WO2017134925A1 - Manufacturing method of wafer and wafer - Google Patents

Manufacturing method of wafer and wafer Download PDF

Info

Publication number
WO2017134925A1
WO2017134925A1 PCT/JP2016/086455 JP2016086455W WO2017134925A1 WO 2017134925 A1 WO2017134925 A1 WO 2017134925A1 JP 2016086455 W JP2016086455 W JP 2016086455W WO 2017134925 A1 WO2017134925 A1 WO 2017134925A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
resin layer
resin
grinding
manufacturing
Prior art date
Application number
PCT/JP2016/086455
Other languages
French (fr)
Japanese (ja)
Inventor
田中 利幸
友裕 橋井
中島 亮
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201680081011.4A priority Critical patent/CN108885981B/en
Publication of WO2017134925A1 publication Critical patent/WO2017134925A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a wafer manufacturing method and a wafer.
  • a curable resin is applied to one surface of the wafer, and the curable resin is processed flat and cured. Then, hold the flat surface of the curable resin and grind the other surface of the wafer, hold the other flat surface after removing the curable resin or without removing the one surface of the wafer Grind.
  • the technique may be referred to as “resin pasting”.
  • Patent Document 1 discloses that a curable resin having a thickness of 40 ⁇ m or more and less than 300 ⁇ m is applied.
  • Patent Document 2 discloses that a curable resin having specific characteristics is applied in a thickness of 10 ⁇ m to 200 ⁇ m.
  • Patent Document 3 one surface of a wafer is sucked and held to correct waviness of the wafer, and after grinding the other surface, the other surface is sucked and held to grind one surface. It is disclosed that an equivalent grinding distortion is formed, and thereafter resin pasting is performed.
  • Patent Document 4 discloses that resin pasting grinding is repeatedly performed.
  • JP 2006-269976 A JP 2009-272557 A JP 2011-249652 A Japanese Patent Laying-Open No. 2015-8247
  • An object of the present invention is to provide a wafer manufacturing method and a wafer that can be flattened without lowering the manufacturing efficiency and without affecting the manufacturing of semiconductor devices even when the waviness of the wafer is large. .
  • the method for producing a wafer according to the present invention includes a resin layer forming step of forming a resin layer by applying a curable resin to one surface of a wafer cut from a single crystal ingot or a lapped wafer, and through the resin layer.
  • T Thickness of the thickest part in the resin layer
  • the undulation of one surface is caused by the resin layer having a thickness based on the above formula (1).
  • the resin layer forming step forms the resin layer so as to satisfy the following formula (2). T / X ⁇ 230 (2)
  • the resin layer is too thick and does not satisfy the above formula (2), the resin layer is elastically deformed during the first surface grinding process, and the swell of the other surface may not be sufficiently removed. . Further, even in the second surface grinding step performed by holding the other surface from which the undulation has not been sufficiently removed, there is a possibility that the undulation of the one surface cannot be sufficiently removed. According to the present invention, since the resin layer having an appropriate thickness is formed so as to satisfy the above formula (2), it is possible to suppress the resin layer from being elastically deformed during the first surface grinding process, The surface can be a flat surface from which the undulation has been sufficiently removed. Further, in the subsequent second surface grinding step, one surface can be made a flat surface from which the undulation is sufficiently removed. Therefore, a wafer with high flatness can be obtained with certainty.
  • the wafer of the present invention is characterized in that the amplitude of the undulation having a wavelength of 10 mm or more and 100 mm or less is less than 0.5 ⁇ m.
  • the amplitude of the waviness of the wavelength affecting semiconductor device manufacturing is less than 0.5 ⁇ m, it is possible to provide a wafer that does not affect semiconductor device manufacturing.
  • the wafer of the present invention has a maximum surface shape of 1.2 nm / mm 2 or less at a 10 mm ⁇ 10 mm site when the surface shape is measured in the high order shape mode of the flatness measuring device Wafersight 2 (manufactured by KLA-Tencor). It is characterized by being.
  • Shape Curve is an index representing the warpage of a wafer, and the curvature of an approximate surface approximated by a quadratic order with respect to a surface divided into a designated site size (in the present invention, 10 mm ⁇ 10 mm). To express. For this reason, the larger the shape curvature, the greater the waviness of the wafer. According to the present invention, since the maximum value of Shape Curve at a 10 mm ⁇ 10 mm site is 1.2 nm / mm 2 or less, a wafer capable of appropriately manufacturing a semiconductor device can be provided.
  • a single crystal ingot such as silicon, SiC, GaAs, or sapphire is cut with a wire saw to obtain a plurality of wafers ( Step S1: Slicing step).
  • steps S1: Slicing step both surfaces of the wafer are simultaneously planarized by a lapping apparatus (step S2: lapping process) and chamfered (step S3: chamfering process).
  • a resin layer forming step in which a curable resin is applied to one surface W1 of the wafer W to form a resin layer R (see FIG. 2B);
  • a first surface grinding step step S5 for holding one surface W1 and surface grinding the other surface W2 of the wafer W, a resin layer removing step (step S6) for removing the resin layer R, and the other
  • a second surface grinding step step S7 for holding the surface W2 and surface grinding one surface W1 is performed.
  • the surface shapes of one surface W1 and the other surface W2 are measured, and the maximum amplitude X of the undulation W11 having a wavelength of 10 mm to 100 mm and the in-plane thickness variation of the wafer W (TTV). : Total Thickness Variation) V. Since the swell W11 and the swell W21 are substantially symmetrical, their maximum amplitudes are almost the same.
  • the thickness of the resin layer R that satisfies the following formula (1) is obtained. T / X> 30 (1)
  • T Thickness of the thickest part in the resin layer R At this time, it is preferable that the thickness of the resin layer R satisfies the following formula (2).
  • the machining allowance minimum value P of the other surface W2 in the 1st, 2nd surface grinding process and one surface W1 is calculated
  • P X + V (3)
  • the maximum amplitude X and the in-plane thickness variation V may be used as long as they can be estimated from the ingot slicing conditions and the measurement results of the wafers W in the same lot.
  • the resin layer R is formed using the holding press apparatus 10 as shown to FIG. 2B.
  • a curable resin to be the resin layer R is dropped on the highly flattened flat plate 11.
  • the holding means 12 sucks and holds the other surface W2 of the wafer W by the holding surface 121.
  • the holding means 12 is lowered, and one surface W1 of the wafer W is pressed against the curable resin as indicated by a two-dot chain line in FIG. 2B. Thereafter, the pressure applied to the wafer W by the holding means 12 is released, and the curable resin is cured on the one surface W1 without causing the wafer W to be elastically deformed.
  • the surface opposite to the surface in contact with one surface W1 becomes the flat surface R1, and the resin layer R in which the thickness of the thickest portion satisfies the above formulas (1) and (2) is obtained. It is formed.
  • the curable resin is dropped by dropping the curable resin on one surface W1 with the one surface W1 facing upward, and rotating the wafer W.
  • One side by spin coating method that spreads resin over one side W1 the screen printing method by placing a screen plate on one side W1, placing a curable resin on the screen plate, and applying with a squeegee, electric spray deposition method
  • a method of pressing the flattened flat plate 11 against the curable resin after applying the curable resin by a method such as spraying on the entire surface of W1 can be applied.
  • the curable resin is preferably a curable resin such as a thermosetting resin, a thermoreversible resin, or a photosensitive resin in terms of ease of peeling after processing.
  • the photosensitive resin is also preferable in that stress due to heat is not applied.
  • a UV curable resin is used as the curable resin.
  • Other specific curable resin materials include synthetic rubber and adhesives (wax, etc.).
  • the other surface W2 is surface ground using a surface grinding device 20 as shown in FIG. 2C.
  • a surface grinding device 20 As shown in FIG. 2C, First, when the wafer W is placed on the highly flattened holding surface 211 of the vacuum chuck table 21 with the flat surface R1 facing downward, the vacuum chuck table 21 sucks and holds the wafer W.
  • the surface plate 23 provided with the grindstone 22 on the lower surface is moved above the wafer W.
  • the vacuum chuck table 21 is rotated, and as shown by a two-dot chain line in FIG. 2C, the grindstone 22 and the other surface W2 are brought into contact with each other.
  • Surface grinding When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished.
  • the other surface W2 becomes a flat surface from which the undulation is sufficiently removed.
  • the resin layer R formed on one surface W1 of the wafer W is peeled off from the wafer W as shown in FIG. 3A.
  • the resin layer R may be removed chemically using a solvent.
  • one surface W1 is surface ground using the same surface grinding device 20 as in the first surface grinding step.
  • the vacuum chuck table 21 sucks and holds the wafer W, as shown by a solid line in FIG. 3B.
  • the surface plate 23 moved above the wafer W is lowered while being rotated, and the vacuum chuck table 21 is rotated, so that one surface W1 is surface ground as indicated by a two-dot chain line in FIG. 3B.
  • the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished, so that one surface W1 becomes a flat surface from which the undulation is sufficiently removed.
  • a wafer W in which one surface W1 and the other surface W2 are highly planarized is obtained.
  • the obtained wafer W has a wave amplitude of less than 0.5 ⁇ m with a wavelength of 10 mm or more and 100 mm or less, and when measured in the High Order Shape mode of the flatness measuring device Wafersight 2, a Shape at a 10 mm ⁇ 10 mm site is used.
  • the maximum value of Curve (hereinafter simply referred to as “Shape Curve”) is 1.2 nm / mm 2 or less.
  • etching is performed in order to remove a work-affected layer that occurs during chamfering or resin pasting grinding and remains on the wafer W (step S8: etching process).
  • mirror polishing including a primary polishing step (step S9) for polishing both surfaces of the wafer W using a double-side polishing device and a final polishing step (step S10) for polishing both surfaces of the wafer W using a single-side polishing device.
  • a process is performed and the manufacturing method of a wafer is complete
  • the wafer W having the above-described characteristics can be obtained.
  • the resin layer R may be removed by grinding in the second surface grinding step as the resin layer removing step, instead of peeling off.
  • the slicing step shown in FIG. 1 was performed to prepare a wafer having a diameter of 300 mm and a thickness of about 900 ⁇ m.
  • a lapping process and a chamfering process were performed on these wafers.
  • lapping was performed with slurry containing alumina abrasive grains without using a polishing cloth, using a lapping apparatus (HAMAI32BN) manufactured by Hamai Sangyo Co., Ltd.
  • the shape of one surface of the wafer is measured and frequency analysis is performed, so that the wavelength after the lapping process is 10 mm or more and 100 mm.
  • the maximum amplitude X of the following swell was determined. As shown in Table 1, the maximum amplitude X was 0.9 ⁇ m.
  • the resin pasting grinding process was performed.
  • a resin layer was formed by applying a UV curable resin and curing it by UV irradiation.
  • the thickness T of the thickest part of the resin layer was 80 ⁇ m, and T / X was 88.9 satisfying the above formula (1).
  • thickness T measured the thickness of the wafer before resin pasting, and the total thickness of the wafer after resin pasting, and resin using the linear gauge (LGF) by Mitutoyo Corporation, from these differences Asked.
  • LGF linear gauge
  • the 1st surface grinding process, the resin layer removal process, and the 2nd surface grinding process were performed.
  • surface grinding was performed using a disco grinding machine (DFG8360) with a machining allowance of 20 ⁇ m. Then, the etching process to the mirror polishing process was performed.
  • Example 2 a slicing process was performed to prepare a wafer having a diameter of 300 mm and a thickness of about 900 ⁇ m. As shown in Table 1, the maximum amplitude X of the undulation having a wavelength of 10 mm or more and 100 mm or less after the slicing step was 1.5 ⁇ m. Then, without performing the lapping step, as shown in Table 1, under the same conditions as in Example 1 except that a resin layer having T / X of 53.3 satisfying the above formula (1) was formed. The process from the resin pasting grinding process to the mirror polishing process was performed.
  • Example 1 is the same as Example 1 except that only the first and second surface grinding steps of the resin pasting grinding step are performed instead of the resin pasting grinding step. From the slicing process to the mirror polishing process were performed under the same conditions. The machining allowance in the first and second surface grinding steps was 20 ⁇ m.
  • R resin layer, W ... wafer, W1 ... one side, W2 ... the other side.

Abstract

Included are a resin layer forming step for forming a resin layer (R) on one surface (W1) of a wafer (W); a first surface grinding step in which the one surface (W1) is held and another surface (W2) is subjected to surface grinding with the resin layer (R) interposed between; a resin layer removal step for removing the resin layer (R); and a second surface grinding step in which the other surface (W2) is held, and the one surface (W1) is subjected to surface grinding. In the resin layer forming step, the resin layer (R) is formed so as to satisfy formula (1) below. T/X > 30 (1) (where X is the maximum amplitude of undulations for which the wavelength with the wafer is 10–100 mm inclusive, and T is the thickness of the thickest part of the resin layer)

Description

ウェーハの製造方法およびウェーハWafer manufacturing method and wafer
 本発明は、ウェーハの製造方法およびウェーハに関する。 The present invention relates to a wafer manufacturing method and a wafer.
 従来、うねりがあるウェーハを平坦化する技術として、以下のようなものが知られている。
 まず、ウェーハの一方の面に硬化性樹脂を塗布し、この硬化性樹脂を平坦に加工して硬化させる。その後、硬化性樹脂の平坦面を保持してウェーハの他方の面を研削し、硬化性樹脂を除去した後または除去せずに、平坦化された他方の面を保持してウェーハの一方の面を研削する。なお、以下において、上記技術を「樹脂貼り研削」と言う場合がある。
Conventionally, the following is known as a technique for planarizing a wavy wafer.
First, a curable resin is applied to one surface of the wafer, and the curable resin is processed flat and cured. Then, hold the flat surface of the curable resin and grind the other surface of the wafer, hold the other flat surface after removing the curable resin or without removing the one surface of the wafer Grind. Hereinafter, the technique may be referred to as “resin pasting”.
 そして、このような樹脂貼り研削を応用したさらなる平坦化の検討がなされている(例えば、特許文献1~4参照)。
 特許文献1には、厚さが40μm以上300μm未満の硬化性樹脂を塗布することが開示されている。
 特許文献2には、特定の特性を有する硬化性樹脂を10μm~200μmの厚さで塗布することが開示されている。
 特許文献3には、ウェーハの一方の面を吸引保持してウェーハのうねりを矯正し、他方の面を研削した後、他方の面を吸引保持して一方の面を研削することで、両面に同等の研削歪みを形成し、その後、樹脂貼り研削を行うことが開示されている。
 特許文献4には、樹脂貼り研削を繰り返し行うことが開示されている。
Further, further flattening using such resin pasting grinding has been studied (see, for example, Patent Documents 1 to 4).
Patent Document 1 discloses that a curable resin having a thickness of 40 μm or more and less than 300 μm is applied.
Patent Document 2 discloses that a curable resin having specific characteristics is applied in a thickness of 10 μm to 200 μm.
In Patent Document 3, one surface of a wafer is sucked and held to correct waviness of the wafer, and after grinding the other surface, the other surface is sucked and held to grind one surface. It is disclosed that an equivalent grinding distortion is formed, and thereafter resin pasting is performed.
Patent Document 4 discloses that resin pasting grinding is repeatedly performed.
特開2006-269761号公報JP 2006-269976 A 特開2009-272557号公報JP 2009-272557 A 特開2011-249652号公報JP 2011-249652 A 特開2015-8247号公報Japanese Patent Laying-Open No. 2015-8247
 ところで、半導体デバイス製造プロセスにおいて、ウェーハ上には、何層ものメタルや絶縁膜の層が形成される。このウェーハ上に形成される各層の膜厚均一性は、デバイスの性能に影響を与えるため、各層の形成直後にCMP(Chemical Mechanical Polishing)により平坦化が行われる。しかし、ウェーハにうねりがあると、CMPの精度が下がり、膜厚が不均一な層が形成されてしまう。特に、波長が10mm以上100mm以下のうねりが、CMPの精度に大きな影響を与えてしまう。 By the way, in the semiconductor device manufacturing process, multiple layers of metal and insulating films are formed on the wafer. Since the film thickness uniformity of each layer formed on the wafer affects the device performance, planarization is performed by CMP (Chemical Mechanical Polishing) immediately after the formation of each layer. However, if the wafer has waviness, the accuracy of CMP decreases and a layer with a non-uniform film thickness is formed. In particular, waviness with a wavelength of 10 mm or more and 100 mm or less greatly affects the accuracy of CMP.
 しかしながら、特許文献1~3のような方法では、ウェーハのうねりの大きさを考慮に入れずに研削しているため、うねりが大きい場合、十分に平坦化できないおそれがある。このため、うねりを十分に小さくできず、半導体デバイスを適切に製造できないおそれがある。
 また、特許文献4のような方法では、樹脂貼り研削を複数回行うため、製造効率が落ちてしまうおそれがある。
However, in the methods as described in Patent Documents 1 to 3, since the grinding is performed without taking into consideration the size of the waviness of the wafer, if the waviness is large, there is a possibility that the surface cannot be sufficiently flattened. For this reason, waviness cannot be made sufficiently small, and there is a possibility that a semiconductor device cannot be manufactured appropriately.
Moreover, in a method like patent document 4, since resin pasting grinding is performed in multiple times, there exists a possibility that manufacturing efficiency may fall.
 本発明の目的は、ウェーハのうねりが大きい場合でも、製造効率を落とすことなく、かつ、半導体デバイスの製造に影響を与えないように平坦化可能なウェーハの製造方法およびウェーハを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a wafer manufacturing method and a wafer that can be flattened without lowering the manufacturing efficiency and without affecting the manufacturing of semiconductor devices even when the waviness of the wafer is large. .
 本発明のウェーハの製造方法は、単結晶インゴットから切り出されたウェーハまたはラッピングされたウェーハの一方の面に硬化性樹脂を塗布して樹脂層を形成する樹脂層形成工程と、前記樹脂層を介して前記一方の面を保持し、前記ウェーハの他方の面を平面研削する第1の平面研削工程と、前記樹脂層を除去する樹脂層除去工程と、前記他方の面を保持し、前記一方の面を平面研削する第2の平面研削工程とを含み、前記樹脂層形成工程は、以下の式(1)を満たすように、前記樹脂層を形成することを特徴とする。
  T/X>30 … (1)
   X:前記ウェーハにおける波長が10mm以上100mm以下のうねりの最大振幅
   T:前記樹脂層における最も厚い部分の厚さ
The method for producing a wafer according to the present invention includes a resin layer forming step of forming a resin layer by applying a curable resin to one surface of a wafer cut from a single crystal ingot or a lapped wafer, and through the resin layer. The first surface grinding step of holding the one surface and surface grinding the other surface of the wafer, the resin layer removing step of removing the resin layer, holding the other surface, Including a second surface grinding step of surface grinding the surface, wherein the resin layer forming step forms the resin layer so as to satisfy the following formula (1).
T / X> 30 (1)
X: Maximum amplitude of waviness with a wavelength of 10 mm to 100 mm in the wafer T: Thickness of the thickest part in the resin layer
 本発明によれば、半導体デバイス製造に影響を与える波長(10mm以上100mm以下)のうねりが大きいウェーハであっても、上記式(1)に基づく厚さの樹脂層によって、一方の面のうねりを十分に吸収できる。したがって、このうねりを十分に吸収した樹脂層を介して一方の面を保持することで、第1の平面研削工程において、他方の面をうねりが十分に除去された平坦面にすることができる。また、うねりが十分に除去された他方の面を保持して、一方の面を平面研削することで、この一方の面もうねりが十分に除去された平坦面にすることができる。さらに、樹脂貼り研削を1回だけ行えばよいため、製造効率が落ちない。
 よって、ウェーハのうねりが大きい場合でも、製造効率を落とすことなく、かつ、半導体デバイスの製造に影響を与えないように平坦化可能なウェーハの製造方法を提供できる。
According to the present invention, even on a wafer having a large undulation of a wavelength (10 mm or more and 100 mm or less) that affects semiconductor device manufacture, the undulation of one surface is caused by the resin layer having a thickness based on the above formula (1). Can absorb enough. Therefore, by holding one surface via the resin layer that sufficiently absorbs this undulation, the other surface can be made a flat surface from which the undulation has been sufficiently removed in the first surface grinding step. Further, by holding the other surface from which the undulation is sufficiently removed and subjecting one surface to surface grinding, it is possible to obtain a flat surface from which the undulation of the one surface is sufficiently removed. Furthermore, since it is only necessary to perform the resin pasting grinding only once, the production efficiency is not lowered.
Therefore, even when the waviness of the wafer is large, it is possible to provide a method for manufacturing a wafer that can be planarized without reducing the manufacturing efficiency and without affecting the manufacturing of semiconductor devices.
 本発明のウェーハの製造方法において、前記樹脂層形成工程は、以下の式(2)を満たすように、前記樹脂層を形成することが好ましい。
  T/X<230 … (2)
In the wafer manufacturing method of the present invention, it is preferable that the resin layer forming step forms the resin layer so as to satisfy the following formula (2).
T / X <230 (2)
 ここで、樹脂層が厚すぎて、上記式(2)を満たさない場合、第1の平面研削工程中に樹脂層が弾性変形してしまい、他方の面のうねりを十分に除去できないおそれがある。また、うねりが十分に除去されていない他方の面を保持して行う第2の平面研削工程でも、一方の面のうねりを十分に除去できないおそれがある。
 本発明によれば、上記式(2)を満たすように、適切な厚さの樹脂層を形成するため、第1の平面研削工程中に樹脂層が弾性変形してしまうことを抑制でき、他方の面をうねりが十分に除去された平坦面にすることができる。また、その後の第2の平面研削工程でも、一方の面をうねりが十分に除去された平坦面にすることができる。したがって、平坦度が高いウェーハを確実に得ることができる。
Here, when the resin layer is too thick and does not satisfy the above formula (2), the resin layer is elastically deformed during the first surface grinding process, and the swell of the other surface may not be sufficiently removed. . Further, even in the second surface grinding step performed by holding the other surface from which the undulation has not been sufficiently removed, there is a possibility that the undulation of the one surface cannot be sufficiently removed.
According to the present invention, since the resin layer having an appropriate thickness is formed so as to satisfy the above formula (2), it is possible to suppress the resin layer from being elastically deformed during the first surface grinding process, The surface can be a flat surface from which the undulation has been sufficiently removed. Further, in the subsequent second surface grinding step, one surface can be made a flat surface from which the undulation is sufficiently removed. Therefore, a wafer with high flatness can be obtained with certainty.
 本発明のウェーハは、波長が10mm以上100mm以下のうねりの振幅が0.5μm未満であることを特徴とする。 The wafer of the present invention is characterized in that the amplitude of the undulation having a wavelength of 10 mm or more and 100 mm or less is less than 0.5 μm.
 本発明によれば、半導体デバイス製造に影響を与える波長のうねりの振幅が0.5μm未満なので、半導体デバイスの製造に影響を与えないウェーハを提供できる。 According to the present invention, since the amplitude of the waviness of the wavelength affecting semiconductor device manufacturing is less than 0.5 μm, it is possible to provide a wafer that does not affect semiconductor device manufacturing.
 本発明のウェーハは、面形状を平坦度測定器Wafersight2(KLA-Tencor社製)のHigh Order Shapeモードで測定した際に、10mm×10mmサイトにおけるShape Curvatureの最大値が1.2nm/mm以下であることを特徴とする。 The wafer of the present invention has a maximum surface shape of 1.2 nm / mm 2 or less at a 10 mm × 10 mm site when the surface shape is measured in the high order shape mode of the flatness measuring device Wafersight 2 (manufactured by KLA-Tencor). It is characterized by being.
 ここで、「Shape Curvature」とは、ウェーハの反りを表す指標であって、指定のサイトサイズ(本発明では、10mm×10mm)に区切った面に対し、二次で近似した近似面の曲率を表す。このため、Shape Curvatureが大きいほど、ウェーハは大きなうねりを持つことになる。
 本発明によれば、10mm×10mmサイトにおけるShape Curvatureの最大値が1.2nm/mm以下なので、半導体デバイスを適切に製造可能なウェーハを提供できる。
Here, “Shape Curve” is an index representing the warpage of a wafer, and the curvature of an approximate surface approximated by a quadratic order with respect to a surface divided into a designated site size (in the present invention, 10 mm × 10 mm). To express. For this reason, the larger the shape curvature, the greater the waviness of the wafer.
According to the present invention, since the maximum value of Shape Curve at a 10 mm × 10 mm site is 1.2 nm / mm 2 or less, a wafer capable of appropriately manufacturing a semiconductor device can be provided.
本発明の一実施形態に係るウェーハの製造方法のフローチャート。The flowchart of the manufacturing method of the wafer which concerns on one Embodiment of this invention. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 本発明の実施例におけるウェーハの製造方法とShape Curvatureとの関係を示すグラフ。The graph which shows the relationship between the manufacturing method of the wafer in the Example of this invention, and Shape Curvature. 前記実施例におけるウェーハの製造方法と波長が10mm以上100mm以下のうねりの最大振幅との関係を示すグラフ。The graph which shows the relationship between the manufacturing method of the wafer in the said Example, and the maximum amplitude of the wave | undulation whose wavelength is 10 mm or more and 100 mm or less. 前記実施例におけるT/XとShape Curvatureとの関係を示すグラフ。The graph which shows the relationship between T / X and Shape Curve in the said Example.
 本発明の一実施形態を、図面を参照して説明する。
[ウェーハの製造方法]
 図1に示すように、ウェーハの製造方法は、まず、シリコン、SiC、GaAs、サファイアなどの単結晶インゴット(以下、単に「インゴット」と言う)をワイヤソーで切断して、複数のウェーハを得る(ステップS1:スライス工程)。
 次に、ラッピング装置によって、ウェーハの両面を同時に平坦化加工し(ステップS2:ラッピング工程)、面取りを行う(ステップS3:面取り工程)。
 このとき、ラッピング工程だけではウェーハの十分な平坦化を図ることが困難なため、図2Aに示すように、一方の面W1および他方の面W2にうねりW11,W21が発生しているウェーハWが得られる。
 この後、図1に示すように、ウェーハWの一方の面W1に硬化性樹脂を塗布して樹脂層R(図2B参照)を形成する樹脂層形成工程(ステップS4)と、樹脂層Rを介して一方の面W1を保持し、ウェーハWの他方の面W2を平面研削する第1の平面研削工程(ステップS5)と、樹脂層Rを除去する樹脂層除去工程(ステップS6)と、他方の面W2を保持し、一方の面W1を平面研削する第2の平面研削工程(ステップS7)とを含む樹脂貼り研削工程を行う。
An embodiment of the present invention will be described with reference to the drawings.
[Wafer manufacturing method]
As shown in FIG. 1, in the wafer manufacturing method, first, a single crystal ingot (hereinafter simply referred to as “ingot”) such as silicon, SiC, GaAs, or sapphire is cut with a wire saw to obtain a plurality of wafers ( Step S1: Slicing step).
Next, both surfaces of the wafer are simultaneously planarized by a lapping apparatus (step S2: lapping process) and chamfered (step S3: chamfering process).
At this time, since it is difficult to achieve sufficient planarization of the wafer only by the lapping process, the wafer W in which the undulations W11 and W21 are generated on one surface W1 and the other surface W2, as shown in FIG. can get.
Thereafter, as shown in FIG. 1, a resin layer forming step (step S4) in which a curable resin is applied to one surface W1 of the wafer W to form a resin layer R (see FIG. 2B); A first surface grinding step (step S5) for holding one surface W1 and surface grinding the other surface W2 of the wafer W, a resin layer removing step (step S6) for removing the resin layer R, and the other A second surface grinding step (step S7) for holding the surface W2 and surface grinding one surface W1 is performed.
 樹脂層形成工程は、まず、一方の面W1および他方の面W2の表面形状を測定し、波長が10mm以上100mm以下のうねりW11の最大振幅Xと、ウェーハWの面内厚さのばらつき(TTV:Total Thickness Variation)Vとを求める。なお、うねりW11とうねりW21とは、ほぼ対称の形状のため、これらの最大振幅もほぼ同じになる。
 次に、以下の式(1)を満たすような樹脂層Rの厚さを求める。
  T/X>30 … (1)
   T:樹脂層Rにおける最も厚い部分の厚さ
 この際、樹脂層Rの厚さは、以下の式(2)を満たすことが好ましい。
  T/X<230 … (2)
In the resin layer forming step, first, the surface shapes of one surface W1 and the other surface W2 are measured, and the maximum amplitude X of the undulation W11 having a wavelength of 10 mm to 100 mm and the in-plane thickness variation of the wafer W (TTV). : Total Thickness Variation) V. Since the swell W11 and the swell W21 are substantially symmetrical, their maximum amplitudes are almost the same.
Next, the thickness of the resin layer R that satisfies the following formula (1) is obtained.
T / X> 30 (1)
T: Thickness of the thickest part in the resin layer R At this time, it is preferable that the thickness of the resin layer R satisfies the following formula (2).
T / X <230 (2)
 また、以下の式(3)に基づいて、第1,第2の平面研削工程における他方の面W2、一方の面W1の取代最小値Pを求める。
  P=X+V … (3)
 なお、最大振幅X、面内厚さばらつきVは、インゴットのスライス条件や同じロットのウェーハWの測定結果から推定できれば、その推定値を用いてもよい。
Moreover, based on the following formula | equation (3), the machining allowance minimum value P of the other surface W2 in the 1st, 2nd surface grinding process and one surface W1 is calculated | required.
P = X + V (3)
Note that the maximum amplitude X and the in-plane thickness variation V may be used as long as they can be estimated from the ingot slicing conditions and the measurement results of the wafers W in the same lot.
 次に、図2Bに示すような保持押圧装置10を用いて、樹脂層Rを形成する。
 まず、高平坦化された平板11上に樹脂層Rとなる硬化性樹脂を滴下する。一方、図2Bに実線で示すように、保持手段12が保持面121でウェーハWの他方の面W2を吸引保持する。
 次に、保持手段12を下降させ、図2Bに二点鎖線で示すように、ウェーハWの一方の面W1を硬化性樹脂に押圧する。その後、保持手段12によるウェーハWへの圧力を解除し、ウェーハWを弾性変形させない状態で、一方の面W1上に硬化性樹脂を硬化させる。以上の工程により、一方の面W1に接触している面の反対側の面が平坦面R1となり、かつ、最も厚い部分の厚さが上記式(1),(2)を満たす樹脂層Rが形成される。
Next, the resin layer R is formed using the holding press apparatus 10 as shown to FIG. 2B.
First, a curable resin to be the resin layer R is dropped on the highly flattened flat plate 11. On the other hand, as shown by a solid line in FIG. 2B, the holding means 12 sucks and holds the other surface W2 of the wafer W by the holding surface 121.
Next, the holding means 12 is lowered, and one surface W1 of the wafer W is pressed against the curable resin as indicated by a two-dot chain line in FIG. 2B. Thereafter, the pressure applied to the wafer W by the holding means 12 is released, and the curable resin is cured on the one surface W1 without causing the wafer W to be elastically deformed. Through the above steps, the surface opposite to the surface in contact with one surface W1 becomes the flat surface R1, and the resin layer R in which the thickness of the thickest portion satisfies the above formulas (1) and (2) is obtained. It is formed.
 なお、ウェーハWに硬化性樹脂を塗布する方法としては、ウェーハWの一方の面W1を上に向けて、一方の面W1上に硬化性樹脂を滴下し、ウェーハWを回転させることで硬化性樹脂を一方の面W1全面に広げるスピンコート法、一方の面W1にスクリーン版を配置し、スクリーン版に硬化性樹脂を載せ、スキージで塗布するスクリーン印刷法、エレクトリックスプレーデポジション法により一方の面W1全面にスプレーする方法などによって硬化性樹脂を塗布した後に、高平坦化された平板11を硬化性樹脂に押圧する方法を適用できる。硬化性樹脂は、熱硬化性樹脂、熱可逆性樹脂、感光性樹脂などの硬化性樹脂が、加工後の剥離のしやすさの点で好ましい。特に、感光性樹脂は熱によるストレスが加わらない点でも好適である。本実施形態では、硬化性樹脂として、UV硬化樹脂を使用した。また、他の具体的な硬化性樹脂の材質として、合成ゴムや接着剤(ワックスなど)などが挙げられる。 In addition, as a method of applying the curable resin to the wafer W, the curable resin is dropped by dropping the curable resin on one surface W1 with the one surface W1 facing upward, and rotating the wafer W. One side by spin coating method that spreads resin over one side W1, the screen printing method by placing a screen plate on one side W1, placing a curable resin on the screen plate, and applying with a squeegee, electric spray deposition method A method of pressing the flattened flat plate 11 against the curable resin after applying the curable resin by a method such as spraying on the entire surface of W1 can be applied. The curable resin is preferably a curable resin such as a thermosetting resin, a thermoreversible resin, or a photosensitive resin in terms of ease of peeling after processing. In particular, the photosensitive resin is also preferable in that stress due to heat is not applied. In the present embodiment, a UV curable resin is used as the curable resin. Other specific curable resin materials include synthetic rubber and adhesives (wax, etc.).
 第1の平面研削工程は、図2Cに示すような平面研削装置20を用いて、他方の面W2を平面研削する。
 まず、真空チャックテーブル21の高平坦化された保持面211に、平坦面R1が下を向く状態でウェーハWが載置されると、真空チャックテーブル21がウェーハWを吸引保持する。
 次に、図2Cに実線で示すように、砥石22が下面に設けられた定盤23を、ウェーハWの上方に移動させる。その後、定盤23を回転させながら下降させるとともに、真空チャックテーブル21を回転させ、図2Cに二点鎖線で示すように、砥石22と他方の面W2とを接触させることで、他方の面W2を平面研削する。そして、取代が取代最小値P以上になったら、平面研削を終了する。以上の工程により、他方の面W2は、うねりが十分に除去された平坦面になる。
In the first surface grinding step, the other surface W2 is surface ground using a surface grinding device 20 as shown in FIG. 2C.
First, when the wafer W is placed on the highly flattened holding surface 211 of the vacuum chuck table 21 with the flat surface R1 facing downward, the vacuum chuck table 21 sucks and holds the wafer W.
Next, as shown by a solid line in FIG. 2C, the surface plate 23 provided with the grindstone 22 on the lower surface is moved above the wafer W. Then, while rotating the surface plate 23, the vacuum chuck table 21 is rotated, and as shown by a two-dot chain line in FIG. 2C, the grindstone 22 and the other surface W2 are brought into contact with each other. Surface grinding. When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished. By the above process, the other surface W2 becomes a flat surface from which the undulation is sufficiently removed.
 樹脂層除去工程は、図3Aに示すように、ウェーハWの一方の面W1に形成された樹脂層RをウェーハWから引き剥がす。この際、溶剤を用いて化学的に樹脂層Rを除去してもよい。 In the resin layer removing step, the resin layer R formed on one surface W1 of the wafer W is peeled off from the wafer W as shown in FIG. 3A. At this time, the resin layer R may be removed chemically using a solvent.
 第2の平面研削工程は、図3Bに示すように、第1の平面研削工程と同様の平面研削装置20を用いて、一方の面W1を平面研削する。
 まず、保持面211に、高平坦化された他方の面W2が下を向く状態でウェーハWが載置されると、真空チャックテーブル21がウェーハWを吸引保持し、図3Bに実線で示すように、ウェーハWの上方に移動させた定盤23を回転させながら下降させるとともに、真空チャックテーブル21を回転させ、図3Bに二点鎖線で示すように、一方の面W1を平面研削する。そして、取代が取代最小値P以上になったら、平面研削を終了することで、一方の面W1は、うねりが十分に除去された平坦面になる。
In the second surface grinding step, as shown in FIG. 3B, one surface W1 is surface ground using the same surface grinding device 20 as in the first surface grinding step.
First, when the wafer W is placed on the holding surface 211 with the other flat surface W2 facing down, the vacuum chuck table 21 sucks and holds the wafer W, as shown by a solid line in FIG. 3B. In addition, the surface plate 23 moved above the wafer W is lowered while being rotated, and the vacuum chuck table 21 is rotated, so that one surface W1 is surface ground as indicated by a two-dot chain line in FIG. 3B. When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished, so that one surface W1 becomes a flat surface from which the undulation is sufficiently removed.
 以上の樹脂貼り研削工程により、うねりW11,W21が十分に除去され、図3Cに示すように、一方の面W1および他方の面W2が高平坦化されたウェーハWが得られる。
 この得られたウェーハWは、波長が10mm以上100mm以下のうねりの振幅が0.5μm未満であり、かつ、平坦度測定器Wafersight2のHigh Order Shapeモードで測定した際に、10mm×10mmサイトにおけるShape Curvature(以下、単に「Shape Curvature」と言う)の最大値が1.2nm/mm以下という特性を有する。
Through the above resin pasting and grinding process, the undulations W11 and W21 are sufficiently removed, and as shown in FIG. 3C, a wafer W in which one surface W1 and the other surface W2 are highly planarized is obtained.
The obtained wafer W has a wave amplitude of less than 0.5 μm with a wavelength of 10 mm or more and 100 mm or less, and when measured in the High Order Shape mode of the flatness measuring device Wafersight 2, a Shape at a 10 mm × 10 mm site is used. The maximum value of Curve (hereinafter simply referred to as “Shape Curve”) is 1.2 nm / mm 2 or less.
 次に、図1に示すように、面取り時や樹脂貼り研削時に発生し、ウェーハWに残留する加工変質層などを除去するために、エッチングを行う(ステップS8:エッチング工程)。
 この後、両面研磨装置を用いてウェーハWの両面を研磨する一次研磨工程(ステップS9)と、片面研磨装置を用いてウェーハWの両面を研磨する最終研磨工程(ステップS10)とを含む鏡面研磨工程を行い、ウェーハの製造方法が終了する。
Next, as shown in FIG. 1, etching is performed in order to remove a work-affected layer that occurs during chamfering or resin pasting grinding and remains on the wafer W (step S8: etching process).
Thereafter, mirror polishing including a primary polishing step (step S9) for polishing both surfaces of the wafer W using a double-side polishing device and a final polishing step (step S10) for polishing both surfaces of the wafer W using a single-side polishing device. A process is performed and the manufacturing method of a wafer is complete | finished.
[実施形態の作用効果]
 上述したように、上記式(1)に基づいて、ウェーハWのうねりW11の振幅を考慮に入れた厚さの樹脂層Rを用いて、樹脂貼り研削工程を行うため、一方の面W1および他方の面W2のうねりW11,W21を十分に除去できる。さらに、樹脂貼り研削工程を1回だけ行えばよいため、製造効率が落ちない。したがって、ウェーハWのうねりが大きい場合でも、製造効率を落とすことなく、かつ、半導体デバイスの製造に影響を与えないように平坦化可能なウェーハWの製造方法を提供できる。
 特に、上記式(2)を満たすように、樹脂層Rの厚さを設定しているため、平坦度が高いウェーハWを確実に得ることができる。
[Effects of Embodiment]
As described above, since the resin bonding grinding process is performed using the resin layer R having a thickness that takes into account the amplitude of the waviness W11 of the wafer W based on the above formula (1), one surface W1 and the other surface The undulations W11 and W21 on the surface W2 can be sufficiently removed. Furthermore, since the resin pasting and grinding process needs to be performed only once, the production efficiency does not decrease. Therefore, even when the waviness of the wafer W is large, it is possible to provide a method for manufacturing the wafer W that can be planarized without reducing the manufacturing efficiency and without affecting the manufacturing of the semiconductor device.
In particular, since the thickness of the resin layer R is set so as to satisfy the above formula (2), a wafer W with high flatness can be obtained with certainty.
[変形例]
 なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能であり、その他、本発明の実施の際の具体的な手順、及び構造などは本発明の目的を達成できる範囲で他の構造などとしてもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiment, and various improvements and design changes can be made without departing from the scope of the present invention. The general procedure and structure may be other structures as long as the object of the present invention can be achieved.
 例えば、ラッピング工程を行わずに、少なくとも上記式(1)を満たす条件で樹脂貼り研削工程を行ってもよい。このような場合でも、上述の特性を有するウェーハWを得ることができる。
 また、樹脂層Rの除去は、引き剥がしではなく、樹脂層除去工程としての第2の平面研削工程における研削により行ってもよい。
For example, you may perform a resin sticking grinding process on the conditions which satisfy | fill the said Formula (1) at least, without performing a lapping process. Even in such a case, the wafer W having the above-described characteristics can be obtained.
Further, the resin layer R may be removed by grinding in the second surface grinding step as the resin layer removing step, instead of peeling off.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[ウェーハの製造方法と、Shape Curvatureおよび波長が10mm以上100mm以下のうねりの最大振幅との関係]
〔ウェーハの製造方法〕
{実施例1}
 まず、図1に示すスライス工程を行い、直径300mm、厚さ約900μmのウェーハを準備した。次に、これらのウェーハに対し、ラッピング工程、面取り工程を行った。ラッピング工程では、浜井産業株式会社製のラッピング装置(HAMAI32BN)を用い、研磨布を使用せず、アルミナ砥粒を含むスラリーでラッピングを行った。
 そして、株式会社コベルコ科研社製のウェーハ平坦度・形状測定器(SBW)を用いて、ウェーハの一方の面の形状を測定し、周波数解析を行うことで、ラッピング工程後における波長が10mm以上100mm以下のうねりの最大振幅Xを求めた。表1に示すように、最大振幅Xは、0.9μmであった。
[Relationship between Wafer Manufacturing Method, Shape Curvature, and Maximum Amplitude of Waviness with Wavelength of 10 mm to 100 mm]
[Wafer manufacturing method]
{Example 1}
First, the slicing step shown in FIG. 1 was performed to prepare a wafer having a diameter of 300 mm and a thickness of about 900 μm. Next, a lapping process and a chamfering process were performed on these wafers. In the lapping step, lapping was performed with slurry containing alumina abrasive grains without using a polishing cloth, using a lapping apparatus (HAMAI32BN) manufactured by Hamai Sangyo Co., Ltd.
Then, using a wafer flatness / shape measuring instrument (SBW) manufactured by Kobelco Kaken Co., Ltd., the shape of one surface of the wafer is measured and frequency analysis is performed, so that the wavelength after the lapping process is 10 mm or more and 100 mm. The maximum amplitude X of the following swell was determined. As shown in Table 1, the maximum amplitude X was 0.9 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この後、樹脂貼り研削工程を行った。樹脂層形成工程では、UV硬化樹脂を塗布し、UV照射により硬化させることで、樹脂層を形成した。表1に示すように、樹脂層の最も厚い部分の厚さTは80μmであり、T/Xは上記式(1)を満たす88.9であった。なお、厚さTは、株式会社ミツトヨ社製のリニアゲージ(LGF)を用いて、樹脂貼り前のウェーハの厚さと、樹脂貼り後のウェーハおよび樹脂の合計厚さとを測定し、これらの差分から求めた。
 そして、第1の平面研削工程、樹脂層除去工程、第2の平面研削工程を行った。第1,第2の平面研削工程では、株式会社ディスコ製の研削装置(DFG8360)を用い、それぞれ取代20μmで平面研削を行った。
 その後、エッチング工程から鏡面研磨工程までを行った。
Then, the resin pasting grinding process was performed. In the resin layer forming step, a resin layer was formed by applying a UV curable resin and curing it by UV irradiation. As shown in Table 1, the thickness T of the thickest part of the resin layer was 80 μm, and T / X was 88.9 satisfying the above formula (1). In addition, thickness T measured the thickness of the wafer before resin pasting, and the total thickness of the wafer after resin pasting, and resin using the linear gauge (LGF) by Mitutoyo Corporation, from these differences Asked.
And the 1st surface grinding process, the resin layer removal process, and the 2nd surface grinding process were performed. In the first and second surface grinding steps, surface grinding was performed using a disco grinding machine (DFG8360) with a machining allowance of 20 μm.
Then, the etching process to the mirror polishing process was performed.
{実施例2}
 まず、スライス工程を行い、直径300mm、厚さ約900μmのウェーハを準備した。表1に示すように、スライス工程後における波長が10mm以上100mm以下のうねりの最大振幅Xは、1.5μmであった。
 そして、ラッピング工程を行わず、表1に示すように、T/Xが上記式(1)を満たす53.3となるような樹脂層を形成したこと以外は、実施例1と同様の条件で樹脂貼り研削工程から鏡面研磨工程までを行った。
{Example 2}
First, a slicing process was performed to prepare a wafer having a diameter of 300 mm and a thickness of about 900 μm. As shown in Table 1, the maximum amplitude X of the undulation having a wavelength of 10 mm or more and 100 mm or less after the slicing step was 1.5 μm.
Then, without performing the lapping step, as shown in Table 1, under the same conditions as in Example 1 except that a resin layer having T / X of 53.3 satisfying the above formula (1) was formed. The process from the resin pasting grinding process to the mirror polishing process was performed.
{比較例1}
 表1に示すように、T/Xが上記式(1)を満たさない27.8となるような樹脂層を形成したこと以外は、実施例1と同様の条件でスライス工程から鏡面研磨工程までを行った。
{Comparative Example 1}
As shown in Table 1, from the slicing step to the mirror polishing step under the same conditions as in Example 1 except that a resin layer having a T / X of 27.8 that does not satisfy the above formula (1) is formed. Went.
{比較例2}
 表1に示すように、樹脂貼り研削工程の代わりに、樹脂層を形成しない研削、つまり樹脂貼り研削工程のうち第1,第2の平面研削工程のみを行ったこと以外は、実施例1と同様の条件でスライス工程から鏡面研磨工程までを行った。なお、第1,第2の平面研削工程における取代は、20μmであった。
{Comparative Example 2}
As shown in Table 1, Example 1 is the same as Example 1 except that only the first and second surface grinding steps of the resin pasting grinding step are performed instead of the resin pasting grinding step. From the slicing process to the mirror polishing process were performed under the same conditions. The machining allowance in the first and second surface grinding steps was 20 μm.
〔評価〕
 実施例1,2、比較例1,2の条件で、それぞれ4枚ずつのウェーハを処理して評価した。
[Evaluation]
Four wafers were processed and evaluated under the conditions of Examples 1 and 2 and Comparative Examples 1 and 2, respectively.
{Shape Curvature}
 平坦度測定器Wafersight2(KLA-Tencor社製)のHigh Order Shapeモードで、各ウェーハの面形状を測定し、Shape Curvatureの最大値を評価した。その評価結果を図4に示す。
 図4に示すように、T/Xが上記式(1)を満たす実施例1,2では、いずれも1.2nm/mm以下となり、T/Xが大きいほど小さい値となった。一方、T/Xが上記式(1)を満たさない比較例1および樹脂貼り研削工程を行わない比較例2では、いずれも1.2nm/mmを超えた。
{Shape Curve}
The surface shape of each wafer was measured in the High Order Shape mode of the flatness measuring device Wafersight 2 (manufactured by KLA-Tencor), and the maximum value of Shape Curve was evaluated. The evaluation results are shown in FIG.
As shown in FIG. 4, in Examples 1 and 2 where T / X satisfies the above formula (1), both were 1.2 nm / mm 2 or less, and the smaller T / X, the smaller the value. On the other hand, T / X exceeded 1.2 nm / mm 2 in Comparative Example 1 in which the above formula (1) was not satisfied and in Comparative Example 2 in which the resin pasting grinding step was not performed.
{波長が10mm以上100mm以下のうねりの最大振幅}
 実施例1におけるラッピング工程後のうねりの最大振幅Xを求めたときと同様の方法で、波長が10mm以上100mm以下のうねりの最大振幅を求めて評価した。その評価結果を図5に示す。
 図5に示すように、T/Xが上記式(1)を満たす実施例1,2では、いずれも0.5μm未満となり、T/Xが大きいほど小さい値となった。一方、T/Xが上記式(1)を満たさない比較例1および樹脂貼り研削工程を行わない比較例2では、いずれも0.5μmを超えた。
{Maximum amplitude of waviness with a wavelength of 10 mm to 100 mm}
The maximum amplitude of undulation with a wavelength of 10 mm or more and 100 mm or less was obtained and evaluated in the same manner as when the maximum amplitude X of undulation after the lapping step in Example 1 was obtained. The evaluation results are shown in FIG.
As shown in FIG. 5, in Examples 1 and 2 where T / X satisfies the above formula (1), both were less than 0.5 μm, and the smaller T / X, the smaller the value. On the other hand, in Comparative Example 1 where T / X does not satisfy the above formula (1) and in Comparative Example 2 where the resin pasting grinding step is not performed, both exceeded 0.5 μm.
{まとめ}
 以上のことから、スライス工程からラッピング工程まで行ったウェーハ、ラッピング工程を行わないウェーハのいずれであっても、T/Xが上記式(1)を満たす条件で樹脂貼り研削工程を行うことで、製造効率および平坦度が高く、半導体デバイスを適切に製造可能なウェーハを提供できることが確認できた。
 なお、本実施例では、鏡面研磨工程後のウェーハについて評価したが、樹脂貼り研削工程(比較例2では、第1,第2の平面研削工程)直後の形状も図4および図5に示すものとほぼ等しくなると推定できる。その理由は、エッチング工程および鏡面研磨工程における取代は、ラッピング工程や樹脂貼り研削工程と比べて非常に小さいため、鏡面研磨工程後の平坦度は、樹脂貼り研削工程直後の平坦度とほぼ等しくなるからである。
{Summary}
From the above, by performing the resin bonding grinding process under the condition that T / X satisfies the above formula (1), whether it is a wafer that has been performed from the slicing process to the lapping process or a wafer that does not perform the lapping process, It was confirmed that a wafer with high manufacturing efficiency and flatness and capable of appropriately manufacturing a semiconductor device can be provided.
In this example, the wafer after the mirror polishing process was evaluated. However, the shape immediately after the resin bonding grinding process (in Comparative Example 2, the first and second surface grinding processes) is also shown in FIGS. It can be estimated that The reason is that the machining allowance in the etching process and the mirror polishing process is very small compared to the lapping process and the resin bonding grinding process, so the flatness after the mirror polishing process is almost equal to the flatness immediately after the resin bonding grinding process. Because.
[T/Xの許容範囲の検討]
 樹脂層の厚さを複数のレベルで変えたこと以外は、各レベルで2枚ずつのウェーハに対して上記実施例1と同様の処理を行い、Shape Curvatureの最大値を評価した。その評価結果を図6に示す。
 図6に示すように、T/Xが30を超えかつ230未満であれば、1.2nm/mm以下となることが確認できた。
[Examination of allowable range of T / X]
Except that the thickness of the resin layer was changed at a plurality of levels, the same processing as in Example 1 was performed on two wafers at each level, and the maximum value of Shape Curvature was evaluated. The evaluation results are shown in FIG.
As shown in FIG. 6, it was confirmed that when T / X was more than 30 and less than 230, it was 1.2 nm / mm 2 or less.
 R…樹脂層、W…ウェーハ、W1…一方の面、W2…他方の面。 R ... resin layer, W ... wafer, W1 ... one side, W2 ... the other side.

Claims (4)

  1.  単結晶インゴットから切り出されたウェーハまたはラッピングされたウェーハの一方の面に硬化性樹脂を塗布して樹脂層を形成する樹脂層形成工程と、
     前記樹脂層を介して前記一方の面を保持し、前記ウェーハの他方の面を平面研削する第1の平面研削工程と、
     前記樹脂層を除去する樹脂層除去工程と、
     前記他方の面を保持し、前記一方の面を平面研削する第2の平面研削工程とを含み、
     前記樹脂層形成工程は、以下の式(1)を満たすように、前記樹脂層を形成することを特徴とするウェーハの製造方法。
      T/X>30 … (1)
       X:前記ウェーハにおける波長が10mm以上100mm以下のうねりの最大振幅
       T:前記樹脂層における最も厚い部分の厚さ
    A resin layer forming step of forming a resin layer by applying a curable resin to one surface of a wafer cut from a single crystal ingot or a lapped wafer;
    A first surface grinding step of holding the one surface via the resin layer and surface grinding the other surface of the wafer;
    A resin layer removing step of removing the resin layer;
    A second surface grinding step of holding the other surface and surface grinding the one surface;
    In the resin layer forming step, the resin layer is formed so as to satisfy the following formula (1).
    T / X> 30 (1)
    X: Maximum amplitude of waviness with a wavelength of 10 mm to 100 mm in the wafer T: Thickness of the thickest part in the resin layer
  2.  請求項1に記載のウェーハの製造方法において、
     前記樹脂層形成工程は、以下の式(2)を満たすように、前記樹脂層を形成することを特徴とするウェーハの製造方法。
      T/X<230 … (2)
    In the manufacturing method of the wafer according to claim 1,
    The said resin layer formation process forms the said resin layer so that the following formula | equation (2) may be satisfy | filled, The manufacturing method of the wafer characterized by the above-mentioned.
    T / X <230 (2)
  3.  波長が10mm以上100mm以下のうねりの振幅が0.5μm未満であることを特徴とするウェーハ。 A wafer characterized in that the amplitude of undulations having a wavelength of 10 mm or more and 100 mm or less is less than 0.5 μm.
  4.  面形状を平坦度測定器Wafersight2(KLA-Tencor社製)のHigh Order Shapeモードで測定した際に、10mm×10mmサイトにおけるShape Curvatureの最大値が1.2nm/mm以下であることを特徴とするウェーハ。 When the surface shape is measured in the High Order Shape mode of the flatness measuring device Wafersight 2 (manufactured by KLA-Tencor), the maximum value of the Shape Curve at a 10 mm × 10 mm site is 1.2 nm / mm 2 or less. Wafer to be used.
PCT/JP2016/086455 2016-02-03 2016-12-07 Manufacturing method of wafer and wafer WO2017134925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680081011.4A CN108885981B (en) 2016-02-03 2016-12-07 Wafer manufacturing method and wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019071 2016-02-03
JP2016019071A JP6500796B2 (en) 2016-02-03 2016-02-03 Wafer manufacturing method

Publications (1)

Publication Number Publication Date
WO2017134925A1 true WO2017134925A1 (en) 2017-08-10

Family

ID=59500785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086455 WO2017134925A1 (en) 2016-02-03 2016-12-07 Manufacturing method of wafer and wafer

Country Status (4)

Country Link
JP (1) JP6500796B2 (en)
CN (1) CN108885981B (en)
TW (1) TW201740449A (en)
WO (1) WO2017134925A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163017A1 (en) * 2018-02-21 2019-08-29 株式会社Sumco Wafer production method
WO2020039802A1 (en) * 2018-08-23 2020-02-27 東京エレクトロン株式会社 Substrate processing system and substrate processing method
EP4029669A1 (en) * 2021-01-14 2022-07-20 SENIC Inc. Manufacturing method of silicon carbide wafer, silicon carbide wafer and system for manufacturing wafer
US11969917B2 (en) 2021-01-14 2024-04-30 Senic Inc. Manufacturing method of silicon carbide wafer, silicon carbide wafer and system for manufacturing wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088125B2 (en) * 2019-05-14 2022-06-21 信越半導体株式会社 Coating thickness measurement method and grinding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269761A (en) * 2005-03-24 2006-10-05 Disco Abrasive Syst Ltd Manufacturing method of wafer
JP2009272557A (en) * 2008-05-09 2009-11-19 Disco Abrasive Syst Ltd Method and apparatus for manufacturing wafer, and curable resin composition
WO2014129304A1 (en) * 2013-02-19 2014-08-28 株式会社Sumco Method for processing semiconductor wafer
JP2015008247A (en) * 2013-06-26 2015-01-15 株式会社Sumco Semiconductor wafer processing process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524716B2 (en) * 2010-05-28 2014-06-18 株式会社ディスコ Wafer flat processing method
JP5917850B2 (en) * 2011-08-01 2016-05-18 株式会社ディスコ Wafer processing method
JP2015230964A (en) * 2014-06-05 2015-12-21 株式会社ディスコ Wafer processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269761A (en) * 2005-03-24 2006-10-05 Disco Abrasive Syst Ltd Manufacturing method of wafer
JP2009272557A (en) * 2008-05-09 2009-11-19 Disco Abrasive Syst Ltd Method and apparatus for manufacturing wafer, and curable resin composition
WO2014129304A1 (en) * 2013-02-19 2014-08-28 株式会社Sumco Method for processing semiconductor wafer
JP2015008247A (en) * 2013-06-26 2015-01-15 株式会社Sumco Semiconductor wafer processing process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163017A1 (en) * 2018-02-21 2019-08-29 株式会社Sumco Wafer production method
CN111758152A (en) * 2018-02-21 2020-10-09 胜高股份有限公司 Method for manufacturing wafer
JPWO2019163017A1 (en) * 2018-02-21 2021-02-04 株式会社Sumco Wafer manufacturing method
CN111758152B (en) * 2018-02-21 2023-10-31 胜高股份有限公司 Method for manufacturing wafer
US11948789B2 (en) 2018-02-21 2024-04-02 Sumco Corporation Wafer production method
WO2020039802A1 (en) * 2018-08-23 2020-02-27 東京エレクトロン株式会社 Substrate processing system and substrate processing method
JPWO2020039802A1 (en) * 2018-08-23 2021-08-10 東京エレクトロン株式会社 Board processing system and board processing method
JP7080330B2 (en) 2018-08-23 2022-06-03 東京エレクトロン株式会社 Board processing system and board processing method
EP4029669A1 (en) * 2021-01-14 2022-07-20 SENIC Inc. Manufacturing method of silicon carbide wafer, silicon carbide wafer and system for manufacturing wafer
US11969917B2 (en) 2021-01-14 2024-04-30 Senic Inc. Manufacturing method of silicon carbide wafer, silicon carbide wafer and system for manufacturing wafer

Also Published As

Publication number Publication date
JP2017139323A (en) 2017-08-10
JP6500796B2 (en) 2019-04-17
CN108885981B (en) 2023-06-02
CN108885981A (en) 2018-11-23
TW201740449A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6187579B2 (en) Semiconductor wafer processing method
JP6418130B2 (en) Semiconductor wafer processing method
JP6878676B2 (en) Wafer manufacturing method
JP6111893B2 (en) Semiconductor wafer processing process
WO2017134925A1 (en) Manufacturing method of wafer and wafer
KR101645634B1 (en) Bonded wafer production method
JP2011103379A (en) Flat processing method of wafer
WO2018079105A1 (en) Wafer manufacturing method and wafer
WO2018079222A1 (en) Wafer manufacturing method and wafer
US20160288291A1 (en) Method for grinding wafers by shaping resilient chuck covering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889408

Country of ref document: EP

Kind code of ref document: A1