WO2017134741A1 - 同相分配回路及びアレーアンテナ装置 - Google Patents
同相分配回路及びアレーアンテナ装置 Download PDFInfo
- Publication number
- WO2017134741A1 WO2017134741A1 PCT/JP2016/053058 JP2016053058W WO2017134741A1 WO 2017134741 A1 WO2017134741 A1 WO 2017134741A1 JP 2016053058 W JP2016053058 W JP 2016053058W WO 2017134741 A1 WO2017134741 A1 WO 2017134741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- transmission line
- output
- terminal
- branch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/22—Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/24—Terminating devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/36—Isolators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Definitions
- the present invention relates to an in-phase distribution circuit that generates a plurality of signals having the same phase from one signal, and an array antenna device equipped with the in-phase distribution circuit.
- a common-mode distribution circuit having a tournament type circuit configuration As a common-mode distribution circuit that generates a plurality of signals having the same phase from one signal, a common-mode distribution circuit having a tournament type circuit configuration is disclosed in Patent Document 1 below.
- a plurality of Wilkinson type power dividers are formed in a planar circuit as a power divider that divides one signal into two in-phase.
- a transmission line that connects a plurality of power distributors in a tournament type is formed in a planar circuit.
- the in-phase distribution circuit can be used for an array antenna device typified by a phased array antenna.
- a phased array antenna is an antenna in which a plurality of element antennas are arranged. By changing the phase of a signal output to each element antenna, it is possible to switch the transmission direction of an electromagnetic wave that is a transmission wave.
- a transmitter is connected to each element antenna, and the transmitter is equipped with a phase shifter capable of changing the phase of a signal. Therefore, in order to control the phase of the electromagnetic waves radiated from the individual element antennas, it is necessary to input a signal to a transmitter equipped with a phase shifter.
- An in-phase distribution circuit may generate a plurality of signals having the same phase from one signal, and give the in-phase signal to each transmitter.
- Japanese Unexamined Patent Publication No. 2006-108741 (for example, FIG. 2)
- the conventional common-mode distribution circuit is configured as described above, a layout condition that a plurality of power distributors are arranged in a tournament type, and an output line for each power distributor arranged in the same stage of the tournament. It is necessary to satisfy the layout condition that the transmission lines are all equal in length. In order to satisfy the two layout conditions, the common-mode distribution circuit cannot be formed in a planar circuit unless a space that is two-dimensionally widened is secured, leading to an increase in circuit size. was there.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an in-phase distribution circuit and an array antenna device that can reduce the layout size and reduce the circuit size.
- An in-phase distribution circuit includes a signal generation circuit that distributes a generated signal, a first transmission line having one end connected to the signal generation circuit and the other end terminated, and one end connected to the signal generation circuit.
- N is a positive integer less than or equal to N
- N phase addition times for adding the phase of the signal extracted by the branch circuit
- the length and the electrical length of the second transmission line between the m-th second branch circuit and the (m + 1) -th second branch circuit counted from the other end of the second transmission line are made equal.
- the layout condition of the in-phase distribution circuit is such that the electrical length of the first transmission line between the m-th first branch circuit and the m + 1-th first branch circuit counted from one end of the first transmission line is Since the electrical length of the second transmission line is equal between the m-th second branch circuit and the (m + 1) -th second branch circuit, counting from the other end of the second transmission line, There exists an effect which can achieve size reduction.
- FIG. 1 is a configuration diagram illustrating an in-phase distribution circuit according to a first embodiment of the present invention.
- 2A is an explanatory diagram showing a layout example of a tournament-type common-mode distribution circuit
- FIG. 2B is an explanatory diagram showing a layout example of the common-mode distribution circuit according to the first embodiment.
- It is a block diagram which shows the common phase distribution circuit to which the circuit from which input impedance becomes high impedance is connected.
- 4A is an explanatory diagram showing a directional coupler 21 having four terminals
- FIG. 4B is an explanatory diagram showing a directional coupler 23 having three terminals. It is a block diagram which shows the common mode distribution circuit by Embodiment 2 of this invention.
- Embodiment 3 of this invention It is a block diagram which shows the in-phase distribution circuit by Embodiment 3 of this invention. It is a block diagram which shows the in-phase distribution circuit by Embodiment 3 of this invention. It is a block diagram which shows the common mode distribution circuit by Embodiment 4 of this invention. It is a block diagram which shows the common mode distribution circuit by Embodiment 4 of this invention. It is a block diagram which shows the in-phase distribution circuit by Embodiment 5 of this invention. It is explanatory drawing which shows the circulators 61 and 63.
- FIG. It is a block diagram which shows the common mode distribution circuit by Embodiment 6 of this invention. It is explanatory drawing which shows the example of a layout of the in-phase distribution circuit by Embodiment 6 of this invention.
- Embodiment 7 of this invention It is a block diagram which shows the common mode distribution circuit by Embodiment 8 of this invention. It is explanatory drawing which shows the example of a layout of the in-phase distribution circuit by Embodiment 8 of this invention. It is a block diagram which shows the common mode distribution circuit by Embodiment 9 of this invention.
- 18A is an explanatory diagram showing a circulator 85 having four terminals
- FIG. 18B is an explanatory diagram showing a circulator 85 composed of two circulators.
- Embodiment 10 of this invention It is a block diagram which shows the common mode distribution circuit by Embodiment 10 of this invention.
- FIG. 1 is a block diagram showing an in-phase distribution circuit according to Embodiment 1 of the present invention.
- a double line indicates a transmission line having a physical length. Further, the single line simply indicates the connection relationship between the components, and does not have a physical length. Alternatively, it is assumed that the length can be ignored in explaining the operation and effect.
- the signal generation circuit 1 includes a signal generator 2 and a power distributor 3.
- the signal generator 2 is an oscillator that generates a signal. For example, a crystal oscillator or a phase-locked oscillator (PLO) can be considered.
- the power distributor 3 has one input terminal and two output terminals.
- the power of the signal is divided into two, and 2 In-phase signals are output from the two output terminals.
- the configuration of the power distributor 3 for example, a resistance type or Wilkinson type circuit configuration is used.
- the transmission line 4 is a first transmission line having one end connected to the power distributor 3 of the signal generation circuit 1 and the other end connected to the terminator 5. 6b and 6c are inserted. A signal path from the power distributor 3 to the terminator 5 is defined as a path A.
- the transmission line 4 for example, a coaxial cable, a waveguide, or a microstrip line formed on a printed board is used.
- the transmission line between the power divider 3 and the T branch part 6a is 4a
- the transmission line between the T branch part 6a and the T branch part 6b is 4b
- the transmission line between the T branch part 6b and the T branch part 6c is 4c.
- the transmission line 4 includes transmission lines 4a, 4b, and 4c.
- the terminator 5 is composed of a resistor, for example, and terminates the other end of the transmission line 4 in order to prevent unnecessary reflection of a signal at the other end of the transmission line 4. Thereby, since the signal output from the power distributor 3 is terminated by the terminator 5, it is reflected by the other end of the transmission line 4 and does not flow backward in the direction of the power distributor 3.
- the transmission line 4a is connected to the input port IN of the T branching portion 6a, and the transmission line 4b is connected to the output port OUT of the T branching portion 6a, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 7a is connected to the line.
- the transmission line 4b is connected to the input port IN of the T branching portion 6b, and the transmission line 4c is connected to the output port OUT of the T branching portion 6b, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 7b is connected to the line.
- the transmission line 4c is connected to the input port IN of the T branching unit 6c, and the terminator 5 is connected to the output port OUT of the T branching unit 6c, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 7c is connected to the line.
- the signal input from the input port IN of the T branching unit 6c is branched, and the branched signal is output from the output port OUT and the output terminal 7c.
- the T branch portions 6a, 6b, 6c constitute a first branch circuit.
- the transmission line 8 is constituted by, for example, a coaxial cable, a waveguide, or a microstrip line formed on a printed board.
- the transmission line 8 is a second transmission line having one end connected to the power distributor 3 of the signal generation circuit 1 and the other end connected to the terminator 9. 10b and 10c are inserted.
- a signal path from the power distributor 3 to the terminator 9 is defined as a path B.
- the transmission line between the power divider 3 and the T branch part 10a is 8a
- the transmission line between the T branch part 10a and the T branch part 10b is 8b
- the transmission line between the T branch part 10b and the T branch part 10c is 8c.
- the transmission line 8 includes transmission lines 8a, 8b, and 8c.
- the terminator 9 is composed of a resistor, for example, and terminates the other end of the transmission line 8 in order to prevent unnecessary reflection of a signal at the other end of the transmission line 8. Thereby, since the signal output from the power distributor 3 is terminated by the terminator 9, it is reflected at the other end of the transmission line 8 and does not flow backward in the direction of the power distributor 3.
- the transmission line 8a is connected to the input port IN of the T branching part 10a, and the transmission line 8b is connected to the output port OUT of the T branching part 10a, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 11a is connected to the line.
- the transmission line 8b is connected to the input port IN of the T branching part 10b, and the transmission line 8c is connected to the output port OUT of the T branching part 10b, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 11b is connected to the line.
- the transmission line 8c is connected to the input port IN of the T branching unit 10c, and the terminator 9 is connected to the output port OUT of the T branching unit 10c, which branches off from the line connecting the input port IN and the output port OUT.
- An output terminal 11c is connected to the line.
- the signal input from the input port IN of the T branch unit 10c is branched, and the branched signals are output from the output port OUT and the output terminal 11c, respectively.
- the T branch portions 10a, 10b and 10c constitute a second branch circuit.
- the phase addition circuit 12a includes a mixer 13a and a filter 15a.
- the mixer 13a has an input terminal 14a-1 and an input terminal 14a-2, and a signal branched from the input terminal 14a-1 by the T branching unit 6a is input from the input terminal 14a-2 to the T branching unit 10c.
- the filter 15a passes the component of the sum of the phases of the two signals included in the mixed signal output from the mixer 13a. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15a is output from the output terminal 16a.
- the phase addition circuit 12b includes a mixer 13b and a filter 15b.
- the mixer 13b has an input terminal 14b-1 and an input terminal 14b-2, and a signal branched from the input terminal 14b-1 by the T branching unit 6b is input from the input terminal 14b-2 to the T branching unit 10b.
- the filter 15b passes the sum component of the two signals contained in the mixed signal output from the mixer 13b. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15b is output from the output terminal 16b.
- the phase addition circuit 12c includes a mixer 13c and a filter 15c.
- the mixer 13c has an input terminal 14c-1 and an input terminal 14c-2, and a signal branched from the input terminal 14c-1 by the T branching unit 6c is input from the input terminal 14c-2 to the T branching unit 10a.
- the filter 15c passes the component of the sum of the phases of the two signals included in the mixed signal output from the mixer 13c. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15c is output from the output terminal 16c.
- a circuit composed of two T branch portions 6a and 10c and a phase addition circuit 12a is referred to as a circuit element 17a
- a circuit composed of two T branch portions 6b and 10b and a phase addition circuit 12b is referred to as a circuit element 17b
- a circuit composed of the two T branch portions 6c and 10a and the phase addition circuit 12c is referred to as a circuit element 17c.
- FIG. 1 shows an example in which three circuit elements 17a, 17b, and 17c are mounted on the in-phase distribution circuit, any number of circuit elements may be installed as long as the number is two or more.
- the angular frequency of the signal output from the signal generator 2 is ⁇
- the voltage of the signal output from the signal generator 2 is represented by cos ( ⁇ t).
- the electrical length at the angular frequency ⁇ of the transmission line 4a is ⁇ 1
- the electrical length at the angular frequency ⁇ of the transmission line 4b is ⁇ 2
- the electrical length at the angular frequency ⁇ of the transmission line 4c is ⁇ 3.
- the electrical length at the angular frequency ⁇ of the transmission line 8a is ⁇ 4
- the electrical length at the angular frequency ⁇ of the transmission line 8b is ⁇ 3
- the electrical length at the angular frequency ⁇ of the transmission line 8c is ⁇ 2.
- the transmission line 8c between the first T-branch portion 10c and the second T-branch portion 10b, counted from the other end of the transmission line 8 connected to the length ⁇ 2 and the terminator 9, that is, the end point of the path B Is equal to the electrical length ⁇ 2.
- the electrical length ⁇ 3 of the transmission line 4c between the second T-branch portion 6b and the third T-branch portion 6c counted from the start point of the path A, and the second T-branch section counted from the end point of the path B is equal.
- the signal generator 2 and the power distributor 3 are directly connected without passing through the transmission path. It is assumed that the transmission time to reach the power distributor 3 can be ignored, and the signal is distributed from the power distributor 3 in the same phase. That is, the phase of the signal output from the power distributor 3 to the transmission line 4 is not shifted from the phase of the signal output from the power distributor 3 to the transmission line 8. In addition, it is assumed that a change in phase associated with transmission of signals by the power distributor 3, T branching units 6a to 6c, 10a to 10c, and filters 15a to 15c can be ignored.
- the T branching unit 6c and the terminator 5, the T branching unit 10c and the terminator 9, the mixers 13a to 13c, and the filters 15a to 15c are directly connected without passing through the transmission path.
- the input impedance of the mixers 13a to 13c is assumed to be high impedance.
- the power distributor 3 of the signal generation circuit 1 distributes the power of the signal into two, and outputs the in-phase signal to the transmission line 4 and the transmission line 8.
- the signal output from the power distributor 3 to the transmission line 4 is terminated by the terminator 5 via the T branching portions 6a to 6c.
- the signal output from the power distributor 3 to the transmission line 8 is terminated by the terminator 9 via the T branching portions 10a to 10c.
- the T branch portions 6a to 6c inserted in the transmission line 4 are provided with branch lines on the line connecting the input port IN and the output port OUT. A part of the signal is output to the output terminals 7a to 7c. Further, the T branch portions 10a to 10c inserted in the transmission line 8 are provided with branch lines on the line connecting the input port IN and the output port OUT when a signal is input from the input port IN. Part of the signal is output to the output terminals 11a to 11c.
- the input terminals 14a-1 to 14c-1 are connected to the output terminals 7a to 7c, and the input terminals 14a-2 to 14c-2 are connected to the output terminals 11c to 11a. ing.
- the input impedance of the mixers 13a to 13c is high impedance, a voltage appears at the output terminals 7a to 7c and 11c to 11a, but the input terminals 14a-1 to 14c-1 and 14a-2 of the mixers 13a to 13c. No current flows toward ⁇ 14c-2.
- the signal output from the output terminal 7a of the T branch unit 6a is input to the input terminal 14a-1 of the mixer 13a, and the signal output from the output terminal 11c of the T branch unit 10c is input to the input terminal 14a-2 of the mixer 13a. Then, the mixer 13a mixes the two input signals and outputs the mixed signal to the filter 15a.
- the signal output from the output terminal 7b of the T branch unit 6b is input to the input terminal 14b-1 of the mixer 13b, and the signal output from the output terminal 11b of the T branch unit 10b is input to the input terminal 14b-2 of the mixer 13b. Then, the mixer 13b mixes the two input signals and outputs the mixed signal to the filter 15b.
- the signal output from the output terminal 7c of the T branch unit 6c is input to the input terminal 14c-1 of the mixer 13c, and the signal output from the output terminal 11a of the T branch unit 10a is input to the input terminal 14c-2 of the mixer 13c. Then, the mixer 13c mixes the two input signals and outputs the mixed signal to the filter 15c.
- the mixed signals output from the mixers 13a to 13c include a component of the sum of the phases of the two signals, a component of the phase difference of the two signals, and a higher-order mixed wave component.
- the filter 15a When the filter 15a receives the mixed signal from the mixer 13a, the filter 15a blocks the passage of the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, and is included in the mixed signal. Only the component of the sum of the phases of the two signals is passed. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15a is output from the output terminal 16a.
- the filter 15b receives the mixed signal from the mixer 13b
- the filter 15b blocks the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, and is included in the mixed signal. Only the component of the sum of the phases of the two signals is passed.
- the component of the sum of the phases of the two signals that have passed through the filter 15b is output from the output terminal 16b.
- the filter 15c receives the mixed signal from the mixer 13c, the filter 15c blocks the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, and is included in the mixed signal. Only the component of the sum of the phases of the two signals is passed. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15c is output from the output terminal 16c.
- the in-phase distribution circuit shows an example in which three circuit elements 17a, 17b, and 17c are mounted.
- the number of mounted circuit elements is two, Even when the number of mounting is four or more, the same applies.
- N is an integer of 2 or more
- m is N ⁇ 1 or less counted from the start point of the path A among the N T branching units 6.
- the T branch unit 6 corresponds to the T branch units 6a to 6c in FIG. 1
- the T branch unit 10 corresponds to the T branch units 10a to 10c in FIG.
- the output terminal 16 corresponds to the output terminals 16a to 16c in FIG.
- the layout condition of the in-phase distribution circuit is that between the m-th T-branch unit 6 and the m + 1-th T-branch unit 6 among the N T-branch units 6 counted from the start point of the path A And the electrical length of the transmission line 8 between the m-th T-branch 10 and the (m + 1) -th T-branch 10 counted from the end point of the path B among the N T-branches 10.
- the only requirement is that the length is equal. Therefore, unlike the tournament-type in-phase distribution circuit, it is not necessary to connect a plurality of power distributors to the tournament type by transmission lines, and transmission lines 4 of equal electrical length are connected between the N circuit elements 17. Just connect with 8.
- the common-mode distribution circuit can be formed in a smaller space than the tournament-type common-mode distribution circuit, and the circuit size can be reduced.
- the circuit size can be particularly reduced.
- FIG. 2 is an explanatory diagram showing a layout example of the in-phase distribution circuit.
- FIG. 2A shows a layout example of a tournament-type common-mode distribution circuit
- FIG. 2B shows a layout example of the common-mode distribution circuit according to the first embodiment.
- FIG. 2 shows an example of an in-phase distribution circuit that generates eight signals having the same phase from one signal.
- transmitters connected to a plurality of element antennas are arranged at unequal intervals
- output terminals 16 that output eight signals having the same phase are arranged in a straight line. However, they are lined up at unequal intervals.
- 2A and 2B the same constituent elements or corresponding constituent elements are denoted by the same reference numerals.
- the circuit configuration is a tournament type in-phase distribution circuit, as shown in FIG. 2A
- eight power distributors are connected to the tournament type by transmission lines 4 and 8.
- the transmission lines 4 and 8 are composed of coaxial cables or waveguides, it is difficult to bend them deeply, so it is necessary to secure a space that is two-dimensionally widened.
- FIG. 2A it is necessary to secure a space that is greatly expanded vertically and horizontally.
- the layout condition of the common-mode distribution circuit is relaxed compared to the case where the circuit configuration is a tournament type, and therefore, as shown in FIG.
- the elements 17 can also be arranged linearly. Therefore, it is not necessary to secure a large two-dimensional space.
- the layout condition of the in-phase distribution circuit is the same as the mth T-branch unit 6 and m + 1 among the N T-branch units 6 counted from the starting point of the path A.
- the transmission line 4b and the transmission line 8c have the same electrical length at the angular frequency ⁇ , and the transmission line 4c and the transmission line 8b have the same electrical length at the angular frequency ⁇ .
- the physical length of 4b and the transmission line 8c, and the physical length of the transmission line 4c and the transmission line 8b may be equal or different. For example, if the dielectric constants of two transmission lines are equal, the electrical lengths at the angular frequency ⁇ of the two transmission lines are equal and the physical lengths are equal. On the other hand, when the dielectric constants of the two transmission lines are different, if the electrical lengths at the angular frequency ⁇ of the two transmission lines are equal, the physical lengths are different.
- the input impedance of the mixers 13a to 13c is high impedance.
- the T branching unit 6a Impedance mismatch occurs at ⁇ 6c and 10a ⁇ 10c. That is, a phenomenon occurs in which a part of the signal is reflected by the T branch portions 6a to 6c and 10a to 10c, and the signal flows in the reverse direction along the route A or the route B.
- the signal flowing in the forward direction on the route A or the route B and the signal flowing in the reverse direction on the route A or the route B are overlapped.
- FIG. 3 is a configuration diagram showing an in-phase distribution circuit to which a circuit whose input impedance is high impedance is connected. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
- an amplifier is provided between the output terminals 7a to 7c of the T branching portions 6a to 6c and the input terminals 14a-1 to 14c-1 of the mixers 13a to 13c.
- 18a-1 to 18c-1, and amplifiers 18c-2 to 18c-2 are connected between the output terminals 11a to 11c of the T-branches 10a to 10c and the input terminals 14c-2 to 14a-2 of the mixers 13c to 13a.
- 18a-2 is connected.
- the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 for example, voltage followers using operational amplifiers can be used.
- the voltage follower is used as a buffer whose input impedance is high impedance and whose voltage amplification factor is 1.
- the voltage amplification factor does not necessarily have to be 1, and another circuit having a voltage amplification factor larger than 1 or a voltage amplification factor smaller than 1 may be used.
- the amplifiers 18a-1 to 18c-1 are connected between the output terminals 7a to 7c of the T-branches 6a to 6c and the input terminals 14a-1 to 14c-1 of the mixers 13a to 13c, and By connecting amplifiers 18c-2 to 18a-2 between the output terminals 11a to 11c of the T branching portions 10a to 10c and the input terminals 14c-2 to 14a-2 of the mixers 13c to 13a, the mixers 13a to Even when the input impedance of 13c is not high impedance, impedance mismatching can be prevented by the T branch sections 6a to 6c and 10a to 10c.
- the output terminals 7a to 7c and 11a to 11c of the T branch sections 6a to 6c and 10a to 10c and the input terminals of the amplifiers 18a-1 to 18c-1 and 18a-2 to 18c-2 are connected via a transmission line. It is desirable to connect directly without connecting.
- the in-phase signal is output from the two output terminals of the power distributor 3, but the phases of the signals output from the two output terminals may be different. From the above equation (2), even if the electrical length ⁇ 1 at the angular frequency ⁇ of the transmission line 4a and the electrical length ⁇ 4 at the angular frequency ⁇ of the transmission line 8a are different, the signals output from the output terminals 16a to 16c Since it is clear that the phases are in phase, it is obvious that the phases of the signals output from the two output terminals of the power distributor 3 may be different. As the power distributor 3 in which the phases of the signals output from the two output terminals are different, for example, a 90 degree hybrid, a 180 degree hybrid, or the like can be considered.
- the T branch portions 6a, 6b and 6c are used as the first branch circuit, and the T branch portions 10a to 10c are used as the second T branch circuit.
- the T branch portions 6a to 6c are used.
- a directional coupler may be used.
- FIG. 4 is an explanatory view showing a directional coupler used in place of the T branching portions 6a to 6c and 10a to 10c.
- 4A shows a directional coupler 21 having four terminals
- FIG. 4B shows a directional coupler 23 having three terminals.
- the directional coupler 21 having four terminals When the directional coupler 21 having four terminals is used, a part of the signal input from the terminal 22a is output from the terminal 22b, the remaining signal is output from the terminal 22c, and is not output from the terminal 22d. To do. Further, it is assumed that a part of the signal input from the terminal 22c is output from the terminal 22d and the remaining signals are output from the terminal 22a and not output from the terminal 22b.
- the directional coupler 23 having three terminals is obtained by removing the terminal 22d from the directional coupler 21 having four terminals.
- the output terminals 7a to 7c and 11a to 11c of the T branch portions 6a to 6c and 10a to 10c are made to correspond to the terminal 22b of the directional coupler 21 or the directional coupler 23, and the terminal 22a is connected to the transmission line on the input side.
- the terminal 22c By connecting and connecting the terminal 22c to the transmission line on the output side, the same operation as that of the T branching portions 6a to 6c and 10a to 10c can be realized.
- the signal generator 2 generates a signal.
- This signal generator 2 may change the frequency of the signal generated with the passage of time. Even if the frequency of the signal generated from the signal generator 2 changes with time, the phases of the signals appearing at the output terminals 16a to 16c are all in phase at each time.
- Embodiment 2 FIG.
- an amplifier is provided between the output terminals 7a to 7c of the T branching portions 6a to 6c and the input terminals 14a-1 to 14c-1 of the mixers 13a to 13c.
- 18a-1 to 18c-1, and amplifiers 18c-2 to 18c-2 are connected between the output terminals 11a to 11c of the T-branches 10a to 10c and the input terminals 14c-2 to 14a-2 of the mixers 13c to 13a.
- 18a-2 is connected.
- the amplifiers 18a-1 to 18c-1 and 18a-2 to 18c-2 are directly connected to the input terminals 14a-1 to 14c-1 of the mixers 13a to 13c without passing through the transmission line.
- 14a-2 to 14c-2 the amplifiers 18a-1 to 18c-1 and 18a-2 to 18c-2 are connected to the mixers 13a to 13c via transmission lines. It may be connected to the terminals 14a-1 to 14c-1 and 14a-2 to 14c-2.
- the transmission line 31a-1 has one end connected to the amplifier 18a-1 and the other end connected to the input terminal 14a-1 of the mixer 13a.
- the transmission line 31a-2 has one end connected to the amplifier 18a-2 and the other end connected to the input terminal 14a-2 of the mixer 13a.
- the transmission line 31b-1 has one end connected to the amplifier 18b-1 and the other end connected to the input terminal 14b-1 of the mixer 13b.
- the transmission line 31b-2 has one end connected to the amplifier 18b-2 and the other end connected to the input terminal 14b-2 of the mixer 13b.
- the transmission line 31c-1 has one end connected to the amplifier 18c-1 and the other end connected to the input terminal 14c-1 of the mixer 13c.
- the transmission line 31c-2 has one end connected to the amplifier 18c-2 and the other end connected to the input terminal 14c-2 of the mixer 13c.
- the transmission line 32a has one end connected to the mixer 13a and the other end connected to the filter 15a.
- the transmission line 32b has one end connected to the mixer 13b and the other end connected to the filter 15b.
- the transmission line 32c has one end connected to the mixer 13c and the other end connected to the filter 15c.
- the power distributor 3 of the signal generation circuit 1 distributes the power of the signal into two and transmits the in-phase signal to the transmission line 4 as in the first embodiment. Output to line 8.
- the signal output from the power distributor 3 to the transmission line 4 is terminated by the terminator 5 via the T branching portions 6a to 6c.
- the signal output from the power distributor 3 to the transmission line 8 is terminated by the terminator 9 via the T branching portions 10a to 10c.
- the T branch portions 6a to 6c inserted in the transmission line 4 are provided with branch lines on the line connecting the input port IN and the output port OUT. A part of the signal is output to the output terminals 7a to 7c. Further, the T branch portions 10a to 10c inserted in the transmission line 8 are provided with branch lines on the line connecting the input port IN and the output port OUT when a signal is input from the input port IN. Part of the signal is output to the output terminals 11a to 11c.
- the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 amplify the voltages of the signals appearing at the output terminals 7a to 7c and 11a to 11c of the T branch portions 6a to 6c and 10a to 10c, respectively.
- the amplified signals are output to the transmission lines 31a-1 to 31c-1, 31a-2 to 31c-2.
- the mixer 13a receives a signal that has passed through the transmission line 31a-1 from the input terminal 14a-1 and receives a signal that has passed through the transmission line 31a-2 from the input terminal 14a-2. And a mixed signal is output to the transmission line 32a.
- the mixer 13b receives a signal that has passed through the transmission line 31b-1 from the input terminal 14b-1, and receives a signal that has passed through the transmission line 31b-2 from the input terminal 14b-2. And a mixed signal is output to the transmission line 32b.
- the mixer 13c receives a signal that has passed through the transmission line 31c-1 from the input terminal 14c-1 and receives a signal that has passed through the transmission line 31c-2 from the input terminal 14c-2. And a mixed signal is output to the transmission line 32c.
- the filter 15a When the filter 15a receives the mixed signal from the mixer 13a via the transmission line 32a, the filter 15a blocks the component of the phase difference between the two signals included in the mixed signal and the passage of the higher-order mixed wave component. Only the component of the sum of the phases of the two signals contained in the mixed signal is passed. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15a is output from the output terminal 16a.
- the filter 15b receives the mixed signal from the mixer 13b via the transmission line 32b
- the filter 15b blocks the component of the phase difference between the two signals included in the mixed signal and the passage of the higher-order mixed wave component. Only the component of the sum of the phases of the two signals contained in the mixed signal is passed.
- the filter 15c receives the mixed signal from the mixer 13c via the transmission line 32c, the filter 15c blocks the passage of the component of the phase difference between the two signals included in the mixed signal and the higher-order mixed wave component. Only the component of the sum of the phases of the two signals contained in the mixed signal is passed. As a result, the component of the sum of the phases of the two signals that have passed through the filter 15c is output from the output terminal 16c.
- the transmission lines 31a- It is possible to output in-phase signals from the output terminals 16a to 16c of the circuit elements 17a to 17c only by setting the electrical lengths of 1 to 31c-1 and 31a-2 to 31c-2 as shown in the equation (3). it can.
- Embodiment 3 In the first embodiment, the common-mode distribution circuit in which the frequency of the signal appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c is twice the frequency of the signal generated from the signal generator 2 is shown. In the third embodiment, an in-phase distribution circuit in which the frequency of the signal appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c is equal to the frequency of the signal generated from the signal generator 2 will be described.
- the signal generation circuit 1 includes a signal generator 2 and a two-frequency divider 41.
- the frequency divider 41 halves the frequency of the signal generated by the signal generator 2 and distributes it to the two, outputs one of the distributed signals to the non-inverting output terminal 42, and distributes the other Is output to the inverting output terminal 43.
- the phase of the signal output from the non-inverting output terminal 42 of the two-frequency divider 41 is different from the phase of the signal output from the inverting output terminal 43 by 180 degrees.
- FIG. 6 shows an example in which the non-inverting output terminal 42 of the frequency divider 41 is connected to the transmission line 4a and the inverting output terminal 43 of the frequency divider 41 is connected to the transmission line 8a.
- the non-inverting output terminal 42 of the 2 frequency divider 41 may be connected to the transmission line 8a
- the inverting output terminal 43 of the 2 frequency divider 41 may be connected to the transmission line 4a.
- the frequency divider 41 of the signal generation circuit 1 divides the frequency of the signal by half and distributes it to two, and outputs one of the divided signals as a non-inverted output.
- the other signal distributed to the terminal 42 is output to the inverted output terminal 43.
- the electrical length of the transmission line 4a at the angular frequency 0.5 ⁇ is ⁇ 1
- the electrical length of the transmission line 4b at the angular frequency 0.5 ⁇ is ⁇ 2
- the electrical length of the transmission line 4c at the angular frequency 0.5 ⁇ is It is assumed that ⁇ 3.
- the electrical length of the transmission line 8a at an angular frequency of 0.5 ⁇ is ⁇ 4
- the electrical length of the transmission line 8b at an angular frequency of 0.5 ⁇ is ⁇ 3
- the electrical length of the transmission line 8c at an angular frequency of 0.5 ⁇ is ⁇ 2.
- the signal output from the two-frequency divider 41 to the transmission line 4 is terminated by the terminator 5 through the T branching portions 6a to 6c.
- the signal output from the frequency divider 41 to the transmission line 8 is terminated by the terminator 9 through the T branching portions 10a to 10c.
- the T branch portions 6a to 6c inserted in the transmission line 4 are provided with branch lines on the line connecting the input port IN and the output port OUT. A part of the signal is output to the output terminals 7a to 7c. Further, the T branch portions 10a to 10c inserted in the transmission line 8 are provided with branch lines on the line connecting the input port IN and the output port OUT when a signal is input from the input port IN. Part of the signal is output to the output terminals 11a to 11c.
- the input terminals 14a-1 to 14c-1 are connected to the output terminals 7a to 7c, and the input terminals 14a-2 to 14c-2 are connected to the output terminals 11c to 11a. ing.
- the input impedance of the mixers 13a to 13c is high impedance, a voltage appears at the output terminals 7a to 7c and 11c to 11a, but the input terminals 14a-1 to 14c-1 and 14a-2 of the mixers 13a to 13c. No current flows toward ⁇ 14c-2.
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- the phase of the signal appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c is expressed by the following equation (7).
- Output terminal 16c: (0.5 ⁇ t + ⁇ 1 + ⁇ 2 + ⁇ 3) + (0.5 ⁇ t + ⁇ 4 + ⁇ ) ⁇ t + ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4 + ⁇ (7)
- the phases of the signals appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c are all in phase.
- in-phase signals can be output from the output terminals 16a to 16c of the circuit elements 17a to 17c, as in the first embodiment.
- signals having the same frequency as that of the signal generated from the signal generator 2 can be output from the output terminals 16a to 16c of the circuit elements 17a to 17c. That is, the angular frequency ⁇ of the signal generated from the signal generator 2 and the angular frequency ⁇ of the signal output from the output terminals 16a to 16c of the circuit elements 17a to 17c can be matched.
- the frequency divider 41 is used instead of the power divider 3, the non-inverting output terminal 42 of the frequency divider 41 is connected to the transmission line 4a, and the inverting output terminal 43 is connected to the transmission line.
- the one connected to 8a is shown, as shown in FIG. 7, the non-inverting output terminal 42 or the inverting output terminal 43 of the two-frequency divider 41 is connected to the power divider 3, and the power divider 3 is 2
- the signal output from the frequency divider 41 may be distributed to the transmission lines 4a and 8a.
- N is an integer or rational number
- the angular frequency of the signal output from the output terminals 16a to 16c of the circuit elements 17a to 17c is 2 ⁇ ⁇ / N, which is different from the angular frequency ⁇ of the signal generated from the signal generator 2.
- the N frequency divider may be a fixed frequency divider or a variable frequency divider.
- a direct digital synthesizer may be used instead of the divide-by-two 41.
- the direct digital synthesizer is referred to as a DDS (Direct Digital Synthesizer).
- the DDS has a control signal input terminal, a clock signal input terminal, and an output terminal.
- the control signal input from the control signal input terminal changes the frequency of the clock signal input from the clock signal input terminal. Since the clock signal after the frequency change can be output from the output terminal, it is possible to have a function equivalent to that of the variable frequency divider.
- a variable frequency divider or DDS connected instead of the frequency divider 41 may change the frequency of the signal output from its output terminal in terms of time. Even when the frequency is changed with time, the phases of the signals appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c can be all in phase at each time as in the first embodiment.
- the signal generation circuit 1 includes the signal generator 2 and the two-frequency divider 41 .
- the signal generator 2 and the two-frequency divider are described.
- the second embodiment may be modified by applying the signal generation circuit 1 including 41 to the second embodiment.
- Embodiment 4 FIG.
- the amplifiers 18a-1 to 18c-1 are connected between the output terminals 7a to 7c of the T branching portions 6a to 6c and the input terminals 14a-1 to 14c-1 of the mixers 13a to 13c.
- the amplifiers 18a-2 to 18c-2 are connected between the output terminals 11c to 11a of the T branch sections 10c to 10a and the input terminals 14a-2 to 14c-2 of the mixers 13a to 13c.
- An attenuator may be connected between the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 and the input terminals 14a-1 to 14c-1, 14a-2 to 14c-2 of the mixers 13a to 13c.
- the attenuator 51a-1 is connected between the amplifier 18a-1 and the input terminal 14a-1 of the mixer 13a, attenuates the amplitude of the signal output from the amplifier 18a-1, and mixes the signal after amplitude attenuation. 13a is applied to the input terminal 14a-1.
- the attenuator 51a-2 is connected between the amplifier 18a-2 and the input terminal 14a-2 of the mixer 13a.
- the attenuator 51a-2 attenuates the amplitude of the signal output from the amplifier 18a-2, and the signal after the amplitude attenuation is mixed. 13a is applied to the input terminal 14a-2.
- the attenuator 51b-1 is connected between the amplifier 18b-1 and the input terminal 14b-1 of the mixer 13b.
- the attenuator 51b-1 attenuates the amplitude of the signal output from the amplifier 18b-1, and the signal after the amplitude attenuation is mixed. 13b to the input terminal 14b-1.
- the attenuator 51b-2 is connected between the amplifier 18b-2 and the input terminal 14b-2 of the mixer 13b, attenuates the amplitude of the signal output from the amplifier 18b-2, and mixes the signal after amplitude attenuation. 13b to the input terminal 14b-2.
- the attenuator 51c-1 is connected between the amplifier 18c-1 and the input terminal 14c-1 of the mixer 13c.
- the attenuator 51c-1 attenuates the amplitude of the signal output from the amplifier 18c-1, and the signal after the amplitude attenuation is mixed. 13c to the input terminal 14c-1.
- the attenuator 51c-2 is connected between the amplifier 18c-2 and the input terminal 14c-2 of the mixer 13c.
- the attenuator 51c-2 attenuates the amplitude of the signal output from the amplifier 18c-2, and the signal after the amplitude attenuation is mixed. 13c to the input terminal 14c-2.
- the operation will be described. For example, when the amplitudes of two signals distributed by the power distributor 3 are not equal, or there is a loss in the transmission lines 4a to 4c and 8a to 8c, the length of the transmission lines 4a to 4c and 8a to 8c is increased. Accordingly, when the amplitudes of the two signals distributed by the power distributor 3 are attenuated, the combinations of the amplitudes of the two signals respectively input to the mixers 13a to 13c are different. When the combinations of the amplitudes of the two signals input to the mixers 13a to 13c are different, the operating points of the nonlinear elements constituting the mixers 13a to 13c are different, and the phases of the two signals respectively input to the mixers 13a to 13c are different. Even if the sum is the same among the mixers 13a to 13c, the phases of the signals output from the mixers 13a to 13c may be different.
- the amplitude of the signal input to the input terminal 14a-1 of the mixer 13a is A and the amplitude of the signal input to the input terminal 14a-2 is B
- the input terminals 14b-1 the input terminals 14b-1
- the amplitude of the signal input to 14c-1 is A
- the amplitude of the signal input to the input terminals 14b-2 and 14c-2 is B.
- the operating points of the non-linear elements constituting the mixers 13a to 13c are the same, so that the signals output from the mixers 13a to 13c can be in phase.
- Attenuators 51a-1 to 51c-1, 51a-2 to 51c-2 that attenuate the amplitudes of the signals output from the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2.
- the gains of the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 are appropriately given, attenuators 51a-1 to 51c-1, 51a-2 are provided.
- the combination of the amplitudes of the two signals respectively input to the mixers 13a to 13c can be made the same.
- Attenuators 51a-1 to 51c-1, 51a-2 to 51c-2 that attenuate the amplitudes of the signals output from the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2.
- amplifiers 52a, 52b and 52c are inserted on the transmission lines 4a, 4b and 4c, and amplifiers 53a and 53b are provided on the transmission lines 8a, 8b and 8c.
- 53c are inserted so that the gains of the amplifiers 52a to 52c and 53a to 53c are appropriately given, without providing the attenuators 51a-1 to 51c-1, 51a-2 to 51c-2.
- the combination of the amplitudes of the two signals input to 13c can be made the same.
- the attenuators 51a-1 to 51c-1 and 51a-2 to 51c-2 are connected to the two input terminals of the mixers 13a to 13c, respectively.
- an attenuator may be connected to one of the two input terminals.
- any one of the amplifiers 52a to 52c or the amplifiers 53a to 53c may be connected.
- the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 are connected to the input terminals 14a-1 to 14c-1, 14a-2 to 14c-2 of the mixers 13a to 13c.
- FIG. 5 shows the connection of attenuators 51a-1 to 51c-1, 51a-2 to 51c-2, but the amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2 are mounted.
- the attenuators 51a-1 to 51c-1 and 51a-2 to 51c-2 are applied to any of the in-phase distribution circuits shown in the first to third embodiments. be able to.
- Embodiment 5 FIG.
- the T-branches 6a to 6c and 10a to 10c are inserted in the transmission lines 4 and 8.
- circulators are used instead of the T-branches 6a to 6c and 10a to 10c. May be inserted in the transmission lines 4 and 8.
- FIG. 10 is a block diagram showing an in-phase distribution circuit according to Embodiment 5 of the present invention.
- the circulators 61 and 63 are a kind of non-reciprocal circuit having a characteristic of transmitting a signal only in a predetermined direction and not transmitting in a reverse direction.
- the circulators 61 and 63 have three terminals 65a, 65b and 65c. A signal inputted from the terminal 65a is outputted from the terminal 65b, and a signal inputted from the terminal 65b is outputted from the terminal 65c and from the terminal 65c. The input signal is output from the terminal 65a, but the signal is not transmitted in the opposite direction.
- the circulator 61a has a terminal 65a connected to the transmission line 4a, a terminal 65b connected to the output terminal 62a, and a terminal 65c connected to the transmission line 4b.
- the circulator 61b has a terminal 65a connected to the transmission line 4b, a terminal 65b connected to the output terminal 62b, and a terminal 65c connected to the transmission line 4c.
- the circulator 61c has a terminal 65a connected to the transmission line 4c, a terminal 65b connected to the output terminal 62c, and a terminal 65c connected to the terminator 5.
- the output terminal 62a is connected to the terminal 65b of the circulator 61a and the transmission line 31a-1.
- the output terminal 62b is connected to the terminal 65b of the circulator 61b and the transmission line 31b-1.
- the output terminal 62c is connected to the terminal 65b of the circulator 61c and the transmission line 31c-1.
- the circulators 61a, 61b and 61c constitute a first branch circuit.
- the circulator 63a has a terminal 65a connected to the transmission line 8a, a terminal 65b connected to the output terminal 64a, and a terminal 65c connected to the transmission line 8b.
- the circulator 63b has a terminal 65a connected to the transmission line 8b, a terminal 65b connected to the output terminal 64b, and a terminal 65c connected to the transmission line 8c.
- the circulator 63c has a terminal 65a connected to the transmission line 8c, a terminal 65b connected to the output terminal 64c, and a terminal 65c connected to the terminator 9.
- the output terminal 64a is connected to the terminal 65b of the circulator 63a and the transmission line 31c-2.
- the output terminal 64b is connected to the terminal 65b of the circulator 63b and the transmission line 31b-2.
- the output terminal 64c is connected to the terminal 65b of the circulator 63c and the transmission line 31a-2.
- the circulators 63a, 63b and 63c constitute a second branch circuit.
- the power distributor 3 of the signal generation circuit 1 distributes the power of the signal into two and transmits the in-phase signal to the transmission line 4 as in the first embodiment. Output to line 8.
- the circulator 61a outputs the signal from the terminal 65b.
- the signal output from the terminal 65b of the circulator 61a is transmitted to the input terminal 14a-1 of the mixer 13a via the output terminal 62a and the transmission line 31a-1.
- the input impedance of the mixer 13a is high impedance, the signal reaching the input terminal 14a-1 of the mixer 13a is reflected and transmitted to the terminal 65b of the circulator 61a via the transmission line 31a-1 and the output terminal 62a. Is done.
- the circulator 61a outputs the signal from the terminal 65c.
- the signal output from the terminal 65c of the circulator 61a is transmitted to the terminal 65a of the circulator 61b via the transmission line 4b.
- the circulator 61b operates in the same manner as the circulator 61a. After the signal output from the circulator 61a is output to the mixer 13b via the output terminal 62b and the transmission line 31b-1, the circulator 61b is reflected by the mixer 13b and returned. The signal is output to the circulator 61c via the transmission line 4c.
- the circulator 61c operates in the same manner as the circulator 61a, and outputs the signal output from the circulator 61b to the mixer 13c via the output terminal 62c and the transmission line 31c-1, and then returns to the mixer 13c. The signal is output to the terminator 5.
- the circulator 63a operates in the same manner as the circulator 61a.
- the circulator 63a outputs the signal output from the power distributor 3 to the mixer 13c via the output terminal 64a and the transmission line 31c-2, and then returns to the mixer 13c.
- the received signal is output to the circulator 63b through the transmission line 8b.
- the circulator 63b operates in the same manner as the circulator 61a.
- the circulator 63b outputs the signal output from the circulator 63a to the mixer 13b via the output terminal 64b and the transmission line 31b-2, and then returns to the mixer 13b.
- the signal is output to the circulator 63c via the transmission line 8c.
- the circulator 63c operates in the same manner as the circulator 61a.
- the circulator 63c outputs the signal output from the circulator 63b to the mixer 13a via the output terminal 64c and the transmission line 31a-2, and then returns to the mixer 13a.
- the signal is output to the terminator
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- Output terminal 16c ( ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + ⁇ 3 + ⁇ 7) + ( ⁇ t + ⁇ 4 + ⁇
- the transmission line 31a-1 and the transmission line 31a-2 are added in addition to the equal electrical length between the circuit elements 17.
- the transmission lines 31b-1 and 31b-2 and the transmission lines 31c-1 and 31c-2 have the same electrical length, but the transmission lines 31a-1 to 31c-1 and 31a-2 to 31c If -2 is not present, it is sufficient that the electrical lengths between the circuit elements 17 are equal as in the first embodiment.
- the in-phase distribution circuit includes the transmission line 4 and the transmission line 8, and the power distributor 3 distributes the signal generated by the signal generator 2 to the transmission line 4 and the transmission line 8.
- the in-phase distribution circuit may include a transmission line composed of an outward path and a return path, so that the power distributor 3 is not required and the circuit size may be further reduced.
- the transmission line 70 is a line that propagates signals in both directions, and is composed of, for example, a coaxial cable, a waveguide, or a microstrip line formed on a printed circuit board, and the transmission lines 70a, 70b, 70c, and 70d. , 70e, 70f.
- the path consisting of the first half part from the middle point between the transmission lines 70a, 70b, 70c and the transmission line 70d is the forward path A
- the path consisting the second half part from the middle point of the transmission line 70d and the transmission lines 70e, 70f is the return path B.
- T branch portions 6 a, 6 b, 6 c are inserted in the forward path A of the transmission line 70
- T branch portions 10 a, 10 b, 10 c are inserted in the return path B of the transmission line 70.
- the angular frequency of the signal output from the signal generator 2 is ⁇
- the voltage of the signal output from the signal generator 2 is represented by cos ( ⁇ t).
- the electrical length at the angular frequency ⁇ of the transmission line 70a is ⁇ 1
- the electrical length at the angular frequency ⁇ of the transmission line 70b is ⁇ 2
- the electrical length at the angular frequency ⁇ of the transmission line 70c is ⁇ 3.
- the electrical length at the angular frequency ⁇ of the transmission line 70d is ⁇ 4
- the electrical length at the angular frequency ⁇ of the transmission line 70e is ⁇ 3
- the electrical length at the angular frequency ⁇ of the transmission line 70f is ⁇ 2.
- the transmission line 70f between the first T-branch portion 10c and the second T-branch portion 10b, counted from the other end of the transmission line 70 connected to the length ⁇ 2 and the terminator 5, that is, the end point of the return path B Is equal to the electrical length ⁇ 2.
- the electrical length ⁇ 3 of the transmission line 70c between the second T-branch portion 6b and the third T-branch portion 6c counted from the start point of the forward path A, and the second T-branch portion counted from the end point of the return path B is equal.
- the signal generator 2 generates a signal and outputs the signal to the transmission line 70a.
- the signal output from the signal generator 2 to the transmission line 70a is terminated by the terminator 5 through the T branching portions 6a to 6c and 10a to 10c.
- the T branch portions 6a to 6c inserted in the forward path A of the transmission line 70 are provided with branch lines on the line connecting the input port IN and the output port OUT. Therefore, a part of the signal is output to the output terminals 7a to 7c.
- T branch portions 10a to 10c inserted in the return path B of the transmission line 70 are provided with branch lines on the line connecting the input port IN and the output port OUT when a signal is input from the input port IN. Therefore, a part of the signal is output to the output terminals 11a to 11c.
- the input terminals 14a-1 to 14c-1 are connected to the output terminals 7a to 7c, and the input terminals 14a-2 to 14c-2 are connected to the output terminals 11c to 11a. ing.
- the input impedance of the mixers 13a to 13c is high impedance, a voltage appears at the output terminals 7a to 7c and 11c to 11a, but the input terminals 14a-1 to 14c-1 and 14a-2 of the mixers 13a to 13c. No current flows toward ⁇ 14c-2.
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- the layout condition of the in-phase distribution circuit is only the condition that the electrical length between the circuit elements 17 is the same as in the first embodiment. Therefore, unlike a tournament-type common-mode distribution circuit, it is not necessary to connect multiple power distributors to the tournament-type via a transmission line. A distribution circuit can be formed, and the circuit size can be reduced.
- FIG. 13 is an explanatory diagram showing a layout example of the in-phase distribution circuit according to the sixth embodiment of the present invention.
- the in-phase distribution circuit includes the transmission line 4 and the transmission line 8, and the power distributor 3 distributes the signal generated by the signal generator 2 to the transmission line 4 and the transmission line 8. Therefore, as shown in FIG. 2, it is necessary to route the transmission line 4 and the transmission line 8 to the two circuit elements 17 arranged at both ends of the eight circuit elements 17 arranged in a straight line.
- the signal generator 2 may be connected to one end of one transmission line 70, the routing of the transmission line 70 can be shortened. Further, the power distributor 3 is not necessary. Therefore, the circuit size of the in-phase distribution circuit can be further reduced as compared with the first embodiment.
- the transmission line 70a connects the signal generator 2 and the T branch unit 6a. However, the signal generator 2 and the T branch unit 6a are directly connected without using the transmission line 70a. May be. Further, although the transmission line 70d connects the T branching portion 6c and the T branching portion 10a, the T branching portion 6c and the T branching portion 10a may be directly connected without using the transmission line 70d.
- the T branch portions 6a, 6b and 6c are used as the first branch circuit, and the T branch portions 10a to 10c are used as the second T branch circuit.
- the T branch portions 6a to 6c are used.
- a directional coupler may be used. For example, when the directional coupler 21 or the directional coupler 23 as shown in FIG.
- the output terminals 7a to 7c and 11a to 11c of the T branch portions 6a to 6c and 10a to 10c are connected to the directional coupler 21 or Corresponding to the terminal 22b of the directional coupler 23, the terminal 22a is connected to the transmission line on the input side, and the terminal 22c is connected to the transmission line on the output side, the same as the T branch parts 6a to 6c and 10a to 10c.
- Amplifiers 18a-1 to 18c-1, 18a-2 to 18c-2, attenuators 51a-1 to 51c-1, 51a-2 to 51c-2, amplifiers 52a-1 to 52c-1, 53a- A transmission line 70 that propagates signals in both directions may be applied to an in-phase distribution circuit in which 2 to 53c-2 and the like are mounted.
- Embodiment 7 FIG.
- the T branch portions 6a to 6c and 10a to 10c are inserted into the transmission line 70.
- a circulator is used as the transmission line 70. It may be inserted in. 14 is a block diagram showing an in-phase distribution circuit according to Embodiment 7 of the present invention.
- FIG. 14 the same reference numerals as those in FIGS.
- the electrical length at the angular frequency ⁇ of the transmission line 70a is ⁇ 1
- the electrical length at the angular frequency ⁇ of the transmission line 70b is ⁇ 2
- the electrical length at the angular frequency ⁇ of the transmission line 70c is ⁇ 3.
- the electrical length at the angular frequency ⁇ of the transmission line 70d is ⁇ 4
- the electrical length at the angular frequency ⁇ of the transmission line 70e is ⁇ 3
- the electrical length at the angular frequency ⁇ of the transmission line 70f is ⁇ 2.
- the electrical length at the angular frequency ⁇ of the transmission lines 31a-1 and 31a-2 is ⁇ 5, and the angular frequency ⁇ of the transmission lines 31b-1 and 31b-2.
- the electrical length at the angular frequency ⁇ of the transmission lines 31c-1 and 31c-2 is ⁇ 7.
- the circulators 61a to 61c and 63a to 63c are assumed to have terminals 65a to 65c similar to those of the circulator shown in FIG.
- the signal generator 2 generates a signal and outputs the signal to the transmission line 70a.
- the circulator 61a outputs the signal from the terminal 65b.
- the signal output from the terminal 65b of the circulator 61a is transmitted to the input terminal 14a-1 of the mixer 13a via the output terminal 62a and the transmission line 31a-1.
- the input impedance of the mixer 13a is high impedance, the signal reaching the input terminal 14a-1 of the mixer 13a is reflected and transmitted to the terminal 65b of the circulator 61a via the transmission line 31a-1 and the output terminal 62a. Is done.
- the circulator 61a outputs the signal from the terminal 65c.
- the signal output from the terminal 65c is transmitted to the terminal 65a of the circulator 61b through the transmission line 70b.
- the circulator 61b operates in the same manner as the circulator 61a. After the signal output from the circulator 61a is output to the mixer 13b via the output terminal 62b and the transmission line 31b-1, the circulator 61b is reflected by the mixer 13b and returned. The signal is output to the circulator 61c via the transmission line 70c.
- the circulator 61c operates in the same manner as the circulator 61a, and outputs the signal output from the circulator 61b to the mixer 13c via the output terminal 62c and the transmission line 31c-1, and then returns to the mixer 13c.
- the signal is output to the circulator 63a through the transmission line 70d.
- the circulator 63a operates in the same manner as the circulator 61a, and outputs the signal output from the circulator 61c to the mixer 13c via the output terminal 64a and the transmission line 31c-2, and then returns to the mixer 13c.
- the signal is output to the circulator 63b through the transmission line 70e.
- the circulator 63b operates in the same manner as the circulator 61a.
- the circulator 63b outputs the signal output from the circulator 63a to the mixer 13b via the output terminal 64b and the transmission line 31b-2, and then returns to the mixer 13b.
- the signal is output to the circulator 63c via the transmission line 70f.
- the circulator 63c operates in the same manner as the circulator 61a.
- the circulator 63c outputs the signal output from the circulator 63b to the mixer 13a via the output terminal 64c and the transmission line 31a-2, and then returns to the mixer 13a.
- the signal is output to the terminator 5.
- Input terminal 14a-1 ⁇ t + ⁇ 1 + ⁇ 5
- Input terminal 14b-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + ⁇ 6
- Input terminal 14c-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + ⁇ 3 + ⁇ 7
- Input terminal 14a-2 ⁇ t + ⁇ 1 + 3 ⁇ ⁇ 5 + 2 ⁇ ⁇ 2 + 4 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 4 ⁇ ⁇ 7 + ⁇ 4
- Input terminal 14b-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 3 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 4 ⁇ ⁇ 7 + ⁇ 4
- Input terminal 14b-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 3 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 4 ⁇ ⁇ 7 + ⁇ 4
- Input terminal 14b-2 ⁇
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- the layout condition of the in-phase distribution circuit is that the electrical length between the circuit elements 17 is equal, the transmission line 31a-1, the transmission line 31a-2, the transmission line 31b-1, and the transmission line.
- the only requirement is that the electrical lengths of 31b-2, transmission line 31c-1, and transmission line 31c-2 are equal. Therefore, unlike a tournament-type common-mode distribution circuit, it is not necessary to connect multiple power distributors to the tournament-type via a transmission line.
- a distribution circuit can be formed, and the circuit size can be reduced.
- Embodiment 8 FIG. In the first to fifth embodiments described above, the in-phase distribution circuit is shown as having two physically different transmission lines 4 and 8, but it is composed of one transmission line that propagates signals in both directions. You may do it.
- the transmission line 80 is configured by, for example, a coaxial cable, a waveguide, or a microstrip line formed on a printed board.
- the transmission line 80 is a line that propagates signals in both directions, and has one end connected to the circulator 81a and the other end connected to the circulator 82a.
- directional couplers 83a, 83b, and 83c are inserted.
- the path through which the signal flows toward the directional coupler 83c ⁇ circulator 82a is the path A, and the path through which the signal flows in the second direction, that is, from the circulator 82a to the directional coupler 83c ⁇ the directional coupler 83b ⁇ the directional coupler.
- a path through which a signal flows from 83a to the circulator 81a is defined as a path B.
- the transmission line between the circulator 81a and the directional coupler 83a is 80a
- the transmission line between the directional coupler 83a and the directional coupler 83b is 80b
- 80c, and the transmission line between the directional coupler 83c and the circulator 82a is represented by 80d.
- the transmission line 80 includes transmission lines 80a, 80b, 80c, and 80d. It is desirable that the characteristic impedances of the transmission lines 80a, 80b, 80c, and 80d are all the same.
- the isolator 81 includes a circulator 81a and a terminator 9, and outputs one signal distributed by the power distributor 3 to one end of the transmission line 80a, while blocking transmission of the signal output from one end of the transmission line 80a.
- the circulator 81a outputs one signal distributed by the power distributor 3 to one end of the transmission line 80a, and outputs a signal output from one end of the transmission line 80a to the terminator 9.
- the circulator 81a has three terminals 65a, 65b, and 65c.
- the terminal 65a of the circulator 81a is the power distributor 3, the terminal 65b is one end of the transmission line 80a, and the terminal 65c is the terminal 65c. It is connected to the terminator 9.
- the isolator 82 includes a circulator 82a and a terminator 5, and outputs the other signal distributed by the power distributor 3 to the other end of the transmission line 80d, while transmitting the signal output from the other end of the transmission line 80d. It is the 2nd isolator which interrupts
- the circulator 82a outputs the other signal distributed by the power distributor 3 to the other end of the transmission line 80d, and outputs a signal output from the other end of the transmission line 80d to the terminator 5.
- the circulator 82a has three terminals 65a, 65b, and 65c.
- the terminal 65a of the circulator 82a is the power distributor 3, the terminal 65b is the other end of the transmission line 80d, and the terminal 65c.
- FIG. 15 shows an example in which the power distributor 3 and the circulators 81a and 82a are directly connected, a transmission line is connected between the power distributor 3 and the circulators 81a and 82a. Also good.
- the directional coupler 83a outputs a part of the signal of the path A output from the power distributor 3 to the output terminal 84a-1 (first terminal), and outputs one of the signals of the path B output from the power distributor 3. Are output to the output terminal 84a-2 (second terminal).
- the directional coupler 83a has four terminals, the terminal 22a is the other end of the transmission line 80a, the terminal 22b is the output terminal 84a-1, and the terminal 22c is the transmission line 80b. One end of the terminal 22d is connected to the output terminal 84a-2.
- the directional coupler 83b outputs a part of the signal of the path A output from the power distributor 3 to the output terminal 84b-1 (first terminal), and outputs one of the signals of the path B output from the power distributor 3. Are output to the output terminal 84b-2 (second terminal).
- the directional coupler 83b has four terminals, the terminal 22a is the other end of the transmission line 80b, the terminal 22b is the output terminal 84b-1, and the terminal 22c is the transmission line 80c. One end of the terminal 22d is connected to the output terminal 84b-2.
- the directional coupler 83c outputs a part of the signal of the path A output from the power distributor 3 to the output terminal 84c-1 (first terminal), and outputs one of the signals of the path B output from the power distributor 3. Are output to the output terminal 84c-2 (second terminal).
- the directional coupler 83c has four terminals, the terminal 22a is the other end of the transmission line 80c, the terminal 22b is the output terminal 84c-1, and the terminal 22c is the transmission line 80d. One end of the terminal 22d is connected to the output terminal 84c-2.
- the directional couplers 83a, 83b, and 83c constitute a branch circuit.
- the electrical lengths of the transmission lines 80a, 80b, 80c, 80d and the transmission lines 31a-1, 31b-1, 31c-1, 31a-2, 31b-2, 31c-2 are as follows. It shall be.
- the transmission lines 31a-1, 31b-1, 31c-1, 31a-2, 31b-2, and 31c-2 have electrical lengths ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, and ⁇ 10 that are in the above-described embodiment. Similar to 2, it is assumed that there is a relationship of Expression (3). That is, the sum of the electrical lengths of the transmission line 31a-1 and the transmission line 31a-2 ( ⁇ 5 + ⁇ 8), the sum of the electrical lengths of the transmission line 31b-1 and the transmission line 31b-2 ( ⁇ 6 + ⁇ 9), the transmission line 31c-1, The sum of the electrical lengths of the transmission line 31c-2 ( ⁇ 7 + ⁇ 10) is ⁇ , which is the same.
- the power distributor 3 of the signal generation circuit 1 distributes the power of the signal into two and outputs an in-phase signal to the circulator 81a and the circulator 82a.
- the circulator 81a receives a signal from the power distributor 3
- the circulator 81a outputs the signal to one end of the transmission line 80a.
- the signal output from the power distributor 3 is transmitted through the transmission line 80 as a signal of the path A.
- the circulator 82a receives a signal from the power distributor 3
- the circulator 82a outputs the signal to the other end of the transmission line 80d.
- the signal output from the power distributor 3 is transmitted through the transmission line 80 as a signal of the path B.
- the signal of the path A that has flowed through the transmission line 80a is input to the directional coupler 83a, a part of the signal is output to the transmission line 80b, and the remaining signal is output to the output terminal 84a-1 and the transmission line.
- the signal is output to the input terminal 14a-1 of the mixer 13a via 31a-1.
- the signal of the path B that has flowed through the transmission line 80b is input to the directional coupler 83a, a part of the signal is output to the transmission line 80a, and the remaining signals are output to the output terminals 84a-2 and 84a-2.
- the signal is output to the input terminal 14a-2 of the mixer 13a via the transmission line 31a-2.
- the signal of the path A that has flowed through the transmission line 80b is input to the directional coupler 83b, a part of the signal is output to the transmission line 80c, and the remaining signal is output to the output terminal 84b-1 and the transmission line.
- the signal is output to the input terminal 14b-1 of the mixer 13b via 31b-1.
- the signal of the path B that has flowed through the transmission line 80c is input to the directional coupler 83b, a part of the signal is output to the transmission line 80b, and the remaining signal is output to the output terminal 84b-2 and The signal is output to the input terminal 14b-2 of the mixer 13b via the transmission line 31b-2.
- the signal of the path A that has flowed through the transmission line 80c is input to the directional coupler 83c, a part of the signal is output to the transmission line 80d, and the remaining signals are output to the output terminal 84c-1 and the transmission line.
- the signal is output to the input terminal 14c-1 of the mixer 13c via 31c-1.
- the signal of the path B that has flowed through the transmission line 80d is input to the directional coupler 83c, a part of the signal is output to the transmission line 80c, and the remaining signal is output to the output terminal 84c-2 and the directional coupler 83c.
- the signal is output to the input terminal 14c-2 of the mixer 13c via the transmission line 31c-2.
- route A output to the transmission line 80d from the directional coupler 83c is output to the termination
- the signal of the path B output from the directional coupler 83a to the transmission line 80a is output to the terminator 9 via the circulator 81a, the signal is terminated at the terminator 9.
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- the in-phase distribution circuit has two physically different transmission lines 4 and 8 and each circuit element 17 needs to be connected by an equal length transmission line. For this reason, if the electrical length of the transmission line connecting the circuit elements 17 varies, the phases of the signals appearing at the output terminals 16a to 16c may not be in phase.
- the electrical lengths of the transmission lines 80b and 80c connecting the circuit elements 17 are always the same regardless of the directions of the path A and the path B. There is an effect that it is not necessary to consider the variation in the electrical length of the line. Further, in the eighth embodiment, since it can be configured by one transmission line 80, an effect of reducing the number of transmission lines can be obtained.
- FIG. 16 is an explanatory diagram showing a layout example of the in-phase distribution circuit according to the eighth embodiment of the present invention.
- the eighth embodiment as in the first to seventh embodiments, since the layout conditions of the in-phase distribution circuit are relaxed, a plurality of circuit elements 17 can be arranged linearly as shown in FIG. it can. Therefore, there is an effect that it is not necessary to secure a two-dimensionally large space.
- Embodiment 9 FIG.
- the directional couplers 83a, 83b, and 83c are inserted in the middle of the transmission line 80. However, even if the circulator is inserted in the middle of the transmission line 80, Good.
- FIG. 17 is a block diagram showing an in-phase distribution circuit according to Embodiment 9 of the present invention.
- the circulator 85a outputs the signal of the path A output from the power distributor 3 to the output terminal 86a-1 (first terminal), and then is reflected by the input terminal 14a-1 of the mixer 13a and output to the output terminal 86a-1.
- the returned signal is output to the transmission line 80b as a signal of the path A.
- the circulator 85a outputs the signal of the path B output from the circulator 85b to the output terminal 86a-2 (second terminal), and then is reflected by the input terminal 14a-2 of the mixer 13a and output to the output terminal 86a-2.
- the returned signal is output to the transmission line 80a as a signal of the path B.
- the circulator 85b outputs the signal of the path A output from the circulator 85a to the output terminal 86b-1 (first terminal), and then is reflected by the input terminal 14b-1 of the mixer 13b and returns to the output terminal 86b-1.
- the output signal is output to the transmission line 80c as a signal of the path A.
- the circulator 85b outputs the signal of the path B output from the circulator 85c to the output terminal 86b-2 (second terminal), and then is reflected by the input terminal 14b-2 of the mixer 13b and output to the output terminal 86b-2.
- the returned signal is output to the transmission line 80b as a signal of the path B.
- the circulator 85c outputs the signal of the path A output from the circulator 85b to the output terminal 86c-1 (first terminal), and then is reflected by the input terminal 14c-1 of the mixer 13c and returns to the output terminal 86c-1.
- the output signal is output to the transmission line 80d as a signal of the path A.
- the circulator 85c outputs the signal of the path B output from the power distributor 3 to the output terminal 86c-2 (second terminal), and then is reflected by the input terminal 14c-2 of the mixer 13c and output to the output terminal 86c-
- the signal returned to 2 is output to the transmission line 80c as a signal of the path B.
- the circulators 85a, 85b, and 85c form a branch circuit.
- FIG. 18 is an explanatory diagram showing the circulator 85.
- 18A is an explanatory diagram showing a circulator 85 having four terminals
- FIG. 18B is an explanatory diagram showing a circulator 85 comprising two circulators each having three terminals.
- circulator 85 has four terminals 87a to 87d as shown in FIG. 18A, a signal input from terminal 87a is output from terminal 87b, and a signal input from terminal 87b is output from terminal 87c.
- a signal input from the terminal 87c is output from the terminal 87d, and a signal input from the terminal 87d is output from the terminal 87a.
- the terminal 87a of the circulator 85a is connected to the transmission line 80a
- the terminal 87b is connected to the output terminal 86a-1
- the terminal 87c is connected to the transmission line 80b.
- Terminal 87d is connected to output terminal 86a-2.
- the terminal 87a of the circulator 85b is connected to the transmission line 80b
- the terminal 87b is connected to the output terminal 86b-1
- the terminal 87c is connected to the transmission line 80c.
- the terminal 87d is connected to the output terminal 86b-2.
- the terminal 87a of the circulator 85c is connected to the transmission line 80c
- the terminal 87b is connected to the output terminal 86c-1
- the terminal 87c is connected to the transmission line 80d.
- Terminal 87d is connected to output terminal 86c-2.
- the circulators 85a, 85b, and 85c can also be composed of two circulators 88a and 88b having three terminals as shown in FIG. 18B.
- the signal input from the terminal 87a of the circulator 88a is output from the terminal 87b, and the signal input from the terminal 87b is output from the terminal 89a.
- the signal output from the terminal 89a of the circulator 88a is input from the terminal 89b of the circulator 88b.
- the signal input from the terminal 89b of the circulator 88a is output from the terminal 87c.
- a signal input from the terminal 87c of the circulator 88b is output from the terminal 87d, and a signal input from the terminal 87d is output from the terminal 89b.
- the signal output from the terminal 89b of the circulator 88b is input from the terminal 89a of the circulator 88a.
- the signal input from the terminal 89a of the circulator 88a is output from the terminal 87a
- the power distributor 3 of the signal generation circuit 1 distributes the power of the signal into two and outputs an in-phase signal to the circulator 81a and the circulator 82a.
- the circulator 81a receives a signal from the power distributor 3
- the circulator 81a outputs the signal to one end of the transmission line 80a.
- the signal output from the power distributor 3 is transmitted through the transmission line 80 as a signal of the path A.
- the circulator 82a receives a signal from the power distributor 3
- the circulator 82a outputs the signal to the other end of the transmission line 80d.
- the signal output from the power distributor 3 is transmitted through the transmission line 80 as a signal of the path B.
- circulator 85a When circulator 85a receives the signal of path A output from power distributor 3, circulator 85a outputs the signal to output terminal 86a-1. At this time, since the input impedance of the mixer 13a is high impedance, the signal output from the output terminal 86a-1 of the circulator 85a and input to the input terminal 14a-1 of the mixer 13a is reflected. As a result, the signal reflected by the mixer 13a returns to the output terminal 86a-1 of the circulator 85a. The circulator 85a outputs the signal returned to the output terminal 86a-1 to the transmission line 80b as a signal of the path A.
- the circulator 85a receives the signal of the path B output from the circulator 85b, the circulator 85a outputs the signal to the output terminal 86a-2.
- the signal output from the output terminal 86a-2 of the circulator 85a and input to the input terminal 14a-2 of the mixer 13a is reflected.
- the signal reflected by the mixer 13a returns to the output terminal 86a-2 of the circulator 85a.
- the circulator 85a outputs the signal returned to the output terminal 86a-2 to the transmission line 80a as a signal of the path B.
- the signal of the path B output to the transmission line 80 a is output to the terminator 9 by the circulator 81 a and terminated at the terminator 9.
- the circulator 85b When the circulator 85b receives the signal of the path A output from the circulator 85a, the circulator 85b outputs the signal to the output terminal 86b-1. At this time, since the input impedance of the mixer 13b is high impedance, the signal output from the output terminal 86b-1 of the circulator 85b and input to the input terminal 14b-1 of the mixer 13b is reflected. As a result, the signal reflected by the mixer 13b returns to the output terminal 86b-1 of the circulator 85b. The circulator 85b outputs the signal returned to the output terminal 86b-1 to the transmission line 80c as a signal of the path A.
- the circulator 85b receives the signal of the path B output from the circulator 85c, the circulator 85b outputs the signal to the output terminal 86b-2.
- the input impedance of the mixer 13b is high impedance, the signal output from the output terminal 86b-2 of the circulator 85b and input to the input terminal 14b-2 of the mixer 13b is reflected.
- the signal reflected by the mixer 13b returns to the output terminal 86b-2 of the circulator 85b.
- the circulator 85b outputs the signal returned to the output terminal 86b-2 to the transmission line 80b as a signal on the path B.
- the circulator 85c When the circulator 85c receives the signal of the path A output from the circulator 85b, the circulator 85c outputs the signal to the output terminal 86c-1. At this time, since the input impedance of the mixer 13c is high impedance, the signal output from the output terminal 86c-1 of the circulator 85c and input to the input terminal 14c-1 of the mixer 13c is reflected. As a result, the signal reflected by the mixer 13c returns to the output terminal 86c-1 of the circulator 85c. The circulator 85c outputs the signal returned to the output terminal 86c-1 to the transmission line 80d as a signal of the path A. The signal of the path A output to the transmission line 80d is output to the terminator 5 by the circulator 82a and terminated at the terminator 5.
- the circulator 85c receives the signal of the path B output from the power distributor 3, the circulator 85c outputs the signal to the output terminal 86c-2.
- the signal output from the output terminal 86c-2 of the circulator 85c and input to the input terminal 14c-2 of the mixer 13c is reflected.
- the signal reflected by the mixer 13c returns to the output terminal 86c-2 of the circulator 85c.
- the circulator 85c outputs the signal returned to the output terminal 86c-2 to the transmission line 80c as a signal of the path B.
- the phase of the signal appearing at the output terminals 86a-1, 86b-1, 86c-1, 86a-2, 86b-2, 86c-2 of the circulators 85a, 85b, 85c is expressed by the following equation (17).
- the signal phases are all different.
- Output terminal 86a-1 ⁇ t + ⁇ 1
- Output terminal 86b-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2
- Output terminal 86c-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + ⁇ 3
- Output terminal 86a-2 ⁇ t + ⁇ 4 + 2 ⁇ ⁇ 7 + ⁇ 3 + 2 ⁇ ⁇ 6 + ⁇ 2
- Output terminal 86b-2 ⁇ t + ⁇ 4 + 2 ⁇ ⁇ 7 + ⁇ 3
- Output terminal 86c-2 ⁇ t + ⁇ 4 (17)
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- Output terminal 16c ( ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 +
- the phases of the signals appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c are all in phase.
- the electrical lengths of the transmission lines 80b and 80c connecting the circuit elements 17 are always the same regardless of the directions of the path A and the path B. Therefore, there is an effect that it is not necessary to consider the variation in the electrical length of the transmission line. Further, even in the ninth embodiment, since it can be configured by one transmission line 80, an effect of reducing the number of transmission lines can be obtained.
- the output terminals 86a-1 to 86c-1, 86a-2 to 86c-2 of the circulators 85a to 85c and the input terminals 14a-1 to 14c-1, 14a-2 to 14c-2 of the mixers 13a to 13c are connected. If the transmission lines 31a-1 to 31c-1, 31a-2 to 31c-2 are eliminated by directly connecting them, the electrical lengths of the transmission lines 31a-1 to 31c-1, 31a-2 to 31c-2 can be reduced. There is also an effect that it is not necessary to consider the variation.
- Embodiment 10 FIG. In the first to fifth embodiments described above, the in-phase distribution circuit is shown as having two physically different transmission lines 4 and 8, but it is composed of one transmission line that propagates signals in both directions. You may do it.
- the transmission line 90 is constituted by, for example, a coaxial cable, a waveguide, or a microstrip line formed on a printed board.
- the transmission line 90 is a line that propagates signals in both directions, and one end is connected to the circulator 91a and the other end is connected to a terminal 92 that is open. As a result, the signal transmitted through the transmission line 90 is reflected at the other end of the transmission line 90.
- directional couplers 93a, 93b, 93c are inserted, and a signal flows in the first direction, that is, after the signal is output from the signal generator 2, the circulator 91a ⁇ Directional coupler 93a ⁇ directional coupler 93b ⁇ directional coupler 93c ⁇ path through which a signal flows toward terminal 92 is a forward path A, and a path through which a signal flows in the second direction, that is, from terminal 92 to the directional coupler.
- a path through which a signal flows from 93c ⁇ directional coupler 93b ⁇ directional coupler 93a ⁇ circulator 91a is defined as a return path B.
- 90a is a transmission line between the circulator 91a and the directional coupler 93a
- 90b is a transmission line between the directional coupler 93a and the directional coupler 93b
- 90c and the transmission line between the directional coupler 93c and the terminal 92 is represented by 90d.
- the transmission line 90 includes transmission lines 90a, 90b, 90c, and 90d. It is desirable that the characteristic impedances of the transmission lines 90a, 90b, 90c, 90d are all the same.
- FIG. 19 shows an example in which the terminal 92 is open, but it is sufficient that the signal is reflected at the terminal 92, the terminal 92 may be short-circuited, and a load that reflects the signal is connected to the terminal 92. May be.
- the isolator 91 includes a circulator 91a and a terminator 5.
- the isolator 91 outputs a signal output from the signal generator 2 to one end of the transmission line 90a, and blocks transmission of a signal output from one end of the transmission line 90a.
- the circulator 91a outputs the signal output from the signal generator 2 to one end of the transmission line 90a, and outputs the signal output from one end of the transmission line 90a to the terminator 5.
- the circulator 91a has three terminals 65a, 65b, and 65c.
- the terminal 65a of the circulator 91a is one end of the transmission line 90a
- the terminal 65b is the terminator 5
- the terminal 65c is a signal.
- the generator 2 is connected.
- the signal output from the signal generator 2 is input to the transmission line 90 as the forward path A signal, while the return path B signal output from one end of the transmission line 90 a is terminated by the terminator 5.
- the directional coupler 93a outputs a part of the forward path A signal output from the circulator 91a to the output terminal 94a-1 (first terminal), and a part of the return path B signal output from the directional coupler 93b. Is output to the output terminal 94a-2 (second terminal).
- the directional coupler 93a has four terminals, the terminal 22a is the other end of the transmission line 90a, the terminal 22b is the output terminal 94a-1, and the terminal 22c is the transmission line 90b. One end of the terminal 22d is connected to the output terminal 94a-2.
- the directional coupler 93b outputs a part of the forward path A signal output from the directional coupler 93a to the output terminal 94b-1 (first terminal), and the return path B signal output from the directional coupler 93c. Is output to the output terminal 94b-2 (second terminal).
- the directional coupler 93b has four terminals, the terminal 22a is the other end of the transmission line 90b, the terminal 22b is the output terminal 94b-1, and the terminal 22c is the transmission line 90c. One end of the terminal 22d is connected to the output terminal 94b-2.
- the directional coupler 93c outputs a part of the forward path A signal output from the directional coupler 93b to the output terminal 94c-1 (first terminal), and the return path B signal reflected by the terminal 92 and returned. Is output to the output terminal 94c-2 (second terminal).
- the directional coupler 93c has four terminals.
- the terminal 22a is the other end of the transmission line 90c
- the terminal 22b is the output terminal 94c-1
- the terminal 22c is the transmission line 90d.
- One end of the terminal 22d is connected to the output terminal 94c-2.
- the directional couplers 93a, 93b, and 93c constitute a branch circuit.
- FIG. 19 shows an example in which the signal generator 2 and the circulator 91a are directly connected, a transmission line may be connected between the signal generator 2 and the circulator 91a.
- FIG. 19 shows an example in which the transmission line 90d is connected between the directional coupler 93c and the terminal 92, but the directional coupler 93c and the terminal 92 are directly connected and the transmission line 90d is omitted. You may make it do.
- the electrical lengths of the transmission lines 90a, 90b, 90c, 90d and the transmission lines 31a-1, 31b-1, 31c-1, 31a-2, 31b-2, 31c-2 are as follows. It shall be.
- the transmission lines 31a-1, 31a-2, 31b-1, 31b-2, 31c-1, and 31c-2 have the above-described embodiments between the electrical lengths ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, and ⁇ 10. Similar to 2, it is assumed that there is a relationship of Expression (3). That is, the sum of the electrical lengths of the transmission line 31a-1 and the transmission line 31a-2 ( ⁇ 5 + ⁇ 8), the sum of the electrical lengths of the transmission line 31b-1 and the transmission line 31b-2 ( ⁇ 6 + ⁇ 9), the transmission line 31c-1, The sum of the electrical lengths of the transmission line 31c-2 ( ⁇ 7 + ⁇ 10) is ⁇ , which is the same.
- the signal generator 2 generates a signal and outputs the signal to the circulator 91a.
- the circulator 91a receives a signal from the signal generator 2, the circulator 91a outputs the signal to one end of the transmission line 90a. Further, when the circulator 91a is reflected by the terminal 92 and the signal of the return path B is output from one end of the transmission line 90a, the circulator 91a outputs the signal to the terminator 5.
- the signal output from the signal generator 2 flows through the transmission line 90 as the forward path A signal, while the return path B signal output from one end of the transmission line 90 a is terminated by the terminator 5.
- the directional coupler 93a When the signal of the forward path A that has flowed through the transmission line 90a is input to the directional coupler 93a, a part of the signal is output to the transmission line 90b, and the remaining signals are output to the output terminal 94a-1 and the transmission line.
- the signal is output to the input terminal 14a-1 of the mixer 13a via 31a-1.
- the directional coupler 93a outputs a part of the signal to the transmission line 90a when the signal of the return path B flowing through the transmission line 90b is input, and outputs the remaining signals to the output terminals 94a-2 and 94a-2.
- the signal is output to the input terminal 14a-2 of the mixer 13a via the transmission line 31a-2.
- the signal of the forward path A that has flowed through the transmission line 90b is input to the directional coupler 93b, a part of the signal is output to the transmission line 90c, and the remaining signal is output to the output terminal 94b-1 and the transmission line.
- the signal is output to the input terminal 14b-1 of the mixer 13b via 31b-1.
- the signal of the return path B flowing through the transmission line 90c is input to the directional coupler 93b, a part of the signal is output to the transmission line 90b, and the remaining signal is output to the output terminal 94b-2 and the directional coupler 93b.
- the signal is output to the input terminal 14b-2 of the mixer 13b via the transmission line 31b-2.
- the signal of the forward path A that has flowed through the transmission line 90c is input to the directional coupler 93c, a part of the signal is output to the transmission line 90d, and the remaining signal is output to the output terminal 94c-1 and the transmission line.
- the signal is output to the input terminal 14c-1 of the mixer 13c via 31c-1.
- the signal of the return path B flowing through the transmission line 90d is input to the directional coupler 93c, a part of the signal is output to the transmission line 90c, and the remaining signal is output to the output terminal 94c-2 and the directional coupler 93c.
- the signal is output to the input terminal 14c-2 of the mixer 13c via the transmission line 31c-2.
- phase of the signal appearing at the output terminals 94a-1, 94b-1, 94c-1, 94a-2, 94b-2, 94c-2 of the directional couplers 93a, 93b, 93c is expressed by the following equation (19). The phases of these signals are all different.
- Output terminal 94a-1 ⁇ t + ⁇ 1
- Output terminal 94b-1 ⁇ t + ⁇ 1 + ⁇ 2
- Output terminal 94c-1 ⁇ t + ⁇ 1 + ⁇ 2 + ⁇ 3
- Output terminal 94a-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 2 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4
- Output terminal 94b-2 ⁇ t + ⁇ 1 + ⁇ 2 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4
- Output terminal 94c-2 ⁇ t + ⁇ 1 + ⁇ 2 + ⁇ 3 + 2 ⁇ ⁇ 4 (19)
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- the in-phase distribution circuit has two physically different transmission lines 4 and 8 and each circuit element 17 needs to be connected by an equal length transmission line. For this reason, if the electrical length of the transmission line connecting the circuit elements 17 varies, the phases of the signals appearing at the output terminals 16a to 16c may not be in phase.
- the electrical lengths of the transmission lines 90b and 90c connecting the circuit elements 17 are always the same regardless of the forward path A and the backward path B. An effect is obtained that there is no need to consider variation in electrical length. Further, in the tenth embodiment, since it can be configured by one transmission line 90, an effect of reducing the number of transmission lines can be obtained.
- FIG. 20 is an explanatory diagram showing a layout example of the in-phase distribution circuit according to the tenth embodiment of the present invention.
- the layout condition of the in-phase distribution circuit is relaxed. Therefore, as shown in FIG. 20, a plurality of circuit elements 17 may be arranged in a straight line. it can. Therefore, there is an effect that it is not necessary to secure a two-dimensionally large space.
- Embodiment 11 FIG.
- the directional couplers 93 a, 93 b, 93 c are inserted in the middle of the transmission line 90. However, even if the circulator is inserted in the middle of the transmission line 90. Good.
- FIG. 21 is a block diagram showing an in-phase distribution circuit according to Embodiment 11 of the present invention.
- the circulator 95a outputs the forward path A signal output from the circulator 91a to the output terminal 96a-1 (first terminal), and then is reflected by the input terminal 14a-1 of the mixer 13a and returns to the output terminal 96a-1.
- the output signal is output to the transmission line 90b as the signal of the forward path A.
- the circulator 95a outputs the return path B signal output from the circulator 95b to the output terminal 96a-2 (second terminal), and then is reflected by the input terminal 14a-2 of the mixer 13a and output to the output terminal 96a-2.
- the returned signal is output to the transmission line 90a as a return path B signal.
- the circulator 95a has four terminals 87a to 87d as shown in FIG. 18A, the terminal 87a is connected to the other end of the transmission line 90a, the terminal 87b is connected to the output terminal 96a-1, and the terminal 87c. Is connected to one end of the transmission line 90b, and the terminal 87d is connected to the output terminal 96a-2.
- the circulator 95b outputs the forward path A signal output from the circulator 95a to the output terminal 96b-1 (first terminal), and then is reflected by the input terminal 14b-1 of the mixer 13b and returns to the output terminal 96b-1.
- the output signal is output to the transmission line 90c as a forward path A signal.
- the circulator 95b outputs the return path B signal output from the circulator 95c to the output terminal 96b-2 (second terminal), and then is reflected by the input terminal 14b-2 of the mixer 13b and output to the output terminal 96b-2.
- the returned signal is output to the transmission line 90b as a return path B signal.
- the circulator 95b has four terminals 87a to 87d as shown in FIG.
- the terminal 87a is connected to the other end of the transmission line 90b, the terminal 87b is connected to the output terminal 96b-1, and the terminal 87c. Is connected to one end of the transmission line 90c, and the terminal 87d is connected to the output terminal 96b-2.
- the circulator 95c outputs the forward path A signal output from the circulator 95b to the output terminal 96c-1 (first terminal), and then is reflected by the input terminal 14c-1 of the mixer 13b and returns to the output terminal 96c-1.
- the output signal is output to the transmission line 90d as a forward path A signal.
- the circulator 95c outputs the return path B signal reflected back to the terminal 92 to the output terminal 96c-2 (second terminal), and then reflected to the input terminal 14c-2 of the mixer 13c to output the output terminal 96c.
- -2 is output to the transmission line 90c as a return path B signal.
- the terminal 87a is connected to the other end of the transmission line 90c, the terminal 87b is connected to the output terminal 96c-1, and the terminal 87c. Is connected to one end of the transmission line 90d, and the terminal 87d is connected to the output terminal 96c-2.
- Circulators 95a, 95b and 95c constitute a branch circuit.
- the electrical lengths of the transmission lines 90a, 90b, 90c, 90d and the transmission lines 31a-1, 31a-2, 31b-1, 31b-2, 31c-1, 31c-2 are the same as those of the above embodiment. The same as 9 is assumed.
- the signal generator 2 generates a signal and outputs the signal to the circulator 91a.
- the circulator 91a receives a signal from the signal generator 2, the circulator 91a outputs the signal to one end of the transmission line 90a. Further, when the circulator 91a is reflected by the terminal 65b and the signal of the return path B is output from one end of the transmission line 90a, the circulator 91a outputs the signal to the terminator 5.
- the signal output from the signal generator 2 flows through the transmission line 90 as the forward path A signal, while the return path B signal output from one end of the transmission line 90 a is terminated by the terminator 5.
- circulator 95a When circulator 95a receives the forward path A signal output from circulator 91a, circulator 95a outputs the signal to output terminal 96a-1. At this time, since the input impedance of the mixer 13a is high impedance, the signal output from the output terminal 96a-1 of the circulator 95a and input to the input terminal 14a-1 of the mixer 13a is reflected. As a result, the signal reflected by the mixer 13a returns to the output terminal 96a-1 of the circulator 95a. The circulator 95a outputs the signal returned to the output terminal 96a-1 to the transmission line 90b as a signal of the path A.
- the circulator 95a receives the return path B signal output from the circulator 95b, the circulator 95a outputs the signal to the output terminal 96a-2.
- the signal output from the output terminal 96a-2 of the circulator 95a and input to the input terminal 14a-2 of the mixer 13a is reflected.
- the signal reflected by the mixer 13a returns to the output terminal 96a-2 of the circulator 95a.
- the circulator 95a outputs the signal returned to the output terminal 96a-2 to the transmission line 90a as a signal on the path B.
- the signal of the path B output to the transmission line 90 a is output to the terminator 5 by the circulator 91 a and terminated at the terminator 5.
- the circulator 95b When the circulator 95b receives the forward path A signal output from the circulator 95a, the circulator 95b outputs the signal to the output terminal 96b-1. At this time, since the input impedance of the mixer 13b is high impedance, the signal output from the output terminal 96b-1 of the circulator 95b and input to the input terminal 14b-1 of the mixer 13b is reflected. As a result, the signal reflected by the mixer 13b returns to the output terminal 96b-1 of the circulator 95b. The circulator 95b outputs the signal returned to the output terminal 96b-1 to the transmission line 90c as the signal of the forward path A.
- the circulator 95b When the circulator 95b receives the return path B signal output from the circulator 95c, the circulator 95b outputs the signal to the output terminal 96b-2. At this time, since the input impedance of the mixer 13b is high impedance, the signal output from the output terminal 96b-2 of the circulator 95b and input to the input terminal 14b-2 of the mixer 13b is reflected. As a result, the signal reflected by the mixer 13b returns to the output terminal 96b-2 of the circulator 95b. The circulator 95b outputs the signal returned to the output terminal 96b-2 to the transmission line 90b as a return path B signal.
- circulator 95c When circulator 95c receives the forward path A signal output from circulator 95b, circulator 95c outputs the signal to output terminal 96c-1. At this time, since the input impedance of the mixer 13c is high impedance, the signal output from the output terminal 96c-1 of the circulator 95c and input to the input terminal 14c-1 of the mixer 13c is reflected. As a result, the signal reflected by the mixer 13c returns to the output terminal 96c-1 of the circulator 95c. The circulator 95c outputs the signal returned to the output terminal 96c-1 to the transmission line 90d as the signal of the forward path A. The forward path A signal output to the transmission line 90d is reflected by the terminal 92, and the reflected signal is input to the circulator 95c as a return path B signal.
- circulator 85c When circulator 85c receives the return path B signal reflected back from terminal 92, circulator 85c outputs the signal to output terminal 96c-2. At this time, since the input impedance of the mixer 13c is high impedance, the signal output from the output terminal 96c-2 of the circulator 95c and input to the input terminal 14c-2 of the mixer 13c is reflected. As a result, the signal reflected by the mixer 13c returns to the output terminal 96c-2 of the circulator 95c. The circulator 95c outputs the signal returned to the output terminal 96c-2 to the transmission line 90c as a return path B signal.
- the phase of the signal appearing at the output terminals 96a-1, 96b-1, 96c-1, 96-2, 96b-2, 96c-2 of the circulators 95a, 95b, 95c is expressed by the following equation (22).
- the signal phases are all different.
- Output terminal 96a-1 ⁇ t + ⁇ 1
- Output terminal 96b-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2
- Output terminal 96c-1 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + ⁇ 3
- Output terminal 96a-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + 2 ⁇ ⁇ 2 + 4 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4 + 2 ⁇ ⁇ 7
- Output terminal 96b-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4 + 2 ⁇ ⁇ 7
- Output terminal 96c-2 ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4 + 2 ⁇ ⁇ 7
- the mixers 13a to 13c mix the two input signals and output the mixed signals to the filters 15a to 15c, as in the first embodiment.
- the filters 15a to 15c receive the phase difference component and the higher-order mixed wave component of the two signals included in the mixed signal, as in the first embodiment. And only the component of the sum of the phases of the two signals included in the mixed signal is allowed to pass. As a result, the sum component of the two signals that have passed through the filters 15a to 15c is output from the output terminals 16a to 16c.
- Output terminal 16b ( ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + ⁇ 6) + ( ⁇ t + ⁇ 1 + 2 ⁇ ⁇ 5 + ⁇ 2 + 2 ⁇ ⁇ 6 + 2 ⁇ ⁇ 3 + 2 ⁇ ⁇ 4 + 2 ⁇ ⁇ 7
- the phases of the signals appearing at the output terminals 16a to 16c of the circuit elements 17a to 17c are all in phase.
- the electrical lengths of the transmission lines 90b and 90c connecting the circuit elements 17 are always the same regardless of the forward path A and the backward path B.
- the eleventh embodiment since it can be configured by one transmission line 90, an effect of reducing the number of transmission lines can be obtained.
- the output terminals 96a-1 to 96c-1, 96a-2 to 96c-2 of the circulators 95a to 95c and the input terminals 14a-1 to 14c-1, 14a-2 to 14c-2 of the mixers 13a to 13c are connected. If the transmission lines 31a-1 to 31c-1, 31a-2 to 31c-2 are eliminated by directly connecting them, the electrical lengths of the transmission lines 31a-1 to 31c-1, 31a-2 to 31c-2 can be reduced. There is also an effect that it is not necessary to consider the variation.
- Embodiment 12 FIG.
- the common-mode distribution circuit that generates a plurality of signals having the same phase from one signal has been described.
- the common-mode distribution circuit according to any one of the first to eleventh embodiments is described above. May be mounted on the array antenna apparatus.
- FIG. 22 is a block diagram showing an array antenna apparatus according to Embodiment 12 in which, for example, a transmitter mounting the circuit element 17 of FIG. 12 is connected to an element antenna.
- FIG. 23 is a block diagram showing a transmitter in which the circuit element 17 of FIG. 12 is mounted. Since FIG. 22 shows an example of the transmitter 100 in which the circuit element 17 of FIG. 12 is mounted, the transmission line 70 composed of the forward path A and the return path B connects a plurality of transmitters.
- a PLL (Phase Locked Loop) 111 that is a phase locked loop circuit passes through the filter 15 and inputs a signal output from the output terminal 16 of the circuit element 17 as a reference signal. This is a circuit that outputs a synchronized signal having a higher frequency than the reference signal. The frequency of the signal output from the PLL 111 can be switched according to the value of a control signal input from outside.
- the phase shifter 112 is a circuit that adjusts the phase of the signal output from the PLL 111.
- the amount of phase shift for adjusting the phase by the phase shifter 112 can be switched according to the value of a control signal input from the outside separately.
- the amplifier 113 amplifies the amplitude of the signal whose phase is adjusted by the phase shifter 112, and outputs the amplified signal to the output terminal 101.
- the output terminal 101 of the transmitter 100 is connected to the element antenna 103. Further, the terminals 102 a and 102 b of the transmitter 100 are connected to the transmission line 70 that forms the forward path A, and the terminals 102 c and 102 d are connected to the transmission line 70 that forms the return path B. However, the electrical lengths of the transmission line 70 forming the forward path A and the transmission line 70 forming the return path B connected between the same transmitters 100 are equal.
- the element antenna 103 is connected to the output terminal 101 of the transmitter 100 and radiates the signal output from the output terminal 101 of the transmitter 100 to the outside as an electromagnetic wave.
- An array antenna is composed of a plurality of element antennas 103.
- the plurality of element antennas 103 constituting the array antenna may be configured independently such as a horn antenna.
- the plurality of element antennas 103 may be arranged in one plane like a patch antenna.
- the two-dimensional array may be formed on the substrate.
- FIG. 22 is an example in which a plurality of transmitters 100 on which the circuit element 17 of FIG. 12 is mounted are connected. Therefore, the array antenna apparatus has a transmission line 70 including a forward path A and a return path B.
- the two transmission lines 4 and 8 connect the plurality of transmitters 100.
- one transmission line 80 connects a plurality of transmitters 100.
- one transmission line 90 connects a plurality of transmitters 100.
- the signal output from the signal generator 2 flows through the transmission line 70 that forms the forward path A, the signal is input to one input terminal of the mixer 13 in the circuit element 17 mounted on the plurality of transmitters 100. Further, after passing through the plurality of transmitters 100, the signal that has flowed through the transmission line 70 that forms the forward path A flows through the transmission line 70 that forms the return path B, and thus the circuit elements 17 mounted on the plurality of transmitters 100. Is input to the other input terminal of the mixer 13.
- the mixer 13 in the circuit element 17 mounted on the plurality of transmitters 100 operates in the same manner as in the first to eleventh embodiments, and the filter 15 in the circuit element 17 mounted on the plurality of transmitters 100 is The operation is the same as in the first to eleventh embodiments. For this reason, the frequency and phase of the signal output from the output terminal 16 of the circuit element 17 mounted in the some transmitter 100 are equal.
- the PLL 111 mounted on the plurality of transmitters 100 inputs a signal output from the output terminal 16 of the circuit element 17 as a reference signal, has a frequency higher than that of the reference signal, and is synchronized with the reference signal.
- the signal is output to the phase shifter 112. At this time, if the values of the control signals input from the outside are the same, the frequencies and phases of the signals output from the PLLs 111 mounted on the plurality of transmitters 100 are the same.
- the phase shifter 112 mounted on the plurality of transmitters 100 receives a signal from the PLL 111, the phase shifter 112 adjusts the phase of the signal according to a control signal separately input from the outside, and sends the signal after the phase adjustment to the amplifier 113. Output.
- the amplifier 113 mounted on the plurality of transmitters 100 receives the phase-adjusted signal from the phase shifter 112, the amplifier 113 amplifies the amplitude of the signal and outputs the amplified signal to the output terminal 101. Thereby, it is radiated
- FIG. By setting the phase shift amount of the signal in the phase shifter 112 mounted on the plurality of transmitters 100 for each transmitter, the direction of the electromagnetic wave radiated from the array antenna can be switched.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2014-49808
- the direction of the electromagnetic wave radiated from the array antenna is accurately determined from the amount of phase shift set in the phase shifter 112. Can be predicted.
- the phase of the reference signal input to the PLL 111 is not in phase and the phase of the reference signal is not known, the direction of the electromagnetic wave radiated from the array antenna is accurately predicted from the phase shift amount set in the phase shifter 112. It is difficult to do.
- the array antenna apparatus implements a common-mode distribution circuit that is smaller in circuit size than a tournament-type common-mode distribution circuit. Therefore, the circuit size of the array antenna device is inevitably reduced.
- the in-phase distribution circuit according to the present invention is suitable for mounting on an array antenna device in which it is difficult to secure a large space.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
この同相分配回路では、1つの信号を同相で2分配する電力分配器として、ウィルキンソン型の電力分配器が平面回路に複数形成されている。
また、複数の電力分配器をトーナメント型に接続する伝送線路が平面回路に形成されている。
フェーズドアレーアンテナは、複数の素子アンテナが並べられているアンテナであり、個々の素子アンテナに出力する信号の位相を変えることで、送信波である電磁波の送信方向を切り替えることが可能である。
一般的に、個々の素子アンテナには送信機が接続されており、送信機は信号の位相を変えることが可能な移相器を搭載している。
したがって、個々の素子アンテナから放射される電磁波の位相を制御するには、移相器を搭載している送信機に信号を入力する必要がある。
このとき、複数の送信機に搭載されている移相器が信号の位相を制御する上で、複数の送信機に入力される信号の位相が揃っている方が容易であることが多いため、同相分配回路が、1つの信号から位相が等しい複数の信号を生成して、各送信機に同相の信号を与えることがある。
特に、複数の素子アンテナ及び複数の送信機が不等間隔に配置される場合、素子アンテナの配置の対称性がくずれるため、複数の送信機に接続される最終段の複数の電力分配器の出力線路である伝送線路については、送信機までの距離が最も長い最終段の電力分配器の伝送線路の長さに合わせる必要がある。このため、送信機までの距離が短い最終段の電力分配器の伝送線路は、適宜、折り曲げるなどして引き回す必要がある。このため、複数の送信機が等間隔に配置される場合よりも更に、大きなスペースを確保する必要がある。
図1はこの発明の実施の形態1による同相分配回路を示す構成図である。
図1において、二重線は物理的な長さを有する伝送線路を示している。また、一重線は単に構成要素間の接続関係を示すものであって、物理的な長さを有していないものとする。あるいは、動作や効果を説明する上で長さを無視できるものとする。
信号発生回路1は信号発生器2と電力分配器3を含んでいる。
信号発生器2は信号を発生する発振器であり、例えば、水晶発振器や、位相同期発振器(PLO:Phase Locked Oscillator)などが考えられる。
電力分配器3は1つの入力端子と2つの出力端子を有しており、信号発生器2により発生された信号が入力端子に与えられると、その信号の電力を2つに分配して、2つの出力端子から同相の信号を出力する。
電力分配器3の構成としては、例えば、抵抗型やウィルキンソン型の回路構成が用いられる。
以下、電力分配器3とT分岐部6a間の伝送線路を4a、T分岐部6aとT分岐部6b間の伝送線路を4b、T分岐部6bとT分岐部6c間の伝送線路を4cで表す。したがって、伝送線路4は、伝送線路4a,4b,4cを含んでいる。伝送線路4a,4b,4cの特性インピーダンスは全て同一であることが望ましい。
終端器5は例えば抵抗などから構成されており、伝送線路4の他端での信号の不要反射を防ぐために、伝送線路4の他端を終端している。これにより、電力分配器3から出力された信号は終端器5で終端されるため、伝送線路4の他端で反射されて、電力分配器3の方向に逆流することはない。
T分岐部6bの入力ポートINは伝送線路4bが接続され、T分岐部6bの出力ポートOUTは伝送線路4cが接続されており、その入力ポートINと出力ポートOUTを結ぶ線路と分岐している線路には出力端子7bが接続されている。これにより、T分岐部6bの入力ポートINから入力された信号が分岐され、出力ポートOUTと出力端子7bから、分岐された信号がそれぞれ出力される。
T分岐部6cの入力ポートINは伝送線路4cが接続され、T分岐部6cの出力ポートOUTは終端器5が接続されており、その入力ポートINと出力ポートOUTを結ぶ線路と分岐している線路には出力端子7cが接続されている。これにより、T分岐部6cの入力ポートINから入力された信号が分岐され、出力ポートOUTと出力端子7cから、分岐された信号がそれぞれ出力される。
なお、T分岐部6a,6b,6cは第1分岐回路を構成している。
以下、電力分配器3とT分岐部10a間の伝送線路を8a、T分岐部10aとT分岐部10b間の伝送線路を8b、T分岐部10bとT分岐部10c間の伝送線路を8cで表す。したがって、伝送線路8は、伝送線路8a,8b,8cを含んでいる。伝送線路8a,8b,8cの特性インピーダンスは全て同一であることが望ましい。
終端器9は例えば抵抗などから構成されており、伝送線路8の他端での信号の不要反射を防ぐために、伝送線路8の他端を終端している。これにより、電力分配器3から出力された信号は終端器9で終端されるため、伝送線路8の他端で反射されて、電力分配器3の方向に逆流することはない。
T分岐部10bの入力ポートINは伝送線路8bが接続され、T分岐部10bの出力ポートOUTは伝送線路8cが接続されており、その入力ポートINと出力ポートOUTを結ぶ線路と分岐している線路には出力端子11bが接続されている。これにより、T分岐部10bの入力ポートINから入力された信号が分岐され、出力ポートOUTと出力端子11bから、分岐された信号がそれぞれ出力される。
T分岐部10cの入力ポートINは伝送線路8cが接続され、T分岐部10cの出力ポートOUTは終端器9が接続されており、その入力ポートINと出力ポートOUTを結ぶ線路と分岐している線路には出力端子11cが接続されている。これにより、T分岐部10cの入力ポートINから入力された信号が分岐され、出力ポートOUTと出力端子11cから、分岐された信号がそれぞれ出力される。
なお、T分岐部10a,10b,10cは第2分岐回路を構成している。
ミクサ13aは入力端子14a-1と入力端子14a-2を有しており、入力端子14a-1からT分岐部6aにより分岐された信号が入力され、入力端子14a-2からT分岐部10cにより分岐された信号が入力されると、入力された2つの信号を混合して混合信号をフィルタ15aに出力する。
フィルタ15aはミクサ13aから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させる。これにより、フィルタ15aを通過した2つの信号の位相の和の成分が出力端子16aから出力される。
ミクサ13bは入力端子14b-1と入力端子14b-2を有しており、入力端子14b-1からT分岐部6bにより分岐された信号が入力され、入力端子14b-2からT分岐部10bにより分岐された信号が入力されると、入力された2つの信号を混合して混合信号をフィルタ15bに出力する。
フィルタ15bはミクサ13bから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させる。これにより、フィルタ15bを通過した2つの信号の位相の和の成分が出力端子16bから出力される。
ミクサ13cは入力端子14c-1と入力端子14c-2を有しており、入力端子14c-1からT分岐部6cにより分岐された信号が入力され、入力端子14c-2からT分岐部10aにより分岐された信号が入力されると、入力された2つの信号を混合して混合信号をフィルタ15cに出力する。
フィルタ15cはミクサ13cから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させる。これにより、フィルタ15cを通過した2つの信号の位相の和の成分が出力端子16cから出力される。
図1では、同相分配回路が、3個の回路素子17a,17b,17cを実装している例を示しているが、回路素子の実装数は2個以上であれば、何個でもよい。
また、伝送線路4aの角周波数ωにおける電気長がθ1、伝送線路4bの角周波数ωにおける電気長がθ2、伝送線路4cの角周波数ωにおける電気長がθ3であるものとする。
さらに、伝送線路8aの角周波数ωにおける電気長がθ4、伝送線路8bの角周波数ωにおける電気長がθ3、伝送線路8cの角周波数ωにおける電気長がθ2であるものとする。
また、経路Aの始点から数えて2番目のT分岐部6bと3番目のT分岐部6cとの間における伝送線路4cの電気長θ3と、経路Bの終点から数えて2番目のT分岐部10bと3番目のT分岐部10aとの間における伝送線路8bの電気長θ3とが等しくなっている。
ただし、この実施の形態1では、説明の簡単化のため、信号発生器2と電力分配器3が伝送経路を介さずに直接接続されているために、信号発生器2から発生された信号が電力分配器3に至るまでの伝送時間を無視できるものとし、電力分配器3からは信号が同相で分配されるものとする。即ち、電力分配器3から伝送線路4に出力される信号の位相と、電力分配器3から伝送線路8に出力される信号の位相とがずれていないものとする。
また、電力分配器3、T分岐部6a~6c,10a~10c及びフィルタ15a~15cが信号を伝送することに伴う位相の変化を無視できるものとする。
さらに、T分岐部6cと終端器5、T分岐部10cと終端器9、ミクサ13a~13cとフィルタ15a~15cが、伝送経路を介さずに直接接続されているものとする。
また、ミクサ13a~13cの入力インピーダンスがハイインピーダンスであるものとする。
電力分配器3から伝送線路4に出力された信号は、T分岐部6a~6cを経て、終端器5に終端される。
また、電力分配器3から伝送線路8に出力された信号は、T分岐部10a~10cを経て、終端器9に終端される。
また、伝送線路8に挿入されているT分岐部10a~10cは、入力ポートINから信号が入力されると、入力ポートINと出力ポートOUTを結ぶ線路に分岐線路が設けられているため、その信号の一部を出力端子11a~11cに出力する。
しかし、ミクサ13a~13cの入力インピーダンスがハイインピーダンスであるため、出力端子7a~7c,11c~11aには電圧が現れるが、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2に向かって電流は流れない。
出力端子7a :ωt+θ1
出力端子7b :ωt+θ1+θ2
出力端子7c :ωt+θ1+θ2+θ3
出力端子11a:ωt+θ4
出力端子11b:ωt+θ4+θ3
出力端子11c:ωt+θ4+θ3+θ2
(1)
ミクサ13bの入力端子14b-1にT分岐部6bの出力端子7bから出力された信号が入力され、ミクサ13bの入力端子14b-2にT分岐部10bの出力端子11bから出力された信号が入力されると、ミクサ13bは、入力された2つの信号を混合して混合信号をフィルタ15bに出力する。
ミクサ13cの入力端子14c-1にT分岐部6cの出力端子7cから出力された信号が入力され、ミクサ13cの入力端子14c-2にT分岐部10aの出力端子11aから出力された信号が入力されると、ミクサ13cは、入力された2つの信号を混合して混合信号をフィルタ15cに出力する。
ミクサ13a~13cから出力される混合信号は、2つの信号の位相の和の成分、2つの信号の位相の差の成分、高次の混合波成分を含んでいる。
フィルタ15bは、ミクサ13bから混合信号を受けると、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15bを通過した2つの信号の位相の和の成分が出力端子16bから出力される。
フィルタ15cは、ミクサ13cから混合信号を受けると、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15cを通過した2つの信号の位相の和の成分が出力端子16cから出力される。
出力端子16a:(ωt+θ1)+(ωt+θ4+θ3+θ2)
=2ωt+θ1+θ2+θ3+θ4
出力端子16b:(ωt+θ1+θ2)+(ωt+θ4+θ3)
=2ωt+θ1+θ2+θ3+θ4
出力端子16c:(ωt+θ1+θ2+θ3)+(ωt+θ4)
=2ωt+θ1+θ2+θ3+θ4
(2)
式(2)から明らかなように、回路素子17a~17cの出力端子16a~16cに現れる信号の位相が全て同相になる。
具体的には、回路素子の実装数がN(Nは2以上の整数)個であれば、N個のT分岐部6のうち、経路Aの始点から数えてm(mはN-1以下の正の整数)番目のT分岐部6とm+1番目のT分岐部6との間における伝送線路4の電気長と、N個のT分岐部10のうち、経路Bの終点から数えてm番目のT分岐部10とm+1番目のT分岐部10との間における伝送線路8の電気長とが等しくなっていれば、N個の出力端子16に現れる信号の位相が全て同相になる。
なお、T分岐部6は図1のT分岐部6a~6cに相当し、T分岐部10は図1のT分岐部10a~10cに相当する。また、出力端子16は図1の出力端子16a~16cに相当する。
したがって、回路構成がトーナメント型の同相分配回路のように、複数の電力分配器を伝送線路によってトーナメント型に接続する必要がなく、N個の回路素子17の間を等しい電気長の伝送線路4,8で接続するだけでよい。
このため、回路構成がトーナメント型の同相分配回路よりも、小さなスペースに同相分配回路を形成することができ、回路サイズの小型化を図ることができる。
複数の素子アンテナに接続される送信機が不等間隔に配置される場合や、素子アンテナの個数が多い場合には、特に回路サイズの小型化を図れる効果が大きい。
特に図2Aは回路構成がトーナメント型の同相分配回路のレイアウト例を示し、図2Bは実施の形態1による同相分配回路のレイアウト例を示している。
図2では、1つの信号から位相が等しい8個の信号を生成する同相分配回路の例を示している。
また、図2では、複数の素子アンテナに接続される送信機が不等間隔に配置されることを想定して、位相が等しい8個の信号を出力する出力端子16は、一直線上に並んでいるが、不等間隔に並んでいる。
図2Aと図2Bにおいて、同一の構成要素、あるいは、相当する構成要素については同一の符号を付している。
特に、伝送線路4,8が同軸ケーブルや導波管で構成されている場合、これらを深く折り曲げることが難しいため、2次元的に大きく広がっているスペースを確保する必要がある。図2Aの例では、上下左右に大きく広がっているスペースを確保する必要がある。
これに対して、この実施の形態1の同相分配回路の場合、回路構成がトーナメント型の場合よりも、同相分配回路のレイアウト条件が緩和されるため、図2Bに示すように、8個の回路素子17を直線状に配置することもできる。したがって、2次元的に大きなスペースを確保する必要がない。
例えば、2つの伝送線路の誘電率が等しければ、2つの伝送線路の角周波数ωにおける電気長が等しく、かつ、物理的な長さが等しくなる。一方、2つの伝送線路の誘電率が異なっている場合、2つの伝送線路の角周波数ωにおける電気長が等しければ、物理的な長さは異なるものとなる。
しかし、例えば、ミクサ13a~13cの入力インピーダンスが50Ωで設計されている場合や、入力容量が無視できないほど大きい場合など、ミクサ13a~13cの入力インピーダンスがハイインピーダンスでない場合には、T分岐部6a~6c,10a~10cでインピーダンスの不整合が生じる。つまり、T分岐部6a~6c,10a~10cで信号の一部が反射して、経路Aあるいは経路Bを逆方向に信号が流れる現象が生じる。
この場合、T分岐部6a~6c,10a~10cで、経路Aあるいは経路Bを順方向に流れる信号と、経路Aあるいは経路Bを逆方向に流れる信号とが重ね合わさり、その結果、T分岐部6a~6c,10a~10cの出力端子7a~7c,11a~11cに現れる信号の位相が、上記の式(1)からずれてしまう現象が生じる。
そこで、ミクサ13a~13cの入力インピーダンスがハイインピーダンスでない場合には、T分岐部6a~6c,10a~10cとミクサ13a~13cとの間に、入力インピーダンスがハイインピーダンスとなる回路をそれぞれ接続するようにすればよい。
図3の例では、入力インピーダンスがハイインピーダンスとなる回路として、T分岐部6a~6cの出力端子7a~7cと、ミクサ13a~13cの入力端子14a-1~14c-1との間に、増幅器18a-1~18c-1を接続し、また、T分岐部10a~10cの出力端子11a~11cとミクサ13c~13aの入力端子14c-2~14a-2との間に、増幅器18c-2~18a-2を接続している。
増幅器18a-1~18c-1,18a-2~18c-2としては、例えば、オペアンプを用いたボルテージホロワを用いることができる。ボルテージホロワは、入力インピーダンスがハイインピーダンスで、電圧増幅率が1のバッファとして用いられる。
ただし、電圧増幅率は必ずしも1である必要はなく、電圧増幅率が1より大きい、あるいは、電圧増幅率が1より小さい他の回路を用いてもよい。
なお、T分岐部6a~6c,10a~10cの出力端子7a~7c,11a~11cと、増幅器18a-1~18c-1,18a-2~18c-2の入力端子とは、伝送線路を介さずに直接に接続することが望ましい。
上記の式(2)より、伝送線路4aの角周波数ωにおける電気長θ1と、伝送線路8aの角周波数ωにおける電気長θ4とが異なっていても、出力端子16a~16cから出力される信号の位相が同相になることからが明らかであるため、電力分配器3の2つの出力端子から出力される信号の位相が異なっていてもよいことは明らかである。
2つの出力端子から出力される信号の位相が異なる電力分配器3としては、例えば、90度ハイブリッドや180度ハイブリッドなどが考えられる。
図4はT分岐部6a~6c,10a~10cの代わりに用いる方向性結合器を示す説明図である。
図4Aは4つの端子を有する方向性結合器21を示し、図4Bは3つの端子を有する方向性結合器23を示している。
3つの端子を有する方向性結合器23は、4つの端子を有する方向性結合器21から端子22dを取り除いたものである。
信号発生器2から発生される信号の周波数が時間的に変化しても、各時刻において、出力端子16a~16cに現れる信号の位相は全て同相になる。
図3の例では、入力インピーダンスがハイインピーダンスとなる回路として、T分岐部6a~6cの出力端子7a~7cと、ミクサ13a~13cの入力端子14a-1~14c-1との間に、増幅器18a-1~18c-1を接続し、また、T分岐部10a~10cの出力端子11a~11cとミクサ13c~13aの入力端子14c-2~14a-2との間に、増幅器18c-2~18a-2を接続しているものを示している。
このとき、図3の例では、増幅器18a-1~18c-1,18a-2~18c-2が、伝送線路を介さずに、直接、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2と接続されているものを示しているが、増幅器18a-1~18c-1,18a-2~18c-2が、伝送線路を介して、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2と接続されているものであってもよい。
以下、このように構成した形態を実施の形態2として、図5を用いて説明する。
伝送線路31a-1は一端が増幅器18a-1と接続され、他端がミクサ13aの入力端子14a-1と接続されている。
伝送線路31a-2は一端が増幅器18a-2と接続され、他端がミクサ13aの入力端子14a-2と接続されている。
伝送線路31b-1は一端が増幅器18b-1と接続され、他端がミクサ13bの入力端子14b-1と接続されている。
伝送線路31b-2は一端が増幅器18b-2と接続され、他端がミクサ13bの入力端子14b-2と接続されている。
伝送線路31c-1は一端が増幅器18c-1と接続され、他端がミクサ13cの入力端子14c-1と接続されている。
伝送線路31c-2は一端が増幅器18c-2と接続され、他端がミクサ13cの入力端子14c-2と接続されている。
伝送線路32bは一端がミクサ13bと接続され、他端がフィルタ15bと接続されている。
伝送線路32cは一端がミクサ13cと接続され、他端がフィルタ15cと接続されている。
この実施の形態2では、伝送線路31a-1,31b-1,31c-1,31a-2,31b-2,31c-2の電気長及び伝送線路32a,32b,32cの電気長が下記の通りであるものとする。
伝送線路31a-1の角周波数ωにおける電気長=θ5
伝送線路31b-1の角周波数ωにおける電気長=θ6
伝送線路31c-1の角周波数ωにおける電気長=θ7
伝送線路31a-2の角周波数ωにおける電気長=θ8
伝送線路31b-2の角周波数ωにおける電気長=θ9
伝送線路31c-2の角周波数ωにおける電気長=θ10
伝送線路32a,32b,32cの角周波数ωにおける電気長=θ11
θ5+θ8=θ6+θ9=θ7+θ10=α(αは定数) (3)
つまり、伝送線路31a-1と伝送線路31a-2の電気長の和(θ5+θ8)と、伝送線路31b-1と伝送線路31b-2の電気長の和(θ6+θ9)と、伝送線路31c-1と伝送線路31c-2の電気長の和(θ7+θ10)とが等しい関係がある。
電力分配器3から伝送線路4に出力された信号は、T分岐部6a~6cを経て、終端器5に終端される。
また、電力分配器3から伝送線路8に出力された信号は、T分岐部10a~10cを経て、終端器9に終端される。
また、伝送線路8に挿入されているT分岐部10a~10cは、入力ポートINから信号が入力されると、入力ポートINと出力ポートOUTを結ぶ線路に分岐線路が設けられているため、その信号の一部を出力端子11a~11cに出力する。
T分岐部6a~6c,10a~10cの出力端子7a~7c,11a~11cに現れる信号の位相は、上記実施の形態1と同様に、上記の式(1)のように表され、これらの信号の位相はすべて異なるものとなる。
増幅器18a-1~18c-1,18a-2~18c-2は、T分岐部6a~6c,10a~10cの出力端子7a~7c,11a~11cに現れている信号の電圧を増幅し、電圧増幅後の信号を伝送線路31a-1~31c-1,31a-2~31c-2に出力する。
ミクサ13bは、入力端子14b-1から伝送線路31b-1に通った信号が入力され、入力端子14b-2から伝送線路31b-2に通った信号が入力されると、入力された2つの信号を混合して混合信号を伝送線路32bに出力する。
ミクサ13cは、入力端子14c-1から伝送線路31c-1に通った信号が入力され、入力端子14c-2から伝送線路31c-2に通った信号が入力されると、入力された2つの信号を混合して混合信号を伝送線路32cに出力する。
フィルタ15bは、ミクサ13bから伝送線路32bを介して混合信号を受けると、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15bを通過した2つの信号の位相の和の成分が出力端子16bから出力される。
フィルタ15cは、ミクサ13cから伝送線路32cを介して混合信号を受けると、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15cを通過した2つの信号の位相の和の成分が出力端子16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ4+θ3+θ2+θ8)+θ11
=2ωt+θ1+θ2+θ3+θ4+θ5+θ8+θ11
出力端子16b:
(ωt+θ1+θ2+θ6)+(ωt+θ4+θ3+θ9)+θ11
=2ωt+θ1+θ2+θ3+θ4+θ6+θ9+θ11
出力端子16c:
(ωt+θ1+θ2+θ3+θ7)+(ωt+θ4+θ10)+θ11
=2ωt+θ1+θ2+θ3+θ4+θ7+θ10+θ11
(4)
2ωt+θ1+θ2+θ3+θ4+α+θ11 (5)
したがって、増幅器18a-1~18c-1,18a-2~18c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2とが離れている位置にあり、その間を伝送線路31a-1~31c-1,31a-2~31c-2で接続する必要がある場合でも、各回路素子17の間を等しい電気長にすることに加えて、伝送線路31a-1~31c-1,31a-2~31c-2の電気長を式(3)のような関係にするだけで、回路素子17a~17cの出力端子16a~16cから同相の信号を出力することができる。
上記実施の形態1では、回路素子17a~17cの出力端子16a~16cに現れる信号の周波数が、信号発生器2から発生される信号の周波数の2倍になる同相分配回路を示しているが、この実施の形態3では、回路素子17a~17cの出力端子16a~16cに現れる信号の周波数が、信号発生器2から発生される信号の周波数と等しくなる同相分配回路について説明する。
この実施の形態3では、信号発生回路1が信号発生器2と2分周器41を含んでいる。
2分周器41は信号発生器2により発生された信号の周波数を2分の1にした上で2つに分配し、分配した一方の信号を非反転出力端子42に出力し、分配した他方の信号を反転出力端子43に出力する。
2分周器41の非反転出力端子42から出力される信号の位相と反転出力端子43から出力される信号の位相とは180度異なっている。
図6では、非反転出力端子42と反転出力端子43が、2分周器41の外部に設けられているように表しているが、2分周器41の内部に設けられているものであってもよい。
また、図6では、2分周器41の非反転出力端子42が伝送線路4aに接続されて、2分周器41の反転出力端子43が伝送線路8aに接続されている例を示しているが、2分周器41の非反転出力端子42が伝送線路8aに接続されて、2分周器41の反転出力端子43が伝送線路4aに接続されているものであってもよい。
信号発生回路1の2分周器41は、信号発生器2が信号を発生すると、その信号の周波数を2分の1にした上で2つに分配し、分配した一方の信号を非反転出力端子42に出力し、分配した他方の信号を反転出力端子43に出力する。
信号発生器2から出力される信号の角周波数がωであり、時刻tでは、信号発生器2から出力される信号の電圧がcos(ωt)で表わされるものとすると、2分周器41の非反転出力端子42から出力される信号の電圧は、cos(0.5ωt)で表わされ、2分周器41の反転出力端子43から出力される信号の電圧は、cos(0.5ωt+π)で表わされる。
また、伝送線路8aの角周波数0.5ωにおける電気長がθ4、伝送線路8bの角周波数0.5ωにおける電気長がθ3、伝送線路8cの角周波数0.5ωにおける電気長がθ2であるものとする。
また、2分周器41から伝送線路8に出力された信号は、T分岐部10a~10cを経て、終端器9に終端される。
また、伝送線路8に挿入されているT分岐部10a~10cは、入力ポートINから信号が入力されると、入力ポートINと出力ポートOUTを結ぶ線路に分岐線路が設けられているため、その信号の一部を出力端子11a~11cに出力する。
しかし、ミクサ13a~13cの入力インピーダンスがハイインピーダンスであるため、出力端子7a~7c,11c~11aには電圧が現れるが、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2に向かって電流は流れない。
出力端子7a :0.5ωt+θ1
出力端子7b :0.5ωt+θ1+θ2
出力端子7c :0.5ωt+θ1+θ2+θ3
出力端子11a:0.5ωt+θ4+π
出力端子11b:0.5ωt+θ4+θ3+π
出力端子11c:0.5ωt+θ4+θ3+θ2+π
(6)
2分周器41の反転出力端子43から出力される信号の電圧が、cos(0.5ωt+π)で表わされるため、T分岐部10a~10cの出力端子11a~11cに現れる信号の位相にはπが含まれている。
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(0.5ωt+θ1)+(0.5ωt+θ4+θ3+θ2+π)
=ωt+θ1+θ2+θ3+θ4+π
出力端子16b:
(0.5ωt+θ1+θ2)+(0.5ωt+θ4+θ3+π)
=ωt+θ1+θ2+θ3+θ4+π
出力端子16c:
(0.5ωt+θ1+θ2+θ3)+(0.5ωt+θ4+π)
=ωt+θ1+θ2+θ3+θ4+π
(7)
式(7)から明らかなように、回路素子17a~17cの出力端子16a~16cに現れる信号の位相が全て同相になる。
したがって、電力分配器3の代わりに2分周器41を用いた場合でも、上記実施の形態1と同様に、回路素子17a~17cの出力端子16a~16cから同相の信号を出力することができる。また、信号発生器2から発生される信号の周波数と等しい周波数の信号を回路素子17a~17cの出力端子16a~16cから出力することができる。即ち、信号発生器2から発生される信号の角周波数ωと、回路素子17a~17cの出力端子16a~16cから出力される信号の角周波数ωとを一致させることができる。
DDSは、制御信号入力端子、クロック信号入力端子及び出力端子を有しており、制御信号入力端子から入力される制御信号によって、クロック信号入力端子から入力されるクロック信号の周波数を変化させて、出力端子から周波数変化後のクロック信号を出力することができるため、可変分周器と同等の機能を持たせることが可能になる。
さらに、2分周器41の代わりに接続する可変分周器やDDSは、その出力端子から出力する信号の周波数を時間的に変化させるようにしてもよい。周波数を時間的に変化させても、上記実施の形態1と同様に、各時刻において、回路素子17a~17cの出力端子16a~16cに現れる信号の位相を全て同相にすることができる。
上記実施の形態1,2では、T分岐部6a~6cの出力端子7a~7cとミクサ13a~13cの入力端子14a-1~14c-1との間に、増幅器18a-1~18c-1を接続するとともに、T分岐部10c~10aの出力端子11c~11aとミクサ13a~13cの入力端子14a-2~14c-2との間に、増幅器18a-2~18c-2を接続するものを示したが、さらに、増幅器18a-1~18c-1,18a-2~18c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間に、減衰器を接続するようにしてもよい。
減衰器51a-1は増幅器18a-1とミクサ13aの入力端子14a-1との間に接続されており、増幅器18a-1から出力された信号の振幅を減衰し、振幅減衰後の信号をミクサ13aの入力端子14a-1に与える。
減衰器51a-2は増幅器18a-2とミクサ13aの入力端子14a-2との間に接続されており、増幅器18a-2から出力された信号の振幅を減衰し、振幅減衰後の信号をミクサ13aの入力端子14a-2に与える。
減衰器51b-2は増幅器18b-2とミクサ13bの入力端子14b-2との間に接続されており、増幅器18b-2から出力された信号の振幅を減衰し、振幅減衰後の信号をミクサ13bの入力端子14b-2に与える。
減衰器51c-2は増幅器18c-2とミクサ13cの入力端子14c-2との間に接続されており、増幅器18c-2から出力された信号の振幅を減衰し、振幅減衰後の信号をミクサ13cの入力端子14c-2に与える。
例えば、電力分配器3により分配される2つの信号の振幅が等しくない場合や、伝送線路4a~4c,8a~8cで損失があるために、伝送線路4a~4c,8a~8cの長さに応じて、電力分配器3により分配された2つの信号の振幅が減衰する場合には、ミクサ13a~13cにそれぞれ入力される2つの信号の振幅の組み合わせが異なるものとなる。
ミクサ13a~13cにそれぞれ入力される2つの信号の振幅の組み合わせが異なる場合、ミクサ13a~13cを構成する非線形素子の動作点が異なり、ミクサ13a~13cにそれぞれ入力される2つの信号の位相の和が、それぞれのミクサ13a~13cどうしで同じであっても、ミクサ13a~13cから出力される信号の位相が異なってしまう場合がある。
これにより、ミクサ13a~13cを構成する非線形素子の動作点が同じになるため、ミクサ13a~13cから出力される信号の位相を同相にすることができる。
また、図9の構成において、増幅器52a~52c又は増幅器53a~53cのいずれか一方を接続するようにしてもよい。
この実施の形態4では、増幅器18a-1~18c-1,18a-2~18c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間に、減衰器51a-1~51c-1,51a-2~51c-2を接続しているものを示しているが、増幅器18a-1~18c-1,18a-2~18c-2を実装している同相分配回路であれば、上記実施の形態1~3で示しているいずれの同相分配回路に対しても、減衰器51a-1~51c-1,51a-2~51c-2を適用することができる。
上記実施の形態1~4では、T分岐部6a~6c,10a~10cが伝送線路4,8に挿入されているものを示したが、T分岐部6a~6c,10a~10cの代わりにサーキュレータが伝送線路4,8に挿入されているものであってもよい。
図11はサーキュレータ61,63を示す説明図である。
サーキュレータ61,63は決められた方向にのみ信号を伝送し、逆方向には伝送しない特性を有する非可逆回路の1種である。
サーキュレータ61,63は3つの端子65a,65b,65cを有しており、端子65aから入力された信号は端子65bから出力され、端子65bから入力された信号は端子65cから出力され、端子65cから入力された信号は端子65aから出力されるが、それぞれ逆方向には信号が伝送されない。
サーキュレータ61bは端子65aが伝送線路4bと接続され、端子65bが出力端子62bと接続され、端子65cが伝送線路4cと接続されている。
サーキュレータ61cは端子65aが伝送線路4cと接続され、端子65bが出力端子62cと接続され、端子65cが終端器5と接続されている。
出力端子62aはサーキュレータ61aの端子65b及び伝送線路31a-1と接続されている。
出力端子62bはサーキュレータ61bの端子65b及び伝送線路31b-1と接続されている。
出力端子62cはサーキュレータ61cの端子65b及び伝送線路31c-1と接続されている。
なお、サーキュレータ61a,61b,61cは第1分岐回路を構成している。
サーキュレータ63bは端子65aが伝送線路8bと接続され、端子65bが出力端子64bと接続され、端子65cが伝送線路8cと接続されている。
サーキュレータ63cは端子65aが伝送線路8cと接続され、端子65bが出力端子64cと接続され、端子65cが終端器9と接続されている。
出力端子64aはサーキュレータ63aの端子65b及び伝送線路31c-2と接続されている。
出力端子64bはサーキュレータ63bの端子65b及び伝送線路31b-2と接続されている。
出力端子64cはサーキュレータ63cの端子65b及び伝送線路31a-2と接続されている。
なお、サーキュレータ63a,63b,63cは第2分岐回路を構成している。
この実施の形態5では、伝送線路31a-1,31b-1,31c-1,31a-2,31b-2,31c-2の電気長が下記の通りであるものとする。
伝送線路31a-1の角周波数ωにおける電気長=θ5
伝送線路31b-1の角周波数ωにおける電気長=θ6
伝送線路31c-1の角周波数ωにおける電気長=θ7
伝送線路31a-2の角周波数ωにおける電気長=θ5
伝送線路31b-2の角周波数ωにおける電気長=θ6
伝送線路31c-2の角周波数ωにおける電気長=θ7
したがって、伝送線路31a-1と伝送線路31a-2の電気長がθ5で等しく、伝送線路31b-1と伝送線路31b-2の電気長がθ6で等しく、伝送線路31c-1と伝送線路31c-2の電気長がθ7で等しい関係がある。
サーキュレータ61aは、電力分配器3から出力された信号が端子65aに与えられると、端子65bから当該信号を出力する。サーキュレータ61aの端子65bから出力された信号は、出力端子62a及び伝送線路31a-1を介して、ミクサ13aの入力端子14a-1まで伝送される。しかし、ミクサ13aの入力インピーダンスがハイインピーダンスであるため、ミクサ13aの入力端子14a-1に到達した信号は反射され、伝送線路31a-1及び出力端子62aを介して、サーキュレータ61aの端子65bまで伝送される。
サーキュレータ61aは、ミクサ13aによって反射された信号が端子65bに与えられると、端子65cから当該信号を出力する。サーキュレータ61aの端子65cから出力された信号は、伝送線路4bを介して、サーキュレータ61bの端子65aまで伝送される。
サーキュレータ61cは、サーキュレータ61aと同様に動作し、サーキュレータ61bから出力された信号を、出力端子62c及び伝送線路31c-1を介して、ミクサ13cに出力したのち、ミクサ13cに反射されて戻ってきた信号を終端器5に出力する。
サーキュレータ63bは、サーキュレータ61aと同様に動作し、サーキュレータ63aから出力された信号を、出力端子64b及び伝送線路31b-2を介して、ミクサ13bに出力したのち、ミクサ13bに反射されて戻ってきた信号を、伝送線路8cを介して、サーキュレータ63cに出力する。
サーキュレータ63cは、サーキュレータ61aと同様に動作し、サーキュレータ63bから出力された信号を、出力端子64c及び伝送線路31a-2を介して、ミクサ13aに出力したのち、ミクサ13aに反射されて戻ってきた信号を終端器9に出力する。
入力端子14a-1:ωt+θ1+θ5
入力端子14b-1:ωt+θ1+2×θ5+θ2+θ6
入力端子14c-1:ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7
入力端子14a-2:ωt+θ4+2×θ7+θ3+2×θ6+θ2+θ5
入力端子14b-2:ωt+θ4+2×θ7+θ3+θ6
入力端子14c-2:ωt+θ4+θ7
(8)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ4+2×θ7+θ3+2×θ6+θ2+θ5)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
出力端子16b:
(ωt+θ1+2×θ5+θ2+θ6)+(ωt+θ4+2×θ7+θ3+θ6)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
出力端子16c:
(ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7)+(ωt+θ4+θ7)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
(9)
式(9)から明らかなように、回路素子17a~17cの出力端子16a~16cに現れる信号の位相が全て同相になる。
この実施の形態5のように、サーキュレータ61a~61c,63a~63cを用いた場合、各回路素子17の間を等しい電気長にすることに加えて、伝送線路31a-1と伝送線路31a-2、伝送線路31b-1と伝送線路31b-2、伝送線路31c-1と伝送線路31c-2の電気長をそれぞれ等しい関係にするが、伝送線路31a-1~31c-1,31a-2~31c-2がなければ、上記実施の形態1のように、各回路素子17の間の電気長が等しければよい。
上記実施の形態1では、同相分配回路が伝送線路4と伝送線路8を備え、電力分配器3が信号発生器2により発生された信号を伝送線路4と伝送線路8に分配するものを示したが、同相分配回路が往路と復路からなる伝送線路を備えることで、電力分配器3を不要して、回路サイズの更なる小型化を図るようにしてもよい。
伝送線路70は信号を双方向に伝搬する線路であり、例えば、同軸ケーブル、導波管、もしくは、プリント基板上に形成されたマイクロストリップ線路などで構成され、伝送線路70a,70b,70c,70d,70e,70fを含んでいる。
伝送線路70a,70b,70cと伝送線路70dの中間点より前半部分からなる経路が往路Aであり、また、伝送線路70dの中間点より後半部分と伝送線路70e,70fからなる経路が復路Bである。
この実施の形態6では、T分岐部6a,6b,6cが伝送線路70の往路Aに挿入され、T分岐部10a,10b,10cが伝送線路70の復路Bに挿入されている。
また、伝送線路70aの角周波数ωにおける電気長がθ1、伝送線路70bの角周波数ωにおける電気長がθ2、伝送線路70cの角周波数ωにおける電気長がθ3であるものとする。
さらに、伝送線路70dの角周波数ωにおける電気長がθ4、伝送線路70eの角周波数ωにおける電気長がθ3、伝送線路70fの角周波数ωにおける電気長がθ2であるものとする。
また、往路Aの始点から数えて2番目のT分岐部6bと3番目のT分岐部6cとの間における伝送線路70cの電気長θ3と、復路Bの終点から数えて2番目のT分岐部10bと3番目のT分岐部10aとの間における伝送線路70eの電気長θ3とが等しくなっている。
ただし、この実施の形態6では、説明の簡単化のため、T分岐部6a~6c,10a~10c及びフィルタ15a~15cが信号を伝送することに伴う位相の変化を無視できるものとする。
また、T分岐部10cと終端器5、ミクサ13a~13cとフィルタ15a~15cが、伝送経路を介さずに直接接続されているものとする。
また、ミクサ13a~13cの入力インピーダンスがハイインピーダンスであるものとする。
信号発生器2から伝送線路70aに出力された信号は、T分岐部6a~6c,10a~10cを経て、終端器5に終端される。
このとき、伝送線路70の往路Aに挿入されているT分岐部6a~6cは、入力ポートINから信号が入力されると、入力ポートINと出力ポートOUTを結ぶ線路に分岐線路が設けられているため、その信号の一部を出力端子7a~7cに出力する。
また、伝送線路70の復路Bに挿入されているT分岐部10a~10cは、入力ポートINから信号が入力されると、入力ポートINと出力ポートOUTを結ぶ線路に分岐線路が設けられているため、その信号の一部を出力端子11a~11cに出力する。
しかし、ミクサ13a~13cの入力インピーダンスがハイインピーダンスであるため、出力端子7a~7c,11c~11aには電圧が現れるが、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2に向かって電流は流れない。
出力端子7a :ωt+θ1
出力端子7b :ωt+θ1+θ2
出力端子7c :ωt+θ1+θ2+θ3
出力端子11a:ωt+θ1+θ2+θ3+θ4
出力端子11b:ωt+θ1+θ2+2×θ3+θ4
出力端子11c:ωt+θ1+2×θ2+2×θ3+θ4
(10)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1)+(ωt+θ1+2×θ2+2×θ3+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4
出力端子16b:
(ωt+θ1+θ2)+(ωt+θ1+θ2+2×θ3+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4
出力端子16c:
(ωt+θ1+θ2+θ3)+(ωt+θ1+θ2+θ3+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4
(11)
式(11)から明らかなように、回路素子17a~17cの出力端子16a~16cに現れる信号の位相が全て同相になる。
この実施の形態6でも、同相分配回路のレイアウト条件が、上記実施の形態1と同様に、各回路素子17の間の電気長が等しいという条件だけである。
したがって、回路構成がトーナメント型の同相分配回路のように、複数の電力分配器を伝送線路によってトーナメント型に接続する必要がないため、回路構成がトーナメント型の同相分配回路よりも、小さなスペースに同相分配回路を形成することができ、回路サイズの小型化を図ることができる。
上記実施の形態1の場合、同相分配回路が伝送線路4と伝送線路8を備え、電力分配器3が信号発生器2により発生された信号を伝送線路4と伝送線路8に分配するものであるため、図2に示した通り、直線状に並べている8個の回路素子17のうち、両端に配置されている2つの回路素子17まで、伝送線路4と伝送線路8を引き回す必要がある。
これに対して、この実施の形態6の場合、信号発生器2を1本の伝送線路70の一端に接続すればよいため、伝送線路70の引き回しを短くすることができる。また、電力分配器3が不要である。したがって、上記実施の形態1よりも更に同相分配回路の回路サイズを小型にすることができる。
また、伝送線路70dがT分岐部6cとT分岐部10aを接続しているが、伝送線路70dを用いずに、T分岐部6cとT分岐部10aを直接接続するようにしてもよい。
例えば、図4に示すような方向性結合器21又は方向性結合器23を用いる場合、T分岐部6a~6c,10a~10cの出力端子7a~7c,11a~11cを方向性結合器21又は方向性結合器23の端子22bに対応させ、端子22aを入力側の伝送線路と接続して、端子22cを出力側の伝送線路と接続すれば、T分岐部6a~6c,10a~10cと同様の動作を実現することができる。
この実施の形態6では、増幅器18a-1~18c-1,18a-2~18c-2、減衰器51a-1~51c-1,51a-2~51c-2、増幅器52a-1~52c-1,53a-2~53c-2などを実装していない同相分配回路に対して、信号を双方向に伝搬する伝送線路70を適用しているものを示しているが、上記実施の形態1~4のように、増幅器18a-1~18c-1,18a-2~18c-2、減衰器51a-1~51c-1,51a-2~51c-2、増幅器52a-1~52c-1,53a-2~53c-2などを実装している同相分配回路に対して、信号を双方向に伝搬する伝送線路70を適用するようにしてもよい。
上記実施の形態6では、T分岐部6a~6c,10a~10cが伝送線路70に挿入されているものを示したが、T分岐部6a~6c,10a~10cの代わりにサーキュレータが伝送線路70に挿入されているものであってもよい。
図14はこの発明の実施の形態7による同相分配回路を示す構成図であり、図14において、図10及び図12と同一符号は同一または相当部分を示すので説明を省略する。
また、この実施の形態7では、上記実施の形態5と同様に、伝送線路31a-1,31a-2の角周波数ωにおける電気長がθ5、伝送線路31b-1,31b-2の角周波数ωにおける電気長がθ6、伝送線路31c-1,31c-2の角周波数ωにおける電気長がθ7であるものとする。
サーキュレータ61a~61c,63a~63cは、いずれも図11で示したサーキュレータと同様の端子65a~65cを有するものとする。
信号発生器2は、信号を発生して、その信号を伝送線路70aに出力する。
サーキュレータ61aは、信号発生器2から出力された信号が端子65aに与えられると、端子65bから当該信号を出力する。サーキュレータ61aの端子65bから出力された信号は、出力端子62a及び伝送線路31a-1を介して、ミクサ13aの入力端子14a-1まで伝送される。しかし、ミクサ13aの入力インピーダンスがハイインピーダンスであるため、ミクサ13aの入力端子14a-1に到達した信号は反射され、伝送線路31a-1及び出力端子62aを介して、サーキュレータ61aの端子65bまで伝送される。
サーキュレータ61aは、ミクサ13aによって反射された信号が端子65bに与えられると、端子65cから当該信号を出力する。端子65cから出力された信号は、伝送線路70bを介して、サーキュレータ61bの端子65aまで伝送される。
サーキュレータ61cは、サーキュレータ61aと同様に動作し、サーキュレータ61bから出力された信号を、出力端子62c及び伝送線路31c-1を介して、ミクサ13cに出力したのち、ミクサ13cに反射されて戻ってきた信号を、伝送線路70dを介して、サーキュレータ63aに出力する。
サーキュレータ63bは、サーキュレータ61aと同様に動作し、サーキュレータ63aから出力された信号を、出力端子64b及び伝送線路31b-2を介して、ミクサ13bに出力したのち、ミクサ13bに反射されて戻ってきた信号を、伝送線路70fを介して、サーキュレータ63cに出力する。
サーキュレータ63cは、サーキュレータ61aと同様に動作し、サーキュレータ63bから出力された信号を、出力端子64c及び伝送線路31a-2を介して、ミクサ13aに出力したのち、ミクサ13aに反射されて戻ってきた信号を終端器5に出力する。
入力端子14a-1:ωt+θ1+θ5
入力端子14b-1:ωt+θ1+2×θ5+θ2+θ6
入力端子14c-1:ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7
入力端子14a-2:ωt+θ1+3×θ5+2×θ2+4×θ6+2×θ3+4×θ7+θ4
入力端子14b-2:ωt+θ1+2×θ5+θ2+3×θ6+2×θ3+4×θ7+θ4
入力端子14c-2:ωt+θ1+2×θ5+θ2+2×θ6+θ3+3×θ7+θ4
(12)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ1+3×θ5+2×θ2+4×θ6+2×θ3+4×θ7+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4+4×(θ5+θ6+θ7)
出力端子16b:
(ωt+θ1+2×θ5+θ2+θ6)+(ωt+θ1+2×θ5+θ2+3×θ6+2×θ3+4×θ7+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4+4×(θ5+θ6+θ7)
出力端子16c:
(ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7)+(ωt+θ1+2×θ5+θ2+2×θ6+θ3+3×θ7+θ4)
=2×(ωt+θ1+θ2+θ3)+θ4+4×(θ5+θ6+θ7)
(13)
式(13)から明らかなように、回路素子17a~17cの出力端子16a~16cに現れる信号の位相が全て同相になる。
この実施の形態7では、同相分配回路のレイアウト条件が、各回路素子17の間の電気長が等しいという条件と、伝送線路31a-1と伝送線路31a-2、伝送線路31b-1と伝送線路31b-2、伝送線路31c-1と伝送線路31c-2の電気長がそれぞれ等しいという条件だけである。
したがって、回路構成がトーナメント型の同相分配回路のように、複数の電力分配器を伝送線路によってトーナメント型に接続する必要がないため、回路構成がトーナメント型の同相分配回路よりも、小さなスペースに同相分配回路を形成することができ、回路サイズの小型化を図ることができる。
上記実施の形態1~5では、同相分配回路が、物理的に異なる2つの伝送線路4,8を備えているものを示したが、信号を双方向に伝搬する1本の伝送線路で構成するようにしてもよい。
伝送線路80は例えば同軸ケーブル、導波管、もしくは、プリント基板上に形成されたマイクロストリップ線路などで構成されるものである。伝送線路80は信号を双方向に伝搬する線路であり、一端がサーキュレータ81aと接続されて、他端がサーキュレータ82aと接続されている。
伝送線路80の途中には、方向性結合器83a,83b,83cが挿入されており、第1の方向に信号が流れる経路、即ち、サーキュレータ81aから方向性結合器83a→方向性結合器83b→方向性結合器83c→サーキュレータ82aに向けて信号が流れる経路を経路A、第2の方向に信号が流れる経路、即ち、サーキュレータ82aから方向性結合器83c→方向性結合器83b→方向性結合器83a→サーキュレータ81aに向けて信号が流れる経路を経路Bとする。
以下、サーキュレータ81aと方向性結合器83a間の伝送線路を80a、方向性結合器83aと方向性結合器83b間の伝送線路を80b、方向性結合器83bと方向性結合器83c間の伝送線路を80c、方向性結合器83cとサーキュレータ82a間の伝送線路を80dで表すものとする。したがって、伝送線路80は、伝送線路80a,80b,80c,80dを含んでいる。伝送線路80a,80b,80c,80dの特性インピーダンスは全て同一であることが望ましい。
サーキュレータ81aは電力分配器3により分配された一方の信号を伝送線路80aの一端に出力する一方、伝送線路80aの一端から出力された信号を終端器9に出力する。
なお、サーキュレータ81aは、図11に示すように、3つの端子65a,65b,65cを有しており、サーキュレータ81aの端子65aが電力分配器3、端子65bが伝送線路80aの一端、端子65cが終端器9と接続されている。これにより、電力分配器3から出力された経路Bの信号は終端器9で終端されるため、伝送線路80aの一端で反射されて、電力分配器3の方向に逆流することはない。
サーキュレータ82aは電力分配器3により分配された他方の信号を伝送線路80dの他端に出力する一方、伝送線路80dの他端から出力された信号を終端器5に出力する。 なお、サーキュレータ82aは、図11に示すように、3つの端子65a,65b,65cを有しており、サーキュレータ82aの端子65aが電力分配器3、端子65bが伝送線路80dの他端、端子65cが終端器5と接続されている。これにより、電力分配器3から出力された経路Aの信号は終端器5で終端されるため、伝送線路80dの他端で反射されて、電力分配器3の方向に逆流することはない。
図15では、電力分配器3とサーキュレータ81a,82aが直接に接続されている例を示しているが、電力分配器3とサーキュレータ81a,82aの間に伝送線路が接続されているものであってもよい。
なお、方向性結合器83aは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路80aの他端、端子22bが出力端子84a-1、端子22cが伝送線路80bの一端、端子22dが出力端子84a-2と接続されている。
なお、方向性結合器83bは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路80bの他端、端子22bが出力端子84b-1、端子22cが伝送線路80cの一端、端子22dが出力端子84b-2と接続されている。
なお、方向性結合器83cは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路80cの他端、端子22bが出力端子84c-1、端子22cが伝送線路80dの一端、端子22dが出力端子84c-2と接続されている。
方向性結合器83a,83b,83cは分岐回路を構成している。
この実施の形態8では、伝送線路80a,80b,80c,80d及び伝送線路31a-1,31b-1,31c-1,31a-2,31b-2,31c-2の電気長が下記の通りであるものとする。
伝送線路80aの角周波数ωにおける電気長 =θ1
伝送線路80bの角周波数ωにおける電気長 =θ2
伝送線路80cの角周波数ωにおける電気長 =θ3
伝送線路80dの角周波数ωにおける電気長 =θ4
伝送線路31a-1の角周波数ωにおける電気長=θ5
伝送線路31b-1の角周波数ωにおける電気長=θ6
伝送線路31c-1の角周波数ωにおける電気長=θ7
伝送線路31a-2の角周波数ωにおける電気長=θ8
伝送線路31b-2の角周波数ωにおける電気長=θ9
伝送線路31c-2の角周波数ωにおける電気長=θ10
つまり、伝送線路31a-1と伝送線路31a-2の電気長の和(θ5+θ8)と、伝送線路31b-1と伝送線路31b-2の電気長の和(θ6+θ9)と、伝送線路31c-1と伝送線路31c-2の電気長の和(θ7+θ10)とがいずれもαであり、等しいという関係がある。
サーキュレータ81aは、電力分配器3から信号を受けると、その信号を伝送線路80aの一端に出力する。これにより、電力分配器3から出力された信号は、経路Aの信号として、伝送線路80を伝送される。
サーキュレータ82aは、電力分配器3から信号を受けると、その信号を伝送線路80dの他端に出力する。これにより、電力分配器3から出力された信号は、経路Bの信号として、伝送線路80を伝送される。
また、方向性結合器83aは、伝送線路80bを流れてきた経路Bの信号が入力されると、その信号の一部を伝送線路80aに出力するとともに、残りの信号を出力端子84a-2及び伝送線路31a-2を介して、ミクサ13aの入力端子14a-2に出力する。
また、方向性結合器83bは、伝送線路80cを流れてきた経路Bの信号が入力されると、その信号の一部を伝送線路80bに出力するとともに、残りの信号を出力端子84b-2及び伝送線路31b-2を介して、ミクサ13bの入力端子14b-2に出力する。
また、方向性結合器83cは、伝送線路80dを流れてきた経路Bの信号が入力されると、その信号の一部を伝送線路80cに出力するとともに、残りの信号を出力端子84c-2及び伝送線路31c-2を介して、ミクサ13cの入力端子14c-2に出力する。
なお、方向性結合器83cから伝送線路80dに出力された経路Aの信号は、サーキュレータ82aを介して、終端器5に出力されるため、終端器5で終端される。
また、方向性結合器83aから伝送線路80aに出力された経路Bの信号は、サーキュレータ81aを介して、終端器9に出力されるため、終端器9で終端される。
出力端子84a-1:ωt+θ1
出力端子84b-1:ωt+θ1+θ2
出力端子84c-1:ωt+θ1+θ2+θ3
出力端子84a-2:ωt+θ4+θ3+θ2
出力端子84b-2:ωt+θ4+θ3
出力端子84c-2:ωt+θ4
(14)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ4+θ3+θ2+θ8)
=2ωt+θ1+θ2+θ3+θ4+θ5+θ8
出力端子16b:
(ωt+θ1+θ2+θ6)+(ωt+θ4+θ3+θ9)
=2ωt+θ1+θ2+θ3+θ4+θ6+θ9
出力端子16c:
(ωt+θ1+θ2+θ3+θ7)+(ωt+θ4+θ10)
=2ωt+θ1+θ2+θ3+θ4+θ7+θ10
(15)
2ωt+θ1+θ2+θ3+θ4+α (16)
これに対して、この実施の形態8では、各々の回路素子17の間を接続する伝送線路80b,80cの電気長は、経路A、経路Bの方向に関係なく、必ず同じになるため、伝送線路の電気長のばらつきを考慮する必要がないという効果が得られる。
また、この実施の形態8では、1本の伝送線路80で構成できるため、伝送線路の本数を削減することができる効果が得られる。
なお、方向性結合器83a~83cの出力端子84a-1~84c-1,84a-2~84c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間を直接に接続して、伝送線路31a-1~31c-1,31a-2~31c-2を無くせば、伝送線路31a-1~31c-1,31a-2~31c-2の電気長のばらつきを考慮する必要がないという効果も得られる。
この実施の形態8では、上記実施の形態1~7と同様に、同相分配回路のレイアウト条件が緩和されるため、図16に示すように、複数の回路素子17を直線状に配置することができる。したがって、2次元的に大きなスペースを確保する必要がないという効果が得られる。
上記実施の形態8では、伝送線路80の途中に方向性結合器83a,83b,83cが挿入されているものを示したが、伝送線路80の途中にサーキュレータが挿入されているものであってもよい。
サーキュレータ85aは電力分配器3から出力された経路Aの信号を出力端子86a-1(第1端子)に出力し、その後、ミクサ13aの入力端子14a-1に反射されて出力端子86a-1に戻ってきた信号を、経路Aの信号として伝送線路80bに出力する。
また、サーキュレータ85aはサーキュレータ85bから出力された経路Bの信号を出力端子86a-2(第2端子)に出力し、その後、ミクサ13aの入力端子14a-2に反射されて出力端子86a-2に戻ってきた信号を、経路Bの信号として伝送線路80aに出力する。
また、サーキュレータ85bはサーキュレータ85cから出力された経路Bの信号を出力端子86b-2(第2端子)に出力し、その後、ミクサ13bの入力端子14b-2に反射されて出力端子86b-2に戻ってきた信号を、経路Bの信号として伝送線路80bに出力する。
また、サーキュレータ85cは電力分配器3から出力された経路Bの信号を出力端子86c-2(第2端子)に出力し、その後、ミクサ13cの入力端子14c-2に反射されて出力端子86c-2に戻ってきた信号を、経路Bの信号として伝送線路80cに出力する。
なお、サーキュレータ85a,85b,85cは分岐回路を構成している。
図18Aは4つの端子を有するサーキュレータ85を示す説明図であり、図18Bはそれぞれ3つの端子を有する2つのサーキュレータからなるサーキュレータ85を示す説明図である。
サーキュレータ85は、図18Aのように、4個の端子87a~87dを有する場合、端子87aから入力された信号は端子87bから出力され、端子87bから入力された信号は端子87cから出力される。
また、端子87cから入力された信号は端子87dから出力され、端子87dから入力された信号は端子87aから出力される。
また、サーキュレータ85bが図18Aのように構成されている場合、サーキュレータ85bの端子87aが伝送線路80bと接続され、端子87bが出力端子86b-1と接続され、端子87cが伝送線路80cと接続され、端子87dが出力端子86b-2と接続される。
また、サーキュレータ85cが図18Aのように構成されている場合、サーキュレータ85cの端子87aが伝送線路80cと接続され、端子87bが出力端子86c-1と接続され、端子87cが伝送線路80dと接続され、端子87dが出力端子86c-2と接続される。
この場合、サーキュレータ88aの端子87aから入力された信号は端子87bから出力され、端子87bから入力された信号は端子89aから出力される。サーキュレータ88aの端子89aから出力された信号は、サーキュレータ88bの端子89bから入力される。そして、サーキュレータ88aの端子89bから入力された信号は端子87cから出力される。
また、サーキュレータ88bの端子87cから入力された信号は端子87dから出力され、端子87dから入力された信号は端子89bから出力される。サーキュレータ88bの端子89bから出力された信号は、サーキュレータ88aの端子89aから入力される。そして、サーキュレータ88aの端子89aから入力された信号は端子87aから出力される。
この実施の形態9では、上記実施の形態5と同様に、伝送線路31a-1~31c-1,31a-2~31c-2の電気長が下記の通りであるものとする。
伝送線路31a-1の角周波数ωにおける電気長=θ5
伝送線路31b-1の角周波数ωにおける電気長=θ6
伝送線路31c-1の角周波数ωにおける電気長=θ7
伝送線路31a-2の角周波数ωにおける電気長=θ5
伝送線路31b-2の角周波数ωにおける電気長=θ6
伝送線路31c-2の角周波数ωにおける電気長=θ7
したがって、伝送線路31a-1と伝送線路31a-2の電気長がθ5で等しく、伝送線路31b-1と伝送線路31b-2の電気長がθ6で等しく、伝送線路31c-1と伝送線路31c-2の電気長がθ7で等しい関係がある。
サーキュレータ81aは、電力分配器3から信号を受けると、その信号を伝送線路80aの一端に出力する。これにより、電力分配器3から出力された信号は、経路Aの信号として、伝送線路80を伝送される。
サーキュレータ82aは、電力分配器3から信号を受けると、その信号を伝送線路80dの他端に出力する。これにより、電力分配器3から出力された信号は、経路Bの信号として、伝送線路80を伝送される。
このとき、ミクサ13aの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85aの出力端子86a-1から出力されて、ミクサ13aの入力端子14a-1に入力された信号は反射される。
その結果、ミクサ13aに反射された信号は、サーキュレータ85aの出力端子86a-1に戻ってくる。
サーキュレータ85aは、出力端子86a-1に戻ってきた信号を経路Aの信号として伝送線路80bに出力する。
このとき、ミクサ13aの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85aの出力端子86a-2から出力されて、ミクサ13aの入力端子14a-2に入力された信号は反射される。
その結果、ミクサ13aに反射された信号が、サーキュレータ85aの出力端子86a-2に戻ってくる。
サーキュレータ85aは、出力端子86a-2に戻ってきた信号を経路Bの信号として伝送線路80aに出力する。伝送線路80aに出力された経路Bの信号は、サーキュレータ81aによって終端器9に出力され、終端器9で終端される。
このとき、ミクサ13bの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85bの出力端子86b-1から出力されて、ミクサ13bの入力端子14b-1に入力された信号は反射される。
その結果、ミクサ13bに反射された信号は、サーキュレータ85bの出力端子86b-1に戻ってくる。
サーキュレータ85bは、出力端子86b-1に戻ってきた信号を経路Aの信号として伝送線路80cに出力する。
このとき、ミクサ13bの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85bの出力端子86b-2から出力されて、ミクサ13bの入力端子14b-2に入力された信号は反射される。
その結果、ミクサ13bに反射された信号が、サーキュレータ85bの出力端子86b-2に戻ってくる。
サーキュレータ85bは、出力端子86b-2に戻ってきた信号を経路Bの信号として伝送線路80bに出力する。
このとき、ミクサ13cの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85cの出力端子86c-1から出力されて、ミクサ13cの入力端子14c-1に入力された信号は反射される。
その結果、ミクサ13cに反射された信号は、サーキュレータ85cの出力端子86c-1に戻ってくる。
サーキュレータ85cは、出力端子86c-1に戻ってきた信号を経路Aの信号として伝送線路80dに出力する。伝送線路80dに出力された経路Aの信号は、サーキュレータ82aによって終端器5に出力され、終端器5で終端される。
このとき、ミクサ13cの入力インピーダンスはハイインピーダンスであるため、サーキュレータ85cの出力端子86c-2から出力されて、ミクサ13cの入力端子14c-2に入力された信号は反射される。
その結果、ミクサ13cに反射された信号が、サーキュレータ85cの出力端子86c-2に戻ってくる。
サーキュレータ85cは、出力端子86c-2に戻ってきた信号を経路Bの信号として伝送線路80cに出力する。
出力端子86a-1:ωt+θ1
出力端子86b-1:ωt+θ1+2×θ5+θ2
出力端子86c-1:ωt+θ1+2×θ5+θ2+2×θ6+θ3
出力端子86a-2:ωt+θ4+2×θ7+θ3+2×θ6+θ2
出力端子86b-2:ωt+θ4+2×θ7+θ3
出力端子86c-2:ωt+θ4
(17)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ4+2×θ7+θ3+2×θ6+θ2+θ5)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
出力端子16b:
(ωt+θ1+2×θ5+θ2+θ6)+(ωt+θ4+2×θ7+θ3+θ6)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
出力端子16c:
(ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7)+(ωt+θ4+θ7)
=2ωt+θ1+θ2+θ3+θ4+2×(θ5+θ6+θ7)
(18)
この実施の形態9でも、上記実施の形態8と同様に、各々の回路素子17の間を接続する伝送線路80b,80cの電気長は、経路A、経路Bの方向に関係なく、必ず同じになるため、伝送線路の電気長のばらつきを考慮する必要がないという効果が得られる。
また、この実施の形態9でも、1本の伝送線路80で構成できるため、伝送線路の本数を削減することができる効果が得られる。
なお、サーキュレータ85a~85cの出力端子86a-1~86c-1,86a-2~86c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間を直接に接続して、伝送線路31a-1~31c-1,31a-2~31c-2を無くせば、伝送線路31a-1~31c-1,31a-2~31c-2の電気長のばらつきを考慮する必要がないという効果も得られる。
上記実施の形態1~5では、同相分配回路が、物理的に異なる2つの伝送線路4,8を備えているものを示したが、信号を双方向に伝搬する1本の伝送線路で構成するようにしてもよい。
伝送線路90は例えば同軸ケーブル、導波管、もしくは、プリント基板上に形成されたマイクロストリップ線路などで構成されるものである。伝送線路90は信号を双方向に伝搬する線路であり、一端がサーキュレータ91aと接続されて、他端が開放されている端子92と接続されている。これにより、伝送線路90を伝送された信号は、伝送線路90の他端で反射される。
伝送線路90の途中には、方向性結合器93a,93b,93cが挿入されており、第1の方向に信号が流れる経路、即ち、信号発生器2から信号が出力されたのち、サーキュレータ91a→方向性結合器93a→方向性結合器93b→方向性結合器93c→端子92に向けて信号が流れる経路を往路A、第2の方向に信号が流れる経路、即ち、端子92から方向性結合器93c→方向性結合器93b→方向性結合器93a→サーキュレータ91aに向けて信号が流れる経路を復路Bとする。
図19では、端子92が開放されている例を示しているが、端子92で信号が反射されればよく、端子92が短絡されていてもよいし、信号を反射する負荷が端子92に接続されていてもよい。
サーキュレータ91aは信号発生器2から出力された信号を伝送線路90aの一端に出力する一方、伝送線路90aの一端から出力された信号を終端器5に出力する。
なお、サーキュレータ91aは、図11に示すように、3つの端子65a,65b,65cを有しており、サーキュレータ91aの端子65aが伝送線路90aの一端、端子65bが終端器5、端子65cが信号発生器2と接続されている。これにより、信号発生器2から出力された信号は、往路Aの信号として伝送線路90に入力される一方、伝送線路90aの一端から出力された復路Bの信号は終端器5で終端される。
なお、方向性結合器93aは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路90aの他端、端子22bが出力端子94a-1、端子22cが伝送線路90bの一端、端子22dが出力端子94a-2と接続されている。
なお、方向性結合器93bは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路90bの他端、端子22bが出力端子94b-1、端子22cが伝送線路90cの一端、端子22dが出力端子94b-2と接続されている。
なお、方向性結合器93cは、図4Aに示すように、4つの端子を有しており、端子22aが伝送線路90cの他端、端子22bが出力端子94c-1、端子22cが伝送線路90dの一端、端子22dが出力端子94c-2と接続されている。
方向性結合器93a,93b,93cは分岐回路を構成している。
図19では、方向性結合器93cと端子92の間に伝送線路90dを接続している例を示しているが、方向性結合器93cと端子92を直接に接続して、伝送線路90dを省略するようにしてもよい。
この実施の形態10では、伝送線路90a,90b,90c,90d及び伝送線路31a-1,31b-1,31c-1,31a-2,31b-2,31c-2の電気長が下記の通りであるものとする。
伝送線路90aの角周波数ωにおける電気長 =θ1
伝送線路90bの角周波数ωにおける電気長 =θ2
伝送線路90cの角周波数ωにおける電気長 =θ3
伝送線路90dの角周波数ωにおける電気長 =θ4
伝送線路31a-1の角周波数ωにおける電気長=θ5
伝送線路31b-1の角周波数ωにおける電気長=θ6
伝送線路31c-1の角周波数ωにおける電気長=θ7
伝送線路31a-2の角周波数ωにおける電気長=θ8
伝送線路31b-2の角周波数ωにおける電気長=θ9
伝送線路31c-2の角周波数ωにおける電気長=θ10
つまり、伝送線路31a-1と伝送線路31a-2の電気長の和(θ5+θ8)と、伝送線路31b-1と伝送線路31b-2の電気長の和(θ6+θ9)と、伝送線路31c-1と伝送線路31c-2の電気長の和(θ7+θ10)とがいずれもαであり、等しいという関係がある。
サーキュレータ91aは、信号発生器2から信号を受けると、その信号を伝送線路90aの一端に出力する。
また、サーキュレータ91aは、端子92に反射されて復路Bの信号が伝送線路90aの一端から出力されると、その信号を終端器5に出力する。
これにより、信号発生器2から出力された信号は、往路Aの信号として伝送線路90を流れる一方、伝送線路90aの一端から出力された復路Bの信号は、終端器5で終端される。
また、方向性結合器93aは、伝送線路90bを流れてきた復路Bの信号が入力されると、その信号の一部を伝送線路90aに出力するとともに、残りの信号を出力端子94a-2及び伝送線路31a-2を介して、ミクサ13aの入力端子14a-2に出力する。
また、方向性結合器93bは、伝送線路90cを流れてきた復路Bの信号が入力されると、その信号の一部を伝送線路90bに出力するとともに、残りの信号を出力端子94b-2及び伝送線路31b-2を介して、ミクサ13bの入力端子14b-2に出力する。
また、方向性結合器93cは、伝送線路90dを流れてきた復路Bの信号が入力されると、その信号の一部を伝送線路90cに出力するとともに、残りの信号を出力端子94c-2及び伝送線路31c-2を介して、ミクサ13cの入力端子14c-2に出力する。
出力端子94a-1:ωt+θ1
出力端子94b-1:ωt+θ1+θ2
出力端子94c-1:ωt+θ1+θ2+θ3
出力端子94a-2:ωt+θ1+2×θ2+2×θ3+2×θ4
出力端子94b-2:ωt+θ1+θ2+2×θ3+2×θ4
出力端子94c-2:ωt+θ1+θ2+θ3+2×θ4
(19)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ1+2×θ2+2×θ3+2×θ4+θ8)
=2×(ωt+θ1+θ2+θ3+θ4)+θ5+θ8
出力端子16b:
(ωt+θ1+θ2+θ6)+(ωt+θ1+θ2+2×θ3+2×θ4+θ9)
=2×(ωt+θ1+θ2+θ3+θ4)+θ6+θ9
出力端子16c:(ωt+θ1+θ2+θ3+θ7)+(ωt+θ1+θ2+θ3+2×θ4+θ10)
=2×(ωt+θ1+θ2+θ3+θ4)+θ7+θ10
(20)
この実施の形態10でも、上記実施の形態8と同様に、θ5+θ8=θ6+θ9=θ7+θ10=αであるため、回路素子17a~17cの出力端子16a~16cに現れる信号の位相は、いずれも、下記の式(21)のように表され、全て同相になる。
2×(ωt+θ1+θ2+θ3+θ4)+α (21)
これに対して、この実施の形態10では、各々の回路素子17の間を接続する伝送線路90b,90cの電気長は、往路A、復路Bに関係なく、必ず同じになるため、伝送線路の電気長のばらつきを考慮する必要がないという効果が得られる。
また、この実施の形態10では、1本の伝送線路90で構成できるため、伝送線路の本数を削減することができる効果が得られる。
なお、方向性結合器93a~93cの出力端子94a-1~94c-1,94a-2~94c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間を直接に接続して、伝送線路31a-1~31c-1,31a-2~31c-2を無くせば、伝送線路31a-1~31c-1,31a-2~31c-2の電気長のばらつきを考慮する必要がないという効果も得られる。
この実施の形態10では、上記実施の形態1~9と同様に、同相分配回路のレイアウト条件が緩和されるため、図20に示すように、複数の回路素子17を直線状に配置することができる。したがって、2次元的に大きなスペースを確保する必要がないという効果が得られる。
上記実施の形態10では、伝送線路90の途中に方向性結合器93a,93b,93cが挿入されているものを示したが、伝送線路90の途中にサーキュレータが挿入されているものであってもよい。
サーキュレータ95aはサーキュレータ91aから出力された往路Aの信号を出力端子96a-1(第1端子)に出力し、その後、ミクサ13aの入力端子14a-1に反射されて出力端子96a-1に戻ってきた信号を、往路Aの信号として伝送線路90bに出力する。
また、サーキュレータ95aはサーキュレータ95bから出力された復路Bの信号を出力端子96a-2(第2端子)に出力し、その後、ミクサ13aの入力端子14a-2に反射されて出力端子96a-2に戻ってきた信号を、復路Bの信号として伝送線路90aに出力する。
なお、サーキュレータ95aは、図18Aのように、4個の端子87a~87dを有する場合、端子87aが伝送線路90aの他端と接続され、端子87bが出力端子96a-1と接続され、端子87cが伝送線路90bの一端と接続され、端子87dが出力端子96a-2と接続される。
また、サーキュレータ95bはサーキュレータ95cから出力された復路Bの信号を出力端子96b-2(第2端子)に出力し、その後、ミクサ13bの入力端子14b-2に反射されて出力端子96b-2に戻ってきた信号を、復路Bの信号として伝送線路90bに出力する。
なお、サーキュレータ95bは、図18Aのように、4個の端子87a~87dを有する場合、端子87aが伝送線路90bの他端と接続され、端子87bが出力端子96b-1と接続され、端子87cが伝送線路90cの一端と接続され、端子87dが出力端子96b-2と接続される。
また、サーキュレータ95cは端子92に反射されて戻ってきた復路Bの信号を出力端子96c-2(第2端子)に出力し、その後、ミクサ13cの入力端子14c-2に反射されて出力端子96c-2に戻ってきた信号を、復路Bの信号として伝送線路90cに出力する。
なお、サーキュレータ95cは、図18Aのように、4個の端子87a~87dを有する場合、端子87aが伝送線路90cの他端と接続され、端子87bが出力端子96c-1と接続され、端子87cが伝送線路90dの一端と接続され、端子87dが出力端子96c-2と接続される。
サーキュレータ95a,95b,95cは分岐回路を構成している。
この実施の形態11では、伝送線路90a,90b,90c,90d及び伝送線路31a-1,31a-2,31b-1,31b-2,31c-1,31c-2の電気長が上記実施の形態9と同様であるものとする。
サーキュレータ91aは、信号発生器2から信号を受けると、その信号を伝送線路90aの一端に出力する。
また、サーキュレータ91aは、端子65bに反射されて復路Bの信号が伝送線路90aの一端から出力されると、その信号を終端器5に出力する。
これにより、信号発生器2から出力された信号は、往路Aの信号として伝送線路90を流れる一方、伝送線路90aの一端から出力された復路Bの信号は、終端器5で終端される。
このとき、ミクサ13aの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95aの出力端子96a-1から出力されて、ミクサ13aの入力端子14a-1に入力された信号は反射される。
その結果、ミクサ13aに反射された信号は、サーキュレータ95aの出力端子96a-1に戻ってくる。
サーキュレータ95aは、出力端子96a-1に戻ってきた信号を経路Aの信号として伝送線路90bに出力する。
このとき、ミクサ13aの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95aの出力端子96a-2から出力されて、ミクサ13aの入力端子14a-2に入力された信号は反射される。
その結果、ミクサ13aに反射された信号が、サーキュレータ95aの出力端子96a-2に戻ってくる。
サーキュレータ95aは、出力端子96a-2に戻ってきた信号を経路Bの信号として伝送線路90aに出力する。伝送線路90aに出力された経路Bの信号は、サーキュレータ91aによって終端器5に出力され、終端器5で終端される。
このとき、ミクサ13bの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95bの出力端子96b-1から出力されて、ミクサ13bの入力端子14b-1に入力された信号は反射される。
その結果、ミクサ13bに反射された信号は、サーキュレータ95bの出力端子96b-1に戻ってくる。
サーキュレータ95bは、出力端子96b-1に戻ってきた信号を往路Aの信号として伝送線路90cに出力する。
このとき、ミクサ13bの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95bの出力端子96b-2から出力されて、ミクサ13bの入力端子14b-2に入力された信号は反射される。
その結果、ミクサ13bに反射された信号が、サーキュレータ95bの出力端子96b-2に戻ってくる。
サーキュレータ95bは、出力端子96b-2に戻ってきた信号を復路Bの信号として伝送線路90bに出力する。
このとき、ミクサ13cの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95cの出力端子96c-1から出力されて、ミクサ13cの入力端子14c-1に入力された信号は反射される。
その結果、ミクサ13cに反射された信号は、サーキュレータ95cの出力端子96c-1に戻ってくる。
サーキュレータ95cは、出力端子96c-1に戻ってきた信号を往路Aの信号として伝送線路90dに出力する。伝送線路90dに出力された往路Aの信号は、端子92に反射され、その反射信号は、復路Bの信号として、サーキュレータ95cに入力される。
このとき、ミクサ13cの入力インピーダンスはハイインピーダンスであるため、サーキュレータ95cの出力端子96c-2から出力されて、ミクサ13cの入力端子14c-2に入力された信号は反射される。
その結果、ミクサ13cに反射された信号が、サーキュレータ95cの出力端子96c-2に戻ってくる。
サーキュレータ95cは、出力端子96c-2に戻ってきた信号を復路Bの信号として伝送線路90cに出力する。
出力端子96a-1:ωt+θ1
出力端子96b-1:ωt+θ1+2×θ5+θ2
出力端子96c-1:ωt+θ1+2×θ5+θ2+2×θ6+θ3
出力端子96a-2:ωt+θ1+2×θ5+2×θ2+4×θ6+2×θ3+2×θ4+2×θ7
出力端子96b-2:ωt+θ1+2×θ5+θ2+2×θ6+2×θ3+2×θ4+2×θ7
出力端子96c-2:ωt+θ1+2×θ5+θ2+2×θ6+θ3+2×θ4
(22)
フィルタ15a~15cは、ミクサ13a~13cから混合信号を受けると、上記実施の形態1と同様に、その混合信号に含まれている2つの信号の位相の差の成分及び高次の混合波成分の通過を阻止し、その混合信号に含まれている2つの信号の位相の和の成分だけを通過させる。これにより、フィルタ15a~15cを通過した2つの信号の位相の和の成分が出力端子16a~16cから出力される。
出力端子16a:
(ωt+θ1+θ5)+(ωt+θ1+2×θ5+2×θ2+4×θ6+2×θ3+2×θ4+2×θ7+θ5)
=2×(ωt+θ1+θ2+θ3+θ4+θ5+θ6+θ7)+2×(θ5+θ6)
出力端子16b:
(ωt+θ1+2×θ5+θ2+θ6)+(ωt+θ1+2×θ5+θ2+2×θ6+2×θ3+2×θ4+2×θ7+θ6)
=2×(ωt+θ1+θ2+θ3+θ4+θ5+θ6+θ7)+2×(θ5+θ6)
出力端子16c:
(ωt+θ1+2×θ5+θ2+2×θ6+θ3+θ7)+(ωt+θ1+2×θ5+θ2+2×θ6+θ3+2×θ4+θ7)
=2×(ωt+θ1+θ2+θ3+θ4+θ5+θ6+θ7)+2×(θ5+θ6)
(23)
この実施の形態11でも、上記実施の形態10と同様に、各々の回路素子17の間を接続する伝送線路90b,90cの電気長は、往路A、復路Bに関係なく、必ず同じになるため、伝送線路の電気長のばらつきを考慮する必要がないという効果が得られる。
また、この実施の形態11では、1本の伝送線路90で構成できるため、伝送線路の本数を削減することができる効果が得られる。
なお、サーキュレータ95a~95cの出力端子96a-1~96c-1,96a-2~96c-2と、ミクサ13a~13cの入力端子14a-1~14c-1,14a-2~14c-2との間を直接に接続して、伝送線路31a-1~31c-1,31a-2~31c-2を無くせば、伝送線路31a-1~31c-1,31a-2~31c-2の電気長のばらつきを考慮する必要がないという効果も得られる。
上記実施の形態1~11では、1つの信号から位相が等しい複数の信号を生成する同相分配回路について示したが、上記実施の形態1~11のうち、いずれかの実施の形態における同相分配回路がアレーアンテナ装置に実装されているようにしてもよい。
また、図23は図12の回路素子17を実装している送信機を示す構成図である。
図22では、図12の回路素子17を実装している送信機100の例を示しているため、往路Aと復路Bからなる伝送線路70が、複数の送信機を接続している。
なお、PLL111から出力される信号の周波数は、別途外部から入力される制御信号の値に応じて切り替えることができる。
増幅器113は移相器112により位相が調整された信号の振幅を増幅し、増幅後の信号を出力端子101に出力する。
送信機100の出力端子101は素子アンテナ103に接続されている。
また、送信機100の端子102a,102bは往路Aをなす伝送線路70と接続され、端子102c,102dは復路Bをなす伝送線路70と接続されている。
ただし、同一の送信機100の間に接続されている往路Aをなす伝送線路70と復路Bをなす伝送線路70との電気長は等長である。
なお、アレーアンテナを構成する複数の素子アンテナ103は、ホーンアンテナのように独立して構成されているものであってもよいし、例えば、パッチアンテナのように複数の素子アンテナ103を1つの平面基板上に2次元配列して形成するようにしてもよい。
また、上記実施の形態8,9における回路素子17を実装している送信機100が用いられる場合、1本の伝送線路80が複数の送信機100を接続する。
さらに、上記実施の形態10,11における回路素子17を実装している送信機100が用いられる場合、1本の伝送線路90が複数の送信機100を接続する。
信号発生器2から出力された信号は、往路Aをなす伝送線路70を流れるため、複数の送信機100に実装されている回路素子17内のミクサ13の一方の入力端子に入力される。
また、複数の送信機100を通過したのち、往路Aをなす伝送線路70を流れていた信号は、復路Bをなす伝送線路70を流れるため、複数の送信機100に実装されている回路素子17内のミクサ13の他方の入力端子に入力される。
複数の送信機100に実装されている回路素子17内のミクサ13は、上記実施の形態1~11と同様に動作し、複数の送信機100に実装されている回路素子17内のフィルタ15は、上記実施の形態1~11と同様に動作する。
このため、複数の送信機100に実装されている回路素子17の出力端子16から出力される信号の周波数及び位相は揃っている。
このとき、別途外部から入力される制御信号の値が同じであれば、複数の送信機100に実装されているPLL111から出力される信号の周波数及び位相は揃っている。
複数の送信機100に実装されている増幅器113は、移相器112から位相調整後の信号を受けると、その信号の振幅を増幅し、増幅後の信号を出力端子101に出力する。
これにより、複数の送信機100と接続されている素子アンテナ103から電磁波として空間に放射される。
複数の送信機100に実装されている移相器112での信号の移相量を、送信機毎に設定することで、アレーアンテナから放射される電磁波の方向を切り替えることができる。
[特許文献2] 特開2014-49808号公報
PLL111に入力される基準信号の位相が同相でなく、また、基準信号の位相が既知でない場合、アレーアンテナから放射される電磁波の方向を、移相器112に設定した移相量から正確に予測することは困難である。
Claims (18)
- 発生した信号を分配する信号発生回路と、
一端が前記信号発生回路と接続され、他端が終端されている第1伝送線路と、
一端が前記信号発生回路と接続され、他端が終端されている第2伝送線路と、
前記第1伝送線路から前記信号発生回路により分配された一方の信号の一部を取り出すN(Nは2以上の整数)個の第1分岐回路と、
前記第2伝送線路から前記信号発生回路により分配された他方の信号の一部を取り出すN個の第2分岐回路と、
前記N個の第1分岐回路のうち、前記第1伝送線路の一端から数えてn(nはN以下の正の整数)番目の第1分岐回路により取り出された信号の位相と、前記N個の第2分岐回路のうち、前記第2伝送線路の他端から数えてn番目の第2分岐回路により取り出された信号の位相とを加算するN個の位相加算回路とを備え、
前記第1伝送線路の一端から数えてm(mはN-1以下の正の整数)番目の第1分岐回路とm+1番目の第1分岐回路との間における前記第1伝送線路の電気長と、前記第2伝送線路の他端から数えてm番目の第2分岐回路とm+1番目の第2分岐回路との間における前記第2伝送線路の電気長とが等しいことを特徴とする同相分配回路。 - 前記第1分岐回路及び前記第2分岐回路が、伝送線路を分岐するT分岐部、方向性結合器又はサーキュレータを含むことを特徴とする請求項1記載の同相分配回路。
- 前記位相加算回路は、
前記N個の第1分岐回路のうち、前記第1伝送線路の一端から数えて前記n番目の第1分岐回路により取り出された信号と、前記N個の第2分岐回路のうち、前記第2伝送線路の他端から数えて前記n番目の第2分岐回路により取り出された信号とを混合して混合信号を出力するミクサと、
前記ミクサから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させるフィルタとを含むことを特徴とする請求項1記載の同相分配回路。 - 信号を発生する信号発生器と、
往路と復路からなり、前記往路の始点が前記信号発生器と接続されて、前記復路の終点が終端されている伝送線路と、
前記伝送線路の往路から前記信号発生器により発生された信号の一部を取り出すN(Nは2以上の整数)個の第1分岐回路と、
前記伝送線路の復路から前記信号発生器により発生された信号の一部を取り出すN個の第2分岐回路と、
前記N個の第1分岐回路のうち、前記往路の始点から数えてn(nはN以下の正の整数)番目の第1分岐回路により取り出された信号の位相と、前記N個の第2分岐回路のうち、前記復路の終点から数えてn番目の第2分岐回路により取り出された信号の位相とを加算するN個の位相加算回路とを備え、
前記往路の始点から数えてm(mはN-1以下の正の整数)番目の第1分岐回路とm+1番目の第1分岐回路との間における前記第1伝送線路の電気長と、前記復路の終点から数えてm番目の第2分岐回路とm+1番目の第2分岐回路との間における前記第2伝送線路の電気長とが等しいことを特徴とする同相分配回路。 - 前記第1分岐回路及び前記第2分岐回路が、伝送線路を分岐するT分岐部、方向性結合器又はサーキュレータを含むことを特徴とする請求項4記載の同相分配回路。
- 前記位相加算回路は、
前記N個の第1分岐回路のうち、前記往路の始点から数えて前記n番目の第1分岐回路により取り出された信号と、前記N個の第2分岐回路のうち、前記復路の終点から数えて前記n番目の第2分岐回路により取り出された信号とを混合して混合信号を出力するミクサと、
前記ミクサから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させるフィルタとを含むことを特徴とする請求項4記載の同相分配回路。 - 信号を双方向に伝搬する伝送線路と、
前記伝送線路に出力する信号を発生する信号発生器と、
前記伝送線路を流れている信号のうち、第1の方向に流れている信号を第1端子に出力し、第2の方向に流れている信号を第2端子に出力するN(Nは2以上の整数)個の分岐回路と、
2つの入力端子が前記第1端子と前記第2端子に接続されており、前記分岐回路によって前記第1端子から出力された信号の位相と前記第2端子から出力された信号の位相とを加算するN個の位相加算回路と
を備えた同相分配回路。 - 前記信号発生回路は、発生した信号を分配し、
前記信号発生回路により分配された一方の信号を前記伝送線路の一端に出力する一方、前記伝送線路の一端から出力された信号の伝送を遮断する第1アイソレータと、
前記信号発生回路により分配された他方の信号を前記伝送線路の他端に出力する一方、前記伝送線路の他端から出力された信号の伝送を遮断する第2アイソレータとを備え、
前記N個の分岐回路は、前記伝送線路を流れている信号のうち、前記第1アイソレータから前記第2アイソレータに向かって流れている信号を前記第1端子に出力し、前記第2アイソレータから前記第1アイソレータに向かって流れている信号を前記第2端子に出力することを特徴とする請求項7記載の同相分配回路。 - 前記分岐回路は、前記伝送線路を流れている信号のうち、前記第1アイソレータから前記第2アイソレータに向かって流れている信号の一部を前記第1端子に出力し、前記第2アイソレータから前記第1アイソレータに向かって流れている信号の一部を前記第2端子に出力する方向性結合器を含むことを特徴とする請求項8記載の同相分配回路。
- 前記分岐回路は、前記伝送線路を流れている信号のうち、前記第1アイソレータから前記第2アイソレータに向かって流れている信号を前記第1端子に出力し、その後、前記第1端子から入力された信号を、前記第1アイソレータから前記第2アイソレータに向かって流れる信号として、前記伝送線路に出力する一方、前記第2アイソレータから前記第1アイソレータに向かって流れている信号を前記第2端子に出力し、その後、前記第2端子から入力された信号を、前記第2アイソレータから前記第1アイソレータに向かって流れる信号として、前記伝送線路に出力するサーキュレータを含むことを特徴とする請求項8記載の同相分配回路。
- 前記信号発生器により発生された信号を前記伝送線路の一端に出力する一方、前記伝送線路の一端から出力された信号の伝送を遮断するアイソレータを備え、
前記N個の分岐回路は、前記伝送線路を流れている信号のうち、前記アイソレータから前記伝送線路の他端に向かって流れている信号を前記第1端子に出力し、前記伝送線路の他端に反射されることで、前記他端から前記アイソレータに向かって流れている信号を前記第2端子に出力することを特徴とする請求項7記載の同相分配回路。 - 前記分岐回路は、前記伝送線路を流れている信号のうち、前記アイソレータから前記伝送線路の他端に向かって流れている信号の一部を前記第1端子に出力し、前記伝送線路の他端に反射されることで、前記他端から前記アイソレータに向かって流れている信号の一部を前記第2端子に出力する方向性結合器を含むことを特徴とする請求項11記載の同相分配回路。
- 前記分岐回路は、前記伝送線路を流れている信号のうち、前記アイソレータから前記伝送線路の他端に向かって流れている信号を前記第1端子に出力し、その後、前記第1端子から入力された信号を、前記アイソレータから前記他端に向かって流れる信号として、前記伝送線路に出力する一方、前記信号発生器により発生された信号が前記伝送線路の他端に反射されることで、前記他端から前記アイソレータに向かって流れている信号を前記第2端子に出力し、その後、前記第2端子から入力された信号を、前記他端から前記第1アイソレータに向かって流れる信号として、前記伝送線路に出力するサーキュレータを含むことを特徴とする請求項11記載の同相分配回路。
- 前記伝送線路の他端が開放、あるいは、前記信号発生器により発生された信号を反射する負荷が前記伝送線路の他端に接続されていることを特徴とする請求項11記載の同相分配回路。
- 前記位相加算回路は、
2つの入力端子が前記第1端子と前記第2端子に接続されており、前記分岐回路によって前記第1端子から出力された信号と前記第2端子から出力された信号とを混合して混合信号を出力するミクサと、
前記ミクサから出力された混合信号に含まれている2つの信号の位相の和の成分を通過させるフィルタとを含むことを特徴とする請求項7記載の同相分配回路。 - 1つの信号から位相が等しい複数の信号を生成する請求項1記載の同相分配回路と、
前記同相分配回路により生成された複数の信号を送信するアレーアンテナとを備えたアレーアンテナ装置。 - 1つの信号から位相が等しい複数の信号を生成する請求項4記載の同相分配回路と、
前記同相分配回路により生成された複数の信号を送信するアレーアンテナとを備えたアレーアンテナ装置。 - 1つの信号から位相が等しい複数の信号を生成する請求項7記載の同相分配回路と、
前記同相分配回路により生成された複数の信号を送信するアレーアンテナとを備えたアレーアンテナ装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017542200A JP6230768B1 (ja) | 2016-02-02 | 2016-02-02 | 同相分配回路及びアレーアンテナ装置 |
EP16889231.3A EP3410532B1 (en) | 2016-02-02 | 2016-02-02 | In-phase distribution circuit and array antenna device |
CN201680079959.6A CN108604725B (zh) | 2016-02-02 | 2016-02-02 | 同相分配电路和阵列天线装置 |
PCT/JP2016/053058 WO2017134741A1 (ja) | 2016-02-02 | 2016-02-02 | 同相分配回路及びアレーアンテナ装置 |
US15/771,188 US10749233B2 (en) | 2016-02-02 | 2016-02-02 | In-phase corporate-feed circuit and array antenna apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/053058 WO2017134741A1 (ja) | 2016-02-02 | 2016-02-02 | 同相分配回路及びアレーアンテナ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017134741A1 true WO2017134741A1 (ja) | 2017-08-10 |
Family
ID=59499474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053058 WO2017134741A1 (ja) | 2016-02-02 | 2016-02-02 | 同相分配回路及びアレーアンテナ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10749233B2 (ja) |
EP (1) | EP3410532B1 (ja) |
JP (1) | JP6230768B1 (ja) |
CN (1) | CN108604725B (ja) |
WO (1) | WO2017134741A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155843A (ja) * | 2019-03-18 | 2020-09-24 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
JP2022550051A (ja) * | 2019-09-25 | 2022-11-30 | レイセオン カンパニー | フェーズド・アレイ・アンテナ・システム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11283144B2 (en) * | 2019-09-30 | 2022-03-22 | Lockheed Martin Corporation | Harmonic trap filter using coupled resonators |
CN114616760B (zh) * | 2019-11-08 | 2023-08-18 | 三菱电机株式会社 | 相位同步电路和同相分配电路 |
KR102649377B1 (ko) * | 2023-09-04 | 2024-03-19 | 한국전기연구원 | 다중 광원을 가지는 도파관 배열 안테나 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4530322Y1 (ja) * | 1967-11-04 | 1970-11-20 | ||
JPH0854957A (ja) * | 1994-08-12 | 1996-02-27 | Hitachi Ltd | クロック分配システム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451832A (en) * | 1982-03-22 | 1984-05-29 | Gte Products Corporation | Radio frequency transmitter coupling circuit |
JPH07101808B2 (ja) | 1989-02-27 | 1995-11-01 | 日本電気株式会社 | フェーズドアレイ空中線 |
US5233358A (en) * | 1989-04-24 | 1993-08-03 | Hughes Aircraft Company | Antenna beam forming system |
JP2006108741A (ja) | 2004-09-30 | 2006-04-20 | Toshiba Corp | 高周波電力分配合成器 |
JP5056665B2 (ja) | 2008-08-09 | 2012-10-24 | 株式会社豊田中央研究所 | 位相同期発振器アレイ及びアレイアンテナ装置 |
US8432152B2 (en) | 2008-09-05 | 2013-04-30 | Nxp B.V. | Apparatus for feeding antenna elements and method therefor |
DE102009029291A1 (de) * | 2009-09-09 | 2011-03-10 | Robert Bosch Gmbh | Planare Antenneneinrichtung für eine Radarsensorvorrichtung |
US9118113B2 (en) * | 2010-05-21 | 2015-08-25 | The Regents Of The University Of Michigan | Phased antenna arrays using a single phase shifter |
-
2016
- 2016-02-02 JP JP2017542200A patent/JP6230768B1/ja not_active Expired - Fee Related
- 2016-02-02 US US15/771,188 patent/US10749233B2/en not_active Expired - Fee Related
- 2016-02-02 CN CN201680079959.6A patent/CN108604725B/zh active Active
- 2016-02-02 WO PCT/JP2016/053058 patent/WO2017134741A1/ja active Application Filing
- 2016-02-02 EP EP16889231.3A patent/EP3410532B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4530322Y1 (ja) * | 1967-11-04 | 1970-11-20 | ||
JPH0854957A (ja) * | 1994-08-12 | 1996-02-27 | Hitachi Ltd | クロック分配システム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155843A (ja) * | 2019-03-18 | 2020-09-24 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
JP7283678B2 (ja) | 2019-03-18 | 2023-05-30 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
JP2022550051A (ja) * | 2019-09-25 | 2022-11-30 | レイセオン カンパニー | フェーズド・アレイ・アンテナ・システム |
JP7462742B2 (ja) | 2019-09-25 | 2024-04-05 | レイセオン カンパニー | 基準信号分配システム、フェーズド・アレイ・アンテナ・システム及び基準信号生成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180309179A1 (en) | 2018-10-25 |
JPWO2017134741A1 (ja) | 2018-02-08 |
US10749233B2 (en) | 2020-08-18 |
EP3410532B1 (en) | 2020-03-25 |
EP3410532A1 (en) | 2018-12-05 |
CN108604725B (zh) | 2020-06-16 |
EP3410532A4 (en) | 2018-12-26 |
CN108604725A (zh) | 2018-09-28 |
JP6230768B1 (ja) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6230768B1 (ja) | 同相分配回路及びアレーアンテナ装置 | |
US9362602B2 (en) | Power dividing and/or power-combining circuits with isolation | |
EP2068392B1 (en) | Uneven ternary distributor | |
US9000865B2 (en) | Power dividing and power combining circuits | |
US5313174A (en) | 2:1 bandwidth, 4-way, combiner/splitter | |
US5825260A (en) | Directional coupler for the high-frequency range | |
CA2695462C (en) | Loop-type directional coupler | |
KR20120017452A (ko) | 합성 우/좌향 위상-선도/지연 라인들을 이용한 다이플렉서 합성 | |
JP2006054812A (ja) | 分配器および通信方法 | |
US6078227A (en) | Dual quadrature branchline in-phase power combiner and power splitter | |
EP3059864A1 (en) | Qubit circuit state change control system | |
CN113692710A (zh) | 相位同步电路 | |
US20110006854A1 (en) | Waveguide coupler | |
WO2017187473A1 (ja) | 分配回路及びアンテナ | |
JP6419944B2 (ja) | ウィルキンソン合成器及びウィルキンソン分配器 | |
CN107546455B (zh) | 分配器以及利用其的信号产生系统 | |
US4223283A (en) | Two into three port phase shifting power divider | |
CA3111011C (en) | Millimeter wave active load pull using low frequency phase and amplitude tuning | |
EP1490978B1 (en) | Method and apparatus for combining two ac waveforms | |
US4207547A (en) | Reflection mode notch filter | |
JP4230511B2 (ja) | 電力分配装置、電力合成装置、モノパルス信号合成回路、アレーアンテナ給電回路およびビーム形成回路 | |
EP3120455A1 (en) | Isolation in a multi-port amplifier | |
CN105514563B (zh) | 分支线型定向耦合分配器 | |
US9641144B2 (en) | Solid state traveling wave amplifier for space applications | |
CN114616760B (zh) | 相位同步电路和同相分配电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017542200 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16889231 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15771188 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016889231 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016889231 Country of ref document: EP Effective date: 20180827 |