WO2017134405A1 - Tôles épaisses en alliage al–cu–li à propriétés en fatigue améliorées - Google Patents

Tôles épaisses en alliage al–cu–li à propriétés en fatigue améliorées Download PDF

Info

Publication number
WO2017134405A1
WO2017134405A1 PCT/FR2017/050255 FR2017050255W WO2017134405A1 WO 2017134405 A1 WO2017134405 A1 WO 2017134405A1 FR 2017050255 W FR2017050255 W FR 2017050255W WO 2017134405 A1 WO2017134405 A1 WO 2017134405A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
less
weight
mpavm
crack
Prior art date
Application number
PCT/FR2017/050255
Other languages
English (en)
Inventor
Jean-Christophe Ehrstrom
Carla DA FONSECA BARBATTI
Original Assignee
Constellium Issoire
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56263811&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017134405(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire filed Critical Constellium Issoire
Priority to EP17707940.7A priority Critical patent/EP3411508B1/fr
Priority to BR112018014770-2A priority patent/BR112018014770B1/pt
Priority to US16/074,661 priority patent/US20190040508A1/en
Priority to CN201780009624.1A priority patent/CN108603253B/zh
Priority to CA3012956A priority patent/CA3012956C/fr
Publication of WO2017134405A1 publication Critical patent/WO2017134405A1/fr
Priority to US18/448,998 priority patent/US20240035138A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc

Definitions

  • the present invention generally relates to thick plates of Al-Cu-Li alloy and in particular such products used in the aeronautical and aerospace industry.
  • Products, especially thick rolled products, typically at least 50 mm thick, of aluminum alloy are developed to produce by cutting, surfacing or mass machining of high strength parts intended in particular for the aeronautical industry. , the aerospace industry or mechanical engineering.
  • Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • their performance compared to other properties of use must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (yield strength, resistance to rupture) and the properties of damage tolerance (toughness, resistance to initiation and propagation of fatigue cracks), these properties being in general antinomic.
  • these properties must in particular be obtained at quarter and at mid-thickness.
  • These products must also have sufficient corrosion resistance, be able to be shaped according to the usual processes and have low residual stresses so that they can be machined integrally.
  • No. 5,032,359 discloses a broad family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.
  • US Pat. No. 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0, 1-2.5) Li, (0.2-1.0) Mg, (0, 2-0.8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain-refining agents such as Cr, Ti, Hf, Se, V, especially having KJC toughness ( L)> 37.4 MPaVm for a limit of elasticity R p o, 2 (L)> 448.2 MPa (products with a thickness greater than 76.2 mm) and in particular a tenacity KJC (L)> 38.5 MPaVm for a yield strength R p o , 2 (L)> 489.5 MPa (products less than 76.2 mm thick).
  • the AA2050 alloy comprises (% by weight): (3.2-3.9) Cu, (0.7-1.3) Li, (0.20-0.6) Mg, (0.20-0 7) Ag, 0.25max. Zn, (0.20-0.50) Mn, (0.06-0.14) Zr and AA2095 (3.7-4.3) Cu, (0.7-1.5) Li, (0.25-0.8) Mg, (0.25-0.6) Ag, 0.25max. Zn, 0.25 max. Mn, (0.04-0.18) Zr.
  • AA2050 alloy products are known for their quality in terms of static strength and toughness, especially for thick rolled products and are selected in some aircraft.
  • the interval between two operations of control of the structure depends on the speed and the way the cracks propagate in the materials used for the structure and it is advantageous to use products for which the cracks spread slowly and predictably.
  • the improvement of the propagation properties of fatigue cracks thus concerns in particular the speed of propagation and the direction of propagation.
  • the patent application WO2009103899 thus describes a substantially unrequistallized laminated product comprising in% by weight: 2.2 to 3.9% by weight of Cu, 0.7 to 2.1% by weight of Li; 0.2 to 0.8% by weight of Mg; 0.2 to 0.5% by weight of Mn; 0.04 to 0.18% by weight of Zr; less than 0.05%) by weight of Zn and, optionally, 0.1 to 0.5% by weight of Ag, the remainder being aluminum and unavoidable impurities, having a low propensity for crack bifurcation when a fatigue test in the direction of LS.
  • Crack bifurcation, crack deflection, crack rotation, or crack branching are terms used to express the propensity for the propagation of a crack to deviate from the expected plane of fracture perpendicular to the load applied during a stress test. fatigue or tenacity.
  • the crack bifurcation occurs at the microscopic scale ( ⁇ 100 ⁇ ), at the mesoscopic scale (100-1000 ⁇ ) or at the macroscopic scale (> 1 mm), but it is only considered harmful if the direction of the crack remains stable after bifurcation (macroscopic scale).
  • crack bifurcation is used here for the macroscopic crack bifurcation during fatigue or toughness testing in the LS direction, from the S direction to the L direction which occurs for rolled products whose thickness is from minus 50 mm.
  • a laminated aluminum lithium alloy product for aeronautical applications, particularly for fully machined parts, having improved fatigue crack propagation properties and having a low propensity for crack bifurcation.
  • a first object of the invention is a laminated product having a thickness of at least 50 mm of aluminum alloy comprising, in% by weight, 2.2 to 3.9% Cu, 0.7 to 1.8% Li, 0.1 to 0.8% Mg, 0.1 to 0.6% Mn; 0.01 to 0.15% of Ti, at least one element selected from Zn and Ag, the amount of said element if it is chosen being 0.2 to 0.8% for Zn and 0.1 to 0.5% for Ag, optionally at least one element selected from Zr, Cr, Se, Hf, and V, the amount of said element if it is chosen being 0.04 to 0.18% for Zr, 0.05 to 0.3% for Cr and Se, 0.05 to 0.5% for Hf and for V, less than 0.1% of Fe, less than 0.1% of Si remains aluminum and unavoidable impurities, of a content less than 0 , 05% each and 0.15% in total; characterized in that its granular structure is predominantly recrystallized between 1 ⁇ 4 and 1 ⁇ 2 thickness.
  • a second object of the invention is a method of manufacturing a sheet according to the invention, comprising:
  • step b) the controlled traction of said sheet with a permanent deformation of 1 to 7%
  • step c) the income of said sheet by heating between 130 ° C and 160 ° C for 5 to 60 hours, characterized in that the sum of the content of elements Zr, Cr, Se, Hf, and V is less than 0.08 % by weight and / or in that in step b) the homogenization temperature is at least 520 ° C for a period of at least 20 hours and in step c) the outlet temperature hot rolling is less than 390 ° C.
  • Yet another object of the invention is the use of a sheet according to the invention for producing an aircraft wing spar or an airplane wing rib.
  • Figure 1 Schematic of the CT specimen used for fatigue crack propagation tests. The dimensions are given in mm.
  • Figure 5 Different modes of crack propagation on the test piece CT according to Figure 1, having a rear face (1), a lower face (22) and an upper face (21). Directions S and L are indicated.
  • Figure 5a low propensity for crack bifurcation and fracture by the rear face (1)
  • 5b high propensity for crack bifurcation and fracture by the lower face (22)
  • 5c low propensity for crack bifurcation, fracture by the upper face (21) but distance d on which the crack is neither in the initial direction S nor in the direction L of at least 5 mm.
  • the cracking rate (da / dN) is determined according to ASTM E 647.
  • the stress intensity factor (KJC) is determined according to ASTM E 399.
  • rolled products with a thickness of at least 50 mm in aluminum-copper-lithium-magnesium-manganese alloy have advantageous properties when the granular structure is predominantly recrystallized between the 1 ⁇ 4 and the 1 ⁇ 2 thickness.
  • the fatigue crack propagation resistance is improved while the compromise between mechanical strength and toughness is not significantly degraded.
  • granular structure predominantly recrystallized between the 1 ⁇ 4 and 1 ⁇ 2 thickness is meant a granular structure whose recrystallization rate is at least 50% between 1 ⁇ 4 and 1 ⁇ 2 thickness that is to say at least 50% of grains between 1 ⁇ 4 and 1 ⁇ 2 thickness are recrystallized.
  • the recrystallization rate between 1 ⁇ 4 and 1 ⁇ 2 thickness is at least 55%.
  • the thickness of the products according to the invention is between 80 and 130 mm.
  • the products according to the invention have a copper content of between 2.2 and 3.9% by weight.
  • the copper content is at least 2.8% by weight and preferably at least 3.2% by weight.
  • the maximum copper content is 3.8% by weight.
  • the products according to the invention have a lithium content of between 0.7 and 1.8% by weight.
  • the lithium content is at least 0.8% by weight and preferably at least 0.9% by weight.
  • the maximum lithium content is 1.5% by weight, preferably 1.1%, and most preferably 0.95% by weight.
  • the products according to the invention have a magnesium content of between 0.1 and 0.8% by weight.
  • the magnesium content is at least 0.2% by weight and preferably at least 0.3% by weight.
  • the maximum magnesium content is 0.7% by weight and preferably 0.6% by weight.
  • the products according to the invention have a manganese content of between 0.1 and 0.6% by weight.
  • the manganese content is at least 0.2% by weight and preferably at least 0.3% by weight.
  • the maximum content of manganese is 0.5% by weight and preferably 0.4% by weight.
  • the products according to the invention contain at least one element chosen from Zn and Ag, the quantity of said element, if it is chosen, being 0.2 to 0.8% for Zn and 0.1 to 0.5% for Ag, these elements being particularly useful for hardening the alloy. Preferably, only one of these elements is added, the second being maintained at a content of less than 0.05% by weight.
  • the products according to the invention contain at least one element chosen from Zr, Cr, Se, Hf, and V, the quantity of said element, if it is chosen being 0.04 to 0.18% and preferably 0.04 to 0.15% for Zr, 0.05 to 0.3% for Cr and Se, 0.05 to 0.5% for Hf and V.
  • These elements contribute to the control of the granular structure.
  • the predominantly recrystallized granular structure according to the invention is obtained by a selection of the transformation parameters, in particular the conditions of homogenization and hot rolling.
  • the sum of the content of the elements Zr, Cr, Se, Hf, and V is preferably at least 0.08% by weight.
  • the Zr content in this first embodiment is from 0.08 to 0.10% by weight.
  • the predominantly recrystallized granular structure according to the invention is obtained by limiting the content of elements acting on the control of the granular structure.
  • the sum of the content of elements Zr, Cr, Se, Hf, and V is less than 0.08% by weight.
  • the Zr content is 0.04 to 0.07 wt.%, And preferably 0.05 to 0.07 wt.%.
  • there is no addition of Zr the Zr content is less than 0.05% by weight, preferably less than 0.04% by weight and more preferably still lower. to 0.02% by weight.
  • the products according to the invention contain 0.01 to 0.15% by weight of titanium, this element being especially useful for the control of the granular structure during casting.
  • the titanium content is between 0.01 and 0.05% by weight.
  • the content of iron and silicon impurities must be limited to avoid degradation of the properties of fatigue and toughness.
  • the products according to the invention contain less than 0.1% Fe and less than 0.1% Si.
  • the iron content is less than 0.08% by weight and preferably less than 0%. 06% by weight.
  • the silicon content is less than 0.07% by weight and preferably less than 0.05% by weight.
  • the other elements present are unavoidable impurities whose content is less than 0.05% by weight each and 0.15% by weight in total.
  • An element not selected from Cr, Se, Hf, V, Ag and Zn thus has a content of less than 0.05% by weight and preferably less than 0.03% by weight. If the Zr is not chosen, its content is less than 0.04% by weight and preferably less than 0.02% by weight.
  • the products according to the invention have satisfactory properties in terms of compromise between mechanical strength and toughness and very advantageous properties in terms of crack propagation speed in fatigue and in terms of sensitivity to crack deflection.
  • the products according to the invention also have advantageous properties in terms of propensity for crack bifurcation.
  • the macroscopic crack bifurcation during fatigue tests in the L-S direction from the S direction to the L direction was evaluated in two ways.
  • a first method at least 6 test pieces LS CT, of thickness 10 mm and total width 50 mm (40 mm between the axis of the holes and the rear face of the test piece) made according to FIG. 1 are fatigue tested.
  • at a maximum load of at least 3000 N, and a load ratio of R 0.1, covering the range of ⁇ in the course of the test from 10 to 40 MPaVm, where ⁇ is the variation of the factor of stress intensity in a load cycle.
  • is the variation of the factor of stress intensity in a load cycle.
  • FIG. 5c shows an example of evaluation of this distance: when the crack deviates, it does not immediately join the direction L and thus the distance d can be measured. It is considered that the crack is in the direction S or in the direction L when it does not deviate from this direction by more than 10 °.
  • the method of manufacturing a sheet of predominantly recrystallized granular structure with a thickness of at least 50 mm according to the invention comprises the steps of casting, homogenization, hot rolling, dissolution, quenching, controlled pulling and tempering.
  • An alloy containing controlled quantities according to the invention of alloying elements is cast in the form of a plate.
  • the plate is homogenized at a temperature of at least 490 ° C.
  • the homogenization time is at least 12 hours.
  • the homogenization can be carried out in one or more stages.
  • the homogenization comprises at least one step whose temperature is at least 520 ° C. and preferably at least 530 ° C., the duration during which the temperature is greater than 520 ° C. C being at least 20 hours and preferably at least 30 hours.
  • a hot rolling step is performed after reheating if necessary to obtain sheets having a thickness of at least 50 mm.
  • the hot rolling exit temperature is less than 390 ° C., preferably less than 380 ° C.
  • the combination, in particular, of the conditions of the homogenization step and the hot rolling step of the first embodiment makes it possible to obtain a final structure after income that is predominantly recrystallized, especially for products whose sum of the content of the Zr elements. , Cr, Se, Hf, and V is at least 0.08% by weight.
  • the inventors have found that the conditions according to this first embodiment make it possible to reduce the propensity for crack bifurcation.
  • the sum of the content of elements Zr, Cr, Se, Hf, and V is less than 0.08% by weight and the hot rolling output temperature is preferably at least 400. ° C and preferably at least 420 ° C.
  • the sheets are dissolved by heating between 490 and 540 ° C, preferably for 15 minutes to 4 hours, the dissolution parameters depending on the thickness of the product.
  • the product then undergoes controlled traction with a permanent deformation of between 1% and 7% and preferably between 2% and 6%.
  • the income is carried out at a temperature between 130 ° C and 170 ° C and preferably at a temperature between 140 ° C and 160 ° C for a period of 5 to 60 hours, resulting in a T8 state.
  • the yield is preferably between 140 and 160 ° C for 12 to 50 hours.
  • the products according to the invention are advantageously used in aeronautical construction.
  • the use of the products according to the invention for producing an aircraft wing spar or an airplane wing rib is particularly advantageous.
  • the use of the products according to the invention for the production of an aircraft wing spar is preferred, advantageously for the lower part, that is to say in connection with the underside of the wing, d a welded spar.
  • Plate A was homogenized in two 36-hour increments at 504 ° C and then 48 hours at 530 ° C.
  • Plates B and C were homogenized in two 8 hour increments at 496 ° C and then 34 hours at 530 ° C.
  • Plate D was homogenized for 12 hours at 505 ° C.
  • the plate E was homogenized in two stages 8h at 500 ° C. and then 36 hours at 527 ° C.
  • Plate A was hot rolled to a 100 mm thick sheet, hot roll inlet temperature was 410 ° C, and hot roll output temperature was 361 ° C.
  • Plate B was hot rolled to a sheet thickness of 102 mm, hot roll inlet temperature was 406 ° C and hot roll output temperature was 350 ° C.
  • Plate C was hot rolled to a 102 mm thick sheet, hot roll inlet temperature was 410 ° C, and hot roll output temperature was 360 ° C.
  • Plate D was hot rolled to a 100 mm thick sheet, hot roll inlet temperature was 505 ° C, and hot roll output temperature was 520 ° C.
  • Plate E was hot rolled to a 100 mm thick sheet, the hot rolling inlet temperature was 481 ° C and the hot rolling exit temperature was 460 ° C.
  • the sheets thus obtained were dissolved for 2 hours at 525 ° C. and quenched with cold water.
  • the sheets thus dissolved and quenched were controlled in a controlled manner, with a permanent elongation of 4% and were tempered for 18 hours at 155 ° C. (A, B, C and E) or 24 hours at 155 ° C. (D).
  • KJC Stress intensity factor measured at 1 ⁇ 4 thickness (T / 4) and at mid-thickness (T / 2) determined according to ASTM E 399.
  • Fatigue crack propagation tests on L-S specimens were performed on samples from sheets C and E. The tests were performed according to ASTM E647. These tests are carried out on CCT test specimens, with central crack, width 100 mm and thickness 6.35 mm.
  • Figure 2 shows the crack propagation rate results for the samples tested with the CCT test specimen. The results are summarized in Table 5 below.
  • Figures 3a and 3b show, respectively, the samples from sheets A and D after the fatigue test.
  • the samples from the sheet A according to the invention have a progressive crack bifurcation with in 4 cases out of 6 (Cl, C2, Bl, A2) a rupture by the rear face of the test piece.
  • the distance d on which the crack is neither in the initial direction S nor in the direction L is at least 15 mm for all the samples coming from the sheet A, because in no case does the crack join the direction L.
  • the predominantly recrystallized product according to the invention has a particularly advantageous fatigue crack propagation.
  • the samples thus obtained were dissolved for 2 hours at 525 ° C. and then quenched with cold water and were tempered.
  • Samples F and G are mainly recrystallized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)

Abstract

L'invention concerne un produit laminé d'épaisseur au moins 50 mm en alliage d'aluminium comprenant en % en poids 2,2 à 3,9 % de Cu, 0,7 à 1,8 % de Li, 0,1 à 0,8 % de Mg, 0,1 à 0,6 % de Mn; 0,01 à 0,15 % de Ti, au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,8 % pour Zn et 0,1 à 0,5 % pour Ag, optionnellement au moins un élément choisi parmi Zr, Cr, Sc, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0,18 % pour Zr, 0,05 à 0,3 % pour Cr et pour Sc, 0,05 à 0,5 % pour Hf et pour V, moins de 0,1 % de Fe, moins de 0,1 % de Si reste aluminium et impuretés inévitables, d'une teneur inférieure à 0,05 % chacune et 0,15% au total; caractérisé en ce que sa structure granulaire est majoritairement recristallisée entre le ¼ et la ½ épaisseur. L'invention concerne également le procédé de fabrication d'un tel produit. Les produits selon l'invention sont avantageusement utilisés dans la construction aéronautique notamment pour la réalisation d'un longeron ou d'une nervure d'aile d'avion.

Description

TÔLES EPAISSES EN ALLIAGE AL-CU-LI A PROPRIETES EN FATIGUE AMELIOREES
Domaine de l'invention
La présente invention concerne en général les tôles épaisses en alliage Al-Cu-Li et en particulier de tels produits utilisés dans l'industrie aéronautique et aérospatiale.
Etat de la technique
Des produits, notamment des produits laminés épais, dont l'épaisseur est typiquement au moins 50 mm, en alliage d'aluminium sont développés pour produire par découpage, surfaçage ou usinage dans la masse des pièces de haute résistance destinées notamment à l'industrie aéronautique, à l'industrie aérospatiale ou à la construction mécanique.
Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. Pour que ces alliages soient sélectionnés dans les avions, leur performance par rapport aux autres propriétés d'usage doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite d'élasticité, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à l'initiation et à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. Pour les produits épais, ces propriétés doivent en particulier être obtenues à quart et à mi-épaisseur. Ces produits doivent également présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés de façon intégrale.
Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pourcent en poids, permet d'augmenter la résistance mécanique.
Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5)Cu, (0, 1-2,5) Li, (0,2-1 ,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Se, V, présentant notamment une ténacité KJC(L)>37,4 MPaVm pour une limite d'élasticité Rpo,2(L) > 448,2 MPa (produits d'épaisseur supérieure à 76,2 mm) et notamment une ténacité KJC(L)>38,5 MPaVm pour une limite d'élasticité Rpo,2(L) > 489,5 MPa (produits d'épaisseur inférieure à 76,2 mm). L'alliage AA2050 comprend (% en poids) : (3,2-3,9) Cu, (0,7-1,3) Li, (0,20-0,6) Mg, (0,20-0,7) Ag, 0,25max. Zn, (0,20-0,50) Mn, (0,06-0,14) Zr et l'alliage AA2095 (3,7-4,3)Cu, (0,7-1,5) Li, (0,25-0,8) Mg, (0,25-0,6) Ag, 0,25max. Zn, 0,25 max. Mn, (0,04-0,18) Zr. Les produits en alliage AA2050 sont connus pour leur qualité en termes de résistance mécanique statique et de ténacité, notamment pour des produits laminés épais et sont sélectionnés dans certains avions.
Pour certaines applications il peut être avantageux d'améliorer encore les propriétés de ces produits notamment en ce qui concerne la propagation des fissures en fatigue.
En effet, pour un avion l'intervalle entre deux opérations de contrôle de la structure dépend de la vitesse et de la façon dont les fissures se propagent dans les matériaux utilisés pour la structure et il est avantageux d'utiliser des produits pour lesquels les fissures se propagent lentement et de manière prévisible. L'amélioration des propriétés de propagation des fissures en fatigue concerne donc notamment la vitesse de propagation et la direction de propagation.
La demande de brevet WO2009103899 décrit ainsi un produit laminé essentiellement non recristallisé comprenant en % en poids: 2,2 à 3,9% en poids de Cu, 0,7 à 2,1% en poids de Li; 0,2 à 0,8%) en poids de Mg; 0,2 à 0,5%> en poids de Mn; 0,04 à 0,18% en poids de Zr; moins de 0,05%) en poids de Zn et, facultativement, 0,1 à 0,5%> en poids de Ag, le reste étant de l'aluminium et des impuretés inévitables, ayant une faible propension à la bifurcation fissure lors d'un test de fatigue dans la direction de LS.
La bifurcation des fissures, la déviation de fissure, la rotation des fissures ou le branchement des fissures sont des termes utilisés pour exprimer la propension pour la propagation d'une fissure de dévier du plan attendu de fracture perpendiculaire à la charge appliquée pendant un test de fatigue ou de ténacité. La bifurcation de fissure se produit à l'échelle microscopique (<100 μιη), à l'échelle mésoscopique (100-1000 μιη) ou à l'échelle macroscopique (> 1 mm), mais elle n'est considérée comme néfaste que si la direction de la fissure reste stable après bifurcation (échelle macroscopique). Le terme bifurcation de fissure est utilisé ici pour la bifurcation macroscopique de fissures lors de tests en fatigue ou en ténacité dans la direction L-S, de la direction S vers la direction L qui se produit pour des produits laminés dont l'épaisseur est d'au moins 50 mm. Il existe un besoin pour un produit laminé en alliage aluminium lithium pour des applications aéronautiques, en particulier pour des pièces intégralement usinées, ayant des propriétés de propagation de fissures en fatigue améliorées et ayant une faible propension à la bifurcation de fissure.
Objet de l'invention
Un premier objet de l'invention est un produit laminé d'épaisseur au moins 50 mm en alliage d'aluminium comprenant en % en poids 2,2 à 3,9 % de Cu, 0,7 à 1,8 % de Li, 0,1 à 0,8 % de Mg, 0,1 à 0,6 % de Mn ; 0,01 à 0,15 % de Ti, au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,8 % pour Zn et 0,1 à 0,5 % pour Ag, optionnellement au moins un élément choisi parmi Zr, Cr, Se, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0,18 % pour Zr, 0,05 à 0,3 % pour Cr et pour Se, 0,05 à 0,5 % pour Hf et pour V, moins de 0,1 % de Fe, moins de 0,1 % de Si reste aluminium et impuretés inévitables, d'une teneur inférieure à 0,05 % chacune et 0,15% au total ; caractérisé en ce que sa structure granulaire est majoritairement recristallisée entre le ¼ et la ½ épaisseur.
Un second objet de l'invention est un procédé de fabrication d'une tôle selon l'invention, comprenant :
a) la coulée d'une plaque, en alliage d'aluminium comprenant en % en poids 2,2 à 3,9 % de Cu, 0,7 à 1,8 % de Li, 0,1 à 0,8 % de Mg, 0,1 à 0,6 % de Mn ; 0,01 à 0,15 % de Ti, au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,8 % pour Zn et 0,1 à 0,5 % pour Ag, optionnellement au moins un élément choisi parmi Zr, Cr, Se, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0,18 % pour Zr, 0,05 à 0,3 % pour Cr et pour Se, 0,05 à 0,5 % pour Hf et pour V, moins de 0,1 % de Fe, moins de 0,1 % de Si reste aluminium et impuretés inévitables, d'une teneur inférieure à 0,05 % en poids chacune et 0,15% au total; b) l'homogénéisation de ladite plaque à une température d'au moins 490 °C, c) le laminage à chaud de ladite plaque pour obtenir une tôle d'au moins 50 mm d'épaisseur,
d) la mise en solution entre 490 °C et 540 °C,
e) la trempe à l'eau froide,
f) la traction contrôlée de la dite tôle avec une déformation permanente de 1 à 7 %, g) le revenu de ladite tôle par chauffage entre 130°C et 160 °C pendant 5 à 60 heures, caractérisé en ce que la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est inférieure à 0,08 % en poids et/ou en ce que lors de l'étape b) la température d'homogénisation est d'au moins 520 °C pour une durée d'au moins 20 heures et lors de l'étape c) la température de sortie du laminage à chaud est inférieure à 390 °C.
Encore un autre objet de l'invention est l'utilisation d'une tôle selon l'invention pour la réalisation d'un longeron d'aile d'avion ou d'une nervure d'aile d'avion. Description des figures
Figure 1 : Schéma de l'éprouvette CT utilisée pour les essais de propagation de fissure en fatigue. Les dimensions sont indiquées en mm.
Figure 2. Vitesses de propagation de fissure obtenues sur éprouvettes CCT pour la tôle de référence E et la tôle C selon l'invention.
Figure 3a - Tôle A, selon l'invention, après test de fatigue sur éprouvette CT pour 6 éprouvettes. Figure 3b - Tôle D de référence, après test de fatigue sur éprouvette CT pour 6 éprouvettes. Figure 4 - Vitesses de propagations de fissures obtenues avec l'éprouvette CT.
Figure 5 : Différents modes de propagation de fissure sur l'éprouvette CT selon la Figure 1, ayant une face arrière (1), une face inférieure (22) et une face supérieure (21). Les directions S et L sont indiquées. Figure 5a : faible propension à la bifurcation de fissure et rupture par la face arrière (1), 5b : forte propension à la bifurcation de fissure et rupture par la face inférieure (22), 5c : faible propension à la bifurcation de fissure, rupture par la face supérieure (21) mais distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L d'au moins 5 mm.
Description détaillée de l'invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression
1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515. Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rpo,2 et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1 , le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Sauf mention contraire, les définitions de la norme EN 12258-1 s'appliquent.
La vitesse de fissuration (da/dN) est déterminée selon la norme ASTM E 647.
Le facteur d'intensité de contrainte (KJC) est déterminé selon la norme ASTM E 399.
Pour les produits épais en alliage d'aluminium, l'homme du métier recherche une structure granulaire non recristallisée car celle-ci est notamment connue pour être favorable à la ténacité et à la résistance à la propagation de fissure en fatigue (voir par exemple, l'article de référence « Application of Modem Aluminum Alloys to Aircraft », Prog. Aerospace Sci. Vol 32 pp 131- 172, 1996, E.A Starke and J.T Staley, p l56, et R.J.H. Wanhill and G.H. Bray, « Fatigue Crack Growth Behavior of Aluminum-Lithium Alloys », in Aluminium-Lithium alloys Processing, Properties and Applications, Chapitre 12 pages 381-413, Elsevier 2014, p386).
Les présents inventeurs ont constaté de manière surprenante, que des produits laminés d'épaisseur au moins 50 mm en alliage Aluminium - Cuivre - Lithium - Magnésium - Manganèse présentent des propriétés avantageuses lorsque la structure granulaire est majoritairement recristallisée entre le ¼ et la ½ épaisseur. Ainsi, de manière surprenante, pour les produits épais selon l'invention, la résistance à la propagation de fissure en fatigue est améliorée alors que le compromis entre résistance mécanique et ténacité n'est pas dégradé de manière significative. Par structure granulaire majoritairement recristallisée entre le ¼ et la ½ épaisseur, on entend une structure granulaire dont le taux de recristallisation est au moins 50 % entre le ¼ et la ½ épaisseur c'est-à-dire dont au moins 50 % des grains entre le ¼ et la ½ épaisseur sont recristallisés. De préférence le taux de recristallisation entre ¼ et la ½ épaisseur est au moins 55%. Avantageusement l'épaisseur des produits selon l'invention est comprise entre 80 et 130 mm.
Les produits selon l'invention ont une teneur en cuivre comprise entre 2,2 et 3,9 %> en poids. De préférence la teneur en cuivre est au moins 2,8 % en poids et préférentiellement au moins 3,2 %> en poids. Avantageusement la teneur maximale en cuivre est 3,8 %> en poids.
Les produits selon l'invention ont une teneur en lithium comprise entre 0,7 et 1 ,8 %> en poids. De préférence la teneur en lithium est au moins 0,8 % en poids et préférentiellement au moins 0,9 %> en poids. Avantageusement la teneur maximale en lithium est 1 ,5 %> en poids, préférentiellement 1 ,1 %> et de manière préférée 0,95 %> en poids. Les produits selon l'invention ont une teneur en magnésium comprise entre 0,1 et 0,8 % en poids. De préférence la teneur en magnésium est au moins 0,2 % en poids et préférentiellement au moins 0,3 % en poids. Avantageusement la teneur maximale en magnésium est 0,7 % en poids et de manière préférée 0,6 % en poids.
Les produits selon l'invention ont une teneur en manganèse comprise entre 0,1 et 0,6 % en poids. De préférence la teneur en manganèse est au moins 0,2 % en poids et préférentiellement au moins 0,3 % en poids. Avantageusement la teneur maximale en manganèse est 0,5 % en poids et de manière préférée 0,4 % en poids.
Les produits selon l'invention contiennent au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,8 % pour Zn et 0,1 à 0,5 % pour Ag, ces éléments étant notamment utiles au durcissement de l'alliage. De manière préférée, on ajoute un seul de ces éléments, le second étant maintenu à une teneur inférieure à 0,05 % en poids.
Optionnellement les produits selon l'invention contiennent au moins un élément choisi parmi Zr, Cr, Se, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0,18 % et de préférence 0,04 à 0,15 % pour Zr, 0,05 à 0,3 % pour Cr et pour Se, 0,05 à 0,5 % pour Hf et pour V. Ces éléments contribuent au contrôle de la structure de granulaire.
Il existe principalement deux modes de réalisation de l'invention.
Dans un premier mode de réalisation de l'invention, la structure granulaire majoritairement recristallisée selon l'invention est obtenue grâce à une sélection des paramètres de transformation, notamment les conditions d'homogénéisation et de laminage à chaud. Dans ce premier mode de réalisation, la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est de préférence au moins 0,08 % en poids. De manière préférée, la teneur en Zr dans ce premier mode de réalisation est de 0,08 à 0,10 % en poids.
Dans un second mode de réalisation, la structure granulaire majoritairement recristallisée selon l'invention est obtenue en limitant la teneur en éléments agissant sur le contrôle de la structure granulaire. Dans ce second mode de réalisation, la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est inférieure à 0,08 % en poids. Dans une réalisation particulière de ce second mode, la teneur en Zr est de 0,04 à 0,07 % en poids et de préférence 0,05 à 0,07 % en poids. Dans une autre réalisation particulière de ce second mode, il n'y a pas d'ajout de Zr, la teneur en Zr est inférieure à 0,05 % en poids, préférentiellement inférieure à 0,04% en poids et plus préférentiellement encore inférieure à 0,02 % en poids.
On peut également dans certains cas combiner ces deux modes de réalisation. Les produits selon l'invention contiennent de 0,01 à 0,15 % en poids de titane, cet élément étant notamment utile pour le contrôle de la structure granulaire lors de la coulée. Préférentiellement, la teneur en titane est comprise entre 0,01 et 0,05 % en poids. La teneur des impuretés fer et silicium doit être limitée pour éviter une dégradation des propriétés de fatigue et de ténacité. Selon l'invention les produits selon l'invention contiennent moins de 0, 1 % de Fe et moins de 0,1 % de Si. Préférentiellement la teneur en fer est inférieure à 0,08 % en poids et de préférence inférieure à 0,06% en poids. Préférentiellement la teneur en silicium est inférieure à 0,07 % en poids et de préférence inférieure à 0,05%> en poids. Les autres éléments présents sont des impuretés inévitables dont la teneur est inférieure à 0,05 % en poids chacune et 0, 15 % en poids au total. Un élément non choisi parmi Cr, Se, Hf, V, Ag et Zn a ainsi une teneur inférieure à 0,05 % en poids et de préférence inférieure à 0,03 % en poids. Si le Zr n'est pas choisi, sa teneur est inférieure à 0,04 % en poids et de préférence inférieure à 0,02 % en poids.
Les produits selon l'invention présentent des propriétés satisfaisantes en termes de compromis entre résistance mécanique et ténacité et des propriétés très avantageuses en termes de vitesse de propagation de fissure en fatigue et en termes de sensibilité à la déviation de fissure.
Ainsi, avantageusement les produits selon l'invention présentent,
(i) pour une épaisseur comprise entre 50 et 75 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 435 MPa et de préférence RPo,2(TL) > 455 MPa et une ténacité KJC (T-L) > 28 MPaVm et avantageusement telle que KJC (T-L) > 30 MPaVm,
(ii) pour une épaisseur comprise entre 76 et 102 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 435 MPa et de préférence RPo,2(TL) > 455 MPa et une ténacité KJC (T-L) > 25 MPaVm et avantageusement telle que KJC (T-L) > 27 MPaVm.
(iii) pour une épaisseur comprise entre 103 et 130 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 428 MPa et de préférence RPo,2(TL) > 448 MPa et une ténacité KJC (T-L) > 23 MPaVm et avantageusement telle que KJC (T-L) > 25 MPaVm.
(iv) pour une épaisseur supérieure à 130 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 428 MPa et de préférence RPo,2(TL) > 448 MPa et une ténacité Kic (T- L) > 21 MPaVm et avantageusement telle que KJC (T-L) > 23 MPaVm, et ils présentent une vitesse de propagation de fissure mesurée selon la norme ASTM E647 sur éprouvettes CCT, à fissure centrale, de largeur 100 mm et d'épaisseur 6.35 mm prélevée à mi-épaisseur dans l'orientation L-S inférieure à 10"4 mm/cycle pour un ΔΚ = 20 MPaVm et préférentiellement inférieure à 9.10"5 mm/cycle pour un ΔΚ = 20 MPaVm.
Les produits selon l'invention présentent également des propriétés avantageuses en termes de propension à la bifurcation de fissure. La bifurcation macroscopique de fissures lors de tests en fatigue dans la direction L-S, de la direction S vers la direction L a été évaluée de deux façons. Dans une première méthode, au moins 6 éprouvettes L-S CT, d'épaisseur 10 mm et de largeur totale 50 mm (40 mm entre l'axe des trous et la face arrière de l'éprouvette) réalisées selon la Figure 1 sont testées en fatigue à la charge maximale d'au moins 3000 N, et un rapport de charge de R = 0.1, permettant de couvrir au cours de l'essai le domaine de ΔΚ allant de 10 à 40 MPaVm, où ΔΚ est la variation du facteur d'intensité de contrainte dans un cycle de charge. On observe sur les éprouvettes la face dans laquelle a lieu la rupture. Ceci est illustré par la Figure 5. Lorsque la rupture a lieu par la face arrière (1), comme pour la figure 5 A, la bifurcation de fissure a été faible. Lorsque la rupture a lieu par la face supérieure (21) ou inférieure (22), comme pour la figure 5B ou 5C, la bifurcation de fissure a été plus significative. Pour les produits selon l'invention la propension à la bifurcation de fissure est faible et la rupture lors d'un test de fatigue dans la direction L - S à une charge maximale d'au moins 3000 N, R = 0,1, sur un lot d'au moins 6 éprouvettes CT d'épaisseur 10 mm et de largeur totale 50 mm se fait majoritairement par la face arrière.
Dans une seconde méthode, on évalue la propension à la bifurcation de fissure en mesurant la distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L, pour une éprouvette L-S CT, d'épaisseur 10 mm et de largeur totale 50 mm réalisée selon la Figure 1 et sont testées en fatigue à la charge maximale d'au moins 3000 N, et un rapport de charge de R = 0.1. La figure 5c montre un exemple d'évaluation de cette distance : lorsque la fissure dévie, elle ne rejoint pas tout de suite la direction L et on peut ainsi mesurer la distance d. On considère que la fissure est dans la direction S ou de la direction L quand elle ne dévie pas de cette direction de plus de 10°. Pour les produits selon l'invention la propension à la bifurcation de fissure est faible et lors d'un test de fatigue dans la direction L - S à une charge maximale d'au moins 3000 N, R = 0,1, sur une éprouvette CT d'épaisseur 10 mm et de largeur totale 50 mm la distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L est au moins 5 mm et de préférence au moins 10 mm. Le procédé de fabrication d'une tôle de structure granulaire majoritairement recristallisée d'épaisseur au moins 50 mm selon l'invention comprend les étapes de coulée, homogénéisation, laminage à chaud, mise en solution, trempe, traction contrôlée et revenu.
Un alliage contenant des quantités contrôlées selon l'invention d'éléments d'alliage est coulé sous forme de plaque.
La plaque est homogénéisée à une température d'au moins 490 °C. De préférence la durée d'homogénéisation est au moins 12 heures. L'homogénéisation peut être réalisée en un ou plusieurs paliers. Selon le premier mode de réalisation de l'invention, l'homogénéisation comprend au moins une étape dont la température est d'au moins 520 °C et de préférence au moins 530 °C, la durée pendant laquelle la température est supérieure à 520 °C étant au moins 20 heures et de préférence au moins 30 heures.
Une étape de laminage à chaud est réalisée après réchauffage si nécessaire pour obtenir des tôles dont l'épaisseur est d'au moins 50 mm. Selon le premier mode de réalisation de l'invention la température de sortie de laminage à chaud est inférieure à 390 °C, préférentiellement inférieure à 380 °C. La combinaison notamment des conditions de l'étape d'homogénéisation et de l'étape de laminage à chaud du premier mode de réalisation permet d'obtenir une structure finale après revenu majoritairement recristallisée notamment pour des produits dont la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est au moins 0,08 % en poids. De manière surprenante, les inventeurs ont constaté que les conditions selon ce premier mode de réalisation permettent de diminuer la propension à la bifurcation de fissure.
Selon le second mode de réalisation, la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est inférieure à 0,08 % en poids et la température de sortie de laminage à chaud est de préférence d'au moins 400 °C et de préférence d'au moins 420 °C.
Les tôles sont mises en solution par chauffage entre 490 et 540 °C préférentiellement pendant 15 minutes à 4 heures, les paramètres de mise en solution dépendant de l'épaisseur du produit.
Une trempe à l'eau froide est réalisée après mise en solution.
Le produit subit ensuite une traction contrôlée avec une déformation permanente comprise entre 1% et 7% et de préférence entre 2% et 6%. Le revenu est réalisé à une température comprise entre 130 °C et 170 °C et de préférence à une température comprise entre 140 °C et 160 °C pendant une durée de 5 à 60 heures, ce qui résulte en un état T8. Dans certains cas, et en particulier pour certaines compositions préférées, le revenu est réalisé de manière préférée entre 140 et 160 °C pendant 12 à 50 heures. Les produits selon l'invention sont avantageusement utilisés dans la construction aéronautique. L'utilisation des produits selon l'invention pour la réalisation d'un longeron d'aile d'avion ou d'une nervure d'aile d'avion est particulièrement avantageuse. L'utilisation des produits selon l'invention pour la réalisation d'un longeron d'aile d'avion est préférée, avantageusement pour la partie inférieure, c'est-à-dire en liaison avec l'intrados de l'aile, d'un longeron soudé.
Exemples
Exemple 1
Cinq plaques en alliage Al-Cu-Li référencées A, B, C, D et E, ont été coulées. Leur composition est donnée dans le Tableau 1.
Tableau 1. Composition (% en poids) des différentes plaques.
Figure imgf000012_0001
La plaque A a été homogénéisée en deux paliers de 36 heures à 504 °C puis 48 heures à 530 °C. Les plaques B et C ont été homogénéisée en deux paliers de 8 heures à 496 °C puis 34 heures à 530 °C. La plaque D a été homogénéisée 12 heures à 505°C. La plaque E a été homogénéisée en deux paliers 8h à 500 °C puis 36 heures à 527 °C.
La plaque A a été laminée à chaud jusqu'à une tôle d'épaisseur 100 mm, la température d'entrée de laminage à chaud était 410 °C et la température de sortie de laminage à chaud était 361 °C. La plaque B a été laminée à chaud jusqu'à une tôle d'épaisseur 102 mm , la température d'entrée de laminage à chaud était 406 °C et la température de sortie de laminage à chaud était 350 °C. La plaque C a été laminée à chaud jusqu'à une tôle d'épaisseur 102 mm , la température d'entrée de laminage à chaud était 410 °C et la température de sortie de laminage à chaud était 360 °C. La plaque D a été laminée à chaud jusqu'à une tôle d'épaisseur 100 mm , la température d'entrée de laminage à chaud était 505°C et la température de sortie de laminage à chaud était 520°C. La plaque E a été laminée à chaud jusqu'à une tôle d'épaisseur 100 mm , la température d'entrée de laminage à chaud était 481°C et la température de sortie de laminage à chaud était 460°C.
Les tôles ainsi obtenues ont été mises en solution pendant 2 heures à 525 °C et trempées avec de l'eau froide.
Les tôles ainsi mises en solution et trempées ont été tractionnées de façon contrôlée, avec un allongement permanent de 4% et ont subi un revenu de 18 heures à 155 °C (A, B, C et E) ou 24 h à 155°C (D).
Le taux de recristallisation des tôles ainsi obtenues a été mesuré sur des coupes micrographiques de surface 0,5 x 1 mm2 dans le plan L-TC à diverses positions dans l'épaisseur. Les résultats obtenus sont présentés dans le Tableau 2.
Tableau 2 : Mesures du taux de recristallisation (%)
Figure imgf000013_0002
Des échantillons ont été testés mécaniquement pour déterminer leurs propriétés mécaniques statiques et leur ténacité. La résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rpo,2 et l'allongement à la rupture A sont données dans le Tableau 3 et la ténacité KJC est donnée dans le tableau 4.
Tableau 3. Propriétés mécaniques statiques mesurées à ¼ épaisseur (T/4) et à mi-épaisseur (T/2).
Figure imgf000013_0001
Tableau 4 . Facteur d'intensité de contrainte (KJC) mesuré à ¼ épaisseur (T/4) et à mi-épaisseur (T/2) déterminé selon la norme ASTM E 399.
Figure imgf000014_0001
* Déviation de fissure à 90°
Des essais de propagation de fissure en fatigue sur des éprouvettes L-S ont été réalisés sur des échantillons provenant des tôles C et E. Les essais ont été réalisés selon la norme ASTM E647. Ces essais sont réalisés sur éprouvettes CCT, à fissure centrale, de largeur 100 mm et d'épaisseur 6.35 mm.
La figure 2 montre les résultats de vitesse de propagation de fissure pour les échantillons testés avec l'éprouvette CCT. Les résultats sont résumés dans le Tableau 5 ci-dessous.
Tableau 5. Résultats des essais de propagation de fissure en fatigue éprouvettes L-S selon la norme ASTM E647.
Figure imgf000014_0002
En outre, pour examiner la susceptibilité à la déviation de fissure, 6 échantillons L-S selon la Figure 1 ont été prélevés dans les tôles A (échantillons Al , A2, Bl , B2, Cl , C2) et D (échantillons 84A1 , 84A2, 84B1 , 84B2, 84C1 , 84C2) et soumis à un essai en propagation en fatigue à la charge maximale de 4000 N, ou 3000 N lorsque spécifié, et un rapport de charge de R = 0.1. Les repères 84A2 et A2, B2 et C2 ont été testés à 3000 N de force maximale plutôt que 4000 N. Les conditions permettent de couvrir au cours de l'essai le domaine de ΔΚ allant de 10 à 40 MPaVm, où ΔΚ est la variation du facteur d'intensité de contrainte dans un cycle de charge. Sur cette autre géométrie la différence de vitesse de propagation de fissure entre l'alliage recristallisé et l'alliage non recristallisé est illustrée par la Figure 4.
Les figures 3a et 3b montrent, respectivement, les échantillons issus des tôles A et D après l'essai en fatigue. Les échantillons issus de la tôle A selon l'invention présentent une bifurcation de fissure progressive avec dans 4 cas sur 6 (Cl, C2, Bl, A2) une rupture par la face arrière de l'éprouvette. La distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L est au moins 15 mm pour tous les échantillons issus de la tôle A, car dans aucun des cas la fissure ne rejoint la direction L. Tous les échantillons issus de la tôle D présentent une propension élevée à la bifurcation de fissure avec une rupture toujours par la face supérieure ou la face inférieure de l'éprouvette et une distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L inférieure à 3 mm : pour tous les échantillons la fissure passe directement de la direction S initiale à la direction L perpendiculaire. La figure 4 montre les résultats de vitesse de propagation mesurés par la méthode de l'ouverture de la fissure, lors des essais sur éprouvettes CT. Ces essais montrent également que la vitesse de propagation est nettement plus lente, dans le sens L-S, pour la tôle A selon l'invention.
Le produit majoritairement recristallisé selon l'invention présente une propagation de fissures en fatigue particulièrement avantageuse.
Exemple 2
Trois plaques en alliage Al-Cu-Li référencées F, G et H ont été coulées. Leur composition est donnée dans le Tableau 6.
Tableau 6. Composition (% en poids) des différentes plaques.
Figure imgf000015_0001
Des échantillons de format 14 mm x 50 mm x 56 mm ont été usinés à mi-largeur (L/2) et quart- épaisseur (T/4) des plaques de coulée. La figure 6 présente de tels échantillons d'épaisseur C 14 mm et de largueur B 50 mm. Les échantillons ont été homogénéisés en deux paliers de 5 heures à 505 °C puis 12 heures à 525 °C.
Les échantillons ont été déformés à chaud par bipoinçonnement à l'aide d'une machine de type « Servotest » ®, la température et la vitesse de déformation étaient respectivement 400 °C et ls"1. La figure 6 illustre une telle déformation par bipoinçonnement. L'épaisseur finale de la portion déformée de largueur W (W=15 mm) était de 3.6mm, ce qui représente une réduction totale d'environ 74%. Une telle déformation est représentative d'une déformation industrielle par laminage à chaud d'une plaque de fonderie d'environ 400 mm à une épaisseur finale d'environ 100 mm.
Les échantillons ainsi obtenus ont été mis en solution pendant 2 heures à 525 °C puis trempés à l'eau froide et ont subi un revenu.
Le taux de recristallisation à mi-épaisseur des échantillons a été évalué sur des coupes micrographiques de surface 0,5 x 1 mm2 dans le plan L-TC . Les résultats obtenus sont présentés dans le Tableau 7.
Tableau 7 : Mesure du taux de recristallisation (%>)
Figure imgf000016_0001
Les échantillons F et G sont majoritairement recristallisés.

Claims

REVENDICATIONS
1. Produit laminé d'épaisseur au moins 50 mm en alliage d'aluminium comprenant en % en poids 2,2 à 3,9 % de Cu, 0,7 à 1 ,8 % de Li, 0, 1 à 0,8 % de Mg, 0, 1 à 0,6 % de Mn ;
0,01 à 0,15 % de Ti, au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,8 % pour Zn et 0,1 à 0,5 % pour Ag, optionnellement au moins un élément choisi parmi Zr, Cr, Se, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0, 18 % pour Zr, 0,05 à 0,3 % pour Cr et pour Se, 0,05 à 0,5 % pour Hf et pour V, moins de 0,1 % de Fe, moins de 0, 1 % de Si reste aluminium et impuretés inévitables, d'une teneur inférieure à 0,05 % chacune et 0,15% au total ; caractérisé en ce que sa structure granulaire est majoritairement recristallisée entre le ¼ et la ½ épaisseur.
2. Produit laminé selon la revendication 1 caractérisé en ce que son épaisseur est comprise entre 80 et 130 mm.
3. Produit laminé selon la revendication 1 ou la revendication 2 caractérisé en ce que la teneur maximale en Li est 1 ,5 % en poids.
4. Produit laminé selon une quelconque des revendications 1 à 3 caractérisé en ce que la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est inférieure à 0,08 % en poids.
5. Produit laminé selon une quelconque des revendications 1 à 4 présentant
(i) pour une épaisseur comprise entre 50 et 75 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 435 MPa et de préférence RPo,2(TL) > 455 MPa et une ténacité KJC (T-L) > 28 MPaVm et avantageusement telle que KJC (T-L) > 30 MPaVm,
(ii) pour une épaisseur comprise entre 76 et 102 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 435 MPa et de préférence RPo,2(TL) > 455 MPa et une ténacité KJC (T-L) > 25 MPaVm et avantageusement telle que KJC (T-L) > 27 MPaVm.
(iii) pour une épaisseur comprise entre 103 et 130 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 428 MPa et de préférence RPo,2(TL) > 448 MPa et une ténacité KJC (T-L) > 23 MPaVm et avantageusement telle que KJC (T-L) > 25 MPaVm.
(iv) pour une épaisseur supérieure à 130 mm, à quart-épaisseur, une limite d'élasticité RPo,2(TL) > 428 MPa et de préférence RPo,2(TL) > 448 MPa et une ténacité Kic (T- L) > 21 MPaVm et avantageusement telle que Kic (T-L) > 23 MPaVm, et présentant une vitesse de propagation de fissure mesurée selon la norme ASTM E647 sur éprouvettes CCT, à fissure centrale, de largeur 100 mm et d'épaisseur 6.35 mm prélevée à mi-épaisseur dans l'orientation L-S inférieure à 10"4 mm/cycle pour un ΔΚ = 20 MPaVm.
6. Produit laminé selon une quelconque des revendications 1 à 5 présentant une faible propension à la bifurcation de fissure caractérisée en ce que la rupture lors d'un test de fatigue dans la direction L - S à une charge maximale d'au moins 3000 N, R = 0, 1 , sur un lot d'au moins 6 éprouvettes CT d'épaisseur 10 mm et de largeur totale 50 mm se fait majoritairement par la face arrière (1).
7. Produit laminé selon une quelconque des revendications 1 à 6 présentant une faible propension à la bifurcation de fissure caractérisée en ce que lors d'un test de fatigue dans la direction L - S à une charge maximale d'au moins 3000 N, R = 0,1 , sur une éprouvette CT d'épaisseur 10 mm et de largeur totale 50 mm la distance d sur laquelle la fissure n'est ni dans la direction S initiale, ni dans la direction L est au moins 5 mm et de préférence au moins 10 mm. 8. Procédé de fabrication d'une tôle selon une quelconque des revendications 1 à 7, comprenant :
a) la coulée d'une plaque, en alliage d'aluminium comprenant en % en poids 2,2 à 3,9 % de Cu, 0,7 à 1 ,8 % de Li, 0, 1 à 0,8 % de Mg, 0, 1 à 0,6 % de Mn ; 0,01 à 0, 15 % de Ti, au moins un élément choisi parmi Zn et Ag, la quantité dudit élément s'il est choisi étant 0,2 à 0,
8 % pour Zn et 0,1 à 0,5 % pour Ag, optionnellement au moins un élément choisi parmi Zr, Cr, Se, Hf, et V, la quantité dudit élément s'il est choisi étant 0,04 à 0, 18 % pour Zr, 0,05 à 0,3 % pour Cr et pour Se, 0,05 à 0,5 % pour Hf et pour V, moins de 0,1 % de Fe, moins de 0, 1 % de Si reste aluminium et impuretés inévitables, d'une teneur inférieure à 0,05 % en poids chacune et 0, 15% au total ; b) l'homogénéisation de ladite plaque à une température d'au moins 490 °C,
c) le laminage à chaud de ladite plaque pour obtenir une tôle d'au moins 50 mm d'épaisseur,
d) la mise en solution entre 490 °C et 540 °C,
e) la trempe à l'eau froide,
f) la traction contrôlée de la dite tôle avec une déformation permanente de 1 à 7 %, g) le revenu de ladite tôle par chauffage entre 130°C et 170 °C pendant 5 à 60 heures, caractérisé en ce que la somme de la teneur des éléments Zr, Cr, Se, Hf, et V est inférieure à 0,08 % en poids et/ou en ce que lors de l'étape b) l'homogénéisation comprend au moins une étape dont la température est d'au moins 520 °C, la durée pendant laquelle la température est supérieure à 520 °C étant au moins 20 heures et lors de l'étape c) la température de sortie du laminage à chaud est inférieure à 390 °C.
9. Utilisation d'une tôle selon une quelconque des revendications 1 à 7 pour la réalisation d'un longeron d'aile d'avion ou d'une nervure d'aile d'avion
10. Utilisation selon la revendication 9 pour la partie inférieure d'un longeron soudé.
PCT/FR2017/050255 2016-02-03 2017-02-03 Tôles épaisses en alliage al–cu–li à propriétés en fatigue améliorées WO2017134405A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17707940.7A EP3411508B1 (fr) 2016-02-03 2017-02-03 Tôles épaisses en alliage al cu li à propriétés en fatigue améliorées
BR112018014770-2A BR112018014770B1 (pt) 2016-02-03 2017-02-03 Produto laminado feito de liga de al-cu-li, processo de fabricação de uma chapa e sua utilização
US16/074,661 US20190040508A1 (en) 2016-02-03 2017-02-03 Thick plates made of al-cu-li alloy with improved fatigue properties
CN201780009624.1A CN108603253B (zh) 2016-02-03 2017-02-03 具有改善的疲劳性能的由铝-铜-锂合金制得的厚板
CA3012956A CA3012956C (fr) 2016-02-03 2017-02-03 Toles epaisses en alliage al-cu-li a proprietes en fatigue ameliorees
US18/448,998 US20240035138A1 (en) 2016-02-03 2023-08-14 Thick plates made of al-cu-li alloy with improved fatigue properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650850 2016-02-03
FR1650850A FR3047253B1 (fr) 2016-02-03 2016-02-03 Toles epaisses en alliage al - cu - li a proprietes en fatigue ameliorees

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/074,661 A-371-Of-International US20190040508A1 (en) 2016-02-03 2017-02-03 Thick plates made of al-cu-li alloy with improved fatigue properties
US18/448,998 Continuation US20240035138A1 (en) 2016-02-03 2023-08-14 Thick plates made of al-cu-li alloy with improved fatigue properties

Publications (1)

Publication Number Publication Date
WO2017134405A1 true WO2017134405A1 (fr) 2017-08-10

Family

ID=56263811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050255 WO2017134405A1 (fr) 2016-02-03 2017-02-03 Tôles épaisses en alliage al–cu–li à propriétés en fatigue améliorées

Country Status (7)

Country Link
US (2) US20190040508A1 (fr)
EP (1) EP3411508B1 (fr)
CN (1) CN108603253B (fr)
BR (1) BR112018014770B1 (fr)
CA (1) CA3012956C (fr)
FR (1) FR3047253B1 (fr)
WO (1) WO2017134405A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210189538A1 (en) * 2018-05-02 2021-06-24 Constellium Issoire Method for manufacturing an aluminum-copper-lithium alloy having improved compressive strength and improved toughness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
CN113943880A (zh) * 2021-10-15 2022-01-18 西南铝业(集团)有限责任公司 一种Al-Cu-Li-Mg-V-Zr-Sc-Ag合金及其制备方法
CN115433888B (zh) * 2022-08-18 2023-06-13 哈尔滨工业大学(深圳) 一种铝锂合金中厚板的形变热处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229509B2 (en) * 2003-05-28 2007-06-12 Alcan Rolled Products Ravenswood, Llc Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
WO2009103899A1 (fr) * 2007-12-21 2009-08-27 Alcan Rhenalu Produit lamine en alliage aluminium-lithium pour applications aeronautiques

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583776B1 (fr) 1985-06-25 1987-07-31 Cegedur Produits a base d'al contenant du lithium utilisables a l'etat recristallise et un procede d'obtention
US5066342A (en) 1988-01-28 1991-11-19 Aluminum Company Of America Aluminum-lithium alloys and method of making the same
US5455003A (en) 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
FR2802946B1 (fr) * 1999-12-28 2002-02-15 Pechiney Rhenalu Element de structure d'avion en alliage al-cu-mg
RU2180930C1 (ru) * 2000-08-01 2002-03-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава
US8771441B2 (en) 2005-12-20 2014-07-08 Bernard Bes High fracture toughness aluminum-copper-lithium sheet or light-gauge plates suitable for fuselage panels
FR2894985B1 (fr) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
CA2700250C (fr) 2007-09-21 2016-06-28 Aleris Aluminum Koblenz Gmbh Produit en alliage ai-cu-li qui convient pour une application aerospatiale
FR2960002B1 (fr) 2010-05-12 2013-12-20 Alcan Rhenalu Alliage aluminium-cuivre-lithium pour element d'intrados.
CN102021457B (zh) 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 一种高强韧铝锂合金及其制备方法
CN101967589B (zh) 2010-10-27 2013-02-20 中国航空工业集团公司北京航空材料研究院 一种中强高韧铝锂合金及其制备方法
FR3014448B1 (fr) 2013-12-05 2016-04-15 Constellium France Produit en alliage aluminium-cuivre-lithium pour element d'intrados a proprietes ameliorees

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229509B2 (en) * 2003-05-28 2007-06-12 Alcan Rolled Products Ravenswood, Llc Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
WO2009103899A1 (fr) * 2007-12-21 2009-08-27 Alcan Rhenalu Produit lamine en alliage aluminium-lithium pour applications aeronautiques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210189538A1 (en) * 2018-05-02 2021-06-24 Constellium Issoire Method for manufacturing an aluminum-copper-lithium alloy having improved compressive strength and improved toughness

Also Published As

Publication number Publication date
US20190040508A1 (en) 2019-02-07
BR112018014770A2 (pt) 2018-12-18
CA3012956C (fr) 2023-10-03
FR3047253A1 (fr) 2017-08-04
FR3047253B1 (fr) 2018-01-12
CA3012956A1 (fr) 2017-08-10
CN108603253A (zh) 2018-09-28
BR112018014770B1 (pt) 2022-11-16
EP3411508A1 (fr) 2018-12-12
US20240035138A1 (en) 2024-02-01
CN108603253B (zh) 2021-03-19
EP3411508B1 (fr) 2020-04-08

Similar Documents

Publication Publication Date Title
EP2235224B1 (fr) PROCÉDÉ DE FABRICATION D&#39;UN PRODUIT LAMINÉ EN Al-Li POUR DES APPLICATIONS AÉRONAUTIQUES
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
CA2907854C (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
FR2841263A1 (fr) PROCEDE DE PRODUCTION D&#39;UN PRODUIT EN ALLAIGE Al-Mg-Si EQUILIBRE A HAUTE RESISTANCE, ET PRODUIT SOUDABLE ET MATERIAU DE REVETEMENT POUR AVION, OBTENUS PAR UN TEL PROCEDE
FR2826979A1 (fr) Produits lamines soudables en alliage d&#39;aluminium a haute resistance et leur procede de fabrication
EP3384061B1 (fr) Alliage aluminium cuivre lithium à resistance mécanique et tenacité ameliorées
FR2969177A1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
EP3411508B1 (fr) Tôles épaisses en alliage al cu li à propriétés en fatigue améliorées
WO2016051099A1 (fr) Tôles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP2981631A1 (fr) Tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
CA2923109C (fr) Tole d&#39;intrados a proprietes de tolerance aux dommages ameliorees
EP2836620A1 (fr) Alliage aluminium cuivre lithium à résistance au choc améliorée
WO2021064320A1 (fr) Toles de precision en alliage d&#39;aluminium
EP3864184A1 (fr) Tole en alliage 2xxx a haute performance pour fuselage d&#39;avion
EP3802897B1 (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
WO2023144492A1 (fr) Tole mince amelioree en alliage d&#39;aluminium-cuivre-lithium
WO2024018147A1 (fr) Procédé de fabrication d&#39;une tôle en alliage d&#39;aluminium 7xxx et tôle en alliage d&#39;aluminium 7xxx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17707940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3012956

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018014770

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017707940

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017707940

Country of ref document: EP

Effective date: 20180903

ENP Entry into the national phase

Ref document number: 112018014770

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180719