係数の値を示す。
第48面
 K=-1.8400,A4=-6.1902E-06,A6=7.5710E-10, A8=1.1492E-11
第52面
 K=-0.0954,A4=7.2871E-06,A6=1.1868E-09,A8=3.9430E-12
The teleconverter lens TCL according to Numerical Embodiment 5 includes an aspheric surface. The values of the aspheric coefficients are shown below.
The 48th surface K = -1.8400, A4 = -6.1902E-06, A6 = 7.5710E-10, A8 = 1.1492E-11
The 52nd surface K = -0.0954, A4 = 7.2871E-06, A6 = 1.1868E-09, A8 = 3.9430E-12
 また、以下に、数値実施例5に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=1.4
 f1=57.20
 f2=-14.64
 f3=37.62
 マスターレンズMLとの間隔=2.6082
Further, the magnification β of the teleconverter lens TCL according to Numerical Example 5, the values of focal lengths of the respective lens units, and the values of the distance between the master lens ML will be described below.
β = 1.4
f1 = 57.20
f2 = -14.64
f3 = 37.62
Distance to master lens ML = 2.6082
 数値実施例5に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、両凸形状の正レンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 5, the first lens group G1 is composed of a biconvex positive lens L1.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL2および両凸形状の正レンズL3からなる2枚接合レンズと、物体側の面に非球面が形成された両凹形状の負レンズL4とで構成されている。なお、負レンズL4の非球面は、表面に接合された樹脂を非球面形状に加工したものとなっている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 is, in order from the object side, a double cemented lens consisting of a biconcave negative lens L2 and a biconvex positive lens L3, and a biconcave lens in which an aspheric surface is formed on the object side. And a negative lens L4. The aspheric surface of the negative lens L4 is obtained by processing the resin joined to the surface into an aspheric shape. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、像面側の面に非球面が形成された両凸形状のレンズL5からなる。 The third lens group G3 is composed of a biconvex lens L5 in which an aspheric surface is formed on the surface on the image plane side.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図14の上段には、マスターレンズMLに装着した状態での数値実施例5における無限遠合焦時、かつ広角端での諸収差を示す。図14の下段には、マスターレンズMLに装着した状態での数値実施例5における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 14 shows various aberrations at the time of infinity in-focus state and at the wide-angle end in Numerical Embodiment 5 with the master lens ML attached. The lower part of FIG. 14 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 5 with the master lens ML attached.
 各収差図から分かるように、数値実施例5に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 5 is mounted on the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例6]
 [表13]に、図7に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例6の基本的なレンズデータを示す。[表14]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 6 of Tele Converter Lens TCL
Table 13 shows basic lens data of Numerical Example 6 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. 7. [Table 14] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide-angle end and the telephoto end in the state of being attached to the master lens ML. And the image height value.
 数値実施例6に係るテレコンバータレンズTCLは非球面を含んでいる。以下に非球面係数の値を示す。
第45面
 K=-1.65,A4=2.0600E-06,A6=-2.0120E-09,A8=5.1320E-11,A10=-7.8900E-14
The teleconverter lens TCL according to Numerical Example 6 includes an aspheric surface. The values of the aspheric coefficients are shown below.
The 45th surface K = -1.65, A4 = 2.0600E-06, A6 = -2.0120E-09, A8 = 5.1320E-11, A10 = -7.8900E-14
 また、以下に、数値実施例6に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=1.4
 f1=61.46
 f2=-16.99
 f3=46.35
 マスターレンズMLとの間隔=1.6082
In addition, the magnification β of the teleconverter lens TCL according to Numerical Example 6, the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
β = 1.4
f1 = 61.46
f2 = -16.99
f3 = 46.35
Distance to master lens ML = 1.6082
 数値実施例6に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、像面側に凸面を向けた正メニスカスレンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 6, the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface facing the image plane side.
 第2レンズ群G2は、物体側から順に、物体側の面に非球面が形成された両凹形状の負レンズL2と、両凸形状の正レンズL3および像面側に凸面を向けた負メニスカスレンズL4からなる2枚接合レンズと、両凹形状の負レンズL5とで構成されている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a negative meniscus convex on the image surface side It is composed of a double cemented lens consisting of a lens L4 and a biconcave negative lens L5. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、両凸形状のレンズL6からなる。 The third lens group G3 is composed of a biconvex lens L6.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 図15の上段には、マスターレンズMLに装着した状態での数値実施例6における無限遠合焦時、かつ広角端での諸収差を示す。図15の下段には、マスターレンズMLに装着した状態での数値実施例6における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 15 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 6 with the master lens ML attached. The lower part of FIG. 15 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 6 with the master lens ML attached.
 各収差図から分かるように、数値実施例6に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 6 is mounted on the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[テレコンバータレンズTCLの数値実施例7]
 [表15]に、図6に示したテレコンバータレンズTCLに具体的な数値を適用した数値実施例7の基本的なレンズデータを示す。[表16]には、マスターレンズMLに装着した状態での広角端と望遠端とにおけるそれぞれのレンズ系全体の焦点距離、Fナンバー(Fno)、画角2ω、バックフォーカス(BF)、全長、および像高の値を示す。
Numerical Embodiment 7 of Tele Converter Lens TCL
Basic lens data of Numerical Example 7 in which specific numerical values are applied to the teleconverter lens TCL shown in FIG. 6 is shown in [Table 15]. [Table 16] shows the focal length, F number (Fno), angle of view 2ω, back focus (BF), total length, of the entire lens system at the wide angle end and the telephoto end in a state of being attached to the master lens ML. And the image height value.
 数値実施例7に係るテレコンバータレンズTCLは非球面を含んでいる。以下に非球面係数の値を示す。
第45面
 K=-9.421,A4=-5.08731E-05,A6=2.65431E-07,A8=-9.87829E-10,A10=1.74813E-12
The teleconverter lens TCL according to Numerical Example 7 includes an aspheric surface. The values of the aspheric coefficients are shown below.
The 45th surface K = -9.421, A4 = -5.08731E-05, A6 = 2.65431E-07, A8 = -9.87829E-10, A10 = 1.74813E-12
 また、以下に、数値実施例7に係るテレコンバータレンズTCLの倍率βと、各レンズ群の焦点距離の値と、マスターレンズMLとの間隔の値を示す。
 β=1.4
 f1=55.00
 f2=-17.36
 f3=52.69
 マスターレンズMLとの間隔=1.6082
In addition, the magnification β of the teleconverter lens TCL according to Numerical Example 7, the values of focal lengths of the lens units, and the values of the distance between the master lens ML will be described below.
β = 1.4
f1 = 55.00
f2 = -17.36
f3 = 52.69
Distance to master lens ML = 1.6082
 数値実施例7に係るテレコンバータレンズTCLにおいて、第1レンズ群G1は、両凸形状の正レンズL1からなる。 In the teleconverter lens TCL according to Numerical Example 7, the first lens group G1 is composed of a biconvex positive lens L1.
 第2レンズ群G2は、物体側から順に、物体側の面に非球面が形成された両凹形状の負レンズL2、両凸形状の正レンズL3、および像面側に凸面を向けた負メニスカスレンズL4からなる3枚接合レンズで構成されている。第1レンズ群G1と第2レンズ群G2との間は、テレコンバータレンズTCL内において最も大きい空気間隔となっている。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L2 having an aspheric surface formed on the object side, a biconvex positive lens L3, and a negative meniscus convex on the image surface side It is configured by a three-piece cemented lens composed of a lens L4. Between the first lens group G1 and the second lens group G2, the largest air gap is provided in the teleconverter lens TCL.
 第3レンズ群G3は、物体側から順に、像面側に凸面を向けた負メニスカスレンズL5と両凸レンズL6との2枚接合レンズからなる。 The third lens group G3 is composed of, in order from the object side, a double cemented lens of a negative meniscus lens L5 with a convex surface facing the image plane side and a biconvex lens L6.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 図16の上段には、マスターレンズMLに装着した状態での数値実施例7における無限遠合焦時、かつ広角端での諸収差を示す。図16の下段には、マスターレンズMLに装着した状態での数値実施例7における無限遠合焦時、かつ望遠端での諸収差を示す。 The upper part of FIG. 16 shows various aberrations at the time of infinity in-focusing and at the wide-angle end in Numerical Embodiment 7 with the master lens ML attached. The lower part of FIG. 16 shows various aberrations at the time of focusing at infinity and at the telephoto end in Numerical Embodiment 7 with the master lens ML attached.
 各収差図から分かるように、数値実施例7に係るテレコンバータレンズTCLは、マスターレンズMLに装着した状態で、広角端、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。 As can be seen from the respective aberration diagrams, in the state where the teleconverter lens TCL according to Numerical Example 7 is attached to the master lens ML, each aberration is well corrected in a well-balanced manner at the wide angle end and the telephoto end. It is clear that it has image performance.
[各実施例のその他の数値データ]
 [表17]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表17]から分かるように、各条件式について、各数値実施例の値がその数値範囲内となっている。
[Other numerical data of each example]
[Table 17] shows values of the above-mentioned conditional expressions summarized for each numerical example. As can be seen from [Table 17], the value of each numerical example is within the numerical range for each conditional expression.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<5.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
<5. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above embodiments and examples, and various modifications can be made.
For example, the shapes and the numerical values of the respective parts shown in the above numerical examples are merely examples of the implementation for implementing the present technology, and the technical scope of the present technology is interpreted limitedly by these. It is something that should not happen.
 また、上記実施の形態および実施例では、実質的に3つのレンズ群からなる構成について説明したが、実質的に屈折力を有さないレンズをさらに備えた構成であってもよい。 Further, in the above-described embodiment and examples, the configuration consisting of substantially three lens groups has been described, but the configuration may further include a lens having substantially no refractive power.
 また例えば、本技術は以下のような構成を取ることができる。
[1]
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 テレコンバータレンズ。
 -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
ただし、
 Rb1:前記第3レンズ群に含まれる正レンズの物体側のレンズ面の曲率半径
 Rb2:前記第3レンズ群に含まれる正レンズの像面側のレンズ面の曲率半径
とする。
[2]
 以下の条件式を満足する
 上記[1]に記載のテレコンバータレンズ。
 2.2<f3/(-f2)<7.2 ……(2)
ただし、
 f2:前記第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
とする。
[3]
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 テレコンバータレンズ。
 0.05<-f2/(Lr*β)<0.45 ……(3)
ただし、
 β:前記テレコンバータレンズの倍率
 Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
 f2:前記第2レンズ群の焦点距離
とする。
[4]
 前記第2レンズ群は、少なくとも1つの接合レンズを含み、
 前記少なくとも1つの接合レンズは、物体側から像面側に向かって順に、負レンズ、正レンズ、および負レンズからなる3枚接合レンズを含む
 上記[3]に記載のテレコンバータレンズ。
[5]
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 テレコンバータレンズ。
 Lr/(et_o+Lr)<1.13 ……(4)
ただし、
 et_o:前記テレコンバータレンズの物体側主点から前記テレコンバータレンズの最も物体側のレンズ面までの距離(ただし、前記最も物体側のレンズ面が前記物体側主点よりも物体側に位置するときを負とする)
 Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
[6]
 以下の条件式を満足する
 上記[5]に記載のテレコンバータレンズ。
 0.3<BF/h<1.9 ……(5)
ただし、
 BF:前記マスターレンズに前記テレコンバータレンズを装着した状態でのバックフォーカス
 h:前記マスターレンズに前記テレコンバータレンズを装着した状態での最大像高
とする。
[7]
 以下の条件式を満足する
 上記[1]ないし[6]のいずれか1つに記載のテレコンバータレンズ。
 (BF-et_i)/(BF+Lr)>0.7 ……(6)
ただし、
 BF:前記マスターレンズに前記テレコンバータレンズを装着した状態でのバックフォーカス
 et_i:前記テレコンバータレンズの最も像面側のレンズ面から前記テレコンバータレンズの像側主点までの距離(前記テレコンバータレンズの前記像側主点が、前記テレコンバータレンズの最も像面側のレンズ面よりも物体側に位置するときを負とする)
 Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
[8]
 以下の条件式を満足する
 上記[1]ないし[7]のいずれか1つに記載のテレコンバータレンズ。
 0.03<d12/(-f)<0.2 ……(7)
ただし
 d12:前記第1レンズ群と前記第2レンズ群との光軸上の間隔
 f:前記テレコンバータレンズの全系の焦点距離
とする。
[9]
 以下の条件式を満足する
 上記[1]ないし[8]のいずれか1つに記載のテレコンバータレンズ。
 0.3<|f1/f|<1.5 ……(8)
ただし、
 f1:前記第1レンズ群の焦点距離
 f:前記テレコンバータレンズの全系の焦点距離
とする。
[10]
 以下の条件式を満足する
 上記[1]ないし[9]のいずれか1つに記載のテレコンバータレンズ。
 0.05<f2/f<0.4 ……(9)
ただし、
 f2:前記第2レンズ群の焦点距離
 f:前記テレコンバータレンズの全系の焦点距離
とする。
[11]
 前記第2レンズ群は、少なくとも1枚の負レンズを含み、
 以下の条件式を満足する
 上記[1]ないし[10]のいずれか1つに記載のテレコンバータレンズ。
 Nd_G2m>1.85 ……(10)
ただし、
 Nd_G2m:前記第2レンズ群に含まれる少なくとも1枚の負レンズのd線の屈折率の最も高い値
とする。
[12]
 以下の条件式を満足する
 上記[1]ないし[11]のいずれか1つに記載のテレコンバータレンズ。
 Nd_G3p<1.65 ……(11)
ただし、
 Nd_G3p:前記第3レンズ群に含まれる正レンズのd線の屈折率
とする。
[13]
 以下の条件式を満足する
 上記[1]ないし[12]のいずれか1つに記載のテレコンバータレンズ。
 15<νd_G1<35 ……(12)
ただし、
 νd_G1:前記第1レンズ群に含まれる正レンズのアッベ数
とする。
[14]
 実質的に屈折力を有さないレンズをさらに備えた
 上記[1]ないし[13]のいずれか1つに記載のテレコンバータレンズ。
[15]
 マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
 前記テレコンバータレンズは、
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 光学機器。
 -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
ただし、
 Rb1:前記第3レンズ群に含まれる正レンズの物体側のレンズ面の曲率半径
 Rb2:前記第3レンズ群に含まれる正レンズの像面側のレンズ面の曲率半径
とする。
[16]
 マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
 前記テレコンバータレンズは、
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 光学機器。
 0.05<-f2/(Lr*β)<0.45 ……(3)
ただし、
 β:前記テレコンバータレンズの倍率
 Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
 f2:前記第2レンズ群の焦点距離
とする。
[17]
 マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
 前記テレコンバータレンズは、
 全体として負の屈折力を有し、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
 前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
 以下の条件式を満足し、
 マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
 光学機器。
 Lr/(et_o+Lr)<1.13 ……(4)
ただし、
 et_o:前記テレコンバータレンズの物体側主点から前記テレコンバータレンズの最も物体側のレンズ面までの距離(ただし、前記最も物体側のレンズ面が前記物体側主点よりも物体側に位置するときを負とする)
 Lr:前記テレコンバータレンズの前記最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
とする。
[18]
 前記ズームレンズは、実質的に屈折力を有さないレンズをさらに備える
 上記[15]ないし[17]のいずれか1つに記載の光学機器。
Further, for example, the present technology can have the following configurations.
[1]
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
-3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
However,
Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
[2]
The teleconverter lens as described in said [1] which satisfies the following conditional expressions.
2.2 <f3 / (-f2) <7.2 (2)
However,
f2: Focal length of the second lens group f3: Focal length of the third lens group.
[3]
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
0.05 <−f2 / (Lr * β) <0.45 (3)
However,
β: Magnification of the teleconverter lens Lr: Distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane f2: Focal length of the second lens group.
[4]
The second lens group includes at least one cemented lens,
The teleconverter lens according to the above [3], wherein the at least one cemented lens includes, in order from the object side to the image surface side, a cemented doublet including a negative lens, a positive lens, and a negative lens.
[5]
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
Lr / (et_o + Lr) <1.13 (4)
However,
et_o: the distance from the object-side principal point of the teleconverter lens to the lens surface of the tele-converter lens closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point Be negative)
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
[6]
The teleconverter lens as described in said [5] which satisfies the following conditional expressions.
0.3 <BF / h <1.9 (5)
However,
BF: Back focus in a state in which the teleconverter lens is attached to the master lens h: A maximum image height in a state in which the teleconverter lens is attached to the master lens.
[7]
The teleconverter lens according to any one of the above [1] to [6], which satisfies the following conditional expression.
(BF-et_i) / (BF + Lr)> 0.7 (6)
However,
BF: back focus with the teleconverter lens attached to the master lens et_i: distance from the lens surface closest to the image plane of the teleconverter lens to the image-side principal point of the teleconverter lens (the teleconverter lens Is negative when the image-side principal point of the lens is located on the object side of the lens surface closest to the image plane of the teleconverter lens)
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
[8]
The teleconverter lens according to any one of the above [1] to [7], which satisfies the following conditional expression.
0.03 <d12 / (-f) <0.2 (7)
However, d12: distance on the optical axis between the first lens group and the second lens group f: the focal length of the whole system of the teleconverter lens.
[9]
The teleconverter lens according to any one of the above [1] to [8], which satisfies the following conditional expression.
0.3 <| f1 / f | <1.5 (8)
However,
f1: Focal length of the first lens group f: Focal length of the whole system of the teleconverter lens.
[10]
The teleconverter lens according to any one of the above [1] to [9], which satisfies the following conditional expression.
0.05 <f2 / f <0.4 (9)
However,
f2: Focal length of the second lens group f: Focal length of the whole system of the teleconverter lens.
[11]
The second lens group includes at least one negative lens,
The teleconverter lens according to any one of the above [1] to [10], which satisfies the following conditional expression.
Nd_G2m> 1.85 (10)
However,
Nd_G2m: The highest value of the refractive index of the d-line of at least one negative lens included in the second lens group.
[12]
The teleconverter lens according to any one of the above [1] to [11], which satisfies the following conditional expression.
Nd_G3p <1.65 (11)
However,
Nd_G3p: A refractive index of d-line of a positive lens included in the third lens group.
[13]
The teleconverter lens according to any one of the above [1] to [12], which satisfies the following conditional expression.
15 <νd_G1 <35 (12)
However,
dd_G1: Abbe number of the positive lens included in the first lens group.
[14]
The teleconverter lens according to any one of the above [1] to [13], further comprising a lens having substantially no refractive power.
[15]
A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
The teleconverter lens is
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
-3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
However,
Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
[16]
A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
The teleconverter lens is
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
0.05 <−f2 / (Lr * β) <0.45 (3)
However,
β: Magnification of the teleconverter lens Lr: Distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane f2: Focal length of the second lens group.
[17]
A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
The teleconverter lens is
It has negative refractive power as a whole,
It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
The following conditional expressions are satisfied,
An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
Lr / (et_o + Lr) <1.13 (4)
However,
et_o: the distance from the object-side principal point of the teleconverter lens to the lens surface of the tele-converter lens closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point Be negative)
Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
[18]
The optical apparatus according to any one of the above [15] to [17], wherein the zoom lens further includes a lens having substantially no refractive power.
 本出願は、日本国特許庁において2016年2月1日に出願された日本特許出願番号第2016-016981号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2016-016981 filed on Feb. 1, 2016 in the Japanese Patent Office, and the entire contents of this application are hereby incorporated by reference. Incorporated in the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Various modifications, combinations, subcombinations, and modifications will occur to those skilled in the art depending on the design requirements and other factors, but they fall within the scope of the appended claims and their equivalents. Are understood to be

Claims (16)

  1.  全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     テレコンバータレンズ。
     -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
    ただし、
     Rb1:前記第3レンズ群に含まれる正レンズの物体側のレンズ面の曲率半径
     Rb2:前記第3レンズ群に含まれる正レンズの像面側のレンズ面の曲率半径
    とする。
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    -3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
    However,
    Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
  2.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     2.2<f3/(-f2)<7.2 ……(2)
    ただし、
     f2:前記第2レンズ群の焦点距離
     f3:前記第3レンズ群の焦点距離
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    2.2 <f3 / (-f2) <7.2 (2)
    However,
    f2: Focal length of the second lens group f3: Focal length of the third lens group.
  3.  全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     テレコンバータレンズ。
     0.05<-f2/(Lr*β)<0.45 ……(3)
    ただし、
     β:前記テレコンバータレンズの倍率
     Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
     f2:前記第2レンズ群の焦点距離
    とする。
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    0.05 <−f2 / (Lr * β) <0.45 (3)
    However,
    β: Magnification of the teleconverter lens Lr: Distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane f2: Focal length of the second lens group.
  4.  前記第2レンズ群は、少なくとも1つの接合レンズを含み、
     前記少なくとも1つの接合レンズは、物体側から像面側に向かって順に、負レンズ、正レンズ、および負レンズからなる3枚接合レンズを含む
     請求項3に記載のテレコンバータレンズ。
    The second lens group includes at least one cemented lens,
    4. The teleconverter lens according to claim 3, wherein the at least one cemented lens includes, in order from the object side to the image surface side, a triple cemented lens including a negative lens, a positive lens, and a negative lens.
  5.  全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     テレコンバータレンズ。
     Lr/(et_o+Lr)<1.13 ……(4)
    ただし、
     et_o:前記テレコンバータレンズの物体側主点から前記テレコンバータレンズの最も物体側のレンズ面までの距離(ただし、前記最も物体側のレンズ面が前記物体側主点よりも物体側に位置するときを負とする)
     Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
    とする。
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    A teleconverter lens that enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    Lr / (et_o + Lr) <1.13 (4)
    However,
    et_o: the distance from the object-side principal point of the teleconverter lens to the lens surface of the tele-converter lens closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point Be negative)
    Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
  6.  以下の条件式を満足する
     請求項5に記載のテレコンバータレンズ。
     0.3<BF/h<1.9 ……(5)
    ただし、
     BF:前記マスターレンズに前記テレコンバータレンズを装着した状態でのバックフォーカス
     h:前記マスターレンズに前記テレコンバータレンズを装着した状態での最大像高
    とする。
    The teleconverter lens according to claim 5, which satisfies the following conditional expression.
    0.3 <BF / h <1.9 (5)
    However,
    BF: Back focus in a state in which the teleconverter lens is attached to the master lens h: A maximum image height in a state in which the teleconverter lens is attached to the master lens.
  7.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     (BF-et_i)/(BF+Lr)>0.7 ……(6)
    ただし、
     BF:前記マスターレンズに前記テレコンバータレンズを装着した状態でのバックフォーカス
     et_i:前記テレコンバータレンズの最も像面側のレンズ面から前記テレコンバータレンズの像側主点までの距離(前記テレコンバータレンズの前記像側主点が、前記テレコンバータレンズの最も像面側のレンズ面よりも物体側に位置するときを負とする)
     Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    (BF-et_i) / (BF + Lr)> 0.7 (6)
    However,
    BF: back focus with the teleconverter lens attached to the master lens et_i: distance from the lens surface closest to the image plane of the teleconverter lens to the image-side principal point of the teleconverter lens (the teleconverter lens Is negative when the image-side principal point of the lens is located on the object side of the lens surface closest to the image plane of the teleconverter lens)
    Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
  8.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
    ただし、
     0.03<d12/(-f)<0.2 ……(7)
    ただし
     d12:前記第1レンズ群と前記第2レンズ群との光軸上の間隔
     f:前記テレコンバータレンズの全系の焦点距離
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    However,
    0.03 <d12 / (-f) <0.2 (7)
    However, d12: distance on the optical axis between the first lens group and the second lens group f: the focal length of the whole system of the teleconverter lens.
  9.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     0.3<|f1/f|<1.5 ……(8)
    ただし、
     f1:前記第1レンズ群の焦点距離
     f:前記テレコンバータレンズの全系の焦点距離
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    0.3 <| f1 / f | <1.5 (8)
    However,
    f1: Focal length of the first lens group f: Focal length of the whole system of the teleconverter lens.
  10.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     0.05<f2/f<0.4 ……(9)
    ただし、
     f2:前記第2レンズ群の焦点距離
     f:前記テレコンバータレンズの全系の焦点距離
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    0.05 <f2 / f <0.4 (9)
    However,
    f2: Focal length of the second lens group f: Focal length of the whole system of the teleconverter lens.
  11.  前記第2レンズ群は、少なくとも1枚の負レンズを含み、
     以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     Nd_G2m>1.85 ……(10)
    ただし、
     Nd_G2m:前記第2レンズ群に含まれる少なくとも1枚の負レンズのd線の屈折率の最も高い値
    とする。
    The second lens group includes at least one negative lens,
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    Nd_G2m> 1.85 (10)
    However,
    Nd_G2m: The highest value of the refractive index of the d-line of at least one negative lens included in the second lens group.
  12.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     Nd_G3p<1.65 ……(11)
    ただし、
     Nd_G3p:前記第3レンズ群に含まれる正レンズのd線の屈折率
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    Nd_G3p <1.65 (11)
    However,
    Nd_G3p: A refractive index of d-line of a positive lens included in the third lens group.
  13.  以下の条件式を満足する
     請求項1に記載のテレコンバータレンズ。
     15<νd_G1<35 ……(12)
    ただし、
     νd_G1:前記第1レンズ群に含まれる正レンズのアッベ数
    とする。
    The teleconverter lens according to claim 1, which satisfies the following conditional expression.
    15 <νd_G1 <35 (12)
    However,
    dd_G1: Abbe number of the positive lens included in the first lens group.
  14.  マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
     前記テレコンバータレンズは、
     全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     光学機器。
     -3.5<(Rb2+Rb1)/(Rb2-Rb1)<-0.18 ……(1)
    ただし、
     Rb1:前記第3レンズ群に含まれる正レンズの物体側のレンズ面の曲率半径
     Rb2:前記第3レンズ群に含まれる正レンズの像面側のレンズ面の曲率半径
    とする。
    A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
    The teleconverter lens is
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    -3.5 <(Rb2 + Rb1) / (Rb2-Rb1) <-0.18 (1)
    However,
    Rb1: Radius of curvature of lens surface on the object side of the positive lens included in the third lens group Rb2: Radius of curvature of the lens surface on the image plane side of the positive lens included in the third lens group.
  15.  マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
     前記テレコンバータレンズは、
     全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     光学機器。
     0.05<-f2/(Lr*β)<0.45 ……(3)
    ただし、
     β:前記テレコンバータレンズの倍率
     Lr:前記テレコンバータレンズの最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
     f2:前記第2レンズ群の焦点距離
    とする。
    A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
    The teleconverter lens is
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    0.05 <−f2 / (Lr * β) <0.45 (3)
    However,
    β: Magnification of the teleconverter lens Lr: Distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane f2: Focal length of the second lens group.
  16.  マスターレンズと、前記マスターレンズによって形成された光学像に応じた撮像信号を出力する撮像素子と、前記マスターレンズと前記撮像素子との間に着脱可能に装着されるテレコンバータレンズとを含み、
     前記テレコンバータレンズは、
     全体として負の屈折力を有し、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とからなり、
     前記第1レンズ群および前記第3レンズ群はそれぞれ、正レンズを含む2枚以下のレンズで構成され、
     以下の条件式を満足し、
     マスターレンズに対して像面側に着脱可能に装着されることにより、前記マスターレンズの焦点距離を拡大する
     光学機器。
     Lr/(et_o+Lr)<1.13 ……(4)
    ただし、
     et_o:前記テレコンバータレンズの物体側主点から前記テレコンバータレンズの最も物体側のレンズ面までの距離(ただし、前記最も物体側のレンズ面が前記物体側主点よりも物体側に位置するときを負とする)
     Lr:前記テレコンバータレンズの前記最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の間隔
    とする。
    A master lens, an imaging device for outputting an imaging signal according to an optical image formed by the master lens, and a teleconverter lens detachably mounted between the master lens and the imaging device;
    The teleconverter lens is
    It has negative refractive power as a whole,
    It comprises a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power in order from the object side to the image surface side,
    Each of the first lens group and the third lens group is composed of two or less lenses including a positive lens,
    The following conditional expressions are satisfied,
    An optical device which enlarges the focal length of the master lens by being detachably mounted on the image plane side with respect to the master lens.
    Lr / (et_o + Lr) <1.13 (4)
    However,
    et_o: the distance from the object-side principal point of the teleconverter lens to the lens surface of the tele-converter lens closest to the object (provided that the lens surface closest to the object is closer to the object than the object-side principal point Be negative)
    Lr: A distance on the optical axis from the lens surface closest to the object side of the teleconverter lens to the lens surface closest to the image plane.
PCT/JP2016/086673 2016-02-01 2016-12-09 Teleconverter lens and optical apparatus WO2017134928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017565416A JP6750638B2 (en) 2016-02-01 2016-12-09 Teleconverter lens and optical equipment
CN201680079949.2A CN109073868A (en) 2016-02-01 2016-12-09 Increment lens and optical instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016981 2016-02-01
JP2016-016981 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017134928A1 true WO2017134928A1 (en) 2017-08-10

Family

ID=59500650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086673 WO2017134928A1 (en) 2016-02-01 2016-12-09 Teleconverter lens and optical apparatus

Country Status (3)

Country Link
JP (1) JP6750638B2 (en)
CN (1) CN109073868A (en)
WO (1) WO2017134928A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003580A (en) * 2018-06-26 2020-01-09 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2020016852A (en) * 2018-07-27 2020-01-30 株式会社ニコン Rear converter lens, optical device, and manufacturing method for rear converter lens
JP2020140197A (en) * 2019-02-27 2020-09-03 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2020170066A (en) * 2019-04-02 2020-10-15 株式会社シグマ Rear conversion lens
JP2020173285A (en) * 2019-04-08 2020-10-22 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2020173319A (en) * 2019-04-09 2020-10-22 株式会社シグマ Rear conversion lens
GB2583820A (en) * 2019-02-27 2020-11-11 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus
JP2022125309A (en) * 2018-06-26 2022-08-26 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
US11428910B2 (en) 2019-11-14 2022-08-30 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image-capturing apparatus
JP2022140504A (en) * 2019-04-08 2022-09-26 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2023011031A (en) * 2019-04-08 2023-01-20 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2023011030A (en) * 2019-04-08 2023-01-20 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2023021455A (en) * 2022-07-08 2023-02-10 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
US11586022B2 (en) 2019-02-27 2023-02-21 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image capturing apparatus
JP7386128B2 (en) 2020-05-29 2023-11-24 コニカミノルタ株式会社 Rear converter lenses, imaging optics and digital equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845405B (en) * 2018-09-25 2020-06-12 云南博硕信息技术有限公司 Wide-spectrum day and night dual-purpose double-view-field monitoring lens
CN110007431B (en) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN114740610B (en) * 2022-03-07 2024-03-29 嘉兴中润光学科技股份有限公司 Magnifying glass and imaging device
CN114994867B (en) * 2022-06-16 2024-01-30 东莞市宇瞳汽车视觉有限公司 Fixed focus lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205117A (en) * 1988-02-10 1989-08-17 Ricoh Co Ltd Rear converter lens
JPH05142473A (en) * 1991-11-18 1993-06-11 Nikon Corp Rear conversion lens
JP2002267929A (en) * 2001-03-07 2002-09-18 Canon Inc Rear converter lens and optical equipment using the same
JP2002287026A (en) * 2001-03-27 2002-10-03 Fuji Photo Optical Co Ltd Rear conversion lens
JP2005107261A (en) * 2003-09-30 2005-04-21 Nikon Corp Rear converter lens
JP2008107448A (en) * 2006-10-24 2008-05-08 Sony Corp Imaging apparatus
JP2014115410A (en) * 2012-12-07 2014-06-26 Canon Inc Tele-conversion lens and imaging device using the same
JP2016191761A (en) * 2015-03-31 2016-11-10 キヤノン株式会社 Rear converter and optical device having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125009B2 (en) * 2006-07-20 2013-01-23 株式会社ニコン Zoom lens, imaging device, zoom lens vibration isolation method, zoom lens zoom method
EP2492715B1 (en) * 2009-10-06 2019-01-09 Canon Kabushiki Kaisha Rear attachment lens, imaging optical system, and image pickup apparatus
JP5904012B2 (en) * 2012-05-30 2016-04-13 株式会社ニコン Rear converter lens, optical device, and manufacturing method of rear converter lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205117A (en) * 1988-02-10 1989-08-17 Ricoh Co Ltd Rear converter lens
JPH05142473A (en) * 1991-11-18 1993-06-11 Nikon Corp Rear conversion lens
JP2002267929A (en) * 2001-03-07 2002-09-18 Canon Inc Rear converter lens and optical equipment using the same
JP2002287026A (en) * 2001-03-27 2002-10-03 Fuji Photo Optical Co Ltd Rear conversion lens
JP2005107261A (en) * 2003-09-30 2005-04-21 Nikon Corp Rear converter lens
JP2008107448A (en) * 2006-10-24 2008-05-08 Sony Corp Imaging apparatus
JP2014115410A (en) * 2012-12-07 2014-06-26 Canon Inc Tele-conversion lens and imaging device using the same
JP2016191761A (en) * 2015-03-31 2016-11-10 キヤノン株式会社 Rear converter and optical device having the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125309A (en) * 2018-06-26 2022-08-26 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP7208433B2 (en) 2018-06-26 2023-01-18 キヤノン株式会社 converter lens, interchangeable lens, and imaging device
JP2020003580A (en) * 2018-06-26 2020-01-09 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
US11966099B2 (en) 2018-06-26 2024-04-23 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image pickup apparatus
JP7146482B2 (en) 2018-06-26 2022-10-04 キヤノン株式会社 converter lens, interchangeable lens, and imaging device
US11448856B2 (en) 2018-06-26 2022-09-20 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image pickup apparatus
JP2020016852A (en) * 2018-07-27 2020-01-30 株式会社ニコン Rear converter lens, optical device, and manufacturing method for rear converter lens
JP7129001B2 (en) 2018-07-27 2022-09-01 株式会社ニコン Rear converter lens and optical equipment
DE102020104983B4 (en) 2019-02-27 2023-10-12 Canon Kabushiki Kaisha Conversion lens, interchangeable lens and image capture device
GB2583820A (en) * 2019-02-27 2020-11-11 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus
GB2583820B (en) * 2019-02-27 2022-03-02 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus
CN114967081A (en) * 2019-02-27 2022-08-30 佳能株式会社 Converter lens, interchangeable lens, and image capturing apparatus
JP7208432B2 (en) 2019-02-27 2023-01-18 キヤノン株式会社 converter lens, interchangeable lens, and imaging device
JP7375155B2 (en) 2019-02-27 2023-11-07 キヤノン株式会社 Converter lenses, interchangeable lenses, and imaging devices
JP2020140197A (en) * 2019-02-27 2020-09-03 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2022125308A (en) * 2019-02-27 2022-08-26 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
US11726305B2 (en) 2019-02-27 2023-08-15 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image capturing apparatus
CN114967081B (en) * 2019-02-27 2024-04-19 佳能株式会社 Converter lens, interchangeable lens, and image capturing apparatus
US11474332B2 (en) 2019-02-27 2022-10-18 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image capturing apparatus
US11586022B2 (en) 2019-02-27 2023-02-21 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image capturing apparatus
JP7208130B2 (en) 2019-02-27 2023-01-18 キヤノン株式会社 converter lens, interchangeable lens, and imaging device
JP2023021456A (en) * 2019-02-27 2023-02-10 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2020170066A (en) * 2019-04-02 2020-10-15 株式会社シグマ Rear conversion lens
JP7130245B2 (en) 2019-04-02 2022-09-05 株式会社シグマ rear conversion lens
JP7187728B2 (en) 2019-04-08 2022-12-12 キヤノン株式会社 REAR ATTACHMENT LENS AND IMAGING OPTICAL SYSTEM USING THE SAME
JP7187375B2 (en) 2019-04-08 2022-12-12 キヤノン株式会社 REAR ATTACHMENT LENS AND IMAGING OPTICAL SYSTEM USING THE SAME
JP2023011030A (en) * 2019-04-08 2023-01-20 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP7214919B2 (en) 2019-04-08 2023-01-30 キヤノン株式会社 REAR ATTACHMENT LENS AND IMAGING OPTICAL SYSTEM USING THE SAME
JP7218474B2 (en) 2019-04-08 2023-02-06 キヤノン株式会社 REAR ATTACHMENT LENS AND IMAGING OPTICAL SYSTEM USING THE SAME
JP2020173285A (en) * 2019-04-08 2020-10-22 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
US11169365B2 (en) 2019-04-08 2021-11-09 Canon Kabushiki Kaisha Rear attachment lens and image pickup optical system using the same
JP2023011031A (en) * 2019-04-08 2023-01-20 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2022140504A (en) * 2019-04-08 2022-09-26 キヤノン株式会社 Rear attachment lens and image capturing optical system using the same
JP2020173319A (en) * 2019-04-09 2020-10-22 株式会社シグマ Rear conversion lens
JP7195608B2 (en) 2019-04-09 2022-12-26 株式会社シグマ rear conversion lens
US11768357B2 (en) 2019-11-14 2023-09-26 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image-capturing apparatus
US11428910B2 (en) 2019-11-14 2022-08-30 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image-capturing apparatus
JP7386128B2 (en) 2020-05-29 2023-11-24 コニカミノルタ株式会社 Rear converter lenses, imaging optics and digital equipment
JP7375154B2 (en) 2022-07-08 2023-11-07 キヤノン株式会社 Converter lenses, interchangeable lenses, and imaging devices
JP2023021455A (en) * 2022-07-08 2023-02-10 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device

Also Published As

Publication number Publication date
CN109073868A (en) 2018-12-21
JP6750638B2 (en) 2020-09-02
JPWO2017134928A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6750638B2 (en) Teleconverter lens and optical equipment
JP5050264B2 (en) Zoom lens and imaging device
JP5263589B2 (en) Zoom lens system, optical apparatus equipped with the zoom lens system, and zooming method using the zoom lens system
WO2017130571A1 (en) Image pickup lens and image pickup device
WO2018088038A1 (en) Image pickup lens and image pickup device
JP6597626B2 (en) Wide angle lens and imaging device
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
WO2018139160A1 (en) Zoom lens and imaging device
JP2015064492A (en) Zoom lens and imaging apparatus
JP6747458B2 (en) Zoom lens and optical equipment
JP2015166834A (en) Zoom lens, and imaging apparatus
JP4823666B2 (en) Zoom lens system
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP2008015433A (en) Zoom lens and optical apparatus having the same
JP2008292911A (en) Three-group zoom lens and imaging apparatus equipped with the same
JP5414771B2 (en) Zoom lens and imaging apparatus having the same
JP5143532B2 (en) Zoom lens and imaging device
JP5722181B2 (en) Image pickup apparatus having optical path reflection type zoom lens
JP2006126741A (en) Zoom lens and information device
JP5282399B2 (en) Macro lens, optical device, macro lens focusing method
JP2017116702A (en) Zoom lens and imaging apparatus including the same
JP5505770B2 (en) Zoom lens, optical equipment
JP2020071437A (en) Zoom lens and imaging apparatus having the same
JP7265075B2 (en) Zoom lens and imaging device
JP7105852B2 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889411

Country of ref document: EP

Kind code of ref document: A1