WO2017134140A1 - Bispecific t cell engaging antibody constructs - Google Patents

Bispecific t cell engaging antibody constructs Download PDF

Info

Publication number
WO2017134140A1
WO2017134140A1 PCT/EP2017/052212 EP2017052212W WO2017134140A1 WO 2017134140 A1 WO2017134140 A1 WO 2017134140A1 EP 2017052212 W EP2017052212 W EP 2017052212W WO 2017134140 A1 WO2017134140 A1 WO 2017134140A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
domain
seq
antibody construct
nos
Prior art date
Application number
PCT/EP2017/052212
Other languages
French (fr)
Inventor
Tobias Raum
Markus Muenz
Johannes BROZY
Peter Kufer
Patrick Hoffmann
Matthias Friedrich
Benno Rattel
Pamela BOGNER
Andreas Wolf
Cornelius Pompe
Original Assignee
Amgen Research (Munich) Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2018009383A priority Critical patent/MX2018009383A/en
Priority to BR112018015670A priority patent/BR112018015670A2/en
Priority to PE2023001372A priority patent/PE20230995A1/en
Priority to CR20180417A priority patent/CR20180417A/en
Priority to EP17703379.2A priority patent/EP3411403A1/en
Priority to KR1020187024998A priority patent/KR20180104137A/en
Priority to SG11201805870YA priority patent/SG11201805870YA/en
Priority to IL306066A priority patent/IL306066A/en
Priority to CN201780018681.6A priority patent/CN109071662A/en
Priority to EA201891749A priority patent/EA201891749A1/en
Application filed by Amgen Research (Munich) Gmbh filed Critical Amgen Research (Munich) Gmbh
Priority to MYPI2018702649A priority patent/MY192682A/en
Priority to AU2017214251A priority patent/AU2017214251B2/en
Priority to TNP/2018/000265A priority patent/TN2018000265A1/en
Priority to CA3010685A priority patent/CA3010685A1/en
Priority to IL260919A priority patent/IL260919B2/en
Priority to UAA201809059A priority patent/UA126280C2/en
Publication of WO2017134140A1 publication Critical patent/WO2017134140A1/en
Priority to ZA2018/04514A priority patent/ZA201804514B/en
Priority to PH12018501548A priority patent/PH12018501548A1/en
Priority to CONC2018/0009112A priority patent/CO2018009112A2/en
Priority to HK19100123.9A priority patent/HK1257748A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3053Skin, nerves, brain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • Bispecific molecules such as BiTE ® (bispecific T cell engager) antibody constructs are recombinant protein constructs made from two flexibly linked antibody derived binding domains.
  • One binding domain of BiTE ® antibody constructs is specific for a selected tumor- associated surface antigen on target cells; the second binding domain is specific for CD3, a subunit of the T cell receptor complex on T cells.
  • BiTE ® antibody constructs are uniquely suited to transiently connect T cells with target cells and, at the same time, potently activate the inherent cytolytic potential of T cells against target cells.
  • BiTE ® antibody constructs binding to this elected epitope do not only show cross-species specificity for human and Callithrix jacchus, Saguinus oedipus or Saimiri sciureus CD3e chain, but also, due to recognizing this specific epitope instead of previously described epitopes for CD3 binders in bispecific T cell engaging molecules, do not unspecifically activate T cells to the same degree as observed for the previous generation of T cell engaging antibodies. This reduction in T cell activation was connected with less or reduced T cell redistribution in patients, which was identified as a risk for side effects.
  • Antibody constructs as described in WO 2008/119567 are likely to suffer from rapid clearance from the body; thus, whilst they are able to reach most parts of the body rapidly, and are quick to produce and easier to handle, their in vivo applications may be limited by their brief persistence in vivo. Prolonged administration by continuous intravenous infusion was used to achieve therapeutic effects because of the short in vivo half life of this small, single chain molecule. However, such continuous intravenous infusions are classified as inconvenient for the patients and, thus, in case of more convenient alternative treatment approaches, hamper the election of the compound demonstrated to be more efficient in the treatment of the respective disease.
  • bispecific therapeutics that retain similar therapeutic efficacy that have a format which is straightforward to produce, and that have favorable pharmacokinetic properties, including a longer half-life.
  • An increased half-life is generally useful in in vivo applications of immunoglobulins, especially antibodies and most especially antibody fragments of small size.
  • Approaches described in the art to achieve such effect comprise the fusion of the small bispecific antibody construct to larger proteins, which preferably do not interfere with the therapeutic effect of the BiTE ® antibody construct.
  • Examples for such further developments of bispecific T cell engagers comprise bispecifc Fc-molecules e.g.
  • HLE formats All the half-life extending formats (HLE formats) of bispecific T cell engaging molecules described in the art, which included the hetero Fc (also designated as hetFc or heterodimeric Fc, hFc) format and the fusion of human serum albumin (also designated as HSA or hALB) had individual disadvantages such as unspecific T cell activation, complement activation, instability or a pharmacokinetic profile, which does not meet the desired half-life prolongation of the molecules. It is thus the object of the present invention to provide a half- life extending format of bispecific T cell engaging molecules, which overcomes at least one and, of course, preferably more than one of these individual defects observed for the state of the art molecules.
  • the present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to a target cell surface antigen, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3e chain and a third domain, which is the specific Fc modality.
  • the invention provides a polynucleotide encoding the antibody construct, a vector comprising this polynucleotide, host cells expressing the construct and a pharmaceutical composition comprising the same.
  • FIG. 1 a shows a diagram of one embodiment of an antibody construct of the invention.
  • Fig. 1 b shows a heterodimeric Fc antibody construct and !c a X-body construct described in the art. The indicated charged pairs are introduced in order to enforce the heterodimerization.
  • Fig 1d shows the fusion of an antibody construct with a human serum albumin (HSA or hALB).
  • HSA human serum albumin
  • FIG. 2 Evaluation of Target-independent T Cell Activation by Mesothelin (MS) HLE BiTE ® antibody constructs.
  • FIG. 3 Evaluation of Target-independent T Cell Activation by HLE BiTE ® antibody constructs.
  • FIG. 4 Complement C1 q Binding of BiTE ® Fc fusion antibody constructs.
  • BiTE ® Fc fusion antibody constructs BiTE ® single chain Fc (triangle), BiTE ® hetero Fc (squares), canonical BiTE ® (circle)
  • BiTE ® Fc fusion antibody constructs were coated on a Maxisorp plate (in dilution series), prior to incubation with pooled human serum and incubation with polyclonal anti human CC1 q murine antibody, visualized by goat anti-mouse Fc-AP conjugate.
  • Figure 5 Mean PK profiles of four pairs of BiTE®-HLE fusion antibody constructs after single dose administration in cynomolgus monkeys. For reasons of comparability, serum concentrations were dose-normalized to 15 pg/kg and indicated in nmol.
  • Figure 6 Mean PK profiles of ninedifferent BiTE ® antibody constructs, each fused to a scFc half-life extending moiety. For reasons of comparability, serum concentrations were dose-normalized to 15 pg/kg and indicated in nmol.
  • FIG. 1453 Bispecific scFc variants D9F (SEQ ID NO: 1453), T2G (SEQ ID NO: 1454), D3L (SEQ ID NO: 1455), T7I (SEQ ID NO: 1456) and K6C (SEQ ID NO: 1457).
  • a preferred antibody construct of the present invention is shown in SEQ ID NO: 1453.
  • FIG. 8 Surface Plasmon Resonance (SPR)-based determination of binding to human FcRn. Constructs D9F, T2G, D3L, T7I and K6C were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments. The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates. Average values of the duplicate determinations are depicted in Figure 8A and 8B.
  • SPR Surface Plasmon Resonance
  • Figure 9 The constructs D9F, T2G, D3L, T7I and K6C and a human lgG1 -kappa antibody MT201 were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments. The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates. Average values of the duplicate determinations are depicted including standard deviation error bars.
  • the fusion of the specific Fc modality i.e. the third domain according to the present invention, is also responsible for a surprising significant impact on the first and second binding domain of the antibody construct of the invention.
  • the election of the present specific Fc modality allows for the provision of bispecific molecules, which show a broad spectrum of preferred characteristics of a robust molecular format and, thus, allow for the development of promising pharmaceutical compositions.
  • the present invention provides an antibody construct comprising at least three domains, wherein
  • the second domain binds to an extracellular epitope of the human and/or the Macaca CD3e chain
  • the third domain comprises two polypeptide monomers, each comprising a hinge domain, a CH2 domain and a CH3 domain, wherein said two polypeptide monomers are fused to each other via a peptide linker.
  • antibody construct refers to a molecule in which the structure and/or function is/are based on the structure and/or function of an antibody, e.g., of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof.
  • VH variable heavy chain
  • VL variable light chain
  • the binding domain of an antibody construct according to the invention comprises the minimum structural requirements of an antibody which allow for the target binding.
  • This minimum requirement may e.g. be defined by the presence of at least the three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or the three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region), preferably of all six CDRs.
  • An alternative approach to define the minimal structure requirements of an antibody is the definition of the epitope of the antibody within the structure of the specific target, respectively, the protein domain of the target protein composing the epitope region (epitope cluster) or by reference to an specific antibody competing with the epitope of the defined antibody.
  • the antibodies on which the constructs according to the invention are based include for example monoclonal, recombinant, chimeric, deimmunized, humanized and human antibodies.
  • the binding domain of an antibody construct according to the invention may e.g. comprise the above referred groups of CDRs.
  • those CDRs are comprised in the framework of an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it does not have to comprise both.
  • Fd fragments for example, have two VH regions and often retain some antigen-binding function of the intact antigen- binding domain.
  • Additional examples for the format of antibody fragments, antibody variants or binding domains include (1 ) a Fab fragment, a monovalent fragment having the VL, VH, CL and CH1 domains; (2) a F(ab') 2 fragment, a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; (3) an Fd fragment having the two VH and CH1 domains; (4) an Fv fragment having the VL and VH domains of a single arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341 :544-546), which has a VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain Fv (scFv) , the latter being preferred (for example, derived from an scFV-library).
  • a Fab fragment a monovalent fragment having the VL, VH, CL and CH1 domains
  • a F(ab') 2 fragment a bivalent
  • Examples for embodiments of antibody constructs according to the invention are e.g. described in WO 00/006605, WO 2005/040220, WO 2008/1 19567, WO 2010/037838, WO 2013/026837, WO 2013/026833, US 2014/0308285, US 2014/0302037, WO 2014/144722, WO 2014/151910, and WO 2015/048272.
  • binding domain or "domain which binds” are fragments of full-length antibodies, such as VH, VHH, VL, (s)dAb, Fv, Fd, Fab, Fab', F(ab')2 or "r IgG" ("half antibody”).
  • Antibody constructs according to the invention may also comprise modified fragments of antibodies, also called antibody variants, such as scFv, di-scFv or bi(s)-scFv, scFv-Fc, scFv-zipper, scFab, Fab 2 , Fab 3 , diabodies, single chain diabodies, tandem diabodies (Tandab's), tandem di-scFv, tandem tri-scFv, "multibodies” such as triabodies or tetrabodies, and single domain antibodies such as nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains.
  • antibody variants such as scFv, di-scFv or bi(s)-scFv, scFv-Fc, scFv-zipper, scFab, Fab 2 , Fab 3 ,
  • single-chain Fv single polypeptide chain antibody fragments that comprise the variable regions from both the heavy and light chains, but lack the constant regions.
  • a single-chain antibody further comprises a polypeptide linker between the VH and VL domains which enables it to form the desired structure which would allow for antigen binding.
  • Single chain antibodies are discussed in detail by Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 1 13, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994).
  • Various methods of generating single chain antibodies are known, including those described in U.S. Pat. Nos.
  • single-chain antibodies can also be bispecific, multispecific, human, and/or humanized and/or synthetic.
  • antibody construct includes monovalent, bivalent and polyvalent / multivalent constructs and, thus, bispecific constructs, specifically binding to only two antigenic structure, as well as polyspecific / multispecific constructs, which specifically bind more than two antigenic structures, e.g. three, four or more, through distinct binding domains.
  • antibody construct includes molecules consisting of only one polypeptide chain as well as molecules consisting of more than one polypeptide chain, which chains can be either identical (homodimers, homotrimers or homo oligomers) or different (heterodimer, heterotrimer or heterooligomer).
  • bispecific refers to an antibody construct which is "at least bispecific", i.e., it comprises at least a first binding domain and a second binding domain, wherein the first binding domain binds to one antigen or target (here: the target cell surface antigen), and the second binding domain binds to another antigen or target (here: CD3).
  • antibody constructs according to the invention comprise specificities for at least two different antigens or targets.
  • the first domain does preferably not bind to an extracellular epitope of CD3s of one or more of the species as described herein.
  • target cell surface antigen refers to an antigenic structure expressed by a cell and which is present at the cell surface such that it is accessible for an antibody construct as described herein. It may be a protein, preferably the extracellular portion of a protein, or a carbohydrate structure, preferably a carbohydrate structure of a protein, such as a glycoprotein. It is preferably a tumor antigen.
  • bispecific antibody construct of the invention also encompasses multispecific antibody constructs such as trispecific antibody constructs, the latter ones including three binding domains, or constructs having more than three (e.g. four, five...) specificities.
  • bispecific antibody constructs are (at least) bispecific, they do not occur naturally and they are markedly different from naturally occurring products.
  • a "bispecific" antibody construct or immunoglobulin is hence an artificial hybrid antibody or immunoglobulin having at least two distinct binding sides with different specificities.
  • Bispecific antibody constructs can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315- 321 (1990).
  • the at least two binding domains and the variable domains (VH / VL) of the antibody construct of the present invention may or may not comprise peptide linkers (spacer peptides).
  • the term "peptide linker" comprises in accordance with the present invention an amino acid sequence by which the amino acid sequences of one (variable and/or binding) domain and another (variable and/or binding) domain of the antibody construct of the invention are linked with each other.
  • the peptide linkers can also be used to fuse the third domain to the other domains of the antibody construct of the invention.
  • An essential technical feature of such peptide linker is that it does not comprise any polymerization activity.
  • suitable peptide linkers are those described in U.S. Patents 4,751 ,180 and 4,935,233 or WO 88/09344.
  • the peptide linkers can also be used to attach other domains or modules or regions (such as half-life extending domains) to the antibody construct of the invention.
  • the antibody constructs of the present invention are preferably "in vitro generated antibody constructs".
  • This term refers to an antibody construct according to the above definition where all or part of the variable region (e.g., at least one CDR) is generated in a non-immune cell selection, e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen.
  • a non-immune cell selection e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen.
  • a "recombinant antibody” is an antibody made through the use of recombinant DNA technology or genetic engineering.
  • mAb monoclonal antibody
  • monoclonal antibody construct refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts.
  • Monoclonal antibodies are highly specific, being directed against a single antigenic side or determinant on the antigen, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (or epitopes).
  • the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, hence uncontaminated by other immunoglobulins.
  • the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • monoclonal antibodies for the preparation of monoclonal antibodies, any technique providing antibodies produced by continuous cell line cultures can be used.
  • monoclonal antibodies to be used may be made by the hybridoma method first described by Koehler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567).
  • examples for further techniques to produce human monoclonal antibodies include the trioma technique, the human B-cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), 77-96).
  • Hybridomas can then be screened using standard methods, such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (BIACORETM) analysis, to identify one or more hybridomas that produce an antibody that specifically binds with a specified antigen.
  • ELISA enzyme-linked immunosorbent assay
  • BIACORETM surface plasmon resonance
  • Any form of the relevant antigen may be used as the immunogen, e.g., recombinant antigen, naturally occurring forms, any variants or fragments thereof, as well as an antigenic peptide thereof.
  • Surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to an epitope of a target cell surface antigen, (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13).
  • Another exemplary method of making monoclonal antibodies includes screening protein expression libraries, e.g., phage display or ribosome display libraries.
  • Phage display is described, for example, in Ladner et al., U.S. Patent No. 5,223,409; Smith (1985) Science 228:1315-1317, Clackson et ai, Nature, 352: 624-628 (1991 ) and Marks et al., J. Mol. Biol., 222: 581 -597 (1991 ).
  • the relevant antigen can be used to immunize a non-human animal, e.g., a rodent (such as a mouse, hamster, rabbit or rat).
  • the non-human animal includes at least a part of a human immunoglobulin gene.
  • antigen-specific monoclonal antibodies derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSETM, Green et al.
  • a monoclonal antibody can also be obtained from a non-human animal, and then modified, e.g., humanized, deimmunized, rendered chimeric etc., using recombinant DNA techniques known in the art.
  • modified antibody constructs include humanized variants of non-human antibodies, "affinity matured" antibodies (see, e.g. Hawkins et al. J. Mol. Biol.
  • affinity maturation is the process by which B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities.
  • the in vitro affinity maturation is based on the principles of mutation and selection. The in vitro affinity maturation has successfully been used to optimize antibodies, antibody constructs, and antibody fragments. Random mutations inside the CDRs are introduced using radiation, chemical mutagens or error-prone PCR. In addition, the genetic diversity can be increased by chain shuffling. Two or three rounds of mutation and selection using display methods like phage display usually results in antibody fragments with affinities in the low nanomolar range.
  • a preferred type of an amino acid substitutional variation of the antibody constructs involves substituting one or more hypervariable region residues of a parent antibody (e. g. a humanized or human antibody).
  • a parent antibody e. g. a humanized or human antibody.
  • the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated.
  • a convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sides (e. g. 6-7 sides) are mutated to generate all possible amino acid substitutions at each side.
  • the antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle.
  • the phage-displayed variants are then screened for their biological activity (e. g. binding affinity) as herein disclosed.
  • alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding.
  • the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
  • the monoclonal antibodies and antibody constructs of the present invention specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81 : 6851 -6855 (1984)).
  • chimeric antibodies immunoglobulins
  • Chimeric antibodies of interest herein include "primitized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human constant region sequences.
  • a non-human primate e.g., Old World Monkey, Ape etc.
  • human constant region sequences e.g., human constant region sequences.
  • a variety of approaches for making chimeric antibodies have been described. See e.g., Morrison et al., Proc. Natl. Acad. Sci U.S.A. 81 :6851 , 1985; Takeda et al., Nature 314:452, 1985, Cabilly et al., U.S. Patent No. 4,816,567; Boss et al., U.S. Patent No. 4,816,397; Tanaguchi et al., EP 0171496; EP 0173494; and GB 2177096.
  • An antibody, antibody construct, antibody fragment or antibody variant may also be modified by specific deletion of human T cell epitopes (a method called "deimmunization") by the methods disclosed for example in WO 98/52976 or WO 00/34317. Briefly, the heavy and light chain variable domains of an antibody can be analyzed for peptides that bind to MHC class II; these peptides represent potential T cell epitopes (as defined in WO 98/52976 and WO 00/34317).
  • peptide threading For detection of potential T cell epitopes, a computer modeling approach termed "peptide threading" can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes.
  • Potential T cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable domains, or preferably, by single amino acid substitutions. Typically, conservative substitutions are made. Often, but not exclusively, an amino acid common to a position in human germline antibody sequences may be used.
  • Humanized antibodies are antibodies or immunoglobulins of mostly human sequences, which contain (a) minimal sequence(s) derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (also CDR) of the recipient are replaced by residues from a hypervariable region of a non- human (e.g., rodent) species (donor antibody) such as mouse, rat, hamster or rabbit having the desired specificity, affinity, and capacity.
  • Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • "humanized antibodies” as used herein may also comprise residues which are found neither in the recipient antibody nor the donor antibody. These modifications are made to further refine and optimize antibody performance.
  • the humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • Humanized antibodies or fragments thereof can be generated by replacing sequences of the Fv variable domain that are not directly involved in antigen binding with equivalent sequences from human Fv variable domains.
  • Exemplary methods for generating humanized antibodies or fragments thereof are provided by Morrison (1985) Science 229:1202-1207; by Oi et al. (1986) BioTechniques 4:214; and by US 5,585,089; US 5,693,761 ; US 5,693,762; US 5,859,205; and US 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable domains from at least one of a heavy or light chain.
  • nucleic acids may be obtained from a hybridoma producing an antibody against a predetermined target, as described above, as well as from other sources.
  • the recombinant DNA encoding the humanized antibody molecule can then be cloned into an appropriate expression vector.
  • Humanized antibodies may also be produced using transgenic animals such as mice that express human heavy and light chain genes, but are incapable of expressing the endogenous mouse immunoglobulin heavy and light chain genes.
  • Winter describes an exemplary CDR grafting method that may be used to prepare the humanized antibodies described herein (U.S. Patent No. 5,225,539). All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR, or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.
  • a humanized antibody can be optimized by the introduction of conservative substitutions, consensus sequence substitutions, germline substitutions and/or back mutations.
  • Such altered immunoglobulin molecules can be made by any of several techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80: 7308-7312, 1983; Kozbor ei a/., Immunology Today, 4: 7279, 1983; Olsson et al., Meth. Enzymol., 92: 3- 16, 1982, and EP 239 400).
  • human antibody includes antibodies, antibody constructs and binding domains having antibody regions such as variable and constant regions or domains which correspond substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (1991 ) (loc. cit.).
  • the human antibodies, antibody constructs or binding domains of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or side-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, in CDR3.
  • human antibodies, antibody constructs or binding domains can have at least one, two, three, four, five, or more positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence.
  • a "fully human antibody” does not include amino acid residues not encoded by human germline immunoglobulin sequences
  • the antibody constructs of the invention are “isolated” or “substantially pure” antibody constructs.
  • “Isolated” or “substantially pure”, when used to describe the antibody constructs disclosed herein, means an antibody construct that has been identified, separated and/or recovered from a component of its production environment.
  • the antibody construct is free or substantially free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
  • the antibody constructs may e.g constitute at least about 5%, or at least about 50% by weight of the total protein in a given sample. It is understood that the isolated protein may constitute from 5% to 99.9% by weight of the total protein content, depending on the circumstances.
  • the polypeptide may be made at a significantly higher concentration through the use of an inducible promoter or high expression promoter, such that it is made at increased concentration levels.
  • the definition includes the production of an antibody construct in a wide variety of organisms and/or host cells that are known in the art.
  • the antibody construct will be purified (1 ) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain.
  • an isolated antibody construct will be prepared by at least one purification step.
  • binding domain characterizes in connection with the present invention a domain which (specifically) binds to / interacts with / recognizes a given target epitope or a given target side on the target molecules (antigens), e.g. CD33 and CD3, respectively.
  • the structure and function of the first binding domain (recognizing e.g. CD33), and preferably also the structure and/or function of the second binding domain (recognizing CD3), is/are based on the structure and/or function of an antibody, e.g. of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof.
  • VH variable heavy chain
  • VL variable light chain
  • the first binding domain is characterized by the presence of three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region).
  • the second binding domain preferably also comprises the minimum structural requirements of an antibody which allow for the target binding. More preferably, the second binding domain comprises at least three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region). It is envisaged that the first and/or second binding domain is produced by or obtainable by phage-display or library screening methods rather than by grafting CDR sequences from a pre-existing (monoclonal) antibody into a scaffold.
  • binding domains are in the form of one or more polypeptides.
  • polypeptides may include proteinaceous parts and non-proteinaceous parts (e.g. chemical linkers or chemical cross-linking agents such as glutaraldehyde).
  • Proteins including fragments thereof, preferably biologically active fragments, and peptides, usually having less than 30 amino acids) comprise two or more amino acids coupled to each other via a covalent peptide bond (resulting in a chain of amino acids).
  • polypeptide as used herein describes a group of molecules, which usually consist of more than 30 amino acids.
  • Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e., consisting of more than one polypeptide molecule.
  • Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical.
  • the corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc.
  • An example for a heteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains.
  • the terms "peptide”, “polypeptide” and “protein” also refer to naturally modified peptides / polypeptides / proteins wherein the modification is effected e.g.
  • a "peptide”, “polypeptide” or “protein” when referred to herein may also be chemically modified such as pegylated. Such modifications are well known in the art and described herein below.
  • the binding domain which binds to the target cell surface antigen and/or the binding domain which binds to CD3s is/are human binding domains.
  • Antibodies and antibody constructs comprising at least one human binding domain avoid some of the problems associated with antibodies or antibody constructs that possess non-human such as rodent (e.g. murine, rat, hamster or rabbit) variable and/or constant regions. The presence of such rodent derived proteins can lead to the rapid clearance of the antibodies or antibody constructs or can lead to the generation of an immune response against the antibody or antibody construct by a patient.
  • rodent e.g. murine, rat, hamster or rabbit
  • human or fully human antibodies / antibody constructs can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies.
  • the ability to clone and reconstruct megabase-sized human loci in YACs and to introduce them into the mouse germline provides a powerful approach to elucidating the functional components of very large or crudely mapped loci as well as generating useful models of human disease.
  • the use of such technology for substitution of mouse loci with their human equivalents could provide unique insights into the expression and regulation of human gene products during development, their communication with other systems, and their involvement in disease induction and progression.
  • antigen-specific human mAbs with the desired specificity could be readily produced and selected.
  • This general strategy was demonstrated in connection with the generation of the first XenoMouse mouse strains (see Green et al. Nature Genetics 7:13- 21 (1994)).
  • the XenoMouse strains were engineered with yeast artificial chromosomes (YACs) containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences.
  • YACs yeast artificial chromosomes
  • the human Ig containing YACs proved to be compatible with the mouse system for both rearrangement and expression of antibodies and were capable of substituting for the inactivated mouse Ig genes.
  • minilocus In an alternative approach, others, including GenPharm International, Inc., have utilized a "minilocus" approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in U.S. Pat. No. 5,545,807 to Surani et al. and U.S. Pat. Nos.
  • HAMA Human anti-mouse antibody
  • HACA human anti- chimeric antibody
  • the terms “(specifically) binds to”, (specifically) recognizes”, “is (specifically) directed to”, and “(specifically) reacts with” mean in accordance with this invention that a binding domain interacts or specifically interacts with a given epitope or a given target side on the target molecules (antigens), here: target cell surface antigen and CD3s, respectively.
  • epitope refers to a side on an antigen to which a binding domain, such as an antibody or immunoglobulin, or a derivative, fragment or variant of an antibody or an immunoglobulin, specifically binds.
  • a binding domain such as an antibody or immunoglobulin, or a derivative, fragment or variant of an antibody or an immunoglobulin, specifically binds.
  • An “epitope” is antigenic and thus the term epitope is sometimes also referred to herein as “antigenic structure” or “antigenic determinant”.
  • the binding domain is an "antigen interaction side”. Said binding/interaction is also understood to define a "specific recognition”.
  • Epitopes can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein.
  • a “linear epitope” is an epitope where an amino acid primary sequence comprises the recognized epitope.
  • a linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids in a unique sequence.
  • a “conformational epitope”, in contrast to a linear epitope, is an epitope wherein the primary sequence of the amino acids comprising the epitope is not the sole defining component of the epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not necessarily recognized by the binding domain).
  • a conformational epitope comprises an increased number of amino acids relative to a linear epitope.
  • the binding domain recognizes a three- dimensional structure of the antigen, preferably a peptide or protein or fragment thereof (in the context of the present invention, the antigenic structure for one of the binding domains is comprised within the target cell surface antigen protein).
  • a protein molecule folds to form a three-dimensional structure
  • certain amino acids and/or the polypeptide backbone forming the conformational epitope become juxtaposed enabling the antibody to recognize the epitope.
  • Methods of determining the conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin labelling and electron paramagnetic resonance (EPR) spectroscopy.
  • 2D-NMR two-dimensional nuclear magnetic resonance
  • EPR electron paramagnetic resonance
  • a method for epitope mapping is described in the following: When a region (a contiguous amino acid stretch) in the human target cell surface antigen protein is exchanged / replaced with its corresponding region of a non-human and non-primate target cell surface antigen (e.g., mouse target cell surface antigen, but others like chicken, rat, hamster, rabbit etc. might also be conceivable), a decrease in the binding of the binding domain is expected to occur, unless the binding domain is cross-reactive for the non-human, non-primate target cell surface antigen used.
  • a non-human and non-primate target cell surface antigen e.g., mouse target cell surface antigen, but others like chicken, rat, hamster, rabbit etc. might also be conceivable
  • Said decrease is preferably at least 10%, 20%, 30%, 40%, or 50%; more preferably at least 60%, 70%, or 80%, and most preferably 90%, 95% or even 100% in comparison to the binding to the respective region in the human target cell surface antigen protein, whereby binding to the respective region in the human target cell surface antigen protein is set to be 100%.
  • the aforementioned human target cell surface antigen / non-human target cell surface antigen chimeras are expressed in CHO cells. It is also envisaged that the human target cell surface antigen / non-human target cell surface antigen chimeras are fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM.
  • truncated versions of the human target cell surface antigen extracellular domain can be generated in order to determine a specific region that is recognized by a binding domain.
  • the different extracellular target cell surface antigen domains / sub-domains or regions are stepwise deleted, starting from the N-terminus.
  • the truncated target cell surface antigen versions may be expressed in CHO cells. It is also envisaged that the truncated target cell surface antigen versions may be fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM.
  • the truncated target cell surface antigen versions may encompass a signal peptide domain at their N-terminus, for example a signal peptide derived from mouse IgG heavy chain signal peptide. It is furthermore envisaged that the truncated target cell surface antigen versions may encompass a v5 domain at their N-terminus (following the signal peptide) which allows verifying their correct expression on the cell surface. A decrease or a loss of binding is expected to occur with those truncated target cell surface antigen versions which do not encompass any more the target cell surface antigen region that is recognized by the binding domain.
  • the decrease of binding is preferably at least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, and most preferably 90%, 95% or even 100%, whereby binding to the entire human target cell surface antigen protein (or its extracellular region or domain) is set to be 100.
  • a further method to determine the contribution of a specific residue of a target cell surface antigen to the recognition by an antibody construct or binding domain is alanine scanning (see e.g. Morrison KL & Weiss GA. Cur Opin Chem Biol. 2001 Jun;5(3):302-7), where each residue to be analyzed is replaced by alanine, e.g. via site-directed mutagenesis.
  • Alanine is used because of its non-bulky, chemically inert, methyl functional group that nevertheless mimics the secondary structure references that many of the other amino acids possess. Sometimes bulky amino acids such as valine or leucine can be used in cases where conservation of the size of mutated residues is desired. Alanine scanning is a mature technology which has been used for a long period of time. [59] The interaction between the binding domain and the epitope or the region comprising the epitope implies that a binding domain exhibits appreciable affinity for the epitope / the region comprising the epitope on a particular protein or antigen (here: target cell surface antigen and CD3, respectively) and, generally, does not exhibit significant reactivity with proteins or antigens other than the target cell surface antigen or CD3.
  • a particular protein or antigen here: target cell surface antigen and CD3, respectively
  • “Appreciable affinity” includes binding with an affinity of about 10 "6 M (KD) or stronger. Preferably, binding is considered specific when the binding affinity is about 10 "12 to 10 "8 M, 10 "12 to 10 “9 M, 10 "12 to 10 “10 M, 10 "11 to 10 “8 M, preferably of about 10 "11 to 10 "9 M. Whether a binding domain specifically reacts with or binds to a target can be tested readily by, inter alia, comparing the reaction of said binding domain with a target protein or antigen with the reaction of said binding domain with proteins or antigens other than the target cell surface antigen or CD3.
  • a binding domain of the invention does not essentially or substantially bind to proteins or antigens other than the target cell surface antigen or CD3 ⁇ i.e., the first binding domain is not capable of binding to proteins other than the target cell surface antigen and the second binding domain is not capable of binding to proteins other than CD3).
  • the term "does not essentially / substantially bind" or “is not capable of binding” means that a binding domain of the present invention does not bind a protein or antigen other than the target cell surface antigen or CD3, i.e., does not show reactivity of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or antigens other than the target cell surface antigen or CD3, whereby binding to the target cell surface antigen or CD3, respectively, is set to be 100%.
  • binding is believed to be effected by specific motifs in the amino acid sequence of the binding domain and the antigen.
  • binding is achieved as a result of their primary, secondary and/or tertiary structure as well as the result of secondary modifications of said structures.
  • the specific interaction of the antigen-interaction-side with its specific antigen may result in a simple binding of said side to the antigen.
  • the specific interaction of the antigen-interaction-side with its specific antigen may alternatively or additionally result in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an oligomerization of the antigen, etc.
  • variable refers to the portions of the antibody or immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the "variable domain(s)").
  • VH variable heavy chain
  • VL variable light chain
  • Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable regions” or “complementarity determining regions” (CDRs).
  • CDRs complementarity determining regions
  • the more conserved (i.e., non-hypervariable) portions of the variable domains are called the "framework" regions (FRM or FR) and provide a scaffold for the six CDRs in three dimensional space to form an antigen-binding surface.
  • variable domains of naturally occurring heavy and light chains each comprise four FRM regions (FR1 , FR2, FR3, and FR4), largely adopting a ⁇ -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding side (see Kabat et al., loc. cit.).
  • CDR refers to the complementarity determining region of which three make up the binding character of a light chain variable region (CDR-L1 , CDR-L2 and CDR-L3) and three make up the binding character of a heavy chain variable region (CDR-H1 , CDR-H2 and CDR-H3).
  • CDRs contain most of the residues responsible for specific interactions of the antibody with the antigen and hence contribute to the functional activity of an antibody molecule: they are the main determinants of antigen specificity.
  • the exact definitional CDR boundaries and lengths are subject to different classification and numbering systems.
  • CDRs may therefore be referred to by Kabat, Chothia, contact or any other boundary definitions, including the numbering system described herein. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called "hypervariable regions" within the variable sequences. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See for example Kabat (an approach based on cross-species sequence variability), Chothia (an approach based on crystallographic studies of antigen-antibody complexes), and/or MacCallum (Kabat et al., loc. cit; Chothia et al., J. Mol.
  • CDRs form a loop structure that can be classified as a canonical structure.
  • canonical structure refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol.
  • the term "canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit.).
  • Kabat numbering scheme system
  • a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library).
  • Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., loc. cit. and their implications for construing canonical aspects of antibody structure are described in the literature.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988.
  • the CDR3 of the light chain and, particularly, the CDR3 of the heavy chain may constitute the most important determinants in antigen binding within the light and heavy chain variable regions.
  • the heavy chain CDR3 appears to constitute the major area of contact between the antigen and the antibody.
  • CDR3 is typically the greatest source of molecular diversity within the antibody-binding side.
  • H3 for example, can be as short as two amino acid residues or greater than 26 amino acids.
  • each light (L) chain is linked to a heavy (H) chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype.
  • the CH domain most proximal to VH is usually designated as CH 1.
  • the constant (“C") domains are not directly involved in antigen binding, but exhibit various effector functions, such as antibody- dependent, cell-mediated cytotoxicity and complement activation.
  • the Fc region of an antibody is comprised within the heavy chain constant domains and is for example able to interact with cell surface located Fc receptors.
  • the sequence of antibody genes after assembly and somatic mutation is highly varied, and these varied genes are estimated to encode 10 10 different antibody molecules (Immunoglobulin Genes, 2 nd ed., eds. Jonio et al., Academic Press, San Diego, CA, 1995). Accordingly, the immune system provides a repertoire of immunoglobulins.
  • the term "repertoire” refers to at least one nucleotide sequence derived wholly or partially from at least one sequence encoding at least one immunoglobulin.
  • the sequence(s) may be generated by rearrangement in vivo of the V, D, and J segments of heavy chains, and the V and J segments of light chains.
  • sequence(s) can be generated from a cell in response to which rearrangement occurs, e.g., in vitro stimulation.
  • part or all of the sequence(s) may be obtained by DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., U.S. Patent 5,565,332.
  • a repertoire may include only one sequence or may include a plurality of sequences, including ones in a genetically diverse collection.
  • Fc portion or "Fc monomer” means in connection with this invention a polypeptide comprising at least one domain having the function of a CH2 domain and at least one domain having the function of a CH3 domain of an immunoglobulin molecule.
  • the polypeptide comprising those CH domains is a "polypeptide monomer”.
  • An Fc monomer can be a polypeptide comprising at least a fragment of the constant region of an immunoglobulin excluding the first constant region immunoglobulin domain of the heavy chain (CH1 ), but maintaining at least a functional part of one CH2 domain and a functional part of one CH3 domain, wherein the CH2 domain is amino terminal to the CH3 domain.
  • an Fc monomer can be a polypeptide constant region comprising a portion of the Ig-Fc hinge region, a CH2 region and a CH3 region, wherein the hinge region is amino terminal to the CH2 domain. It is envisaged that the hinge region of the present invention promotes dimerization.
  • Such Fc polypeptide molecules can be obtained by papain digestion of an immunoglobulin region (of course resulting in a dimer of two Fc polypeptide), for example and not limitation.
  • an Fc monomer can be a polypeptide region comprising a portion of a CH2 region and a CH3 region.
  • Fc polypeptide molecules can be obtained by pepsin digestion of an immunoglobulin molecule, for example and not limitation.
  • the polypeptide sequence of an Fc monomer is substantially similar to an Fc polypeptide sequence of: an Igd Fc region, an lgG 2 Fc region, an lgG 3 Fc region, an lgG 4 Fc region, an IgM Fc region, an IgA Fc region, an IgD Fc region and an IgE Fc region.
  • Fc monomer refers to the last two heavy chain constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three heavy chain constant region immunoglobulin domains of IgE and IgM. As mentioned, the Fc monomer can also include the flexible hinge N-terminal to these domains. For IgA and IgM, the Fc monomer may include the J chain. For IgG, the Fc portion comprises immunoglobulin domains CH2 and CH3 and the hinge between the first two domains and CH2.
  • CH2 and CH3 domain can be defined e.g. to comprise residues D231 (of the hinge domain - corresponding to D234 in Table 1 below)) to P476, respectively L476 (for lgG 4 ) of the carboxyl-terminus of the CH3 domain, wherein the numbering is according to Kabat.
  • the two Fc portions or Fc monomers, which are fused to each other via a peptide linker define the third domain of the antibody construct of the invention, which may also be defined as scFc domain.
  • a scFc domain as disclosed herein, respectively the Fc monomers fused to each other are comprised only in the third domain of the antibody construct.
  • an IgG hinge region can be identified by analogy using the Kabat numbering as set forth in Table 1 .
  • a hinge domain/region of the present invention comprises the amino acid residues corresponding to the IgGi sequence stretch of D234 to P243 according to the Kabat numbering.
  • a hinge domain/region of the LLJ present invention comprises or consists of the lgG1 hinge sequence DKTHTCPPCP (SEQ ID NO: 1449) (corresponding to the stretch D234 to P243 as shown in Table 1 below - variations of said sequence are also envisaged provided that the hinge region still promotes dimerization ).
  • the glycosylation site at Kabat position 314 of the CH2 domains in the third domain of the antibody construct is removed by a N314X substitution, wherein X is any amino acid excluding Q.
  • Said substitution is preferably a N314G substitution.
  • said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
  • the third domain of the antibody construct of the invention comprises or consists in an amino to carboxyl order: DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) - CH2-CH3-linker- DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) -CH2-CH3.
  • the peptide linker of the aforementioned antibody construct is in a preferred embodiment characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 5 or greater (e.g. 5, 6, 7, 8 etc.
  • Said construct may further comprise the aforementioned substitutions N314X, preferably N314G, and/or the further substitutions V321 C and R309C.
  • the second domain binds to an extracellular epitope of the human and/or the Macaca CD3e chain.
  • the hinge domain/region comprises or consists of the lgG2 subtype hinge sequence ERKCCVECPPCP (SEQ ID NO: 1450), the lgG3 subtype hinge sequence ELKTPLDTTHTCPRCP (SEQ ID NO: 1451 ) or ELKTPLGDTTHTCPRCP (SEQ ID NO: 1458), and/or the lgG4 subtype hinge sequence ESKYGPPCPSCP (SEQ ID NO: 1452).
  • the lgG1 subtype hinge sequence may be the following one EPKSCDKTHTCPPCP (as shown in Table 1 and SEQ ID NO: 1459).
  • the emphasized bold amino acid residues in the CH3 domain of the first or both Fc monomers are deleted.
  • the peptide linker by whom the polypeptide monomers ("Fc portion" or "Fc monomer") of the third domain are fused to each other, preferably comprises at least 25 amino acid residues (25, 26, 27, 28, 29, 30 etc.). More preferably, this peptide linker comprises at least 30 amino acid residues (30, 31 , 32, 33, 34, 35 etc.). It is also preferred that the linker comprises up to 40 amino acid residues, more preferably up to 35 amino acid residues, most preferably exactly 30 amino acid residues.
  • a preferred embodiment of such peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 5 or greater (e.g. 6, 7 or 8). Preferably the integer is 6 or 7, more preferably the integer is 6.
  • this linker is preferably of a length and sequence sufficient to ensure that each of the first and second domains can, independently from one another, retain their differential binding specificities.
  • those peptide linkers are preferred which comprise only a few number of amino acid residues, e.g. 12 amino acid residues or less.
  • peptide linkers of 12, 1 1 , 10, 9, 8, 7, 6 or 5 amino acid residues are preferred.
  • An envisaged peptide linker with less than 5 amino acids comprises 4, 3, 2 or one amino acid(s), wherein Gly-rich linkers are preferred.
  • a preferred embodiment of the peptide linker for a fusion the first and the second domain is depicted in SEQ ID NO:1 .
  • a preferred linker embodiment of the peptide linker for a fusion the second and the third domain is a (Gly) 4 -linker, respectively G 4 -linker.
  • a particularly preferred "single" amino acid in the context of one of the above described "peptide linker” is Gly. Accordingly, said peptide linker may consist of the single amino acid Gly.
  • a peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).
  • Preferred linkers are depicted in SEQ ID NOs: 1 to 12.
  • the characteristics of said peptide linker, which comprise the absence of the promotion of secondary structures, are known in the art and are described e.g. in Dall'Acqua et al. (Biochem. (1998) 37, 9266-9273), Cheadle et al.
  • the first and second domain form an antibody construct in a format selected from the group consisting of (scFv) 2 , scFv-single domain mAb, diabody and oligomers of any of the those formats [79]
  • the first and the second domain of the antibody construct of the invention is a "bispecific single chain antibody construct", more prefereably a bispecific "single chain Fv" (scFv).
  • the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker - as described hereinbefore - that enables them to be made as a single protein chain in which the VL and VH regions pair to form a monovalent molecule; see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883).
  • These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are evaluated for function in the same manner as are whole or full-length antibodies.
  • a single- chain variable fragment is hence a fusion protein of the variable region of the heavy chain (VH) and of the light chain (VL) of immunoglobulins, usually connected with a short linker peptide of about ten to about 25 amino acids, preferably about 15 to 20 amino acids.
  • the linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and introduction of the linker.
  • Bispecific single chain antibody constructs are known in the art and are described in WO 99/54440, Mack, J. Immunol. (1997), 158, 3965-3970, Mack, PNAS, (1995), 92, 7021 - 7025, Kufer, Cancer Immunol. Immunother., (1997), 45, 193-197, Loffler, Blood, (2000), 95, 6, 2098-2103, Bruhl, Immunol., (2001 ), 166, 2420-2426, Kipriyanov, J. Mol. Biol., (1999), 293, 41 -56. Techniques described for the production of single chain antibodies (see, inter alia, US Patent 4,946,778, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc.
  • Bivalent (also called divalent) or bispecific single-chain variable fragments (bi-scFvs or di-scFvs having the format (scFv) 2 can be engineered by linking two scFv molecules (e.g. with linkers as described hereinbefore). If these two scFv molecules have the same binding specificity, the resulting (scFv) 2 molecule will preferably be called bivalent (i.e. it has two valences for the same target epitope). If the two scFv molecules have different binding specificities, the resulting (scFv) 2 molecule will preferably be called bispecific.
  • the linking can be done by producing a single peptide chain with two VH regions and two VL regions, yielding tandem scFvs (see e.g. Kufer P. et al., (2004) Trends in Biotechnology 22(5):238- 244).
  • Another possibility is the creation of scFv molecules with linker peptides that are too short for the two variable regions to fold together (e.g. about five amino acids), forcing the scFvs to dimerize. This type is known as diabodies (see e.g. Hollinger, Philipp et al., (July 1 993) Proceedings of the National Academy of Sciences of the United States of America 90 (14): 6444-8).
  • either the first, the second or the first and the second domain may comprise a single domain antibody, respectively the variable domain or at least the CDRs of a single domain antibody.
  • Single domain antibodies comprise merely one (monomeric) antibody variable domain which is able to bind selectively to a specific antigen, independently of other V regions or domains.
  • the first single domain antibodies were engineered from havy chain antibodies found in camelids, and these are called V H H fragments.
  • Cartilaginous fishes also have heavy chain antibodies (IgNAR) from which single domain antibodies called V NA R fragments can be obtained.
  • An alternative approach is to split the dimeric variable domains from common immunoglobulins e.g.
  • VH or VL as a single domain Ab.
  • nanobodies derived from light chains have also been shown to bind specifically to target epitopes. Examples of single domain antibodies are called sdAb, nanobodies or single variable domain antibodies.
  • a (single domain mAb) 2 is hence a monoclonal antibody construct composed of (at least) two single domain monoclonal antibodies, which are individually selected from the group comprising V H , V L , V H H and V NA R.
  • the linker is preferably in the form of a peptide linker.
  • an "scFv-single domain mAb" is a monoclonal antibody construct composed of at least one single domain antibody as described above and one scFv molecule as described above. Again, the linker is preferably in the form of a peptide linker.
  • an antibody construct competes for binding with another given antibody construct can be measured in a competition assay such as a competitive ELISA or a cell-based competition assay.
  • Avidin-coupled microparticles can also be used. Similar to an avidin-coated ELISA plate, when reacted with a biotinylated protein, each of these beads can be used as a substrate on which an assay can be performed. Antigen is coated onto a bead and then precoated with the first antibody. The second antibody is added and any additional binding is determined. Possible means for the read-out includes flow cytometry.
  • T cells or T lymphocytes are a type of lymphocyte (itself a type of white blood cell) that play a central role in cell-mediated immunity. There are several subsets of T cells, each with a distinct function. T cells can be distinguished from other lymphocytes, such as B cells and NK cells, by the presence of a T cell receptor (TCR) on the cell surface.
  • TCR T cell receptor
  • the TCR is responsible for recognizing antigens bound to major histocompatibility complex (MHC) molecules and is composed of two different protein chains. In 95% of the T cells, the TCR consists of an alpha (a) and beta ( ⁇ ) chain.
  • the T lymphocyte When the TCR engages with antigenic peptide and MHC (peptide / MHC complex), the T lymphocyte is activated through a series of biochemical events mediated by associated enzymes, co-receptors, specialized adaptor molecules, and activated or released transcription factors.
  • the CD3 receptor complex is a protein complex and is composed of four chains. In mammals, the complex contains a CD3y (gamma) chain, a CD36 (delta) chain, and two CD3z (epsilon) chains. These chains associate with the T cell receptor (TCR) and the so- called ⁇ (zeta) chain to form the T cell receptor CD3 complex and to generate an activation signal in T lymphocytes.
  • the CD3y (gamma), CD36 (delta), and CD3E (epsilon) chains are highly related cell-surface proteins of the immunoglobulin superfamily containing a single extracellular immunoglobulin domain.
  • the intracellular tails of the CD3 molecules contain a single conserved motif known as an immunoreceptor tyrosine-based activation motif or ITAM for short, which is essential for the signaling capacity of the TCR.
  • the CD3 epsilon molecule is a polypeptide which in humans is encoded by the CD3E gene which resides on chromosome 1 1 .
  • the most preferred epitope of CD3 epsilon is comprised within amino acid residues 1 -27 of the human CD3 epsilon extracellular domain. It is envisaged that antibody constructs according to the present invention typically and advantageously show less unspecific T cell activation, which is not desired in specific immunotherapy. This translates to a reduced risk of side effects.
  • the redirected lysis of target cells via the recruitment of T cells by a multispecific, at least bispecific, antibody construct involves cytolytic synapse formation and delivery of perforin and granzymes.
  • the engaged T cells are capable of serial target cell lysis, and are not affected by immune escape mechanisms interfering with peptide antigen processing and presentation, or clonal T cell differentiation; see, for example, WO 2007/042261 .
  • Cytotoxicity mediated by antibody constructs of the invention can be measured in various ways.
  • Effector cells can be e.g. stimulated enriched (human) CD8 positive T cells or unstimulated (human) peripheral blood mononuclear cells (PBMC). If the target cells are of macaque origin or express or are transfected with macaque target cell surface antigen which is bound by the first domain, the effector cells should also be of macaque origin such as a macaque T cell line, e.g. 41 19LnPx. The target cells should express (at least the extracellular domain of) the target cell surface antigen, e.g. human or macaque target cell surface antigen.
  • PBMC peripheral blood mononuclear cells
  • Target cells can be a cell line (such as CHO) which is stably or transiently transfected with target cell surface antigen, e.g. human or macaque target cell surface antigen.
  • the target cells can be a target cell surface antigen positive natural expresser cell line.
  • E:T effector to target cell
  • Cytotoxic activity of target cell surface antigenxCD3 bispecific antibody constructs can be measured in a 51 Cr-release assay (incubation time of about 18 hours) or in a in a FACS-based cytotoxicity assay (incubation time of about 48 hours).
  • cytotoxic reaction Modifications of the assay incubation time (cytotoxic reaction) are also possible.
  • Other methods of measuring cytotoxicity are well-known to the skilled person and comprise MTT or MTS assays, ATP-based assays including bioluminescent assays, the sulforhodamine B (SRB) assay, WST assay, clonogenic assay and the ECIS technology.
  • SRB sulforhodamine B
  • WST assay clonogenic assay
  • ECIS technology ECIS technology.
  • the cytotoxic activity mediated by target cell surface antigenxCD3 bispecific antibody constructs of the present invention is preferably measured in a cell-based cytotoxicity assay. It may also be measured in a 51 Cr-release assay.
  • the EC 50 value of the target cell surface antigenxCD3 bispecific antibody constructs is ⁇ 5000 pM or ⁇ 4000 pM, more preferably ⁇ 3000 pM or ⁇ 2000 pM, even more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 400 pM or ⁇ 300 pM, even more preferably ⁇ 200 pM, even more preferably ⁇ 100 pM, even more preferably ⁇ 50 pM, even more preferably ⁇ 20 pM or ⁇ 10 pM, and most preferably ⁇ 5 pM.
  • EC 50 values can be measured in different assays.
  • the skilled person is aware that an EC 50 value can be expected to be lower when stimulated / enriched CD8 + T cells are used as effector cells, compared with unstimulated PBMC. It can furthermore be expected that the EC 50 values are lower when the target cells express a high number of the target cell surface antigen compared with a low target expression rat.
  • the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 1000 pM, more preferably ⁇ 500 pM, even more preferably ⁇ 250 pM, even more preferably ⁇ 100 pM, even more preferably ⁇ 50 pM, even more preferably ⁇ 10 pM, and most preferably ⁇ 5 pM.
  • the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 5000 pM or ⁇ 4000 pM (in particular when the target cells are target cell surface antigen positive human cell lines), more preferably ⁇ 2000 pM (in particular when the target cells are target cell surface antigen transfected cells such as CHO cells), more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 200 pM, even more preferably ⁇ 150 pM, even more preferably ⁇ 100 pM, and most preferably ⁇ 50 pM, or lower.
  • the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 2000 pM or ⁇ 1500 pM, more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 300 pM or ⁇ 250 pM, even more preferably ⁇ 100 pM, and most preferably ⁇ 50 pM.
  • the target cell surface antigenxCD3 bispecific antibody constructs of the present invention do not induce / mediate lysis or do not essentially induce / mediate lysis of target cell surface antigen negative cells such as CHO cells.
  • the term "do not induce lysis”, “do not essentially induce lysis”, “do not mediate lysis” or “do not essentially mediate lysis” means that an antibody construct of the present invention does not induce or mediate lysis of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% of target cell surface antigen negative cells, whereby lysis of a target cell surface antigen positive human cell line is set to be 100%. This usually applies for concentrations of the antibody construct of up to 500 nM. The skilled person knows how to measure cell lysis without further ado. Moreover, the present specification teaches specific instructions how to measure cell lysis.
  • Potency gap The difference in cytotoxic activity between the monomeric and the dimeric isoform of individual target cell surface antigenxCD3 bispecific antibody constructs is referred to as "potency gap".
  • This potency gap can e.g. be calculated as ratio between EC 5 o values of the molecule's monomeric and dimeric form.
  • Potency gaps of the target cell surface antigenxCD3 bispecific antibody constructs of the present invention are preferably ⁇ 5, more preferably ⁇ 4, even more preferably ⁇ 3, even more preferably ⁇ 2 and most preferably ⁇ 1 .
  • the first and/or the second (or any further) binding domain(s) of the antibody construct of the invention is/are preferably cross-species specific for members of the mammalian order of primates.
  • Cross-species specific CD3 binding domains are, for example, described in WO 2008/1 19567.
  • the first and/or second binding domain in addition to binding to human target cell surface antigen and human CD3, respectively, will also bind to target cell surface antigen / CD3 of primates including (but not limited to) new world primates (such as Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus), old world primates (such baboons and macaques), gibbons, and non-human homininae.
  • the first domain binds to human target cell surface antigen and further binds to macaque target cell surface antigen, such as target cell surface antigen of Macaca fascicularis, and more preferably, to macaque target cell surface antigen expressed on the surface macaque cells.
  • the affinity of the first binding domain for macaque target cell surface antigen is preferably ⁇ 15 nM, more preferably ⁇ 10 nM, even more preferably ⁇ 5 nM, even more preferably ⁇ 1 nM, even more preferably ⁇ 0.5 nM, even more preferably ⁇ 0.1 nM, and most preferably ⁇ 0.05 nM or even ⁇ 0.01 nM.
  • the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen is ⁇ 100, preferably ⁇ 20, more preferably ⁇ 15, further preferably ⁇ 10, even more preferably ⁇ 8, more preferably ⁇ 6 and most preferably ⁇ 2.
  • Preferred ranges for the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen are between 0.1 and 20, more preferably between 0.2 and 10, even more preferably between 0.3 and 6, even more preferably between 0.5 and 3 or between 0.5 and 2.5, and most preferably between 0.5 and 2 or between 0.6 and 2.
  • the second (binding) domain of the antibody construct of the invention binds to human CD3 epsilon and/or to Macaca CD3 epsilon.
  • the second domain further bind to Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus CD3 epsilon.
  • Callithrix jacchus and Saguinus oedipus are both new world primate belonging to the family of Callitrichidae, while Saimiri sciureus is a new world primate belonging to the family of Cebidae.
  • the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 on the comprises a VL region comprising CDR-L1 , CDR-L2 and CDR-L3 selected from:
  • the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 epsilon chain comprises a VH region comprising CDR-H 1 , CDR-H2 and CDR-H3 selected from:
  • the above described three groups of VL CDRs are combined with the above described ten groups of VH CDRs within the second binding domain to form (30) groups, each comprising CDR-L 1 -3 and CDR-H 1 -3.
  • the second domain which binds to CD3 comprises a VL region selected from the group consisting of a VL region as depicted in SEQ ID NO: 17, 21 , 35, 39, 53, 57, 71 , 75, 89, 93, 107, 1 1 1 , 125, 129, 143, 147, 161 , 165, 179 or 183 of WO 2008/1 19567 or as depicted in SEQ ID NO: 13.
  • the second domain which binds to CD3 comprises a VH region selected from the group consisting of a VH region as depicted in SEQ ID NO: 15, 19, 33, 37, 51 , 55, 69, 73, 87, 91 , 105, 109, 123, 127, 141 , 145, 159, 163, 177 or 181 of WO 2008/1 19567 or as depicted in SEQ ID NO: 14.
  • the antibody construct of the present invention is characterized by a second domain which binds to CD3 comprising a VL region and a VH region selected from the group consisting of:
  • a second domain which binds to CD3 comprising a VL region as depicted in SEQ ID NO: 13 and a VH region as depicted in SEQ ID NO: 14.
  • the first and/or the second domain have the following format:
  • the pairs of VH regions and VL regions are in the format of a single chain antibody (scFv).
  • the VH and VL regions are arranged in the order VH-VL or VL-VH. It is preferred that the VH-region is positioned N-terminally of a linker sequence, and the VL-region is positioned C-terminally of the linker sequence.
  • a preferred embodiment of the above described antibody construct of the present invention is characterized by the second domain which binds to CD3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or depicted in SEQ ID NO: 15.
  • Covalent modifications of the antibody constructs are also included within the scope of this invention, and are generally, but not always, done post-translationally. For example, several types of covalent modifications of the antibody construct are introduced into the molecule by reacting specific amino acid residues of the antibody construct with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
  • Cysteinyl residues most commonly are reacted with ohaloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, a-bromo-3-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N- alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p- chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1 ,3- diazole.
  • Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain.
  • Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.
  • Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues.
  • Suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.
  • imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.
  • Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1 ,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
  • tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane.
  • aromatic diazonium compounds or tetranitromethane Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.
  • Tyrosyl residues are iodinated using 125 l or 131 1 to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.
  • R and R' are optionally different alkyl groups, such as 1 -cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1 -ethyl-3-(4-azonia-4,4- dimethylpentyl) carbodiimide.
  • aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
  • Derivatization with bifunctional agents is useful for crosslinking the antibody constructs of the present invention to a water-insoluble support matrix or surface for use in a variety of methods.
  • Commonly used crosslinking agents include, e.g., 1 ,1 -bis(diazoacetyl)-2- phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4- azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido- 1 ,8-octane.
  • Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light.
  • reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates as described in U.S. Pat. Nos. 3,969,287; 3,691 ,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.
  • Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.
  • Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the oarmino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, 1983, pp. 79-86), acetylation of the N- terminal amine, and amidation of any C-terminal carboxyl group.
  • Another type of covalent modification of the antibody constructs included within the scope of this invention comprises altering the glycosylation pattern of the protein.
  • glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • X is any amino acid except proline
  • O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5- hydroxyproline or 5-hydroxylysine may also be used.
  • Addition of glycosylation sites to the antibody construct is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above- described tri-peptide sequences (for N-linked glycosylation sites).
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites).
  • the amino acid sequence of an antibody construct is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • Another means of increasing the number of carbohydrate moieties on the antibody construct is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation.
  • the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
  • Removal of carbohydrate moieties present on the starting antibody construct may be accomplished chemically or enzymatically.
  • Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N- acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact.
  • Chemical deglycosylation is described by Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et al., 1981 , Anal. Biochem. 1 18:131.
  • Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo- glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the formation of protein-N-glycoside linkages.
  • another type of covalent modification of the antibody construct comprises linking the antibody construct to various non-proteinaceous polymers, including, but not limited to, various polyols such as polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301 ,144; 4,670,417; 4,791 ,192 or 4,179,337.
  • amino acid substitutions may be made in various positions within the antibody construct, e.g. in order to facilitate the addition of polymers such as PEG.
  • the covalent modification of the antibody constructs of the invention comprises the addition of one or more labels.
  • the labelling group may be coupled to the antibody construct via spacer arms of various lengths to reduce potential steric hindrance.
  • Various methods for labelling proteins are known in the art and can be used in performing the present invention.
  • label or “labelling group” refers to any detectable label. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected - the following examples include, but are not limited to:
  • isotopic labels which may be radioactive or heavy isotopes, such as radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 89 Zr, 90 Y, 99 Tc, 111 ln, 125 l, 131 l)
  • magnetic labels e.g., magnetic particles
  • optical dyes including, but not limited to, chromophores, phosphors and fluorophores
  • fluorescent groups e.g., FITC, rhodamine, lanthanide phosphors
  • chemiluminescent groups e.g., FITC, rhodamine, lanthanide phosphors
  • fluorophores which can be either "small molecule" fluores or proteinaceous fluores
  • enzymatic groups e.g. horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase
  • predetermined polypeptide epitopes recognized by a secondary reporter e.g., leucine zipper pair sequences, binding sides for secondary antibodies, metal binding domains, epitope tags, etc.
  • fluorescent label any molecule that may be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade BlueJ, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, OR), FITC, Rhod
  • Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 1801 de Maisonneuve Blvd. West, 8th Floor, Montreal, Quebec, Canada H3H 1 J9; Stauber, 1998, Biotechniques 24:462-471 ; Heim et al., 1996, Curr. Biol.
  • green fluorescent protein including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 1801 de Maisonneuve
  • EYFP enhanced yellow fluorescent protein
  • luciferase lchiki et al., 1993, J. Immunol. 150:5408-5417
  • ⁇ galactosidase Nolan et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:2603-2607
  • Renilla W092/15673, WO95/07463, WO98/14605, W098/26277, WO99/49019, U.S. Patent Nos. 5,292,658; 5,418,155; 5,683,888; 5,741 ,668; 5,777,079; 5,804,387; 5,874,304; 5,876,995; 5,925,558).
  • the antibody construct of the invention may also comprise additional domains, which are e.g. helpful in the isolation of the molecule or relate to an adapted pharmacokinetic profile of the molecule.
  • Domains helpful for the isolation of an antibody construct may be selected from peptide motives or secondarily introduced moieties, which can be captured in an isolation method, e.g. an isolation column.
  • additional domains comprise peptide motives known as Myc-tag, HAT-tag, HA-tag, TAP-tag, GST-tag, chitin binding domain (CBD-tag), maltose binding protein (MBP-tag), Flag-tag, Strep-tag and variants thereof (e.g. Strepll-tag) and His-tag.
  • All herein disclosed antibody constructs characterized by the identified CDRs may comprise a His-tag domain, which is generally known as a repeat of consecutive His residues in the amino acid sequence of a molecule, preferably of five, and more preferably of six His residues (hexa-histidine).
  • the His-tag may be located e.g. at the N- or C-terminus of the antibody construct, preferably it is located at the C-terminus.
  • a hexa-histidine tag (HHHHHH) (SEQ ID NO:16) is linked via peptide bond to the C-terminus of the antibody construct according to the invention.
  • a conjugate system of PLGA-PEG-PLGA may be combined with a poly-histidine tag for sustained release application and improved pharmacokinetic profile.
  • Amino acid sequence modifications of the antibody constructs described herein are also contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody construct.
  • Amino acid sequence variants of the antibody constructs are prepared by introducing appropriate nucleotide changes into the antibody constructs nucleic acid, or by peptide synthesis. All of the below described amino acd sequence modifications should result in an antibody construct which still retains the desired biological activity (binding to the target cell surface antigen and to CD3) of the unmodified parental molecule.
  • amino acid typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gin or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (He or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired.
  • amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gin, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).
  • a nonpolar side chain e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val
  • a negatively charged side chain e.g., Asp, Glu
  • a positively charged sidechain e.g., Arg, His, Lys
  • an uncharged polar side chain e.g., Asn, Cys, Gin, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr.
  • Amino acid modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the antibody constructs. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
  • the amino acid changes also may alter post-translational processes of the antibody constructs, such as changing the number or position of glycosylation sites.
  • amino acid sequence insertions into the antibody construct include amino- and/or carboxyl-terminal fusions ranging in length from 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a hundred or more residues, as well as intra- sequence insertions of single or multiple amino acid residues. Corresponding modifications may also performed within the third domain of the antibody construct of the invention.
  • An insertional variant of the antibody construct of the invention includes the fusion to the N- terminus or to the C-terminus of the antibody construct of an enzyme or the fusion to a polypeptide.
  • the sites of greatest interest for substitutional mutagenesis include (but are not limited to) the CDRs of the heavy and/or light chain, in particular the hypervariable regions, but FR alterations in the heavy and/or light chain are also contemplated. The substitutions are preferably conservative substitutions as described herein.
  • 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids may be substituted in a CDR, while 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in the framework regions (FRs), depending on the length of the CDR or FR.
  • FRs framework regions
  • a CDR sequence encompasses 6 amino acids, it is envisaged that one, two or three of these amino acids are substituted.
  • a CDR sequence encompasses 15 amino acids it is envisaged that one, two, three, four, five or six of these amino acids are substituted.
  • a useful method for identification of certain residues or regions of the antibody constructs that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells in Science, 244: 1081 -1085 (1989).
  • a residue or group of target residues within the antibody construct is/are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the epitope.
  • Those amino acid locations demonstrating functional sensitivity to the substitutions are then refined by introducing further or other variants at, or for, the sites of substitution.
  • the site or region for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se needs not to be predetermined.
  • alanine scanning or random mutagenesis may be conducted at a target codon or region, and the expressed antibody construct variants are screened for the optimal combination of desired activity.
  • Techniques for making substitution mutations at predetermined sites in the DNA having a known sequence are well known, for example, M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of antigen binding activities, such as the target cell surface antigen or CD3 binding.
  • the then-obtained "substituted" sequence is at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence.
  • a CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to have at least one amino acid substituted.
  • the CDRs of the antibody construct may have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%, while CDRL3 may have 90%.
  • substitutions are conservative substitutions. However, any substitution (including non-conservative substitution or one or more from the "exemplary substitutions” listed in Table 3, below) is envisaged as long as the antibody construct retains its capability to bind to the target cell surface antigen via the first domain and to CD3, respectively CD3 epsilon, via the second domain and/or its CDRs have an identity to the then substituted sequence (at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence).
  • Conservative substitutions are shown in Table 3 under the heading of "preferred substitutions”.
  • Substantial modifications in the biological properties of the antibody construct of the present invention are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Naturally occurring residues are divided into groups based on common side-chain properties: (1 ) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr, asn, gin; (3) acidic: asp, glu; (4) basic: his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic : trp, tyr, phe.
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the antibody construct may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
  • sequence identity and/or similarity is determined by using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith and Waterman, 1981 , Adv. Appl. Math. 2:482, the sequence identity alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Nat. Acad. Sci. U.S.A. 85:2444, computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., 1984, Nucl.
  • Acid Res. 12:387-395 preferably using the default settings, or by inspection.
  • percent identity is calculated by FastDB based upon the following parameters: mismatch penalty of 1 ; gap penalty of 1 ; gap size penalty of 0.33; and joining penalty of 30, "Current Methods in Sequence Comparison and Analysis," Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp 127-149 (1988), Alan R. Liss, Inc.
  • PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, 1987, J. Mol. Evol. 35:351 -360; the method is similar to that described by Higgins and Sharp, 1989, CABIOS 5:151 -153.
  • Useful PILEUP parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.
  • BLAST algorithm Another example of a useful algorithm is the BLAST algorithm, described in: Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1997, Nucleic Acids Res. 25:3389- 3402; and Karin et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873-5787.
  • a particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., 1996, Methods in Enzymology 266:460-480. WU-BLAST-2 uses several search parameters, most of which are set to the default values.
  • the HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. [140] An additional useful algorithm is gapped BLAST as reported by Altschul et al., 1993, Nucl. Acids Res. 25:3389-3402.
  • Gapped BLAST uses BLOSUM-62 substitution scores; threshold T parameter set to 9; the two-hit method to trigger ungapped extensions, charges gap lengths of k a cost of 10+k; Xu set to 16, and Xg set to 40 for database search stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to about 22 bits.
  • amino acid homology, similarity, or identity between individual variant CDRs or VH / VL sequences are at least 60% to the sequences depicted herein, and more typically with preferably increasing homologies or identities of at least 65% or 70%, more preferably at least 75% or 80%, even more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and almost 100%.
  • percent (%) nucleic acid sequence identity with respect to the nucleic acid sequence of the binding proteins identified herein is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues in the coding sequence of the antibody construct.
  • a specific method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.
  • nucleic acid sequence homology, similarity, or identity between the nucleotide sequences encoding individual variant CDRs or VH / VL sequences and the nucleotide sequences depicted herein are at least 60%, and more typically with preferably increasing homologies or identities of at least 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, and almost 100%.
  • a "variant CDR” or a “variant VH / VL region” is one with the specified homology, similarity, or identity to the parent CDR / VH / VL of the invention, and shares biological function, including, but not limited to, at least 60%, 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the specificity and/or activity of the parent CDR or VH / VL.
  • the percentage of identity to human germline of the antibody constructs according to the invention is ⁇ 70% or ⁇ 75%, more preferably ⁇ 80% or ⁇ 85%, even more preferably ⁇ 90%, and most preferably ⁇ 91 %, ⁇ 92%, ⁇ 93%, ⁇ 94%, ⁇ 95% or even ⁇ 96%.
  • Identity to human antibody germline gene products is thought to be an important feature to reduce the risk of therapeutic proteins to elicit an immune response against the drug in the patient during treatment.
  • Hwang & Foote (“Immunogenicity of engineered antibodies”; Methods 36 (2005) 3-10) demonstrate that the reduction of non- human portions of drug antibody constructs leads to a decrease of risk to induce anti-drug antibodies in the patients during treatment.
  • the V-regions of VL can be aligned with the amino acid sequences of human germline V segments and J segments (http://vbase.mrc-cpe.cam.ac.uk/) using Vector NTI software and the amino acid sequence calculated by dividing the identical amino acid residues by the total number of amino acid residues of the VL in percent.
  • the same can be for the VH segments (http://vbase.mrc-cpe.cam.ac.uk/) with the exception that the VH CDR3 may be excluded due to its high diversity and a lack of existing human germline VH CDR3 alignment partners.
  • Recombinant techniques can then be used to increase sequence identity to human antibody germline genes.
  • the bispecific antibody constructs of the present invention exhibit high monomer yields under standard research scale conditions, e.g., in a standard two-step purification process.
  • the monomer yield of the antibody constructs according to the invention is ⁇ 0.25 mg/L supernatant, more preferably ⁇ 0.5 mg/L, even more preferably ⁇ 1 mg/L, and most preferably ⁇ 3 mg/L supernatant.
  • the yield of the dimeric antibody construct isoforms and hence the monomer percentage (i.e., monomer : (monomer+dimer)) of the antibody constructs can be determined.
  • the productivity of monomeric and dimeric antibody constructs and the calculated monomer percentage can e.g. be obtained in the SEC purification step of culture supernatant from standardized research-scale production in roller bottles.
  • the monomer percentage of the antibody constructs is ⁇ 80%, more preferably ⁇ 85%, even more preferably ⁇ 90%, and most preferably ⁇ 95%.
  • the antibody constructs have a preferred plasma stability (ratio of EC50 with plasma to EC50 w/o plasma) of ⁇ 5 or ⁇ 4, more preferably ⁇ 3.5 or ⁇ 3, even more preferably ⁇ 2.5 or ⁇ 2, and most preferably ⁇ 1 .5 or ⁇ 1.
  • the plasma stability of an antibody construct can be tested by incubation of the construct in human plasma at 37°C for 24 hours followed by EC50 determination in a 51 chromium release cytotoxicity assay.
  • the effector cells in the cytotoxicity assay can be stimulated enriched human CD8 positive T cells.
  • Target cells can e.g. be CHO cells transfected with the human target cell surface antigen.
  • the effector to target cell (E:T) ratio can be chosen as 10:1 .
  • the human plasma pool used for this purpose is derived from the blood of healthy donors collected by EDTA coated syringes. Cellular components are removed by centrifugation and the upper plasma phase is collected and subsequently pooled. As control, antibody constructs are diluted immediately prior to the cytotoxicity assay in RPMI-1640 medium. The plasma stability is calculated as ratio of EC50 (after plasma incubation) to EC50 (control).
  • the monomer to dimer conversion of antibody constructs of the invention is low.
  • the conversion can be measured under different conditions and analyzed by high performance size exclusion chromatography.
  • incubation of the monomeric isoforms of the antibody constructs can be carried out for 7 days at 37°C and concentrations of e.g. 100 ⁇ or 250 ⁇ in an incubator.
  • concentrations e.g. 100 ⁇ or 250 ⁇ in an incubator.
  • the antibody constructs of the invention show a dimer percentage that is ⁇ 5%, more preferably ⁇ 4%, even more preferably ⁇ 3%, even more preferably ⁇ 2.5%, even more preferably ⁇ 2%, even more preferably ⁇ 1 .5%, and most preferably ⁇ 1 % or ⁇ 0.5% or even 0%.
  • the bispecific antibody constructs of the present invention present with very low dimer conversion after a number of freeze/thaw cycles.
  • the antibody construct monomer is adjusted to a concentration of 250 ⁇ g/ml e.g. in generic formulation buffer and subjected to three freeze/thaw cycles (freezing at -80°C for 30 min followed by thawing for 30 min at room temperature), followed by high performance SEC to determine the percentage of initially monomeric antibody construct, which had been converted into dimeric antibody construct.
  • the dimer percentages of the bispecific antibody constructs are ⁇ 5%, more preferably ⁇ 4%, even more preferably ⁇ 3%, even more preferably ⁇ 2.5%, even more preferably ⁇ 2%, even more preferably ⁇ 1 .5%, and most preferably ⁇ 1 % or even ⁇ 0.5%, for example after three freeze/thaw cycles.
  • the bispecific antibody constructs of the present invention preferably show a favorable thermostability with aggregation temperatures ⁇ 45°C or ⁇ 50°C, more preferably ⁇ 52°C or ⁇ 54°C, even more preferably ⁇ 56°C or ⁇ 57°C, and most preferably ⁇ 58°C or ⁇ 59°C.
  • the thermostability parameter can be determined in terms of antibody aggregation temperature as follows: Antibody solution at a concentration 250 ⁇ g ml is transferred into a single use cuvette and placed in a Dynamic Light Scattering (DLS) device. The sample is heated from 40°C to 70°C at a heating rate of 0.5°C/min with constant acquisition of the measured radius.
  • DLS Dynamic Light Scattering
  • temperature melting curves can be determined by Differential Scanning Calorimetry (DSC) to determine intrinsic biophysical protein stabilities of the antibody constructs. These experiments are performed using a MicroCal LLC (Northampton, MA, U.S.A) VP-DSC device. The energy uptake of a sample containing an antibody construct is recorded from 20°C to 90°C compared to a sample containing only the formulation buffer. The antibody constructs are adjusted to a final concentration of 250 ⁇ g ml e.g. in SEC running buffer. For recording of the respective melting curve, the overall sample temperature is increased stepwise.
  • DSC Differential Scanning Calorimetry
  • the target cell surface antigenxCD3 bispecific antibody constructs of the invention are also envisaged to have a turbidity (as measured by OD340 after concentration of purified monomeric antibody construct to 2.5 mg/ml and over night incubation) of ⁇ 0.2, preferably of ⁇ 0.15, more preferably of ⁇ 0.12, even more preferably of ⁇ 0.1 , and most preferably of ⁇ 0.08.
  • the antibody construct according to the invention is stable at physiologic or slightly lower pH, i.e. about pH 7.4 to 6.0.
  • Recovery of the antibody construct from an ion (e.g., cation) exchange column at about pH 6.0 is preferably ⁇ 30%, more preferably ⁇ 40%, more preferably ⁇ 50%, even more preferably ⁇ 60%, even more preferably ⁇ 70%, even more preferably ⁇ 80%, even more preferably ⁇ 90%, even more preferably ⁇ 95%, and most preferably ⁇ 99%.
  • bispecific antibody constructs of the present invention exhibit therapeutic efficacy or anti-tumor activity. This can e.g. be assessed in a study as disclosed in the following example of an advanced stage human tumor xenograft model:
  • the tumor growth inhibition T/C [%] is ⁇ 70 or ⁇ 60, more preferably ⁇ 50 or ⁇ 40, even more preferably ⁇ 30 or ⁇ 20 and most preferably ⁇ 10 or ⁇ 5 or even ⁇ 2.5.
  • the antibody construct is a single chain antibody construct.
  • said third domain comprises in an amino to carboxyl order:
  • each of said polypeptide monomers of the third domain has an amino acid sequence that is at least 90% identical to a sequence selected from the group consisting of: SEQ ID NO: 17-24. In a preferred embodiment or the invention each of said polypeptide monomers has an amino acid sequence selected from SEQ ID NO: 17-24.
  • the CH2 domain of one or preferably each (both) polypeptide monomers of the third domain comprises an intra domain cysteine disulfide bridge.
  • cysteine disulfide bridge refers to a functional group with the general structure R-S-S-R.
  • the linkage is also called an SS-bond or a disulfide bridge and is derived by the coupling of two thiol groups of cysteine residues. It is particularly preferred for the antibody construct of the invention that the cysteines forming the cysteine disulfide bridge in the mature antibody construct are introduced into the amino acid sequence of the CH2 domain corresponding to 309 and 321 (Kabat numbering).
  • a glycosylation site in Kabat position 314 of the CH2 domain is removed. It is preferred that this removal of the glycosylation site is achieved by a N314X substitution, wherein X is any amino acid excluding Q. Said substitution is preferably a N314G substitution.
  • said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
  • the preferred features of the antibody construct of the invention compared e.g. to the bispecific heteroFc antibody construct known in the art (figure 1 b) may be inter alia related to the introduction of the above described modifications in the CH2 domain.
  • the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and/or the glycosylation site at Kabat position 314 is removed by a N314X substitution as above, preferably by a N314G substitution.
  • the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and the glycosylation site at Kabat position 314 is removed by a N314G substitution.
  • the polypeptide monomer of the third domain of the antibody construct of the invention has an amino acid sequence selected from the group consisting of SEQ ID NO: 17 and 18.
  • the invention provides an antibody construct, wherein:
  • the first domain comprises two antibody variable domains and the second domain comprises two antibody variable domains;
  • the first domain comprises one antibody variable domain and the second domain comprises two antibody variable domains;
  • the first domain comprises two antibody variable domains and the second domain comprises one antibody variable domain; or (iv) the first domain comprises one antibody variable domain and the second domain comprises one antibody variable domain.
  • the first and the second domain may be binding domains comprising each two antibody variable domains such as a VH and a VL domain.
  • binding domains comprising two antibody variable domains where described herein above and comprise e.g. Fv fragments, scFv fragments or Fab fragments described herein above.
  • either one or both of those binding domains may comprise only a single variable domain.
  • single domain binding domains where described herein above and comprise e.g. nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains.
  • first and second domain are fused to the third domain via a peptide linker.
  • Preferred peptide linker have been described herein above and are characterized by the amino acid sequence Gly-Gly-Gly-Gly- Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).
  • SEQ ID NOs: 1 amino acid sequence
  • Gly 4 Ser SEQ ID NO: 1
  • polymers thereof i.e. (Gly 4 Ser)x
  • x is an integer of 1 or greater (e.g. 2 or 3).
  • a particularly preferred linker for the fusion of the first and second domain to the third domain is depicted in SEQ ID NOs: 1.
  • the antibody construct of the invention is characterized to comprise in an amino to carboxyl order:
  • a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NO: 1 , 2, 3, 9, 10, 1 1 and 12;
  • the target cell surface antigen bound by the first domain is a tumor antigen, an antigen specific for an immunological disorder or a viral antigen.
  • tumor antigen as used herein may be understood as those antigens that are presented on tumor cells. These antigens can be presented on the cell surface with an extracellular part, which is often combined with a transmembrane and cytoplasmic part of the molecule. These antigens can sometimes be presented only by tumor cells and never by the normal ones. Tumor antigens can be exclusively expressed on tumor cells or might represent a tumor specific mutation compared to normal cells. In this case, they are called tumor- specific antigens.
  • tumor-associated antigens More common are antigens that are presented by tumor cells and normal cells, and they are called tumor-associated antigens. These tumor-associated antigens can be overexpressed compared to normal cells or are accessible for antibody binding in tumor cells due to the less compact structure of the tumor tissue compared to normal tissue.
  • tumor antigens as used herein are CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
  • the tumor antigen is selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
  • the antibody construct comprises in an amino to carboxyl order:
  • the first domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 52, 70, 58, 76, 88, 106, 124, 94, 1 12, 130, 142,160, 178, 148, 166, 184,
  • the second domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or of SEQ ID NO: 15;
  • a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 , 2, 3, 9, 10, 1 1 and 12;
  • a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8; and (g) the second polypeptide monomer of the third domain having a polypeptide sequence selected from the group consisting of SEQ ID NOs: 17-24.
  • first and second domain which are fused via a peptide linker to a single chain polypeptide comprise a sequence selected from the group consisting of:
  • the antibody construct of the invention is characterized by having an amino acid sequence selected from the group consisting of:
  • the invention further provides a polynucleotide / nucleic acid molecule encoding an antibody construct of the invention.
  • a polynucleotide is a biopolymer composed of 13 or more nucleotide monomers covalently bonded in a chain.
  • DNA such as cDNA
  • RNA such as mRNA
  • Nucleotides are organic molecules that serve as the monomers or subunits of nucleic acid molecules like DNA or RNA.
  • the nucleic acid molecule or polynucleotide can be double stranded and single stranded, linear and circular. It is preferably comprised in a vector which is preferably comprised in a host cell.
  • Said host cell is, e.g. after transformation or transfection with the vector or the polynucleotide of the invention, capable of expressing the antibody construct.
  • the polynucleotide or nucleic acid molecule is operatively linked with control sequences.
  • the genetic code is the set of rules by which information encoded within genetic material (nucleic acids) is translated into proteins. Biological decoding in living cells is accomplished by the ribosome which links amino acids in an order specified by mRNA, using tRNA molecules to carry amino acids and to read the mRNA three nucleotides at a time. The code defines how sequences of these nucleotide triplets, called codons, specify which amino acid will be added next during protein synthesis. With some exceptions, a three-nucleotide codon in a nucleic acid sequence specifies a single amino acid. Because the vast majority of genes are encoded with exactly the same code, this particular code is often referred to as the canonical or standard genetic code. While the genetic code determines the protein sequence for a given coding region, other genomic regions can influence when and where these proteins are produced.
  • the invention provides a vector comprising a polynucleotide / nucleic acid molecule of the invention.
  • a vector is a nucleic acid molecule used as a vehicle to transfer (foreign) genetic material into a cell.
  • the term "vector” encompasses - but is not restricted to - plasmids, viruses, cosmids and artificial chromosomes.
  • engineered vectors comprise an origin of replication, a multicloning site and a selectable marker.
  • the vector itself is generally a nucleotide sequence, commonly a DNA sequence that comprises an insert (transgene) and a larger sequence that serves as the "backbone" of the vector.
  • Modern vectors may encompass additional features besides the transgene insert and a backbone: promoter, genetic marker, antibiotic resistance, reporter gene, targeting sequence, protein purification tag.
  • Vectors called expression vectors specifically are for the expression of the transgene in the target cell, and generally have control sequences.
  • control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding side.
  • Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding side is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • "operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • Transfection is the process of deliberately introducing nucleic acid molecules or polynucleotides (including vectors) into target cells. The term is mostly used for non-viral methods in eukaryotic cells. Transduction is often used to describe virus-mediated transfer of nucleic acid molecules or polynucleotides. Transfection of animal cells typically involves opening transient pores or "holes" in the cell membrane, to allow the uptake of material. Transfection can be carried out using calcium phosphate, by electroporation, by cell squeezing or by mixing a cationic lipid with the material to produce liposomes, which fuse with the cell membrane and deposit their cargo inside.
  • transformation is used to describe non-viral transfer of nucleic acid molecules or polynucleotides (including vectors) into bacteria, and also into non-animal eukaryotic cells, including plant cells. Transformation is hence the genetic alteration of a bacterial or non-animal eukaryotic cell resulting from the direct uptake through the cell membrane(s) from its surroundings and subsequent incorporation of exogenous genetic material (nucleic acid molecules). Transformation can be effected by artificial means. For transformation to happen, cells or bacteria must be in a state of competence, which might occur as a time-limited response to environmental conditions such as starvation and cell density.
  • the invention provides a host cell transformed or transfected with the polynucleotide / nucleic acid molecule or with the vector of the invention.
  • the terms "host cell” or “recipient cell” are intended to include any individual cell or cell culture that can be or has/have been recipients of vectors, exogenous nucleic acid molecules, and polynucleotides encoding the antibody construct of the present invention; and/or recipients of the antibody construct itself. The introduction of the respective material into the cell is carried out by way of transformation, transfection and the like.
  • the term "host cell” is also intended to include progeny or potential progeny of a single cell.
  • Suitable host cells include prokaryotic or eukaryotic cells, and also include but are not limited to bacteria, yeast cells, fungi cells, plant cells, and animal cells such as insect cells and mammalian cells, e.g., murine, rat, macaque or human.
  • the antibody construct of the invention can be produced in bacteria. After expression, the antibody construct of the invention is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size exclusion. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the antibody construct of the invention.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such as K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC 24178), K. waltii (ATCC 56500), K.
  • drosophilarum ATCC 36906
  • K. thermotolerans K. marxianus
  • yarrowia EP 402 226
  • Pichia pastoris EP 183 070
  • Candida Trichoderma reesia
  • Neurospora crassa Schwanniomyces such as Schwanniomyces occidentalis
  • filamentous fungi such as Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated antibody construct of the invention are derived from multicellular organisms.
  • invertebrate cells include plant and insect cells.
  • Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruit fly), and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco can also be used as hosts.
  • Cloning and expression vectors useful in the production of proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature (1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 790-794, Artsaenko et al. (1995) The Plant J 8: 745-750, and Fecker ei a/. (1996) Plant Mol Biol 32: 979-986.
  • vertebrate cells have been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651 ); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. , J. Gen Virol. 36 : 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol.
  • the invention provides a process for the production of an antibody construct of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the antibody construct of the invention and recovering the produced antibody construct from the culture.
  • culturing refers to the in vitro maintenance, differentiation, growth, proliferation and/or propagation of cells under suitable conditions in a medium.
  • expression includes any step involved in the production of an antibody construct of the invention including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
  • the antibody construct can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody construct is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
  • sodium acetate pH 3.5
  • EDTA EDTA
  • PMSF phenylmethylsulfonylfluoride
  • Cell debris can be removed by centrifugation.
  • supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
  • a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • the antibody construct of the invention prepared from the host cells can be recovered or purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography.
  • Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM, chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.
  • the antibody construct of the invention comprises a CH3 domain
  • the Bakerbond ABX resin J.T. Baker, Phillipsburg, NJ
  • Affinity chromatography is a preferred purification technique.
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available.
  • Mechanically stable matrices such as controlled pore glass or poly (styrenedivinyl) benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
  • the invention provides a pharmaceutical composition comprising an antibody construct of the invention or an antibody construct produced according to the process of the invention. It is preferred for the pharmaceutical composition of the invention that the homogeneity of the antibody construct is ⁇ 80%, more preferably ⁇ 81 %, ⁇ 82%, ⁇ 83% > 84%, or ⁇ 85%, further preferably ⁇ 86%, ⁇ 87%, ⁇ 88%, ⁇ 89%, or ⁇ 90%, still further preferably, ⁇ 91 %, ⁇ 92%, ⁇ 93%, ⁇ 94%, or ⁇ 95% and most preferably ⁇ 96%, ⁇ 97%, ⁇ 98% or ⁇ 99%.
  • the term "pharmaceutical composition” relates to a composition which is suitable for administration to a patient, preferably a human patient.
  • the particularly preferred pharmaceutical composition of this invention comprises one or a plurality of the antibody construct(s) of the invention, preferably in a therapeutically effective amount.
  • the pharmaceutical composition further comprises suitable formulations of one or more (pharmaceutically effective) carriers, stabilizers, excipients, diluents, solubilizers, surfactants, emulsifiers, preservatives and/or adjuvants.
  • Acceptable constituents of the composition are preferably nontoxic to recipients at the dosages and concentrations employed.
  • Pharmaceutical compositions of the invention include, but are not limited to, liquid, frozen, and lyophilized compositions.
  • compositions may comprise a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier means any and all aqueous and non-aqueous solutions, sterile solutions, solvents, buffers, e.g. phosphate buffered saline (PBS) solutions, water, suspensions, emulsions, such as oil/water emulsions, various types of wetting agents, liposomes, dispersion media and coatings, which are compatible with pharmaceutical administration, in particular with parenteral administration.
  • PBS phosphate buffered saline
  • compositions comprising the antibody construct of the invention and further one or more excipients such as those illustratively described in this section and elsewhere herein.
  • Excipients can be used in the invention in this regard for a wide variety of purposes, such as adjusting physical, chemical, or biological properties of formulations, such as adjustment of viscosity, and or processes of the invention to improve effectiveness and or to stabilize such formulations and processes against degradation and spoilage due to, for instance, stresses that occur during manufacturing, shipping, storage, pre-use preparation, administration, and thereafter.
  • the pharmaceutical composition may contain formulation materials for the purpose of modifying, maintaining or preserving, e.g., the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition (see, REMINGTON'S PHARMACEUTICAL SCIENCES, 18" Edition, (A.R. Genrmo, ed.), 1990, Mack Publishing Company).
  • suitable formulation materials may include, but are not limited to:
  • amino acids such as glycine, alanine, glutamine, asparagine, threonine, proline, 2- phenylalanine, including charged amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or histidine
  • antimicrobials such as antibacterial and antifungal agents
  • antioxidants such as ascorbic acid, methionine, sodium sulfite or sodium hydrogen- sulfite
  • buffers buffer systems and buffering agents which are used to maintain the composition at physiological pH or at a slightly lower pH
  • examples of buffers are borate, bicarbonate,
  • Tris-HCI citrates, phosphates or other organic acids, succinate, phosphate, and histidine; for example Tris buffer of about pH 7.0-8.5;
  • non-aqueous solvents such as propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate;
  • ⁇ aqueous carriers including water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media;
  • biodegradable polymers such as polyesters
  • chelating agents such as ethylenediamine tetraacetic acid (EDTA);
  • complexing agents such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin
  • carbohydrates may be non-reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol;
  • ⁇ sulfur containing reducing agents such as glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate
  • hydrophilic polymers such as polyvinylpyrrolidone
  • salt-forming counter-ions such as sodium
  • preservatives such as antimicrobials, anti-oxidants, chelating agents, inert gases and the like; examples are: benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide);
  • metal complexes such as Zn-protein complexes
  • solvents and co-solvents such as glycerin, propylene glycol or polyethylene glycol
  • sugars and sugar alcohols such as trehalose, sucrose, octasulfate, mannitol, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; and polyhydric sugar alcohols;
  • sugar alcohols such as trehalose, sucrose, octasulfate, mannitol, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, gal
  • surfactants or wetting agents such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal
  • surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a polyether, preferably with a molecular weight of >3 KD
  • non-limiting examples for preferred detergents are Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85
  • non-limiting examples for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 and PEG 5000;
  • stability enhancing agents such as sucrose or sorbitol
  • tonicity enhancing agents such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol;
  • parenteral delivery vehicles including sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils;
  • intravenous delivery vehicles including fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose).
  • amino acid can act as a buffer, a stabilizer and/or an antioxidant
  • mannitol can act as a bulking agent and/or a tonicity enhancing agent
  • sodium chloride can act as delivery vehicle and/or tonicity enhancing agent; etc.
  • composition of the invention might comprise, in addition to the polypeptide of the invention defined herein, further biologically active agents, depending on the intended use of the composition.
  • agents might be drugs acting on the gastrointestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art.
  • the antibody construct of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.
  • the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, REMINGTON'S PHARMACEUTICAL SCIENCES, supra. In certain embodiments, such compositions may influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antibody construct of the invention.
  • the primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature.
  • a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
  • Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles.
  • the antibody construct of the invention compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (REMINGTON'S PHARMACEUTICAL SCIENCES, supra) in the form of a lyophilized cake or an aqueous solution.
  • the antibody construct of the invention may be formulated as a lyophilizate using appropriate excipients such as sucrose.
  • the therapeutic compositions for use in this invention may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody construct of the invention in a pharmaceutically acceptable vehicle.
  • a particularly suitable vehicle for parenteral injection is sterile distilled water in which the antibody construct of the invention is formulated as a sterile, isotonic solution, properly preserved.
  • the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection.
  • hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation.
  • implantable drug delivery devices may be used to introduce the desired antibody construct.
  • sustained- or controlled-delivery / release formulations include formulations involving the antibody construct of the invention in sustained- or controlled-delivery / release formulations.
  • Techniques for formulating a variety of other sustained- or controlled-delivery means such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions.
  • Sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules.
  • Sustained release matrices may include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481 ), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, Biopolymers 2:547-556), poly (2-hydroxyethyl-methacrylate) (Langer et al., 1981 , J. Biomed. Mater. Res. 15:167-277 and Langer, 1982, Chem. Tech.
  • Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036,676; EP 088,046 and EP 143,949.
  • the antibody construct may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules
  • compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution.
  • Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • Another aspect of the invention includes self-buffering antibody construct of the invention formulations, which can be used as pharmaceutical compositions, as described in international patent application WO 06138181A2 (PCT/US2006/022599).
  • a variety of expositions are available on protein stabilization and formulation materials and methods useful in this regard, such as Arakawa et al., "Solvent interactions in pharmaceutical formulations," Pharm Res. 8(3): 285-91 (1991 ); Kendrick et al., "Physical stabilization of proteins in aqueous solution” in: RATIONAL DESIGN OF STABLE PROTEIN FORMULATIONS: THEORY AND PRACTICE, Carpenter and Manning, eds. Pharmaceutical Biotechnology.
  • Salts may be used in accordance with certain embodiments of the invention to, for example, adjust the ionic strength and/or the isotonicity of a formulation and/or to improve the solubility and/or physical stability of a protein or other ingredient of a composition in accordance with the invention.
  • ions can stabilize the native state of proteins by binding to charged residues on the protein's surface and by shielding charged and polar groups in the protein and reducing the strength of their electrostatic interactions, attractive, and repulsive interactions.
  • Ions also can stabilize the denatured state of a protein by binding to, in particular, the denatured peptide linkages (-CONH) of the protein.
  • Ionic interaction with charged and polar groups in a protein also can reduce intermolecular electrostatic interactions and, thereby, prevent or reduce protein aggregation and insolubility.
  • Ionic species differ significantly in their effects on proteins.
  • a number of categorical rankings of ions and their effects on proteins have been developed that can be used in formulating pharmaceutical compositions in accordance with the invention.
  • One example is the Hofmeister series, which ranks ionic and polar non-ionic solutes by their effect on the conformational stability of proteins in solution.
  • Stabilizing solutes are referred to as "kosmotropic”.
  • Destabilizing solutes are referred to as "chaotropic”.
  • Kosmotropes commonly are used at high concentrations (e.g., >1 molar ammonium sulfate) to precipitate proteins from solution (“salting-out”). Chaotropes commonly are used to denture and/or to solubilize proteins (“salting-in”). The relative effectiveness of ions to "salt-in” and “salt-out” defines their position in the Hofmeister series.
  • Free amino acids can be used in the antibody construct of the invention formulations in accordance with various embodiments of the invention as bulking agents, stabilizers, and antioxidants, as well as other standard uses. Lysine, proline, serine, and alanine can be used for stabilizing proteins in a formulation.
  • Glycine is useful in lyophilization to ensure correct cake structure and properties.
  • Arginine may be useful to inhibit protein aggregation, in both liquid and lyophilized formulations.
  • Methionine is useful as an antioxidant.
  • Polyols include sugars, e.g., mannitol, sucrose, and sorbitol and polyhydric alcohols such as, for instance, glycerol and propylene glycol, and, for purposes of discussion herein, polyethylene glycol (PEG) and related substances. Polyols are kosmotropic. They are useful stabilizing agents in both liquid and lyophilized formulations to protect proteins from physical and chemical degradation processes. Polyols also are useful for adjusting the tonicity of formulations.
  • polyols useful in select embodiments of the invention is mannitol, commonly used to ensure structural stability of the cake in lyophilized formulations. It ensures structural stability to the cake. It is generally used with a lyoprotectant, e.g., sucrose. Sorbitol and sucrose are among preferred agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process. Reducing sugars (which contain free aldehyde or ketone groups), such as glucose and lactose, can glycate surface lysine and arginine residues. Therefore, they generally are not among preferred polyols for use in accordance with the invention.
  • a lyoprotectant e.g., sucrose.
  • Sorbitol and sucrose are among preferred agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process.
  • Reducing sugars which contain
  • sugars that form such reactive species such as sucrose, which is hydrolyzed to fructose and glucose under acidic conditions, and consequently engenders glycation, also is not among preferred polyols of the invention in this regard.
  • PEG is useful to stabilize proteins and as a cryoprotectant and can be used in the invention in this regard.
  • Embodiments of the antibody construct of the invention formulations further comprise surfactants.
  • Protein molecules may be susceptible to adsorption on surfaces and to denaturation and consequent aggregation at air-liquid, solid-liquid, and liquid-liquid interfaces. These effects generally scale inversely with protein concentration. These deleterious interactions generally scale inversely with protein concentration and typically are exacerbated by physical agitation, such as that generated during the shipping and handling of a product.
  • Surfactants routinely are used to prevent, minimize, or reduce surface adsorption.
  • Useful surfactants in the invention in this regard include polysorbate 20, polysorbate 80, other fatty acid esters of sorbitan polyethoxylates, and poloxamer 188.
  • Surfactants also are commonly used to control protein conformational stability.
  • the use of surfactants in this regard is protein-specific since, any given surfactant typically will stabilize some proteins and destabilize others.
  • Polysorbates are susceptible to oxidative degradation and often, as supplied, contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. Consequently, polysorbates should be used carefully, and when used, should be employed at their lowest effective concentration. In this regard, polysorbates exemplify the general rule that excipients should be used in their lowest effective concentrations.
  • Embodiments of the antibody construct of the invention formulations further comprise one or more antioxidants.
  • Antioxidant excipients can be used as well to prevent oxidative degradation of proteins.
  • useful antioxidants in this regard are reducing agents, oxygen/free-radical scavengers, and chelating agents.
  • Antioxidants for use in therapeutic protein formulations in accordance with the invention preferably are water- soluble and maintain their activity throughout the shelf life of a product.
  • EDTA is a preferred antioxidant in accordance with the invention in this regard.
  • Antioxidants can damage proteins.
  • reducing agents such as glutathione in particular, can disrupt intramolecular disulfide linkages.
  • antioxidants for use in the invention are selected to, among other things, eliminate or sufficiently reduce the possibility of themselves damaging proteins in the formulation.
  • Formulations in accordance with the invention may include metal ions that are protein co-factors and that are necessary to form protein coordination complexes, such as zinc necessary to form certain insulin suspensions. Metal ions also can inhibit some processes that degrade proteins. However, metal ions also catalyze physical and chemical processes that degrade proteins. Magnesium ions (10-120 mM) can be used to inhibit isomerization of aspartic acid to isoaspartic acid. Ca +2 ions (up to 100 mM) can increase the stability of human deoxyribonuclease. Mg +2 , Mn +2 , and Zn +2 , however, can destabilize rhDNase.
  • Ca +2 and Sr +2 can stabilize Factor VIII, it can be destabilized by Mg +2 , Mn +2 and Zn +2 , Cu +2 and Fe +2 , and its aggregation can be increased by ⁇ 3 ions.
  • Embodiments of the antibody construct of the invention formulations further comprise one or more preservatives.
  • Preservatives are necessary when developing multi-dose parenteral formulations that involve more than one extraction from the same container. Their primary function is to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product. Commonly used preservatives include benzyl alcohol, phenol and m-cresol. Although preservatives have a long history of use with small- molecule parenterals, the development of protein formulations that includes preservatives can be challenging. Preservatives almost always have a destabilizing effect (aggregation) on proteins, and this has become a major factor in limiting their use in multi-dose protein formulations.
  • the antibody constructs disclosed herein may also be formulated as immuno- liposomes.
  • a "liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody construct are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al. , Proc. Natl Acad. Sci. USA, 77: 4030 (1980); US Pat. Nos.
  • Liposomes with enhanced circulation time are disclosed in US Patent No. 5,013, 556.
  • Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
  • Fab' fragments of the antibody construct of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction.
  • a chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81 (19) 1484 (1989).
  • the pharmaceutical composition may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder.
  • Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration.
  • the biological activity of the pharmaceutical composition defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1 -12).
  • "Efficacy” or "in vivo efficacy” as used herein refers to the response to therapy by the pharmaceutical composition of the invention, using e.g. standardized NCI response criteria.
  • the success or in vivo efficacy of the therapy using a pharmaceutical composition of the invention refers to the effectiveness of the composition for its intended purpose, i.e. the ability of the composition to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells.
  • the in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration.
  • various disease specific clinical chemistry parameters and other established standard methods may be used.
  • computer-aided tomography, X-ray, nuclear magnetic resonance tomography e.g.
  • positron-emission tomography scanning white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.
  • a pharmacokinetic profile of the drug candidate i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition
  • Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding.
  • the efficacy of a given drug agent can be influenced by each of the parameters mentioned above.
  • a half- life extended targeting antibody construct according to the present invention preferably shows a surprisingly increased residence time in vivo in comparison to "canonical" non-HLE versions of said antibody construct.
  • Half-life means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc.
  • hepatic first-pass metabolism is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver.
  • Volume of distribution means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments.
  • “Degree of blood serum binding” means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.
  • Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered.
  • Bioavailability means the amount of a drug in the blood compartment.
  • Lag time means the time delay between the administration of the drug and its detection and measurability in blood or plasma.
  • Tmax is the time after which maximal blood concentration of the drug is reached, and
  • Cmax is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters.
  • the pharmaceutical composition is stable for at least four weeks at about -20°C.
  • the quality of an antibody construct of the invention vs. the quality of corresponding state of the art antibody constructs may be tested using different systems. Those tests are understood to be in line with the "ICH Harmonised Tripartite Guideline: Stability Testing of Biotechnological/Biological Products Q5C and Specifications: Test procedures and Acceptance Criteria for Biotech Biotechnological/Biological Products Q6B" and, thus are elected to provide a stability- indicating profile that provides certainty that changes in the identity, purity and potency of the product are detected. It is well accepted that the term purity is a relative term.
  • a preferred formulation for the antibody construct as a pharmaceutical composition may e.g. comprise the components of a formulation as described below:
  • Said temperature stability may relate both to decreased (below room temperature including freezing) and increased (above room temperature including temperatures up to or above body temperature) temperature.
  • improved stability with regard to stress, which is hardly avoidable in clinical practice, makes the antibody construct safer because less degradation products will occur in clinical practice.
  • increased stability means increased safety.
  • One embodiment provides the antibody construct of the invention or the antibody construct produced according to the process of the invention for use in the prevention, treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder.
  • treatment refers to both therapeutic treatment and prophylactic or preventative measures.
  • Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.
  • the term "amelioration” as used herein refers to any improvement of the disease state of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof. Such an improvement may also be seen as a slowing or stopping of the progression of the tumor or cancer or metastatic cancer of the patient.
  • prevention means the avoidance of the occurrence or re-occurrence of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof.
  • disease refers to any condition that would benefit from treatment with the antibody construct or the pharmaceutic composition described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disease in question.
  • Neoplasm is an abnormal growth of tissue, usually but not always forming a mass. When also forming a mass, it is commonly referred to as a "tumor". Neoplasms or tumors or can be benign, potentially malignant (pre-cancerous), or malignant. Malignant neoplasms are commonly called cancer. They usually invade and destroy the surrounding tissue and may form metastases, i.e., they spread to other parts, tissues or organs of the body. Hence, the term “metatstatic cancer” encompasses metastases to other tissues or organs than the one of the original tumor. Lymphomas and leukemias are lymphoid neoplasms. For the purposes of the present invention, they are also encompassed by the terms "tumor” or "cancer”.
  • viral disease describes diseases, which are the result of a viral infection of a subject.
  • immunological disorder as used herein describes in line with the common definition of this term immunological disorders such as autoimmune diseases, hypersensitivities, immune deficiencies.
  • the invention provides a method for the treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder, comprising the step of administering to a subject in need thereof the antibody construct of the invention, or produced according to the process of the invention.
  • subject in need or those "in need of treatment” includes those already with the disorder, as well as those in which the disorder is to be prevented.
  • subject in need or patient includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.
  • the antibody construct of the invention will generally be designed for specific routes and methods of administration, for specific dosages and frequencies of administration, for specific treatments of specific diseases, with ranges of bio-availability and persistence, among other things.
  • the materials of the composition are preferably formulated in concentrations that are acceptable for the site of administration.
  • Formulations and compositions thus may be designed in accordance with the invention for delivery by any suitable route of administration.
  • routes of administration include, but are not limited to
  • ⁇ topical routes such as epicutaneous, inhalational, nasal, opthalmic, auricular / aural, vaginal, mucosal;
  • enteral routes such as oral, gastrointestinal, sublingual, sublabial, buccal, rectal
  • parenteral routes such as intravenous, intraarterial, intraosseous, intramuscular, intracerebral, intracerebroventricular, epidural, intrathecal, subcutaneous, intraperitoneal, extra-amniotic, intraarticular, intracardiac, intradermal, intralesional, intrauterine, intravesical, intravitreal, transdermal, intranasal, transmucosal, intrasynovial, intraluminal).
  • compositions and the antibody construct of this invention are particularly useful for parenteral administration, e.g., subcutaneous or intravenous delivery, for example by injection such as bolus injection, or by infusion such as continuous infusion.
  • Pharmaceutical compositions may be administered using a medical device. Examples of medical devices for administering pharmaceutical compositions are described in U.S. Patent Nos. 4,475,196; 4,439,196; 4,447,224; 4,447, 233; 4,486,194; 4,487,603; 4,596,556; 4,790,824; 4,941 ,880; 5,064,413; 5,312,335; 5,312,335; 5,383,851 ; and 5,399,163.
  • the present invention provides for an uninterrupted administration of the suitable composition.
  • uninterrupted or substantially uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of therapeutic agent into the body of the patient.
  • the pharmaceutical composition comprising the antibody construct of the invention can be administered by using said pump systems.
  • Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused.
  • a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue.
  • the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention together make up one "uninterrupted administration" of such therapeutic agent.
  • the continuous or uninterrupted administration of the antibody constructs of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism.
  • Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body. Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient.
  • the pump system can be attached to the skin of the patient for 24 hours up to several days.
  • the pump system may be of small size with a reservoir for small volumes. As a non-limiting example, the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.
  • the continuous administration may also be transdermal by way of a patch worn on the skin and replaced at intervals.
  • a patch worn on the skin worn on the skin and replaced at intervals.
  • patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
  • the lyophilized material is first reconstituted in an appropriate liquid prior to administration.
  • the lyophilized material may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization.
  • BWFI bacteriostatic water for injection
  • PBS phosphate buffered saline
  • compositions of the present invention can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the antibody construct of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques.
  • a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the antibody construct of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques.
  • the antibody construct of the invention exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans.
  • the dosage regimen will be determined by the attending physician and clinical factors.
  • dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently.
  • effective dose or "effective dosage” is defined as an amount sufficient to achieve or at least partially achieve the desired effect.
  • therapeutically effective dose is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease.
  • Amounts or doses effective for this use will depend on the condition to be treated (the indication), the delivered antibody construct, the therapeutic context and objectives, the severity of the disease, prior therapy, the patient's clinical history and response to the therapeutic agent, the route of administration, the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient, and the general state of the patient's own immune system.
  • the proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient once or over a series of administrations, and in order to obtain the optimal therapeutic effect.
  • a typical dosage may range from about 0.1 ⁇ g kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 1 .0 ⁇ g kg up to about 20 mg/kg, optionally from 10 ⁇ g/kg up to about 10 mg/kg or from 100 ⁇ g/kg up to about 5 mg/kg.
  • a therapeutic effective amount of an antibody construct of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency or duration of disease symptom-free periods or a prevention of impairment or disability due to the disease affliction.
  • a therapeutically effective amount of the antibody construct of the invention e.g. an anti-target cell antigen/anti-CD3 antibody construct, preferably inhibits cell growth or tumor growth by at least about 20%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% relative to untreated patients.
  • the ability of a compound to inhibit tumor growth may be evaluated in an animal model predictive of efficacy [242]
  • the pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies such as anti-cancer therapies as needed, e.g. other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the antibody construct of the invention as defined herein or separately before or after administration of said antibody construct in timely defined intervals and doses.
  • an effective and non-toxic dose refers to a tolerable dose of an inventive antibody construct which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilization of disease without or essentially without major toxic effects.
  • effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).
  • toxicity refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.
  • safety means the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug.
  • Safety can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviations to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards.
  • Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE).
  • Laboratory parameters which may be tested include for instance hematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like.
  • Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events.
  • imaging techniques i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events.
  • MRI Magnetic Resonance Imaging
  • adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods.
  • the above terms are also referred to e.g. in the Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on July 16, 1997.
  • the invention provides a kit comprising an antibody construct of the invention or produced according to the process of the invention, a pharmaceutical composition of the invention, a polynucleotide of the invention, a vector of the invention and/or a host cell of the invention.
  • kit means two or more components - one of which corresponding to the antibody construct, the pharmaceutical composition, the vector or the host cell of the invention - packaged together in a container, recipient or otherwise.
  • a kit can hence be described as a set of products and/or utensils that are sufficient to achieve a certain goal, which can be marketed as a single unit.
  • the kit may comprise one or more recipients (such as vials, ampoules, containers, syringes, bottles, bags) of any appropriate shape, size and material (preferably waterproof, e.g. plastic or glass) containing the antibody construct or the pharmaceutical composition of the present invention in an appropriate dosage for administration (see above).
  • the kit may additionally contain directions for use (e.g. in the form of a leaflet or instruction manual), means for administering the antibody construct of the present invention such as a syringe, pump, infuser or the like, means for reconstituting the antibody construct of the invention and/or means for diluting the antibody construct of the invention.
  • kits for a single-dose administration unit may also contain a first recipient comprising a dried / lyophilized antibody construct and a second recipient comprising an aqueous formulation.
  • kits containing single-chambered and multi-chambered pre-filled syringes are provided.
  • the term “less than” or “greater than” includes the concrete number. For example, less than 20 means less than or equal to. Similarly, more than or greater than means more than or equal to, or greater than or equal to, respectively.
  • Isolated PBMC from healthy human donors were cultured with increasing CDH19/CD3 or MSLN/CD3 HLE bispecific antibody constructs for 48 h.
  • the expression of the activation marker CD69 on T cells was determined by immunostaining and flow cytometry and antigen specific conjugates mAb.
  • Target-independent T cell activation in terms of CD69 upregulation was observed for all anti- CDH 19 constructs but was most pronounced for heteroFc and crossbody molecules. Upregulation of CD69 by antiCDH19-scFc occurred at higher concentrations and the amplitude was in part lower compared to the other two Fc-based constructs.
  • Target-independent T cell activation induced by BiTE ® constructs containing a single chain- Fc, or hetero-Fc fusion at the C-terminus was evaluated for the following constructs:
  • BiTE ® constructs (serial dilutions: 0.1 pM - 2 ⁇ ) a. MSLN scFc; 1.14 mg/mL;
  • Human PBMC effector cells (3 donors; #065, #823, #836 (scFc) #401 , #415, #433 (heteroFc); #590, #595, 598, #605 (X-body)).
  • BiTE ® antibody constructs serial dilutions: 0.1 pM - 2 ⁇ ) c.
  • Human PBMC effector cells (3 to 4 donors; #386, #392, #401 (scFc) #282, #284, #287 (heteroFc)).
  • CD69 upregulation was observed for several bispecific constructs tested in these assays.
  • the CD69 upregulation was in general more pronounced for the canonical BiTE ® antibody constructs, heteroFc and crossbody molecules when compared to the respective scFc constructs.
  • Upregulation of CD69 by the scFc constructs occurred in general at slightly higher concentrations and the amplitude was in part lower compared to the other two Fc-based constructs.
  • the strong upregulation of CD69 on T cells by the anti-CD70-scFc construct in the absence of a tumor cell lines is due to the expression of CD70 on T cells.
  • BiTE ® antibody construct serial dilutions: 1.3 pM - 20 nM
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • CD20-X-Body CD20 Crossbody
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • Target-independent T cell activation induced by BiTE ® antibody constructs containing a single chain-Fc or a hetero-Fc was evaluated for the following constructs:
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • Target-independent T cell activation induced by BiTE ® antibody constructs containing a single chain-Fc or a hetero-Fc was evaluated for the following constructs:
  • BiTE ® antibody constructs serial dilutions: 1.3 pM - 20 nM
  • Target-independent T cell activation induced by a BiTE ® antibody constructs containing a single chain-Fc was evaluated for the following construct:
  • BiTE ® antibody construct serial dilutions: 1.3 pM - 20 nM
  • Target-independent T cell activation induced by a BiTE ® antibody constructs containing a single chain-Fc was evaluated for the following construct:
  • BiTE ® antibody construct serial dilutions: 1.3 pM - 20 nM
  • the BiTE®-HLE antibody constructs were administered as intravenous bolus (compounds 1 b, 2a-d, 3a/b, 4a/b, 5a-5c, 7-9) and intravenous infusion (compounds 1 a, 1 c, 3c/d, 6a/b, each as a 30 min infusion).
  • the BiTE® antibody constructs were admininstered in a dose- linear, pharmacokinetic relevant range of 3 ⁇ g kg to 6 ⁇ g kg, 12 ⁇ g kg and 15 ⁇ g kg, respectively.
  • serum concentrations shown are dose-normalized and molecular weight-normalized (described in nmol).
  • a group of at least two to three animals was used. Blood samples were collected and serum was prepared for determination of serum concentrations. Serum BiTE® antibody construct levels were measured using an immunoassay. The assay is performed by capturing the BiTE® antibody construct via its target moiety, while an antibody directed against the CD3-binding part of the construct was used for detection. The serum concentration-time profiles were used to determine PK parameters.
  • PK profiles describe a biphasic, exponential decline after each of the single test item administrations ( Figure 5).
  • NCA non-compartmental analysis
  • Preformulated drug substances containing purified MSLN-hALB, MSLN-hFc, and MSLN-scFc respectively were buffer exchanged via ultrafiltration / diafiltration using membranes with a molecular weight cut-off (MWCO) of 10 kDa.
  • Final formulation was achieved by adding concentrated stock solutions. Resulting formulations for each construct are listed in Table 8.
  • the target protein concentration was 1 .0 mg/mL.
  • Formulated MSLN constructs were filled to
  • Target thawing temperature was 2°C.
  • the ramp rate was approximately 0.3 K/min.
  • Visual particles were assessed in accordance to the method described by Ph Eur 2.9.20 by trained operators. Visual particle counts per vial are depicted in Table 8. The number of visual (larger than 125 ⁇ ) proteinaceous particles was higher for MSLN-hFc if compared to both MSLN-hALB and MSLN-scFc.
  • Table 8 Number of visual proteinaceous particles per vial for stressed and unstressed (TO) samples containing different half-life extended anti-Mesothelin (MSLN) BiTE ® constructs.
  • SE-UPLC size exclusion ultra-high performance chromatography
  • a load of 5 ⁇ g of each digest was separately injected onto a Zorbax SB-C18 (Agilent #859700-902) reversed phase column equilibrated in 0.1 % (V/V) formic acid (FA).
  • a 156 minutes gradient of up to 90% acetonitrile containing 0.1 % FA was used to elute the peptides directly into the electrospray ion source of a Q-Exactive Plus mass spectrometer (Thermo Scientific).
  • Data was collected in data dependent mode using a top 12 method in which a full scan (resolution 70 000; scan range 200-2000 m/z) was followed by high energy collision dissociation (HCD) of the 12 most abundant ions (resolution 17 500).
  • MSLN-hALB, -hFc, -scFc formulated as described under Example 4 were subjected to a pH jump experiment.
  • the concentration of the starting materials was 1 .0 mg/mL.
  • a volume of 0.38 mL of each starting material was filled in a glass vial.
  • the solutions were spiked with 20 fold phosphate buffered saline (PBS) which was composed of 0.090 M potassium phosphate, 0.480 M sodium phosphate (both dibasic), 0.052 M potassium chloride and 2.76 M NaCI.
  • PBS phosphate buffered saline
  • the spiked samples were incubated at 37°C for two weeks.
  • HMWS content increased in the following order: hALB ⁇ scFc ⁇ hFc.
  • MSLN-scFc also showed a lower HMWS content than MSLN-hFc when formulated in G40MSuT.
  • Table 11 Overview on HMWS contents in stressed (pH jump + 2w 37°C) MSLN-hALB, - hFc, and -scFc preparations determined via SE-UPLC
  • MSLN-hALB, -hFc, and -scFc formulated as described under Example 4 were subjected to agitation stress.
  • the concentration of the starting materials was 1 .0 mg/mL.
  • a volume of 0.5 mL of each solution was filtered through an appropriate 0.22 ⁇ filter and filled into 3cc glass vials.
  • the vials were placed in a plastic box ensuring that the vials were not displaced within the box during agitation.
  • the box was placed onto an orbital shaker.
  • the samples were agitated at 500 rpm for 65 hours.
  • Visual particles were assessed in accordance to the method described by Ph Eur 2.9.20. The method was conducted by trained operators. Visual particle counts per vial are depicted in Table 12. Visible proteinaceous particles were only observed in MSLN-hFc preparations.
  • HMWS high molecular weight species
  • MSLN-hALB, -hFc, and -scFc formulated as described under Example 4 were exposed to visible and UVA light (photo stress). Protein concentration totaled 1 mg/mL in all preparations. Protein solutions were filtered through a filter with 0.22 ⁇ pore size and filled to 0.5 mL in type I glass vials. MSLN-hALB and -scFc were subjected to two different tests including 0.2 MLux visible light / 25 W * h/m 2 UVA light and 1 .2MLux visible light / 173 W * h/m 2 respectively.
  • MSLN-hFc was subjected to two different tests including 0.2 MLux visible light without UVA light and 1 .2 MLux visible light / 30 W * h/m 2 UVA light respectively. Chamber temperatures were adjusted to 25°C. After light exposure samples were analyzed by visible inspection (Table 14), SE-UPLC (Table 15) and peptide map (Table 16). Aforementioned methods were performed according to the procedures described under Example 4. Although MSLN-hALB, and -scFc were exposed to higher doses of UVA light, no visible proteinaceous particles was observed whereas MSLN-hFc samples exhibited one visible proteinaceous particle per vial for both tests irrespective of the formulation.
  • Table 14 Overview on the number of visible proteinaceous particles per vial in MSLN- hALB, -hFc, and -scFc preparations determined after light exposure
  • HMWS increased in the following order MSLN-hALB ⁇ -scFc ⁇ -hFc when the protein was formulated in K60RTrT. HMWS could be reduced for Fc based constructs when formulated in G40MSuT. However HMWS were again less pronounced for MSLN-scFc. MSLN-hFc revealed to be especially sensitive towards UVA light exposure.
  • Table 15 Overview on HMWS contents in MSLN-hALB, -hFc, and -scFc preparations determined after light exposure via SE-UPLC
  • Percentages of chemical modifications of the complement determining regions (CDRs) and of the half-life extending portion (either hALB or Fc) detected in MSLN-hALB, -hFc, and -scFc preparations are given by Table 16. When comparing similar formulation conditions, it became obvious that overall, chemical modifications were least abundant in scFc constructs.
  • Table 16 Overview on chemical modifications in MSLN-hALB, -hFc, and -scFc preparations determined after light exposure via peptide mapping
  • Test 1 1 .5 n.a. n.a. n.a. n.a. n.a.
  • Test 2 2.4 n.a. n.a. n.a. n.a. n.a.
  • Test 1 4.0 n.a. n.a. n.a. n.a. n.a.
  • Test 1 2.1 n.a. n.a. n.a. n.a. n.a.
  • Test 1 31 .0 n.a. n.a. n.a. n.a. n.a.
  • Test 2 25.2 n.a. n.a. n.a. n.a. n.a.
  • MSLN-hALB was formulated in K60RTrT and MSLN-scFc was formulated in G40MSuT according to the procedure described in Example 4. Protein concentrations totaled 0.05 mg/mL. Glass (borosilicate, type I , 13 mm 3cc vial from West, Art. No. 68000375) and polypropylene test containers (2 mL with O-ring, e.g. from Sarstedt, Art No. 72.694.005) are filled with 500 ⁇ of the test solution. The test solution was left for five minutes in the first test container. Then a 150 ⁇ aliquot was sampled for analysis. The remaining test solution (350iL) was transferred sequentially from one test container to the next (five containers in total).
  • MSLN-hALB was formulated in K60RTrT and MSLN-scFc was formulated in K60RTrT and G40MSuT according to the procedure described in Example 4.
  • An unspiked test solution served as control sample.
  • the spiked test solution as well as the control sample were filled into 3cc type I glass vials and were incubated at 37°C for 24 hours.
  • Table 18 Overview on HMWS contents in MSLN-hALB, and -scFc preparations determined via SE-UPLC after spiking with 25 ppm silicon
  • Preformulated drug substances containing purified CD33cc-hALB, CD33cc-hFc, and CD33cc-scFc respectively were buffer exchanged via ultrafiltration / diafiltration using membranes with a molecular weight cut-off (MWCO) of 10 kDa. Final formulation was achieved by adding concentrated stock solutions. Resulting formulations for each construct are listed in Table 19. The target protein concentration was 1 .0 mg/mL. Formulated CD33cc- constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20, 5, 25 and 37°C.
  • HMWS high molecular weight species
  • HMWS contents increased after four weeks storage at 5°C.
  • the HMWS formation under these conditions was more pronounced for Fc based constructs than for albumin based constructs.
  • K60RTrT no significant increases in HMWS were observed at elevated storage temperatures (25 and 37°C).
  • G40MSuT all constructs revealed similar HMWS contents in unstressed samples. The increase during freeze thaw was more distinct for Fc based constructs if compared to the albumin based construct.
  • the hFc- construct was least stable during storage at -20°C. Considerable increases in HMWS during liquid storage were only observed for the hALB-construct.
  • Table 19 Overview on HMWS contents in stressed and unstressed (TO) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
  • CD33cc-scFc exhibited the lowest amount of chemical modifications in the CDRs. It became evident that especially deamidations of the CDRs were least pronounced for the scFc construct.
  • Table 20 Overview on chemical modifications in stressed and unstressed (TO) CD33cc-hALB, -hFc, and -scFc preparations determined via peptide mapping
  • CD33cc-hALB, -hFc, and -scFC formulated as described under Example 4 were subjected to a pH jump experiment.
  • the concentration of the starting materials was 1 .0 mg/mL.
  • a volume of 0.38 mL of each starting material was filled in a glass vial.
  • the solutions were spiked with 20 fold phosphate buffered saline (PBS) which was composed of 0.090 M potassium phosphate, 0.480 M sodium phosphate (both dibasic), 0.052 M potassium chloride and 2.76 M NaCI.
  • PBS phosphate buffered saline
  • the spiked samples were incubated at 37°C for two weeks.
  • CD33cc-scFc constructs showed the lowest HMWS content after pH jump if compared to CD33cc-hALB and -hFc irrespective of the formulation.
  • Table 21 Overview on HMWS contents in stressed (pH jump + 2w 37°C) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
  • Example 12 CD33cc-hALB, -hFc, and -scFc formulated as described under Example 4 were subjected to agitation stress.
  • the concentration of the starting materials was 1 .0 mg/mL.
  • a volume of 0.5 mL of each solution was filter through an appropriate 0.22 ⁇ filter and filled into 3cc type I glass vials.
  • the vials were placed in a plastic box ensuring that the vials were not displaced within the box during agitation.
  • the box was placed onto an orbital shaker.
  • the samples were agitated at 500 rpm for 65 hours.
  • Samples were analyzed by SE-UPLC in order to quantify the percentaged content of high molecular weight species (HMWS).
  • the same method as described in Example 4 was applied.
  • the HMWS contents of agitated samples are outlined by Table 22. The formation of HMWS was least pronounced for CD33cc-scFc in either formulation.
  • Table 22 Overview on HMWS contents in stressed (pH jump + 2w 37°C) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
  • CD33cc-hALB, -hFc, and -scFc formulated as described under Example 4 were exposed to visible and UVA light (photo stress). Protein concentration totaled 1 mg/mL in all preparations. Protein solutions were filtered through a filter with 0.22 ⁇ pore size and filled to 0.5 mL in type I glass vials. CD33cc-hALB and -scFc were subjected to two different tests including 0.2 MLux visible light / 25 W * h/m 2 UVA light and 1 .2MLux visible light / 173 W * h/m 2 respectively.
  • CD33cc-hFc was subjected to two different tests including 0.2 MLux visible light without UVA light and 1 .2 MLux visible light / 30 W * h/m 2 UVA light respectively. Chamber temperatures were adjusted to 25°C. After light exposure samples were analyzed by SE- UPLC (Table 23) and peptide map (Table 24). Aforementioned methods were performed according to the procedures under Example 4. Despite of the higher UVA light intensity applied to CD33cc-scFc, this construct was stable against HMWS formation. In contrast, CD33cc-hFc and CD33cc-hALB showed an increase in HMWS upon test 2 conditions.
  • Table 23 Overview on HMWS contents in CD33cc-hALB, -hFc, and -scFc preparations determined after light exposure via SE-UPLC
  • Table 24 Overview on chemical modifications in CD33cc-hALB, -hFc, and -scFc preparations determined after light exposure via peptide mapping
  • Test 1 2.3 1 ' n.t. n.a. n.a. n.a. n.a. n.a.
  • Test 1 32.0 1) n.t. n.a. n.a. n.a. n.a. n.a.
  • Test 1 10.2 n.t. n.a. n.a. n.a. n.a. n.a.
  • BiTE® antibody constructs designed for targeting EGFRvlll including EGFRvlll-non half-life extended (non HLE, canonical), EGFRvlll-hALB, and EGFRvlll-scFc were examined.
  • the target protein concentration was 1 .0 mg/mL for the hALB and scFc and 0.4 mg/mL for the non HLE version.
  • Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals.
  • Filled vials were incubated at -20°C and 37°C (w/o and with 25 ppm silicon which is known for its potential to induce aggregation of proteins) for 4 weeks. Above constructs were also exposed to light (1 .2 MLux visible light / 173 W * h/m2 UVA light). For light stress, chamber temperature was set to 25°C. Samples stored at -70°C served as controls (TO).
  • SE-UPLC size exclusion ultra-high performance chromatography
  • HMWS were least pronounced for the scFc-construct. HMWS formation was exclusively observed during 4 weeks storage at -20°C. The HMWS contents under these conditions increase in the following order scFc ⁇ hALB ⁇ non HLE.
  • Table 25 Overview on HMWS contents in stressed and unstressed (TO) EGFRvlll- HLE, -hALB, and -scFc preparations determined via SE-UPLC.
  • samples derived from heat stress in absence and presence of silicon were assessed for the abundance of subvisible particles by Microfluid Imaging (MFI) using a Flowcam from Fluid Imaging Technologies, Inc.
  • MFI Microfluid Imaging
  • the instrument was equipped with a FC80FV flow cell. A tenfold optical magnification was applied. System suitability was verified with particle free water. An autoimage rate of 20 frames per second was applied. Dark and light thresholds were set to 25 and 20 pixels respectively.
  • Sample volume for a single measurement totals 0.25 ml_. Samples were measured in triplicates. Prior to each triplicate the system was flushed of 0.5 mL of the respective sample solutions. At the beginning and between each triplicate a wash with 1 .0 mL particle free water was performed. Data evaluation was performed with Visual Spreadsheet software.
  • Samples from heat stress were also analyzed by Weak Cation Exchange (WCX) chromatography in order to quantify the percentaged content of charge variants using a UPLC Aquity H class from Waters.
  • WCX Weak Cation Exchange
  • a Protein-Pak Hi Res CM 71m 4.6 x 100 mm column (Waters, cat No. 186004929) was applied. The column temperature was adjusted to 30°C. The flow rate was set to 0.65 mL/min. The applied gradient was designed as follows (Table 27). The temperature of the autosampler was kept at 2-8°C.
  • Empower® software Relative areas under the curve of the main peak as well as of acidic and basic charge variants was reported (Table 28).
  • Table 28 Assessment of charge variants by WCX chromatography in EGFRvlll-non HLE (canonical), -hALB, and -scFc preparations after heat and light induced stress.
  • sample purity was quantified in heat and light stressed samples using a microfluidic capillary electrophoresis sodium dodecylsulphate (CE-SDS) assay based on the LabChip GXII system (Perkin Elmer).
  • CE-SDS microfluidic capillary electrophoresis sodium dodecylsulphate
  • the sample denaturing solution was composed of the HT Protein Express Sample Buffer (provided by Perkin Elmer) supplemented with 34 mM dithiothreitol. Each sample was diluted 1 :8 with the denaturing solution and heated up to 70°C for 10 minutes together with the protein express ladder. 35 ⁇ _ of water for injection (WFI) were added to 40 ⁇ _ of the denatured sample. 120 ⁇ _ WFI were added to 12 ⁇ _ of the ladder.
  • WFI water for injection
  • Samples, ladder, protein express wash buffer, gel dye and destain solution are transferred to the respective reservoirs.
  • Samples are electrokinetically loaded from a microtiter plate onto the chip integrating the separation, staining, destaining, and detection of the protein and its size variants. The resulting electropherograms were evaluated and changes in purity were reported. An overview on the percentaged purity detected post stress is given by Table 29 and compared to unstressed samples (TO).
  • Table 29 Overview on percentaged purity in stressed and unstressed (TO) EGFRvlll- non HLE, -hALB, and -scFc preparations determined via LabChip GXII (Caliper).
  • BiTE® antibody constructs designed for targeting DLL3 including DLL3-hALB and DLL3-scFc were formulated, respectively.
  • the target protein concentration was 1 .0 mg/mL for both constructs.
  • Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at 37°C (DLL3-hALB) and 40°C (DLL3-scFc) for 4 weeks. Samples stored at -70°C served as controls (TO). Samples were analyzed by SE-UPLC according to the method described under Example 13. Results are outlined in Table 30. The scFc construct exhibited a reduced monomer loss (2.3%) upon heat stress if compared to the hALB construct (4.0%) although the incubation temperature was slightly higher.
  • Table 30 Overview on monomer peak percentage in stressed and unstressed (TO) DLL3-hALB and -scFc preparations determined via SE-UPLC.
  • BiTE® antibody constructs designed for targeting CD19 including CD19-Xbody and CD19-scFc were examined.
  • the target protein concentration was 1 .0 mg/mL.
  • Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20°C and 37°C for 4 weeks. Additionally, all samples were exposed to 1 .2 MLux visible light and 173 W * h/m 2 UVA light. Chamber temperature was adjusted to 25°C. Samples stored at - 70°C served as controls (TO). Samples stored at -20 and -37°C were analyzed by SE-UPLC according to the method described under Example 13. Results are outlined in Table 31 .
  • the scFc construct preserved a higher monomer content when stored for four weeks at -20 and 37°C respectively if compared to the Xbody.
  • Table31 Overview on monomer contents in stressed and unstressed (TO) CD19-Xbody and -scFc preparations determined via SE-UPLC.
  • the scFc construct showed enhanced stability against light exposure if compared to the Xbody indicated by a less pronounced loss in main peak which totaled 1.4% compared to 5.5% for the Xbody construct.
  • Table 33 Assessment of charge variants by WCX chromatography in CD19-Xbody and -scFc preparations after heat and light induced stress.
  • constructs D9F, T2G, D3L, T7I and K6C were each tested for their running behavior by size exclusion chromatography according to standard procedures.
  • a defined amount of 25 ⁇ g of each construct were run (at 750 ⁇ / ⁇ ) in Citrate Lysin Buffer (10 mM and 75 mM, pH7) on a Superdex 200 increase 10/300GL column at room temperature and the OD 280 nm was recorded. Subsequently, constructs have been compared by their retention times.
  • construct D9F shows significantly delayed elution (Table 34) as compared to T2G, D3L, T7I and K6C, which indicates a difference in the structure/arrangement of the Fc domains.
  • This difference in retention time was most significant with construct T7I having unpaired cysteines in the hinge region and the linkage of CH2 and CH2CH3 to CH3 (18.98 min vs. 18.62 min, difference of 0.36 min).
  • the difference in retention time of 0.16 min between D9F and T2G is significant taking the respective retention time of the BSA control into consideration.
  • Example 18 Surface Plasmon Resonance -based determination of binding to human FcRn (FCGRT/B2M)
  • the constructs were then injected in subsequent runs in two concentrations of 250 nM and 125 nM diluted in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 and 36°C. Association was done for 90 seconds with a 30 ⁇ /min flow rate followed by the dissociation phase for 90 seconds at a 30 ⁇ /min flow rate in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 at 36°C. Subsequent regeneration was done for 10 sec with 30 ⁇ /min with 10 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 7.4.
  • construct D9F shows significantly higher mass increase on the FcRn coated CM5 chip, as compared to T2G, D3L, T7I and K6C, which indicates stronger binding affinity of D9F to human FcRn. This observation was seen for both concentrations of the respective constructs.
  • CM5 Sensor Chips (GE Healthcare) were immobilized with around 350 RU of FCGRT/B2M (ACRO Biosystems) by using Na acetate buffer pH 4.5 and a running buffer consisting of 200 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 6.0.
  • the constructs and the human lgG1 -kappa control (MT201 ) were then injected at a concentration of 125 nM diluted in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 and 36°C. Association was done for 90 seconds with a 30 ⁇ /min flow rate followed by the dissociation phase for 60 seconds at a 30 ⁇ /min flow rate in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 at 36°C. Subsequent regeneration was done for 10 sec with 30 ⁇ /min with 10 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 7.4.
  • construct D9F shows significantly higher mass increase on the FcRn coated CM5 chip, as compared to T2G, D3L, T7I and K6C, which indicates stronger binding affinity of D9F to human FcRn.
  • the mass increase on the FcRn-coated CM5 chip for D9F is well comparable to the mass increase of the human lgG1 -kappa control antibody MT201 , indicating a comparable binding of construct D9F to human FcRn.
  • the binding against FcRn is mediated through the human lgG1 Fc portion within the constructs. Stronger binding against human FcRn as described in the field is an indicator for longer half-life in vivo due to a higher intracellular rescue of the respective protein and a therefore reduced degradation rate. For this reason, stronger binding of D9F to human FcRn in the range of a human lgG1 -kappa antibody (MT201 ), as compared to the other constructs makes this molecule clearly superior as a basis for therapeutic molecules to allow for longer exposure of the potential drug in the patient, presumably in the range of a full human lgG1 antibody, and a lower frequency of drug administration.
  • MT201 human lgG1 -kappa antibody
  • HEDPEVKFNWYVDGVEVHNAKTKPC EEQYGSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPC EEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS
  • HEDPEVKFNWYVDGVEVHNAKTKPC EEQYNSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPC EEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

The present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to a target cell surface antigen, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3ε chain and a third domain, which is the specific Fc modality. Moreover, the invention provides a polynucleotide, encoding the antibody construct, a vector comprising this polynucleotide, host cells, expressing the construct and a pharmaceutical composition comprising the same.

Description

BISPECIFIC T CELL ENGAGING ANTIBODY CONSTRUCTS
BACKGROUND
[1] Bispecific molecules such as BiTE® (bispecific T cell engager) antibody constructs are recombinant protein constructs made from two flexibly linked antibody derived binding domains. One binding domain of BiTE® antibody constructs is specific for a selected tumor- associated surface antigen on target cells; the second binding domain is specific for CD3, a subunit of the T cell receptor complex on T cells. By their particular design BiTE® antibody constructs are uniquely suited to transiently connect T cells with target cells and, at the same time, potently activate the inherent cytolytic potential of T cells against target cells. An important further development of the first generation of BiTE® antibody constructs (see WO 99/54440 and WO 2005/040220) developed into the clinic as AMG 103 and AMG 1 10 was the provision of bispecific antibody constructs binding to a context independent epitope at the N-terminus of the CD3s chain (WO 2008/1 19567). BiTE® antibody constructs binding to this elected epitope do not only show cross-species specificity for human and Callithrix jacchus, Saguinus oedipus or Saimiri sciureus CD3e chain, but also, due to recognizing this specific epitope instead of previously described epitopes for CD3 binders in bispecific T cell engaging molecules, do not unspecifically activate T cells to the same degree as observed for the previous generation of T cell engaging antibodies. This reduction in T cell activation was connected with less or reduced T cell redistribution in patients, which was identified as a risk for side effects.
[2] Antibody constructs as described in WO 2008/119567 are likely to suffer from rapid clearance from the body; thus, whilst they are able to reach most parts of the body rapidly, and are quick to produce and easier to handle, their in vivo applications may be limited by their brief persistence in vivo. Prolonged administration by continuous intravenous infusion was used to achieve therapeutic effects because of the short in vivo half life of this small, single chain molecule. However, such continuous intravenous infusions are classified as inconvenient for the patients and, thus, in case of more convenient alternative treatment approaches, hamper the election of the compound demonstrated to be more efficient in the treatment of the respective disease. Hence, there is a need in the art for bispecific therapeutics that retain similar therapeutic efficacy that have a format which is straightforward to produce, and that have favorable pharmacokinetic properties, including a longer half-life. [3] An increased half-life is generally useful in in vivo applications of immunoglobulins, especially antibodies and most especially antibody fragments of small size. Approaches described in the art to achieve such effect comprise the fusion of the small bispecific antibody construct to larger proteins, which preferably do not interfere with the therapeutic effect of the BiTE® antibody construct. Examples for such further developments of bispecific T cell engagers comprise bispecifc Fc-molecules e.g. described in US 2014/0302037, US 2014/0308285, WO 2014/144722, WO 2014/151910 and WO 2015/048272. An alternative strategy is the use of HSA fused to the bispecific molecule or the mere fusion of human albumin binding peptides (see e.g. WO2013/128027, WO2014/140358). SUMMARY
[4] All the half-life extending formats (HLE formats) of bispecific T cell engaging molecules described in the art, which included the hetero Fc (also designated as hetFc or heterodimeric Fc, hFc) format and the fusion of human serum albumin (also designated as HSA or hALB) had individual disadvantages such as unspecific T cell activation, complement activation, instability or a pharmacokinetic profile, which does not meet the desired half-life prolongation of the molecules. It is thus the object of the present invention to provide a half- life extending format of bispecific T cell engaging molecules, which overcomes at least one and, of course, preferably more than one of these individual defects observed for the state of the art molecules. Accordingly, the present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to a target cell surface antigen, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3e chain and a third domain, which is the specific Fc modality. Moreover, the invention provides a polynucleotide encoding the antibody construct, a vector comprising this polynucleotide, host cells expressing the construct and a pharmaceutical composition comprising the same.
DESCRIPTION OF THE FIGURES
[5] Figure 1 : FIG. 1 a shows a diagram of one embodiment of an antibody construct of the invention. Fig. 1 b shows a heterodimeric Fc antibody construct and !c a X-body construct described in the art. The indicated charged pairs are introduced in order to enforce the heterodimerization. Fig 1d shows the fusion of an antibody construct with a human serum albumin (HSA or hALB).
[6] Figure 2: Evaluation of Target-independent T Cell Activation by Mesothelin (MS) HLE BiTE® antibody constructs. 2(a) antibody construct of the invention in 48 h activation assay with human PBMC (3x); HLE BiTE®serial dilutions (start 20 nM; 1 :5, 7x+blank); w/o or with FcR blocking [10 mg/mL hulgG (Kiovog, Baxter)]; FACS measurement of CD69 and CD25 [not shown] expression on CD4+, CD8+ T cells. 2(b) Hetero-Fc antibody construct in 48 h activation assay with human PBMC and CD147CD33+ cell depleted PBMC (3x); HLE BiTE® serial dilutions (start 20 nM; 1 :5, 7x+blank); FACS measurement of CD69 and CD25 [not shown] expression on CD4+, CD8+ T cells.
[7] Figure 3: Evaluation of Target-independent T Cell Activation by HLE BiTE® antibody constructs. 3(a) CDH19 antibody construct of the invention in 48 h activation assay with human PBMC (3x); HLE BiTE® serial dilutions (start 20 nM; 1 :5, 7x+blank); w/o or with FcR blocking [10 mg/mL hulgG (Kiovog, Baxter)]; FACS measurement of CD69 and CD25 [not shown] expression on CD4+, CD8+ T cells. 3(b) CDH19 Hetero-Fc antibody construct in 48 h activation assay with human PBMC and CD147CD33+ cell depleted PBMC (3x); HLE BiTE® serial dilutions (start 20 nM; 1 :5, 7x+blank); FACS measurement of CD69 and CD25 [not shown] expression on CD4+, CD8+ T cells. 3(c) CDH 19 X-body construct in 48 h activation assay with human PBMC and CD147CD33+ cell depleted PBMC (3x); HLE BiTE® serial dilutions (start 20 nM; 1 :5, 7x+blank); FACS measurement of CD69 and CD25 [not shown] expression on CD4+, CD8+ T cells; 3(d) - 3(aa) Isolated PBMC from three different healthy human donors were cultured with increasing concentrations of HLE bispecific antibody constructs specific for various target antigens for 48h. The expression of the activation marker CD69 on CD4+ and CD8+ T cells was determined by flow cytometric analysis using a PE-Cy7 conjugated mab specific for CD69.
[8] Figure 4: Complement C1 q Binding of BiTE® Fc fusion antibody constructs. BiTE® Fc fusion antibody constructs (BiTE® single chain Fc (triangle), BiTE® hetero Fc (squares), canonical BiTE® (circle)) were coated on a Maxisorp plate (in dilution series), prior to incubation with pooled human serum and incubation with polyclonal anti human CC1 q murine antibody, visualized by goat anti-mouse Fc-AP conjugate.
[9] Figure 5: Mean PK profiles of four pairs of BiTE®-HLE fusion antibody constructs after single dose administration in cynomolgus monkeys. For reasons of comparability, serum concentrations were dose-normalized to 15 pg/kg and indicated in nmol.
[10] Figure 6: Mean PK profiles of ninedifferent BiTE® antibody constructs, each fused to a scFc half-life extending moiety. For reasons of comparability, serum concentrations were dose-normalized to 15 pg/kg and indicated in nmol.
[11] Figure 7: Bispecific scFc variants D9F (SEQ ID NO: 1453), T2G (SEQ ID NO: 1454), D3L (SEQ ID NO: 1455), T7I (SEQ ID NO: 1456) and K6C (SEQ ID NO: 1457). A preferred antibody construct of the present invention is shown in SEQ ID NO: 1453.
[12] Figure 8: Surface Plasmon Resonance (SPR)-based determination of binding to human FcRn. Constructs D9F, T2G, D3L, T7I and K6C were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments. The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates. Average values of the duplicate determinations are depicted in Figure 8A and 8B.
[13] Figure 9: The constructs D9F, T2G, D3L, T7I and K6C and a human lgG1 -kappa antibody MT201 were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments. The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates. Average values of the duplicate determinations are depicted including standard deviation error bars.
DETAILED DESCRIPTION
[14] In addition to the significantly prolonged half-life of bispecific antibody constructs of the invention the fusion of the specific Fc modality, i.e. the third domain according to the present invention, is also responsible for a surprising significant impact on the first and second binding domain of the antibody construct of the invention. Thus, while other half-life extending modalities of T cell engaging antibody constructs show individual preferred features the election of the present specific Fc modality allows for the provision of bispecific molecules, which show a broad spectrum of preferred characteristics of a robust molecular format and, thus, allow for the development of promising pharmaceutical compositions.
[15] Thus, the present invention provides an antibody construct comprising at least three domains, wherein
• the first domain binds to a target cell surface antigen,
· the second domain binds to an extracellular epitope of the human and/or the Macaca CD3e chain; and
• the third domain comprises two polypeptide monomers, each comprising a hinge domain, a CH2 domain and a CH3 domain, wherein said two polypeptide monomers are fused to each other via a peptide linker. [16] The term "antibody construct" refers to a molecule in which the structure and/or function is/are based on the structure and/or function of an antibody, e.g., of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof. An antibody construct is hence capable of binding to its specific target or antigen. Furthermore, the binding domain of an antibody construct according to the invention comprises the minimum structural requirements of an antibody which allow for the target binding. This minimum requirement may e.g. be defined by the presence of at least the three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or the three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region), preferably of all six CDRs. An alternative approach to define the minimal structure requirements of an antibody is the definition of the epitope of the antibody within the structure of the specific target, respectively, the protein domain of the target protein composing the epitope region (epitope cluster) or by reference to an specific antibody competing with the epitope of the defined antibody. The antibodies on which the constructs according to the invention are based include for example monoclonal, recombinant, chimeric, deimmunized, humanized and human antibodies.
[17] The binding domain of an antibody construct according to the invention may e.g. comprise the above referred groups of CDRs. Preferably, those CDRs are comprised in the framework of an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it does not have to comprise both. Fd fragments, for example, have two VH regions and often retain some antigen-binding function of the intact antigen- binding domain. Additional examples for the format of antibody fragments, antibody variants or binding domains include (1 ) a Fab fragment, a monovalent fragment having the VL, VH, CL and CH1 domains; (2) a F(ab')2 fragment, a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; (3) an Fd fragment having the two VH and CH1 domains; (4) an Fv fragment having the VL and VH domains of a single arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341 :544-546), which has a VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain Fv (scFv) , the latter being preferred (for example, derived from an scFV-library). Examples for embodiments of antibody constructs according to the invention are e.g. described in WO 00/006605, WO 2005/040220, WO 2008/1 19567, WO 2010/037838, WO 2013/026837, WO 2013/026833, US 2014/0308285, US 2014/0302037, WO 2014/144722, WO 2014/151910, and WO 2015/048272.
[18] Also within the definition of "binding domain" or "domain which binds" are fragments of full-length antibodies, such as VH, VHH, VL, (s)dAb, Fv, Fd, Fab, Fab', F(ab')2 or "r IgG" ("half antibody"). Antibody constructs according to the invention may also comprise modified fragments of antibodies, also called antibody variants, such as scFv, di-scFv or bi(s)-scFv, scFv-Fc, scFv-zipper, scFab, Fab2, Fab3, diabodies, single chain diabodies, tandem diabodies (Tandab's), tandem di-scFv, tandem tri-scFv, "multibodies" such as triabodies or tetrabodies, and single domain antibodies such as nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains. [19] As used herein, the terms "single-chain Fv," "single-chain antibodies" or "scFv" refer to single polypeptide chain antibody fragments that comprise the variable regions from both the heavy and light chains, but lack the constant regions. Generally, a single-chain antibody further comprises a polypeptide linker between the VH and VL domains which enables it to form the desired structure which would allow for antigen binding. Single chain antibodies are discussed in detail by Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 1 13, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994). Various methods of generating single chain antibodies are known, including those described in U.S. Pat. Nos. 4,694,778 and 5,260,203; International Patent Application Publication No. WO 88/01649; Bird (1988) Science 242:423-442; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; Ward et al. (1989) Nature 334:54454; Skerra et al. (1988) Science 242:1038- 1041 . In specific embodiments, single-chain antibodies can also be bispecific, multispecific, human, and/or humanized and/or synthetic.
[20] Furthermore, the definition of the term "antibody construct" includes monovalent, bivalent and polyvalent / multivalent constructs and, thus, bispecific constructs, specifically binding to only two antigenic structure, as well as polyspecific / multispecific constructs, which specifically bind more than two antigenic structures, e.g. three, four or more, through distinct binding domains. Moreover, the definition of the term "antibody construct" includes molecules consisting of only one polypeptide chain as well as molecules consisting of more than one polypeptide chain, which chains can be either identical (homodimers, homotrimers or homo oligomers) or different (heterodimer, heterotrimer or heterooligomer). Examples for the above identified antibodies and variants or derivatives thereof are described inter alia in Harlow and Lane, Antibodies a laboratory manual, CSHL Press (1988) and Using Antibodies: a laboratory manual, CSHL Press (1999), Kontermann and Dubel, Antibody Engineering, Springer, 2nd ed. 2010 and Little, Recombinant Antibodies for Immunotherapy, Cambridge University Press 2009.
[21] The term "bispecific" as used herein refers to an antibody construct which is "at least bispecific", i.e., it comprises at least a first binding domain and a second binding domain, wherein the first binding domain binds to one antigen or target (here: the target cell surface antigen), and the second binding domain binds to another antigen or target (here: CD3). Accordingly, antibody constructs according to the invention comprise specificities for at least two different antigens or targets. For example, the first domain does preferably not bind to an extracellular epitope of CD3s of one or more of the species as described herein. The term "target cell surface antigen" refers to an antigenic structure expressed by a cell and which is present at the cell surface such that it is accessible for an antibody construct as described herein. It may be a protein, preferably the extracellular portion of a protein, or a carbohydrate structure, preferably a carbohydrate structure of a protein, such as a glycoprotein. It is preferably a tumor antigen. The term "bispecific antibody construct" of the invention also encompasses multispecific antibody constructs such as trispecific antibody constructs, the latter ones including three binding domains, or constructs having more than three (e.g. four, five...) specificities.
[22] Given that the antibody constructs according to the invention are (at least) bispecific, they do not occur naturally and they are markedly different from naturally occurring products. A "bispecific" antibody construct or immunoglobulin is hence an artificial hybrid antibody or immunoglobulin having at least two distinct binding sides with different specificities. Bispecific antibody constructs can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315- 321 (1990).
[23] The at least two binding domains and the variable domains (VH / VL) of the antibody construct of the present invention may or may not comprise peptide linkers (spacer peptides). The term "peptide linker" comprises in accordance with the present invention an amino acid sequence by which the amino acid sequences of one (variable and/or binding) domain and another (variable and/or binding) domain of the antibody construct of the invention are linked with each other. The peptide linkers can also be used to fuse the third domain to the other domains of the antibody construct of the invention. An essential technical feature of such peptide linker is that it does not comprise any polymerization activity. Among the suitable peptide linkers are those described in U.S. Patents 4,751 ,180 and 4,935,233 or WO 88/09344. The peptide linkers can also be used to attach other domains or modules or regions (such as half-life extending domains) to the antibody construct of the invention.
[24] The antibody constructs of the present invention are preferably "in vitro generated antibody constructs". This term refers to an antibody construct according to the above definition where all or part of the variable region (e.g., at least one CDR) is generated in a non-immune cell selection, e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen. This term thus preferably excludes sequences generated solely by genomic rearrangement in an immune cell in an animal. A "recombinant antibody" is an antibody made through the use of recombinant DNA technology or genetic engineering.
[25] The term "monoclonal antibody" (mAb) or monoclonal antibody construct as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic side or determinant on the antigen, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (or epitopes). In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, hence uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
[26] For the preparation of monoclonal antibodies, any technique providing antibodies produced by continuous cell line cultures can be used. For example, monoclonal antibodies to be used may be made by the hybridoma method first described by Koehler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567). Examples for further techniques to produce human monoclonal antibodies include the trioma technique, the human B-cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), 77-96).
[27] Hybridomas can then be screened using standard methods, such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (BIACORE™) analysis, to identify one or more hybridomas that produce an antibody that specifically binds with a specified antigen. Any form of the relevant antigen may be used as the immunogen, e.g., recombinant antigen, naturally occurring forms, any variants or fragments thereof, as well as an antigenic peptide thereof. Surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to an epitope of a target cell surface antigen, (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13).
[28] Another exemplary method of making monoclonal antibodies includes screening protein expression libraries, e.g., phage display or ribosome display libraries. Phage display is described, for example, in Ladner et al., U.S. Patent No. 5,223,409; Smith (1985) Science 228:1315-1317, Clackson et ai, Nature, 352: 624-628 (1991 ) and Marks et al., J. Mol. Biol., 222: 581 -597 (1991 ).
[29] In addition to the use of display libraries, the relevant antigen can be used to immunize a non-human animal, e.g., a rodent (such as a mouse, hamster, rabbit or rat). In one embodiment, the non-human animal includes at least a part of a human immunoglobulin gene. For example, it is possible to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig (immunoglobulin) loci. Using the hybridoma technology, antigen-specific monoclonal antibodies derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSE™, Green et al. (1994) Nature Genetics 7:13-21 , US 2003-0070185, WO 96/34096, and WO 96/33735. [30] A monoclonal antibody can also be obtained from a non-human animal, and then modified, e.g., humanized, deimmunized, rendered chimeric etc., using recombinant DNA techniques known in the art. Examples of modified antibody constructs include humanized variants of non-human antibodies, "affinity matured" antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et al., Biochemistry 30, 10832- 10837 (1991 )) and antibody mutants with altered effector function(s) (see, e.g., US Patent 5,648,260, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc. cit).
[31] In immunology, affinity maturation is the process by which B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities. Like the natural prototype, the in vitro affinity maturation is based on the principles of mutation and selection. The in vitro affinity maturation has successfully been used to optimize antibodies, antibody constructs, and antibody fragments. Random mutations inside the CDRs are introduced using radiation, chemical mutagens or error-prone PCR. In addition, the genetic diversity can be increased by chain shuffling. Two or three rounds of mutation and selection using display methods like phage display usually results in antibody fragments with affinities in the low nanomolar range.
[32] A preferred type of an amino acid substitutional variation of the antibody constructs involves substituting one or more hypervariable region residues of a parent antibody (e. g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sides (e. g. 6-7 sides) are mutated to generate all possible amino acid substitutions at each side. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e. g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sides for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the binding domain and, e.g., human target cell surface antigen. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
[33] The monoclonal antibodies and antibody constructs of the present invention specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81 : 6851 -6855 (1984)). Chimeric antibodies of interest herein include "primitized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human constant region sequences. A variety of approaches for making chimeric antibodies have been described. See e.g., Morrison et al., Proc. Natl. Acad. Sci U.S.A. 81 :6851 , 1985; Takeda et al., Nature 314:452, 1985, Cabilly et al., U.S. Patent No. 4,816,567; Boss et al., U.S. Patent No. 4,816,397; Tanaguchi et al., EP 0171496; EP 0173494; and GB 2177096.
[34] An antibody, antibody construct, antibody fragment or antibody variant may also be modified by specific deletion of human T cell epitopes (a method called "deimmunization") by the methods disclosed for example in WO 98/52976 or WO 00/34317. Briefly, the heavy and light chain variable domains of an antibody can be analyzed for peptides that bind to MHC class II; these peptides represent potential T cell epitopes (as defined in WO 98/52976 and WO 00/34317). For detection of potential T cell epitopes, a computer modeling approach termed "peptide threading" can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes. Potential T cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable domains, or preferably, by single amino acid substitutions. Typically, conservative substitutions are made. Often, but not exclusively, an amino acid common to a position in human germline antibody sequences may be used. Human germline sequences are disclosed e.g. in Tomlinson, et al. (1992) J. Mol. Biol. 227:776-798; Cook, G.P. et al. (1995) Immunol. Today Vol. 16 (5): 237-242; and Tomlinson et al. (1995) EMBO J. 14: 14:4628- 4638. The V BASE directory provides a comprehensive directory of human immunoglobulin variable region sequences (compiled by Tomlinson, LA. et al. MRC Centre for Protein Engineering, Cambridge, UK). These sequences can be used as a source of human sequence, e.g., for framework regions and CDRs. Consensus human framework regions can also be used, for example as described in US Patent No. 6,300,064.
[35] "Humanized" antibodies, antibody constructs, variants or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) are antibodies or immunoglobulins of mostly human sequences, which contain (a) minimal sequence(s) derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (also CDR) of the recipient are replaced by residues from a hypervariable region of a non- human (e.g., rodent) species (donor antibody) such as mouse, rat, hamster or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, "humanized antibodies" as used herein may also comprise residues which are found neither in the recipient antibody nor the donor antibody. These modifications are made to further refine and optimize antibody performance. The humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321 : 522-525 (1986); Reichmann et al., Nature, 332: 323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2: 593- 596 (1992).
[36] Humanized antibodies or fragments thereof can be generated by replacing sequences of the Fv variable domain that are not directly involved in antigen binding with equivalent sequences from human Fv variable domains. Exemplary methods for generating humanized antibodies or fragments thereof are provided by Morrison (1985) Science 229:1202-1207; by Oi et al. (1986) BioTechniques 4:214; and by US 5,585,089; US 5,693,761 ; US 5,693,762; US 5,859,205; and US 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable domains from at least one of a heavy or light chain. Such nucleic acids may be obtained from a hybridoma producing an antibody against a predetermined target, as described above, as well as from other sources. The recombinant DNA encoding the humanized antibody molecule can then be cloned into an appropriate expression vector.
[37] Humanized antibodies may also be produced using transgenic animals such as mice that express human heavy and light chain genes, but are incapable of expressing the endogenous mouse immunoglobulin heavy and light chain genes. Winter describes an exemplary CDR grafting method that may be used to prepare the humanized antibodies described herein (U.S. Patent No. 5,225,539). All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR, or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.
[38] A humanized antibody can be optimized by the introduction of conservative substitutions, consensus sequence substitutions, germline substitutions and/or back mutations. Such altered immunoglobulin molecules can be made by any of several techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80: 7308-7312, 1983; Kozbor ei a/., Immunology Today, 4: 7279, 1983; Olsson et al., Meth. Enzymol., 92: 3- 16, 1982, and EP 239 400).
[39] The term "human antibody", "human antibody construct" and "human binding domain" includes antibodies, antibody constructs and binding domains having antibody regions such as variable and constant regions or domains which correspond substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (1991 ) (loc. cit.). The human antibodies, antibody constructs or binding domains of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or side-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, in CDR3. The human antibodies, antibody constructs or binding domains can have at least one, two, three, four, five, or more positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence. The definition of human antibodies, antibody constructs and binding domains as used herein, however, also contemplates "fully human antibodies", which include only non-artificially and/or genetically altered human sequences of antibodies as those can be derived by using technologies or systems such as the Xenomouse. Preferably, a "fully human antibody" does not include amino acid residues not encoded by human germline immunoglobulin sequences
[40] In some embodiments, the antibody constructs of the invention are "isolated" or "substantially pure" antibody constructs. "Isolated" or "substantially pure", when used to describe the antibody constructs disclosed herein, means an antibody construct that has been identified, separated and/or recovered from a component of its production environment. Preferably, the antibody construct is free or substantially free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. The antibody constructs may e.g constitute at least about 5%, or at least about 50% by weight of the total protein in a given sample. It is understood that the isolated protein may constitute from 5% to 99.9% by weight of the total protein content, depending on the circumstances. The polypeptide may be made at a significantly higher concentration through the use of an inducible promoter or high expression promoter, such that it is made at increased concentration levels. The definition includes the production of an antibody construct in a wide variety of organisms and/or host cells that are known in the art. In preferred embodiments, the antibody construct will be purified (1 ) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Ordinarily, however, an isolated antibody construct will be prepared by at least one purification step.
[41] The term "binding domain" characterizes in connection with the present invention a domain which (specifically) binds to / interacts with / recognizes a given target epitope or a given target side on the target molecules (antigens), e.g. CD33 and CD3, respectively. The structure and function of the first binding domain (recognizing e.g. CD33), and preferably also the structure and/or function of the second binding domain (recognizing CD3), is/are based on the structure and/or function of an antibody, e.g. of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof. Preferably the first binding domain is characterized by the presence of three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region). The second binding domain preferably also comprises the minimum structural requirements of an antibody which allow for the target binding. More preferably, the second binding domain comprises at least three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region). It is envisaged that the first and/or second binding domain is produced by or obtainable by phage-display or library screening methods rather than by grafting CDR sequences from a pre-existing (monoclonal) antibody into a scaffold.
[42] According to the present invention, binding domains are in the form of one or more polypeptides. Such polypeptides may include proteinaceous parts and non-proteinaceous parts (e.g. chemical linkers or chemical cross-linking agents such as glutaraldehyde). Proteins (including fragments thereof, preferably biologically active fragments, and peptides, usually having less than 30 amino acids) comprise two or more amino acids coupled to each other via a covalent peptide bond (resulting in a chain of amino acids). [43] The term "polypeptide" as used herein describes a group of molecules, which usually consist of more than 30 amino acids. Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e., consisting of more than one polypeptide molecule. Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. An example for a heteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains. The terms "peptide", "polypeptide" and "protein" also refer to naturally modified peptides / polypeptides / proteins wherein the modification is effected e.g. by post-translational modifications like glycosylation, acetylation, phosphorylation and the like. A "peptide", "polypeptide" or "protein" when referred to herein may also be chemically modified such as pegylated. Such modifications are well known in the art and described herein below.
[44] Preferably the binding domain which binds to the target cell surface antigen and/or the binding domain which binds to CD3s is/are human binding domains. Antibodies and antibody constructs comprising at least one human binding domain avoid some of the problems associated with antibodies or antibody constructs that possess non-human such as rodent (e.g. murine, rat, hamster or rabbit) variable and/or constant regions. The presence of such rodent derived proteins can lead to the rapid clearance of the antibodies or antibody constructs or can lead to the generation of an immune response against the antibody or antibody construct by a patient. In order to avoid the use of rodent derived antibodies or antibody constructs, human or fully human antibodies / antibody constructs can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies. [45] The ability to clone and reconstruct megabase-sized human loci in YACs and to introduce them into the mouse germline provides a powerful approach to elucidating the functional components of very large or crudely mapped loci as well as generating useful models of human disease. Furthermore, the use of such technology for substitution of mouse loci with their human equivalents could provide unique insights into the expression and regulation of human gene products during development, their communication with other systems, and their involvement in disease induction and progression.
[46] An important practical application of such a strategy is the "humanization" of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated offers the opportunity to study the mechanisms underlying programmed expression and assembly of antibodies as well as their role in B-cell development. Furthermore, such a strategy could provide an ideal source for production of fully human monoclonal antibodies (mAbs) - an important milestone towards fulfilling the promise of antibody therapy in human disease. Fully human antibodies or antibody constructs are expected to minimize the immunogenic and allergic responses intrinsic to mouse or mouse-derivatized mAbs and thus to increase the efficacy and safety of the administered antibodies / antibody constructs. The use of fully human antibodies or antibody constructs can be expected to provide a substantial advantage in the treatment of chronic and recurring human diseases, such as inflammation, autoimmunity, and cancer, which require repeated compound administrations. [47] One approach towards this goal was to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig loci in anticipation that such mice would produce a large repertoire of human antibodies in the absence of mouse antibodies. Large human Ig fragments would preserve the large variable gene diversity as well as the proper regulation of antibody production and expression. By exploiting the mouse machinery for antibody diversification and selection and the lack of immunological tolerance to human proteins, the reproduced human antibody repertoire in these mouse strains should yield high affinity antibodies against any antigen of interest, including human antigens. Using the hybridoma technology, antigen-specific human mAbs with the desired specificity could be readily produced and selected. This general strategy was demonstrated in connection with the generation of the first XenoMouse mouse strains (see Green et al. Nature Genetics 7:13- 21 (1994)). The XenoMouse strains were engineered with yeast artificial chromosomes (YACs) containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences. The human Ig containing YACs proved to be compatible with the mouse system for both rearrangement and expression of antibodies and were capable of substituting for the inactivated mouse Ig genes. This was demonstrated by their ability to induce B cell development, to produce an adult-like human repertoire of fully human antibodies, and to generate antigen-specific human mAbs. These results also suggested that introduction of larger portions of the human Ig loci containing greater numbers of V genes, additional regulatory elements, and human Ig constant regions might recapitulate substantially the full repertoire that is characteristic of the human humoral response to infection and immunization. The work of Green et al. was recently extended to the introduction of greater than approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and kappa light chain loci, respectively. See Mendez et al. Nature Genetics 15:146-156 (1997) and U.S. patent application Ser. No. 08/759,620. [48] The production of the XenoMouse mice is further discussed and delineated in U.S. patent applications Ser. No. 07/466,008, Ser. No. 07/610,515, Ser. No. 07/919,297, Ser. No. 07/922,649, Ser. No. 08/031 ,801 , Ser. No. 08/1 12,848, Ser. No. 08/234,145, Ser. No. 08/376,279, Ser. No. 08/430,938, Ser. No. 08/464,584, Ser. No. 08/464,582, Ser. No. 08/463,191 , Ser. No. 08/462,837, Ser. No. 08/486,853, Ser. No. 08/486,857, Ser. No. 08/486,859, Ser. No. 08/462,513, Ser. No. 08/724,752, and Ser. No. 08/759,620; and U.S. Pat. Nos. 6,162,963; 6,150,584; 6,1 14,598; 6,075,181 , and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also Mendez et al. Nature Genetics 15:146-156 (1997) and Green and Jakobovits J. Exp. Med. 188:483-495 (1998), EP 0 463 151 B1 , WO 94/02602, WO 96/34096, WO 98/24893, WO 00/76310, and WO 03/47336.
[49] In an alternative approach, others, including GenPharm International, Inc., have utilized a "minilocus" approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in U.S. Pat. No. 5,545,807 to Surani et al. and U.S. Pat. Nos. 5,545,806; 5,625,825; 5,625,126; 5,633,425; 5,661 ,016; 5,770,429; 5,789,650; 5,814,318; 5,877,397; 5,874,299; and 6,255,458 each to Lonberg and Kay, U.S. Pat. Nos. 5,591 ,669 and 6,023.010 to Krimpenfort and Berns, U.S. Pat. Nos. 5,612,205; 5,721 ,367; and 5,789,215 to Berns et al., and U.S. Pat. No. 5,643,763 to Choi and Dunn, and GenPharm International U.S. patent application Ser. No. 07/574,748, Ser. No. 07/575,962, Ser. No. 07/810,279, Ser. No. 07/853,408, Ser. No. 07/904,068, Ser. No. 07/990,860, Ser. No. 08/053,131 , Ser. No. 08/096,762, Ser. No. 08/155,301 , Ser. No. 08/161 ,739, Ser. No. 08/165,699, Ser. No. 08/209,741. See also EP 0 546 073 B1 , WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884 and U.S. Pat. No. 5,981 ,175. See further Taylor et al. (1992), Chen et al. (1993), Tuaillon et al. (1993), Choi et al. (1993), Lonberg et al. (1994), Taylor et al. (1994), and Tuaillon et al. (1995), Fishwild et al. (1996). [50] Kirin has also demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773 288 and 843 961 . Xenerex Biosciences is developing a technology for the potential generation of human antibodies. In this technology, SCID mice are reconstituted with human lymphatic cells, e.g., B and/or T cells. Mice are then immunized with an antigen and can generate an immune response against the antigen. See U.S. Pat. Nos. 5,476,996; 5,698,767; and 5,958,765. [51] Human anti-mouse antibody (HAMA) responses have led the industry to prepare chimeric or otherwise humanized antibodies. It is however expected that certain human anti- chimeric antibody (HACA) responses will be observed, particularly in chronic or multi-dose utilizations of the antibody. Thus, it would be desirable to provide antibody constructs comprising a human binding domain against the target cell surface antigen and a human binding domain against CD3s in order to vitiate concerns and/or effects of HAMA or HACA response.
[52] The terms "(specifically) binds to", (specifically) recognizes", "is (specifically) directed to", and "(specifically) reacts with" mean in accordance with this invention that a binding domain interacts or specifically interacts with a given epitope or a given target side on the target molecules (antigens), here: target cell surface antigen and CD3s, respectively.
[53] The term "epitope" refers to a side on an antigen to which a binding domain, such as an antibody or immunoglobulin, or a derivative, fragment or variant of an antibody or an immunoglobulin, specifically binds. An "epitope" is antigenic and thus the term epitope is sometimes also referred to herein as "antigenic structure" or "antigenic determinant". Thus, the binding domain is an "antigen interaction side". Said binding/interaction is also understood to define a "specific recognition".
[54] "Epitopes" can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein. A "linear epitope" is an epitope where an amino acid primary sequence comprises the recognized epitope. A linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids in a unique sequence.
[55] A "conformational epitope", in contrast to a linear epitope, is an epitope wherein the primary sequence of the amino acids comprising the epitope is not the sole defining component of the epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not necessarily recognized by the binding domain). Typically a conformational epitope comprises an increased number of amino acids relative to a linear epitope. With regard to recognition of conformational epitopes, the binding domain recognizes a three- dimensional structure of the antigen, preferably a peptide or protein or fragment thereof (in the context of the present invention, the antigenic structure for one of the binding domains is comprised within the target cell surface antigen protein). For example, when a protein molecule folds to form a three-dimensional structure, certain amino acids and/or the polypeptide backbone forming the conformational epitope become juxtaposed enabling the antibody to recognize the epitope. Methods of determining the conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin labelling and electron paramagnetic resonance (EPR) spectroscopy.
[56] A method for epitope mapping is described in the following: When a region (a contiguous amino acid stretch) in the human target cell surface antigen protein is exchanged / replaced with its corresponding region of a non-human and non-primate target cell surface antigen (e.g., mouse target cell surface antigen, but others like chicken, rat, hamster, rabbit etc. might also be conceivable), a decrease in the binding of the binding domain is expected to occur, unless the binding domain is cross-reactive for the non-human, non-primate target cell surface antigen used. Said decrease is preferably at least 10%, 20%, 30%, 40%, or 50%; more preferably at least 60%, 70%, or 80%, and most preferably 90%, 95% or even 100% in comparison to the binding to the respective region in the human target cell surface antigen protein, whereby binding to the respective region in the human target cell surface antigen protein is set to be 100%. It is envisaged that the aforementioned human target cell surface antigen / non-human target cell surface antigen chimeras are expressed in CHO cells. It is also envisaged that the human target cell surface antigen / non-human target cell surface antigen chimeras are fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM.
[57] In an alternative or additional method for epitope mapping, several truncated versions of the human target cell surface antigen extracellular domain can be generated in order to determine a specific region that is recognized by a binding domain. In these truncated versions, the different extracellular target cell surface antigen domains / sub-domains or regions are stepwise deleted, starting from the N-terminus. It is envisaged that the truncated target cell surface antigen versions may be expressed in CHO cells. It is also envisaged that the truncated target cell surface antigen versions may be fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM. It is also envisaged that the truncated target cell surface antigen versions may encompass a signal peptide domain at their N-terminus, for example a signal peptide derived from mouse IgG heavy chain signal peptide. It is furthermore envisaged that the truncated target cell surface antigen versions may encompass a v5 domain at their N-terminus (following the signal peptide) which allows verifying their correct expression on the cell surface. A decrease or a loss of binding is expected to occur with those truncated target cell surface antigen versions which do not encompass any more the target cell surface antigen region that is recognized by the binding domain. The decrease of binding is preferably at least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, and most preferably 90%, 95% or even 100%, whereby binding to the entire human target cell surface antigen protein (or its extracellular region or domain) is set to be 100. [58] A further method to determine the contribution of a specific residue of a target cell surface antigen to the recognition by an antibody construct or binding domain is alanine scanning (see e.g. Morrison KL & Weiss GA. Cur Opin Chem Biol. 2001 Jun;5(3):302-7), where each residue to be analyzed is replaced by alanine, e.g. via site-directed mutagenesis. Alanine is used because of its non-bulky, chemically inert, methyl functional group that nevertheless mimics the secondary structure references that many of the other amino acids possess. Sometimes bulky amino acids such as valine or leucine can be used in cases where conservation of the size of mutated residues is desired. Alanine scanning is a mature technology which has been used for a long period of time. [59] The interaction between the binding domain and the epitope or the region comprising the epitope implies that a binding domain exhibits appreciable affinity for the epitope / the region comprising the epitope on a particular protein or antigen (here: target cell surface antigen and CD3, respectively) and, generally, does not exhibit significant reactivity with proteins or antigens other than the target cell surface antigen or CD3. "Appreciable affinity" includes binding with an affinity of about 10"6 M (KD) or stronger. Preferably, binding is considered specific when the binding affinity is about 10"12 to 10"8 M, 10"12 to 10"9 M, 10"12 to 10"10 M, 10"11 to 10"8 M, preferably of about 10"11 to 10"9 M. Whether a binding domain specifically reacts with or binds to a target can be tested readily by, inter alia, comparing the reaction of said binding domain with a target protein or antigen with the reaction of said binding domain with proteins or antigens other than the target cell surface antigen or CD3. Preferably, a binding domain of the invention does not essentially or substantially bind to proteins or antigens other than the target cell surface antigen or CD3 {i.e., the first binding domain is not capable of binding to proteins other than the target cell surface antigen and the second binding domain is not capable of binding to proteins other than CD3). It is an envisaged characteristic of the antibody constructs according to the present invention to have superior affinity characteristics in comparison to other HLE formats. Such a superior affinity, in consequence, suggests a prolonged half-life in vivo. The longer half-life of the antibody constructs according to the present invention may reduce the duration and frequency of administration which typically contributes to improved patient compliance. This is of particular importance as the antibody constructs of the present invention are particularly beneficial for highly weakened or even multimorbide cancer patients.
[60] The term "does not essentially / substantially bind" or "is not capable of binding" means that a binding domain of the present invention does not bind a protein or antigen other than the target cell surface antigen or CD3, i.e., does not show reactivity of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or antigens other than the target cell surface antigen or CD3, whereby binding to the target cell surface antigen or CD3, respectively, is set to be 100%.
[61] Specific binding is believed to be effected by specific motifs in the amino acid sequence of the binding domain and the antigen. Thus, binding is achieved as a result of their primary, secondary and/or tertiary structure as well as the result of secondary modifications of said structures. The specific interaction of the antigen-interaction-side with its specific antigen may result in a simple binding of said side to the antigen. Moreover, the specific interaction of the antigen-interaction-side with its specific antigen may alternatively or additionally result in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an oligomerization of the antigen, etc.
[62] The term "variable" refers to the portions of the antibody or immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the "variable domain(s)"). The pairing of a variable heavy chain (VH) and a variable light chain (VL) together forms a single antigen- binding side.
[63] Variability is not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called "hypervariable regions" or "complementarity determining regions" (CDRs). The more conserved (i.e., non-hypervariable) portions of the variable domains are called the "framework" regions (FRM or FR) and provide a scaffold for the six CDRs in three dimensional space to form an antigen-binding surface. The variable domains of naturally occurring heavy and light chains each comprise four FRM regions (FR1 , FR2, FR3, and FR4), largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding side (see Kabat et al., loc. cit.).
[64] The terms "CDR", and its plural "CDRs", refer to the complementarity determining region of which three make up the binding character of a light chain variable region (CDR-L1 , CDR-L2 and CDR-L3) and three make up the binding character of a heavy chain variable region (CDR-H1 , CDR-H2 and CDR-H3). CDRs contain most of the residues responsible for specific interactions of the antibody with the antigen and hence contribute to the functional activity of an antibody molecule: they are the main determinants of antigen specificity. [65] The exact definitional CDR boundaries and lengths are subject to different classification and numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or any other boundary definitions, including the numbering system described herein. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called "hypervariable regions" within the variable sequences. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See for example Kabat (an approach based on cross-species sequence variability), Chothia (an approach based on crystallographic studies of antigen-antibody complexes), and/or MacCallum (Kabat et al., loc. cit; Chothia et al., J. Mol. Biol, 1987, 196: 901 -917; and MacCallum et al., J. Mol. Biol, 1996, 262: 732). Still another standard for characterizing the antigen binding side is the AbM definition used by Oxford Molecular's AbM antibody modeling software. See, e.g., Protein Sequence and Structure Analysis of Antibody Variable Domains. In: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg). To the extent that two residue identification techniques define regions of overlapping, but not identical regions, they can be combined to define a hybrid CDR. However, the numbering in accordance with the so-called Kabat system is preferred.
[66] Typically, CDRs form a loop structure that can be classified as a canonical structure. The term "canonical structure" refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol. Biol., 1987, 196: 901 ; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton, J. Mol. Biol, 1996, 263: 800). Furthermore, there is a relationship between the adopted loop structure and the amino acid sequences surrounding it. The conformation of a particular canonical class is determined by the length of the loop and the amino acid residues residing at key positions within the loop, as well as within the conserved framework (i.e., outside of the loop). Assignment to a particular canonical class can therefore be made based on the presence of these key amino acid residues.
[67] The term "canonical structure" may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit.). The Kabat numbering scheme (system) is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner and is the preferred scheme applied in the present invention as also mentioned elsewhere herein. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al. and/or revealed by other techniques, for example, crystallography and two- or three-dimensional computational modeling. Accordingly, a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library). Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., loc. cit. and their implications for construing canonical aspects of antibody structure, are described in the literature. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988.
[68] The CDR3 of the light chain and, particularly, the CDR3 of the heavy chain may constitute the most important determinants in antigen binding within the light and heavy chain variable regions. In some antibody constructs, the heavy chain CDR3 appears to constitute the major area of contact between the antigen and the antibody. In vitro selection schemes in which CDR3 alone is varied can be used to vary the binding properties of an antibody or determine which residues contribute to the binding of an antigen. Hence, CDR3 is typically the greatest source of molecular diversity within the antibody-binding side. H3, for example, can be as short as two amino acid residues or greater than 26 amino acids.
[69] In a classical full-length antibody or immunoglobulin, each light (L) chain is linked to a heavy (H) chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. The CH domain most proximal to VH is usually designated as CH 1. The constant ("C") domains are not directly involved in antigen binding, but exhibit various effector functions, such as antibody- dependent, cell-mediated cytotoxicity and complement activation. The Fc region of an antibody is comprised within the heavy chain constant domains and is for example able to interact with cell surface located Fc receptors.
[70] The sequence of antibody genes after assembly and somatic mutation is highly varied, and these varied genes are estimated to encode 1010 different antibody molecules (Immunoglobulin Genes, 2nd ed., eds. Jonio et al., Academic Press, San Diego, CA, 1995). Accordingly, the immune system provides a repertoire of immunoglobulins. The term "repertoire" refers to at least one nucleotide sequence derived wholly or partially from at least one sequence encoding at least one immunoglobulin. The sequence(s) may be generated by rearrangement in vivo of the V, D, and J segments of heavy chains, and the V and J segments of light chains. Alternatively, the sequence(s) can be generated from a cell in response to which rearrangement occurs, e.g., in vitro stimulation. Alternatively, part or all of the sequence(s) may be obtained by DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., U.S. Patent 5,565,332. A repertoire may include only one sequence or may include a plurality of sequences, including ones in a genetically diverse collection.
[71] The term "Fc portion" or "Fc monomer" means in connection with this invention a polypeptide comprising at least one domain having the function of a CH2 domain and at least one domain having the function of a CH3 domain of an immunoglobulin molecule. As apparent from the term "Fc monomer", the polypeptide comprising those CH domains is a "polypeptide monomer". An Fc monomer can be a polypeptide comprising at least a fragment of the constant region of an immunoglobulin excluding the first constant region immunoglobulin domain of the heavy chain (CH1 ), but maintaining at least a functional part of one CH2 domain and a functional part of one CH3 domain, wherein the CH2 domain is amino terminal to the CH3 domain. In a preferred aspect of this definition, an Fc monomer can be a polypeptide constant region comprising a portion of the Ig-Fc hinge region, a CH2 region and a CH3 region, wherein the hinge region is amino terminal to the CH2 domain. It is envisaged that the hinge region of the present invention promotes dimerization. Such Fc polypeptide molecules can be obtained by papain digestion of an immunoglobulin region (of course resulting in a dimer of two Fc polypeptide), for example and not limitation. In another aspect of this definition, an Fc monomer can be a polypeptide region comprising a portion of a CH2 region and a CH3 region. Such Fc polypeptide molecules can be obtained by pepsin digestion of an immunoglobulin molecule, for example and not limitation. In one embodiment, the polypeptide sequence of an Fc monomer is substantially similar to an Fc polypeptide sequence of: an Igd Fc region, an lgG2 Fc region, an lgG3 Fc region, an lgG4 Fc region, an IgM Fc region, an IgA Fc region, an IgD Fc region and an IgE Fc region. (See, e.g., Padlan, Molecular Immunology, 31 (3), 169-217 (1993)). Because there is some variation between immunoglobulins, and solely for clarity, Fc monomer refers to the last two heavy chain constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three heavy chain constant region immunoglobulin domains of IgE and IgM. As mentioned, the Fc monomer can also include the flexible hinge N-terminal to these domains. For IgA and IgM, the Fc monomer may include the J chain. For IgG, the Fc portion comprises immunoglobulin domains CH2 and CH3 and the hinge between the first two domains and CH2. Although the boundaries of the Fc portion may vary an example for a human IgG heavy chain Fc portion comprising a functional hinge, CH2 and CH3 domain can be defined e.g. to comprise residues D231 (of the hinge domain - corresponding to D234 in Table 1 below)) to P476, respectively L476 (for lgG4) of the carboxyl-terminus of the CH3 domain, wherein the numbering is according to Kabat. The two Fc portions or Fc monomers, which are fused to each other via a peptide linker define the third domain of the antibody construct of the invention, which may also be defined as scFc domain.
[72] In one embodiment of the invention it is envisaged that a scFc domain as disclosed herein, respectively the Fc monomers fused to each other are comprised only in the third domain of the antibody construct.
In line with the present invention an IgG hinge region can be identified by analogy using the Kabat numbering as set forth in Table 1 . In line with the above, it is envisaged that a hinge domain/region of the present invention comprises the amino acid residues corresponding to the IgGi sequence stretch of D234 to P243 according to the Kabat numbering. It is likewise envisaged that a hinge domain/region of the LLJ present invention comprises or consists of the lgG1 hinge sequence DKTHTCPPCP (SEQ ID NO: 1449) (corresponding to the stretch D234 to P243 as shown in Table 1 below - variations of said sequence are also envisaged provided that the hinge region still promotes dimerization ). In a preferred embodiment of the invention the glycosylation site at Kabat position 314 of the CH2 domains in the third domain of the antibody construct is removed by a N314X substitution, wherein X is any amino acid excluding Q. Said substitution is preferably a N314G substitution. In a more preferred embodiment, said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
It is also envisaged that the third domain of the antibody construct of the invention comprises or consists in an amino to carboxyl order: DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) - CH2-CH3-linker- DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) -CH2-CH3. The peptide linker of the aforementioned antibody construct is in a preferred embodiment characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly4Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 5 or greater (e.g. 5, 6, 7, 8 etc. or greater), 6 being preferred ((Gly4Ser)6). Said construct may further comprise the aforementioned substitutions N314X, preferably N314G, and/or the further substitutions V321 C and R309C. In a preferred embodiment of the antibody constructs of the invention as defined herein before, it is envisaged that the second domain binds to an extracellular epitope of the human and/or the Macaca CD3e chain.
Table 1 : Kabat numbering of the amino acid residues of the hinge region
IMGT numbering IgGi amino acid Kabat
for the hinge translation numbering
1 226
Figure imgf000026_0001
In further embodiments of the present invention, the hinge domain/region comprises or consists of the lgG2 subtype hinge sequence ERKCCVECPPCP (SEQ ID NO: 1450), the lgG3 subtype hinge sequence ELKTPLDTTHTCPRCP (SEQ ID NO: 1451 ) or ELKTPLGDTTHTCPRCP (SEQ ID NO: 1458), and/or the lgG4 subtype hinge sequence ESKYGPPCPSCP (SEQ ID NO: 1452). The lgG1 subtype hinge sequence may be the following one EPKSCDKTHTCPPCP (as shown in Table 1 and SEQ ID NO: 1459). These core hinge regions are thus also envisaged in the context of the present invention.
[73] The location and sequence of the IgG CH2 and IgG CD3 domain can be identified by analogy using the Kabat numbering as set forth in Table 2:
Table 2: Kabat numbering of the amino acid residues of the IgG CH2 and CH3 region
IgG CH2 aa CH2 Kabat CH3 aa CH3 Kabat subtype translation numbering translation numbering
IgGi APE KAK 244 360 GQP PGK 361 478
igG2 APP TK 244 360 GQP PGK 361 478
lgG3 APE KTK 244 360 GQP PGK 361 478
lgG4 APE KAK 244 360 GQP Z-GK 361 478
[74] In one embodiment of the invention the emphasized bold amino acid residues in the CH3 domain of the first or both Fc monomers are deleted. [75] The peptide linker, by whom the polypeptide monomers ("Fc portion" or "Fc monomer") of the third domain are fused to each other, preferably comprises at least 25 amino acid residues (25, 26, 27, 28, 29, 30 etc.). More preferably, this peptide linker comprises at least 30 amino acid residues (30, 31 , 32, 33, 34, 35 etc.). It is also preferred that the linker comprises up to 40 amino acid residues, more preferably up to 35 amino acid residues, most preferably exactly 30 amino acid residues. A preferred embodiment of such peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly4Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 5 or greater (e.g. 6, 7 or 8). Preferably the integer is 6 or 7, more preferably the integer is 6.
[76] In the event that a linker is used to fuse the first domain to the second domain, or the first or second domain to the third domain, this linker is preferably of a length and sequence sufficient to ensure that each of the first and second domains can, independently from one another, retain their differential binding specificities. For peptide linkers which connect the at least two binding domains (or two variable domains) in the antibody construct of the invention, those peptide linkers are preferred which comprise only a few number of amino acid residues, e.g. 12 amino acid residues or less. Thus, peptide linkers of 12, 1 1 , 10, 9, 8, 7, 6 or 5 amino acid residues are preferred. An envisaged peptide linker with less than 5 amino acids comprises 4, 3, 2 or one amino acid(s), wherein Gly-rich linkers are preferred. A preferred embodiment of the peptide linker for a fusion the first and the second domain is depicted in SEQ ID NO:1 . A preferred linker embodiment of the peptide linker for a fusion the second and the third domain is a (Gly)4-linker, respectively G4-linker. [77] A particularly preferred "single" amino acid in the context of one of the above described "peptide linker" is Gly. Accordingly, said peptide linker may consist of the single amino acid Gly. In a preferred embodiment of the invention a peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly4Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3). Preferred linkers are depicted in SEQ ID NOs: 1 to 12. The characteristics of said peptide linker, which comprise the absence of the promotion of secondary structures, are known in the art and are described e.g. in Dall'Acqua et al. (Biochem. (1998) 37, 9266-9273), Cheadle et al. (Mol Immunol (1992) 29, 21 -30) and Raag and Whitlow (FASEB (1995) 9(1 ), 73-80). Peptide linkers which furthermore do not promote any secondary structures are preferred. The linkage of said domains to each other can be provided, e.g., by genetic engineering, as described in the examples. Methods for preparing fused and operatively linked bispecific single chain constructs and expressing them in mammalian cells or bacteria are well-known in the art (e.g. WO 99/54440 or Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001 ). [78] In a preferred embodiment of the antibody construct or the present invention the first and second domain form an antibody construct in a format selected from the group consisting of (scFv)2, scFv-single domain mAb, diabody and oligomers of any of the those formats [79] According to a particularly preferred embodiment, and as documented in the appended examples, the first and the second domain of the antibody construct of the invention is a "bispecific single chain antibody construct", more prefereably a bispecific "single chain Fv" (scFv). Although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker - as described hereinbefore - that enables them to be made as a single protein chain in which the VL and VH regions pair to form a monovalent molecule; see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883). These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are evaluated for function in the same manner as are whole or full-length antibodies. A single- chain variable fragment (scFv) is hence a fusion protein of the variable region of the heavy chain (VH) and of the light chain (VL) of immunoglobulins, usually connected with a short linker peptide of about ten to about 25 amino acids, preferably about 15 to 20 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and introduction of the linker.
[80] Bispecific single chain antibody constructs are known in the art and are described in WO 99/54440, Mack, J. Immunol. (1997), 158, 3965-3970, Mack, PNAS, (1995), 92, 7021 - 7025, Kufer, Cancer Immunol. Immunother., (1997), 45, 193-197, Loffler, Blood, (2000), 95, 6, 2098-2103, Bruhl, Immunol., (2001 ), 166, 2420-2426, Kipriyanov, J. Mol. Biol., (1999), 293, 41 -56. Techniques described for the production of single chain antibodies (see, inter alia, US Patent 4,946,778, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc. cit.) can be adapted to produce single chain antibody constructs specifically recognizing (an) elected target(s). [81] Bivalent (also called divalent) or bispecific single-chain variable fragments (bi-scFvs or di-scFvs having the format (scFv)2 can be engineered by linking two scFv molecules (e.g. with linkers as described hereinbefore). If these two scFv molecules have the same binding specificity, the resulting (scFv)2 molecule will preferably be called bivalent (i.e. it has two valences for the same target epitope). If the two scFv molecules have different binding specificities, the resulting (scFv)2 molecule will preferably be called bispecific. The linking can be done by producing a single peptide chain with two VH regions and two VL regions, yielding tandem scFvs (see e.g. Kufer P. et al., (2004) Trends in Biotechnology 22(5):238- 244). Another possibility is the creation of scFv molecules with linker peptides that are too short for the two variable regions to fold together (e.g. about five amino acids), forcing the scFvs to dimerize. This type is known as diabodies (see e.g. Hollinger, Philipp et al., (July 1 993) Proceedings of the National Academy of Sciences of the United States of America 90 (14): 6444-8).
[82] In line with this invention either the first, the second or the first and the second domain may comprise a single domain antibody, respectively the variable domain or at least the CDRs of a single domain antibody. Single domain antibodies comprise merely one (monomeric) antibody variable domain which is able to bind selectively to a specific antigen, independently of other V regions or domains. The first single domain antibodies were engineered from havy chain antibodies found in camelids, and these are called VHH fragments. Cartilaginous fishes also have heavy chain antibodies (IgNAR) from which single domain antibodies called VNAR fragments can be obtained. An alternative approach is to split the dimeric variable domains from common immunoglobulins e.g. from humans or rodents into monomers, hence obtaining VH or VL as a single domain Ab. Although most research into single domain antibodies is currently based on heavy chain variable domains, nanobodies derived from light chains have also been shown to bind specifically to target epitopes. Examples of single domain antibodies are called sdAb, nanobodies or single variable domain antibodies.
[83] A (single domain mAb)2 is hence a monoclonal antibody construct composed of (at least) two single domain monoclonal antibodies, which are individually selected from the group comprising VH, VL, VHH and VNAR. The linker is preferably in the form of a peptide linker. Similarly, an "scFv-single domain mAb" is a monoclonal antibody construct composed of at least one single domain antibody as described above and one scFv molecule as described above. Again, the linker is preferably in the form of a peptide linker.
[84] Whether or not an antibody construct competes for binding with another given antibody construct can be measured in a competition assay such as a competitive ELISA or a cell-based competition assay. Avidin-coupled microparticles (beads) can also be used. Similar to an avidin-coated ELISA plate, when reacted with a biotinylated protein, each of these beads can be used as a substrate on which an assay can be performed. Antigen is coated onto a bead and then precoated with the first antibody. The second antibody is added and any additional binding is determined. Possible means for the read-out includes flow cytometry. [85] T cells or T lymphocytes are a type of lymphocyte (itself a type of white blood cell) that play a central role in cell-mediated immunity. There are several subsets of T cells, each with a distinct function. T cells can be distinguished from other lymphocytes, such as B cells and NK cells, by the presence of a T cell receptor (TCR) on the cell surface. The TCR is responsible for recognizing antigens bound to major histocompatibility complex (MHC) molecules and is composed of two different protein chains. In 95% of the T cells, the TCR consists of an alpha (a) and beta (β) chain. When the TCR engages with antigenic peptide and MHC (peptide / MHC complex), the T lymphocyte is activated through a series of biochemical events mediated by associated enzymes, co-receptors, specialized adaptor molecules, and activated or released transcription factors.
[86] The CD3 receptor complex is a protein complex and is composed of four chains. In mammals, the complex contains a CD3y (gamma) chain, a CD36 (delta) chain, and two CD3z (epsilon) chains. These chains associate with the T cell receptor (TCR) and the so- called ζ (zeta) chain to form the T cell receptor CD3 complex and to generate an activation signal in T lymphocytes. The CD3y (gamma), CD36 (delta), and CD3E (epsilon) chains are highly related cell-surface proteins of the immunoglobulin superfamily containing a single extracellular immunoglobulin domain. The intracellular tails of the CD3 molecules contain a single conserved motif known as an immunoreceptor tyrosine-based activation motif or ITAM for short, which is essential for the signaling capacity of the TCR. The CD3 epsilon molecule is a polypeptide which in humans is encoded by the CD3E gene which resides on chromosome 1 1 . The most preferred epitope of CD3 epsilon is comprised within amino acid residues 1 -27 of the human CD3 epsilon extracellular domain. It is envisaged that antibody constructs according to the present invention typically and advantageously show less unspecific T cell activation, which is not desired in specific immunotherapy. This translates to a reduced risk of side effects.
[87] The redirected lysis of target cells via the recruitment of T cells by a multispecific, at least bispecific, antibody construct involves cytolytic synapse formation and delivery of perforin and granzymes. The engaged T cells are capable of serial target cell lysis, and are not affected by immune escape mechanisms interfering with peptide antigen processing and presentation, or clonal T cell differentiation; see, for example, WO 2007/042261 .
[88] Cytotoxicity mediated by antibody constructs of the invention can be measured in various ways. Effector cells can be e.g. stimulated enriched (human) CD8 positive T cells or unstimulated (human) peripheral blood mononuclear cells (PBMC). If the target cells are of macaque origin or express or are transfected with macaque target cell surface antigen which is bound by the first domain, the effector cells should also be of macaque origin such as a macaque T cell line, e.g. 41 19LnPx. The target cells should express (at least the extracellular domain of) the target cell surface antigen, e.g. human or macaque target cell surface antigen. Target cells can be a cell line (such as CHO) which is stably or transiently transfected with target cell surface antigen, e.g. human or macaque target cell surface antigen. Alternatively, the target cells can be a target cell surface antigen positive natural expresser cell line. Usually EC50 values are expected to be lower with target cell lines expressing higher levels of target cell surface antigen on the cell surface. The effector to target cell (E:T) ratio is usually about 10:1 , but can also vary. Cytotoxic activity of target cell surface antigenxCD3 bispecific antibody constructs can be measured in a 51Cr-release assay (incubation time of about 18 hours) or in a in a FACS-based cytotoxicity assay (incubation time of about 48 hours). Modifications of the assay incubation time (cytotoxic reaction) are also possible. Other methods of measuring cytotoxicity are well-known to the skilled person and comprise MTT or MTS assays, ATP-based assays including bioluminescent assays, the sulforhodamine B (SRB) assay, WST assay, clonogenic assay and the ECIS technology. [89] The cytotoxic activity mediated by target cell surface antigenxCD3 bispecific antibody constructs of the present invention is preferably measured in a cell-based cytotoxicity assay. It may also be measured in a 51Cr-release assay. It is represented by the EC50 value, which corresponds to the half maximal effective concentration (concentration of the antibody construct which induces a cytotoxic response halfway between the baseline and maximum). Preferably, the EC50 value of the target cell surface antigenxCD3 bispecific antibody constructs is <5000 pM or <4000 pM, more preferably <3000 pM or <2000 pM, even more preferably <1000 pM or <500 pM, even more preferably <400 pM or <300 pM, even more preferably <200 pM, even more preferably <100 pM, even more preferably <50 pM, even more preferably <20 pM or <10 pM, and most preferably <5 pM. [90] The above given EC50 values can be measured in different assays. The skilled person is aware that an EC50 value can be expected to be lower when stimulated / enriched CD8+ T cells are used as effector cells, compared with unstimulated PBMC. It can furthermore be expected that the EC50 values are lower when the target cells express a high number of the target cell surface antigen compared with a low target expression rat. For example, when stimulated / enriched human CD8+ T cells are used as effector cells (and either target cell surface antigen transfected cells such as CHO cells or target cell surface antigen positive human cell lines are used as target cells), the EC50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably <1000 pM, more preferably <500 pM, even more preferably <250 pM, even more preferably <100 pM, even more preferably <50 pM, even more preferably <10 pM, and most preferably <5 pM. When human PBMCs are used as effector cells, the EC50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably <5000 pM or <4000 pM (in particular when the target cells are target cell surface antigen positive human cell lines), more preferably <2000 pM (in particular when the target cells are target cell surface antigen transfected cells such as CHO cells), more preferably <1000 pM or <500 pM, even more preferably <200 pM, even more preferably <150 pM, even more preferably <100 pM, and most preferably <50 pM, or lower. When a macaque T cell line such as LnPx41 19 is used as effector cells, and a macaque target cell surface antigen transfected cell line such as CHO cells is used as target cell line, the EC50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably <2000 pM or <1500 pM, more preferably <1000 pM or <500 pM, even more preferably <300 pM or <250 pM, even more preferably <100 pM, and most preferably <50 pM.
[91] Preferably, the target cell surface antigenxCD3 bispecific antibody constructs of the present invention do not induce / mediate lysis or do not essentially induce / mediate lysis of target cell surface antigen negative cells such as CHO cells. The term "do not induce lysis", "do not essentially induce lysis", "do not mediate lysis" or "do not essentially mediate lysis" means that an antibody construct of the present invention does not induce or mediate lysis of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% of target cell surface antigen negative cells, whereby lysis of a target cell surface antigen positive human cell line is set to be 100%. This usually applies for concentrations of the antibody construct of up to 500 nM. The skilled person knows how to measure cell lysis without further ado. Moreover, the present specification teaches specific instructions how to measure cell lysis.
[92] The difference in cytotoxic activity between the monomeric and the dimeric isoform of individual target cell surface antigenxCD3 bispecific antibody constructs is referred to as "potency gap". This potency gap can e.g. be calculated as ratio between EC5o values of the molecule's monomeric and dimeric form. Potency gaps of the target cell surface antigenxCD3 bispecific antibody constructs of the present invention are preferably < 5, more preferably < 4, even more preferably < 3, even more preferably < 2 and most preferably < 1 .
[93] The first and/or the second (or any further) binding domain(s) of the antibody construct of the invention is/are preferably cross-species specific for members of the mammalian order of primates. Cross-species specific CD3 binding domains are, for example, described in WO 2008/1 19567. According to one embodiment, the first and/or second binding domain, in addition to binding to human target cell surface antigen and human CD3, respectively, will also bind to target cell surface antigen / CD3 of primates including (but not limited to) new world primates (such as Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus), old world primates (such baboons and macaques), gibbons, and non-human homininae.
[94] In one embodiment of the antibody construct of the invention the first domain binds to human target cell surface antigen and further binds to macaque target cell surface antigen, such as target cell surface antigen of Macaca fascicularis, and more preferably, to macaque target cell surface antigen expressed on the surface macaque cells. The affinity of the first binding domain for macaque target cell surface antigen is preferably <15 nM, more preferably <10 nM, even more preferably <5 nM, even more preferably <1 nM, even more preferably <0.5 nM, even more preferably <0.1 nM, and most preferably <0.05 nM or even <0.01 nM.
[95] Preferably the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen [ma target cell surface antigen:hu target cell surface antigen] (as determined e.g. by BiaCore or by Scatchard analysis) is <100, preferably <20, more preferably <15, further preferably <10, even more preferably<8, more preferably <6 and most preferably <2. Preferred ranges for the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen are between 0.1 and 20, more preferably between 0.2 and 10, even more preferably between 0.3 and 6, even more preferably between 0.5 and 3 or between 0.5 and 2.5, and most preferably between 0.5 and 2 or between 0.6 and 2.
[96] The second (binding) domain of the antibody construct of the invention binds to human CD3 epsilon and/or to Macaca CD3 epsilon. In a preferred embodiment the second domain further bind to Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus CD3 epsilon. Callithrix jacchus and Saguinus oedipus are both new world primate belonging to the family of Callitrichidae, while Saimiri sciureus is a new world primate belonging to the family of Cebidae.
[97] It is preferred for the antibody construct of the present invention that the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 on the comprises a VL region comprising CDR-L1 , CDR-L2 and CDR-L3 selected from:
(a) CDR-L1 as depicted in SEQ ID NO: 27 of WO 2008/1 19567, CDR-L2 as depicted in SEQ ID NO: 28 of WO 2008/1 19567 and CDR-L3 as depicted in SEQ ID NO: 29 of WO 2008/1 19567;
(b) CDR-L1 as depicted in SEQ ID NO: 1 17 of WO 2008/1 19567, CDR-L2 as depicted in SEQ ID NO: 1 18 of WO 2008/1 19567 and CDR-L3 as depicted in SEQ ID NO: 1 19 of WO 2008/1 19567; and (c) CDR-L1 as depicted in SEQ ID NO: 153 of WO 2008/1 19567, CDR-L2 as depicted in SEQ ID NO: 154 of WO 2008/1 19567 and CDR-L3 as depicted in SEQ ID NO: 155 of WO 2008/1 19567.
[98] In an also preferred embodiment of the antibody construct of the present invention, the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 epsilon chain comprises a VH region comprising CDR-H 1 , CDR-H2 and CDR-H3 selected from:
(a) CDR-H1 as depicted in SEQ ID NO: 12 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 13 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 14 of WO 2008/1 19567;
(b) CDR-H1 as depicted in SEQ ID NO: 30 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 31 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 32 of WO 2008/1 19567;
(c) CDR-H1 as depicted in SEQ ID NO: 48 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 49 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 50 of
WO 2008/1 19567;
(d) CDR-H1 as depicted in SEQ ID NO: 66 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 67 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 68 of WO 2008/1 19567;
(e) CDR-H1 as depicted in SEQ ID NO: 84 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 85 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 86 of WO 2008/1 19567;
(f) CDR-H 1 as depicted in SEQ ID NO: 102 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 103 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 104 of WO 2008/1 19567;
(g) CDR-H1 as depicted in SEQ ID NO: 120 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 121 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 122 of WO 2008/1 19567;
(h) CDR-H1 as depicted in SEQ ID NO: 138 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 139 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 140 of
WO 2008/1 19567;
(i) CDR-H1 as depicted in SEQ ID NO: 156 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 157 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 158 of WO 2008/1 19567; and
C) CDR-H1 as depicted in SEQ ID NO: 174 of WO 2008/1 19567, CDR-H2 as depicted in SEQ ID NO: 175 of WO 2008/1 19567 and CDR-H3 as depicted in SEQ ID NO: 176 of WO 2008/1 19567. [99] In a preferred embodiment of the antibody construct of the invention the above described three groups of VL CDRs are combined with the above described ten groups of VH CDRs within the second binding domain to form (30) groups, each comprising CDR-L 1 -3 and CDR-H 1 -3. [100] It is preferred for the antibody construct of the present invention that the second domain which binds to CD3 comprises a VL region selected from the group consisting of a VL region as depicted in SEQ ID NO: 17, 21 , 35, 39, 53, 57, 71 , 75, 89, 93, 107, 1 1 1 , 125, 129, 143, 147, 161 , 165, 179 or 183 of WO 2008/1 19567 or as depicted in SEQ ID NO: 13.
[101] It is also preferred that the second domain which binds to CD3 comprises a VH region selected from the group consisting of a VH region as depicted in SEQ ID NO: 15, 19, 33, 37, 51 , 55, 69, 73, 87, 91 , 105, 109, 123, 127, 141 , 145, 159, 163, 177 or 181 of WO 2008/1 19567 or as depicted in SEQ ID NO: 14.
[102] More preferably, the antibody construct of the present invention is characterized by a second domain which binds to CD3 comprising a VL region and a VH region selected from the group consisting of:
(a) a VL region as depicted in SEQ ID NO: 17 or 21 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 15 or 19 of WO 2008/1 19567;
(b) a VL region as depicted in SEQ ID NO: 35 or 39 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 33 or 37 of WO 2008/1 19567;
(c) a VL region as depicted in SEQ ID NO: 53 or 57 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 51 or 55 of WO 2008/1 19567;
(d) a VL region as depicted in SEQ ID NO: 71 or 75 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 69 or 73 of WO 2008/1 19567;
(e) a VL region as depicted in SEQ ID NO: 89 or 93 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 87 or 91 of WO 2008/1 19567;
(f) a VL region as depicted in SEQ ID NO: 107 or 1 1 1 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 105 or 109 of WO 2008/1 19567;
(g) a VL region as depicted in SEQ ID NO: 125 or 129 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 123 or 127 of WO 2008/1 19567;
(h) a VL region as depicted in SEQ ID NO: 143 or 147 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 141 or 145 of WO 2008/1 19567;
(i) a VL region as depicted in SEQ ID NO: 161 or 165 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 159 or 163 of WO 2008/1 19567; and
(j) a VL region as depicted in SEQ ID NO: 179 or 183 of WO 2008/1 19567 and a VH region as depicted in SEQ ID NO: 177 or 181 of WO 2008/1 19567. [103] Also preferred in connection with the antibody construct of the present invention is a second domain which binds to CD3 comprising a VL region as depicted in SEQ ID NO: 13 and a VH region as depicted in SEQ ID NO: 14.
[104] According to a preferred embodiment of the antibody construct of the present invention, the first and/or the second domain have the following format: The pairs of VH regions and VL regions are in the format of a single chain antibody (scFv). The VH and VL regions are arranged in the order VH-VL or VL-VH. It is preferred that the VH-region is positioned N-terminally of a linker sequence, and the VL-region is positioned C-terminally of the linker sequence. [105] A preferred embodiment of the above described antibody construct of the present invention is characterized by the second domain which binds to CD3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or depicted in SEQ ID NO: 15. [106] Covalent modifications of the antibody constructs are also included within the scope of this invention, and are generally, but not always, done post-translationally. For example, several types of covalent modifications of the antibody construct are introduced into the molecule by reacting specific amino acid residues of the antibody construct with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
[107] Cysteinyl residues most commonly are reacted with ohaloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, a-bromo-3-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N- alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p- chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1 ,3- diazole.
[108] Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0. Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.
[109] Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1 ,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
[110] The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using 125l or 1311 to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.
[111] Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R'— N=C=N-R'), where R and R' are optionally different alkyl groups, such as 1 -cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1 -ethyl-3-(4-azonia-4,4- dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
[112] Derivatization with bifunctional agents is useful for crosslinking the antibody constructs of the present invention to a water-insoluble support matrix or surface for use in a variety of methods. Commonly used crosslinking agents include, e.g., 1 ,1 -bis(diazoacetyl)-2- phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4- azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido- 1 ,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates as described in U.S. Pat. Nos. 3,969,287; 3,691 ,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.
[113] Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention. [114] Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the oarmino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, 1983, pp. 79-86), acetylation of the N- terminal amine, and amidation of any C-terminal carboxyl group.
[115] Another type of covalent modification of the antibody constructs included within the scope of this invention comprises altering the glycosylation pattern of the protein. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
[116] Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri- peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5- hydroxyproline or 5-hydroxylysine may also be used.
[117] Addition of glycosylation sites to the antibody construct is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above- described tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the amino acid sequence of an antibody construct is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
[118] Another means of increasing the number of carbohydrate moieties on the antibody construct is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330, and in Aplin and Wriston, 1981 , CRC Crit. Rev. Biochem., pp. 259-306.
[119] Removal of carbohydrate moieties present on the starting antibody construct may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N- acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et al., 1981 , Anal. Biochem. 1 18:131. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo- glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the formation of protein-N-glycoside linkages.
[120] Other modifications of the antibody construct are also contemplated herein. For example, another type of covalent modification of the antibody construct comprises linking the antibody construct to various non-proteinaceous polymers, including, but not limited to, various polyols such as polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301 ,144; 4,670,417; 4,791 ,192 or 4,179,337. In addition, as is known in the art, amino acid substitutions may be made in various positions within the antibody construct, e.g. in order to facilitate the addition of polymers such as PEG.
[121] In some embodiments, the covalent modification of the antibody constructs of the invention comprises the addition of one or more labels. The labelling group may be coupled to the antibody construct via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labelling proteins are known in the art and can be used in performing the present invention. The term "label" or "labelling group" refers to any detectable label. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected - the following examples include, but are not limited to:
a) isotopic labels, which may be radioactive or heavy isotopes, such as radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 89Zr, 90Y, 99Tc, 111ln, 125l, 131 l)
b) magnetic labels (e.g., magnetic particles)
c) redox active moieties d) optical dyes (including, but not limited to, chromophores, phosphors and fluorophores) such as fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), chemiluminescent groups, and fluorophores which can be either "small molecule" fluores or proteinaceous fluores
e) enzymatic groups (e.g. horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase)
f) biotinylated groups
g) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sides for secondary antibodies, metal binding domains, epitope tags, etc.)
[122] By "fluorescent label" is meant any molecule that may be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade BlueJ, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, OR), FITC, Rhodamine, and Texas Red (Pierce, Rockford, IL), Cy5, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh, PA). Suitable optical dyes, including fluorophores, are described in Molecular Probes Handbook by Richard P. Haugland.
[123] Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 1801 de Maisonneuve Blvd. West, 8th Floor, Montreal, Quebec, Canada H3H 1 J9; Stauber, 1998, Biotechniques 24:462-471 ; Heim et al., 1996, Curr. Biol. 6:178-182), enhanced yellow fluorescent protein (EYFP, Clontech Laboratories, Inc.), luciferase (lchiki et al., 1993, J. Immunol. 150:5408-5417), β galactosidase (Nolan et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:2603-2607) and Renilla (W092/15673, WO95/07463, WO98/14605, W098/26277, WO99/49019, U.S. Patent Nos. 5,292,658; 5,418,155; 5,683,888; 5,741 ,668; 5,777,079; 5,804,387; 5,874,304; 5,876,995; 5,925,558).
[124] The antibody construct of the invention may also comprise additional domains, which are e.g. helpful in the isolation of the molecule or relate to an adapted pharmacokinetic profile of the molecule. Domains helpful for the isolation of an antibody construct may be selected from peptide motives or secondarily introduced moieties, which can be captured in an isolation method, e.g. an isolation column. Non-limiting embodiments of such additional domains comprise peptide motives known as Myc-tag, HAT-tag, HA-tag, TAP-tag, GST-tag, chitin binding domain (CBD-tag), maltose binding protein (MBP-tag), Flag-tag, Strep-tag and variants thereof (e.g. Strepll-tag) and His-tag. All herein disclosed antibody constructs characterized by the identified CDRs may comprise a His-tag domain, which is generally known as a repeat of consecutive His residues in the amino acid sequence of a molecule, preferably of five, and more preferably of six His residues (hexa-histidine). The His-tag may be located e.g. at the N- or C-terminus of the antibody construct, preferably it is located at the C-terminus. Most preferably, a hexa-histidine tag (HHHHHH) (SEQ ID NO:16) is linked via peptide bond to the C-terminus of the antibody construct according to the invention. Additionally, a conjugate system of PLGA-PEG-PLGA may be combined with a poly-histidine tag for sustained release application and improved pharmacokinetic profile.
[125] Amino acid sequence modifications of the antibody constructs described herein are also contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody construct. Amino acid sequence variants of the antibody constructs are prepared by introducing appropriate nucleotide changes into the antibody constructs nucleic acid, or by peptide synthesis. All of the below described amino acd sequence modifications should result in an antibody construct which still retains the desired biological activity (binding to the target cell surface antigen and to CD3) of the unmodified parental molecule.
[126] The term "amino acid" or "amino acid residue" typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gin or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (He or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired. Generally, amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gin, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).
[127] Amino acid modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the antibody constructs. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody constructs, such as changing the number or position of glycosylation sites.
[128] For example, 1 , 2, 3, 4, 5, or 6 amino acids may be inserted, substituted or deleted in each of the CDRs (of course, dependent on their length), while 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be inserted, substituted or deleted in each of the FRs. Preferably, amino acid sequence insertions into the antibody construct include amino- and/or carboxyl-terminal fusions ranging in length from 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a hundred or more residues, as well as intra- sequence insertions of single or multiple amino acid residues. Corresponding modifications may also performed within the third domain of the antibody construct of the invention. An insertional variant of the antibody construct of the invention includes the fusion to the N- terminus or to the C-terminus of the antibody construct of an enzyme or the fusion to a polypeptide. [129] The sites of greatest interest for substitutional mutagenesis include (but are not limited to) the CDRs of the heavy and/or light chain, in particular the hypervariable regions, but FR alterations in the heavy and/or light chain are also contemplated. The substitutions are preferably conservative substitutions as described herein. Preferably, 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids may be substituted in a CDR, while 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in the framework regions (FRs), depending on the length of the CDR or FR. For example, if a CDR sequence encompasses 6 amino acids, it is envisaged that one, two or three of these amino acids are substituted. Similarly, if a CDR sequence encompasses 15 amino acids it is envisaged that one, two, three, four, five or six of these amino acids are substituted. [130] A useful method for identification of certain residues or regions of the antibody constructs that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells in Science, 244: 1081 -1085 (1989). Here, a residue or group of target residues within the antibody construct is/are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the epitope.
[131] Those amino acid locations demonstrating functional sensitivity to the substitutions are then refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site or region for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se needs not to be predetermined. For example, to analyze or optimize the performance of a mutation at a given site, alanine scanning or random mutagenesis may be conducted at a target codon or region, and the expressed antibody construct variants are screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in the DNA having a known sequence are well known, for example, M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of antigen binding activities, such as the target cell surface antigen or CD3 binding.
[132] Generally, if amino acids are substituted in one or more or all of the CDRs of the heavy and/or light chain, it is preferred that the then-obtained "substituted" sequence is at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence. This means that it is dependent of the length of the CDR to which degree it is identical to the "substituted" sequence. For example, a CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to have at least one amino acid substituted. Accordingly, the CDRs of the antibody construct may have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%, while CDRL3 may have 90%.
[133] Preferred substitutions (or replacements) are conservative substitutions. However, any substitution (including non-conservative substitution or one or more from the "exemplary substitutions" listed in Table 3, below) is envisaged as long as the antibody construct retains its capability to bind to the target cell surface antigen via the first domain and to CD3, respectively CD3 epsilon, via the second domain and/or its CDRs have an identity to the then substituted sequence (at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence). [134] Conservative substitutions are shown in Table 3 under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 3, or as further described below in reference to amino acid classes, may be introduced and the products screened for a desired characteristic. Table 3: Amino acid substitutions
Original Exemplary Substitutions Preferred Substitutions
Ala (A) val, leu, ile val
Arg (R) lys, gin, asn lys
Asn (N) gin, his, asp, lys, arg gin Asp (D) glu, asn glu
Cys (C) ser, ala ser
Gin (Q) asn, glu asn
Glu (E) asp, gin asp
Gly (G) Ala ala
His (H) asn, gin, lys, arg arg
He (1) leu, val, met, ala, phe leu
Leu (L) norleucine, ile, val, met, ala ile
Lys (K) arg, gin, asn arg
Met (M) leu, phe, ile leu
Phe (F) leu, val, ile, ala, tyr tyr
Pro (P) Ala ala
Ser (S) Thr thr
Thr (T) Ser ser
Trp (W) tyr, phe tyr
Tyr (Y) trp, phe, thr, ser phe
Val (V) ile, leu, met, phe, ala leu
[135] Substantial modifications in the biological properties of the antibody construct of the present invention are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1 ) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr, asn, gin; (3) acidic: asp, glu; (4) basic: his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic : trp, tyr, phe.
[136] Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the antibody construct may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
[137] For amino acid sequences, sequence identity and/or similarity is determined by using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith and Waterman, 1981 , Adv. Appl. Math. 2:482, the sequence identity alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Nat. Acad. Sci. U.S.A. 85:2444, computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., 1984, Nucl. Acid Res. 12:387-395, preferably using the default settings, or by inspection. Preferably, percent identity is calculated by FastDB based upon the following parameters: mismatch penalty of 1 ; gap penalty of 1 ; gap size penalty of 0.33; and joining penalty of 30, "Current Methods in Sequence Comparison and Analysis," Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp 127-149 (1988), Alan R. Liss, Inc.
[138] An example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, 1987, J. Mol. Evol. 35:351 -360; the method is similar to that described by Higgins and Sharp, 1989, CABIOS 5:151 -153. Useful PILEUP parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.
[139] Another example of a useful algorithm is the BLAST algorithm, described in: Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1997, Nucleic Acids Res. 25:3389- 3402; and Karin et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873-5787. A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., 1996, Methods in Enzymology 266:460-480. WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span=1 , overlap fraction=0.125, word threshold (T)=ll. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. [140] An additional useful algorithm is gapped BLAST as reported by Altschul et al., 1993, Nucl. Acids Res. 25:3389-3402. Gapped BLAST uses BLOSUM-62 substitution scores; threshold T parameter set to 9; the two-hit method to trigger ungapped extensions, charges gap lengths of k a cost of 10+k; Xu set to 16, and Xg set to 40 for database search stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to about 22 bits. [141] Generally, the amino acid homology, similarity, or identity between individual variant CDRs or VH / VL sequences are at least 60% to the sequences depicted herein, and more typically with preferably increasing homologies or identities of at least 65% or 70%, more preferably at least 75% or 80%, even more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and almost 100%. In a similar manner, "percent (%) nucleic acid sequence identity" with respect to the nucleic acid sequence of the binding proteins identified herein is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues in the coding sequence of the antibody construct. A specific method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.
[142] Generally, the nucleic acid sequence homology, similarity, or identity between the nucleotide sequences encoding individual variant CDRs or VH / VL sequences and the nucleotide sequences depicted herein are at least 60%, and more typically with preferably increasing homologies or identities of at least 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, and almost 100%. Thus, a "variant CDR" or a "variant VH / VL region"is one with the specified homology, similarity, or identity to the parent CDR / VH / VL of the invention, and shares biological function, including, but not limited to, at least 60%, 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the specificity and/or activity of the parent CDR or VH / VL.
[143] In one embodiment, the percentage of identity to human germline of the antibody constructs according to the invention is≥ 70% or≥ 75%, more preferably≥ 80% or≥ 85%, even more preferably≥ 90%, and most preferably≥91 %,≥92%,≥ 93%,≥ 94%,≥ 95% or even ≥ 96%. Identity to human antibody germline gene products is thought to be an important feature to reduce the risk of therapeutic proteins to elicit an immune response against the drug in the patient during treatment. Hwang & Foote ("Immunogenicity of engineered antibodies"; Methods 36 (2005) 3-10) demonstrate that the reduction of non- human portions of drug antibody constructs leads to a decrease of risk to induce anti-drug antibodies in the patients during treatment. By comparing an exhaustive number of clinically evaluated antibody drugs and the respective immunogenicity data, the trend is shown that humanization of the V-regions of antibodies makes the protein less immunogenic (average 5.1 % of patients) than antibodies carrying unaltered non-human V regions (average 23.59 % of patients). A higher degree of identity to human sequences is hence desirable for V-region based protein therapeutics in the form of antibody constructs. For this purpose of determining the germline identity, the V-regions of VL can be aligned with the amino acid sequences of human germline V segments and J segments (http://vbase.mrc-cpe.cam.ac.uk/) using Vector NTI software and the amino acid sequence calculated by dividing the identical amino acid residues by the total number of amino acid residues of the VL in percent. The same can be for the VH segments (http://vbase.mrc-cpe.cam.ac.uk/) with the exception that the VH CDR3 may be excluded due to its high diversity and a lack of existing human germline VH CDR3 alignment partners. Recombinant techniques can then be used to increase sequence identity to human antibody germline genes.
[144] In a further embodiment, the bispecific antibody constructs of the present invention exhibit high monomer yields under standard research scale conditions, e.g., in a standard two-step purification process. Preferably the monomer yield of the antibody constructs according to the invention is ≥0.25 mg/L supernatant, more preferably ≥0.5 mg/L, even more preferably≥ 1 mg/L, and most preferably≥ 3 mg/L supernatant.
[145] Likewise, the yield of the dimeric antibody construct isoforms and hence the monomer percentage (i.e., monomer : (monomer+dimer)) of the antibody constructs can be determined. The productivity of monomeric and dimeric antibody constructs and the calculated monomer percentage can e.g. be obtained in the SEC purification step of culture supernatant from standardized research-scale production in roller bottles. In one embodiment, the monomer percentage of the antibody constructs is≥ 80%, more preferably ≥ 85%, even more preferably≥ 90%, and most preferably≥ 95%.
[146] In one embodiment, the antibody constructs have a preferred plasma stability (ratio of EC50 with plasma to EC50 w/o plasma) of < 5 or < 4, more preferably < 3.5 or < 3, even more preferably < 2.5 or < 2, and most preferably < 1 .5 or < 1. The plasma stability of an antibody construct can be tested by incubation of the construct in human plasma at 37°C for 24 hours followed by EC50 determination in a 51chromium release cytotoxicity assay. The effector cells in the cytotoxicity assay can be stimulated enriched human CD8 positive T cells. Target cells can e.g. be CHO cells transfected with the human target cell surface antigen. The effector to target cell (E:T) ratio can be chosen as 10:1 . The human plasma pool used for this purpose is derived from the blood of healthy donors collected by EDTA coated syringes. Cellular components are removed by centrifugation and the upper plasma phase is collected and subsequently pooled. As control, antibody constructs are diluted immediately prior to the cytotoxicity assay in RPMI-1640 medium. The plasma stability is calculated as ratio of EC50 (after plasma incubation) to EC50 (control).
[147] It is furthermore preferred that the monomer to dimer conversion of antibody constructs of the invention is low. The conversion can be measured under different conditions and analyzed by high performance size exclusion chromatography. For example, incubation of the monomeric isoforms of the antibody constructs can be carried out for 7 days at 37°C and concentrations of e.g. 100 μςΛτιΙ or 250 μςΛτιΙ in an incubator. Under these conditions, it is preferred that the antibody constructs of the invention show a dimer percentage that is <5%, more preferably <4%, even more preferably <3%, even more preferably <2.5%, even more preferably <2%, even more preferably <1 .5%, and most preferably <1 % or <0.5% or even 0%.
[148] It is also preferred that the bispecific antibody constructs of the present invention present with very low dimer conversion after a number of freeze/thaw cycles. For example, the antibody construct monomer is adjusted to a concentration of 250 μg/ml e.g. in generic formulation buffer and subjected to three freeze/thaw cycles (freezing at -80°C for 30 min followed by thawing for 30 min at room temperature), followed by high performance SEC to determine the percentage of initially monomeric antibody construct, which had been converted into dimeric antibody construct. Preferably the dimer percentages of the bispecific antibody constructs are <5%, more preferably <4%, even more preferably <3%, even more preferably <2.5%, even more preferably <2%, even more preferably <1 .5%, and most preferably <1 % or even <0.5%, for example after three freeze/thaw cycles.
[149] The bispecific antibody constructs of the present invention preferably show a favorable thermostability with aggregation temperatures ≥45°C or≥50°C, more preferably ≥52°C or≥54°C, even more preferably ≥56°C or≥57°C, and most preferably ≥58°C or ≥59°C. The thermostability parameter can be determined in terms of antibody aggregation temperature as follows: Antibody solution at a concentration 250 μg ml is transferred into a single use cuvette and placed in a Dynamic Light Scattering (DLS) device. The sample is heated from 40°C to 70°C at a heating rate of 0.5°C/min with constant acquisition of the measured radius. Increase of radius indicating melting of the protein and aggregation is used to calculate the aggregation temperature of the antibody. [150] Alternatively, temperature melting curves can be determined by Differential Scanning Calorimetry (DSC) to determine intrinsic biophysical protein stabilities of the antibody constructs. These experiments are performed using a MicroCal LLC (Northampton, MA, U.S.A) VP-DSC device. The energy uptake of a sample containing an antibody construct is recorded from 20°C to 90°C compared to a sample containing only the formulation buffer. The antibody constructs are adjusted to a final concentration of 250 μg ml e.g. in SEC running buffer. For recording of the respective melting curve, the overall sample temperature is increased stepwise. At each temperature T energy uptake of the sample and the formulation buffer reference is recorded. The difference in energy uptake Cp (kcal/mole/°C) of the sample minus the reference is plotted against the respective temperature. The melting temperature is defined as the temperature at the first maximum of energy uptake. [151] The target cell surface antigenxCD3 bispecific antibody constructs of the invention are also envisaged to have a turbidity (as measured by OD340 after concentration of purified monomeric antibody construct to 2.5 mg/ml and over night incubation) of < 0.2, preferably of < 0.15, more preferably of < 0.12, even more preferably of < 0.1 , and most preferably of < 0.08.
[152] In a further embodiment the antibody construct according to the invention is stable at physiologic or slightly lower pH, i.e. about pH 7.4 to 6.0. The more tolerant the antibody construct behaves at unphysiologic pH such as about pH 6.0, the higher is the recovery of the antibody construct eluted from an ion exchange column relative to the total amount of loaded protein. Recovery of the antibody construct from an ion (e.g., cation) exchange column at about pH 6.0 is preferably≥ 30%, more preferably≥ 40%, more preferably≥ 50%, even more preferably≥ 60%, even more preferably≥ 70%, even more preferably≥ 80%, even more preferably≥ 90%, even more preferably≥ 95%, and most preferably≥ 99%.
[153] It is furthermore envisaged that the bispecific antibody constructs of the present invention exhibit therapeutic efficacy or anti-tumor activity. This can e.g. be assessed in a study as disclosed in the following example of an advanced stage human tumor xenograft model:
[154] The skilled person knows how to modify or adapt certain parameters of this study, such as the number of injected tumor cells, the site of injection, the number of transplanted human T cells, the amount of bispecific antibody constructs to be administered, and the timelines, while still arriving at a meaningful and reproducible result. Preferably, the tumor growth inhibition T/C [%] is < 70 or < 60, more preferably < 50 or < 40, even more preferably < 30 or < 20 and most preferably < 10 or < 5 or even < 2.5.
[155] In a preferred embodiment of the antibody construct of the invention the antibody construct is a single chain antibody construct.
[156] Also in a preferred embodiment of the antibody construct of the invention said third domain comprises in an amino to carboxyl order:
hinge-CH2-CH3-linker-hinge-CH2-CH3.
[157] In one embodiment of the invention each of said polypeptide monomers of the third domain has an amino acid sequence that is at least 90% identical to a sequence selected from the group consisting of: SEQ ID NO: 17-24. In a preferred embodiment or the invention each of said polypeptide monomers has an amino acid sequence selected from SEQ ID NO: 17-24. [158] Also in one embodiment of the invention the CH2 domain of one or preferably each (both) polypeptide monomers of the third domain comprises an intra domain cysteine disulfide bridge. As known in the art the term "cysteine disulfide bridge" refers to a functional group with the general structure R-S-S-R. The linkage is also called an SS-bond or a disulfide bridge and is derived by the coupling of two thiol groups of cysteine residues. It is particularly preferred for the antibody construct of the invention that the cysteines forming the cysteine disulfide bridge in the mature antibody construct are introduced into the amino acid sequence of the CH2 domain corresponding to 309 and 321 (Kabat numbering).
[159] In one embodiment of the invention a glycosylation site in Kabat position 314 of the CH2 domain is removed. It is preferred that this removal of the glycosylation site is achieved by a N314X substitution, wherein X is any amino acid excluding Q. Said substitution is preferably a N314G substitution. In a more preferred embodiment, said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
[160] It is assumed that the preferred features of the antibody construct of the invention compared e.g. to the bispecific heteroFc antibody construct known in the art (figure 1 b) may be inter alia related to the introduction of the above described modifications in the CH2 domain. Thus, it is preferred for the construct of the invention that the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and/or the glycosylation site at Kabat position 314 is removed by a N314X substitution as above, preferably by a N314G substitution.
[161] In a further preferred embodiment of the invention the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and the glycosylation site at Kabat position 314 is removed by a N314G substitution. Most preferably, the polypeptide monomer of the third domain of the antibody construct of the invention has an amino acid sequence selected from the group consisting of SEQ ID NO: 17 and 18.
[162] In one embodiment the invention provides an antibody construct, wherein:
(i) the first domain comprises two antibody variable domains and the second domain comprises two antibody variable domains;
(ii) the first domain comprises one antibody variable domain and the second domain comprises two antibody variable domains;
(iii) the first domain comprises two antibody variable domains and the second domain comprises one antibody variable domain; or (iv) the first domain comprises one antibody variable domain and the second domain comprises one antibody variable domain.
[163] Accordingly, the first and the second domain may be binding domains comprising each two antibody variable domains such as a VH and a VL domain. Examples for such binding domains comprising two antibody variable domains where described herein above and comprise e.g. Fv fragments, scFv fragments or Fab fragments described herein above. Alternatively either one or both of those binding domains may comprise only a single variable domain. Examples for such single domain binding domains where described herein above and comprise e.g. nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains.
[164] In a preferred embodiment of the antibody construct of the invention first and second domain are fused to the third domain via a peptide linker. Preferred peptide linker have been described herein above and are characterized by the amino acid sequence Gly-Gly-Gly-Gly- Ser, i.e. Gly4Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3). A particularly preferred linker for the fusion of the first and second domain to the third domain is depicted in SEQ ID NOs: 1.
[165] In a preferred embodiment the antibody construct of the invention is characterized to comprise in an amino to carboxyl order:
(a) the first domain;
(b) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 -3;
(c) the second domain;
(d) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NO: 1 , 2, 3, 9, 10, 1 1 and 12;
(e) the first polypeptide monomer of the third domain;
(f) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8; and
(g) the second polypeptide monomer of the third domain. [166] In one aspect of the invention the target cell surface antigen bound by the first domain is a tumor antigen, an antigen specific for an immunological disorder or a viral antigen. The term "tumor antigen" as used herein may be understood as those antigens that are presented on tumor cells. These antigens can be presented on the cell surface with an extracellular part, which is often combined with a transmembrane and cytoplasmic part of the molecule. These antigens can sometimes be presented only by tumor cells and never by the normal ones. Tumor antigens can be exclusively expressed on tumor cells or might represent a tumor specific mutation compared to normal cells. In this case, they are called tumor- specific antigens. More common are antigens that are presented by tumor cells and normal cells, and they are called tumor-associated antigens. These tumor-associated antigens can be overexpressed compared to normal cells or are accessible for antibody binding in tumor cells due to the less compact structure of the tumor tissue compared to normal tissue. Non- limiting examples of tumor antigens as used herein are CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
[167] In a preferred embodiment of the antibody construct of the invention the tumor antigen is selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
[168] In one aspect of the invention the antibody construct comprises in an amino to carboxyl order:
(a) the first domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 52, 70, 58, 76, 88, 106, 124, 94, 1 12, 130, 142,160, 178, 148, 166, 184,
196, 214, 232, 202, 220, 238, 250, 266, 282, 298, 255, 271 , 287, 303, 322, 338, 354, 370, 386, 402, 418, 434, 450, 466, 482, 498, 514, 530, 546, 327, 343, 359, 375, 391 , 407, 423, 439, 455, 471 , 487, 503, 519, 353, 551 , 592, 608, 624, 640, 656, 672, 688, 704, 720, 736, 752, 768, 784, 800, 816, 832, 848, 864, 880, 896, 912, 928, 944, 960, 976, 992, 1008, 1024, 1040, 1056, 1072, 1088, 1 104, 1 120, 1 136, 1 152, 1 168, 1 184,
597, 613, 629, 645, 661 , 677, 693, 709, 725, 741 , 757, 773, 789, 805, 821 , 837, 853, 869, 885, 901 , 917, 933, 949, 965, 981 , 997, 1013, 1029, 1045, 1061 , 1077, 1093, 1 109, 1 125, 1 141 , 1 157, 1 173, 1 189, 1277, 1289, 1301 , 1313, 1325, 1337, 1349, 1361 , 1373, 1385, 1397, 1409, 1421 , 1433, 1445;
(b) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 -3;
(c) the second domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or of SEQ ID NO: 15;
(d) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 , 2, 3, 9, 10, 1 1 and 12;
(e) the first polypeptide monomer of the third domain having a polypeptide sequence selected from the group consisting of SEQ ID NOs: 17-24;
(f) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8; and (g) the second polypeptide monomer of the third domain having a polypeptide sequence selected from the group consisting of SEQ ID NOs: 17-24.
[169] In line with this preferred embodiment the first and second domain, which are fused via a peptide linker to a single chain polypeptide comprise a sequence selected from the group consisting of:
(a) SEQ ID NOs: 53 and 59; CD33
(b) SEQ ID NOs: 71 and 77; EGFRvlll
(c) SEQ ID NOs:89, 107, 125, 95, 1 13, and 131 ; MSLN
(d) SEQ ID NOs:143, 161 , 179, 149, 167, and 185; CDH19
(e) SEQ ID NOs:197, 215, 233, 203, 221 , and 239; DLL3
(f) SEQ ID NOs:251 , 267, 283, 299, 256, 272, 288, and 304; CD19
(g) SEQ ID NOs:323, 339, 355, 371 , 387, 403, 419, 435, 451 , 467, 483, 499, 515, 531 , 547, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, and 552; FLT3
(h) SEQ ID NOs:593, 609, 625, 641 , 657, 673, 689, 705, 721 , 737, 753, 769, 785, 801 , 817, 833, 849, 865, 881 , 897, 913, 929, 945, 961 , 977, 993, 1009, 1025, 1041 , 1057, 1073,
1089, 1 105, 1 121 , 1 137, 1 153, 1 169, 1 185, 598, 614, 630, 646, 662, 678, 694, 710, 726, 742, 758, 774, 790, 806, 822, 838, 854, 870, 886, 902, 918, 934, 950, 966, 982, 998, 1014, 1030, 1046, 1062, 1078, 1094, 1 1 10, 1 126, 1 142, 1 158, 1 174, and 1 190; CD70
(i) SEQ ID NO: 1268; and CD20 C) SEQ ID NOs: 1278, 1290, 1302, 1314, 1326, 1338, 1350, 1362, 1374, 1386, 1398, 1410, 1422, 1434, 1446. CD19
[170] In one aspect the antibody construct of the invention is characterized by having an amino acid sequence selected from the group consisting of:
(a) SEQ ID NOs: 54, 55, 60, and 61 ; CD33
(b) SEQ ID NOs: 72, 73, 78, and 79; EGFRvlll
(c) SEQ ID NOs: 90, 91 , 96, 97, 108, 109, 1 14, and 1 15; MSLN
(d) SEQ ID NOs: 144, 145, 150, 151 , 162, 163, 168, 169, 180, 181 , 186, and 187;
CDH19
(e) SEQ ID NOs: 198, 199, 204, 205, 216, 217, 222, 223, 234, 235, 240, and 241 ; DLL3 (f) SEQ ID NOs: 252, 306, 257, 307, 268, 308, 273, 309, 284, 310, 289, 31 1 , 300, 312,
305, and 313; CD19
(g) SEQ ID NOs: 324, 554, 329, 555, 340, 556, 345, 557, 356, 558, 361 , 559, 372, 560, 377, 561 , 388, 562, 393, 563, 404, 564, 409, 565, 420, 566, 425, 567, 436, 568, 441 , 569, 452, 570, 457, 571 , 468, 572, 473, 573, 484, 574, 489, 575, 500, 576, 505, 577, 516, 578, 521 , 579, 532, 580, 537, 581 , 548, 582, 553, and 583; FLT3 (h) SEQ ID NOs: 594, 610, 626, 642, 658, 674, 690, 706, 722, 738, 754, 77, 786, 802, 818, 834, 850, 866, 882, 898, 914, 930, 946, 962, 978, 994, 1010, 1026, 1042, 1058, 1074, 1090, 1 106, 1 122, 1 138, 1 154, 1 170, 1 186, 599, 615, 631 , 647, 663, 679, 695, 71 1 , 727, 743, 759, 775, 791 , 807, 823, 839, 855, 871 , 887, 903, 919, 935, 951 , 967, 983, 999, 1015, 1031 , 1047, 1063, 1079, 1095, 1 1 1 1 , 1 127, 1 143, 1 159, 1 175, 1 191 , and 1 192-
1267; CD70
(i) SEQ ID NO: 43; CD20
(j) SEQ ID Nos: 1279, 1280, 1291 , 1292, 1303, 1304, 1315, 1316, 1327, 1328, 1339, 1340, 1351 , 1352, 1363, 1364, 1375, 1376, 1387, 1388, 1399,1400, 141 1 , 1412, 1423, 1424, 1435, 1436, 1447, 1448. CD19
[171] The invention further provides a polynucleotide / nucleic acid molecule encoding an antibody construct of the invention. A polynucleotide is a biopolymer composed of 13 or more nucleotide monomers covalently bonded in a chain. DNA (such as cDNA) and RNA (such as mRNA) are examples of polynucleotides with distinct biological function. Nucleotides are organic molecules that serve as the monomers or subunits of nucleic acid molecules like DNA or RNA. The nucleic acid molecule or polynucleotide can be double stranded and single stranded, linear and circular. It is preferably comprised in a vector which is preferably comprised in a host cell. Said host cell is, e.g. after transformation or transfection with the vector or the polynucleotide of the invention, capable of expressing the antibody construct. For that purpose the polynucleotide or nucleic acid molecule is operatively linked with control sequences.
[172] The genetic code is the set of rules by which information encoded within genetic material (nucleic acids) is translated into proteins. Biological decoding in living cells is accomplished by the ribosome which links amino acids in an order specified by mRNA, using tRNA molecules to carry amino acids and to read the mRNA three nucleotides at a time. The code defines how sequences of these nucleotide triplets, called codons, specify which amino acid will be added next during protein synthesis. With some exceptions, a three-nucleotide codon in a nucleic acid sequence specifies a single amino acid. Because the vast majority of genes are encoded with exactly the same code, this particular code is often referred to as the canonical or standard genetic code. While the genetic code determines the protein sequence for a given coding region, other genomic regions can influence when and where these proteins are produced.
[173] Furthermore, the invention provides a vector comprising a polynucleotide / nucleic acid molecule of the invention. A vector is a nucleic acid molecule used as a vehicle to transfer (foreign) genetic material into a cell. The term "vector" encompasses - but is not restricted to - plasmids, viruses, cosmids and artificial chromosomes. In general, engineered vectors comprise an origin of replication, a multicloning site and a selectable marker. The vector itself is generally a nucleotide sequence, commonly a DNA sequence that comprises an insert (transgene) and a larger sequence that serves as the "backbone" of the vector. Modern vectors may encompass additional features besides the transgene insert and a backbone: promoter, genetic marker, antibiotic resistance, reporter gene, targeting sequence, protein purification tag. Vectors called expression vectors (expression constructs) specifically are for the expression of the transgene in the target cell, and generally have control sequences. [174] The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding side. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. [175] A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding side is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
[176] "Transfection" is the process of deliberately introducing nucleic acid molecules or polynucleotides (including vectors) into target cells. The term is mostly used for non-viral methods in eukaryotic cells. Transduction is often used to describe virus-mediated transfer of nucleic acid molecules or polynucleotides. Transfection of animal cells typically involves opening transient pores or "holes" in the cell membrane, to allow the uptake of material. Transfection can be carried out using calcium phosphate, by electroporation, by cell squeezing or by mixing a cationic lipid with the material to produce liposomes, which fuse with the cell membrane and deposit their cargo inside.
[177] The term "transformation" is used to describe non-viral transfer of nucleic acid molecules or polynucleotides (including vectors) into bacteria, and also into non-animal eukaryotic cells, including plant cells. Transformation is hence the genetic alteration of a bacterial or non-animal eukaryotic cell resulting from the direct uptake through the cell membrane(s) from its surroundings and subsequent incorporation of exogenous genetic material (nucleic acid molecules). Transformation can be effected by artificial means. For transformation to happen, cells or bacteria must be in a state of competence, which might occur as a time-limited response to environmental conditions such as starvation and cell density.
[178] Moreover, the invention provides a host cell transformed or transfected with the polynucleotide / nucleic acid molecule or with the vector of the invention. As used herein, the terms "host cell" or "recipient cell" are intended to include any individual cell or cell culture that can be or has/have been recipients of vectors, exogenous nucleic acid molecules, and polynucleotides encoding the antibody construct of the present invention; and/or recipients of the antibody construct itself. The introduction of the respective material into the cell is carried out by way of transformation, transfection and the like. The term "host cell" is also intended to include progeny or potential progeny of a single cell. Because certain modifications may occur in succeeding generations due to either natural, accidental, or deliberate mutation or due to environmental influences, such progeny may not, in fact, be completely identical (in morphology or in genomic or total DNA complement) to the parent cell, but is still included within the scope of the term as used herein. Suitable host cells include prokaryotic or eukaryotic cells, and also include but are not limited to bacteria, yeast cells, fungi cells, plant cells, and animal cells such as insect cells and mammalian cells, e.g., murine, rat, macaque or human.
[179] The antibody construct of the invention can be produced in bacteria. After expression, the antibody construct of the invention is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size exclusion. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells.
[180] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the antibody construct of the invention. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such as K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC 24178), K. waltii (ATCC 56500), K. drosophilarum (ATCC 36906), K. thermotolerans, and K. marxianus; yarrowia (EP 402 226); Pichia pastoris (EP 183 070); Candida; Trichoderma reesia (EP 244 234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A nidulans and A. niger.
[181] Suitable host cells for the expression of glycosylated antibody construct of the invention are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruit fly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
[182] Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco can also be used as hosts. Cloning and expression vectors useful in the production of proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature (1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 790-794, Artsaenko et al. (1995) The Plant J 8: 745-750, and Fecker ei a/. (1996) Plant Mol Biol 32: 979-986.
[183] However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651 ); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. , J. Gen Virol. 36 : 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol. Reprod. 23: 243- 251 (1980)); monkey kidney cells (CVI ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2,1413 8065); mouse mammary tumor (MMT 060562, ATCC CCL5 1 ); TRI cells (Mather et al., Annals N. Y Acad. Sci. (1982) 383: 44-68); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
[184] In a further embodiment the invention provides a process for the production of an antibody construct of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the antibody construct of the invention and recovering the produced antibody construct from the culture. [185] As used herein, the term "culturing" refers to the in vitro maintenance, differentiation, growth, proliferation and/or propagation of cells under suitable conditions in a medium. The term "expression" includes any step involved in the production of an antibody construct of the invention including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
[186] When using recombinant techniques, the antibody construct can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody construct is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
[187] The antibody construct of the invention prepared from the host cells can be recovered or purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™, chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered. Where the antibody construct of the invention comprises a CH3 domain, the Bakerbond ABX resin (J.T. Baker, Phillipsburg, NJ) is useful for purification.
[188] Affinity chromatography is a preferred purification technique. The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly (styrenedivinyl) benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
[189] Moreover, the invention provides a pharmaceutical composition comprising an antibody construct of the invention or an antibody construct produced according to the process of the invention. It is preferred for the pharmaceutical composition of the invention that the homogeneity of the antibody construct is≥ 80%, more preferably≥ 81 %,≥ 82%,≥ 83% > 84%, or≥ 85%, further preferably≥ 86%,≥ 87%,≥ 88%,≥ 89%, or≥ 90%, still further preferably,≥ 91 %,≥ 92%,≥ 93%,≥ 94%, or≥ 95% and most preferably≥ 96%,≥ 97%,≥ 98% or≥ 99%.
[190] As used herein, the term "pharmaceutical composition" relates to a composition which is suitable for administration to a patient, preferably a human patient. The particularly preferred pharmaceutical composition of this invention comprises one or a plurality of the antibody construct(s) of the invention, preferably in a therapeutically effective amount. Preferably, the pharmaceutical composition further comprises suitable formulations of one or more (pharmaceutically effective) carriers, stabilizers, excipients, diluents, solubilizers, surfactants, emulsifiers, preservatives and/or adjuvants. Acceptable constituents of the composition are preferably nontoxic to recipients at the dosages and concentrations employed. Pharmaceutical compositions of the invention include, but are not limited to, liquid, frozen, and lyophilized compositions.
[191] The inventive compositions may comprise a pharmaceutically acceptable carrier. In general, as used herein, "pharmaceutically acceptable carrier" means any and all aqueous and non-aqueous solutions, sterile solutions, solvents, buffers, e.g. phosphate buffered saline (PBS) solutions, water, suspensions, emulsions, such as oil/water emulsions, various types of wetting agents, liposomes, dispersion media and coatings, which are compatible with pharmaceutical administration, in particular with parenteral administration. The use of such media and agents in pharmaceutical compositions is well known in the art, and the compositions comprising such carriers can be formulated by well-known conventional methods.
[192] Certain embodiments provide pharmaceutical compositions comprising the antibody construct of the invention and further one or more excipients such as those illustratively described in this section and elsewhere herein. Excipients can be used in the invention in this regard for a wide variety of purposes, such as adjusting physical, chemical, or biological properties of formulations, such as adjustment of viscosity, and or processes of the invention to improve effectiveness and or to stabilize such formulations and processes against degradation and spoilage due to, for instance, stresses that occur during manufacturing, shipping, storage, pre-use preparation, administration, and thereafter.
[193] In certain embodiments, the pharmaceutical composition may contain formulation materials for the purpose of modifying, maintaining or preserving, e.g., the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition (see, REMINGTON'S PHARMACEUTICAL SCIENCES, 18" Edition, (A.R. Genrmo, ed.), 1990, Mack Publishing Company). In such embodiments, suitable formulation materials may include, but are not limited to:
• amino acids such as glycine, alanine, glutamine, asparagine, threonine, proline, 2- phenylalanine, including charged amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or histidine
• antimicrobials such as antibacterial and antifungal agents
• antioxidants such as ascorbic acid, methionine, sodium sulfite or sodium hydrogen- sulfite;
• buffers, buffer systems and buffering agents which are used to maintain the composition at physiological pH or at a slightly lower pH; examples of buffers are borate, bicarbonate,
Tris-HCI, citrates, phosphates or other organic acids, succinate, phosphate, and histidine; for example Tris buffer of about pH 7.0-8.5;
• non-aqueous solvents such as propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate;
· aqueous carriers including water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media;
• biodegradable polymers such as polyesters;
• bulking agents such as mannitol or glycine;
• chelating agents such as ethylenediamine tetraacetic acid (EDTA);
· isotonic and absorption delaying agents;
• complexing agents such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin)
• fillers;
• monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); carbohydrates may be non-reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol;
• (low molecular weight) proteins, polypeptides or proteinaceous carriers such as human or bovine serum albumin, gelatin or immunoglobulins, preferably of human origin;
• coloring and flavouring agents;
· sulfur containing reducing agents, such as glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate
• diluting agents;
• emulsifying agents;
• hydrophilic polymers such as polyvinylpyrrolidone)
· salt-forming counter-ions such as sodium; • preservatives such as antimicrobials, anti-oxidants, chelating agents, inert gases and the like; examples are: benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide);
• metal complexes such as Zn-protein complexes;
• solvents and co-solvents (such as glycerin, propylene glycol or polyethylene glycol);
• sugars and sugar alcohols, such as trehalose, sucrose, octasulfate, mannitol, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; and polyhydric sugar alcohols;
• suspending agents;
• surfactants or wetting agents such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal; surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a polyether, preferably with a molecular weight of >3 KD; non-limiting examples for preferred detergents are Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85; non-limiting examples for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 and PEG 5000;
• stability enhancing agents such as sucrose or sorbitol;
• tonicity enhancing agents such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol;
• parenteral delivery vehicles including sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils;
• intravenous delivery vehicles including fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose).
[194] It is evident to those skilled in the art that the different constituents of the pharmaceutical composition (e.g., those listed above) can have different effects, for example, and amino acid can act as a buffer, a stabilizer and/or an antioxidant; mannitol can act as a bulking agent and/or a tonicity enhancing agent; sodium chloride can act as delivery vehicle and/or tonicity enhancing agent; etc.
[195] It is envisaged that the composition of the invention might comprise, in addition to the polypeptide of the invention defined herein, further biologically active agents, depending on the intended use of the composition. Such agents might be drugs acting on the gastrointestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art. It is also envisaged that the antibody construct of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.
[196] In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, REMINGTON'S PHARMACEUTICAL SCIENCES, supra. In certain embodiments, such compositions may influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antibody construct of the invention. In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In certain embodiments, the antibody construct of the invention compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (REMINGTON'S PHARMACEUTICAL SCIENCES, supra) in the form of a lyophilized cake or an aqueous solution. Further, in certain embodiments, the antibody construct of the invention may be formulated as a lyophilizate using appropriate excipients such as sucrose.
[197] When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody construct of the invention in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the antibody construct of the invention is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices may be used to introduce the desired antibody construct.
[198] Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving the antibody construct of the invention in sustained- or controlled-delivery / release formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions. Sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481 ), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, Biopolymers 2:547-556), poly (2-hydroxyethyl-methacrylate) (Langer et al., 1981 , J. Biomed. Mater. Res. 15:167-277 and Langer, 1982, Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer et al., 1981 , supra) or poly-D(-)-3-hydroxybutyric acid (European Patent Application Publication No. EP 133,988). Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036,676; EP 088,046 and EP 143,949.
[199] The antibody construct may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).
[200] Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
[201] Another aspect of the invention includes self-buffering antibody construct of the invention formulations, which can be used as pharmaceutical compositions, as described in international patent application WO 06138181A2 (PCT/US2006/022599). A variety of expositions are available on protein stabilization and formulation materials and methods useful in this regard, such as Arakawa et al., "Solvent interactions in pharmaceutical formulations," Pharm Res. 8(3): 285-91 (1991 ); Kendrick et al., "Physical stabilization of proteins in aqueous solution" in: RATIONAL DESIGN OF STABLE PROTEIN FORMULATIONS: THEORY AND PRACTICE, Carpenter and Manning, eds. Pharmaceutical Biotechnology. 13: 61 -84 (2002), and Randolph et al., "Surfactant-protein interactions", Pharm Biotechnol. 13: 159-75 (2002), see particularly the parts pertinent to excipients and processes of the same for self-buffering protein formulations in accordance with the current invention, especially as to protein pharmaceutical products and processes for veterinary and/or human medical uses.
[202] Salts may be used in accordance with certain embodiments of the invention to, for example, adjust the ionic strength and/or the isotonicity of a formulation and/or to improve the solubility and/or physical stability of a protein or other ingredient of a composition in accordance with the invention. As is well known, ions can stabilize the native state of proteins by binding to charged residues on the protein's surface and by shielding charged and polar groups in the protein and reducing the strength of their electrostatic interactions, attractive, and repulsive interactions. Ions also can stabilize the denatured state of a protein by binding to, in particular, the denatured peptide linkages (-CONH) of the protein. Furthermore, ionic interaction with charged and polar groups in a protein also can reduce intermolecular electrostatic interactions and, thereby, prevent or reduce protein aggregation and insolubility. [203] Ionic species differ significantly in their effects on proteins. A number of categorical rankings of ions and their effects on proteins have been developed that can be used in formulating pharmaceutical compositions in accordance with the invention. One example is the Hofmeister series, which ranks ionic and polar non-ionic solutes by their effect on the conformational stability of proteins in solution. Stabilizing solutes are referred to as "kosmotropic". Destabilizing solutes are referred to as "chaotropic". Kosmotropes commonly are used at high concentrations (e.g., >1 molar ammonium sulfate) to precipitate proteins from solution ("salting-out"). Chaotropes commonly are used to denture and/or to solubilize proteins ("salting-in"). The relative effectiveness of ions to "salt-in" and "salt-out" defines their position in the Hofmeister series. [204] Free amino acids can be used in the antibody construct of the invention formulations in accordance with various embodiments of the invention as bulking agents, stabilizers, and antioxidants, as well as other standard uses. Lysine, proline, serine, and alanine can be used for stabilizing proteins in a formulation. Glycine is useful in lyophilization to ensure correct cake structure and properties. Arginine may be useful to inhibit protein aggregation, in both liquid and lyophilized formulations. Methionine is useful as an antioxidant. [205] Polyols include sugars, e.g., mannitol, sucrose, and sorbitol and polyhydric alcohols such as, for instance, glycerol and propylene glycol, and, for purposes of discussion herein, polyethylene glycol (PEG) and related substances. Polyols are kosmotropic. They are useful stabilizing agents in both liquid and lyophilized formulations to protect proteins from physical and chemical degradation processes. Polyols also are useful for adjusting the tonicity of formulations. Among polyols useful in select embodiments of the invention is mannitol, commonly used to ensure structural stability of the cake in lyophilized formulations. It ensures structural stability to the cake. It is generally used with a lyoprotectant, e.g., sucrose. Sorbitol and sucrose are among preferred agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process. Reducing sugars (which contain free aldehyde or ketone groups), such as glucose and lactose, can glycate surface lysine and arginine residues. Therefore, they generally are not among preferred polyols for use in accordance with the invention. In addition, sugars that form such reactive species, such as sucrose, which is hydrolyzed to fructose and glucose under acidic conditions, and consequently engenders glycation, also is not among preferred polyols of the invention in this regard. PEG is useful to stabilize proteins and as a cryoprotectant and can be used in the invention in this regard.
[206] Embodiments of the antibody construct of the invention formulations further comprise surfactants. Protein molecules may be susceptible to adsorption on surfaces and to denaturation and consequent aggregation at air-liquid, solid-liquid, and liquid-liquid interfaces. These effects generally scale inversely with protein concentration. These deleterious interactions generally scale inversely with protein concentration and typically are exacerbated by physical agitation, such as that generated during the shipping and handling of a product. Surfactants routinely are used to prevent, minimize, or reduce surface adsorption. Useful surfactants in the invention in this regard include polysorbate 20, polysorbate 80, other fatty acid esters of sorbitan polyethoxylates, and poloxamer 188. Surfactants also are commonly used to control protein conformational stability. The use of surfactants in this regard is protein-specific since, any given surfactant typically will stabilize some proteins and destabilize others. [207] Polysorbates are susceptible to oxidative degradation and often, as supplied, contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. Consequently, polysorbates should be used carefully, and when used, should be employed at their lowest effective concentration. In this regard, polysorbates exemplify the general rule that excipients should be used in their lowest effective concentrations. [208] Embodiments of the antibody construct of the invention formulations further comprise one or more antioxidants. To some extent deleterious oxidation of proteins can be prevented in pharmaceutical formulations by maintaining proper levels of ambient oxygen and temperature and by avoiding exposure to light. Antioxidant excipients can be used as well to prevent oxidative degradation of proteins. Among useful antioxidants in this regard are reducing agents, oxygen/free-radical scavengers, and chelating agents. Antioxidants for use in therapeutic protein formulations in accordance with the invention preferably are water- soluble and maintain their activity throughout the shelf life of a product. EDTA is a preferred antioxidant in accordance with the invention in this regard. Antioxidants can damage proteins. For instance, reducing agents, such as glutathione in particular, can disrupt intramolecular disulfide linkages. Thus, antioxidants for use in the invention are selected to, among other things, eliminate or sufficiently reduce the possibility of themselves damaging proteins in the formulation.
[209] Formulations in accordance with the invention may include metal ions that are protein co-factors and that are necessary to form protein coordination complexes, such as zinc necessary to form certain insulin suspensions. Metal ions also can inhibit some processes that degrade proteins. However, metal ions also catalyze physical and chemical processes that degrade proteins. Magnesium ions (10-120 mM) can be used to inhibit isomerization of aspartic acid to isoaspartic acid. Ca+2 ions (up to 100 mM) can increase the stability of human deoxyribonuclease. Mg+2, Mn+2, and Zn+2, however, can destabilize rhDNase. Similarly, Ca+2 and Sr+2 can stabilize Factor VIII, it can be destabilized by Mg+2, Mn+2 and Zn+2, Cu+2 and Fe+2, and its aggregation can be increased by Α 3 ions.
[210] Embodiments of the antibody construct of the invention formulations further comprise one or more preservatives. Preservatives are necessary when developing multi-dose parenteral formulations that involve more than one extraction from the same container. Their primary function is to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product. Commonly used preservatives include benzyl alcohol, phenol and m-cresol. Although preservatives have a long history of use with small- molecule parenterals, the development of protein formulations that includes preservatives can be challenging. Preservatives almost always have a destabilizing effect (aggregation) on proteins, and this has become a major factor in limiting their use in multi-dose protein formulations. To date, most protein drugs have been formulated for single-use only. However, when multi-dose formulations are possible, they have the added advantage of enabling patient convenience, and increased marketability. A good example is that of human growth hormone (hGH) where the development of preserved formulations has led to commercialization of more convenient, multi-use injection pen presentations. At least four such pen devices containing preserved formulations of hGH are currently available on the market. Norditropin (liquid, Novo Nordisk), Nutropin AQ (liquid, Genentech) & Genotropin (lyophilized— dual chamber cartridge, Pharmacia & Upjohn) contain phenol while Somatrope (Eli Lilly) is formulated with m-cresol. Several aspects need to be considered during the formulation and development of preserved dosage forms. The effective preservative concentration in the drug product must be optimized. This requires testing a given preservative in the dosage form with concentration ranges that confer anti-microbial effectiveness without compromising protein stability.
[211] As might be expected, development of liquid formulations containing preservatives are more challenging than lyophilized formulations. Freeze-dried products can be lyophilized without the preservative and reconstituted with a preservative containing diluent at the time of use. This shortens the time for which a preservative is in contact with the protein, significantly minimizing the associated stability risks. With liquid formulations, preservative effectiveness and stability should be maintained over the entire product shelf-life (about 18 to 24 months). An important point to note is that preservative effectiveness should be demonstrated in the final formulation containing the active drug and all excipient components.
[212] The antibody constructs disclosed herein may also be formulated as immuno- liposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody construct are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al. , Proc. Natl Acad. Sci. USA, 77: 4030 (1980); US Pat. Nos. 4,485,045 and 4,544,545; and W0 97/38731. Liposomes with enhanced circulation time are disclosed in US Patent No. 5,013, 556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody construct of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81 (19) 1484 (1989).
[213] Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration.
[214] The biological activity of the pharmaceutical composition defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1 -12). "Efficacy" or "in vivo efficacy" as used herein refers to the response to therapy by the pharmaceutical composition of the invention, using e.g. standardized NCI response criteria. The success or in vivo efficacy of the therapy using a pharmaceutical composition of the invention refers to the effectiveness of the composition for its intended purpose, i.e. the ability of the composition to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells. The in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration. In addition, various disease specific clinical chemistry parameters and other established standard methods may be used. Furthermore, computer-aided tomography, X-ray, nuclear magnetic resonance tomography (e.g. for National Cancer Institute-criteria based response assessment [Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher Rl, Connors JM, Lister TA, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris NL, Armitage JO, Carter W, Hoppe R, Canellos GP. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999 Apr; 17(4): 1244]), positron-emission tomography scanning, white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.
[215] Another major challenge in the development of drugs such as the pharmaceutical composition of the invention is the predictable modulation of pharmacokinetic properties. To this end, a pharmacokinetic profile of the drug candidate, i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition, can be established. Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be influenced by each of the parameters mentioned above. It is an envisaged characteristic of the antibody constructs of the present invention provided with the specific FC modality that they comprise, for example, differences in pharmacokinetic behavior. A half- life extended targeting antibody construct according to the present invention preferably shows a surprisingly increased residence time in vivo in comparison to "canonical" non-HLE versions of said antibody construct.
[216] "Half-life" means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc. By "hepatic first-pass metabolism" is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver. "Volume of distribution" means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments. "Degree of blood serum binding" means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.
[217] Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered. "Bioavailability" means the amount of a drug in the blood compartment. "Lag time" means the time delay between the administration of the drug and its detection and measurability in blood or plasma. "Tmax" is the time after which maximal blood concentration of the drug is reached, and "Cmax" is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters. Pharmacokinetic parameters of bispecific antibody constructs exhibiting cross-species specificity, which may be determined in preclinical animal testing in non-chimpanzee primates as outlined above, are also set forth e.g. in the publication by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1 -12).
[218] In a preferred aspect of the invention the pharmaceutical composition is stable for at least four weeks at about -20°C. As apparent from the appended examples the quality of an antibody construct of the invention vs. the quality of corresponding state of the art antibody constructs may be tested using different systems. Those tests are understood to be in line with the "ICH Harmonised Tripartite Guideline: Stability Testing of Biotechnological/Biological Products Q5C and Specifications: Test procedures and Acceptance Criteria for Biotech Biotechnological/Biological Products Q6B" and, thus are elected to provide a stability- indicating profile that provides certainty that changes in the identity, purity and potency of the product are detected. It is well accepted that the term purity is a relative term. Due to the effect of glycosylation, deamidation, or other heterogeneities, the absolute purity of a biotechnological/biological product should be typically assessed by more than one method and the purity value derived is method-dependent. For the purpose of stability testing, tests for purity should focus on methods for determination of degradation products. [219] For the assessment of the quality of a pharmaceutical composition comprising an antibody construct of the invention may be analyzed e.g. by analyzing the content of soluble aggregates in a solution (HMWS per size exclusion). It is preferred that stability for at least four weeks at about -20°C is characterized by a content of less than 1.5% HMWS, preferably by less than 1 %HMWS.
[220] A preferred formulation for the antibody construct as a pharmaceutical composition may e.g. comprise the components of a formulation as described below:
• Formulation:
potassium phosphate, L-arginine hydrochloride, trehalose dihydrate, polysorbate 80 at pH 6.0
[221] Other examples for the assessment of the stability of an antibody construct of the invention in form of a pharmaceutical composition are provided in the appended examples 4- 12. In those examples embodiments of antibody constructs of the invention are tested with respect to different stress conditions in different pharmaceutical formulations and the results compared with other half-life extending (HLE) formats of bispecific T cell engaging antibody construct known from the art. In general, it is envisaged that antibody constructs provided with the specific FC modality according to the present invention are typically more stable over a broad range of stress conditions such as temperature and light stress, both compared to antibody constructs provided with different HLE formats and without any HLE format (e.g. "canonical" antibody constructs). Said temperature stability may relate both to decreased (below room temperature including freezing) and increased (above room temperature including temperatures up to or above body temperature) temperature. As the person skilled in the art will acknowledge, such improved stability with regard to stress, which is hardly avoidable in clinical practice, makes the antibody construct safer because less degradation products will occur in clinical practice. In consequence, said increased stability means increased safety.
[222] One embodiment provides the antibody construct of the invention or the antibody construct produced according to the process of the invention for use in the prevention, treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder.
[223] The formulations described herein are useful as pharmaceutical compositions in the treatment, amelioration and/or prevention of the pathological medical condition as described herein in a patient in need thereof. The term "treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.
[224] The term "amelioration" as used herein refers to any improvement of the disease state of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof. Such an improvement may also be seen as a slowing or stopping of the progression of the tumor or cancer or metastatic cancer of the patient. The term "prevention" as used herein means the avoidance of the occurrence or re-occurrence of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof.
[225] The term "disease" refers to any condition that would benefit from treatment with the antibody construct or the pharmaceutic composition described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disease in question.
[226] A "neoplasm" is an abnormal growth of tissue, usually but not always forming a mass. When also forming a mass, it is commonly referred to as a "tumor". Neoplasms or tumors or can be benign, potentially malignant (pre-cancerous), or malignant. Malignant neoplasms are commonly called cancer. They usually invade and destroy the surrounding tissue and may form metastases, i.e., they spread to other parts, tissues or organs of the body. Hence, the term "metatstatic cancer" encompasses metastases to other tissues or organs than the one of the original tumor. Lymphomas and leukemias are lymphoid neoplasms. For the purposes of the present invention, they are also encompassed by the terms "tumor" or "cancer".
[227] The term "viral disease" describes diseases, which are the result of a viral infection of a subject.
[228] The term "immunological disorder" as used herein describes in line with the common definition of this term immunological disorders such as autoimmune diseases, hypersensitivities, immune deficiencies.
[229] In one embodiment the invention provides a method for the treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder, comprising the step of administering to a subject in need thereof the antibody construct of the invention, or produced according to the process of the invention.
[230] The terms "subject in need" or those "in need of treatment" includes those already with the disorder, as well as those in which the disorder is to be prevented. The subject in need or "patient" includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.
[231] The antibody construct of the invention will generally be designed for specific routes and methods of administration, for specific dosages and frequencies of administration, for specific treatments of specific diseases, with ranges of bio-availability and persistence, among other things. The materials of the composition are preferably formulated in concentrations that are acceptable for the site of administration.
[232] Formulations and compositions thus may be designed in accordance with the invention for delivery by any suitable route of administration. In the context of the present invention, the routes of administration include, but are not limited to
· topical routes (such as epicutaneous, inhalational, nasal, opthalmic, auricular / aural, vaginal, mucosal);
• enteral routes (such as oral, gastrointestinal, sublingual, sublabial, buccal, rectal); and
• parenteral routes (such as intravenous, intraarterial, intraosseous, intramuscular, intracerebral, intracerebroventricular, epidural, intrathecal, subcutaneous, intraperitoneal, extra-amniotic, intraarticular, intracardiac, intradermal, intralesional, intrauterine, intravesical, intravitreal, transdermal, intranasal, transmucosal, intrasynovial, intraluminal).
[233] The pharmaceutical compositions and the antibody construct of this invention are particularly useful for parenteral administration, e.g., subcutaneous or intravenous delivery, for example by injection such as bolus injection, or by infusion such as continuous infusion. Pharmaceutical compositions may be administered using a medical device. Examples of medical devices for administering pharmaceutical compositions are described in U.S. Patent Nos. 4,475,196; 4,439,196; 4,447,224; 4,447, 233; 4,486,194; 4,487,603; 4,596,556; 4,790,824; 4,941 ,880; 5,064,413; 5,312,335; 5,312,335; 5,383,851 ; and 5,399,163. [234] In particular, the present invention provides for an uninterrupted administration of the suitable composition. As a non-limiting example, uninterrupted or substantially uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of therapeutic agent into the body of the patient. The pharmaceutical composition comprising the antibody construct of the invention can be administered by using said pump systems. Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused. When exchanging the cartridge in such a pump system, a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue. In such a case, the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention together make up one "uninterrupted administration" of such therapeutic agent.
[235] The continuous or uninterrupted administration of the antibody constructs of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism. Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body. Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient. The pump system can be attached to the skin of the patient for 24 hours up to several days. The pump system may be of small size with a reservoir for small volumes. As a non-limiting example, the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.
[236] The continuous administration may also be transdermal by way of a patch worn on the skin and replaced at intervals. One of skill in the art is aware of patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
[237] If the pharmaceutical composition has been lyophilized, the lyophilized material is first reconstituted in an appropriate liquid prior to administration. The lyophilized material may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization.
[238] The compositions of the present invention can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the antibody construct of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques. As set forth above, the antibody construct of the invention exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. [239] The term "effective dose" or "effective dosage" is defined as an amount sufficient to achieve or at least partially achieve the desired effect. The term "therapeutically effective dose" is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts or doses effective for this use will depend on the condition to be treated (the indication), the delivered antibody construct, the therapeutic context and objectives, the severity of the disease, prior therapy, the patient's clinical history and response to the therapeutic agent, the route of administration, the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient, and the general state of the patient's own immune system. The proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient once or over a series of administrations, and in order to obtain the optimal therapeutic effect.
[240] A typical dosage may range from about 0.1 μg kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 1 .0 μg kg up to about 20 mg/kg, optionally from 10 μg/kg up to about 10 mg/kg or from 100 μg/kg up to about 5 mg/kg.
[241] A therapeutic effective amount of an antibody construct of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency or duration of disease symptom-free periods or a prevention of impairment or disability due to the disease affliction. For treating target cell antigen-expressing tumors, a therapeutically effective amount of the antibody construct of the invention, e.g. an anti-target cell antigen/anti-CD3 antibody construct, preferably inhibits cell growth or tumor growth by at least about 20%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% relative to untreated patients. The ability of a compound to inhibit tumor growth may be evaluated in an animal model predictive of efficacy [242] The pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies such as anti-cancer therapies as needed, e.g. other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the antibody construct of the invention as defined herein or separately before or after administration of said antibody construct in timely defined intervals and doses.
[243] The term "effective and non-toxic dose" as used herein refers to a tolerable dose of an inventive antibody construct which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilization of disease without or essentially without major toxic effects. Such effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).
[244] The term "toxicity" as used herein refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.
[245] The term "safety", "in vivo safety" or "tolerability" as used herein defines the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug. "Safety", "in vivo safety" or "tolerability" can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviations to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards. Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE). Laboratory parameters which may be tested include for instance hematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like. Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events. For example, adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods. [246] The above terms are also referred to e.g. in the Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on July 16, 1997.
[247] Finally, the invention provides a kit comprising an antibody construct of the invention or produced according to the process of the invention, a pharmaceutical composition of the invention, a polynucleotide of the invention, a vector of the invention and/or a host cell of the invention.
[248] In the context of the present invention, the term "kit" means two or more components - one of which corresponding to the antibody construct, the pharmaceutical composition, the vector or the host cell of the invention - packaged together in a container, recipient or otherwise. A kit can hence be described as a set of products and/or utensils that are sufficient to achieve a certain goal, which can be marketed as a single unit.
[249] The kit may comprise one or more recipients (such as vials, ampoules, containers, syringes, bottles, bags) of any appropriate shape, size and material (preferably waterproof, e.g. plastic or glass) containing the antibody construct or the pharmaceutical composition of the present invention in an appropriate dosage for administration (see above). The kit may additionally contain directions for use (e.g. in the form of a leaflet or instruction manual), means for administering the antibody construct of the present invention such as a syringe, pump, infuser or the like, means for reconstituting the antibody construct of the invention and/or means for diluting the antibody construct of the invention.
[250] The invention also provides kits for a single-dose administration unit. The kit of the invention may also contain a first recipient comprising a dried / lyophilized antibody construct and a second recipient comprising an aqueous formulation. In certain embodiments of this invention, kits containing single-chambered and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided.
*****
[251] It must be noted that as used herein, the singular forms "a", "an", and "the", include plural references unless the context clearly indicates otherwise. Thus, for example, reference to "a reagent" includes one or more of such different reagents and reference to "the method" includes reference to equivalent steps and methods known to those of ordinary skill in the art that could be modified or substituted for the methods described herein.
[252] Unless otherwise indicated, the term "at least" preceding a series of elements is to be understood to refer to every element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present invention.
[253] The term "and/or" wherever used herein includes the meaning of "and", "or" and "all or any other combination of the elements connected by said term".
[254] The term "about" or "approximately" as used herein means within 20%, preferably within 10%, and more preferably within 5% of a given value or range. It includes, however, also the concrete number, e.g., about 20 includes 20.
[255] The term "less than" or "greater than" includes the concrete number. For example, less than 20 means less than or equal to. Similarly, more than or greater than means more than or equal to, or greater than or equal to, respectively.
[256] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. When used herein the term "comprising" can be substituted with the term "containing" or "including" or sometimes when used herein with the term "having".
[257] When used herein "consisting of" excludes any element, step, or ingredient not specified in the claim element. When used herein, "consisting essentially of" does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim.
[258] In each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms.
[259] It should be understood that this invention is not limited to the particular methodology, protocols, material, reagents, and substances, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims.
[260] All publications and patents cited throughout the text of this specification (including all patents, patent applications, scientific publications, manufacturer's specifications, instructions, etc.), whether supra or infra, are hereby incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. [261] A better understanding of the present invention and of its advantages will be obtained from the following examples, offered for illustrative purposes only. The examples are not intended to limit the scope of the present invention in any way.
[262] Example 1 : BiTE® induced CD69 Expression on T Cells in Absence of Target Cells
Isolated PBMC from healthy human donors were cultured with increasing CDH19/CD3 or MSLN/CD3 HLE bispecific antibody constructs for 48 h. The expression of the activation marker CD69 on T cells was determined by immunostaining and flow cytometry and antigen specific conjugates mAb. Target-independent T cell activation in terms of CD69 upregulation was observed for all anti- CDH 19 constructs but was most pronounced for heteroFc and crossbody molecules. Upregulation of CD69 by antiCDH19-scFc occurred at higher concentrations and the amplitude was in part lower compared to the other two Fc-based constructs.
For the anti-MSLN almost no target-independent T cell activation was observed for the scFc- containing molecule, while the heteroFc construct induced a strong upregulation of CD69 on the cell surface T cells in the absence of target cells.
Target-independent T cell activation induced by BiTE® constructs containing a single chain- Fc, or hetero-Fc fusion at the C-terminus was evaluated for the following constructs:
BiTE® constructs (serial dilutions: 0.1 pM - 2 μΜ) a. MSLN scFc; 1.14 mg/mL;
b. MSLN Hetero Fc; 1 .02 mg/
Human PBMC effector cells (3 donors; #065, #823, #836 (scFc) #401 , #415, #433 (heteroFc); #590, #595, 598, #605 (X-body)).
48 h incubation time. Determination of CD69 expression on CD4+ and CD8+ T cells with flow cytometer and antigen-specific conjugates mAb. Results see Figure 2.
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc, hetero-Fc or crossbody fusion at the C-terminus was evaluated for the following constructs:
BiTE® antibody constructs (serial dilutions: 0.1 pM - 2 μΜ) c. CDH 19 scFc; 245.3 g/mL (
d. CDH-19 Hetero Fc; 1 mg/mL e. CDH 19 Xbody; 6.3 mg/mL
Human PBMC effector cells (3 to 4 donors; #386, #392, #401 (scFc) #282, #284, #287 (heteroFc)).
48 h incubation time. Determination of CD69 expression on CD4+ and CD8+ T cells with flow cytometer and antigen-specific conjugates mAb. Results see Figure 3.
Target-independent T cell activation in terms of CD69 upregulation was observed for several bispecific constructs tested in these assays. The CD69 upregulation was in general more pronounced for the canonical BiTE® antibody constructs, heteroFc and crossbody molecules when compared to the respective scFc constructs. Upregulation of CD69 by the scFc constructs occurred in general at slightly higher concentrations and the amplitude was in part lower compared to the other two Fc-based constructs.
For the anti-CDH19 scFc construct no target-independent T cell activation was observed, while the heteroFc and X-Body constructs induced a strong upregulation of CD69 on the cell surface of T cells in the absence of target cells.
In addition, no target cell-independent upregulation of CD69 was observed in assays using anti-CD33 and anti-Flt-3 constructs. Due to the expression of the target on cells of the myeloid lineage, these cells had been removed prior to assay set up. These data indicate that an interaction of the Fc regions of the bispecific constructs with FcyR-expressing cells might be responsible for the target-independent induction of CD69 on T cells.
The strong upregulation of CD69 on T cells by the anti-CD70-scFc construct in the absence of a tumor cell lines is due to the expression of CD70 on T cells.
Materials and methods
1. CD19
Target-independent T cell activation induced by a BiTE® antibody constructs containing a single chain-Fc for the following construct:
1 . BiTE® antibody construct (serial dilutions: 1.3 pM - 20 nM)
1 . CD19-scFc
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69. 2. CD20
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc, hetero-Fc or crossbody fusion at the C-terminus was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . CD20-hetFc (hetero-Fc)
2. CD20-scFc
3. CD20-X-Body (CD20 Crossbody)
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69.
3. CD33
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc, hetero-Fc or crossbody fusion at the C-terminus was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . CD33-canonical
2. CD33-scFc
3. CD33-hetFc
4. CD33-X-Body
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69.
4. CDH19
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc, hetero-Fc or crossbody fusion at the C-terminus was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . CDH19-scFc
2. CDH19-hetFc
3. CDH19-X-Body
2. Human PBMC effector cells (3 donors) 3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69. 5. MSLN
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc, hetero-Fc or crossbody fusion at the C-terminus was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . MSLN-scFc
2. MSLN-hetFc
3. MSLN-X-Body
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69.
6. EGFRvlll
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc or a hetero-Fc was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . EGFRvlll-canonical
2. EGFRvlll-scFc
3. EGFRvlll-hetFc
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69. 7. DLL3
Target-independent T cell activation induced by BiTE® antibody constructs containing a single chain-Fc or a hetero-Fc was evaluated for the following constructs:
1 . BiTE® antibody constructs (serial dilutions: 1.3 pM - 20 nM)
1 . DLL3-canonical
2. DLL3-scFc
3. DLL3-hetFc
2. Human PBMC effector cells (3 donors) 3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69. 8. CD70
Target-independent T cell activation induced by a BiTE® antibody constructs containing a single chain-Fc was evaluated for the following construct:
1 . BiTE® antibody construct (serial dilutions: 1.3 pM - 20 nM)
1 . CD70-scFc
2. Human PBMC effector cells (3 donors)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69. 9. FLT3
Target-independent T cell activation induced by a BiTE® antibody constructs containing a single chain-Fc was evaluated for the following construct:
1 . BiTE® antibody construct (serial dilutions: 1.3 pM - 20 nM)
1 . FLT3-scFc
2. Human PBMC effector cells (3 donors; CD147CD33+ cell depelted)
3. 48 h incubation time
4. Flow cytometric analysis of CD69 expression on CD4+ and CD8+ T cells using a PE-Cy7 conjugated mAb specific for CD69.
[263] Example 2:
Purified BiTE® antibody constructs were coated on a Maxisorb Plate in decreasing concentration (1 OOnM, 1 :4 dilutions). After 3x washing with PBS-T and blocking with PBS/3% (w/v) BSA (60 min, 37°C), pooled human plasma was incubated for 60 min, 80 rpm at room temperature. After 3x washing a mouse monoclonal antibody specific for human C1 q subunit A (CC1 q) was added (Thermo MA1 -83963, 1 :500) for 60 min, 80 rpm, room temperature, after described washing steps a goat anti mouse Fc-POX mAb (1 :5,000) was incubated for 60 min, 80 rpm, room temperature. After additional washing, TMB substrate was incubated and stopped after colorimetric reaction by addition of H2S04. The absorption was determined at 450 nm. Result: As shown in figure 4 at high concentrations, the BiTE® hetero Fc antibody construct
(squares) showed higher binding signals for human CC1 q compared to a BiTE® single chain Fc antibody construct (triangle). As a negative control a canonical BiTE® (circle) was used, which showed no significant CC1 q binding.
[264] Example 3: Pharmacokinetics of BiTE® antibody constructs fused to Half-life extension modalities
Various target binding BiTE® antibody constructs were fused to four different half-life extending moieties. All different HLE-variants available per BiTE® antibody construct were tested in the cynomolgus monkey in the context of pharmacokinetic (PK) studies They are subsequently named as BiTE®-scFc, BiTE®-hetFc, BiTE®-HALB, BiTE®-Xbody as well as canonical BiTE®, according to the half-life extension modality attached to the target binder. The corresponding nomenclature of these molecules is briefly summarized in table 4 below.
Table 4 Compound nomenclature of single dosed Bt"TE*antibody constructs
Figure imgf000083_0001
Compound 5c DLL3-HALB
Compound 6a EGFRvlllcc-scFc
Compound 6b EGFRvlllcc-HALB
Compound 7 FLT3-scFc
Compound 8 CD70-scFc
Compound 9 CD19cc-scFc
The BiTE®-HLE antibody constructs were administered as intravenous bolus (compounds 1 b, 2a-d, 3a/b, 4a/b, 5a-5c, 7-9) and intravenous infusion (compounds 1 a, 1 c, 3c/d, 6a/b, each as a 30 min infusion). The BiTE® antibody constructs were admininstered in a dose- linear, pharmacokinetic relevant range of 3 μg kg to 6 μg kg, 12 μg kg and 15 μg kg, respectively.
For reasons of comparability the serum concentrations shown are dose-normalized and molecular weight-normalized (described in nmol).
For each of the above named compounds a group of at least two to three animals was used. Blood samples were collected and serum was prepared for determination of serum concentrations. Serum BiTE® antibody construct levels were measured using an immunoassay. The assay is performed by capturing the BiTE® antibody construct via its target moiety, while an antibody directed against the CD3-binding part of the construct was used for detection. The serum concentration-time profiles were used to determine PK parameters.
The appropriate study set-up was adjusted to the characteristics of the BiTE® antibody constructs. Either a 1 -week- or a 2-weeks duration. Blood sampling time points could slightly vary and are listed for both set-ups in Table 5 below. Table 5 Blood sampling time points during PK studies. Time points could vary between single studies. Time points labelled with an asterisk were mandatory and common for all studies
Figure imgf000084_0001
1 1
2 2
4* 4*
8 8
16 16
24* 24*
48* 48*
72* 72*
96 96
120 120
144 144
168* 168*
216
240
264
336*
pharmacokinetics of sixteen BiTE®-HLE antibody constructs are shown exemplarily. Each compound group stands for the same BiTE® antibody construct fused to either a scFc-, a hetFc, a HSA (human albumin) or a Crossbody-Fc format. For all proteins serum levels were quantifiable for all time points in all animals after BiTE®-HLE antibody construct administration. The PK profiles describe a biphasic, exponential decline after each of the single test item administrations (Figure 5). The pharmacokinetic parameters were determined using standard non-compartmental analysis (NCA) methods. Using non-compartmental analysis, the following PK parameters were estimated: AUCinf (Area under the serum concentration- time curve), Vss (volume of distribution at steady state), CL (systemic clearance) and terminal t1/2 (terminal half-life).
The PK parameter for each tested compound are summarized as mean of n=2 and n=3, respectively in Table 6 below.
Table 6 Pharmacokinetic parameter of various HLE variants from different BiTE®- target binders in cynomolgus monkeys.
AUCinf
terminal t|/2 CI Vss test item [normalized to 15 Mg/kg]
[h] [mL/h/kg] [mL/kg]
[h*ng/ml_]
Compound 1 a 167 9981 1 .4 256
Compound 1 b 95 6159 2.4 235
Compound 1 c 47 4498 3.3 161 AUCinf
terminal t|/2 CI Vss test item [normalized to 15 Mg/kg]
[h] [mL/h/kg] [mL/kg]
[h*ng/ml_]
Compound 2a 213 41 173 0.4 89
Compound 2b 1 16 18745 0.8 78
Compound 2c 77 28928 1 .0 65
Compound 2d 77 9825 1 .5 1 12
Compound 3a 61 4109 3.7 129
Compound 3b 59 4561 3.3 78
Compound 3c 51 2769 6.8 299
Compound 3d 3 510 30.0 653
Compound 4a 97 7816 1 .9 181
Compound 4b 62 3606 4.2 292
Compound 5a 234 30954 0.5 144
Compound 5b 173 18299 0.8 166
Compound 5c 142 26418 0.6 103
Compound 6a 97 15854 1 .0 103
Compound 6b 48 77271 1 .0 64
Compound 7 64 1971 7.6 395
Compound 8 122 17093 0.9 1 19
Compound 9 210 6729 2.2 540
Overall, the AUCinf for the different BiTE® target binders fused to either a scFc-, a hetFc, a HSA- and a crossbody HLE-modality, respectively, ranged between 1971 h*ng/ml_ and 77271 h*ng/ml_, depending on the BiTE® target context. All analyzed HLE fusions achieved systemic clearance values of 0.4 to 7.6 mL/h/kg. The corresponding volumes of distribution ranged between 64 and 540 mL/kg. Compound 3d, the canonical, non-half-life extended compound 3 BiTE® target binder, is included as a reference. Non-half-life extended BiTE® antibody constructs show high clearances, low serum exposures and as a consequence a short terminal half-life. A comparison of terminal-half-lifes by modality is summarized in table 7.
Tab iparison of terminal-half-lifes by modality investigated in cynomolgus nkeys.
Figure imgf000087_0001
Investigating up to four different half-life-extending (HLE) moieties per targeting BiTE® it becomes clear that the -scFc moiety shows an increase of t1/2 compared to corresponding other half-life extension moiety after single low dose administration at 6, 10, 12 and 15 μg kg (see Figure 6).
[265] Example 4:
Preformulated drug substances containing purified MSLN-hALB, MSLN-hFc, and MSLN-scFc respectively were buffer exchanged via ultrafiltration / diafiltration using membranes with a molecular weight cut-off (MWCO) of 10 kDa. Final formulation was achieved by adding concentrated stock solutions. Resulting formulations for each construct are listed in Table 8.
The target protein concentration was 1 .0 mg/mL. Formulated MSLN constructs were filled to
1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20, 5, 25 and 37°C. One vial of each version was subjected to five freeze and thaw (F/T) cycles. Target freezing temperature was -29°C.
Target thawing temperature was 2°C. The ramp rate was approximately 0.3 K/min.
Visual particles were assessed in accordance to the method described by Ph Eur 2.9.20 by trained operators. Visual particle counts per vial are depicted in Table 8. The number of visual (larger than 125 μηι) proteinaceous particles was higher for MSLN-hFc if compared to both MSLN-hALB and MSLN-scFc.
Table 8: Number of visual proteinaceous particles per vial for stressed and unstressed (TO) samples containing different half-life extended anti-Mesothelin (MSLN) BiTE® constructs.
Figure imgf000088_0002
The samples described above were also analyzed by size exclusion ultra-high performance chromatography (SE-UPLC) in order to quantify the percentaged content of high molecular weight species (HMWS). SE-UPLC was performed on an AcquityH-Class UPLC system (Waters) using an Acquity UPLC BEH200 SEC 150 mm column (Waters). Column temperature was set to 25°C. Separation of size variants was achieved by applying an isocratic method with a flow rate of 0.4 mL/min. The mobile phase was composed of 100 mM sodium phosphate, 250 mM NaCI at pH 6.8. The run time totals 6.0 minutes. Samples were held at 8°C within the autosampler until analysis. A total amount of 3 μg protein was injected. In order to avoid carry over an intermediate injection with 40% acetonitrile was performed after each sample. Detection was based on fluorescence emission (excitation at 280 nm, emission at 325 nm). Peak integration was performed using Empower® software. Relative area under the curve of HMWS was reported (Table 9).
Fc based constructs exhibited lower HMWS contents in the formulation variant G40MSuT than in K60RTrT independent on the stress condition. It became evident that MSLN-scFc contained less HMWS than MSLN-hFc in both G40MSuT as well as K60RTrT preparations. MSLN-scFc in its preferred formulation (G40MSuT) was less prone to HMWS formation than MSLN-hALB formulated in K60RTrT. In previous experiments this buffer showed improved stabilizing potential for hALB based constructs. Table 9: Overview on HMWS contents in stressed and unstressed (TO) MSLN-hALB, -hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000088_0001
TO 1 .8 6.7 3.3 2.5 1 .3
5 F/T cycles 2.0 7.2 4.1 3.0 1 .5
2w 5°C n.t. n.t. n.t. 2.9 1 .1
2w 25°C n.t. 6.6 2.7 2.4 0.5
2w 37°C 2.6 6.3 2.1 2.7 0.3
4w -20°C 5.9 8.7 1 .6 6.6 0.3
4w 5°C 2.0 8.2 2.8 3.6 0.6
4w 25°C 2.2 6.8 2.6 2.7 0.4
4w 37°C 3.5 7.6 1 .9 4.3 0.3 n.t. = not tested
The abundance of chemical modifications upon heat stress (incubation at 37°C) was monitored by peptide mapping. Protein samples were enzymatically digested and the resulting peptides were separated using reversed phase chromatography. The column eluate was directly injected into the ion source of a mass spectrometer for identification and quantitation of the peptides.
In order to achieve maximum coverage, two separate enzyme digests were performed: once with trypsin and once with chymotrypsin. In each case, the proteins were denatured with guanidinum chloride and then reduced with dithiothreitol (DTT). After incubation in DTT, free cysteine residues were alkylated by the addition of iodoacetic acid. Samples were then buffer exchanged into 50 mM Tris pH 7.8 for digestion. Trypsin and chymotrypsin were added to separate reaction tubes at a ratio of 1 :10 (sample:enzyme) each. Samples were digested for 30 min at 37°C and the reaction was quenched by adding trifluoroacetic acid.
A load of 5 μg of each digest was separately injected onto a Zorbax SB-C18 (Agilent #859700-902) reversed phase column equilibrated in 0.1 % (V/V) formic acid (FA). A 156 minutes gradient of up to 90% acetonitrile containing 0.1 % FA was used to elute the peptides directly into the electrospray ion source of a Q-Exactive Plus mass spectrometer (Thermo Scientific). Data was collected in data dependent mode using a top 12 method in which a full scan (resolution 70 000; scan range 200-2000 m/z) was followed by high energy collision dissociation (HCD) of the 12 most abundant ions (resolution 17 500).
Peptides were identified based on accurate mass and tandem mass spectrum using in-house software. Identifications were manually verified. Relative quantities of modified and unmodified peptides were calculated based on ion abundance using Pinpoint software (Thermo Scientific). Percentages of chemical modifications of the complement determining regions (CDRs) and of the half-life extending portion (either hALB or Fc) detected in MSLN-hALB, -hFc, and -scFc preparations are given by Table 10. When comparing similar formulation conditions, it became obvious that overall, chemical modifications were least abundant in scFc constructs. Table 10: Overview on chemical modifications in stressed and unstressed (TO) MSLN- hALB, -hFc, and -scFc preparations determined via peptide mapping
Construct hALB hFc scFc
Formulation K60RTrT K60RTrT G40MSuT K60RTrT G40MSuT
%N101 deamidation (CDR)
TO 0.1 0.2 0.2 0.2 0.2
2w 37°C 0.7 0.8 3.0 0.7 3.2
4w 37°C 1 .3 n.t. 8.5 n.t. 6.4
%N 162 deamidation (CDR)
TO 3.0 1 .7 1 .9 2.3 2.5
2w 37°C 15.9 1 1.6 2.7 15.0 3.3
4w 37°C 26.8 n.t. 3.7 n.t. 4.1
%M279 oxic ation (CDR)
TO 0.6 1 .4 1 .6 0.6 1 .0
2w 37°C 1 .2 0.8 0.8 0.6 1 .0
4w 37°C 0.9 n.t. 0.8 n.t. 0.6
%N348 deam dation (CDR)
TO 0.5 3.2 3.3 0.5 0.9
2w 37°C 20.5 21.6 1 .9 9.4 1 .3
4w 37°C 22.8 n.t. 2.0 n.t. 2.9
%N351 deamidation (CDR)
TO 0.2 2.9 2.6 0.5 1 .0
2w 37°C 6.6 12.7 0.9 3.8 0.4
4w 37°C 8.7 n.t. 0.8 n.t. 0.8
%M530 ox dation (Fc)
TO n.a. 3.9 4.1 2.6 3.2
2w 37°C n.a. 9.0 3.1 4.0 4.3
4w 37°C n.a. n.t. 3.4 n.t. 3.5
% N603 deamidation (Fc)
TO n.a. 1 .3 1 .9 1 .3 1 .4
2w 37°C n.a. 7.9 4.6 7.0 5.6
4w 37°C n.a. n.t. 6.9 n.t. 8.1
%M706 ox dation (Fc)
TO n.a. 3.2 3.6 1 .5 2.1
2w 37°C n.a. 6.0 2.8 2.1 2.5
4w 37°C n.a. n.t. 2.6 n.t. 2.0
%M587 oxidation (hALB)
TO 1 .0 n.a. n.a. n.a. n.a.
2w 37°C 2.2 n.a. n.a. n.a. n.a.
4w 37°C 2.3 n.a. n.a. n.a. n.a.
%M623 oxidation (hALB)
TO 1 .9 n.a. n.a. n.a. n.a.
2w 37°C 2.4 n.a. n.a. n.a. n.a.
4w 37°C 3.0 n.a. n.a. n.a. n.a.
%M798 oxidation (hALB)
TO 1 .4 n.a. n.a. n.a. n.a.
2w 37°C 3.3 n.a. n.a. n.a. n.a.
4w 37°C 3.5 n.a. n.a. n.a. n.a.
%M829 oxidation (hALB)
TO 8.9 n.a. n.a. n.a. n.a.
2w 37°C 42.9 n.a. n.a. n.a. n.a.
4w 37°C 44.1 n.a. n.a. n.a. n.a. n.a. = not applicable; n.t. = not tested [266] Example 5:
MSLN-hALB, -hFc, -scFc formulated as described under Example 4 were subjected to a pH jump experiment. The concentration of the starting materials was 1 .0 mg/mL. A volume of 0.38 mL of each starting material was filled in a glass vial. After preconditioning at 37°C the solutions were spiked with 20 fold phosphate buffered saline (PBS) which was composed of 0.090 M potassium phosphate, 0.480 M sodium phosphate (both dibasic), 0.052 M potassium chloride and 2.76 M NaCI. The spiked samples were incubated at 37°C for two weeks. After incubation they were analyzed by SE-UPLC using the method described under Example 4 and the percentaged content of HMWS was reported (Table 1 1 ). When comparing all constructs formulated in K60RTrT the HMWS content increased in the following order: hALB < scFc < hFc. MSLN-scFc also showed a lower HMWS content than MSLN-hFc when formulated in G40MSuT.
Table 11 : Overview on HMWS contents in stressed (pH jump + 2w 37°C) MSLN-hALB, - hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000091_0001
[267] Example 6:
MSLN-hALB, -hFc, and -scFc formulated as described under Example 4 were subjected to agitation stress. The concentration of the starting materials was 1 .0 mg/mL. A volume of 0.5 mL of each solution was filtered through an appropriate 0.22 μηη filter and filled into 3cc glass vials. The vials were placed in a plastic box ensuring that the vials were not displaced within the box during agitation. The box was placed onto an orbital shaker. The samples were agitated at 500 rpm for 65 hours. Visual particles were assessed in accordance to the method described by Ph Eur 2.9.20. The method was conducted by trained operators. Visual particle counts per vial are depicted in Table 12. Visible proteinaceous particles were only observed in MSLN-hFc preparations.
Table 12: Number of visual proteinaceous particles per vial in agitated samples
Figure imgf000091_0002
Above samples were also analyzed by size exclusion ultra-high performance chromatography (SE-UPLC) in order to quantify the percentaged content of high molecular weight species (HMWS). The same method as described in Example 4 was applied. The HMWS contents of agitated samples are outlined by Table 13. The formation of HMWS was most pronounced in MSLN-hFc when comparing K60RTrT preparations.. HMWS were more abundant in MSLN-hFc than in MLSN-scFc. Table 13: Overview on HMWS contents in stressed (pH jump + 2w 37°C) MSLN-hALB, - hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000092_0001
[268] Example 7:
MSLN-hALB, -hFc, and -scFc formulated as described under Example 4 were exposed to visible and UVA light (photo stress). Protein concentration totaled 1 mg/mL in all preparations. Protein solutions were filtered through a filter with 0.22 μηη pore size and filled to 0.5 mL in type I glass vials. MSLN-hALB and -scFc were subjected to two different tests including 0.2 MLux visible light / 25 W*h/m2 UVA light and 1 .2MLux visible light / 173 W*h/m2 respectively. MSLN-hFc was subjected to two different tests including 0.2 MLux visible light without UVA light and 1 .2 MLux visible light / 30 W*h/m2 UVA light respectively. Chamber temperatures were adjusted to 25°C. After light exposure samples were analyzed by visible inspection (Table 14), SE-UPLC (Table 15) and peptide map (Table 16). Aforementioned methods were performed according to the procedures described under Example 4. Although MSLN-hALB, and -scFc were exposed to higher doses of UVA light, no visible proteinaceous particles was observed whereas MSLN-hFc samples exhibited one visible proteinaceous particle per vial for both tests irrespective of the formulation.
Table 14: Overview on the number of visible proteinaceous particles per vial in MSLN- hALB, -hFc, and -scFc preparations determined after light exposure
1) 0.2 MLux visible light / 25 W*h/m2 UVA light, 2) 0.2 MLux visible light without UVA light, 3) 1 .2 MLux visible light / 173 W*h/m2, 4) 1.2 MLux visible light / 30 W*h/m2
HMWS increased in the following order MSLN-hALB < -scFc < -hFc when the protein was formulated in K60RTrT. HMWS could be reduced for Fc based constructs when formulated in G40MSuT. However HMWS were again less pronounced for MSLN-scFc. MSLN-hFc revealed to be especially sensitive towards UVA light exposure.
Table 15: Overview on HMWS contents in MSLN-hALB, -hFc, and -scFc preparations determined after light exposure via SE-UPLC
Figure imgf000093_0001
1) 0.2 MLux visible light / 25 W*h/m2 UVA light, 2) 0.2 MLux visible light without UVA light, 3) 1 .2 MLux visible light / 173 W*h/m2, 4) 1.2 MLux visible light / 30 W*h/m2
Percentages of chemical modifications of the complement determining regions (CDRs) and of the half-life extending portion (either hALB or Fc) detected in MSLN-hALB, -hFc, and -scFc preparations are given by Table 16. When comparing similar formulation conditions, it became obvious that overall, chemical modifications were least abundant in scFc constructs.
Table 16: Overview on chemical modifications in MSLN-hALB, -hFc, and -scFc preparations determined after light exposure via peptide mapping
Figure imgf000093_0002
Construct hALB hFc scFc
Formulation K60RTYT K60RTYT G40MSuT K60RTYT G40MSuT
Test 1 n.a. n.t. 6.5" n.t. 1 .81'
Test 2 n.a. n.t. 17.84) n.t. 2.7a)
%M587 oxidation (hALB)
TO 1 .0 n.a. n.a. n.a. n.a.
Test 1 1 .5 n.a. n.a. n.a. n.a.
Test 2 2.4 n.a. n.a. n.a. n.a.
%M623 oxidation (hALB)
TO 1 .9 n.a. n.a. n.a. n.a.
Test 1 4.0 n.a. n.a. n.a. n.a.
Test 2 4.1 n.a. n.a. n.a. n.a.
%M798 oxidation (hALB)
TO 1 .4 n.a. n.a. n.a. n.a.
Test 1 2.1 n.a. n.a. n.a. n.a.
Test 2 3.1 n.a. n.a. n.a. n.a.
%M829 oxidation (hALB)
TO 8.9 n.a. n.a. n.a. n.a.
Test 1 31 .0 n.a. n.a. n.a. n.a.
Test 2 25.2 n.a. n.a. n.a. n.a.
n.a. = not applicable; n.t. = not tested
[269] Example 8:
MSLN-hALB was formulated in K60RTrT and MSLN-scFc was formulated in G40MSuT according to the procedure described in Example 4. Protein concentrations totaled 0.05 mg/mL. Glass (borosilicate, type I , 13 mm 3cc vial from West, Art. No. 68000375) and polypropylene test containers (2 mL with O-ring, e.g. from Sarstedt, Art No. 72.694.005) are filled with 500 μί of the test solution. The test solution was left for five minutes in the first test container. Then a 150 μί aliquot was sampled for analysis. The remaining test solution (350iL) was transferred sequentially from one test container to the next (five containers in total). In each vial, the solution was left for five minutes before the next transfer. The same pipette tip was used for each transfer step. The same test was performed using 30 mL polycarbonate bottles (Nalgene, PCS-000295 with closure, PP/20-415/ZTPE). For this container type the first container was filled with 5 mL. After a 150 μί aliquot was sampled, the residual volume was transferred from one test container to the next (according to the procedure described above). Samples pulled from container #1 and #5 were analyzed by SE-UPLC (method as described under Example 4). In addition protein detection was carried out with a PDA detector (280 nm) in order to determine protein concentrations. Percentaged protein recovery from each test container is given by Table 17. It was shown that protein recovery was more pronounced for MSLN-scFc than for MSLN-hALB irrespective of the container type. Table 17: Protein recovery from different container types for MSLN-hALB, and -scFc determined by SE-UPLC
Figure imgf000095_0001
[270] Example 9:
MSLN-hALB was formulated in K60RTrT and MSLN-scFc was formulated in K60RTrT and G40MSuT according to the procedure described in Example 4. The protein concentration totaled 1.0 mg/mL. 1950 μί of each test solution was spiked with 50 μί of a 1000 ppm silicon standard solution (Specpure from AlfaAesar, Art. No. 38717) resulting in a 25 ppm spike. An unspiked test solution served as control sample. The spiked test solution as well as the control sample were filled into 3cc type I glass vials and were incubated at 37°C for 24 hours. All samples were analyzed by SE-UPLC according to the method described in Example 4 in order to quantify the amount of HMWS (Table 18). When formulated in K60RTrT, MSLN- hALB and -scFc showed similar increases in HMWS upon silicon spiking.
Table 18: Overview on HMWS contents in MSLN-hALB, and -scFc preparations determined via SE-UPLC after spiking with 25 ppm silicon
Figure imgf000095_0002
[271] Example 10:
Preformulated drug substances containing purified CD33cc-hALB, CD33cc-hFc, and CD33cc-scFc respectively were buffer exchanged via ultrafiltration / diafiltration using membranes with a molecular weight cut-off (MWCO) of 10 kDa. Final formulation was achieved by adding concentrated stock solutions. Resulting formulations for each construct are listed in Table 19. The target protein concentration was 1 .0 mg/mL. Formulated CD33cc- constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20, 5, 25 and 37°C. One vial of each version was subjected to five freeze and thaw (F/T) cycles. Target freezing temperature was -29°C. Target thawing temperature was 2°C. The ramp rate was approximately 0.3 K/min. The samples described above were also analyzed by size exclusion ultra-high performance chromatography (SE-UPLC) in order to quantify the percentage content of high molecular weight species (HMWS). SE-UPLC was performed according to the method described under Example 4. When formulated in K60RTrT, HMWS increased in the following order in unstressed samples: scFc < hALB < hFc. The least pronounced increase in HMWS upon freeze thaw stress was observed for the scFc- construct. The hFc-construct revealed to be most prone to HMWS formation at -20°C. HMWS contents increased after four weeks storage at 5°C. The HMWS formation under these conditions was more pronounced for Fc based constructs than for albumin based constructs. In K60RTrT no significant increases in HMWS were observed at elevated storage temperatures (25 and 37°C). When formulated in G40MSuT, all constructs revealed similar HMWS contents in unstressed samples. The increase during freeze thaw was more distinct for Fc based constructs if compared to the albumin based construct. In G40MSuT, the hFc- construct was least stable during storage at -20°C. Considerable increases in HMWS during liquid storage were only observed for the hALB-construct.
Table 19: Overview on HMWS contents in stressed and unstressed (TO) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000096_0001
n.t. = not tested
The abundance of chemical modifications upon heat stress (incubation at 37°C) was monitored by peptide mapping according to the method described in Example 4. Percentages of chemical modifications of the complement determining regions (CDRs) detected in CD33cc-hALB, -hFc, and -scFc preparations are given by Table 20. Overall, CD33cc-scFc exhibited the lowest amount of chemical modifications in the CDRs. It became evident that especially deamidations of the CDRs were least pronounced for the scFc construct.
Table 20: Overview on chemical modifications in stressed and unstressed (TO) CD33cc-hALB, -hFc, and -scFc preparations determined via peptide mapping
Construct hALB hFc scFc Formulation K60RTrT G40MSuT K6ORT1 G40MSuT K6ORT1 G40MSuT
%M3A [ oxidation (CDR)
TO 1 .0 1 .8 1 .0 1 .4 1 .7 1 .9
2w 37°C 0.9 1 .3 0.9 1 .1 1 .0 1 .7
4w 37°C n.t. n.t. n.t. 1 .6 n.t. 1 .8
%D103 isomerization (CDR)
TO 0.8 0.8 0.8 0.8 0.6 0.6
2w 37°C 4.0 4.6 4.5 4.4 5.8 7.3
4w 37°C n.t. n.t. n.t. 8.0 n.t. 12.4
%M29 0 oxidation (CDR)
TO 0.7 1 .4 0.8 1 1 .3 1 .4
2w 37°C 0.7 1 .0 0.8 0.8 0.8 1 .3
4w 37°C n.t. n.t. n.t. 1 .2 n.t. 1 .6
%N359 deamidation (CDR)
TO 5.8 1 1 .4 5.3 6.3 0.4 0.5
2w 37°C 19.3 5.8 1 1 .2 2.8 7.0 0.9
4w 37°C n.t. n.t. n.t. 2.9 n.t. 2.2
%N362 deamidation (CDR)
TO 5.4 8.7 3.9 4.0 0.2 0.3
2w 37°C 13.5 3.6 6.7 1 .2 3.1 0.3
4w 37°C n.t. n.t. n.t. 1 .4 n.t. 0.7 n.a. = not applicable; n.t. = not tested
[272] Example 11 :
CD33cc-hALB, -hFc, and -scFC formulated as described under Example 4 were subjected to a pH jump experiment. The concentration of the starting materials was 1 .0 mg/mL. A volume of 0.38 mL of each starting material was filled in a glass vial. After preconditioning at 37°C the solutions were spiked with 20 fold phosphate buffered saline (PBS) which was composed of 0.090 M potassium phosphate, 0.480 M sodium phosphate (both dibasic), 0.052 M potassium chloride and 2.76 M NaCI. The spiked samples were incubated at 37°C for two weeks. After incubation they were analyzed by SE-UPLC using the method described under Example 4 and the percentaged content of HMWS was reported (Table 21 ). CD33cc-scFc constructs showed the lowest HMWS content after pH jump if compared to CD33cc-hALB and -hFc irrespective of the formulation.
Table 21 : Overview on HMWS contents in stressed (pH jump + 2w 37°C) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000097_0001
[273] Example 12: CD33cc-hALB, -hFc, and -scFc formulated as described under Example 4 were subjected to agitation stress. The concentration of the starting materials was 1 .0 mg/mL. A volume of 0.5 mL of each solution was filter through an appropriate 0.22 μηη filter and filled into 3cc type I glass vials. The vials were placed in a plastic box ensuring that the vials were not displaced within the box during agitation. The box was placed onto an orbital shaker. The samples were agitated at 500 rpm for 65 hours. Samples were analyzed by SE-UPLC in order to quantify the percentaged content of high molecular weight species (HMWS). The same method as described in Example 4 was applied. The HMWS contents of agitated samples are outlined by Table 22. The formation of HMWS was least pronounced for CD33cc-scFc in either formulation.
Table 22: Overview on HMWS contents in stressed (pH jump + 2w 37°C) CD33cc-hALB, -hFc, and -scFc preparations determined via SE-UPLC
Figure imgf000098_0002
[274] Example 13:
CD33cc-hALB, -hFc, and -scFc formulated as described under Example 4 were exposed to visible and UVA light (photo stress). Protein concentration totaled 1 mg/mL in all preparations. Protein solutions were filtered through a filter with 0.22 μηη pore size and filled to 0.5 mL in type I glass vials. CD33cc-hALB and -scFc were subjected to two different tests including 0.2 MLux visible light / 25 W*h/m2 UVA light and 1 .2MLux visible light / 173 W*h/m2 respectively. CD33cc-hFc was subjected to two different tests including 0.2 MLux visible light without UVA light and 1 .2 MLux visible light / 30 W*h/m2 UVA light respectively. Chamber temperatures were adjusted to 25°C. After light exposure samples were analyzed by SE- UPLC (Table 23) and peptide map (Table 24). Aforementioned methods were performed according to the procedures under Example 4. Despite of the higher UVA light intensity applied to CD33cc-scFc, this construct was stable against HMWS formation. In contrast, CD33cc-hFc and CD33cc-hALB showed an increase in HMWS upon test 2 conditions.
Table 23: Overview on HMWS contents in CD33cc-hALB, -hFc, and -scFc preparations determined after light exposure via SE-UPLC
Figure imgf000098_0001
Test 2 4.63) 1 .13) 6.04) 0.74) 1 .53) 0.33) 1 ) 0.2 MLux visible light / 25 W*h/m2 UVA light, " 0.2 MLux visible light without UVA light, 3) 1 .2 MLux visible light / 173 W*h/m2, 4) 1 .2 MLux visible light / 30 W*h/m2
Overall chemical modifications upon light exposure were least pronounced for CD33cc-scFc. Especially deamidations of the CDRs were formed to a higher extent in CD3cc-hALB and CD33cc-hFc. When comparing Fc based constructs it was revealed that CD33cc-scFc was less prone to chemical modifications of the Fc portion although the scFc construct was exposed to higher UVA light doses than the hFc-construct. Table 24 also lists the most abundant chemical modifications of the albumin portion in CD33cc-hALB demonstrating that the half-life extending portion of this construct was chemically more degraded than the Fc portions of CD33cc-hFc and -scFc.
Table 24: Overview on chemical modifications in CD33cc-hALB, -hFc, and -scFc preparations determined after light exposure via peptide mapping
Figure imgf000099_0001
Construct hALB hFc scFc
Formulation K60RTYT G40MSuT K60RTYT G40MSuT K60RTYT G40MSuT
%N67C deamidatior (Fc)
TO n.a. n.a. 0.3 0.3 0.0 0.0
Test 1 n.a. n.a. 0.5" 0.6" 0.51' 0.61'
Test 2 n.a. n.a. 0.54) 0.64) 0.5a) 1 .53)
%M717 oxidation Fc)
TO n.a. n.a. 2.1 2.4 2.5 2.8
Test 1 n.a. n.a. 4.1 ) 7.3" 2.21' 2.31'
Test 2 n.a. n.a. 13.74) 13.54) 2.83) 3.83)
%M59{ 3 oxidation (hALB)
TO 1 .0 n.t. n.a. n.a. n.a. n.a.
Test 1 2.31' n.t. n.a. n.a. n.a. n.a.
Test 2 6.43) n.t. n.a. n.a. n.a. n.a.
%M809 oxidation (h ALB)
TO 1 .8 n.t. n.a. n.a. n.a. n.a.
Test 1 3.51' n.t. n.a. n.a. n.a. n.a.
Test 2 8.33) n.t. n.a. n.a. n.a. n.a.
%M84 ) oxidation (h ALB)
TO 12.8 n.t. n.a. n.a. n.a. n.a.
Test 1 32.01) n.t. n.a. n.a. n.a. n.a.
Test 2 61.7 n.t. n.a. n.a. n.a. n.a.
%K103 6 glycation (I lALB)
TO 10.1 n.t. n.a. n.a. n.a. n.a.
Test 1 10.2 n.t. n.a. n.a. n.a. n.a.
Test 2 9.93) n.t. n.a. n.a. n.a. n.a.
1) 0.2 MLux visible light / 25 W*h/m2 UVA light, " 0.2 MLux visible light without UVA light, 3) 1 .2 MLux visible light / 173 W*h/m2' 4) 1 .2 MLux visible light / 30 W*h/m2
[275] Example 14
Different BiTE® antibody constructs designed for targeting EGFRvlll including EGFRvlll-non half-life extended (non HLE, canonical), EGFRvlll-hALB, and EGFRvlll-scFc were examined. The target protein concentration was 1 .0 mg/mL for the hALB and scFc and 0.4 mg/mL for the non HLE version. Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20°C and 37°C (w/o and with 25 ppm silicon which is known for its potential to induce aggregation of proteins) for 4 weeks. Above constructs were also exposed to light (1 .2 MLux visible light / 173 W*h/m2 UVA light). For light stress, chamber temperature was set to 25°C. Samples stored at -70°C served as controls (TO).
The samples described above were analyzed in duplicates by size exclusion ultra-high performance chromatography (SE-UPLC) in order to quantify the percentaged content of high molecular weight species (HMWS). SE-UPLC was performed on an Aquity H-Class UPLC system (Waters) using an Acquity UPLC BEH200 SEC 150 mm column (Waters). Column temperature was set to 25°C. Separation of size variants was achieved by applying an isocratic method with a flow rate of 0.4 mL/min. The mobile phase was composed of 100 mM sodium phosphate, 250 mM NaCI pH 6.8. The run time totals 6.0 minutes. Samples were held at 8°C within the autosampler until analysis. A total amount of 3 μg protein was injected. In order to avoid carry over an intermediate injection with 40% ACN was performed after each sample. Detection was based on fluorescence (excitation at 280 nm, emission at 325 nm). Peak integration was performed using Empower® software. Relative area under the curve of HMWS was reported (Table 25).
Within non-stressed samples, HMWS were least pronounced for the scFc-construct. HMWS formation was exclusively observed during 4 weeks storage at -20°C. The HMWS contents under these conditions increase in the following order scFc < hALB < non HLE.
Table 25: Overview on HMWS contents in stressed and unstressed (TO) EGFRvlll- HLE, -hALB, and -scFc preparations determined via SE-UPLC.
Figure imgf000101_0001
Additionally, samples derived from heat stress in absence and presence of silicon were assessed for the abundance of subvisible particles by Microfluid Imaging (MFI) using a Flowcam from Fluid Imaging Technologies, Inc. The instrument was equipped with a FC80FV flow cell. A tenfold optical magnification was applied. System suitability was verified with particle free water. An autoimage rate of 20 frames per second was applied. Dark and light thresholds were set to 25 and 20 pixels respectively. Sample volume for a single measurement totals 0.25 ml_. Samples were measured in triplicates. Prior to each triplicate the system was flushed of 0.5 mL of the respective sample solutions. At the beginning and between each triplicate a wash with 1 .0 mL particle free water was performed. Data evaluation was performed with Visual Spreadsheet software. Samples were measured in triplicates. Results are outlined in Table 26. Heat stress resulted in subvisible particle formation in preparations containing non HLE and hALB constructs. In contrast, the scFc construct remained stable. Subvisible particle formation was not promoted by the addition of silicon independent on the nature of the BiTE® antibody construct. Table 26: Assessment of subvisible particles by MFI in EGFRvlll-non HLE (canonical), -hALB, and -scFc preparations after heat stress in absence and presence of silicon.
Figure imgf000102_0001
Samples from heat stress were also analyzed by Weak Cation Exchange (WCX) chromatography in order to quantify the percentaged content of charge variants using a UPLC Aquity H class from Waters. A Protein-Pak Hi Res CM 71m 4.6 x 100 mm column (Waters, cat No. 186004929) was applied. The column temperature was adjusted to 30°C. The flow rate was set to 0.65 mL/min. The applied gradient was designed as follows (Table 27). The temperature of the autosampler was kept at 2-8°C.
Table 27: Gradient applied for WCX chromatography
% A % B
Time
20 mM sodium phosphate, pH 6.5 20 mM sodium phosphate,
[min:sec]
250 mM sodium chloride, pH 6.5
00:00 100 0
04:00 100 0 25:00 50 50
25:01 0 100
29:00 0 100
29:01 100 0
33:00 100 0
A total amount of 3 μg of protein was injected. Detection was based on fluorescence
(excitation at 280 nm, emission at 325 nm). Peak integration was performed using
Empower® software. Relative areas under the curve of the main peak as well as of acidic and basic charge variants was reported (Table 28).
Heat stress resulted in a reduced main peak percentage which had to be attributed to a predominant formation of acidic charge variants. The loss in main peak percentage was least pronounced for the scFc construct (7.5%). Basic charge variants were formed in both constructs with extended half-life upon light exposure. The increase in basic charge variants ranged between 5 and 6% in hALB and scFc constructs.
Table 28: Assessment of charge variants by WCX chromatography in EGFRvlll-non HLE (canonical), -hALB, and -scFc preparations after heat and light induced stress.
Figure imgf000103_0001
In addition, sample purity was quantified in heat and light stressed samples using a microfluidic capillary electrophoresis sodium dodecylsulphate (CE-SDS) assay based on the LabChip GXII system (Perkin Elmer). The sample denaturing solution was composed of the HT Protein Express Sample Buffer (provided by Perkin Elmer) supplemented with 34 mM dithiothreitol. Each sample was diluted 1 :8 with the denaturing solution and heated up to 70°C for 10 minutes together with the protein express ladder. 35 μΙ_ of water for injection (WFI) were added to 40 μΙ_ of the denatured sample. 120 μΙ_ WFI were added to 12 μΙ_ of the ladder. Samples, ladder, protein express wash buffer, gel dye and destain solution are transferred to the respective reservoirs. Samples are electrokinetically loaded from a microtiter plate onto the chip integrating the separation, staining, destaining, and detection of the protein and its size variants. The resulting electropherograms were evaluated and changes in purity were reported. An overview on the percentaged purity detected post stress is given by Table 29 and compared to unstressed samples (TO).
Higher purities were observed for hALB and scFc constructs if compared to the non HLE construct under all conditions. Slight decreases in purity if compared to TO were detected for hALB and scFc constructs upon heat and light stress. The loss in purity after 4 weeks storage at 37°C totals 8.4% for the hALB construct and 6.6% for the scFc constructs. The losses upon light exposure were comparable between hALB and scFc.
Table 29: Overview on percentaged purity in stressed and unstressed (TO) EGFRvlll- non HLE, -hALB, and -scFc preparations determined via LabChip GXII (Caliper).
Figure imgf000104_0001
[276] Example 15
Different BiTE® antibody constructs designed for targeting DLL3 including DLL3-hALB and DLL3-scFc were formulated, respectively. The target protein concentration was 1 .0 mg/mL for both constructs. Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at 37°C (DLL3-hALB) and 40°C (DLL3-scFc) for 4 weeks. Samples stored at -70°C served as controls (TO). Samples were analyzed by SE-UPLC according to the method described under Example 13. Results are outlined in Table 30. The scFc construct exhibited a reduced monomer loss (2.3%) upon heat stress if compared to the hALB construct (4.0%) although the incubation temperature was slightly higher.
Table 30: Overview on monomer peak percentage in stressed and unstressed (TO) DLL3-hALB and -scFc preparations determined via SE-UPLC.
Figure imgf000105_0001
[277] Example 16
Different BiTE® antibody constructs designed for targeting CD19 including CD19-Xbody and CD19-scFc were examined. The target protein concentration was 1 .0 mg/mL. Formulated BiTE® antibody constructs were filled to 1 mL in type I glass vials which were stoppered with butyl rubber stoppers and crimped with aluminum seals. Filled vials were incubated at -20°C and 37°C for 4 weeks. Additionally, all samples were exposed to 1 .2 MLux visible light and 173 W*h/m2 UVA light. Chamber temperature was adjusted to 25°C. Samples stored at - 70°C served as controls (TO). Samples stored at -20 and -37°C were analyzed by SE-UPLC according to the method described under Example 13. Results are outlined in Table 31 .
The scFc construct preserved a higher monomer content when stored for four weeks at -20 and 37°C respectively if compared to the Xbody.
Table31 : Overview on monomer contents in stressed and unstressed (TO) CD19-Xbody and -scFc preparations determined via SE-UPLC.
Figure imgf000105_0002
Additionally, unstressed samples were assessed for the abundance of subvisible particles by Microfluid Imaging (MFI) using the method described under Example 13. Results are outlined in Table 32. The CD19-scFc preparation exhibited significantly lower amounts of subvisible particles if compared to the CD19-Xbody preparation. This applies to all included size fractions.
Table 32: Assessment of subvisible particles by MFI in unstressed CD19-Xbody and - scFc
Figure imgf000106_0001
Samples from light stress were also analyzed by Weak Cation Exchange (WCX) chromatography in order to quantify the percentaged content of charge variants using a UPLC Aquity H class from Waters according to the method described under Example 13. Relative areas under the curve of the main peak as well as of acidic and basic charge variants was reported (Table 33).
The scFc construct showed enhanced stability against light exposure if compared to the Xbody indicated by a less pronounced loss in main peak which totaled 1.4% compared to 5.5% for the Xbody construct.
Table 33: Assessment of charge variants by WCX chromatography in CD19-Xbody and -scFc preparations after heat and light induced stress.
Construct Xbody scFc
% %
% % % %
Fraction
acidics basics acidics basics
main main
TO 51.4 30.3 18.3 83.5 1 .3 15.2
Light
45.9 33.2 20.9 82.1 1 .2 16.7
exposure [278] Example 17: Size exclusion chromatography of bispecific scFc variants
The constructs D9F, T2G, D3L, T7I and K6C (see Figure 7) were each tested for their running behavior by size exclusion chromatography according to standard procedures. In detail, a defined amount of 25 μg of each construct were run (at 750μΙ/ιηίη) in Citrate Lysin Buffer (10 mM and 75 mM, pH7) on a Superdex 200 increase 10/300GL column at room temperature and the OD 280 nm was recorded. Subsequently, constructs have been compared by their retention times. As a result, construct D9F shows significantly delayed elution (Table 34) as compared to T2G, D3L, T7I and K6C, which indicates a difference in the structure/arrangement of the Fc domains. This difference in retention time was most significant with construct T7I having unpaired cysteines in the hinge region and the linkage of CH2 and CH2CH3 to CH3 (18.98 min vs. 18.62 min, difference of 0.36 min). However, also the difference in retention time of 0.16 min between D9F and T2G is significant taking the respective retention time of the BSA control into consideration. The BSA control showed a retention time of 19.07 min for the monomer and 16.82 min for the dimer displaying a difference of 2.25 min in retention time for a doubled molecular weight. Hence, as the constructs having only structural differences in the Fc part, 0.16 min difference in retention time are significant. In summary, construct D9F showed the longest retention time indicating the strongest binding. This conclusion leads to the expectation of D9F also has the longes half live in vivo.
Table 34
Figure imgf000107_0001
[279] Example 18: Surface Plasmon Resonance -based determination of binding to human FcRn (FCGRT/B2M)
The constructs D9F, T2G, D3L, T7I and K6C (Figure 7) were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments according to standard procedures. In detail, CM5 Sensor Chips (GE Healthcare) were immobilized with 450-500 RU of FCGRT/B2M (ACRO Biosystems) by using Na acetate buffer pH 4.5 and a running buffer consisting of 200 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 6.0. The constructs were then injected in subsequent runs in two concentrations of 250 nM and 125 nM diluted in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 and 36°C. Association was done for 90 seconds with a 30 μΙ/min flow rate followed by the dissociation phase for 90 seconds at a 30 μΙ/min flow rate in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 at 36°C. Subsequent regeneration was done for 10 sec with 30 μΙ/min with 10 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 7.4.
The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates. Average values of the duplicate determinations are depicted in Figure 8A and 8B, respectively.
As a result, construct D9F shows significantly higher mass increase on the FcRn coated CM5 chip, as compared to T2G, D3L, T7I and K6C, which indicates stronger binding affinity of D9F to human FcRn. This observation was seen for both concentrations of the respective constructs.
The binding against FcRn is mediated through the Fc portion within the constructs. Stronger binding against human FcRn as described in the literature is an indicator for longer halflife in vivo due to a higher intracellular rescue of the respective protein and a therefore reduced degradation rate. For this reason, stronger binding of D9F to human FcRn as compared to the other constructs makes this molecule clearly superior as a basis for therapeutic molecules to allow for longer exposure of the potential drug in the patient and a lower frequency of drug administration. [280] Example 19: Surface Plasmon Resonance-based determination of binding to human FcRn (FCGRT/B2M)
The constructs D9F, T2G, D3L, T7I and K6C and a human lgG1 -kappa antibody MT201 were each tested for their capability of binding against human FcRn in SPR (Biacore) experiments according to standard procedures. In detail, CM5 Sensor Chips (GE Healthcare) were immobilized with around 350 RU of FCGRT/B2M (ACRO Biosystems) by using Na acetate buffer pH 4.5 and a running buffer consisting of 200 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 6.0. The constructs and the human lgG1 -kappa control (MT201 ) were then injected at a concentration of 125 nM diluted in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 and 36°C. Association was done for 90 seconds with a 30 μΙ/min flow rate followed by the dissociation phase for 60 seconds at a 30 μΙ/min flow rate in 200 mM HEPES, 150 mM NaCI, 3 mM EDTA, pH 6.0 at 36°C. Subsequent regeneration was done for 10 sec with 30 μΙ/min with 10 mM HEPES, 150 mM NaCI, 3 mM EDTA pH 7.4.
The maximal binding during the injection phase was measured for all constructs as the respective response units (RU), equivalent to the molecular mass increase on the FcRn coated CM5 chip due to bound construct. All constructs were measured in duplicates.
Average values of the duplicate determinations are depicted in Figure 9 including standard deviation error bars.
As a result, construct D9F shows significantly higher mass increase on the FcRn coated CM5 chip, as compared to T2G, D3L, T7I and K6C, which indicates stronger binding affinity of D9F to human FcRn. The mass increase on the FcRn-coated CM5 chip for D9F is well comparable to the mass increase of the human lgG1 -kappa control antibody MT201 , indicating a comparable binding of construct D9F to human FcRn.
The binding against FcRn is mediated through the human lgG1 Fc portion within the constructs. Stronger binding against human FcRn as described in the field is an indicator for longer half-life in vivo due to a higher intracellular rescue of the respective protein and a therefore reduced degradation rate. For this reason, stronger binding of D9F to human FcRn in the range of a human lgG1 -kappa antibody (MT201 ), as compared to the other constructs makes this molecule clearly superior as a basis for therapeutic molecules to allow for longer exposure of the potential drug in the patient, presumably in the range of a full human lgG1 antibody, and a lower frequency of drug administration.
Table 35: Sequence table
SEQ ID Format /
Designation Sequence
NO: Source
1. G4S linker GGGGS
2. (G4S)2 linker GGGGSGGGGS
3. (G4S)3 linker GGGGSGGGGSGGGGS
4. (G4S)4 linker GGGGSGGGGSGGGGSGGGGS
5. (G4S)5 linker GGGGSGGGGSGGGGSGGGGSGGGGS
6. (G4S)6 linker GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS (G4S)7 linker GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS
(G4S)8 linker GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS
Peptide PGGGGS
linker
Peptide PGGDGS
linker
Peptide SGGGGS
linker
Peptide GGGG
linker
CD3s binder QTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPR
VL GLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWY
SNRWVFGGGTKLTVL
CD3s binder EVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEW
VH VARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTA
VYYCVRHGNFGNSYVSWWAYWGQGTLVTVSS
CD3s binder EVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEW scFv VARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTA
VYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQ TWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRG LIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYS NRWVFGGGTKLTVL
hexa- HHHHHH
histidine tag
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 1 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
+c/-g QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 2 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
+c/-g/delGK
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 3 HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRWSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
-c/+g QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 4 HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRWSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
-c/+g/delGK
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 5 HEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRWSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
-c/-g QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 6 HEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRWSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
-c/-g/delGK
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS 7 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
+c/+g
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK Fc monomer- DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS 8 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN
+c/+g/delGK
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
scFc-1 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPC EEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK
scFc-2 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGS GGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKP KDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEE QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSP
scFc-3 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRWSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYNSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK
scFc-4 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRWSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGS GGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKP KDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSP
scFc-5 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRWSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKT I SKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYGSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT I SKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK
scFc-6 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRWSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGS GGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKP KDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYGSTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSP
31. scFc-7 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGG GSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPC EEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPGK
32. scFc-8 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS
HEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGS GGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKP KDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEE QYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSP
33. MSLN-HLE Hetero Fc QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW chain 1 LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK
34. MSLN-HLE Hetero Fc DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS chain 2 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
35. MSLN-HLE hALB QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW fusion LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLPGGDGSDAHKSEVAHRFKDLGEE
NFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDK SLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPN LPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFA KRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQK FGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLE CADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMP ADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSWLL LRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCE LFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKH PEAKRMPCAEDYLSWLNQLCVLHEKTPVSDRVTKCCTESLVNRRPC FSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVK HKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQA ALGLHHHHHH
36. CDH19-HLEa X-body EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEW chain 1 VARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTA
VYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSSYELTQ PPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIYQDTKR PSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTWFGGG TKLTVLASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSWTVPSSSLGTQTYICNVNHK PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM ISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGST YRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDT TPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK
37. CDH19-HLEb X-body QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW chain 2 VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSQTWTQ EPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGT KFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVF GGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAV TVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSY SCQVTHEGSTVEKTVAPTECSDKTHTCPPCPAPELLGGPSVFLFPPK PKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCE EQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK GQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYTQKSLSLSPGK
38. CDH19-HLE Hetero Fc QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW chain 1 VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGK
39. CDH19-HLE Hetero Fc DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS chain 2 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
40. CD33-HLE Hetero Fc QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW chain 1 MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEK ISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
41. CD33-HLE Hetero Fc DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVS chain 2 HEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWL
NGKEYKCKVSNKALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
42. CD33-HLE scFc QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW
MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG GGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTY RCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
43. CD20-HLE scFc QVQLVQSGAEVKKPGSSVKVSCKASGYAFSYSWINWVRQAPGQGLEW
MGRIFPGDGDTDYNGKFKGRVTITADKSTSTAYMELSSLRSEDTAVY YCARNVFDGYWLVYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQT PLSLPVTPGEPASISCRSSKSLLHSNGITYLYWYLQKPGQSPQLLIY QMSNLVSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCAQNLELPY TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
CD33xl2C- VH CD 1 NYGMN
scFc
CD33xl2C- VH CDR2 WINTYTGEPTYADKFQG
scFc
CD33xl2C- VH CDR3 WSWSDGYYVYFDY
scFc
CD33xl2C- VL CDR1 KSSQSVLDSSTNKNSLA
scFc
CD33xl2C- VL CDR2 WASTRES
scFc
CD33xl2C- VL CDR3 QQSAHFPIT
scFc
CD33xl2C- VH QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQGLEW scFc MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSS
CD33xl2C- VL DIVMTQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPG scFc QPPKLLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYC
QQSAHFPITFGQGTRLEIK
CD33xl2C- scFv QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQGLEW scFc MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQG SVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGQGTRLEIK
CD33xl2C- Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQGLEW scFc molecule MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGQGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
CD33xl2C- Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQGLEW scFc HLE MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM
molecule TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK
LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGQGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG GGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTY RCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK CD33xl2C- Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQGLEW scFc_delGK HLE MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM
molecule
TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGQGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGG GSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR TPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRC VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGK
CD33_CCxl2C VH QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW -scFc MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSS
CD33_CCxl2C VL DIVMTQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPG -scFc QPPKLLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYC
QQSAHFPITFGCGTRLEIK
CD33_CCxl2C scFv QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW -scFc MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIK
CD33_CCxl2C Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW molecule MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
CD33_CCxl2C Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW -scFc HLE MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM
molecule
TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG GGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTY RCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK ISKAKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
CD33_CCxl2C Bispecific QVQLVQSGAEVKKPGESVKVSCKASGYTFTNYGMNWVKQAPGQCLEW -scFc_delGK HLE MGWINTYTGEPTYADKFQGRVTMTTDTSTSTAYMEIRNLGGDDTAVY
YCARWSWSDGYYVYFDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVM
molecule
TQSPDSLTVSLGERTTINCKSSQSVLDSSTNKNSLAWYQQKPGQPPK LLLSWASTRESGIPDRFSGSGSGTDFTLTIDSPQPEDSATYYCQQSA HFPITFGCGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGG GSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR TPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRC VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGK
EGF vlllxCD3 VH CDR1 NYGMH
-scFc
EGFRvlllxCD3 VH CDR2 VIWYDGSDKYYADSVRG
-scFc
EGFRvlllxCD3 VH CDR3 DGYDILTGNPRDFDY
-scFc
EGFRvlllxCD3 VL CDR1 RSSQSLVHSDGNTYLS
-scFc
EGFRvlllxCD3 VL CDR2 RISRRFS
-scFc
EGFRvlllxCD3 VL CDR3 MQSTHVPRT
-scFc
EGFRvlllxCD3 VH QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW -scFc VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSS
EGFRvlllxCD3 VL DTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQ -scFc PPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
QSTHVPRTFGQGTKVEIK
EGFRvlllxCD3 scFv QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW -scFc VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGQGTKVEIK
EGFRvlllxCD3 Bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW -scFc molecule VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
72. EGF vlllxCD3 Bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW -scFc HLE VAVIWYDGSDKYYADSVRGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT
molecule
VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGS YRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGS GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM ISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGST YRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK
73. EGFRvlllxCD3 Bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKGLEW -scFc_delGK HLE VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT
molecule
VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGG GGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYR CVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK
74. EGFRvlll_CCx VH QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCLEW CD3-scFc VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSS
75. EGFRvlll_CCx VL DTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQ CD3-scFc PPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
QSTHVPRTFGCGTKVEIK
76. EGFRvlll_CCx scFv QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCLEW CD3-scFc VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGCGTKVEIK
77. EGFRvlll_CCx Bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCLEW CD3-scFc HLE VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT molecule VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP
RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
78. EGF vlll_CCx Bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCLEW CD3-scFc HLE VAVIWYDGSDKYYADSVRGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT
molecule
VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGS YRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGS GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM ISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGST YRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK
79. EGFRvlll_CCx bispecific QVQLVESGGGWQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCLEW CD3- VAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVY molecule YCARDGYDILTGNPRDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDT scFc_delGK
VMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPP RLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCMQS THVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGG GGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYR CVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK
80. MS_lxCD3- VH CDR1 DYYMT
scFc
81. MS_lxCD3- VH CDR2 YISSSGSTIYYADSVKG
scFc
82. MS_lxCD3- VH CDR3 DRNSHFDY
scFc
83. MS_lxCD3- VL CDR1 RASQGINTWLA
scFc 84. MS_lxCD3- VL CD 2 GASGLQS
scFc
85. MS_lxCD3- VL CDR3 QQAKSFPRT
scFc
86. MS_lxCD3- VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSS
87. MS_lxCD3- VL DIQMTQSPSSVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLL scFc IYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSF
PRTFGQGTKVEIK
88. MS_lxCD3- scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIK
89. MS_lxCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc molecule LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
90. MS_lxCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc HLE LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
91. MS_lxCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc_delGK HLE LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
92. MS_l_CCxCD VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSS
93. MS_l_CCxCD VL DIQMTQSPSSVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLL 3-scFc IYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSF
PRTFGCGTKVEIK
94. MS_l_CCxCD scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGCGTK VEIK
95. MS_l_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc molecule LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
96. MS_l_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc HLE LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
97. MS_l_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc_delGK HLE LSYISSSGSTIYYADSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQGINTWLAWYQQKPGKAPKLLIYGASGLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS
VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
98. MS_2xCD3- VH CD 1 DYYMT
scFc
99. MS_2xCD3- VH CDR2 YISSSGSTIYYADSVKG
scFc
100. MS_2xCD3- VH CDR3 DRNSHFDY
scFc
101. MS_2xCD3- VL CDR1 RASQGITRWLA
scFc
102. MS_2xCD3- VL CDR2 AASVLQS
scFc
103. MS_2xCD3- VL CDR3 QQSNSFPRT
scFc
104. MS_2xCD3- VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSS
105. MS_2xCD3- VL DIQMTQSPSSVSASVGDRV I CRASQGI RWLAWYQQKPGKAPKLL scFc IYAASVLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSF
PRTFGQGTKVEIK
106. MS_2xCD3- scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGQGTK VEIK
107. MS_2xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc molecule ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
108. MS_2xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc HLE ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
109. MS_2xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEW scFc_delGK HLE ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRV I CRASQGI RWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
110. MS_2_CCxCD VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSS
111. MS_2_CCxCD VL DIQMTQSPSSVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLL 3-scFc IYAASVLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSF
PRTFGCGTKVEIK
112. MS_2_CCxCD scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGCGTK VEIK
113. MS_2_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc molecule ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
114. MS_2_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc HLE ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQGITRWLAWYQQKPGKAPKLLIYAASVLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS
VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
115. MS_2_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKCLEW 3-scFc_delGK HLE ISYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDRNSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule SVSASVGDRV I CRASQGI RWLAWYQQKPGKAPKLLIYAASVLQS
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
116. MS_3xCD3- VH CD 1 DHYMS
scFc
117. MS_3xCD3- VH CDR2 YISSSGGIIYYADSVKG
scFc
118. MS_3xCD3- VH CDR3 DVGSHFDY
scFc
119. MS_3xCD3- VL CDR1 RASQDISRWLA
scFc
120. MS_3xCD3- VL CDR2 AASRLQS
scFc
121. MS_3xCD3- VL CDR3 QQAKSFPRT
scFc
122. MS_3xCD3- VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKGLEW scFc FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSS
123. MS_3xCD3- VL DIQMTQSPSSVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLL scFc ISAASRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSF
PRTFGQGTKVEIK
124. MS_3xCD3- scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKGLEW scFc FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGQGTK VEIK
125. MS_3xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKGLEW scFc molecule FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS
GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
126. MS_3xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKGLEW scFc HLE FSYISSSGGI IYYADSVKGRF ISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
127. MS_3xCD3- Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKGLEW scFc_delGK HLE FSYISSSGGI IYYADSVKGRF ISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGQGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
128. MS_3_CCxCD VH QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKCLEW 3-scFc FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSS
129. MS_3_CCxCD VL DIQMTQSPSSVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLL 3-scFc ISAASRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSF
PRTFGCGTKVEIK
130. MS_3_CCxCD scFv QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKCLEW 3-scFc FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGCGTK VEIK 131. MS_3_CCxCD bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKCLEW 3-scFc molecule FSYISSSGGI IYYADSVKGRF ISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVL
132. MS_3_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKCLEW 3-scFc HLE FSYISSSGGI IYYADSVKGRF ISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
133. MS_3_CCxCD Bispecific QVQLVESGGGLVKPGGSLRLSCAASGFTFSDHYMSWIRQAPGKCLEW 3-scFc_delGK HLE FSYISSSGGI IYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
YCARDVGSHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPS
molecule
SVSASVGDRVTITCRASQDISRWLAWYQQKPGKAPKLLISAASRLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQAKSFPRTFGCGTK VEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYLQ MNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG GGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWV QQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDE AEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPS VFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHN AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGG SDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDV SHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
134. CH_lxCD3- VH CD 1 SYGMH
scFc
135. CH_lxCD3- VH CDR2 FIWYDGSNKYYADSVKD
scFc
136. CH_lxCD3- VH CDR3 RAGI IG IGYYYGMDV
scFc
137. CH_lxCD3- VL CDR1 SGDRLGEKYTS scFc
138. CH_lxCD3- VL CD 2 QDTKRPS
scFc
139. CH_lxCD3- VL CDR3 QAWESSTW
scFc
140. CH_lxCD3- VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYDGSNKYYADSVKDRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IG IGYYYGMDVWGQGTTVTVSS
141. CH_lxCD3- VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGGGTKLTVL
142. CH_lxCD3- scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVL
143. CH_lxCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc molecule VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
144. CH_lxCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc HLE VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
145. CH_lxCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc_deGK HLE VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
146. CH_l_CCxCD VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYDGSNKYYADSVKDRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IG IGYYYGMDVWGQGTTVTVSS
147. CH_l_CCxCD VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI 3-scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGCGTKLTVL
148. CH_l_CCxCD scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVL
149. CH_l_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc molecule VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
150. CH_l_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc HLE VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
151. CH_l_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc_delGK HLE VAFIWYDGSNKYYADSVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
152. CH_2xCD3- VH CD 1 SYGMH
scFc
153. CH_2xCD3- VH CDR2 FIWYDGSNKYYADSVKG
scFc
154. CH_2xCD3- VH CDR3 RAGI IG IGYYYGMDV
scFc
155. CH_2xCD3- VL CDR1 SGDRLGEKYTS
scFc
156. CH_2xCD3- VL CDR2 QDTKRPS
scFc
157. CH_2xCD3- VL CDR3 QAWESSTW
scFc
158. CH_2xCD3- VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYDGSNKYYADSVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAG11G IGYYYGMDVWGQGT V VSS
159. CH_2xCD3- VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGGGTKLTVL
160. CH_2xCD3- scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAG11GTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVL
161. CH_2xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc molecule VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAG11GTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
162. CH_2xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc HLE VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAG11GTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
163. CH_2xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc_delGK HLE VAFIWYDGSNKYYADSVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IG IGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
164. CH_2_CCxCD VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSS
165. CH_2_CCxCD VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI 3-scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGCGTKLTVL
166. CH_2_CCxCD scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVL
167. CH_2_CCxCD bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc molecule VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
168. CH_2_CCxCD bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc molecule VAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
169. CH_2_CCxCD bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc_delGK VAFIWYDGSNKYYADSVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY molecule YCARRAGI IG IGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
170. CH_3xCD3- VH CD 1 SYGMH
scFc
171. CH_3xCD3- VH CDR2 FIWYEGSNKYYAESVKD
scFc
172. CH_3xCD3- VH CDR3 RAGI IGTIGYYYGMDV
scFc
173. CH_3xCD3- VL CDR1 SGDRLGEKYTS
scFc
174. CH_3xCD3- VL CDR2 QDTKRPS
scFc
175. CH_3xCD3- VL CDR3 QAWESSTW
scFc
176. CH_3xCD3- VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAG11GTIGYYYGMDVWGQGTTVTVSS
177. CH_3xCD3- VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGGGTKLTVL
178. CH_3xCD3- scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV
VFGGGTKLTVL
179. CH_3xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc molecule VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IG IGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
180. CH_3xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc HLE VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
181. CH_3xCD3- Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc_delGK HLE VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY
QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
182. CH_3_CCxCD VH QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSS
183. CH_3_CCxCD VL SYELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVI 3-scFc YQDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESST
WFGCGTKLTVL 184. CH_3_CCxCD scFv QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IG IGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVL
185. CH_3_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc molecule VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
186. CH_3_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc HLE VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
187. CH_3_CCxCD Bispecific QVQLVESGGGWQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW 3-scFc_delGK HLE VAFIWYEGSNKYYAESVKDRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARRAGI IGTIGYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSS
molecule
YELTQPPSVSVSPGQTASITCSGDRLGEKYTSWYQQRPGQSPLLVIY QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWESSTV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
188. DL_lxCD3- VH CD 1 SYYWS
scFc 189. DL_lxCD3- VH CD 2 YVYYSGTTNYNPSLKS
scFc
190. DL_lxCD3- VH CDR3 IAVTGFYFDY
scFc
191. DL_lxCD3- VL CDR1 RASQRVNNNYLA
scFc
192. DL_lxCD3- VL CDR2 GASSRAT
scFc
193. DL_lxCD3- VL CDR3 QQYDRSPLT
scFc
194. DL_lxCD3- VH QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEW scFc IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSS
195. DL_lxCD3- VL EIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRL scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDR
SPLTFGGGTKLEIK
196. DL_lxCD3- scFv QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEW scFc IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKLEIK
197. DL_lxCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEW scFc molecule IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
198. DL_lxCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEW scFc HLE IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
199. DL_lxCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEW scFc_delGK HLE IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY
LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
200. DL_l_CCxCD VH QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEW 3-scFc IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSS
201. DL_l_CCxCD VL EIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRL 3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDR
SPLTFGCGTKLEIK
202. DL_l_CCxCD scFv QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEW 3-scFc IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKLEIK
203. DL_l_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEW 3-scFc molecule IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
204. DL_l_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEW 3-scFc HLE IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
205. DL_l_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEW 3-scFc_delGK HLE IGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP molecule GTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSR
ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
206. DL_2xCD3- VH CD 1 SFYWS
scFc
207. DL_2xCD3- VH CDR2 YIYYSGTTNYNPSLKS
scFc
208. DL_2xCD3- VH CDR3 IAVAGFFFDY
scFc
209. DL_2xCD3- VL CDR1 RASQSVNKNYLA
scFc
210. DL_2xCD3- VL CDR2 GASSRAT
scFc
211. DL_2xCD3- VL CDR3 QQYDRSPLT
scFc
212. DL_2xCD3- VH QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEW scFc IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSS
213. DL_2xCD3- VL EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRL scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDR
SPLTFGGGTKVEIK
214. DL_2xCD3- scFv QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEW scFc IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKVEIK
215. DL_2xCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEW scFc molecule IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
216. DL_2xCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEW scFc HLE IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY
LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
217. DL_2xCD3- Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEW scFc_delGK HLE IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
218. DL_2_CCxCD VH QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEW 3-scFc IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSS
219. DL_2_CCxCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRL 3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDR
SPLTFGCGTKVEIK
220. DL_2_CCxCD scFv QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEW 3-scFc IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKVEIK
221. DL_2_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEW 3-scFc molecule IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
222. DL_2_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEW 3-scFc HLE IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP molecule GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR
ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
223. DL_2_CCxCD Bispecific QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEW 3-scFc_delGK H LE IGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY
CARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSP
molecule
GTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSR ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCG TKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAY LQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGG SGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPN WVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGG PSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEV HNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAP IEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGG GGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVW DVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
224. DL_3xCD3- VH CD 1 NYYMH
scFc
225. DL_3xCD3- VH CDR2 I INPSDGSTSYAQKFQG
scFc
226. DL_3xCD3- VH CDR3 GGNSAFYSYYDMDV
scFc
227. DL_3xCD3- VL CDR1 RSSQSLVYRDGNTYLS
scFc
228. DL_3xCD3- VL CDR2 KVSNWQS
scFc
229. DL_3xCD3- VL CDR3 MQGTHWPPT
scFc
230. DL_3xCD3- VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEW scFc MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSS
231. DL_3xCD3- VL DWMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQ scFc SPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCM
QGTHWPPTFGQGTKVEIK
232. DL_3xCD3- scFv QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEW scFc MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW
MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGQGTKVEIK
233. DL_3xCD3- Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEW scFc molecule MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
234. DL_3xCD3- Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEW scFc HLE MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW
molecule
MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG GGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTY RCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
235. DL_3xCD3- Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEW scFc_delGK HLE MGI INPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW
molecule
MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGG GSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR TPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRC VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGK
236. DL_3_CCxCD VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEW 3-scFc MGI INPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSS 237. DL_3_CCxCD VL DWMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQ 3-scFc SPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCM
QGTHWPPTFGCGTKVEIK
238. DL_3_CCxCD scFv QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEW 3-scFc MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGCGTKVEIK
239. DL_3_CCxCD Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEW 3-scFc molecule MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
240. DL_3_CCxCD Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEW 3-scFc HLE MGI INPSDGS SYAQKFQGRVTMTRD STNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW
molecule
MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSG GGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI SRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTY RCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL SLSPGK
241. DL_3_CCxCD Bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEW 3-scFc_delGK HLE MGI INPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVY
YCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDW
molecule
MTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPR RLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGT HWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL VTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTG AVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKF NWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGG GSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR TPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRC VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY TLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
SPGK
242. C19_lxCD3- SYGVS
VH CD 1
scFc
243. C19_lxCD3- YNDPVFGSIYYASWVKG
VH CDR2
scFc
244. C19_lxCD3- DRSYVSSSGYHFNL
VH CDR3
scFc
245. C19_lxCD3- QASETIYSSLA
VL CDR1
scFc
246. C19_lxCD3- GASNLES
VL CDR2
scFc
247. C19_lxCD3- QSGVYSAGLT
VL CDR3
scFc
248. C19_lxCD3- EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKGLEW scFc VH IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
249. C19_lxCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIK
250. C19_lxCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
251. C19_lxCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
Bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
252. C19_lxCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE H LE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
molecule GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K 253. C19_l_CCxC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKCLEW D3-scFc VH IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
254. C19_l_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL D3-scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIK
255. C19_l_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
256. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
C19_l_CCxC bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
D3-scFc molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
257. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
C19_l_CCxC bispecific VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE D3-scFc molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
258. C19_2xCD3- SYGVS
VH CD 1
scFc
259. C19_2xCD3- YNDPVFGSIYYASWVKG
VH CDR2
scFc
260. C19_2xCD3- DRSYVSSSGYHFNL
VH CDR3
scFc
261. C19_2xCD3- QASETIYSSLA
VL CDR1
scFc
262. C19_2xCD3- GASNLES
VL CDR2
scFc
263. C19_2xCD3- QSGVYSAGLT
VL CDR3
scFc
264. C19_2xCD3- EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKGLEW
VH
scFc IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
265. C19_2xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGGGTKVEIK
266. C19_2xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
267. C19_2xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
Bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
268. C19_2xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE HLE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
molecule GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
269. C19_2_CCxC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKCLEW D3-scFc VH IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
270. C19_2_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGCGTKVEIK
271. C19_2_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
272. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
C19_2_CCxC bispecific
RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
D3-scFc molecule GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS
GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
273. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
C19_2_CCxC bispecific VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE D3-scFc molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
274. C19_3xCD3- SYGVS
VH CD 1
scFc
275. C19_3xCD3- YNDPVFGSIYYASWVKG
VH CDR2
scFc
276. C19_3xCD3- DRSYVSSSGYHFNL
VH CDR3
scFc
277. C19_3xCD3- QASETIYSSLA
VL CDR1
scFc
278. C19_3xCD3- GASNLES
VL CDR2
scFc
279. C19_3xCD3- QSGVYSAGLT
VL CDR3
scFc
280. C19_3xCD3- EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKGLEW scFc VH IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
281. C19_3xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIK
282. C19_3xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
283. C19_3xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK
bispecific
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
molecule WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
284. C19_3xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
bispecific VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
285. C19_3_CCxC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKCLEW D3-scFc VH IGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
286. C19_3_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIK
287. C19_3_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
288. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
C19_3_CCxC Bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
D3-scFc molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
289. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
Bispecific YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSK
C19_3_CCxC
HLE NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS
D3-scFc
molecule GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG
GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
290. C19_4xCD3- SYGVS
VH CD 1
scFc
291. C19_4xCD3- YNDPVFGSIYYASWVKG
VH CDR2
scFc
292. C19_4xCD3- DRSYVSSSGYHFNL
VH CDR3
scFc
293. C19_4xCD3- QASETIYSSLA
VL CDR1
scFc
294. C19_4xCD3- GASNLES
VL CDR2
scFc
295. C19_4xCD3- QSGVYSAGLT
VL CDR3
scFc
296. C19_4xCD3- EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKGLEW scFc VH VGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
297. C19_4xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIK
298. C19_4xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKGLEWVGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
299. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWVGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
C19_4xCD3- Bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
scFc molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
300. DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL
IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWVGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
Bispecific NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS
C19_4xCD3- HLE GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
scFc
molecule NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV
LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
301. C19_4_CCxC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGKCLEW D3-scFc VH VGYNDPVFGSIYYASWVKGRFTISSDNSKNTLYLQMNSLRAEDTAVY
YCAKDRSYVSSSGYHFNLWGQGTLVTVSS
302. C19_4_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc VL IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIK
303. C19_4_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFv RLSCAASGFTFSSYGVSWVRQAPGKCLEWVGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSS
304. C19_4_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWVGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
Bispecific
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
305. C19_4_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3-scFc IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKCLEWVGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG
VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE HLE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
molecule GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
306. C19_lxCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL scFc_delGK IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK
Bispecific GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL
WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK HLE YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
molecule NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS
GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
307. C19_l_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKPPKLL D3- IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFc_delGK
RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG HLE VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
308. C19_2xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc_delGK IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG HLE VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
309. C19_2_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3- IYGASNLESGVPSRFSGSGSGTDFTFTISSMQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFc_delGK
RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
Bispecific GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL HLE WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
310. C19_3xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc_delGK IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL RLSCAASGFTFSSYGVSWVRQAPGKGLEWIGYNDPVFGSIYYASWVK GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG HLE VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
311. C19_3_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3- IYGASNLESGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFc_delGK RLSCAASGFTFSSYGVSWVRQAPGKCLEWIGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG HLE VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
312. C19_4xCD3- DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL scFc_delGK IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGGGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
Bispecific RLSCAASGFTFSSYGVSWVRQAPGKGLEWVGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL HLE WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK
molecule YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK
NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
313. C19_4_CCxC DIQMTQSPSSLSASVGDRVTITCQASETIYSSLAWYQQKPGKAPKLL D3- IYGASNLESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQSGVYS
AGLTFGCGTKVEIKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSL
scFc_delGK RLSCAASGFTFSSYGVSWVRQAPGKCLEWVGYNDPVFGSIYYASWVK
GRFTISSDNSKNTLYLQMNSLRAEDTAVYYCAKDRSYVSSSGYHFNL WGQGTLVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG
Bispecific NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG HLE VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE
molecule LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
314. FL_lxCD3-
VH CD 1 NARMGVS
scFc
315. FL_lxCD3-
VH CDR2 NIFSNDEKSYSTSLKS
scFc
316. FL_lxCD3-
VH CDR3 IVGYGSGWYGYFDY
scFc
317. FL_lxCD3-
VL CDR1 RASQGIRNDLG
scFc
318. FL_lxCD3-
VL CDR2 AASSLQS
scFc
319. FL_lxCD3-
VL CDR3 LQHNSYPLT
scFc
320. FL_lxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKAL scFc VH EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
321. FL_lxCD3- DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIKS
322. FL_lxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKAL scFc EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIK
323. FL_lxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKAL
Bispecific
scFc EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT molecule YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
324. FL_lxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKAL scFc EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
325. FL_l_CCxCD QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKCL 3-scFc VH EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
326. FL_l_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
327. FL_l_CCxCD QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKCL 3-scFc EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
328. QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKCL
EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
FL_l_CCxCD Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
3-scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
329. QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKCL
EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
Bispecific QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY
FL_l_CCxCD
HLE AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
3-scFc
molecule TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
330. FL_2xCD3-
VH CD 1 NARMGVS
scFc
331. FL_2xCD3-
VH CDR2 HIFSNDEKSYSTSLKN
scFc
332. FL_2xCD3-
VH CDR3 IVGYGSGWYGFFDY
scFc
333. FL_2xCD3-
VL CDR1 RASQGIRNDLG
scFc
334. FL_2xCD3-
VL CDR2 AASTLQS
scFc
335. FL_2xCD3-
VL CDR3 LQHNSYPLT
scFc
336. FL_2xCD3- QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSS
337. FL_2xCD3- DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
338. FL_2xCD3- QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
339. FL_2xCD3- QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
340. FL_2xCD3- QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
Bispecific AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL H LE TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
341. FL_2_CCxCD QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSS
342. FL_2_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL 3-scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
343. FL_2_CCxCD QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
344. QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
FL_2_CCxCD Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
3-scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
345. QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_2_CCxCD GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP H LE
3-scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
346. FL_3xCD3-
VH CD 1 NARMAVS
scFc
347. FL_3xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
348. FL_3xCD3- VH CDR3 IVGYGSGWYGYFDY scFc
349. FL_3xCD3-
VL CD 1 RASQDIRNDLG
scFc
350. FL_3xCD3-
VL CDR2 AASTLQS
scFc
351. FL_3xCD3-
VL CDR3 LQHNSYPLT
scFc
352. FL_3xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
353. FL_3xCD3- DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRL scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
354. FL_3xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
355. FL_3xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
356. FL_3xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP H LE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
357. FL_3_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
358. FL_3_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRL 3-scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
359. FL_3_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL scFv
3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
360. QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
FL_3_CCxCD Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
3-scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLG
361. QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_3_CCxCD GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP H LE
3-scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
362. FL_4xCD3-
VH CD 1 NAKMGVS
scFc
363. FL_4xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
364. FL_4xCD3-
VH CDR3 IVGYGSGWYGYFDY
scFc
365. FL_4xCD3-
VL CDR1 RASQDIRDDLG
scFc
366. FL_4xCD3-
VL CDR2 GAS LQS
scFc
367. FL_4xCD3-
VL CDR3 LQHNSYPLT
scFc
368. FL_4xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
369. FL_4xCD3- DIQMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRL scFc VL IYGASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVDIK
370. FL_4xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT scFv YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
TFGGGTKVDIKS
371. QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKAL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
FL_4xCD3- Bispecific
TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
372. QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKAL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_4xCD3- GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
HLE
scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
373. FL_4_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
374. FL_4_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRL 3-scFc VL IYGASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVDIK
375. FL_4_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY
GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKS
376. FL_4_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
377. FL_4_CCxCD Bispecific QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
HLE YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
molecule QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
378. FL_5xCD3-
VH CD 1 NARMAVS
scFc
379. FL_5xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
380. FL_5xCD3-
VH CDR3 IVGYGSGWYGYFDY
scFc
381. FL_5xCD3-
VL CDR1 RASQDIRYDLA
scFc
382. FL_5xCD3-
VL CDR2 AASSLQS
scFc
383. FL_5xCD3-
VL CDR3 LQHNFYPLT
scFc
384. FL_5xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKTL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
385. FL_5xCD3- DIQMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFY
PLTFGGGTKVEIK
386. FL_5xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKTL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL TFGGGTKVEIKS
387. QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKTL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL
FL_5xCD3- Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
388. QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKTL
Bispecific EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
FL_5xCD3- YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI H LE
scFc QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY molecule AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
389. FL_5_CCxCD QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSS
390. FL_5_CCxCD DIQMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFY
PLTFGCGTKVEIK
391. FL_5_CCxCD QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL TFGCGTKVEIKS
392. QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL
FL_5_CCxCD Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
3-scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
393. QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKCL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_5_CCxCD GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
HLE
3-scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
394. FL_6xCD3- VH CD 1 NARMGVS scFc
395. FL_6xCD3-
VH CD 2 HIFSNDEKSFSTSLKN
scFc
396. FL_6xCD3-
VH CDR3 MVGYGSGWYAYFDY
scFc
397. FL_6xCD3-
VL CDR1 RASQSISSYLN
scFc
398. FL_6xCD3-
VL CDR2 AASSLQS
scFc
399. FL_6xCD3-
VL CDR3 LQHNSYPLT
scFc
400. FL_6xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
VH YYCARMVGYGSGWYAYFDYWGQGTQVTVSS
401. FL_6xCD3- DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL scFc IYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSY
VL PLTFGGGTKVEIK
402. FL_6xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
403. QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL
EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL
FL_6xCD3- Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
404. QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL
EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_6xCD3- GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP H LE
scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
405. FL_6_CCxCD QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL
VH EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT 3-scFc YYCARMVGYGSGWYAYFDYWGQGTQVTVSS
406. FL_6_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
407. FL_6_CCxCD QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
408. FL_6_CCxCD QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
409. FL_6_CCxCD QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
410. FL_7xCD3-
VH CD 1 NARMGVS
scFc
411. FL_7xCD3-
VH CDR2 HIFSNDEKSYSTSLKN
scFc
412. FL_7xCD3-
VH CDR3 IVGYGTGWFGYFDY
scFc
413. FL_7xCD3-
VL CDR1 RASQDIRTDLA
scFc
414. FL_7xCD3-
VL CDR2 AASSLQS
scFc
415. FL_7xCD3-
VL CDR3 LQHNRYPLT
scFc
416. FL_7xCD3- QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSS
417. FL_7xCD3- VL DIQMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRL scFc IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRY
PLTFGGGTKVDIK
418. FL_7xCD3- QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGGGTKVDIKS
419. QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKAL
EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL
FL_7xCD3- Bispecific
TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
scFc molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
420. QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKAL
EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
FL_7xCD3- GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
HLE
scFc ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
421. FL_7_CCxCD QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSS
422. FL_7_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRY
PLTFGCGTKVDIK
423. FL_7_CCxCD QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGCGTKVDIKS
424. FL_7_CCxCD QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY
Bispecific
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL
molecule TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
425. FL_7_CCxCD QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP H LE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
426. FL_8xCD3-
VH CD 1 NARMAVS
scFc
427. FL_8xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
428. FL_8xCD3-
VH CDR3 IVGYGTGWYGFFDY
scFc
429. FL_8xCD3-
VL CDR1 RASQGIRNDLA
scFc
430. FL_8xCD3-
VL CDR2 AASSLQS
scFc
431. FL_8xCD3-
VL CDR3 LQHNSYPLT
scFc
432. FL_8xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSS
433. FL_8xCD3- DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
434. FL_8xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
435. QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY
FL_8xCD3- AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
scFc TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL 436. QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL
EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
FL_8xCD3- Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
scFc HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
437. FL_8_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSS
438. FL_8_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
439. FL_8_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
440. FL_8_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
441. FL_8_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
Bispecific KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS HLE SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
molecule GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS
VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
442. FL_9xCD3-
VH CD 1 YARMGVS
scFc
443. FL_9xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
444. FL_9xCD3-
VH CDR3 MPEYSSGWSGAFDI
scFc
445. FL_9xCD3-
VL CDR1 RASQDIRNDLA
scFc
446. FL_9xCD3-
VL CDR2 AASSLQS
scFc
447. FL_9xCD3-
VL CDR3 LQHNSYPLT
scFc
448. FL_9xCD3- QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
449. FL_9xCD3- DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKLEIK
450. FL_9xCD3- QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKLEIKS
451. FL_9xCD3- QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
452. FL_9xCD3- QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
Bispecific SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS H LE GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
molecule GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL
DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
453. FL_9_CCxCD QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKCL 3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
454. FL_9_CCxCD DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRL 3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKLEIK
455. FL_9_CCxCD QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKLEIKS
456. FL_9_CCxCD QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
457. FL_9_CCxCD QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKCL 3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
458. FL_10xCD3-
VH CD 1 NARMGVS
scFc
459. FL_10xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
460. FL_10xCD3-
VH CDR3 MPEYSSGWSGAFDI
scFc
461. FL_10xCD3-
VL CDR1 RASQDIRDDLG
scFc
462. FL_10xCD3-
VL CDR2 GAS LQS
scFc
463. FL_10xCD3- VL CDR3 LQHNSYPLT scFc
464. FL_10xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
VH YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
465. FL_10xCD3- DIQMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRL scFc IYGASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
VL PLTFGGGTKVDIK
466. FL_10xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY
GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVDIKS
467. FL_10xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
468. FL_10xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
469. FL_10_CCxC QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
470. FL_10_CCxC DIQMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRL D3-scFc VL IYGASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVDIK
471. FL_10_CCxC QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY
GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKS
472. FL_10_CCxC QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL
Bispecific EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT D3-scFc molecule YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
473. FL_10_CCxC QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
474. FL_llxCD3-
VH CD 1 NARMGVS
scFc
475. FL_llxCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
476. FL_llxCD3-
VH CDR3 MPEYSSGWSGAFDI
scFc
477. FL_llxCD3-
VL CDR1 RASQDIGYDLG
scFc
478. FL_llxCD3-
VL CDR2 AASTLQS
scFc
479. FL_llxCD3-
VL CDR3 LQHNSFPWT
scFc
480. FL_llxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
481. FL_llxCD3- DIQMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRL scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSF
PWTFGQGTKVEIK
482. FL_llxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW TFGQGTKVEIKS
483. FL_llxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc Bispecific EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT molecule YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW
TFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
484. FL_llxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW TFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
485. FL_ll_CCxC QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSS
486. FL_ll_CCxC DIQMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRL D3-scFc VL IYAASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSF
PWTFGCGTKVEIK
487. FL_ll_CCxC QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW TFGCGTKVEIKS
488. FL_ll_CCxC QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
489. FL_ll_CCxC QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
Bispecific QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY
AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW HLE TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
490. FL_12xCD3-
VH CD 1 NARMGVS
scFc
491. FL_12xCD3-
VH CDR2 HIFSNDEKSYRTSLKS
scFc
492. FL_12xCD3-
VH CDR3 IVGYGSGWYAYFDY
scFc
493. FL_12xCD3-
VL CDR1 RASQGIRNDLG
scFc
494. FL_12xCD3-
VL CDR2 AASSLQS
scFc
495. FL_12xCD3-
VL CDR3 LQHNSYPLT
scFc
496. FL_12xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSS
497. FL_12xCD3- DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
498. FL_12xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
499. FL_12xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
500. FL_12xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
Bispecific AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN HLE KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
molecule KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
501. FL_12_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc VH EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSS
502. FL_12_CCxC DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL D3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
503. FL_12_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
504. FL_12_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
505. FL_12_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
506. FL_13xCD3-
VH CD 1 NARMGVS
scFc
507. FL_13xCD3-
VH CDR2 LIYWNDDKRYSPSLKS
scFc
508. FL_13xCD3-
VH CDR3 MVGYGSGWYAYFDY
scFc 509. FL_13xCD3-
VL CD 1 RASQGIRNDLG
scFc
510. FL_13xCD3-
VL CDR2 AASSLQS
scFc
511. FL_13xCD3-
VL CDR3 LQHNSYPLT
scFc
512. FL_13xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc VH EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSS
513. FL_13xCD3- DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
514. FL_13xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS
515. FL_13xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
516. FL_13xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
517. FL_13_CCxC QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc VH EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSS
518. FL_13_CCxC DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRL D3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
519. FL_13_CCxC QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT scFv YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
TFGCGTKVEIKS
520. FL_13_CCxC QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
521. FL_13_CCxC QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
522. FL_14xCD3-
VH CD 1 NARMGVS
scFc
523. FL_14xCD3-
VH CDR2 HIFSNDEKSYSTSLKS
scFc
524. FL_14xCD3-
VH CDR3 IVGYGTGWYGFFDY
scFc
525. FL_14xCD3-
VL CDR1 RTSQGIRNDLG
scFc
526. FL_14xCD3-
VL CDR2 AASSLQS
scFc
527. FL_14xCD3-
VL CDR3 LQHNSYPLT
scFc
528. FL_14xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSS
529. FL_14xCD3- DIQMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
530. FL_14xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKS 531. FL_14xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
532. FL_14xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP HLE ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
molecule DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
533. FL_14_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc VH EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSS
534. FL_14_CCxC DIQMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRL D3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
535. FL_14_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI
scFv QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKS
536. FL_14_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
Bispecific
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
molecule KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
537. FL_14_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3-scFc Bispecific EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI HLE QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY
molecule AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL
TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
538. FL_15xCD3-
VH CD 1 SYGMH
scFc
539. FL_15xCD3-
VH CDR2 VISYEGSNEFYAESVKG
scFc
540. FL_15xCD3-
VH CDR3 GGEI MVRGVIGYYYYGMDV
scFc
541. FL_15xCD3-
VL CDR1 RASQSISSYLN
scFc
542. FL_15xCD3-
VL CDR2 AASSLQS
scFc
543. FL_15xCD3-
VL CDR3 LQHNSYPLT
scFc
544. FL_15xCD3- QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VH VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEI MVRGVIGYYYYGMDVWGQGTTV VSS
545. FL_15xCD3- DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGGGTKVEIK
546. FL_15xCD3- QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG
scFv GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP
KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH NSYPLTFGGGTKVEIKS
547. FL_15xCD3- QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH
Bispecific
NSYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS
molecule GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
548. FL_15xCD3- QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
Bispecific YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG
GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP HLE KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH
molecule NSYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS
GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGS YRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGS GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM ISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGST YRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK
549. FL_15_CCxC QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW D3-scFc VH VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSS
550. FL_15_CCxC DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL D3-scFc VL IYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSY
PLTFGCGTKVEIK
551. FL_15_CCxC QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW D3-scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG
scFv GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP
KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH NSYPLTFGCGTKVEIKS
552. FL_15_CCxC QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW D3-scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH
Bispecific
NSYPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS
molecule GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
553. FL_15_CCxC QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW D3-scFc VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH NSYPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST
Bispecific GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA
ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP HLE PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK
molecule FNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKC
KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGS GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM ISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGST YRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK
554. FL_lxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKAL
Bispecific
scFc_delGK EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
HLE YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI molecule QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
555. FL_l_CCxCD QVTLKESGPALVKPTETLTLTCTVSGFSLSNARMGVSWIRQPPGKCL 3-scFc_delGK EWLANIFSNDEKSYSTSLKSRLTISKGTSKSQWLTMTNMDPEDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPQRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
556. FL_2xCD3- QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
557. FL_2_CCxCD Bispecific QVTLKESGPTLVKPTETLTLTCTLSGFSLNNARMGVSWIRQPPGKCL 3-scFc_delGK HLE EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT molecule YYCARIVGYGSGWYGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
558. FL_3xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
559. FL_3_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
560. FL_4xCD3- Bispecific QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKAL scFc_delGK HLE EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT molecule YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
561. FL_4_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNAKMGVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKGQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
562. FL_5xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKTL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 563. FL_5_CCxCD QVTLKESGPVLVKPTETLTLTCTVSGFSLRNARMAVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYGYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSVSASVGDRVTITCRASQDIRYDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNFYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
564. FL_6xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
565. FL_6_CCxCD QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSFSTSLKNRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
Bispecific SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
566. FL_7xCD3- QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
567. FL_7_CCxCD QVTLKESGPTLVKPTETLTLTCTVSGFSLNNARMGVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKNRLTISKDSSKTQWLTMTNVDPVDTAT
YYCARIVGYGTGWFGYFDYWGQGTQVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRTDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNRYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
568. FL_8xCD3- QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKTL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
Bispecific SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS HLE GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
molecule GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS
DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
569. FL_8_CCxCD QVTLKESGPALVKPTETLTLTCTLSGFSLNNARMAVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTNMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
570. FL_9xCD3- QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
571. FL_9_CCxCD QVTLKESGPTLVKPTETLTLTCTFSGFSLRYARMGVSWIRQPPGKCL 3-scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRNDLAWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
Bispecific KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS HLE GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
molecule GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP
SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
572. FL_10xCD3- QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
573. FL_10_CCxC QVTLKESGPVLVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3- EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK
QMTQSPSSLSASVGDRVTITCRASQDIRDDLGWYQQKPGNAPKRLIY GASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
574. FL_llxCD3- QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW TFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
Bispecific KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS HLE SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
molecule GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL
TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
575. FL_ll_CCxC QVTLKESGPALVKPTETLTLTCTVSGFSFRNARMGVSWIRQPPGKCL D3- EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTLTNMDPVDTAT
YFCARMPEYSSGWSGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK
QMTQSPSSLSASVGDRVTITCRASQDIGYDLGWYQQKPGKAPKRLIY AASTLQSGVPSRFSGSGSGTEFTLI ISSLQPEDFATYYCLQHNSFPW TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
576. FL_12xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
577. FL_12_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3- EWLAHIFSNDEKSYRTSLKSRLTISKDTSKSQWLTMTNMDPVDTAT
YYCARIVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK
QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
Bispecific KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS HLE SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
molecule GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS
GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV
TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
578. FL_13xCD3- QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc_delGK EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
579. FL_13_CCxC QVTLKESGPVLVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3- EWLALIYWNDDKRYSPSLKSRLTITKDTSKNQWLTMTNMDPVDTAT
YYCARMVGYGSGWYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK QMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
580. FL_14xCD3- QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKAL scFc_delGK EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN
Bispecific KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDS HLE KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
molecule SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG
GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEK ISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
581. FL_14_CCxC QVTLKESGPALVKPTQTLTLTCTFSGFSLSNARMGVSWIRQPPGKCL D3- EWLAHIFSNDEKSYSTSLKSRLTISKDTSKSQWLTMTDMDPEDTAT
YYCARIVGYGTGWYGFFDYWGQGILVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK QMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIY
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPL TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
Bispecific GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS HLE GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
molecule ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV
DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
582. FL_15xCD3- QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW scFc_delGK VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH NSYPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST
Bispecific GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA
ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP HLE PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK
molecule FNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKC
KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGG GGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYR CVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK
583. FL_15_CCxC QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW D3- VAVISYEGSNEFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGGEITMVRGVIGYYYYGMDVWGQGTTVTVSSGGGGSGGGGSGG
scFc_delGK
GGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAP KLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQH
Bispecific NSYPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAAS HLE GFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
molecule SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSST GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKA ALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVK FNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL
VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGG GGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS RTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYR CVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK
584. CD70_l_CCx
VH CD 1 SYAMS
CD3-scFc
585. CD70_l_CCx
VH CDR2 VISGSGGRPNYAESVKG
CD3-scFc
586. CD70_l_CCx
VH CDR3 VDYSNYLFFDY
CD3-scFc
587. CD70_l_CCx
VL CDR1 RAGQSVRSSYLG
CD3-scFc
588. CD70_l_CCx
VL CDR2 GASSRAT
CD3-scFc
589. CD70_l_CCx
VL CDR3 QQYGYSPPT
CD3-scFc
590. CD70_l_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VH VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSS
591. CD70_l_CCx EIVLTQSPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGY
SPPTFGCGTKLEIK
592. CD70_l_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG CGTKLEIK
593. CD70_l_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG
bispecific
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
594. CD70_l_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
bispecific MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT HLE AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
molecule GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG
GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
595. CD70_lxCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSS
596. CD70_lxCD3 EIVLTQSPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGY
SPPTFGGGTKLEIK
597. CD70_lxCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG GGTKLEIK
598. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG
CD70_lxCD3 bispecific
GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
599. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_lxCD3
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
600. CD70_2_CCx
VH CD 1 IYAMS
CD3-scFc
601. CD70_2_CCx
VH CDR2 AISGSGGSTFYAESVKG
CD3-scFc
602. CD70_2_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
603. CD70_2_CCx
VL CDR1 RASQSVRSSYLA
CD3-scFc
604. CD70_2_CCx
VL CDR2 GASSRAT
CD3-scFc 605. CD70_2_CCx
VL CD 3 QQYGDLPFT
CD3-scFc
606. CD70_2_CCx EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
607. CD70_2_CCx EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKLEIK
608. CD70_2_CCx EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIK
609. CD70_2_CCx EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
610. CD70_2_CCx EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
611. CD70_2xCD3 EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
612. CD70_2xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKLEIK
613. CD70_2xCD3 EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKGLEW -scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIK
614. EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKGLEW
CD70_2xCD3 bispecific
VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
-scFc molecule YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
615. EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKGLEW
VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_2xCD3
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
616. CD70_3_CCx
VH CD 1 SYAMS
CD3-scFc
617. CD70_3_CCx
VH CDR2 AISGSGGRTFYAESVEG
CD3-scFc
618. CD70_3_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
619. CD70_3_CCx
VL CDR1 RASQSVRSSYLA
CD3-scFc
620. CD70_3_CCx
VL CDR2 GASSRAT
CD3-scFc
621. CD70_3_CCx
VL CDR3 QQYGSSPFT
CD3-scFc
622. CD70_3_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
623. CD70_3_CCx EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGCGTKLEIK
624. CD70_3_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIK
625. CD70_3_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY bispecific YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
626. CD70_3_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
627. CD70_3xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
628. CD70_3xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGPGTKLEIK
629. CD70_3xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIK
630. EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
CD70_3xCD3 bispecific
PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
631. EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
bispecific PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
CD70_3xCD3
HLE MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT
-scFc
molecule AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD
IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
632. CD70_4_CCx
VH CD 1 SYAMS
CD3-scFc
633. CD70_4_CCx
VH CDR2 AISGSGGRTFYAESVEG
CD3-scFc
634. CD70_4_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
635. CD70_4_CCx
VL CDR1 RASQSIRSSYLA
CD3-scFc
636. CD70_4_CCx
VL CDR2 GASSRAT
CD3-scFc
637. CD70_4_CCx
VL CDR3 QQYGDLPFT
CD3-scFc
638. CD70_4_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
639. CD70_4_CCx EIVLTQSPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKLEIK
640. CD70_4_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIK
641. EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS
CD70_4_CCx bispecific SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA CD3-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
642. EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
bispecific MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
CD70_4_CCx AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
HLE CD3-scFc GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY molecule PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT
CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
643. CD70_4xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
644. CD70_4xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKLEIK
645. CD70_4xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIK
646. CD70_4xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
647. CD70_4xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
648. CD70_5_CCx
VH CD 1 SYAMS
CD3-scFc
649. CD70_5_CCx
VH CDR2 AISGSGGRTHYAESVKG
CD3-scFc
650. CD70_5_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
651. CD70_5_CCx
VL CDR1 RASQSVRSSYLA
CD3-scFc
652. CD70_5_CCx
VL CDR2 GASSRAT
CD3-scFc
653. CD70_5_CCx VL CDR3 QQYGSSPFT CD3-scFc
654. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
CD70_5_CCx
VH VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY CD3-scFc YCAKHDYSNYPYFDYWGQGTLVTVSS
655. EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL
CD70_5_CCx
VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS CD3-scFc SPFTFGCGTKLEIK
656. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
CD70_5_CCx YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ scFv
CD3-scFc SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIK
657. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
CD70_5_CCx bispecific
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA CD3-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
658. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_5_CCx
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL CD3-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
659. CD70_5xCD3 EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
660. CD70_5xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGPGTKLEIK
661. CD70_5xCD3 EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIK
662. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
CD70_5xCD3 bispecific
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
-scFc molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
663. EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_5xCD3
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
664. CD70_6_CCx
VH CD 1 SYAMS
CD3-scFc
665. CD70_6_CCx
VH CDR2 LISGSGGRTHYAESVKG
CD3-scFc
666. CD70_6_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
667. CD70_6_CCx
VL CDR1 RASQSVRSTYLA
CD3-scFc
668. CD70_6_CCx
VL CDR2 DASSRAT
CD3-scFc
669. CD70_6_CCx
VL CDR3 QQYGSSPPT
CD3-scFc
670. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
CD70_6_CCx
VH VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY CD3-scFc YCAKHDYSNYPYFDYWGQGTLVTVSS
671. EIVLTQSPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRL
CD70_6_CCx
VL LIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGS CD3-scFc SPPTFGCGTKLEIK
672. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
CD70_6_CCx YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ scFv
CD3-scFc SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTKLEIK
673. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
CD70_6_CCx bispecific SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS CD3-scFc molecule SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
674. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW
VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_6_CCx
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL CD3-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
675. CD70_6xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
676. CD70_6xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRL -scFc VL LIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGS
SPPTFGGGTKLEIK
677. CD70_6xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTKLEIK
678. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG
CD70_6xCD3 bispecific
GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
679. EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
bispecific MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT
CD70_6xCD3
HLE AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
-scFc
molecule GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG
GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
680. CD70_7_CCx
VH CD 1 TYAMS
CD3-scFc
681. CD70_7_CCx
VH CDR2 AISGSGGSTFYAESVKG
CD3-scFc
682. CD70_7_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
683. CD70_7_CCx
VL CDR1 RASQSVRSSYLA
CD3-scFc
684. CD70_7_CCx
VL CDR2 GASSRAT
CD3-scFc
685. CD70_7_CCx
VL CDR3 QQYGDLPFT
CD3-scFc
686. CD70_7_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
687. CD70_7_CCx EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKLEIK
688. CD70_7_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIK
689. CD70_7_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
690. CD70_7_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
bispecific AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY HLE PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
molecule PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS
REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
691. CD70_7xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
692. CD70_7xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKLEIK
693. CD70_7xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIK
694. EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW
VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
CD70_7xCD3 bispecific SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
-scFc molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
695. EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW
VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
CD70_7xCD3
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
-scFc
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
696. CD70_8_CCx
VH CD 1 TYAMS
CD3-scFc
697. CD70_8_CCx
VH CDR2 AISGSGGRTFYAESVEG
CD3-scFc
698. CD70_8_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
699. CD70_8_CCx
VL CDR1 RASQSVRSTYLA
CD3-scFc
700. CD70_8_CCx
VL CDR2 GASSRAT
CD3-scFc
701. CD70_8_CCx
VL CDR3 QQYGDLPFT
CD3-scFc 702. CD70_8_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGRTFYAESVEGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
703. CD70_8_CCx EIVLTQSPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGD
LPFTFGCGTKLEIK
704. CD70_8_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKLEIK
705. CD70_8_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG
bispecific
CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
706. CD70_8_CCx EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
707. CD70_8xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
708. CD70_8xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGD
LPFTFGPGTKLEIK
709. CD70_8xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKLEIK
710. CD70_8xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY bispecific YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ molecule SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
711. CD70_8xCD3 EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
712. CD70_9_CCx
VH CD 1 SYAMS
CD3-scFc
713. CD70_9_CCx
VH CDR2 AISGSGGYTYYAESVKG
CD3-scFc
714. CD70_9_CCx
VH CDR3 HDYSNYPYFDY
CD3-scFc
715. CD70_9_CCx
VL CDR1 RASQSVRSNYLA
CD3-scFc
716. CD70_9_CCx
VL CDR2 GASSRAT
CD3-scFc
717. CD70_9_CCx
VL CDR3 QQYGDLPFT
CD3-scFc
718. CD70_9_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VH VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
719. CD70_9_CCx EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL CD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKVEIK
720. CD70_9_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIK
721. CD70_9_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
bispecific
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
molecule CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVL
722. CD70_9_CCx EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3-scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
723. CD70_9xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VH VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
724. CD70_9xCD3 EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL -scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKVEIK
725. CD70_9xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIK
726. CD70_9xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
727. CD70_9xCD3 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
bispecific MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG HLE GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
molecule PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT
CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
728. CD70_10_CC
VH CD 1 SYAMS
xCD3-scFc
729. CD70_10_CC
VH CDR2 AISGSGGSTFYAESVKG
xCD3-scFc
730. CD70_10_CC
VH CDR3 HDYSNYPYFDY
xCD3-scFc
731. CD70_10_CC
VL CDR1 RASQSVRSSYLA
xCD3-scFc
732. CD70_10_CC
VL CDR2 GASSRAT
xCD3-scFc
733. CD70_10_CC
VL CDR3 QQYGDLPFT
xCD3-scFc
734. CD70_10_CC EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSS
735. CD70_10_CC EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKVEIK
736. CD70_10_CC EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIK
737. CD70_10_CC EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
738. CD70_10_CC EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
bispecific GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY HLE PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
molecule PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
739. CD70_10xCD EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VH VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSS
740. CD70_10xCD EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL 3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKVEIK
741. CD70_10xCD EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIK
742. CD70_10xCD EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
743. CD70_10xCD EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
744. CD70_11_CC
VH CD 1 SYAMS
xCD3-scFc
745. CD70_11_CC
VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
746. CD70_11_CC
VH CDR3 HDYSNYPYFDY
xCD3-scFc
747. CD70_11_CC
VL CDR1 RASQSVRSNYLA
xCD3-scFc
748. CD70_11_CC
VL CDR2 GASSRAT
xCD3-scFc
749. CD70_11_CC
VL CDR3 QQYGDLPFT
xCD3-scFc
750. CD70_11_CC VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
751. CD70_11_CC EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL xCD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKVEIK
752. CD70_11_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIK
753. CD70_11_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
bispecific
CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
754. CD70_11_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
755. CD70_llxCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
756. CD70_llxCD EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL
3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKVEIK
757. CD70_llxCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIK
758. CD70_llxCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
bispecific
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
molecule SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
759. CD70_llxCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
760. CD70_12_CC
VH CD 1 SYAMS
xCD3-scFc
761. CD70_12_CC
VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
762. CD70_12_CC
VH CDR3 HDYSNYPYFDY
xCD3-scFc
763. CD70_12_CC
VL CDR1 RASQSVRSSYLA
xCD3-scFc
764. CD70_12_CC
VL CDR2 GASSRAT
xCD3-scFc
765. CD70_12_CC
VL CDR3 QQYGSSPFT
xCD3-scFc
766. CD70_12_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
767. CD70_12_CC EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGCGTKVEIK
768. CD70_12_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIK
769. CD70_12_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
bispecific SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG molecule CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
770. CD70_12_CC EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
771. CD70_12xCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VH VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
772. CD70_12xCD EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL 3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGPGTKVEIK
773. CD70_12xCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIK
774. CD70_12xCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
bispecific SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
775. CD70_12xCD EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT
bispecific AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG HLE GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
molecule PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT
VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
776. CD70_13_CC
VH CD 1 SYAMS
xCD3-scFc
111. CD70_13_CC
VH CDR2 AISGSGGSTFYAESVQG
xCD3-scFc
IIS. CD70_13_CC
VH CDR3 HDYSNYPYFDY
xCD3-scFc
119. CD70_13_CC
VL CDR1 RASQSVRGNYLA
xCD3-scFc
780. CD70_13_CC
VL CDR2 GASSRAT
xCD3-scFc
781. CD70_13_CC
VL CDR3 QQYGYSPFT
xCD3-scFc
782. CD70_13_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VH VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSS
783. CD70_13_CC EIVLTQSPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRL xCD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGY
SPFTFGCGTKVEIK
784. CD70_13_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG CGTKVEIK
785. CD70_13_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG
bispecific
CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
786. CD70_13_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
bispecific GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ H LE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
787. CD70_13xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VH VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSS
788. CD70_13xCD EIVLTQSPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRL 3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGY
SPFTFGPGTKVEIK
789. CD70_13xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG PGTKVEIK
790. CD70_13xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG
bispecific
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
791. CD70_13xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
792. CD70_14_CC
VH CD 1 TYAMS
xCD3-scFc
793. CD70_14_CC
VH CDR2 AISGSGGGTFYAESVKG
xCD3-scFc
794. CD70_14_CC
VH CDR3 HDYSNYPYFDY
xCD3-scFc
795. CD70_14_CC
VL CDR1 RASQSIRSNYLA
xCD3-scFc
796. CD70_14_CC
VL CDR2 GASSRAT
xCD3-scFc
797. CD70_14_CC
VL CDR3 QQYGSSPFT
xCD3-scFc
798. CD70_14_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW
VH
xCD3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSS
799. CD70_14_CC EIVLTQSPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRL xCD3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGCGTKVEIK
800. CD70_14_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIK
801. CD70_14_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
bispecific SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
molecule MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
802. CD70_14_CC EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
803. CD70_14xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW
3-scFc VH VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
804. CD70_14xCD EIVLTQSPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRL
3-scFc VL LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPFTFGPGTKVEIK
805. CD70_14xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFv SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIK
806. CD70_14xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
bispecific SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS molecule SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
807. CD70_ 14xCD EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
bispecific PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ HLE PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
molecule GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
808. CD70_ 15_ CC VH CD 1 TYAMS
xCD3-scFc
809. CD70_ 15_ CC VH CDR2 LISGSGGRTYYAESVKG
xCD3-scFc
810. CD70_ 15_ CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
811. CD70_ 15_ CC VL CDR1 RASQSVRSNYLA
xCD3-scFc
812. CD70_ 15_ CC VL CDR2 GASNRAT
xCD3-scFc
813. CD70_ 15_ CC VL CDR3 QQYGISPPT
xCD3-scFc
814. CD70_15_ CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
815. CD70_15_ CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL xCD3-scFc LIYGASNRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGI
SPPTFGCGTKVEIK
816. CD70_15_ CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGISPPTFG CGTKVEIK
817. CD70_15_ CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc molecule VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGISPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL 818. CD70_15_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYSCQQYGISPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
819. CD70_15xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
820. CD70_15xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL 3-scFc LIYGASNRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGI
SPPTFGGGTKVEIK
821. CD70_15xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYSCQQYGISPPTFG GGTKVEIK
822. CD70_15xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc molecule VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYSCQQYGISPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
823. CD70_15xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGISPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS
REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
824. CD70_ _16_CC VH CD 1 SYAMS
xCD3-scFc
825. CD70_ _16_CC VH CDR2 AISGSGGRAQYAESVQG
xCD3-scFc
826. CD70_ _16_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
827. CD70_ _16_CC VL CDR1 RASQSVSSNLA
xCD3-scFc
828. CD70_ _16_CC VL CDR2 GSSSRAT
xCD3-scFc
829. CD70_ _16_CC VL CDR3 QQYGSSPPP
xCD3-scFc
830. CD70_16_CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKCLEW xCD3-scFc VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
831. CD70_16_CC VL EIVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLL xCD3-scFc IYGSSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS
PPPFGCGTKVEIK
832. CD70_16_CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKCLEW xCD3-scFc VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGC GTKVEIK
833. CD70_16_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKCLEW xCD3-scFc molecule VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
834. CD70_16_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKCLEW xCD3-scFc HLE VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 835. CD70_ 16xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKGLEW 3-scFc VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
836. CD70_ 16xCD VL EIVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLL 3-scFc IYGSSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS
PPPFGGGTKVEIK
837. CD70_ 16xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKGLEW 3-scFc VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGG GTKVEIK
838. CD70_ 16xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKGLEW 3-scFc molecule VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
839. CD70_ 16xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKGLEW 3-scFc HLE VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPPFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
840. CD70_ 17_ CC VH CD 1 SYAMS
xCD3-scFc
841. CD70_ 17_ CC VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
842. CD70_ 17_ CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
843. CD70_ 17_ CC VL CDR1 RASQGVRSDYLA
xCD3-scFc
844. CD70_ 17_ CC VL CDR2 GASSRAT
xCD3-scFc
845. CD70_ 17_ CC VL CDR3 QQYGSTPPT
xCD3-scFc
846. CD70_17_ CC VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSS 847. CD70_17_CC VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGS
TPPTFGCGTKVEIK
848. CD70_17_CC scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG CGTKVEIK
849. CD70_17_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
850. CD70_17_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
851. CD70_17xCD VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSS
852. CD70_17xCD VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGS
TPPTFGGGTKVEIK
853. CD70_17xCD scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG GGTKVEIK
854. CD70_17xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVL
855. CD70_17xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
856. CD70_18_CC VH CD 1 SYAMS
xCD3-scFc
857. CD70_18_CC VH CDR2 AIGEGGGYTYYAESVKG
xCD3-scFc
858. CD70_18_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
859. CD70_18_CC VL CDR1 RASQGVRSSYFA
xCD3-scFc
860. CD70_18_CC VL CDR2 GASTRAT
xCD3-scFc
861. CD70_18_CC VL CDR3 QQYGSSPPT
xCD3-scFc
862. CD70_18_CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVS
863. CD70_18_CC VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRL xCD3-scFc LIYGASTRATGIPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPPTFGCGTKVEIK
864. CD70_18_CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPTFG CGTKVEIK
865. CD70_18_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
866. CD70_18_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY molecule YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
867. CD70_18xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSS
868. CD70_18xCD VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRL 3-scFc LIYGASTRATGIPARFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPPTFGQGTKVEIK
869. CD70_18xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG QGTKVEIK
870. CD70_18xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc molecule VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
871. CD70_18xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
872. CD70_ _19_CC VH CD 1 SYAMS
xCD3-scFc
873. CD70_ _19_CC VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
874. CD70_ _19_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
875. CD70_ _19_CC VL CDR1 RASQSIRSNYLA
xCD3-scFc
876. CD70_ _19_CC VL CDR2 GASSRAT
xCD3-scFc
877. CD70_ _19_CC VL CDR3 QQYGSSPPS
xCD3-scFc
878. CD70_19_CC VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
879. CD70_19_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPPSFGCGTKVEIK
880. CD70_19_CC scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG CGTKVEIK
881. CD70_19_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
882. CD70_19_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
883. CD70_ _19xCD VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
884. CD70_ 19xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS
SPPSFGQGTKVEIK
885. CD70_ 19xCD scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG QGTKVEIK
886. CD70_ 19xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
887. CD70_ 19xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
888. CD70_ 20_CC VH CD 1 SYAMS
xCD3-scFc
889. CD70_ 20_CC VH CDR2 AISGSGGGTFYAESVEG
xCD3-scFc
890. CD70_ 20_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
891. CD70_ 20_CC VL CDR1 RASQSVRSSYLA
xCD3-scFc
892. CD70_ 20_CC VL CDR2 GASSRAT
xCD3-scFc
893. CD70_ 20_CC VL CDR3 QQYGDLPFT
xCD3-scFc
894. CD70 20 CC VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSS
895. CD70_ 20_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGD
LPFTFGCGTKVEIK
896. CD70_20_CC scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKVEIK
897. CD70_20_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
898. CD70_20_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
899. CD70_20xCD VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSS
900. CD70_20xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGD
LPFTFGPGTKVEIK
901. CD70_20xCD scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKVEIK
902. CD70_20xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc molecule VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
903. CD70_20xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
904. CD70_21_CC VH CD 1 SYAMS
xCD3-scFc
905. CD70_21_CC VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
906. CD70_21_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
907. CD70_21_CC VL CDR1 RASQSVRSSYLA
xCD3-scFc
908. CD70_21_CC VL CDR2 GASSRAT
xCD3-scFc
909. CD70_21_CC VL CDR3 QQYGDLPFT
xCD3-scFc
910. CD70_21_CC VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSS
911. CD70_21_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTKVDIK
912. CD70_21_CC scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVDIK
913. CD70_21_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
914. CD70_21_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY molecule YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
915. CD70_21xCD VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSS
916. CD70_21xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL 3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKVDIK
917. CD70_21xCD scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVDIK
918. CD70_21xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
919. CD70_21xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
920. CD70_ 22_CC VH CD 1 TYAMS
xCD3-scFc
921. CD70_ 22_CC VH CDR2 LISGSGGRTYYAESVKG
xCD3-scFc
922. CD70_ 22_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
923. CD70_ 22_CC VL CDR1 RASQGVRSSYLA
xCD3-scFc
924. CD70_ 22_CC VL CDR2 GASSRAT
xCD3-scFc
925. CD70_ 22_CC VL CDR3 QQYGSSPPT
xCD3-scFc
926. CD70_22_CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
927. CD70_22_CC VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGS
SPPTFGCGTKVDIK
928. CD70_22_CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIK
929. CD70_22_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc molecule VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
930. CD70_22_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3-scFc H LE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
931. CD70_ 22xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSS
932. CD70_22xCD VL EIVLTQSPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRL 3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGS
SPPTFGGGTKVDIK
933. CD70_22xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIK
934. CD70_22xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc molecule VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
935. CD70_22xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
936. CD70_23_CC VH CD 1 SYAMS
xCD3-scFc
937. CD70_23_CC VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
938. CD70_23_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
939. CD70_23_CC VL CDR1 RASQSVRSNYLA
xCD3-scFc
940. CD70_23_CC VL CDR2 GASSRAT
xCD3-scFc
941. CD70_23_CC VL CDR3 QQYGSSPPT
xCD3-scFc
942. CD70_23_CC VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
943. CD70_23_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGS SPPTFGCGTKVDIK
944. CD70_23_CC scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIK
945. CD70_23_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
946. CD70_23_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
947. CD70_23xCD VH EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
948. CD70_23xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGS
SPPTFGGGTKVDIK
949. CD70_23xCD scFv EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIK
950. CD70_23xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW
3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL 951. CD70_ 23xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAISGSGGRTFYAESVEGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
952. CD70_ 24_ CC VH CD 1 SYAMS
xCD3-scFc
953. CD70_ 24_ CC VH CDR2 VISGSGGITDFAESVKG
xCD3-scFc
954. CD70_ 24_ CC VH CDR3 HDYSNYFFFDY
xCD3-scFc
955. CD70_ 24_ CC VL CDR1 RASQGISNYLA
xCD3-scFc
956. CD70_ 24_ CC VL CDR2 AASILQS
xCD3-scFc
957. CD70_ 24_ CC VL CDR3 QQYFAYPIT
xCD3-scFc
958. CD70_24_ CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSS
959. CD70_24_ CC VL DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLL xCD3-scFc IYAASILQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAY
PITFGCGTRLEIK
960. CD70_24_ CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGC GTRLEIK
961. CD70_24_ CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGC GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
962. CD70_24_ CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI
LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGC GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
963. CD70_24xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSS
964. CD70_24xCD VL DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLL 3-scFc IYAASILQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAY
PITFGQGTRLEIK
965. CD70_24xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGQ GTRLEIK
966. CD70_24xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc molecule VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGQ GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
967. CD70_24xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGQ GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 968. CD70_25_CC VH CD 1 SYAMS
xCD3-scFc
969. CD70_25_CC VH CDR2 AISGSGGRTFYAESVEG
xCD3-scFc
970. CD70_25_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
971. CD70_25_CC VL CDR1 RASQSVRSSYLA
xCD3-scFc
972. CD70_25_CC VL CDR2 GASSRAT
xCD3-scFc
973. CD70_25_CC VL CDR3 QQYGSSPPT
xCD3-scFc
974. CD70_25_CC VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
975. CD70_25_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGS
SPPTFGCGTRLEIK
976. CD70_25_CC scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTRLEIK
977. CD70_25_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
978. CD70_25_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
979. CD70_25xCD VH EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS 980. CD70_25xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL 3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGS
SPPTFGGGTRLEIK
981. CD70_25xCD scFv EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTRLEIK
982. CD70_25xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc molecule VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
983. CD70_25xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
984. CD70_26_CC VH CD 1 IYAMS
xCD3-scFc
985. CD70_26_CC VH CDR2 AIGGSGGSTFYAESVKG
xCD3-scFc
986. CD70_26_CC VH CDR3 HDYSNYPYFDY
xCD3-scFc
987. CD70_26_CC VL CDR1 RASQSVRSSYVA
xCD3-scFc
988. CD70_26_CC VL CDR2 GASSRAT
xCD3-scFc
989. CD70_26_CC VL CDR3 QQYGDLPFT
xCD3-scFc
990. CD70_26_CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKCLEW xCD3-scFc VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
991. CD70_26_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGCGTRLEIK 992. CD70_26_CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKCLEW xCD3-scFc VSAIGGSGGSTFYAESVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTRLEIK
993. CD70_26_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKCLEW xCD3-scFc molecule VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
994. CD70_26_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKCLEW xCD3-scFc HLE VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
995. CD70_26xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEW
3-scFc VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSS
996. CD70_26xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTRLEIK
997. CD70_26xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEW
3-scFc VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTRLEIK
998. CD70_26xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEW
3-scFc molecule VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
999. CD70_26xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEW 3-scFc HLE VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY molecule YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1000 CD70_ 27_ CC VH CD 1 SSSYYWG
xCD3-scFc
1001 CD70_ 27_ CC VH CDR2 SIYHSGGTYFNPSLKS
xCD3-scFc
1002 CD70_ 27_ CC VH CDR3 HYEILTGYYPDVFDI
xCD3-scFc
1003 CD70_ 27_ CC VL CDR1 RASQSISSYLN
xCD3-scFc
1004 CD70_ 27_ CC VL CDR2 AASNLQS
xCD3-scFc
1005 CD70_ 27_ CC VL CDR3 QQSFSSPRT
xCD3-scFc
1006 CD70 27 CC VH QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKCL xCD3-scFc EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSS
1007 CD70 27 CC VL DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL xCD3- cFc IYAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSS
PRTFGCGTKVEIK
1008 CD70 27 CC scFv QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKCL xCD3- cFc EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI
YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP
RTFGCGTKVEIK
1009 CD70 27 CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKCL xCD3-scFc molecule EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI
YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP
RTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDD
SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV
SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT
SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL
SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1010 CD70 27 CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKCL xCD3-scFc HLE EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
molecule
IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP
RTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDD SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPA PELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWY VDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEK ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGG SGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT PEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGK
1011 CD70_27xCD VH QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKGL 3-scFc EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSS
1012 CD70_27xCD VL DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL 3-scFc IYAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSS
PRTFGQGTKVEIK
1013 CD70_27xCD scFv QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKGL 3-scFc EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP RTFGQGTKVEIK
1014 CD70_27xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKGL 3-scFc molecule EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP RTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDD SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1015 CD70_27xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKGL 3-scFc HLE EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
molecule
IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP RTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDD SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPA PELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWY VDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGG SGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT PEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGK
1016 CD70_28_CC VH CD 1 SYSMN
xCD3-scFc
1017 CD70_28_CC VH CDR2 YISSSGGYIYYAESVKG
xCD3-scFc
1018 CD70_28_CC VH CDR3 GDYSNYAYFDY
xCD3-scFc
1019 CD70_28_CC VL CDR1 RASQGISNYLA
xCD3-scFc
1020 CD70_28_CC VL CDR2 AASTLQS
xCD3-scFc
1021 CD70_28_CC VL CDR3 QQYYSTPLT
xCD3-scFc
1022 CD70_28_CC VH EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKCLEW xCD3-scFc VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSS
1023 CD70_28_CC VL DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLL xCD3-scFc IYAASTLQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYST
PLTFGCGTKVEIK
1024 CD70_28_CC scFv EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKCLEW xCD3-scFc VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGC GTKVEIK
1025 CD70_28_CC bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKCLEW xCD3-scFc molecule VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1026 CD70_28_CC bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKCLEW xCD3-scFc HLE VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST
LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1027 CD70_28xCD VH EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW 3-scFc VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY YCSRGDYSNYAYFDYWGQGTLVTVSS
1028 CD70_28xCD VL DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLL 3-scFc IYAASTLQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYST
PLTFGGGTKVEIK
1029 CD70_28xCD scFv EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW 3-scFc VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGG GTKVEIK
1030 CD70_28xCD bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW 3-scFc molecule VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1031 CD70_28xCD bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW 3-scFc HLE VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1032 CD70_29_CC VH CD 1 VYAMS
xCD3-scFc
1033 CD70_29_CC VH CDR2 TISGSGGSTFYAESVKG
xCD3-scFc
1034 CD70_29_CC VH CDR3 HDYSNYAYFDY
xCD3-scFc
1035 CD70_29_CC VL CDR1 RASQSVRSSYLA
xCD3-scFc
1036 CD70_29_CC VL CDR2 GASSRAT
xCD3-scFc
1037 CD70_29_CC VL CDR3 QQYGDLPFT
xCD3-scFc
1038 CD70_29_CC VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKCLEW xCD3-scFc VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSS
1039 CD70_29_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL xCD3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD LPFTFGCGTKVEIK
1040 CD70_29_CC scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKCLEW xCD3-scFc VS ISGSGGSTFYAESVKGRF ISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIK
1041 CD70_29_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKCLEW xCD3-scFc molecule VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
1042 CD70_29_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKCLEW xCD3-scFc HLE VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1043 CD70_29xCD VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKGLEW
3-scFc VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSS
1044 CD70_29xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRL
3-scFc LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGD
LPFTFGPGTKVEIK
1045 CD70_29xCD scFv EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKGLEW
3-scFc VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIK
1046 CD70_29xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKGLEW
3-scFc molecule VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL 1047 CD70_29xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKGLEW 3-scFc HLE VS ISGSGGSTFYAESVKGRF ISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1048 CD70_30_CC VH CD 1 SYGMH
xCD3-scFc
1049 CD70_30_CC VH CDR2 VISYEGSNKYYAESVKG
xCD3-scFc
1050 CD70_30_CC VH CDR3 GRYYGSGNYNHGMDV
xCD3-scFc
1051 CD70_30_CC VL CDR1 RASQSISSYLN
xCD3-scFc
1052 CD70_30_CC VL CDR2 AASSLQS
xCD3-scFc
1053 CD70_30_CC VL CDR3 QQSYSTPFT
xCD3-scFc
1054 CD70_30_CC VH QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKCLEW xCD3-scFc VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSS
1055 CD70_30_CC VL DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL xCD3-scFc IYAASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYST
PFTFGCGTKVEIK
1056 CD70_30_CC scFv QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKCLEW xCD3-scFc VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGCGTKVEIK
1057 CD70_30_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKCLEW xCD3-scFc molecule VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1058 CD70_30_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKCLEW xCD3-scFc HLE VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI
molecule QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1059 CD70_30xCD VH QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKGLEW 3-scFc VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSS
1060 CD70_30xCD VL DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLL 3-scFc IYAASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYST
PFTFGPGTKVEIK
1061 CD70_30xCD scFv QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKGLEW 3-scFc VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGPGTKVEIK
1062 CD70_30xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKGLEW 3-scFc molecule VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1063 CD70_30xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKGLEW 3-scFc HLE VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI
molecule
QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
GK
1064 CD70_31_CC VH CD 1 SYGMH
xCD3-scFc
1065 CD70_31_CC VH CDR2 VTWYDASNKYYGDAVKG
xCD3-scFc
1066 CD70_31_CC VH CDR3 DLLRGVKGYAMDV
xCD3-scFc
1067 CD70_31_CC VL CDR1 RASQSLRRIYLA
xCD3-scFc
1068 CD70_31_CC VL CDR2 DVFDRAT
xCD3-scFc
1069 CD70_31_CC VL CDR3 QQYSESPFT
xCD3-scFc
1070 CD70_31_CC VH QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW xCD3-scFc VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSS
1071 CD70_31_CC VL EIVLTQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRL xCD3-scFc LIYDVFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSE
SPFTFGCGTKVDIK
1072 CD70_31_CC scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW xCD3-scFc VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGCGTKVDIK
1073 CD70_31_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW xCD3-scFc molecule VAVTWYDASNKYYGDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1074 CD70_31_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW xCD3-scFc HLE VAVTWYDASNKYYGDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL
molecule TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD
VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K 1075 CD70_31xCD VH QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW 3-scFc VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSS
1076 CD70_31xCD VL EIVLTQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRL 3-scFc LIYDVFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSE
SPFTFGPGTKVDIK
1077 CD70_31xCD scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW 3-scFc VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGPGTKVDIK
1078 CD70_31xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW 3-scFc molecule VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1079 CD70_31xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW 3-scFc HLE VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL
molecule
TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
1080 CD70_32_CC VH CD 1 SYGIS
xCD3-scFc
1081 CD70_32_CC VH CDR2 WISAYQGYTHYAQKLQG
xCD3-scFc
1082 CD70_32_CC VH CDR3 DYGGNDYYGMDV
xCD3-scFc
1083 CD70_32_CC VL CDR1 SGSSSNIGINYVY
xCD3-scFc
1084 CD70_32_CC VL CDR2 RSDQRPS
xCD3-scFc
1085 CD70_32_CC VL CDR3 AAFDESLSGW
xCD3-scFc
1086 CD70_32_CC VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEW xCD3-scFc MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY YCARDYGGNDYYGMDVWGQGT V VSS
1087 CD70_32_CC VL QSVLTQPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKL xCD3-scFc LIYRSDQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDE
SLSGWFGCGTKLTVL
1088 CD70_32_CC scFv QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEW xCD3-scFc MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGCGTKLTVL
1089 CD70_32_CC bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEW xCD3-scFc molecule MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1090 CD70_32_CC bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEW xCD3-scFc HLE MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT
molecule
QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1091 CD70_32xCD VH QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEW 3-scFc MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTV VSS
1092 CD70_32xCD VL QSVLTQPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKL 3-scFc LIYRSDQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDE
SLSGWFGGGTKLTVL
1093 CD70_32xCD scFv QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEW 3-scFc MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGGGTKLTVL
1094 CD70_32xCD bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEW 3-scFc molecule MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS
SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1095 CD70_ 32xCD bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEW 3-scFc HLE MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT
molecule
QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1096 CD70_ 33_ CC VH CD 1 YYGMH
xCD3-scFc
1097 CD70_ 33_ CC VH CDR2 VIWYDASNKYYADAVKG
xCD3-scFc
1098 CD70_ 33_ CC VH CDR3 DREMGSRGDFDY
xCD3-scFc
1099 CD70_ 33_ CC VL CDR1 RASQGINNYLA
xCD3-scFc
1100 CD70_ 33_ CC VL CDR2 AVSILQS
xCD3-scFc
1101 CD70_ 33_ CC VL CDR3 QQYNFYPFS
xCD3-scFc
1102 CD70_33_ CC VH QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSS
1103 CD70_33_ CC VL DIQMTQSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSL xCD3-scFc IYAVSILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFY
PFSFGCGTKVDIK
1104 CD70_33_ CC scFv QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT QSPSSLSASVGDRV I CRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG CGTKVDIK
1105 CD70_33_ CC bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKCLEW xCD3-scFc molecule VAVIWYDASNKYYADAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVL
1106 CD70_33_CC bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKCLEW xCD3-scFc HLE VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT
molecule
QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1107 CD70_33xCD VH QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEW 3-scFc VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSS
1108 CD70_33xCD VL DIQMTQSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSL 3-scFc IYAVSILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFY
PFSFGQGTKVDIK
1109 CD70_33xCD scFv QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEW 3-scFc VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG QGTKVDIK
1110 CD70_33xCD bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEW 3-scFc molecule VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG QGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
1111 CD70_33xCD bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEW 3-scFc HLE VAVIWYDASNKYYADAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT
molecule
QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG QGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT
CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT
VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS
REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1112 CD70_ _34_ CC VH CD 1 GFYWS
xCD3-scFc
1113 CD70_ _34_ CC VH CDR2 EIYHSGHATNNPSLKS
xCD3-scFc
1114 CD70_ _34_ CC VH CDR3 GGNSGYIFDY
xCD3-scFc
1115 CD70_ _34_ CC VL CDR1 RTSQYIGRYLN
xCD3-scFc
1116 CD70_ _34_ CC VL CDR2 GASTLQQ
xCD3-scFc
1117 CD70_ _34_ CC VL CDR3 QQTYSTPRT
xCD3-scFc
1118 CD70 34 CC VH QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKCLEW xCD3-scFc IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSS
1119 CD70 34 CC VL DVQMTQSPSSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVL xCD3- cFc IYGASTLQQGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYST
PRTFGCGTKVEIK
1120 CD70 34 CC scFv QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKCLEW xCD3- cFc IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ
QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGCGT
KVEIK
1121 CD70 34 CC bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKCLEW xCD3-scFc molecule IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ
QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGCGT
KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW
VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL
QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS
GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW
VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED
EAEYYCVLWYSNRWVFGGGTKLTVL
1122 CD70 34 CC bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKCLEW xCD3-scFc HLE IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
molecule
SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGCGT KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED EAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGP SVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF
FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1123 CD70_ 34xCD VH QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKGLEW 3-scFc IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSS
1124 CD70_ 34xCD VL DVQMTQSPSSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVL 3-scFc IYGASTLQQGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYST
PRTFGQGTKVEIK
1125 CD70_ 34xCD scFv QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKGLEW 3-scFc IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGQGT KVEIK
1126 CD70_ 34xCD bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKGLEW 3-scFc molecule IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGQGT KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED EAEYYCVLWYSNRWVFGGGTKLTVL
1127 CD70_ 34xCD bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKGLEW 3-scFc HLE IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
molecule
SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGQGT KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED EAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGP SVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1128 CD70_ 35_ CC VH CD 1 TYGMH
xCD3-scFc
1129 CD70_ 35_ CC VH CDR2 VIWYEGSNKYYGESVKG
xCD3-scFc
1130 CD70_ 35_ CC VH CDR3 DNSHYYYGMDV
xCD3-scFc
1131 CD70_ 35_ CC VL CDR1 TGSSSNIGAGYDVN
xCD3-scFc
1132 CD70_ 35_ CC VL CDR2 VNNNRPS
xCD3-scFc
1133 CD70_ 35_ CC VL CDR3 QSYDTSLSASV
xCD3-scFc
1134 CD70_ 35_ CC VH QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSS
1135 CD70_35_CC VL QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPK xCD3-scFc LLIYVNNNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYD
TSLSASVFGCGTRLTVL
1136 CD70_35_CC scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGCGTRLTVL
1137 CD70_35_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc molecule VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1138 CD70_35_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule
PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1139 CD70_35xCD VH QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSS
1140 CD70_35xCD VL QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPK 3-scFc LLIYVNNNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYD
TSLSASVFGGGTRLTVL
1141 CD70_35xCD scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGGGTRLTVL
1142 CD70_35xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc molecule VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS
KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1143 CD70_ 35xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule
PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1144 CD70_ 36_ CC VH CD 1 TYGMH
xCD3-scFc
1145 CD70_ 36_ CC VH CDR2 VIWYEGSNKYYGESVKG
xCD3-scFc
1146 CD70_ 36_ CC VH CDR3 DNSHYYYGMDV
xCD3-scFc
1147 CD70_ 36_ CC VL CDR1 TGSSSNIGAGYDVN
xCD3-scFc
1148 CD70_ 36_ CC VL CDR2 VNNNRPS
xCD3-scFc
1149 CD70_ 36_ CC VL CDR3 QSYETSLSASV
xCD3-scFc
1150 CD70_36_ CC VH QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSS
1151 CD70_36_ CC VL QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPK xCD3-scFc LLIYVNNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYE
TSLSASVFGCGTRLTVL
1152 CD70_36_ CC scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGCGTRLTVL
1153 CD70_36_ CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc molecule VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1154 CD70_36_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3-scFc HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule
PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1155 CD70_36xCD VH QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSS
1156 CD70_36xCD VL QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPK 3-scFc LLIYVNNNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYE
TSLSASVFGGGTRLTVL
1157 CD70_36xCD scFv QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGGGTRLTVL
1158 CD70_36xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc molecule VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1159 CD70_36xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN
NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG
NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGS GGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP EVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVS VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK
1160 CD70_ _37_CC VH CD 1 SGVYYWS
xCD3-scFc
1161 CD70_ _37_CC VH CDR2 YIYYSGSTSYNPSLKS
xCD3-scFc
1162 CD70_ _37_CC VH CDR3 SGYSYALFDY
xCD3-scFc
1163 CD70_ _37_CC VL CDR1 RASQSVDRYFN
xCD3-scFc
1164 CD70_ _37_CC VL CDR2 AASSLQS
xCD3-scFc
1165 CD70_ _37_CC VL CDR3 QQSYSTPWT
xCD3-scFc
1166 CD70_37_CC VH QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKCL xCD3-scFc EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSS
1167 CD70_37_CC VL DIQMTQSPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVL xCD3-scFc IFAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYST
PWTFGCGTKVEVK
1168 CD70_37_CC scFv QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKCL xCD3-scFc EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEVK
1169 CD70_37_CC bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKCL xCD3-scFc molecule EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1170 CD70_37_CC bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKCL xCD3-scFc HLE EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC
VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1171 CD70_ 37xCD VH QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKGL 3-scFc EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSS
1172 CD70_ 37xCD VL DIQMTQSPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVL 3-scFc IFAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYST
PWTFGQGTKVEVK
1173 CD70_ 37xCD scFv QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKGL 3-scFc EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEVK
1174 CD70_ 37xCD bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKGL 3-scFc molecule EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1175 CD70_ 37xCD bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKGL 3-scFc HLE EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1176 CD70_ 38_ CC VH CD 1 SGGYYWS
xCD3-scFc
1177 CD70_ 38_ CC VH CDR2 YIFYSGSTDYNPSLKS
xCD3-scFc
1178 CD70_ 38_ CC VH CDR3 SGYSYALFDA
xCD3-scFc
1179 CD70_ 38_ CC VL CDR1 RASQFIGRYFN
xCD3-scFc
1180 CD70_ 38_ CC VL CDR2 AESSLQS
xCD3-scFc 1181 CD70_38_CC VL CD 3 QQSYSTPWT
xCD3-scFc
1182 CD70_38_CC VH QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKCL xCD3-scFc EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSS
1183 CD70_38_CC VL DIQMTQSPSSLSASVGDRV ISCRASQFIGRYFNWYQQKPGKAPKVL xCD3-scFc IYAESSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYST
PWTFGCGTKVEIK
1184 CD70_38_CC scFv QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKCL xCD3-scFc EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEIK
1185 CD70_38_CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKCL xCD3-scFc molecule EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1186 CD70_38_CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKCL xCD3-scFc HLE EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1187 CD70_38xCD VH QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKGL
3-scFc EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSS
1188 CD70_38xCD VL DIQMTQSPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVL
3-scFc IYAESSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYST
PWTFGQGTKVEIK
1189 CD70_38xCD scFv QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKGL
3-scFc EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEIK
1190 CD70_38xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKGL
3-scFc molecule EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ SPSSLSASVGDRV ISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS
LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
1191 CD70_38xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKGL 3-scFc HLE EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule
SPSSLSASVGDRV ISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGG SGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC VWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTV LHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1192 CD70_l_CCx bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1193 CD70_lxCD3 bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSVISGSGGRPNYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY
YCAKVDYSNYLFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGEGATLSCRAGQSVRSSYLGWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPPTFG GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP
APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1194 CD70_2_CCx bispecific EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1195 CD70_2xCD3 bispecific EVQLLESGGGLVQPGGSLKLSCAASGFTFSIYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1196 CD70_3_CCx bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV
EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1197 CD70_3xCD3 bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLFLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1198 CD70_4_CCx bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1199 CD70_4xCD3 bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSIRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL
GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1200 CD70_5_CCx bispecific EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1201 CD70_5xCD3 bispecific EVQLLESGGGLVQSGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1202 CD70_6_CCx bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ
PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1203 CD70_6xCD3 bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSLISGSGGRTHYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYDAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1204 CD70_7_CCx bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1205 CD70_7xCD3 bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY
PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1206 CD70_8_CCx bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1207 CD70_8xCD3 bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSTYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1208 CD70_9_CCx bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW CD3- HLE VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1209 CD70_9xCD3 bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW -scFc_delGK HLE VSAISGSGGYTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1210 CD70_10_CC bispecific EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1211 CD70_10xCD bispecific EVQLLESGGGLAQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
FCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT
AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1212 CD70_11_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1213 CD70_llxCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1214 CD70_12_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA
MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1215 CD70_12xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1216 CD70_13_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1217 CD70_13xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGSTFYAESVQGRFTISRDNSKNTLYLQVNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRGNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGYSPFTFG
PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1218 CD70_14_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1219 CD70_14xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGGTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1220 CD70_15_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3- HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ scFc_delGK SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS molecule
NRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGISPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1221 CD70_15xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS NRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGISPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1222 CD70_16_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKCLEW xCD3- HLE VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS
RATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPPFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1223 CD70_16xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQSPGKGLEW 3-scFc_delGK HLE VSAISGSGGRAQYAESVQGRFTVSRDNSKNTLYLQMNSLRAEDTAVY YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ molecule
SPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSS RATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPPFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1224 CD70_17_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1225 CD70_17xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQGVRSDYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYHCQQYGSTPPTFG GGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1226 CD70_18_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY scFc_delGK YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ molecule SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS
TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1227 CD70_18xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAIGEGGGYTYYAESVKGRFTISRDNSKNTLSLLMNSLRAEDTAVY
YCARHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQGVRSSYFAWYQQKPGQAPRLLIYGAS
TRATGIPARFSGSGSGTDFTL ISRLEPEDFAVYYCQQYGSSPPTFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1228 CD70_19_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 1229 CD70_19xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSIRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPSFG QGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1230 CD70_20_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1231 CD70_20xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGGTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARHDYSNYPYFDYWGLGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYSCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1232 CD70_21_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1233 CD70_21xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCTKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1234 CD70_22_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKCLEW xCD3- HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS
FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1235 CD70_22xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSLISGSGGRTYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQGVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1236 CD70_23_CC bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1237 CD70_23xCD bispecific EVQLLESGGGWQPGRSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSPPTFG GGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE
EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1238 CD70_24_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
scFc_delGK molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI
LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGC GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1239 CD70_24xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSVISGSGGITDFAESVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY
FCARHDYSNYFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASI
LQSGVPSKFSGSGSGTDFTLTISSLQPEDFAIYYCQQYFAYPITFGQ GTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1240 CD70_25_CC bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKCLEW xCD3- HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1241 CD70_25xCD bispecific EVQLLESGGGMVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAISGSGGRTFYAESVEGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYFCQQYGSSPPTFG GGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1242 CD70_26_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKCLEW xCD3- HLE VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1243 CD70_26xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSAIGGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCAKHDYSNYPYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule SPGTLSLSPGERATLSCRASQSVRSSYVAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV
WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1244 CD70_27_CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKCL xCD3- HLE EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
scFc_delGK molecule IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI
YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP RTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDD SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPA PELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWY VDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
1245 CD70_27xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGGSISSSSYYWGWIRQPPGKGL 3-scFc_delGK HLE EWIGSIYHSGGTYFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARHYEILTGYYPDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSD
molecule
IQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI YAASNLQSGVSSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSSP RTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF NKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDD SKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTV SSGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVT SGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTL SGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPA PELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWY VDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSG GGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
K
1246 CD70_28_CC bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKCLEW xCD3- HLE VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
scFc_delGK molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST
LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI
AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1247 CD70_28xCD bispecific EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW 3-scFc_delGK HLE VSYISSSGGYIYYAESVKGRFTISRDNAKNSLYLQMNSLRAEDAAVY
YCSRGDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAAST
LQSGVPSRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPLTFGG GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1248 CD70_29_CC bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKCLEW xCD3- HLE VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
scFc_delGK molecule SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG CGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1249 CD70_29xCD bispecific EVQLLESGGGLVQPGGSLRLSCAASGFTFSVYAMSWVRQAPGKGLEW 3-scFc_delGK HLE VSTISGSGGSTFYAESVKGRFTISRDNSKNTLYLQMNRLRAEDTAVY
YCARHDYSNYAYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQ
molecule
SPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGAS SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGDLPFTFG PGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP
APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1250 CD70_30_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKCLEW xCD3- HLE VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI
scFc_delGK molecule
QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1251 CD70_30xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFMFSSYGMHWVRQAPGKGLEW 3-scFc_delGK HLE VAVISYEGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARGRYYGSGNYNHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDI
molecule QMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
AASSLQSGVPSRFSGRGSGTDFTLTISSLQPEDFATYYCQQSYSTPF TFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1252 CD70_31_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEW xCD3- HLE VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL
scFc_delGK molecule TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD
VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGCGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD
GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1253 CD70_31xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEW 3-scFc_delGK HLE VAVTWYDASNKYYGDAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDLLRGVKGYAMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVL
molecule TQSPGTLSLSPGERATLSCRASQSLRRIYLAWYQQKPGQAPRLLIYD
VFDRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYSESPFT FGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNK YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSK NTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS GGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSG NYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSG VQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPE LLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVD GVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT CVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLT VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1254 CD70_32_CC bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEW xCD3- HLE MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT
scFc_delGK molecule QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS
DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGCGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1255 CD70_32xCD bispecific QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEW 3-scFc_delGK HLE MGWISAYQGYTHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVY
YCARDYGGNDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLT
molecule
QPPSASGTPGQRVTISCSGSSSNIGINYVYWYQQLPGTAPKLLIYRS DQRPSGVPDRFSGSKSGTSASLALSGLRSEDEADYYCAAFDESLSGV VFGGGTKLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1256 CD70_33_CC bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKCLEW xCD3- HLE VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT
scFc_delGK molecule QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS
ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG CGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1257 CD70_33xCD bispecific QAQLVESGGGWQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEW 3-scFc_delGK HLE VAVIWYDASNKYYADAVKGRF ISRDNSKNTLYLQMNSLRAEDTAVY
YCARDREMGSRGDFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMT
molecule QSPSSLSASVGDRVTITCRASQGINNYLAWFQQKPGKAPKSLIYAVS
ILQSGVPSKFSGSGSGTDFTLTISNLQPEDFATYYCQQYNFYPFSFG QGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYA MNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNT AYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG GGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNY PNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGV EVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALP APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV WDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1258 CD70_34_CC bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKCLEW xCD3- HLE IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
scFc_delGK molecule SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ
QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGCGT KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYL QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED
EAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGP SVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGG GSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWD VSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQD WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1259 CD70_34xCD bispecific QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGFYWSWIRQPPGKGLEW 3-scFc_delGK HLE IGEIYHSGHATNNPSLKSRVTISLDTSKNQFSLKLNSVTAADTAVYY
CARGGNSGYIFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDVQMTQSP
molecule
SSLSASVGDRVTITCRTSQYIGRYLNWYQQKPGKAPKVLIYGASTLQ QGVPSRFSGSGSGTDFTLTITSLQPEDFASYYCQQTYSTPRTFGQGT KVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTAYL QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGS GGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNW VQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPED EAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGP SVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGG GSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVWD VSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQD WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMT KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1260 CD70_35_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3- HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ
scFc_delGK molecule
PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1261 CD70_35xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc_delGK HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQFPGTAPKLLIYVN
NNRPSGVPDRFSGSTSGTSASLAITGLQAEDEADYYCQSYDTSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS
GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1262 CD70_36_CC bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKCLEW xCD3- HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ
scFc_delGK molecule PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN
NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGCGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1263 CD70_36xCD bispecific QVQLVESGGGWQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEW 3-scFc_delGK HLE VAVIWYEGSNKYYGESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY
YCARDNSHYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQ
molecule PPSVSGAPGQRVTISCTGSSSNIGAGYDVNWYQQLPGTAPKLLIYVN
NNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYETSLSAS VFGGGTRLTVLSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAP ELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYV DGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGG GGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV TCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVL TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1264 CD70_37_CC bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKCL xCD3- HLE EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
scFc_delGK molecule
SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG
GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1265 CD70_37xCD bispecific QMQLQESGPGLVKPSETLSLTCTVSGGSIESGVYYWSWIRQPPGKGL 3-scFc_delGK HLE EWIGYIYYSGSTSYNPSLKSRLTMSVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASLGDRVTITCRASQSVDRYFNWYQQKPGKAPKVLIFAASS
LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEVKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1266 CD70_38_CC bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKCL xCD3- HLE EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
scFc_delGK molecule SPSSLSASVGDRV ISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS
LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGC GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1267 CD70_38xCD bispecific QVQLQESGPGLVKPSQTLSLTCTVSGDSI ISGGYYWSWIRQPPGKGL 3-scFc_delGK HLE EWIGYIFYSGSTDYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV
YYCARSGYSYALFDAWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQ
molecule SPSSLSASVGDRVTISCRASQFIGRYFNWYQQKPGKAPKVLIYAESS
LQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSTPWTFGQ GTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAM NWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDSKNTA
YLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGG GSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYP NWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVE VHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSG GGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCW VDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE MTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
1268 CD20-H LE scFc QVQLVQSGAEVKKPGSSVKVSCKASGYAFSYSWINWVRQAPGQGLEW
MGRIFPGDGDTDYNGKFKGRVTITADKSTSTAYMELSSLRSEDTAVY YCARNVFDGYWLVYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQT PLSLPVTPGEPASISCRSSKSLLHSNGITYLYWYLQKPGQSPQLLIY QMSNLVSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCAQNLELPY TFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFN KYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRF ISRDDS KNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVS SGGGGSGGGGSGGGGSQTWTQEPSLTVSPGGTVTLTCGSSTGAVTS GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLS GVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1269 CD19 9-B7 NYGMH
CC x I2C0- VH CD 1
scFc
1270 CD19 9-B7 AIGWEGSN KYYAEPVKG
CC x I2C0- VH CDR2
scFc
1271 CD19 9-B7 DRGTIFGYYGMDV
CC x I2C0- VH CDR3
scFc
1272 CD19 9-B7 RSSQSLLHSN RFNYLD
CC x I2C0- VL CDR1
scFc
1273 CD19 9-B7 LGSNRAS
CC x I2C0- VL CDR2
scFc
1274 CD19 9-B7 MQALQTPLT
CC x I2C0- VL CDR3
scFc
1275 CD19 9-B7 QVQLVESGGGVVQPGRSLRLSCEASGFIVSNYGMHWVRQAPGKCLE CC x I2C0- VH WVAAIGWEGSNKYYAEPVKGRFTISRDKSKNTLSLQMSSLRAEDTAL scFc YYCARDRGTIFGYYGM DVWGQGTTVTVSS
1276 CD19 9-B7 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN RFNYLDWYLQKPGQS CC x I2C0- VL PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPLTFACGTKVEI K
1277 CD19 9-B7 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN RFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG scFv
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYGM
DVWGQGTTVTVSS 1278 CD19 9-B7 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN RFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTI FGYYGM
bispecific
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
molecule
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1279 CD19 9-B7 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN RFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYGM
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
bispecific
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT H LE
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
molecule
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT
QKSLSLSPGK
1280 CD19 9-B7 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN RFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTI FGYYGM
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
bispecific LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST H LE GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
molecule AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVM HEALH N HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK
1281 CD198-C2 SYGIH
CCx I2C0- VH CDR1
scFc
1282 CD198-C2 LTSYEGGNKYYAESVKG
CCx I2C0- VH CDR2
scFc
1283 CD198-C2 DRGTIFGDYGMDV
CCx I2C0- VH CDR3
scFc
1284 CD198-C2 RSSQSLLHKNAFNYLD
CCx I2C0- VLCDR1
scFc
1285 CD198-C2 LGSNRAS
CCx I2C0- VLCDR2
scFc
1286 CD198-C2 MQALQTPFT
CCx I2C0- VLCDR3
scFc
1287 CD198-C2 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIHWVRQAPGKCLE
CCx I2C0- VH WVALTSYEGGNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGMDVWGQGTTVTVSS
1288 CD198-C2 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQS
CCx I2C0- VL PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIK
1289 CD198-C2 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP scFv
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSS
1290 CD198-C2 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
bispecific
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
molecule
FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1291 CD198-C2 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP bispecific
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA HLE
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
molecule
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH
YTQKSLSLSPGK
1292 CD198-C2 DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
bispecific
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKT HLE
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
molecule
VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK
1293 CD198-C8 VH CDR1 SYGIH
CCx I2C0- scFc
1294 CD198-C8 VH CDR2 LTSYEGGNKYYAESVKG
CCx I2C0- scFc
1295 CD198-C8 VH CDR3 DRGTIFGDYGMDV
CCx I2C0- scFc
1296 CD198-C8 VLCDR1 RSSQSLLHQNRFNYLD
CCx I2C0- scFc
1297 CD198-C8 VLCDR2 LGSNRAS
CCx I2C0- scFc 1298 CD19 8-C8 VL CDR3 MQALQTPFT
CC x I2C0- scFc
1299 CD19 8-C8 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGI HWVRQAPGKCLE
CC x I2C0- WVALTSYEGGN KYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGM DVWGQGTTVTVSS
1300 CD19 8-C8 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLHQN RFNYLDWYLQKPGQS
CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI K
1301 CD19 8-C8 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLHQN RFNYLDWYLQKPGQS
CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG MDVWGQGTTVTVSS
1302 CD19 8-C8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHQN RFNYLDWYLQKPGQS
CC x I2C0- molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1303 CD19 8-C8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHQN RFNYLDWYLQKPGQS
CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1304 CD19 8-C8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHQN RFNYLDWYLQKPGQS
CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1305 CD19 8-C9 VH CDR1 SYGI H
CC x I2C0- scFc
1306 CD19 8-C9 VH CDR2 LTSYEGGNKYYAESVKG
CC x I2C0- scFc
1307 CD19 8-C9 VH CDR3 DRGTIFGDYGMEV
CC x I2C0- scFc
1308 CD19 8-C9 VL CDR1 RSSQSLLHPN KLNYLD
CC x I2C0- scFc
1309 CD19 8-C9 VL CDR2 LGSNRAS
CC x I2C0- scFc
1310 CD19 8-C9 VL CDR3 MQALQTPFT
CC x I2C0- scFc
1311 CD19 8-C9 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGI HWVRQAPGKCLE CC x I2C0- WVALTSYEGGN KYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKD RGTI FG DYG M E VWGQGTTVTVSS
1312 CD19 8-C9 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNKLNYLDWYMQKPGQ CC x I2C0- SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEI K
1313 CD19 8-C9 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNKLNYLDWYMQKPGQ CC x I2C0- SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MEVWGQGTTVTVSS
1314 CD19 8-C9 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNKLNYLDWYMQKPGQ CC x I2C0- molecule SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MEVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1315 CD19 8-C9 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNKLNYLDWYMQKPGQ CC x I2C0- H LE SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc molecule ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MEVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1316 CD19 8-C9 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNKLNYLDWYMQKPGQ CC x I2C0- H LE SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc_delGK molecule ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MEVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1317 CD19 8-D1 VH CDR1 SYGI H CC x I2C0- scFc
1318 CD19 8-D1 VH CDR2 LTSYEGGNKYYAESVKG
CC x I2C0- scFc
1319 CD19 8-D1 VH CDR3 DRGTI FGDYGMDV
CC x I2C0- scFc
1320 CD19 8-D1 VL CDR1 RSSQSLLHKN RFNYLD
CC x I2C0- scFc
1321 CD19 8-D1 VL CDR2 LGSNRAS
CC x I2C0- scFc
1322 CD19 8-D1 VL CDR3 MQALQTPFT
CC x I2C0- scFc
1323 CD19 8-D1 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGI HWVRQAPGKCLE
CC x I2C0- WVALTSYEGGN KYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGM DVWGQGTTVTVSS
1324 CD19 8-D1 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNRFNYLDWYVQKPGQS
CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI K
1325 CD19 8-D1 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNRFNYLDWYVQKPGQS
CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG MDVWGQGTTVTVSS
1326 CD19 8-D1 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNRFNYLDWYVQKPGQS
CC x I2C0- molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1327 CD19 8-D1 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNRFNYLDWYVQKPGQS
CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH
YTQKSLSLSPGK
1328 CD198-D1 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNRFNYLDWYVQKPGQS CCx I2C0- HLE PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK molecule LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK
1329 CD199-A8 VH CDR1 SYGIH
CCx I2C0- scFc
1330 CD199-A8 VH CDR2 LTSYEGGNKYYAESVKG
CCx I2C0- scFc
1331 CD199-A8 VH CDR3 DRGTIFGDYGMDV
CCx I2C0- scFc
1332 CD199-A8 VLCDR1 RSSQSLLHRNSWNYLD
CCx I2C0- scFc
1333 CD199-A8 VLCDR2 LGSNRAS
CCx I2C0- scFc
1334 CD199-A8 VLCDR3 MQALQTPFT
CCx I2C0- scFc
1335 CD199-A8 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIHWVRQAPGKCLE CCx I2C0- WVALTSYEGGNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKD GTIFGDYGM DVWGQGTTVTVSS
1336 CD19 9-A8 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH RNSWNYLDWYLQKPGQ CC x I2C0- SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEI K
1337 CD19 9-A8 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH RNSWNYLDWYLQKPGQ CC x I2C0- SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSS
1338 CD19 9-A8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH RNSWNYLDWYLQKPGQ CC x I2C0- molecule SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1339 CD19 9-A8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH RNSWNYLDWYLQKPGQ CC x I2C0- H LE SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc molecule ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1340 CD19 9-A8 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH RNSWNYLDWYLQKPGQ CC x I2C0- H LE SPQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQ scFc_delGK molecule ALQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK
1341 CD199-C1 VH CDR1 SYGIH
CCx I2C0- scFc
1342 CD199-C1 VH CDR2 LTSYEGGNKYYAESVKG
CCx I2C0- scFc
1343 CD199-C1 VH CDR3 DRGTIFGDYGMDV
CCx I2C0- scFc
1344 CD199-C1 VLCDR1 RSSQSLLHPNHFNYLD
CCx I2C0- scFc
1345 CD199-C1 VLCDR2 LGSNRAS
CCx I2C0- scFc
1346 CD199-C1 VLCDR3 MQALQTPFT
CCx I2C0- scFc
1347 CD199-Cl VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIHWVRQAPGKCLE CCx I2C0- WVALTSYEGGNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGMDVWGQGTTVTVSS
1348 CD199-C1 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLHPNHFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIK
1349 CD199-C1 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLHPNHFNYLDWYLQKPGQS CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSS
1350 CD199-Cl bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHPNHFNYLDWYLQKPGQS CCx I2C0- molecule PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1351 CD19 9-C1 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNH FNYLDWYLQKPGQS CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGIHWVRQAPGKCLEWVALTSYEGGNKYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1352 CD19 9-C1 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH PNH FNYLDWYLQKPGQS CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RS LR LSCAASG FTFSSYG 1 H WVRQAPG KCLE WVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1353 CD19 0-B6 VH CDR1 SYGI H
CC x I2C0- scFc
1354 CD19 0-B6 VH CDR2 LTSYEGGNKYYAESVKG
CC x I2C0- scFc 1355 CD19 0-B6 VH CDR3 DRGTI FGDYGMDV
CC x I2C0- scFc
1356 CD19 0-B6 VL CDR1 RSSQSLLH KNSFNYLD
CC x I2C0- scFc
1357 CD19 0-B6 VL CDR2 LGSNRAS
CC x I2C0- scFc
1358 CD19 0-B6 VL CDR3 MQALQTPFT
CC x I2C0- scFc
1359 CD19 0-B6 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGI HWVRQAPGKCLE CC x I2C0- WVALTSYEGGN KYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGM DVWGQGTTVTVSS
1360 CD19 0-B6 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNSFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI K
1361 CD19 0-B6 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNSFNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSS
1362 CD19 0-B6 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNSFNYLDWYLQKPGQS CC x I2C0- molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1363 CD19 0-B6 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNSFNYLDWYLQKPGQS CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH
YTQKSLSLSPGK
1364 CD190-B6 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNSFNYLDWYLQKPGQS
CCx I2C0- HLE PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK molecule LQTPFTFGCGTKVEIKGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTI
SRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
VKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK
1365 CD190-C12 VH CDR1 SYGIH
CCx I2C0- scFc
1366 CD190-C12 VH CDR2 LTSYEGGNKYYAESVKG
CCx I2C0- scFc
1367 CD190-C12 VH CDR3 DRGTIFGDYGMDV
CCx I2C0- scFc
1368 CD190-C12 VLCDR1 RSSQSLLHKNHFNYLD
CCx I2C0- scFc
1369 CD190-C12 VLCDR2 LGSNRAS
CCx I2C0- scFc
1370 CD190-C12 VLCDR3 MQALQTPFT
CCx I2C0- scFc
1371 CD190-C12 VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGIHWVRQAPGKCLE
CCx I2C0- WVALTSYEGGNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAV scFc YYCAKDRGTIFGDYGMDVWGQGTTVTVSS
1372 CD190-C12 VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLHKNHFNYLDWYLQKPGQS
CCx I2C0- PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEIK 1373 CD19 0-C12 scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNH FNYLDWYLQKPGQS CC x I2C0- PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSS
1374 CD19 0-C12 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNH FNYLDWYLQKPGQS CC x I2C0- molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1375 CD19 0-C12 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNH FNYLDWYLQKPGQS CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTI FGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1376 CD19 0-C12 bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNH FNYLDWYLQKPGQS CC x I2C0- H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA scFc_delGK molecule LQTPFTFGCGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
G RSLRLSCAASG FTFSSYGI H WVRQAPG KCLEWVALTSYEGG N KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGTIFGDYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVM HEALH NHYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1377 CD19 4- VH CDR1 NYGMH
C1RE-B10 CC
x l2C0-scFc
1378 CD19 4- VH CDR2 VMSWEGSN KYYAEPVKG
C1RE-B10 CC
x l2C0-scFc
1379 CD19 4- VH CDR3 DRGTIFGYYGMDV
C1RE-B10 CC
x l2C0-scFc
1380 CD19 4- VL CDR1 RSSQSLLHKN N FNYLD
C1RE-B10 CC
x l2C0-scFc
1381 CD19 4- VL CDR2 LGSNRAS
C1RE-B10 CC
x l2C0-scFc
1382 CD19 4- VL CDR3 MQALQTPLT
C1RE-B10 CC
x l2C0-scFc
1383 CD19 4- VH QVQLVESGGGVVQPGRSLRLSCEASGFIVSNYGMHWVRQAPGKCLE C1RE-B10 CC WVAVMSWEGSNKYYAEPVKGRFTISRDKSKNTLSLQMSSLRAEDTAL x l2C0-scFc YYCARDRGTIFGYYGM DVWGQGTTVTVSS
1384 CD19 4- VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS C1RE-B10 CC PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPLTFACGTKVEI K
1385 CD19 4- scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS C1RE-B10 CC PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAVMSWEGSN KYY
AEPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYG
MDVWGQGTTVTVSS
1386 CD19 4- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS C1RE-B10 CC molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAVMSWEGSN KYY
AEPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1387 CD19 4- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS C1RE-B10 CC H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc molecule LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAVMSWEGSN KYY
AEPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALH N HYTQKSLSLSPGKGGGGSGGGGSGG
GGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPK
DTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEE
QYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQ
PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN
NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N H
YTQKSLSLSPGK
1388 CD19 4- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS C1RE-B10 CC H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x I2C0- molecule LQTPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG scFc_delGK RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAVMSWEGSN KYY
AEPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYG
MDVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASG
FTFN KYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTI
SRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQ
GTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGS
STGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLG
GKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPE
VKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKE
YKCKVSN KALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHN HYTQKSLSLSPGGGGSGGGGSGGGG
SGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1389 CD19 97- VH CDR1 SYGMH
G1RE CC x
l2C0-scFc
1390 CD19 97- VH CDR2 VISYEGSN KYYAESVKG
G1RE CC x
l2C0-scFc
1391 CD19 97- VH CDR3 DRGTI FGNYGLEV
G1RE CC x
l2C0-scFc
1392 CD19 97- VL CDR1 RSSQSLLHGN RFNYLD G1RE CC x
l2C0-scFc
1393 CD19 97- VL CDR2 LGSNRAS
G1RE CC x
l2C0-scFc
1394 CD19 97- VL CDR3 MQALQTPFT
G1RE CC x
l2C0-scFc
1395 CD19 97- VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLE
G1RE CC x WVAVISYEGSN KYYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY l2C0-scFc YCARDRGTI FGNYGLEVWGQGTTVTVSS
1396 CD19 97- VL DIVMTQSPLSLPVISGEPASISCRSSQSLLHGN RFNYLDWYLQKPGQSP
G1RE CC x QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDI K
1397 CD19 97- scFv DIVMTQSPLSLPVISGEPASISCRSSQSLLHGN RFNYLDWYLQKPGQSP
G1RE CC x QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE VWGQGTTVTVSS
1398 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHGN RFNYLDWYLQKPGQSP
G1RE CC x molecule QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL
1399 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHGN RFNYLDWYLQKPGQSP
G1RE CC x H LE QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc molecule QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT QKSLSLSPGK
1400 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHGN RFNYLDWYLQKPGQSP G1RE CC x H LE QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL I2C0- molecule QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG scFc_delGK RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMH EALHN HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1401 CD19 97- VH CDR1 SYGMH
G1RE-C2 CC x
l2C0-scFc
1402 CD19 97- VH CDR2 VISYEGSN KYYAESVKG
G1RE-C2 CC x
l2C0-scFc
1403 CD19 97- VH CDR3 DRGTI FGNYGLEV
G1RE-C2 CC x
l2C0-scFc
1404 CD19 97- VL CDR1 RSSQSLLHKNAFNYLD
G1RE-C2 CC x
l2C0-scFc
1405 CD19 97- VL CDR2 LGSNRAS
G1RE-C2 CC x
l2C0-scFc
1406 CD19 97- VL CDR3 MQALQTPFT
G1RE-C2 CC x
l2C0-scFc
1407 CD19 97- VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLE G1RE-C2 CC x WVAVISYEGSN KYYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY l2C0-scFc YCARDRGTI FGNYGLEVWGQGTTVTVSS
1408 CD19 97- VL DIVMTQSPLSLPVISGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQSP G1RE-C2 CC x QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDI K
1409 CD19 97- scFv DIVMTQSPLSLPVISGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQSP G1RE-C2 CC x QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE VWGQGTTVTVSS
1410 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQSP G1RE-C2 CC x molecule QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1411 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQSP G1RE-C2 CC x H LE QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL l2C0-scFc molecule QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT
QKSLSLSPGK
1412 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKNAFNYLDWYLQKPGQSP G1RE-C2 CC x H LE QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL I2C0- molecule QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG scFc_delGK RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMH EALHN HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ KSLSLSPGK
1413 CD19 97- VH CDR1 SYGMH
G1RE-B5 CC
x l2C0-scFc
1414 CD19 97- VH CDR2 VISYEGSN KYYAESVKG
G1RE-B5 CC
x l2C0-scFc
1415 CD19 97- VH CDR3 DRGTI FGNYGLEV
G1RE-B5 CC
x l2C0-scFc
1416 CD19 97- VL CDR1 RSSQSLLHKN KWNYLD
G1RE-B5 CC
x l2C0-scFc
1417 CD19 97- VL CDR2 LGSNRAS
G1RE-B5 CC
x l2C0-scFc
1418 CD19 97- VL CDR3 MQALQTPFT
G1RE-B5 CC
x l2C0-scFc
1419 CD19 97- VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLE G1RE-B5 CC WVAVISYEGSN KYYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY x l2C0-scFc YCARDRGTI FGNYGLEVWGQGTTVTVSS
1420 CD19 97- VL DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN KWNYLDWYLQKPGQS G1RE-B5 CC PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPFTFGCGTKVDI K
1421 CD19 97- scFv DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN KWNYLDWYLQKPGQS G1RE-B5 CC PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPFTFGCGTKVDI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEWVAVISYEGSN KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTIFGNYGL
EVWGQGTTVTVSS
1422 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN KWNYLDWYLQKPGQS G1RE-B5 CC molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc LQTPFTFGCGTKVDI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEWVAVISYEGSN KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTIFGNYGL
EVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1423 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN KWNYLDWYLQKPGQS G1RE-B5 CC H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x l2C0-scFc molecule LQTPFTFGCGTKVDI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP
GRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEWVAVISYEGSN KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTIFGNYGL
EVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT
QKSLSLSPGK
1424 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN KWNYLDWYLQKPGQS G1RE-B5 CC H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA x I2C0- molecule LQTPFTFGCGTKVDI KGGGGSGGGGSGGGGSQVQLVESGGGVVQP scFc_delGK GRSLRLSCAASGFTFSSYGMHWVRQAPGKCLEWVAVISYEGSN KYYA
ESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGL
EVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMH EALHN HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1425 CD19 97- VH CDR1 SYGMH
G1RE-B10 CC
x l2C0-scFc
1426 CD19 97- VH CDR2 VISYEGSN KYYAESVKG
G1RE-B10 CC
x l2C0-scFc
1427 CD19 97- VH CDR3 DRGTI FGNYGLEV
G1RE-B10 CC
x l2C0-scFc
1428 CD19 97- VL CDR1 RSSQSLLHKN N FNYLD
G1RE-B10 CC
x l2CO-scFc
1429 CD19 97- VL CDR2 LGSNRAS
G1RE-B10 CC
x l2CO-scFc 1430 CD19 97- VL CDR3 MQALQTPFT
G1RE-B10 CC
x l2C0-scFc
1431 CD19 97- VH QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKCLE G1RE-B10 CC WVAVISYEGSN KYYAESVKGRFTISRDNSKNTLYLQMNSLRDEDTAVY x l2C0-scFc YCARDRGTI FGNYGLEVWGQGTTVTVSS
1432 CD19 97- VL DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN N FNYLDWYLQKPGQSP G1RE-B10 CC QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL x l2C0-scFc QTPFTFGCGTKVDI K
1433 CD19 97- scFv DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN N FNYLDWYLQKPGQSP G1RE-B10 CC QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL x l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSS
1434 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN N FNYLDWYLQKPGQSP G1RE-B10 CC molecule QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL x l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1435 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN N FNYLDWYLQKPGQSP G1RE-B10 CC QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL
H LE
x l2C0-scFc QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG molecule
RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE
SVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT
QKSLSLSPGK
1436 CD19 97- bispecific DIVMTQSPLSLPVISGEPASISCRSSQSLLHKN N FNYLDWYLQKPGQSP G1RE-B10 CC QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQAL
H LE
x I2C0- QTPFTFGCGTKVDIKGGGGSGGGGSGGGGSQVQLVESGGGVVQPG molecule
scFc_delGK RSLRLSCAASGFTFSSYGM HWVRQAPGKCLEWVAVISYEGSN KYYAE SVKGRFTISRDNSKNTLYLQM NSLRDEDTAVYYCARDRGTI FGNYGLE
VWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTF
N KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRD
DSKNTAYLQMN N LKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTL
VTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMH EALHN HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1437 CD19 1-C3- VH CDR1 NYGMH
B10 CC x
l2C0-scFc
1438 CD19 1-C3- VH CDR2 AIGWEGSN KYYAEPVKG
B10 CC x
l2C0-scFc
1439 CD19 1-C3- VH CDR3 DRGTIFGYYGMDV
B10 CC x
l2C0-scFc
1440 CD19 1-C3- VL CDR1 RSSQSLLHKN N FNYLD
B10 CC x
l2C0-scFc
1441 CD19 1-C3- VL CDR2 LGSNRAS
B10 CC x
l2C0-scFc
1442 CD19 1-C3- VL CDR3 MQALSEPLT
B10 CC x
l2C0-scFc
1443 CD19 1-C3- VH QVQLVESGGGVVQPGRSLRLSCEASGFIVSNYGMHWVRQAPGKCLE B10 CC x WVAAIGWEGSNKYYAEPVKGRFTISRDKSKNTLSLQMSSLRAEDTAL l2C0-scFc YYCARDRGTIFGYYGM DVWGQGTTVTVSS
1444 CD19 1-C3- VL DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS B10 CC x PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA l2C0-scFc LSEPLTFACGTKVEI K
1445 CD19 1-C3- scFv DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS B10 CC x PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA l2C0-scFc LSEPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYGM
DVWGQGTTVTVSS
1446 CD19 1-C3- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS B10 CC x molecule PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA l2C0-scFc LSEPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYGM
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVL
1447 CD19 1-C3- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS B10 CC x H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA l2C0-scFc molecule LSEPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG
RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTIFGYYGM
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHN HYTQKSLSLSPGKGGGGSGGGGSGGG
GSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDT
LMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH NAKTKPCEEQY
GSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYT
QKSLSLSPGK
1448 CD19 1-C3- bispecific DIVMTQSPLSLPVTPGEPASISCRSSQSLLH KNN FNYLDWYLQKPGQS B10 CC x H LE PQLLIYLGSN RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA I2C0- molecule LSEPLTFACGTKVEI KGGGGSGGGGSGGGGSQVQLVESGGGVVQPG scFc_delGK RSLRLSCEASGFIVSNYGMHWVRQAPGKCLEWVAAIGWEGSNKYYA
EPVKGRFTISRDKSKNTLSLQMSSLRAEDTALYYCARDRGTI FGYYGM
DVWGQGTTVTVSSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFT
FN KYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISR
DDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAYWGQGT
LVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSST
GAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGK
AALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGGGGDKTHT
CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYK
CKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLV
KGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMH EALHN HYTQKSLSLSPGGGGSGGGGSGGGGS
GGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK
1449 IgGl hinge DKTHTCPPCP 1450 lgG2 hinge ERKCCVECPPCP
1451 lgG3 hinge ELKTPLDTTHTCPRCP
1452 lgG4 hinge ESKYGPPCPSCP
1453 EG FRvll lccxl2 bispecific QVQLVESGGGVVQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCL
C-Hinge-CH2- H LE EWVAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQM NSLRAEDTA
CH3-linker- molecule VYYCARDGYDI LTGN PRDFDYWGQGTLVTVSSGGGGSGGGGSGGG hinge-CH2- GSDTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRP
CH3 GQPPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
(DF9) QSTHVPRTFGCGTKVEI KSGGGGSEVQLVESGGGLVQPGGSLKLSCA
ASGFTFN KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKD
RFTISRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAY
WGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT
LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFS
GSLLGGKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGG
GGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
SH EDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQD
WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK
NQVSLTCLVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYS
KLTVDKSRWQQGNVFSCSVMH EALHN HYTQKSLSLSPGKGGGGSG
GGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVF
LFPPKPKDTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVHNAK
TKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPI EKTIS
KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN
GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH E
ALHN HYTQKSLSLSPGK
1454 EG FRvll lccxl2 bispecific QVQLVESGGGVVQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCL
C-Hinge-CH2- H LE EWVAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQM NSLRAEDTA
CH3-linker- molecule VYYCARDGYDI LTGN PRDFDYWGQGTLVTVSSGGGGSGGGGSGGG
CH2-CH3 GSDTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRP
(T2G) GQPPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
QSTHVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCA
ASGFTFN KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKD
RFTISRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAY
WGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT
LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFS
GSLLGGKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGG
GGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
SH EDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQD
WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK
NQVSLTCLVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYS
KLTVDKSRWQQGNVFSCSVMH EALH NHYTQKSLSLSPGKGGGGSG
GGGSGGGGSGGGGSGGGGSGGGGSAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH NAKTKPCEEQYG
STYRCVSVLTVLHQDWLNGKEYKCKVSN KALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALH N HYTQ
KSLSLSPGK 1455 EG FRvll lccxl2 bispecific QVQLVESGGGVVQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCL
C- Hinge- H LE EWVAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQM NSLRAEDTA
CH2-linker- molecule VYYCARDGYDI LTGN PRDFDYWGQGTLVTVSSGGGGSGGGGSGGG
Hinge-CH2- GSDTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRP
CH3-linker- GQPPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
CH3 QSTHVPRTFGCGTKVEI KSGGGGSEVQLVESGGGLVQPGGSLKLSCA
(D3L) ASGFTFN KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKD
RFTISRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAY
WGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT
LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFS
GSLLGGKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGG
GGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
SH EDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQD
WLNGKEYKCKVSN KALPAPI EKTISKAKGGGGSGGGGSGGGGSGGG
GSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
H EDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDW
LNGKEYKCKVSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKN
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK
LTVDKSRWQQGNVFSCSVMH EALH NHYTQKSLSLSPGKGGGGSGG
GGSGGGGSGGGGSGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY
PSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG
NVFSCSVM HEALH N HYTQKSLSLSPGK
1456 EG FRvll lccxl2 bispecific QVQLVESGGGVVQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCL
C- Hinge- H LE EWVAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQM NSLRAEDTA
CH2-linker- molecule VYYCARDGYDI LTGN PRDFDYWGQGTLVTVSSGGGGSGGGGSGGG
CH2-CH3- GSDTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRP linker-CH3 GQPPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
(T7I) QSTHVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCA
ASGFTFN KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKD
RFTISRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAY
WGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT
LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFS
GSLLGGKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGG
GGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
SH EDPEVKFNWYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQD
WLNGKEYKCKVSN KALPAPI EKTISKAKGGGGSGGGGSGGGGSGGG
GSAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVH NAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK
VSN KALPAPI EKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ
QGNVFSCSVMH EALHN HYTQKSLSLSPGKGGGGSGGGGSGGGGSG
GGGSGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES
NGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH
EALH NHYTQKSLSLSPGK
1457 EG FRvll lccxl2 bispecific QVQLVESGGGVVQSGRSLRLSCAASGFTFRNYGMHWVRQAPGKCL
C-CH2-linker- H LE EWVAVIWYDGSDKYYADSVRGRFTISRDNSKNTLYLQM NSLRAEDTA
CH2-CH3- molecule VYYCARDGYDI LTGN PRDFDYWGQGTLVTVSSGGGGSGGGGSGGG linker-CH3 GSDTVMTQTPLSSHVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRP
(K6C) GQPPRLLIYRISRRFSGVPDRFSGSGAGTDFTLEISRVEAEDVGVYYCM
QSTHVPRTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCA
ASGFTFN KYAM NWVRQAPGKGLEWVARIRSKYN NYATYYADSVKD
RFTISRDDSKNTAYLQMN N LKTEDTAVYYCVRHGN FGNSYISYWAY WGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVT
LTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFS
GSLLGGKAALTLSGVQPEDEAEYYCVLWYSN RWVFGGGTKLTVLGG
GGAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCK
VSN KALPAPI EKTISKAKGGGGSGGGGSGGGGSGGGGSAPELLGGPS
VFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVH N
AKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EK
TISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE
SNGQPEN NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM
H EALHN HYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGQPREP
QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN NYKT
TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYTQK
SLSLSPGK
1458 lgG3 hinge ELKTPLGDTTHTCPRCP
1459 IgGl hinge EPKSCDKTHTCPPCP

Claims

Claims
1. An antibody construct comprising at least three domains, wherein:
• a first domain binds to a target cell surface antigen,
• a second domain binds to an extracellular epitope of the human and/or the Macaca CD3£ chain; and
• a third domain comprises two polypeptide monomers, each comprising a hinge, a CH2 and a CH3 domain, wherein said two polypeptide monomers are fused to each other via a peptide linker.
2. The antibody construct of claim 1 , wherein the antibody construct is a single chain antibody construct.
3. The antibody construct of claim 1 or 2, wherein said third domain comprises in an amino to carboxyl order:
hinge-CH2-CH3-linker-hinge-CH2-CH3.
4. The antibody construct of any one of claims 1 to 3, wherein each of said polypeptide monomers has an amino acid sequence that is at least 90% identical to a sequence selected from the group from the group consisting of: SEQ ID NO: 17-24.
5. The antibody construct of claim 4, wherein each of said polypeptide monomers has an amino acid sequence selected from SEQ ID NO: 17-24.
6. The antibody construct of any one of claims 1 to 5, wherein the CH2 domain comprises an intra domain cysteine disulfide bridge.
7. The antibody construct of any one of claims 1 to 6, wherein
(i) the first domain comprises two antibody variable domains and the second domain comprises two antibody variable domains;
(ii) the first domain comprises one antibody variable domain and the second domain comprises two antibody variable domains;
(iii) the first domain comprises two antibody variable domains and the second domain comprises one antibody variable domain; or (iv) the first domain comprises one antibody variable domain and the second domain comprises one antibody variable domain.
8. The antibody construct of any one of claims 1 to 7, wherein the first and second domain are fused to the third domain via a peptide linker.
9. The antibody construct according to claims 1 to 8, wherein the antibody construct comprises in an amino to carboxyl order:
(a) the first domain;
(b) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3;
(c) the second domain;
(d) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 , 2, 3, 9, 10, 1 1 and 12;
(e) the first polypeptide monomer of the third domain;
(f) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8; and
(g) the second polypeptide monomer of the third domain.
10. The antibody construct according to any one of the preceding claims, wherein the target cell surface antigen is a tumor antigen, an antigen specific for an immunological disorder or a viral antigen.
1 1 . The antibody construct according to claim 10, wherein the tumor antigen is selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
12. The antibody construct according to any one of the preceding claims, wherein the antibody construct comprises in an amino to carboxyl order:
(a) the first domain having an amino acid sequence selected from the group consisting of
SEQ ID NOs: 52, 70, 58, 76, 88, 106, 124, 94, 1 12, 130, 142,160, 178, 148, 166, 184,
196, 214, 232, 202, 220, 238, 250, 266, 282, 298, 255, 271 , 287, 303, 322, 338, 354,
370, 386, 402, 418, 434, 450, 466, 482, 498, 514, 530, 546, 327, 343, 359, 375, 391 ,
407, 423, 439, 455, 471 , 487, 503, 519, 353, 551 , 592, 608, 624, 640, 656, 672, 688,
704, 720, 736, 752, 768, 784, 800, 816, 832, 848, 864, 880, 896, 912, 928, 944, 960, 976, 992, 1008, 1024, 1040, 1056, 1072, 1088, 1 104, 1 120, 1 136, 1 152, 1 168, 1 184, 597, 613, 629, 645, 661 , 677, 693, 709, 725, 741 , 757, 773, 789, 805, 821 , 837, 853, 869, 885, 901 , 917, 933, 949, 965, 981 , 997, 1013, 1029, 1045, 1061 , 1077, 1093, 1 109, 1 125, 1 141 , 1 157, 1 173, 1 189,1277, 1289, 1301 , 1313, 1325, 1337, 1349, 1361 , 1373, 1385, 1397, 1409, 1421 , 1433, 1445;
(b) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3;
(c) the second domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or of SEQ ID NO: 15;
(d) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 , 2, 3, 9, 10, 1 1 and 12;
(e) the first polypeptide monomer of the third domain having a polypeptide sequence selected from the group consisting of SEQ ID NOs: 17-24;
(f) a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 7 and 8; and
(g) the second polypeptide monomer of the third domain having a polypeptide sequence selected from the group consisting of SEQ ID NOs: 17-24.
The antibody construct according to claim 12, having an amino acid sequence selected from the group consisting of:
(a) SEQ ID NOs: 54, 55, 60, and 61 ;
(b) SEQ ID NOs: 72, 73, 78, and 79;
(c) SEQ ID NOs: 90, 91 , 96, 97, 108, 109, 1 14, and 1 15;
(d) SEQ ID NOs: 144, 145, 150, 151 , 162, 163, 168, 169, 180, 181 , 186, and 187;
(e) SEQ ID NOs: 198, 199, 204, 205, 216, 217, 222, 223, 234, 235, 240, and 241 ;
(f) SEQ ID NOs: 252, 306, 257, 307, 268, 308, 273, 309, 284, 310, 289, 31 1 , 300, 312, 305, and 313;
(g) SEQ ID NOs: 324, 554, 329, 555, 340, 556, 345, 557, 356, 558, 361 , 559, 372, 560, 377, 561 , 388, 562, 393, 563, 404, 564, 409, 565, 420, 566, 425, 567, 436, 568, 441 , 569, 452, 570, 457, 571 , 468, 572, 473, 573, 484, 574, 489, 575, 500, 576, 505, 577, 516, 578, 521 , 579, 532, 580, 537, 581 , 548, 582, 553, and 583;
(h) SEQ ID NOs: 594, 610, 626, 642, 658, 674, 690, 706, 722, 738, 754, 77, 786, 802,
818, 834, 850, 866, 882, 898, 914, 930, 946, 962, 978, 994, 1010, 1026, 1042, 1058, 1074, 1090, 1 106, 1 122, 1 138, 1 154, 1 170, 1 186, 599, 615, 631 , 647, 663, 679, 695, 71 1 , 727, 743, 759, 775, 791 , 807, 823, 839, 855, 871 , 887, 903, 919, 935, 951 , 967, 983, 999, 1015, 1031 , 1047, 1063, 1079, 1095, 1 1 1 1 , 1 127, 1 143, 1 159, 1 175, 1 191 , and 1192-1267;
(i) SEQ ID NO: 43; and
(j) SEQ ID Nos: 1279, 1280, 1291 , 1292, 1303, 1304, 1315, 1316, 1327, 1328, 1339, 1340, 1351 , 1352, 1363, 1364, 1375, 1376, 1387, 1388, 1399, 1400, 141 1 , 1412, 1423, 1424, 1435, 1436, 1447, 1448.
14. A polynucleotide encoding an antibody construct as defined in any one of claims 1 to 13.
15. A vector comprising a polynucleotide as defined in claim 14.
16. A host cell transformed or transfected with the polynucleotide as defined in claim 14 or with the vector as defined in claim 15.
17. A process for the production of an antibody construct according to any one of claims 1 to 13, said process comprising culturing a host cell as defined in claim 14 under conditions allowing the expression of the antibody construct as defined in any one of claims 1 to 13 and recovering the produced antibody construct from the culture.
18. A pharmaceutical composition comprising an antibody construct according to any one of claims 1 to 13, or produced according to the process of claim 17.
19. The pharmaceutical composition of claims 18, which is stable for at least four weeks at about -20°C.
20. The antibody construct according to any one of claims 1 to 13, or produced according to the process of claim 17, for use in the prevention, treatment or amelioration of a disease selected from a proliferative disease, a tumorous disease, a viral disease or an immunological disorder.
21 . A method for the treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder, comprising the step of administering to a subject in need thereof the antibody construct according to any one of claims 1 to 13, or produced according to the process of claim 17.
A kit comprising an antibody construct according to any one of claims 1 to 13, or produced according to the process of claim 17, a polynucleotide as defined in claim 14, a vector as defined in claim 15, and/or a host cell as defined in claim 16.
PCT/EP2017/052212 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs WO2017134140A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
MYPI2018702649A MY192682A (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs
BR112018015670A BR112018015670A2 (en) 2016-02-03 2017-02-02 Bispecific t-cell antibody constructs
CR20180417A CR20180417A (en) 2016-02-03 2017-02-02 BISPECIFIC ANTIBODY BUILDERS THAT ARE LINKED TO T-CELLS
EP17703379.2A EP3411403A1 (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs
KR1020187024998A KR20180104137A (en) 2016-02-03 2017-02-02 Bispecific T-cell engrafting antibody constructs
SG11201805870YA SG11201805870YA (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs
IL306066A IL306066A (en) 2016-02-03 2017-02-02 Bispecific antibody constructs binding a target cell surface antigen and a cd3 epsilon chain, compositions comprising same and uses thereof
AU2017214251A AU2017214251B2 (en) 2016-02-03 2017-02-02 Bispecific T cell engaging antibody constructs
EA201891749A EA201891749A1 (en) 2016-02-03 2017-02-02 BISPECIFIC CONSTRUCTIONS OF ANTIBODIES INVOLVING T-CELLS
MX2018009383A MX2018009383A (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs.
PE2023001372A PE20230995A1 (en) 2016-02-03 2017-02-02 BISPECIFIC ANTIBODY CONSTRUCTS THAT BIND TO T CELLS
CN201780018681.6A CN109071662A (en) 2016-02-03 2017-02-02 Bispecific T cell bound antibody construct
TNP/2018/000265A TN2018000265A1 (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs.
CA3010685A CA3010685A1 (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs
IL260919A IL260919B2 (en) 2016-02-03 2017-02-02 Bispecific antibody constructs binding a target cell surface antigen and a cd3 epsilon chain, compositions comprising same and uses thereof
UAA201809059A UA126280C2 (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs
ZA2018/04514A ZA201804514B (en) 2016-02-03 2018-07-06 Bispecific t cell engaging antibody constructs
PH12018501548A PH12018501548A1 (en) 2016-02-03 2018-07-19 Bispecific t cell engaging antibody constructs
CONC2018/0009112A CO2018009112A2 (en) 2016-02-03 2018-08-29 Bispecific antibody constructs that bind to t cells
HK19100123.9A HK1257748A1 (en) 2016-02-03 2019-01-04 Bispecific t cell engaging antibody constructs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662290861P 2016-02-03 2016-02-03
US62/290,861 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017134140A1 true WO2017134140A1 (en) 2017-08-10

Family

ID=57965931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/052212 WO2017134140A1 (en) 2016-02-03 2017-02-02 Bispecific t cell engaging antibody constructs

Country Status (28)

Country Link
US (2) US11434302B2 (en)
EP (1) EP3411403A1 (en)
JP (2) JP7016217B2 (en)
KR (1) KR20180104137A (en)
CN (1) CN109071662A (en)
AR (1) AR107520A1 (en)
AU (1) AU2017214251B2 (en)
BR (1) BR112018015670A2 (en)
CA (1) CA3010685A1 (en)
CL (3) CL2018002046A1 (en)
CO (1) CO2018009112A2 (en)
CR (1) CR20180417A (en)
EA (2) EA039859B1 (en)
HK (1) HK1257748A1 (en)
IL (2) IL306066A (en)
JO (2) JOP20170028B1 (en)
MA (1) MA43956A (en)
MX (1) MX2018009383A (en)
MY (1) MY192682A (en)
PE (2) PE20181537A1 (en)
PH (1) PH12018501548A1 (en)
SG (2) SG11201805870YA (en)
TN (1) TN2018000265A1 (en)
TW (2) TWI828040B (en)
UA (1) UA126280C2 (en)
UY (1) UY37104A (en)
WO (1) WO2017134140A1 (en)
ZA (1) ZA201804514B (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118426A1 (en) 2017-12-11 2019-06-20 Amgen Inc. Continuous manufacturing process for bispecific antibody products
WO2019133961A1 (en) * 2017-12-29 2019-07-04 Amgen Inc. Bispecific antibody construct directed to muc17 and cd3
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment
WO2019141732A1 (en) * 2018-01-16 2019-07-25 Argenx Bvba Cd70 combination therapy
WO2019152705A1 (en) * 2018-02-01 2019-08-08 Pfizer Inc. Antibodies specific for cd70 and their uses
WO2019199476A1 (en) 2018-04-12 2019-10-17 Amgen Inc. Methods for making stable protein compositions
WO2020077212A1 (en) 2018-10-11 2020-04-16 Amgen Inc. Downstream processing of bispecific antibody constructs
WO2020086635A1 (en) 2018-10-23 2020-04-30 Amgen Inc. Automatic calibration and automatic maintenance of raman spectroscopic models for real-time predictions
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
US10683351B2 (en) 2015-07-31 2020-06-16 Amgen Research (Munich) Gmbh Antibody constructs for DLL3 and CD3
WO2020076977A3 (en) * 2018-10-11 2020-06-25 Inhibrx, Inc. Dll3 single domain antibodies and therapeutic compositions thereof
WO2020159838A1 (en) 2019-01-28 2020-08-06 Amgen Inc. A continuous manufacturing process for biologics manufacturing by integration of drug substance and drug product processes
WO2020252442A1 (en) 2019-06-13 2020-12-17 Amgen Inc. Automated biomass-based perfusion control in the manufacturing of biologics
WO2021026387A2 (en) 2019-08-06 2021-02-11 Xencor, Inc. HETERODIMERIC IgG-LIKE BISPECIFIC ANTIBODIES
WO2021050640A1 (en) 2019-09-10 2021-03-18 Amgen Inc. Purification method for bispecific antigen-binding polypeptides with enhanced protein l capture dynamic binding capacity
WO2021067762A1 (en) 2019-10-03 2021-04-08 Amgen Inc. Method for conducting solid state nmr on macromolecule-containing solid state formulations
EP3819007A1 (en) 2019-11-11 2021-05-12 Amgen Research (Munich) GmbH Dosing regimen for anti-bcma agents
WO2021091906A1 (en) 2019-11-04 2021-05-14 Amgen Inc. Methods for treating leukemia
WO2021097344A1 (en) 2019-11-13 2021-05-20 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
WO2021116699A1 (en) 2019-12-11 2021-06-17 Precision Immunotherapeutics Limited Reversibly inhibited binding molecules
US11072665B2 (en) 2011-03-16 2021-07-27 Argenx Bvba Antibodies to CD70
WO2021158469A1 (en) 2020-02-03 2021-08-12 Amgen Inc. Multivariate bracketing approach for sterile filter validation
US11155629B2 (en) 2015-07-31 2021-10-26 Amgen Research (Munich) Gmbh Method for treating glioblastoma or glioma with antibody constructs for EGFRVIII and CD3
WO2022060878A1 (en) 2020-09-16 2022-03-24 Amgen Inc. Methods for treating prostate cancer
WO2022060901A1 (en) 2020-09-16 2022-03-24 Amgen Inc. Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer
WO2022074206A1 (en) 2020-10-08 2022-04-14 Affimed Gmbh Trispecific binders
WO2022096716A2 (en) 2020-11-06 2022-05-12 Amgen Inc. Multitargeting bispecific antigen-binding molecules of increased selectivity
WO2022097068A1 (en) 2020-11-05 2022-05-12 Dcprime B.V. Use of tumor-independent antigens in immunotherapies
WO2022103781A1 (en) 2020-11-10 2022-05-19 Amgen Inc. Methods for administering a bcma x cd3 binding molecule
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
US11396551B2 (en) 2018-02-01 2022-07-26 Pfizer Inc. Chimeric antigen receptors targeting CD70
US11434302B2 (en) 2016-02-03 2022-09-06 Amgen Research (Munich) Gmbh Bispecific T cell engaging antibody constructs
WO2022192898A2 (en) 2021-03-10 2022-09-15 Immunowake Inc. Immunomodulatory molecules and uses thereof
WO2022192504A1 (en) 2021-03-10 2022-09-15 Amgen Inc. Methods for purification of recombinant proteins
WO2022191971A1 (en) 2021-03-10 2022-09-15 Amgen Inc. Parallel chromatography systems and methods
US11447567B2 (en) 2015-07-31 2022-09-20 Amgen Research (Munich) Gmbh Antibody constructs for FLT3 and CD3
WO2022234102A1 (en) 2021-05-06 2022-11-10 Amgen Research (Munich) Gmbh Cd20 and cd22 targeting antigen-binding molecules for use in proliferative diseases
EP3953385A4 (en) * 2019-04-08 2022-12-21 Memorial Sloan Kettering Cancer Center Cd19 antibodies and methods of using the same
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
WO2023007023A1 (en) 2021-07-30 2023-02-02 Affimed Gmbh Duplexbodies
US11571475B1 (en) 2014-08-22 2023-02-07 University Of Bern Anti-CD70 and BCR-ABL inhibitor combination therapy
WO2023062188A1 (en) 2021-10-15 2023-04-20 Amgen Research (Munich) Gmbh Subcutaneous administration of cd19-binding t cell engaging antibodies
WO2023076318A1 (en) 2021-10-27 2023-05-04 Amgen Inc. Deep learning-based prediction for monitoring of pharmaceuticals using spectroscopy
WO2023078968A1 (en) 2021-11-03 2023-05-11 Affimed Gmbh Bispecific cd16a binders
WO2023079493A1 (en) 2021-11-03 2023-05-11 Affimed Gmbh Bispecific cd16a binders
US11661462B2 (en) 2014-07-31 2023-05-30 Amgen Research (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody contructs
US11712468B2 (en) 2018-12-18 2023-08-01 argenx BV CD70 combination therapy
WO2023218027A1 (en) 2022-05-12 2023-11-16 Amgen Research (Munich) Gmbh Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
US11866507B2 (en) 2017-04-11 2024-01-09 Inhibrx, Inc. Multispecific polypeptide constructs having constrained CD3 binding and methods of using the same
US11884720B2 (en) 2015-07-31 2024-01-30 Amgen Research (Munich) Gmbh Antibody constructs for MSLN and CD3
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition
WO2024077044A1 (en) 2022-10-05 2024-04-11 Amgen Inc. Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof
US12000915B2 (en) 2020-10-02 2024-06-04 Amgen Inc. Method for conducting solid state NMR on macromolecule-containing solid state formulations

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201816277T4 (en) * 2007-04-03 2018-11-21 Amgen Res Munich Gmbh Cross-species-specific binding domain.
AU2009299794B2 (en) 2008-10-01 2015-08-13 Amgen Research (Munich) Gmbh Cross-species-specific single domain bispecific single chain antibody
JO3519B1 (en) 2013-01-25 2020-07-05 Amgen Inc Antibody constructs for CDH19 and CD3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
CA3011942A1 (en) 2016-02-03 2017-08-10 Amgen Research (Munich) Gmbh Psma and cd3 bispecific t cell engaging antibody constructs
HUE057220T2 (en) 2016-02-03 2022-04-28 Amgen Res Munich Gmbh Bcma and cd3 bispecific t cell engaging antibody constructs
JOP20190189A1 (en) * 2017-02-02 2019-08-01 Amgen Res Munich Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
EP3694885A1 (en) 2017-10-14 2020-08-19 CytomX Therapeutics, Inc. Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof
JP2021500930A (en) * 2017-11-01 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft COMP Body-Multivalent Target Binding Substance
CA3085782A1 (en) 2017-12-19 2019-06-27 Surrozen, Inc. Wnt surrogate molecules and uses thereof
JP7317016B2 (en) 2017-12-19 2023-07-28 スロゼン オペレーティング, インコーポレイテッド Anti-LRP5/6 Antibodies and Methods of Use
AU2019297522A1 (en) * 2018-07-05 2021-01-28 Surrozen Operating, Inc. Multi-specific Wnt surrogate molecules and uses thereof
US20210301017A1 (en) * 2018-07-30 2021-09-30 Amgen Research (Munich) Gmbh Prolonged administration of a bispecific antibody construct binding to cd33 and cd3
TW202031683A (en) * 2018-11-09 2020-09-01 新加坡商優其洛伊生物私人有限公司 Il2rbeta/common gamma chain antibodies
MA56120A (en) * 2019-06-07 2022-04-13 Amgen Inc B-SPECIFIC LINK CONSTRUCTIONS
WO2021113748A1 (en) * 2019-12-05 2021-06-10 Arbele Corp. Composition of triaxial antibodies and method of making and using thereof
MX2023008261A (en) * 2021-01-13 2023-09-12 Memorial Sloan Kettering Cancer Center Antibody-pyrrolobenzodiazepine derivative conjugate.
KR20230146522A (en) * 2021-01-13 2023-10-19 메모리얼 슬로안 케터링 캔서 센터 Anti-DLL3 antibody-drug conjugate
WO2022240688A1 (en) * 2021-05-10 2022-11-17 Amgen Inc. Dosing regimen for combination therapy targeting dll3 and pd-1
IL311296A (en) * 2021-09-16 2024-05-01 Gt Biopharma Inc Pd-l1 targeting fusion proteins and methods of use thereof
CN116554340A (en) * 2022-01-28 2023-08-08 江苏众红生物工程创药研究院有限公司 Novel long-lasting and highly active and safer antibody constructs

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119567A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific cd3-epsilon binding domain
WO2008143954A2 (en) * 2007-05-14 2008-11-27 Biogen Idec Ma Inc. Single-chain fc (scfc) regions, binding polypeptides comprising same, and methods related thereto
US20110293579A1 (en) * 2010-05-21 2011-12-01 Merrimack Pharmaceuticals, Inc. Bi-specific fusion proteins
WO2012088461A2 (en) * 2010-12-23 2012-06-28 Biogen Idec Inc. Linker peptides and polypeptides comprising same
WO2013026837A1 (en) * 2011-08-23 2013-02-28 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
EP2647707A1 (en) * 2010-11-30 2013-10-09 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2014114800A1 (en) * 2013-01-25 2014-07-31 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2014138449A1 (en) * 2013-03-06 2014-09-12 Merrimack Pharmaceuticals, Inc. Anti-c-met tandem fc bispecific antibodies
US20170029512A1 (en) * 2015-07-31 2017-02-02 Amgen Research (Munich) Antibody constructs for egfrviii and cd3
US20170037130A1 (en) * 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for dll3 and cd3

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US3691016A (en) 1970-04-17 1972-09-12 Monsanto Co Process for the preparation of insoluble enzymes
CA1023287A (en) 1972-12-08 1977-12-27 Boehringer Mannheim G.M.B.H. Process for the preparation of carrier-bound proteins
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4195128A (en) 1976-05-03 1980-03-25 Bayer Aktiengesellschaft Polymeric carrier bound ligands
US4330440A (en) 1977-02-08 1982-05-18 Development Finance Corporation Of New Zealand Activated matrix and method of activation
CA1093991A (en) 1977-02-17 1981-01-20 Hideo Hirohara Enzyme immobilization with pullulan gel
US4229537A (en) 1978-02-09 1980-10-21 New York University Preparation of trichloro-s-triazine activated supports for coupling ligands
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
EP0088046B1 (en) 1982-02-17 1987-12-09 Ciba-Geigy Ag Lipids in the aqueous phase
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
DE3474511D1 (en) 1983-11-01 1988-11-17 Terumo Corp Pharmaceutical composition containing urokinase
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4694778A (en) 1984-05-04 1987-09-22 Anicon, Inc. Chemical vapor deposition wafer boat
JPS6147500A (en) 1984-08-15 1986-03-07 Res Dev Corp Of Japan Chimera monoclonal antibody and its preparation
EP0173494A3 (en) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by dna splicing and expression
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US4751180A (en) 1985-03-28 1988-06-14 Chiron Corporation Expression using fused genes providing for protein product
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
US4935233A (en) 1985-12-02 1990-06-19 G. D. Searle And Company Covalently linked polypeptide cell modulators
JPS63502716A (en) 1986-03-07 1988-10-13 マサチューセッツ・インステチュート・オブ・テクノロジー How to enhance glycoprotein stability
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
ATE87659T1 (en) 1986-09-02 1993-04-15 Enzon Lab Inc BINDING MOLECULES WITH SINGLE POLYPEPTIDE CHAIN.
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
JP3101690B2 (en) 1987-03-18 2000-10-23 エス・ビィ・2・インコーポレイテッド Modifications of or for denatured antibodies
JPH02500329A (en) 1987-05-21 1990-02-08 クリエイテイブ・バイオマリキユールズ・インコーポレーテツド Targeted multifunctional protein
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
US5683888A (en) 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5292658A (en) 1989-12-29 1994-03-08 University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center Cloning and expressions of Renilla luciferase
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
DK0463151T3 (en) 1990-01-12 1996-07-01 Cell Genesys Inc Generation of xenogenic antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
CA2090473A1 (en) 1990-08-29 1992-03-01 Robert M. Kay Homologous recombinatin in mammalian cells
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
DK0546073T3 (en) 1990-08-29 1998-02-02 Genpharm Int Production and use of transgenic, non-human animals capable of forming heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
CA2105984C (en) 1991-03-11 2002-11-26 Milton J. Cormier Cloning and expression of renilla luciferase
WO1992022670A1 (en) 1991-06-12 1992-12-23 Genpharm International, Inc. Early detection of transgenic embryos
WO1992022653A1 (en) 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
AU2235992A (en) 1991-06-14 1993-01-12 Genpharm International, Inc. Transgenic immunodeficient non-human animals
AU2515992A (en) 1991-08-20 1993-03-16 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies
US5470582A (en) 1992-02-07 1995-11-28 Syntex (U.S.A.) Inc. Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles
WO1994000569A1 (en) 1992-06-18 1994-01-06 Genpharm International, Inc. Methods for producing transgenic non-human animals harboring a yeast artificial chromosome
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
AU675661B2 (en) 1992-07-24 1997-02-13 Abgenix, Inc. Generation of xenogeneic antibodies
CA2146559A1 (en) 1992-10-23 1994-05-11 Melanie K. Spriggs Methods of preparing soluble, oligomeric proteins
US5981175A (en) 1993-01-07 1999-11-09 Genpharm Internation, Inc. Methods for producing recombinant mammalian cells harboring a yeast artificial chromosome
EP0754225A4 (en) 1993-04-26 2001-01-31 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies
US7045128B2 (en) 1993-05-24 2006-05-16 Immunex Corporation Antibodies against flt3-ligand
CZ307995A3 (en) 1993-05-24 1996-10-16 Immunex Corp Ligands for flt3 receptors
DE69435112D1 (en) 1993-09-10 2008-08-21 Univ Columbia USE OF GREEN FLUORESCENCE PROTEIN
US5625825A (en) 1993-10-21 1997-04-29 Lsi Logic Corporation Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network
WO1995021191A1 (en) 1994-02-04 1995-08-10 William Ward Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein
US5643763A (en) 1994-11-04 1997-07-01 Genpharm International, Inc. Method for making recombinant yeast artificial chromosomes by minimizing diploid doubling during mating
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
US5777079A (en) 1994-11-10 1998-07-07 The Regents Of The University Of California Modified green fluorescent proteins
EP0822830B1 (en) 1995-04-27 2008-04-02 Amgen Fremont Inc. Human anti-IL-8 antibodies, derived from immunized xenomice
EP0823941A4 (en) 1995-04-28 2001-09-19 Abgenix Inc Human antibodies derived from immunized xenomice
US5811524A (en) 1995-06-07 1998-09-22 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof
DK1143006T3 (en) 1995-08-18 2008-07-14 Morphosys Ip Gmbh Vectors / DNA sequences from human combinatorial antibody libraries
EP1916300A1 (en) 1995-08-29 2008-04-30 Kirin Pharma Kabushiki Kaisha Chimeric animal and method for producing the same
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
US5804387A (en) 1996-02-01 1998-09-08 The Board Of Trustees Of The Leland Stanford Junior University FACS-optimized mutants of the green fluorescent protein (GFP)
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5925558A (en) 1996-07-16 1999-07-20 The Regents Of The University Of California Assays for protein kinases using fluorescent protein substrates
US5976796A (en) 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
ES2301183T3 (en) 1996-12-03 2008-06-16 Amgen Fremont Inc. COMPLETELY HUMAN ANTIBODY THAT JOINS THE EGFR RECEIVER.
JP3795533B2 (en) 1996-12-12 2006-07-12 プロルーム・リミテツド Method and apparatus for detecting and identifying infectious substances
WO1998052976A1 (en) 1997-05-21 1998-11-26 Biovation Limited Method for the production of non-immunogenic proteins
EP1064360B1 (en) 1998-03-27 2008-03-05 Prolume, Ltd. Luciferases, gfp fluorescent proteins, their nucleic acids and the use thereof in diagnostics
US7112324B1 (en) 1998-04-21 2006-09-26 Micromet Ag CD 19×CD3 specific polypeptides and uses thereof
EP1100830B1 (en) 1998-07-28 2003-10-01 Micromet AG Heterominibodies
JP2002534959A (en) 1998-12-08 2002-10-22 バイオベーション リミテッド Methods for modifying immunogenic proteins
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
ES2645698T3 (en) 2001-11-30 2017-12-07 Amgen Fremont Inc. Transgenic animals that carry human Ig light chain genes
CA2530172A1 (en) 2003-06-27 2005-02-10 Abgenix, Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US7622571B2 (en) 2003-10-03 2009-11-24 The University Of Texas System, Board Of Regents Methods and compositions for Mycoplasma pneumoniae exotoxins
AU2004283850C1 (en) 2003-10-16 2011-11-03 Amgen Research (Munich) Gmbh Multispecific deimmunized CD3-binders
WO2005077981A2 (en) 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
SG162788A1 (en) 2005-06-14 2010-07-29 Amgen Inc Self-buffering protein formulations
EP3178850B1 (en) 2005-10-11 2021-01-13 Amgen Research (Munich) GmbH Compositions comprising cross-species-specific antibodies and uses thereof
CA2638811A1 (en) * 2006-02-03 2007-08-16 Medimmune, Llc Protein formulations
TW200745163A (en) 2006-02-17 2007-12-16 Syntonix Pharmaceuticals Inc Peptides that block the binding of IgG to FcRn
GB0614780D0 (en) 2006-07-25 2006-09-06 Ucb Sa Biological products
PL2142533T3 (en) 2007-03-30 2012-04-30 Hoffmann La Roche Imidazolidinone derivatives
TR201816277T4 (en) 2007-04-03 2018-11-21 Amgen Res Munich Gmbh Cross-species-specific binding domain.
WO2008131242A1 (en) * 2007-04-18 2008-10-30 Zymogenetics, Inc. Single chain fc, methods of making and methods of treatment
AU2009237662A1 (en) 2008-04-17 2009-10-22 Ablynx N.V. Peptides capable of binding to serum proteins and compounds, constructs and polypeptides comprising the same
AU2009239437B2 (en) 2008-04-25 2014-11-13 University Of Washington Levels of BCMA protein expression on B cells and use in diagnostic methods
AU2009299794B2 (en) 2008-10-01 2015-08-13 Amgen Research (Munich) Gmbh Cross-species-specific single domain bispecific single chain antibody
HUE030090T2 (en) 2008-10-01 2017-04-28 Amgen Res (Munich) Gmbh Cross-species-specific psmaxcd3 bispecific single chain antibody
EP2344546A1 (en) * 2008-10-13 2011-07-20 Zymogenetics, Inc. Single chain fc type iii interferons and methods of using same
EP3141562A1 (en) 2009-03-10 2017-03-15 Biogen MA Inc. Anti-bcma antibodies
AR076284A1 (en) 2009-04-29 2011-06-01 Bayer Schering Pharma Ag IMMUNOCONJUGADOS OF ANTIMESOTELINA AND USES OF THE SAME
GB2488077A (en) 2009-10-30 2012-08-15 Novozymes Biopharma Dk As Albumin variants
EA027502B1 (en) 2009-12-23 2017-08-31 Зиниммуне Гмбх Anti-flt3 antibodies and methods of using the same
US20130129723A1 (en) 2009-12-29 2013-05-23 Emergent Product Development Seattle, Llc Heterodimer Binding Proteins and Uses Thereof
TWI653333B (en) 2010-04-01 2019-03-11 安進研究(慕尼黑)有限責任公司 Cross-species specific PSMAxCD3 bispecific single chain antibody
WO2012059486A1 (en) 2010-11-01 2012-05-10 Novozymes Biopharma Dk A/S Albumin variants
LT2637670T (en) * 2010-11-10 2017-05-25 Amgen Research (Munich) Gmbh Prevention of adverse effects caused by cd3 specific binding domains
EP3974453A3 (en) 2010-11-16 2022-08-03 Amgen Inc. Agents and methods for treating diseases that correlate with bcma expression
MA34881B1 (en) 2010-12-20 2014-02-01 Genentech Inc ANTIBODIES AND ANTI-MESOTHELIN IMMUNOCONJUGATES
AU2012251583B2 (en) 2011-05-05 2017-06-08 Albumedix Ltd. Albumin variants
RS56879B1 (en) 2011-08-23 2018-04-30 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
TWI679212B (en) 2011-11-15 2019-12-11 美商安進股份有限公司 Binding molecules for e3 of bcma and cd3
CL2014001263A1 (en) 2011-11-15 2014-10-10 Boehringer Ingelheim Int Bispecific binding molecule for bcma and cd3; nucleic acid sequence that encodes it; vector; cell; pharmaceutical composition comprising the binding molecule; use to treat diseases related to plasma cell disorders, b cell disorders correlated with bcma expression and autoimmune diseases.
CA2855746A1 (en) 2011-11-16 2013-05-23 John Stephen HILL Methods of treating epidermal growth factor deletion mutant viii related disorders
EP2780364A2 (en) 2011-11-18 2014-09-24 Eleven Biotherapeutics, Inc. Proteins with improved half-life and other properties
JP6441079B2 (en) 2011-12-19 2018-12-19 シンイミューン ゲーエムベーハー Bispecific antibody molecule
EP2817338B1 (en) 2012-02-24 2017-07-26 AbbVie Stemcentrx LLC Dll3 modulators and methods of use
WO2013128027A1 (en) 2012-03-01 2013-09-06 Amgen Research (Munich) Gmbh Long life polypeptide binding molecules
CA2861592A1 (en) 2012-03-16 2013-09-19 Novozymes Biopharma Dk A/S Albumin variants
US9676858B2 (en) 2012-06-07 2017-06-13 Duke University Human bispecific EGFRvIII antibody and CD3 engaging molecules
US20140004121A1 (en) 2012-06-27 2014-01-02 Amgen Inc. Anti-mesothelin binding proteins
AU2013289883B2 (en) 2012-07-13 2018-11-01 Zymeworks Bc Inc. Bispecific asymmetric heterodimers comprising anti-CD3 constructs
US9409992B2 (en) 2012-08-21 2016-08-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mesothelin domain-specific monoclonal antibodies and use thereof
JOP20200236A1 (en) 2012-09-21 2017-06-16 Regeneron Pharma Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof
AU2013343503B2 (en) 2012-11-08 2017-12-14 Albumedix Ltd. Albumin variants
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
US9243058B2 (en) 2012-12-07 2016-01-26 Amgen, Inc. BCMA antigen binding proteins
US20140377269A1 (en) 2012-12-19 2014-12-25 Adimab, Llc Multivalent antibody analogs, and methods of their preparation and use
KR102391731B1 (en) 2013-01-14 2022-04-27 젠코어 인코포레이티드 Novel heterodimeric proteins
EP3620468A1 (en) 2013-02-05 2020-03-11 EngMab Sàrl Method for the selection of antibodies against bcma
GB201302447D0 (en) * 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
KR101833602B1 (en) 2013-02-26 2018-02-28 로슈 글리카트 아게 Bispecific t cell activating antigen binding molecules
US20140251168A1 (en) * 2013-03-06 2014-09-11 E I Du Pont De Nemours And Company Printing form and a process for preparing a printing form using two-step cure
US9580486B2 (en) * 2013-03-14 2017-02-28 Amgen Inc. Interleukin-2 muteins for the expansion of T-regulatory cells
US20140308285A1 (en) 2013-03-15 2014-10-16 Amgen Inc. Heterodimeric bispecific antibodies
US20140302037A1 (en) * 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
EP2970484B2 (en) 2013-03-15 2022-09-21 Amgen Inc. Heterodimeric bispecific antibodies
AR095596A1 (en) 2013-03-15 2015-10-28 Amgen Res (Munich) Gmbh UNIQUE CHAIN UNION MOLECULES UNDERSTANDING N-TERMINAL ABP
AR095374A1 (en) 2013-03-15 2015-10-14 Amgen Res (Munich) Gmbh UNION MOLECULES FOR BCMA AND CD3
TW201902931A (en) * 2013-03-15 2019-01-16 美商安美基公司 Human PAC1 antibody
CN105378075B (en) * 2013-03-15 2022-04-05 Atyr 医药公司 Histidyl-TRNA synthetase-FC conjugates
CA2917919C (en) 2013-07-09 2019-07-02 Duke University Certain improved human bispecific egfrviii antibody engaging molecules
RU2696892C2 (en) * 2013-08-07 2019-08-07 Аффимед Гмбх Antibody sites specifically binding egfrviii
EP2840091A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific diabodies that are capable of binding gpA33 and CD3 and uses thereof
AR097648A1 (en) 2013-09-13 2016-04-06 Amgen Inc COMBINATION OF EPIGENETIC FACTORS AND BIESPECTIVE COMPOUNDS THAT HAVE LIKE DIANA CD33 AND CD3 IN THE TREATMENT OF MYELOID LEUKEMIA
US20160257748A1 (en) 2013-09-25 2016-09-08 Amgen Inc. V-c-fc-v-c antibody
GB2519786A (en) 2013-10-30 2015-05-06 Sergej Michailovic Kiprijanov Multivalent antigen-binding protein molecules
SG10201800250XA (en) 2013-12-17 2018-02-27 Genentech Inc Anti-cd3 antibodies and methods of use
BR112016014969A2 (en) 2014-01-15 2018-01-23 Hoffmann La Roche polypeptide, pharmaceutical formulation and use of a polypeptide
KR20230022270A (en) 2014-03-28 2023-02-14 젠코어 인코포레이티드 Bispecific antibodies that bind to cd38 and cd3
EA201692476A1 (en) 2014-05-28 2017-07-31 Займворкс Инк. MODIFIED ANTIGEN-BINDING POLYPEPTIDE STRUCTURES AND THEIR APPLICATION
WO2016016859A1 (en) * 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody constructs
AR101400A1 (en) 2014-07-31 2016-12-14 Amgen Res (Munich) Gmbh INDIVIDUAL CHAIN INDIVIDUAL CHAIN ANTIBODY CONSTRUCTION WITH IMPROVED FABRIC DISTRIBUTION
NZ766556A (en) 2014-08-04 2024-02-23 Hoffmann La Roche Bispecific t cell activating antigen binding molecules
AU2015323313B2 (en) 2014-09-25 2021-04-01 Amgen Inc. Protease-activatable bispecific proteins
MA40894A (en) 2014-11-04 2017-09-12 Glenmark Pharmaceuticals Sa HETERODIMERIC IMMUNOGLOBULINS RE-TARGET CD3 / CD38 T-LYMPHOCYTES AND THEIR PRODUCTION PROCESSES
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
TN2017000222A1 (en) 2014-11-26 2018-10-19 Xencor Inc Heterodimeric antibodies that bind cd3 and cd38
AU2015353409B2 (en) 2014-11-26 2019-05-09 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
CN104829727B (en) * 2015-01-21 2019-03-12 武汉友芝友生物制药有限公司 A kind of building and application of bispecific antibody CD19 × CD3
CN104829728B (en) 2015-01-21 2019-03-12 武汉友芝友生物制药有限公司 A kind of building and application of bispecific antibody HER2XCD3
CN104829726B (en) 2015-01-21 2019-03-05 武汉友芝友生物制药有限公司 A kind of building and application of bispecific antibody CD19XCD3
BR112017014805A2 (en) 2015-01-23 2018-01-09 Sanofi anti-cd3 antibodies, anti-cd123 antibodies and bispecific antibodies that specifically bind cd3 and / or cd123
WO2016123675A1 (en) 2015-02-05 2016-08-11 The University Of Queensland Targeting constructs for delivery of payloads
EP4276116A3 (en) 2015-04-17 2024-01-17 Amgen Research (Munich) GmbH Bispecific antibody constructs for cdh3 and cd3
TWI796283B (en) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Antibody constructs for msln and cd3
TWI829617B (en) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Antibody constructs for flt3 and cd3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
HUE050556T2 (en) 2015-08-17 2020-12-28 Janssen Pharmaceutica Nv Anti-bcma antibodies, bispecific antigen binding molecules that bind bcma and cd3, and uses thereof
CA3003899A1 (en) 2015-11-02 2017-05-11 Janssen Pharmaceutica Nv Anti-il1rap antibodies, bispecific antigen binding molecules that bind il1rap and cd3, and uses thereof
US9552854B1 (en) 2015-11-10 2017-01-24 Intel Corporation Register files including distributed capacitor circuit blocks
CA3011942A1 (en) 2016-02-03 2017-08-10 Amgen Research (Munich) Gmbh Psma and cd3 bispecific t cell engaging antibody constructs
EA039859B1 (en) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Bispecific antibody constructs binding egfrviii and cd3
HUE057220T2 (en) 2016-02-03 2022-04-28 Amgen Res Munich Gmbh Bcma and cd3 bispecific t cell engaging antibody constructs
US9567399B1 (en) 2016-06-20 2017-02-14 Kymab Limited Antibodies and immunocytokines
TWI790206B (en) 2016-07-18 2023-01-21 法商賽諾菲公司 Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
TWI781108B (en) 2016-07-20 2022-10-21 比利時商健生藥品公司 Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
MY194596A (en) 2016-09-23 2022-12-06 Regeneron Pharma Bi Specific Anti-Muc16-CD3 Antibodies And Anti-Muc16 Drug Conjugates
WO2018058001A1 (en) 2016-09-23 2018-03-29 Regeneron Pharmaceuticals, Inc. Anti-steap2 antibodies, antibody-drug conjugates, and bispecific antigen-binding molecules that bind steap2 and cd3, and uses thereof
BR112019008426A2 (en) 2016-11-02 2019-09-03 Engmab Sarl bispecific antibody against bcma and cd3 and an immunological drug for combined use in the treatment of multiple myeloma
AU2018261951A1 (en) 2017-05-05 2019-10-31 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119567A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific cd3-epsilon binding domain
WO2008143954A2 (en) * 2007-05-14 2008-11-27 Biogen Idec Ma Inc. Single-chain fc (scfc) regions, binding polypeptides comprising same, and methods related thereto
US20110293579A1 (en) * 2010-05-21 2011-12-01 Merrimack Pharmaceuticals, Inc. Bi-specific fusion proteins
EP2647707A1 (en) * 2010-11-30 2013-10-09 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2012088461A2 (en) * 2010-12-23 2012-06-28 Biogen Idec Inc. Linker peptides and polypeptides comprising same
WO2013026837A1 (en) * 2011-08-23 2013-02-28 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
WO2014114800A1 (en) * 2013-01-25 2014-07-31 Amgen Research (Munich) Gmbh Antibody constructs for cdh19 and cd3
WO2014138449A1 (en) * 2013-03-06 2014-09-12 Merrimack Pharmaceuticals, Inc. Anti-c-met tandem fc bispecific antibodies
US20170029512A1 (en) * 2015-07-31 2017-02-02 Amgen Research (Munich) Antibody constructs for egfrviii and cd3
US20170037130A1 (en) * 2015-07-31 2017-02-09 Amgen Research (Munich) Gmbh Antibody constructs for dll3 and cd3

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434298B2 (en) 2011-03-16 2022-09-06 argenx BV Antibodies to CD70
US11072665B2 (en) 2011-03-16 2021-07-27 Argenx Bvba Antibodies to CD70
US11661462B2 (en) 2014-07-31 2023-05-30 Amgen Research (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody contructs
US11571475B1 (en) 2014-08-22 2023-02-07 University Of Bern Anti-CD70 and BCR-ABL inhibitor combination therapy
US10683351B2 (en) 2015-07-31 2020-06-16 Amgen Research (Munich) Gmbh Antibody constructs for DLL3 and CD3
US11591396B2 (en) 2015-07-31 2023-02-28 Amgen Research (Munich) Gmbh Antibody constructs for DLL3 and CD3
US11447567B2 (en) 2015-07-31 2022-09-20 Amgen Research (Munich) Gmbh Antibody constructs for FLT3 and CD3
US11155629B2 (en) 2015-07-31 2021-10-26 Amgen Research (Munich) Gmbh Method for treating glioblastoma or glioma with antibody constructs for EGFRVIII and CD3
US11884720B2 (en) 2015-07-31 2024-01-30 Amgen Research (Munich) Gmbh Antibody constructs for MSLN and CD3
US11434302B2 (en) 2016-02-03 2022-09-06 Amgen Research (Munich) Gmbh Bispecific T cell engaging antibody constructs
US11866507B2 (en) 2017-04-11 2024-01-09 Inhibrx, Inc. Multispecific polypeptide constructs having constrained CD3 binding and methods of using the same
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
WO2019118426A1 (en) 2017-12-11 2019-06-20 Amgen Inc. Continuous manufacturing process for bispecific antibody products
WO2019133961A1 (en) * 2017-12-29 2019-07-04 Amgen Inc. Bispecific antibody construct directed to muc17 and cd3
CN111630067A (en) * 2017-12-29 2020-09-04 安进公司 Bispecific antibody constructs against MUC17 and CD3
CN111630067B (en) * 2017-12-29 2023-12-05 安进公司 Bispecific antibody constructs against MUC17 and CD3
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment
US11530271B2 (en) 2018-01-16 2022-12-20 argenx BV CD70 combination therapy
CN111836830A (en) * 2018-01-16 2020-10-27 阿根思公司 CD70 combination therapy
EP4275702A3 (en) * 2018-01-16 2024-02-28 Argenx BVBA Cd70 combination therapy
WO2019141732A1 (en) * 2018-01-16 2019-07-25 Argenx Bvba Cd70 combination therapy
US11396551B2 (en) 2018-02-01 2022-07-26 Pfizer Inc. Chimeric antigen receptors targeting CD70
US11987634B2 (en) 2018-02-01 2024-05-21 Pfizer Inc. Antibodies specific for CD70 and their uses
US11377500B2 (en) 2018-02-01 2022-07-05 Pfizer Inc. Antibodies specific for CD70 and their uses
WO2019152705A1 (en) * 2018-02-01 2019-08-08 Pfizer Inc. Antibodies specific for cd70 and their uses
WO2019199476A1 (en) 2018-04-12 2019-10-17 Amgen Inc. Methods for making stable protein compositions
WO2020077212A1 (en) 2018-10-11 2020-04-16 Amgen Inc. Downstream processing of bispecific antibody constructs
WO2020076977A3 (en) * 2018-10-11 2020-06-25 Inhibrx, Inc. Dll3 single domain antibodies and therapeutic compositions thereof
WO2020086635A1 (en) 2018-10-23 2020-04-30 Amgen Inc. Automatic calibration and automatic maintenance of raman spectroscopic models for real-time predictions
US11712468B2 (en) 2018-12-18 2023-08-01 argenx BV CD70 combination therapy
WO2020159838A1 (en) 2019-01-28 2020-08-06 Amgen Inc. A continuous manufacturing process for biologics manufacturing by integration of drug substance and drug product processes
EP3953385A4 (en) * 2019-04-08 2022-12-21 Memorial Sloan Kettering Cancer Center Cd19 antibodies and methods of using the same
WO2020252442A1 (en) 2019-06-13 2020-12-17 Amgen Inc. Automated biomass-based perfusion control in the manufacturing of biologics
WO2021026387A2 (en) 2019-08-06 2021-02-11 Xencor, Inc. HETERODIMERIC IgG-LIKE BISPECIFIC ANTIBODIES
WO2021050640A1 (en) 2019-09-10 2021-03-18 Amgen Inc. Purification method for bispecific antigen-binding polypeptides with enhanced protein l capture dynamic binding capacity
WO2021067762A1 (en) 2019-10-03 2021-04-08 Amgen Inc. Method for conducting solid state nmr on macromolecule-containing solid state formulations
WO2021091906A1 (en) 2019-11-04 2021-05-14 Amgen Inc. Methods for treating leukemia
EP3819007A1 (en) 2019-11-11 2021-05-12 Amgen Research (Munich) GmbH Dosing regimen for anti-bcma agents
WO2021094000A1 (en) 2019-11-11 2021-05-20 Amgen Research (Munich) Gmbh Dosing regimen for anti-bcma agents
WO2021097344A1 (en) 2019-11-13 2021-05-20 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
WO2021116699A1 (en) 2019-12-11 2021-06-17 Precision Immunotherapeutics Limited Reversibly inhibited binding molecules
WO2021158469A1 (en) 2020-02-03 2021-08-12 Amgen Inc. Multivariate bracketing approach for sterile filter validation
WO2022060901A1 (en) 2020-09-16 2022-03-24 Amgen Inc. Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer
WO2022060878A1 (en) 2020-09-16 2022-03-24 Amgen Inc. Methods for treating prostate cancer
US12000915B2 (en) 2020-10-02 2024-06-04 Amgen Inc. Method for conducting solid state NMR on macromolecule-containing solid state formulations
WO2022074206A1 (en) 2020-10-08 2022-04-14 Affimed Gmbh Trispecific binders
WO2022097068A1 (en) 2020-11-05 2022-05-12 Dcprime B.V. Use of tumor-independent antigens in immunotherapies
WO2022096716A2 (en) 2020-11-06 2022-05-12 Amgen Inc. Multitargeting bispecific antigen-binding molecules of increased selectivity
WO2022103781A1 (en) 2020-11-10 2022-05-19 Amgen Inc. Methods for administering a bcma x cd3 binding molecule
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022192898A2 (en) 2021-03-10 2022-09-15 Immunowake Inc. Immunomodulatory molecules and uses thereof
WO2022191971A1 (en) 2021-03-10 2022-09-15 Amgen Inc. Parallel chromatography systems and methods
WO2022192504A1 (en) 2021-03-10 2022-09-15 Amgen Inc. Methods for purification of recombinant proteins
WO2022234102A1 (en) 2021-05-06 2022-11-10 Amgen Research (Munich) Gmbh Cd20 and cd22 targeting antigen-binding molecules for use in proliferative diseases
WO2023007023A1 (en) 2021-07-30 2023-02-02 Affimed Gmbh Duplexbodies
WO2023062188A1 (en) 2021-10-15 2023-04-20 Amgen Research (Munich) Gmbh Subcutaneous administration of cd19-binding t cell engaging antibodies
WO2023076318A1 (en) 2021-10-27 2023-05-04 Amgen Inc. Deep learning-based prediction for monitoring of pharmaceuticals using spectroscopy
WO2023079493A1 (en) 2021-11-03 2023-05-11 Affimed Gmbh Bispecific cd16a binders
WO2023078968A1 (en) 2021-11-03 2023-05-11 Affimed Gmbh Bispecific cd16a binders
WO2023218027A1 (en) 2022-05-12 2023-11-16 Amgen Research (Munich) Gmbh Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition
WO2024059675A3 (en) * 2022-09-14 2024-04-18 Amgen Inc. Bispecific molecule stabilizing composition
WO2024077044A1 (en) 2022-10-05 2024-04-11 Amgen Inc. Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof

Also Published As

Publication number Publication date
PE20181537A1 (en) 2018-09-26
TW201734050A (en) 2017-10-01
MA43956A (en) 2018-12-12
KR20180104137A (en) 2018-09-19
EA039859B1 (en) 2022-03-21
CN109071662A (en) 2018-12-21
CL2018002046A1 (en) 2018-12-21
PH12018501548A1 (en) 2019-06-10
IL260919B2 (en) 2024-02-01
JP2017163973A (en) 2017-09-21
JOP20210076A1 (en) 2023-01-30
IL260919A (en) 2018-09-20
BR112018015670A2 (en) 2018-12-18
JP7016217B2 (en) 2022-02-04
UY37104A (en) 2017-09-29
SG11201805870YA (en) 2018-08-30
CL2023001082A1 (en) 2023-12-01
TWI754628B (en) 2022-02-11
MX2018009383A (en) 2018-11-12
AU2017214251B2 (en) 2024-03-21
EP3411403A1 (en) 2018-12-12
CO2018009112A2 (en) 2018-08-31
IL260919B1 (en) 2023-10-01
CL2021000299A1 (en) 2021-07-02
EA201890390A1 (en) 2018-06-29
JP7478762B2 (en) 2024-05-07
HK1257748A1 (en) 2019-10-25
TW202233689A (en) 2022-09-01
ZA201804514B (en) 2022-12-21
CA3010685A1 (en) 2017-08-10
JP2022064941A (en) 2022-04-26
SG10202007213QA (en) 2020-08-28
US11434302B2 (en) 2022-09-06
CR20180417A (en) 2019-01-15
TN2018000265A1 (en) 2020-01-16
EA201891749A1 (en) 2019-01-31
AR107520A1 (en) 2018-05-09
AU2017214251A1 (en) 2018-07-26
EA201890390A8 (en) 2019-09-30
UA126280C2 (en) 2022-09-14
US20230192884A1 (en) 2023-06-22
PE20230995A1 (en) 2023-06-23
TWI828040B (en) 2024-01-01
US20170218078A1 (en) 2017-08-03
IL306066A (en) 2023-11-01
JOP20170028B1 (en) 2021-08-17
MY192682A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US20230192884A1 (en) Bispecific t cell engaging antibody constructs
US11352433B2 (en) BCMA and CD3 bispecific T cell engaging antibody constructs
US20210070878A1 (en) PSMA and CD3 Bispecific T Cell Engaging Antibody Constructs
US11155629B2 (en) Method for treating glioblastoma or glioma with antibody constructs for EGFRVIII and CD3
AU2016302575B2 (en) Bispecific antibody constructs binding mesothelin and CD3
AU2018261951A1 (en) Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
WO2018141910A1 (en) Low ph pharmaceutical composition comprising t cell engaging antibody constructs
US20210395298A1 (en) Downstream processing of bispecific antibody constructs
EA043696B1 (en) BISPECIFIC ANTIBODY CONSTRUCTIONS TO PSMA AND CD3 ENGAGING T CELLS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17703379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3010685

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201805870Y

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 12018501548

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 001340-2018

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2017214251

Country of ref document: AU

Date of ref document: 20170202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 260919

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009383

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018015670

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187024998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: CR2018-000417

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 201891749

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2017703379

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017703379

Country of ref document: EP

Effective date: 20180903

ENP Entry into the national phase

Ref document number: 112018015670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180731