WO2017133674A1 - 随机接入信道的配置方法及装置 - Google Patents

随机接入信道的配置方法及装置 Download PDF

Info

Publication number
WO2017133674A1
WO2017133674A1 PCT/CN2017/072854 CN2017072854W WO2017133674A1 WO 2017133674 A1 WO2017133674 A1 WO 2017133674A1 CN 2017072854 W CN2017072854 W CN 2017072854W WO 2017133674 A1 WO2017133674 A1 WO 2017133674A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal
time domain
time
sequence
Prior art date
Application number
PCT/CN2017/072854
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
夏树强
陈宪明
石靖
张雯
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133674A1 publication Critical patent/WO2017133674A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for configuring a random access channel.
  • MTC UE Machine Type Communication
  • M2M Machine to Machine
  • the main alternative methods for cost reduction of MTC UEs are to reduce the terminal receiving antenna, reduce the terminal baseband processing bandwidth, reduce the peak rate supported by the terminal, adopt the half-duplex mode and the like.
  • the reduction in cost means a decline in performance, and the performance requirements of ordinary terminals are difficult to guarantee, which results in a decrease in user access quality and a decrease in user experience.
  • the present invention provides a method and a device for configuring a random access channel, so as to at least solve the problem that the user access quality of the MTC UE in the related art is poor in order to reduce the cost.
  • a method for configuring a random access channel including: a terminal transmitting a random access signal to a base station by using a random access channel, where a resource of the random access channel includes at least one time-frequency resource set Set m,k ,Set m,k includes at least one subcarrier or subchannel in the frequency domain, Set m,k includes at least one time period in the time domain, where m is the index of Set m, k in the time domain, k is the index of Set m,k in the frequency domain.
  • Set m,k includes N time segments in the time domain, and the length of the time period indexed as n is T n , where N is a positive integer greater than or equal to 1, 1 ⁇ n ⁇ N, T n includes At least one of: one or more frames, one or more subframes, one or more time domain symbol lengths, one or more time domain sampling intervals.
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining a time domain starting position StartSet m, k : Set 1 of Set m, k according to at least one of the following parameters: k time domain starting position StartingSet 1, k; Set m, the length of the time domain resource of T m k; two adjacent Set m, k of the time-domain interval T interval; Set m, k of the arrangement period T period; Set The offset Offset m of the time domain start position of m,k , where Offset m represents the offset of StartingSet m,k within T period .
  • StartingSet m,k StartingSet 1,k +(T m +T Interval ) ⁇ (m-1)+Offset m .
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining, according to the at least one parameter , a starting position StartPeriod m, k of the configuration period T period corresponding to Set m, k : Set 1, k corresponds to the start position of the configuration period T period StartingPeriod 1, k ; T period .
  • StartingPeriod m,k StartingPeriod 1,k +(T Period ) ⁇ (m-1) is determined according to the following formula.
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining the set m according to the offsets Offset m and StartingPeriod m, k of the time domain start position of Set m ,k , k is the time domain starting position StartingSet m ,k in the corresponding configuration period T period , where Offset m represents the offset of StartingSet m,k in the T period .
  • StartingPeriod m,k satisfies the following condition: StartingPeriod m, the size of k is an integral multiple of the length of the set m, k time domain; or StartingPeriod m, the size of k is set b , 2 b times the length of the k time domain, Where b is an integer greater than or equal to zero.
  • the resource of the random access channel includes multiple Set m, k in the frequency domain , and multiple Set m, k occupy consecutive frequency domain resources in the frequency domain.
  • the resource of the random access channel includes multiple Set m, k in the frequency domain , and multiple Set m, k are symmetrically distributed in the frequency domain.
  • the length of Set m,k includes at least one of the following: 1 ms, 2 ms, 3 ms, 4 ms, 6 ms, 8 ms.
  • Set m, k includes F subcarriers or subchannels in the frequency domain
  • Set m, k includes N time segments in the time domain
  • Set m, k includes at least one time frequency resource subset among them
  • the subcarrier or subchannel corresponding to the index f, in the time domain corresponding to the index of the index n, F and N are integers greater than or equal to 1, 1 ⁇ f ⁇ F, 1 ⁇ n ⁇ N.
  • the terminal sending the random access signal to the base station by using the random access channel includes: the terminal selects a random access sequence according to a preset rule; the terminal generates a random access signal according to the random access sequence; and the terminal sets the random access signal in the set At least one of m,k Send in.
  • the random access sequence is a sequence in a Zadoff-Chu sequence set.
  • the length L of the random access sequence is a prime number.
  • L comprises at least one of the following: 11, 13, 17, 19, 23, 41, 47, 53.
  • the terminal sends a random access signal to the base station through the random access channel, and the terminal selects a random access signal corresponding to the set of terminals to which the terminal belongs, and connects the random access signal.
  • the incoming signal is sent to the base station.
  • the method further includes: the terminal selects a random access sequence corresponding to the set of terminals to which the terminal belongs. And generating a random access signal according to the random access sequence.
  • the set of terminals includes a first set of terminals and a second set of terminals.
  • the first terminal set and the second terminal set meet at least one of the following conditions: the terminal included in the first terminal set is a terminal that supports simultaneous transmission of multiple subcarriers, and the terminal included in the second terminal set supports only a single sub a terminal for transmitting a carrier; a terminal included in the first terminal set is a terminal that transmits uplink data by using multiple subcarriers, and a terminal included in the second terminal set is a terminal that transmits uplink data by using a single subcarrier; A terminal that transmits an Msg3 message by using multiple subcarriers, and the terminal included in the second terminal set is a terminal that transmits an Msg3 message by using a single subcarrier.
  • the terminals belong to the same level.
  • the level comprises at least one of: a coverage enhancement level; a physical channel repetition transmission level; and a repeated transmission level of a message or signaling carried on the physical channel.
  • Set m, k resources corresponding to terminals belonging to different levels are indicated by different signaling.
  • the method further includes: configuring, by default, C levels by the base station, where C is a positive integer.
  • the C levels are arranged from small to large, and the first C1 levels of the C levels are used for dividing into the first level set, and the remaining levels of the C levels are used for dividing into the second level set, wherein, C1 For a positive integer less than or equal to C, the terminal corresponding to the first level set is used to send the Msg3 message or the uplink data according to the first rule, and/or the terminal corresponding to the second level set is used to send the Msg3 message or the uplink data according to the second rule. .
  • the terminal corresponding to the first level set is configured to send the Msg3 message or the uplink data according to the first rule
  • the subcarrier spacing or the subchannel bandwidth used by the terminal corresponding to the first level set to send the Msg3 message is the same as the subcarrier spacing or the subchannel bandwidth of the random access channel resource used by the terminal to send the random access signal.
  • a device for configuring a random access channel including: a sending module, configured to send a random access signal to a base station through a random access channel, where resources of the random access channel include at least A set of time-frequency resources Set m, k , Set m, k includes at least one subcarrier or subchannel in the frequency domain, and Set m, k includes at least one time period in the time domain, where m is Set m, k is The index of the time domain, k is the index of Set m, k in the frequency domain.
  • Set m, k includes F subcarriers or subchannels in the frequency domain
  • Set m, k includes N time segments in the time domain
  • Set m, k includes at least one time frequency resource subset among them
  • the subcarrier or subchannel corresponding to the index f, in the time domain corresponding to the index of the index n, F and N are integers greater than or equal to 1, 1 ⁇ f ⁇ F, 1 ⁇ n ⁇ N.
  • the sending module includes: a selecting unit configured to select a random access sequence according to a preset rule; a generating unit configured to generate a random access signal according to the random access sequence; and a sending unit configured to set the random access signal at At least one of Set m,k Send in.
  • a configuration system for a random access channel including: a base station; a terminal, which sends a random access signal to a base station through a random access channel, where the resources of the random access channel include at least one The set of time-frequency resources Set m, k , Set m, k includes at least one subcarrier or subchannel in the frequency domain, and Set m, k includes at least one time period in the time domain, where m is Set m, k is in time The index of the domain, k is the index of Set m, k in the frequency domain.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium stores an execution instruction, where the execution instruction is used to perform one or a combination of the steps in the foregoing method embodiments.
  • the terminal sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one in the frequency domain.
  • Subcarrier or subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, the index of k in the time domain, k is the index of Set m, k in the frequency domain, and the MTC UE is solved.
  • the resources of the random access channel are configured as M time-frequency resource sets, and the terminal sends a random access signal to the base station through the random access channel, thereby effectively improving the user. Access quality.
  • FIG. 1 is a flowchart of a method for configuring a random access channel according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a Set m according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a Set m according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a T period according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a Set m in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a set m,k according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a set 1, 1 and a set 1, 2 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a random access signal expression according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a set m,k according to an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a Set m,k in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a set m,k according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a set m,k according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a set m,k according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a Set 1, 1 according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of an apparatus for configuring a random access channel according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a configuration system of a random access channel according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for configuring a random access channel according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 The terminal sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one sub-carrier in the frequency domain.
  • the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one sub-carrier in the frequency domain.
  • subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, the index of k in the time domain, and k is the index of Set m, k in the frequency domain.
  • the terminal sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one in the frequency domain.
  • Subcarrier or subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, the index of k in the time domain, k is the index of Set m, k in the frequency domain, and the MTC UE is solved.
  • the resources of the random access channel are configured as M time-frequency resource sets, and the terminal sends a random access signal to the base station through the random access channel, thereby effectively improving the user. Access quality.
  • Set m,k includes N time segments in the time domain, and the length of the time period indexed as n is T n , where N is a positive integer greater than or equal to 1, 1 ⁇ n ⁇ N, T n includes At least one of: one or more frames, one or more subframes, one or more time domain symbol lengths, one or more time domain sampling intervals.
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining a time domain starting position StartSet m, k : Set 1 of Set m, k according to at least one of the following parameters: k time domain starting position StartingSet 1, k; Set m, the length of the time domain resource of T m k; two adjacent Set m, k of the time-domain interval T interval; configuration period T period Set m, k; and the Set The offset Offset m of the time domain start position of m,k , where Offset m represents the offset of StartingSet m,k within T period .
  • StartingSet m,k StartingSet 1,k +(T m +T Interval ) ⁇ (m-1)+Offset m .
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining, according to the at least one parameter , a starting position StartPeriod m, k of the configuration period T period corresponding to Set m, k : Set 1, k corresponds to the start position of the configuration period T period StartingPeriod 1, k ; T period .
  • the method before the terminal sends the random access signal to the base station by using the random access channel, the method further includes: determining the set m according to the offsets Offset m and StartingPeriod m, k of the time domain start position of Set m ,k , k is the time domain starting position StartingSet m ,k in the corresponding configuration period T period , where Offset m represents the offset of StartingSet m,k in the T period .
  • StartingPeriod m,k satisfies the following condition: StartingPeriod m, the size of k is an integral multiple of the length of the set m, k time domain; or StartingPeriod m, the size of k is set b , 2 b times the length of the k time domain, Where b is an integer greater than or equal to zero.
  • the resource of the random access channel includes multiple Set m, k in the frequency domain , and multiple Set m, k occupy consecutive frequency domain resources in the frequency domain.
  • the resource of the random access channel includes multiple Set m, k in the frequency domain , and multiple Set m, k are symmetrically distributed in the frequency domain.
  • the length of Set m,k includes at least one of the following: 1 ms, 2 ms, 3 ms, 4 ms, 6 ms, 8 ms.
  • Set m, k includes F subcarriers or subchannels in the frequency domain
  • Set m, k includes N time segments in the time domain
  • Set m, k includes at least one time frequency resource subset among them
  • the subcarrier or subchannel corresponding to the index f, in the time domain corresponding to the index of the index n, F and N are integers greater than or equal to 1, 1 ⁇ f ⁇ F, 1 ⁇ n ⁇ N.
  • the terminal sending the random access signal to the base station by using the random access channel includes: the terminal selects a random access sequence according to a preset rule; the terminal generates a random access signal according to the random access sequence; and the terminal sets the random access signal in the set At least one of m,k Send in.
  • the random access sequence is a sequence in a Zadoff-Chu sequence set.
  • the length L of the random access sequence is a prime number.
  • L comprises at least one of the following: 11, 13, 17, 19, 23, 41, 47, 53.
  • the terminal sends a random access signal to the base station through the random access channel, and the terminal selects a random access signal corresponding to the set of terminals to which the terminal belongs, and connects the random access signal.
  • the incoming signal is sent to the base station.
  • the method further includes: the terminal selects a random access sequence corresponding to the set of terminals to which the terminal belongs. And generating a random access signal according to the random access sequence.
  • the set of terminals includes a first set of terminals and a second set of terminals.
  • the first terminal set and the second terminal set meet at least one of the following conditions: the terminal included in the first terminal set is a terminal that supports simultaneous transmission of multiple subcarriers, and the terminal included in the second terminal set supports only a single sub a terminal for transmitting a carrier; a terminal included in the first terminal set is a terminal that transmits uplink data by using multiple subcarriers, and a terminal included in the second terminal set is a terminal that transmits uplink data by using a single subcarrier; A terminal that transmits an Msg3 message by using multiple subcarriers, and the terminal included in the second terminal set is a terminal that transmits an Msg3 message by using a single subcarrier.
  • the terminals belong to the same level.
  • the level comprises at least one of: a coverage enhancement level; a physical channel repetition transmission level; and a repeated transmission level of a message or signaling carried on the physical channel.
  • Set m, k resources corresponding to terminals belonging to different levels are indicated by different signaling.
  • the method further includes: configuring, by default, C levels by the base station, where C is a positive integer.
  • the C levels are arranged from small to large, and the first C1 levels of the C levels are used for dividing into the first level set, and the remaining levels of the C levels are used for dividing into the second level set, wherein, C1 For a positive integer less than or equal to C, the terminal corresponding to the first level set is used to send the Msg3 message or the uplink data according to the first rule, and/or the terminal corresponding to the second level set is used to send the Msg3 message or the uplink data according to the second rule. .
  • the terminal corresponding to the first level set is configured to send the Msg3 message or the uplink data according to the first rule
  • the subcarrier spacing or the subchannel bandwidth used by the terminal corresponding to the first level set to send the Msg3 message is the same as the subcarrier spacing or the subchannel bandwidth of the random access channel resource used by the terminal to send the random access signal.
  • the terminal 1 transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal 1 includes a plurality of time-frequency resource sets Set m, k , m is Set m, k is an index in the time domain, and k is an index of Set m, k in the frequency domain.
  • K 1, i.e. a configuration Set m, k only the frequency domain, can be Set m, k referred to as Set m.
  • the frequency resources may be determined according to the following formula when the set Set m time domain starting position StartingSet m:
  • the time domain resource length of Set m is T m
  • T Interval is the time domain interval of two adjacent Set m
  • Offset m is Set m . The offset of the start of the time domain.
  • the parameters used in the above formula may be sent by the base station to the terminal through a system message, or configured in a predefined manner.
  • the T m may also be configured to be 4 ms, 6 ms, 12 ms, 16 ms, 24 ms, 32 ms, and the like.
  • the terminal 1 transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal 1 includes a plurality of time-frequency resource sets Set m, k , where m is Set m, k is an index in the time domain, and k is an index of Set m, k in the frequency domain.
  • K 1, i.e. only disposed on a frequency domain Set m, k, which can be Set m, k referred to as Set m.
  • the time domain starting position StartingSet m of the time-frequency resource set Set m can be determined according to the following method:
  • Step 1 Determine the starting position StartingPeriod m of the configuration period corresponding to Set m according to the following formula:
  • Step 2 Set m determine the specific location in said configuration by a period T period Offset m (Set m time domain starting position StartingSet m), wherein, Offset m Set m to indicate the start position in the time domain Set m The offset of the configuration period T period .
  • the parameters used in the foregoing steps 1 and 2 may be sent by the base station to the terminal through a system message, or configured in a predefined manner.
  • T period 32 ms
  • Set m has four positions in the configuration period T period , for example, the two positions are indicated by 2 bits: "00" corresponds to the first position, "01” corresponds to the second position, "10” corresponds to the third position, and "11” corresponds to the fourth position.
  • the 2 bit configuration is “10”, and the set m is in the third 8 ms in the configuration period T period , as shown in FIG. 2 .
  • the T m may also be configured to be 4 ms, 6 ms, 12 ms, 16 ms, 24 ms, 32 ms, and the like.
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal includes a set of time-frequency resources Setm ,k , where m is Set m, an index of k in the time domain, and k is an index of Set m, k in the frequency domain.
  • K 2, i.e. the configuration 2 Set m, k only on the frequency domain, and optionally, two Set m, k are respectively located at both sides of the frequency domain resources, particularly as shown in FIG.
  • the terminal can be according to the following Step to determine the time domain starting position StartingSet m :
  • Step 1 Determine the starting position StartingPeriod m of the configuration period corresponding to Set m, 1 and Set m, 2 according to the following formula:
  • StartingPeriod 1 is the starting position of the configuration period corresponding to Set 1,1 and Set 1,2
  • T period is the configuration period of Set m,k .
  • Step 2 to determine the specific location Set m, k in the above-described configuration of the period T period (time domain starting position StartingSet m) by Offset m, which is used to indicate Set m Offset m, k of time domain starting position in Set m , k is the offset within the configuration period T period .
  • the parameters used in the foregoing steps 1 and 2 may be sent by the base station to the terminal through a system message, or configured in a predefined manner.
  • T period 16 ms
  • Set m, k has 4 positions in the configuration period T period , for example, the 4 positions are indicated by 2 bits: "00" corresponds to the first one. Position, "01” corresponds to the second position, “10” corresponds to the third position, and "11” corresponds to the fourth position.
  • the 2 bit configuration is "10”
  • Set m, k is in the third 4 ms in the above configuration period T period , as shown in FIG.
  • the T m may also be configured to be 4 ms, 6 ms, 12 ms, 16 ms, 24 ms, 32 ms, and the like.
  • the terminal 1 transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal 1 is taken from a plurality of time-frequency resource sets Set m, k , where m is Set m, k is in the time domain index, Set m, k is in the domain length 4 ms, and k is Set m, k index in the frequency domain.
  • K 2, i.e., arranged on the frequency domain only 2 Set m, k, the two Set m, k are respectively located at both sides of the frequency domain resource, as shown in FIG.
  • the time domain sampling frequency of the system configuration is 1.92 MHz
  • the time domain sampling interval is The subcarrier spacing ⁇ f of the random access channel is 15 kHz
  • the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • the structure of Set m,k is as shown in FIG. 6, including 2 And a GT (guard time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structures of Set 1 , 1 and Set 1, 2 are as shown in FIG.
  • Terminal 1 selects Set 1, 1 and Set 1 , 2 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression may be composed of a cyclic prefix (CP) and a time domain signal (Sequence), as shown in FIG.
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 5.
  • ZC sequence set can be different [u, v] corresponds to y u,v (k) composition.
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift, configured by the base station.
  • y u (k) is the root sequence of the ZC sequence and is generated according to the following formula:
  • N ZC is the length of the ZC sequence
  • the terminal 1 is a terminal that needs coverage enhancement, then the above with The random access signal sent needs to be sent multiple times.
  • Set 1,1 1 can transmit programs and Set 1,2 random access signal Set 2,1 and Set 2,2 reuse the terminal. If the number of repeated transmissions is still insufficient, the same random access signal transmission scheme can be continued in the subsequent Set m,k .
  • Lcp can also be configured as 4, and Lgt can also be configured as 6.
  • the terminal transmits a random access signal through a random access channel.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • the structure of Set m,k is as shown in FIG. 10, including 4 And a GT (guard time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structures of Set 1 , 1 and Set 1, 2 are as shown in FIG.
  • Terminal 1 selects Set 1, 1 and Set 1 , 2 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 6
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence and is generated according to the following formula:
  • Terminal Set 1,1 may be employed reuse scheme and transmitting a random access signal in Set 2,1 Set 1,2 and 2,2 in the Set. If the number of repeated transmissions is still insufficient, the same random access signal transmission scheme can be continued in the subsequent Set m,k .
  • Lcp can also be configured as 4, Lgt can also be configured as 12; or Lcp can be configured as 5, and Lgt can also be configured as 8.
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m, k , where m is Set m, k is in the time domain index, Set m, k time domain length is 2 ms; k is Set
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f is the frequency domain subcarrier index
  • n is the time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 As a random access resource that transmits a random access signal.
  • the expression of the random access signal consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 19
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 4.
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence and is generated according to the following formula:
  • Lcp can also be configured as 5, and Lgt can be configured as 6; or Lcp can be configured as 6 and Lgt can be configured as 5; or Lcp can be configured as 7 or Lgt can be configured as 4 .
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m, k , where m is Set m, k is in the time domain index, Set m, k time domain length is 4 ms, and k is Set
  • the index of m, k in the frequency domain, in this embodiment, K 1, that is, only one set m, k is configured in the frequency domain.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 5.
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • u is a root sequence index, 1 ⁇ u ⁇ N zc -1 and u is an integer
  • N ZC is the length of the ZC sequence, embodiments of the present embodiment
  • the terminal 1 is a terminal that needs coverage enhancement, then the above with The transmitted random access signal needs to be sent multiple times, and the same random access signal transmission scheme can be continued in the subsequent Set m, k .
  • Lcp can also be configured as 4, and Lgt can also be configured as 6.
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m,k , where m is Set m, k is in the time domain index, Set m, k is 0 ms in length, and k is Set
  • the index of m, k in the frequency domain, in this embodiment, K 1, that is, only one set m, k is configured in the frequency domain.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG. 16.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 6
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • Lcp can also be configured as 4, and Lgt can also be configured as 12; or Lcp can also be configured as 5, and Lgt can also be configured as 8.
  • the terminal transmits a random access signal through a random access channel.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f is the frequency domain subcarrier index
  • n is the time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the base station pre-defines two random access signals, which respectively correspond to two terminal sets
  • the terminal set includes: a first terminal set and a second terminal set.
  • the first terminal set and the second terminal set meet at least one of the following conditions: the terminal included in the first terminal set is a terminal that supports simultaneous transmission of multiple subcarriers, and the terminal included in the second terminal set is a terminal that supports only single subcarrier transmission.
  • the terminal included in the first terminal set is a terminal that transmits uplink data by using multiple subcarriers
  • the terminal included in the second terminal set is a terminal that transmits uplink data by using a single subcarrier; the terminal included in the first terminal set uses multiple subcarriers.
  • a terminal that transmits an Msg3 message, and the terminal included in the second terminal set is a terminal that transmits an Msg3 message by using a single subcarrier.
  • the terminal 1 selects a corresponding random access signal according to the set of terminals to which it belongs, and transmits the random access signal to the base station.
  • the terminal transmits a random access signal through a random access channel.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is the same expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence), as shown in the following figure.
  • the terminal set includes: a first terminal subset, including a terminal that uses multiple subcarriers to transmit an Msg3 message. a second subset of terminals, including a terminal that transmits Msg3 messages using a single subcarrier.
  • the terminal 1 can select a corresponding random access signal according to the set of terminals to which it belongs, and send the random access signal to the base station.
  • the base station When the base station detects the random access signaling sent by the terminal, the base station sends a random access response message (RAR, also referred to as message 2, Message 2, referred to as Msg2) to the terminal 1.
  • RAR random access response message
  • Msg2 message 2
  • the terminal 1 receives the RAR message and obtains uplink timing synchronization information and uplink resources.
  • RAR random access response message
  • Msg3 message 3
  • Msg3 carries a specific ID of a terminal to distinguish different terminals.
  • Msg3 can support transmission of a single subcarrier or multiple subcarriers.
  • the base station determines the transmission type of the Msg3 message of the terminal 1 according to the detected random access signal, and further configures the corresponding Msg3 message resource for the terminal 1.
  • the terminal 1 sends an Msg3 message on the Msg3 message resource configured by the base station. After receiving the Msg3 sent by the terminal, the base station finally solves such a random access conflict by sending a message 4 (Message4, referred to as Msg4).
  • Msg4 will carry a specific ID sent by the terminal in Msg3.
  • the terminal receives the Msg4 message sent by the base station, and the ID carried in the terminal matches the specific ID reported to the base station in Msg3, the terminal considers that it has won the random access collision and the random access succeeds; otherwise, the terminal It is considered that the access fails and the random access process is re-executed.
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m, k , where m is Set m, k is in the time domain index, Set m, k time domain length is 4 ms, and k is Set
  • the index of m, k in the frequency domain, in this embodiment, K 1, that is, only one set m, k is configured in the frequency domain.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is different in expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 5.
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the signal formed is the time domain signal (Sequence).
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the terminal 1 is a terminal that needs coverage enhancement, the above with The transmitted random access signal needs to be sent multiple times, and the same random access signal transmission scheme can be continued in the subsequent Set m, k .
  • Lcp can also be configured as 4, and Lgt can also be configured as 6.
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m, k , where m is Set m, k is in the time domain index, Set m, k time domain length is 4 ms, and k is Set
  • the index of m, k in the frequency domain, in this embodiment, K 1, that is, only one set m, k is configured in the frequency domain.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal sent is different in expression.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 5.
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the terminal 1 is a terminal that needs coverage enhancement, the above with The transmitted random access signal needs to be sent multiple times, and the same random access signal transmission scheme can be continued in the subsequent Set m, k .
  • the terminal transmits a random access signal through a random access channel.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f is the frequency domain subcarrier index
  • n is the time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG. 21.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal expressions sent are not all the same.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 6
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the signal formed is the time domain signal (Sequence).
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the signal formed is the time domain signal (Sequence).
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the terminal transmits a random access signal through a random access channel.
  • the random access channel resource selected by the terminal is taken from a plurality of time-frequency resource sets Set m,k , where m is Set m, k is in the time domain index, Set m, k is 0 ms in length, and k is Set
  • the index of m, k in the frequency domain, in this embodiment, K 1, that is, only one set m, k is configured in the frequency domain.
  • the time domain sampling frequency of the system configuration is 1.92MHz, then the time domain sampling interval
  • the subcarrier spacing ⁇ f of the random access channel is 15 kHz, and the time domain symbol length T symbol is equal to T s , which is 66.7us.
  • Set m, k includes 4 And a 2 GT (guard time, protection time).
  • the frequency domain occupies one subcarrier, and the time domain length is one time period.
  • f denotes a frequency domain subcarrier index
  • n denotes a time period index occupied by the time domain.
  • the structure of Set 1 , 1 is as shown in FIG.
  • Terminal 1 selects Set 1,1 with As a random access resource that transmits a random access signal. with They are spaced 150 kHz apart in the frequency domain and are located on either side of the 180 kHz bandwidth. Terminal 1 is at with The random access signal expressions sent are not all the same.
  • the expression consists of a cyclic prefix (CP) and a time domain signal (Sequence).
  • the number of time domain symbols occupied by the time domain signal is Ls.
  • Ls 23
  • the number of time domain symbols occupied by the CP is Lcp.
  • Lcp 6
  • ZC sequence set Zadoff-Chu sequences
  • y u,v (k) is the vth cyclic shift sequence of y u (k), which is generated according to the following formula:
  • N CS is the size of the cyclic shift and is configured by the base station
  • y u (k) is the root sequence of the ZC sequence, according to the formula 0 ⁇ k ⁇ N ZC -1 is generated.
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the random access signal expression sent in is the expression composed of [CP; Sequence].
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM, including a number of instructions to make a terminal device (can be a mobile phone, a computer, The server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a device for configuring a random access channel is also provided.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the terms "module,” "unit,” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 23 is a schematic diagram of a configuration apparatus for a random access channel according to an embodiment of the present invention. As shown in FIG. 23, the apparatus includes: a sending module 230.
  • the sending module 230 is configured to send a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one in the frequency domain Subcarrier or subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, k is the index in the time domain, and k is the index of Set m, k in the frequency domain.
  • the sending module 230 sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k included in the frequency domain.
  • the MTC UE has poor access quality, and the resources of the random access channel are configured as M time-frequency resource sets, and the terminal sends a random access signal to the base station through the random access channel, thereby effectively improving User access quality.
  • Set m, k includes F subcarriers or subchannels in the frequency domain
  • Set m, k includes N time segments in the time domain
  • Set m k includes at least one time frequency resource subset among them
  • the subcarrier or subchannel corresponding to the index f, in the time domain corresponding to the index of the index n, F and N are integers greater than or equal to 1, 1 ⁇ f ⁇ F, 1 ⁇ n ⁇ N.
  • the sending module includes: a selecting unit configured to select a random access sequence according to a preset rule; a generating unit configured to generate a random access signal according to the random access sequence; and a sending unit configured to set the random access signal at At least one of Set m,k Send in.
  • a configuration system for a random access channel is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • FIG. 24 is a schematic diagram of a configuration system of a random access channel according to an embodiment of the present invention. As shown in FIG. 24, the system includes:
  • the terminal 242 sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one sub-carrier in the frequency domain or
  • the subchannel, Set m, k includes at least one time period in the time domain, where m is Set m, the index of k in the time domain, and k is the index of Set m, k in the frequency domain.
  • the terminal 242 transmits a random access signal through a random access channel to the base station 240, wherein the random access channel resources include at least one time-frequency resource set Set m, k, Set m, k included in the frequency domain At least one subcarrier or subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, k is in the index of the time domain, k is Set m, and the index in the frequency domain is solved.
  • the MTC UE has poor access quality
  • the resources of the random access channel are configured as M time-frequency resource sets, and the terminal sends a random access signal to the base station through the random access channel, thereby effectively improving User access quality.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S102 The terminal sends a random access signal to the base station by using a random access channel, where the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one sub-carrier in the frequency domain.
  • the resource of the random access channel includes at least one time-frequency resource set Set m, k , Set m, k including at least one sub-carrier in the frequency domain.
  • subchannel, Set m,k includes at least one time period in the time domain, where m is Set m, the index of k in the time domain, and k is the index of Set m, k in the frequency domain.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method and apparatus for configuring a random access channel provided by the embodiments of the present invention have the following beneficial effects:
  • the problem that the user access quality of the MTC UE is poor in order to reduce the cost is solved, and the resources of the random access channel are configured as M time-frequency resource sets, and the terminal sends the random access signal to the base station through the random access channel, thereby Effectively improve the quality of user access.

Abstract

本发明提供了一种随机接入信道的配置方法及装置。该方法包括:终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。通过本发明,解决了MTC UE为了降低成本导致用户接入质量较差的问题,从而有效提高了用户接入质量。

Description

随机接入信道的配置方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种随机接入信道的配置方法及装置。
背景技术
机器类型通信(Machine Type Communication,简称MTC)用户终端(User Equipment,简称UE)(以下简称为MTC UE),又称机器到机器(Machine to Machine,简称M2M)用户终端,是现阶段物联网的主要应用形式。低功耗低成本是其可大规模应用的重要保障。
目前,对于MTC UE成本降低的主要的备选方法有减少终端接收天线、降低终端基带处理带宽、降低终端支持的峰值速率、采用半双工模式等等。然而成本的降低意味着性能的下降,普通终端的性能需求难以保障,这导致用户的接入质量降低,用户体验度下降。
针对相关技术中MTC UE为了降低成本导致用户接入质量较差的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种随机接入信道的配置方法及装置,以至少解决相关技术中MTC UE为了降低成本导致用户接入质量较差的问题。
根据本发明的一个方面,提供了一种随机接入信道的配置方法,包括:终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
可选地,Setm,k在时域上包括N个时间段,索引为n的时间段的长度为Tn,其中,N为大于等于1的正整数,1≤n≤N,Tn包括以下至少之一:一个或多个帧,一个或多个子帧,一个或多个时域符号长度,一个或多个时域采样间隔。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据以下至少一种参数确定Setm,k的时域起始位置StartingSetm,k:Set1,k的时域起始位置StartingSet1,k;Setm,k的时域资源长度Tm;相邻两个Setm,k的时域间隔TInterval;Setm,k的配置周期Tperiod;Setm,k的时域起始位置的偏移量Offsetm,其中,Offsetm表示StartingSetm,k在Tperiod内的偏移量。
可选地,根据以下公式确定StartingSetm,k
StartingSetm,k=StartingSet1,k+(Tm+TInterval)×(m-1)+Offsetm
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据以下至少一种参数确定Setm,k对应的配置周期Tperiod的起始位置StartingPeriodm,k:Set1,k对应的配置周期Tperiod的起始位置StartingPeriod1,k;Tperiod
可选地,根据以下公式确定StartingPeriodm,k:StartingPeriodm,k=StartingPeriod1,k+(TPeriod)×(m-1)。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据Setm,k的时域起始位置的偏移量Offsetm和StartingPeriodm,k确定Setm,k在对应的配置周期Tperiod内的时域起始位置StartingSetm,k,其中,Offsetm表示StartingSetm,k在Tperiod内的偏移量。
可选地,StartingPeriodm,k满足以下条件:StartingPeriodm,k的大小为Setm,k时域长度的整数倍;或StartingPeriodm,k的大小为Setm,k时域长度的2b倍,其中b为大于等于0的整数。
可选地,随机接入信道的资源在频域上包括多个Setm,k,多个Setm,k在频域上占用连续的频域资源。
可选地,随机接入信道的资源在频域上包括多个Setm,k,多个Setm,k在频域上对称分布。
可选地,在时频资源集合Setm,k的数量为2个的情况下,2个Setm,k在频域上占用频域资源的两端。
可选地,Setm,k的长度包括以下至少之一:1ms,2ms,3ms,4ms,6ms,8ms。
可选地,Setm,k在频域上包括F个子载波或者子信道,Setm,k在时域上包括N个时间段,Setm,k中包括至少一个时频资源子集合
Figure PCTCN2017072854-appb-000001
其中,
Figure PCTCN2017072854-appb-000002
在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,F和N均为大于等于1的整数,1≤f≤F,1≤n≤N。
可选地,终端通过随机接入信道发送随机接入信号至基站包括:终端按照预设规则选择随机接入序列;终端根据随机接入序列生成随机接入信号;终端将随机接入信号在Setm,k中的至少一个
Figure PCTCN2017072854-appb-000003
中进行发送。
可选地,随机接入序列为Zadoff-Chu序列集合中的一个序列。
可选地,随机接入序列的长度L为质数。
可选地,L包括以下至少之一:11、13、17、19、23、41、47、53。
可选地,在Setm,k为1ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=11;在Setm,k为2ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=19;在Setm,k为2ms的情况下,Setm,k在时域上包括2个时间段,Zadoff-Chu序列的长度L=11或L=13;在Setm,k为3ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=41;在Setm,k为4ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=53或L=57;在Setm,k为4ms的情况下,Setm,k在时域上包括2个时间段,Zadoff-Chu序列的长度L=23;在Setm,k为4ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=11;在Setm,k为6ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=17;在Setm,k为8ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=23。
可选地,在
Figure PCTCN2017072854-appb-000004
中仅支持1个随机接入信号发送的情况下,终端通过随机接入信道发送随机接入信号至基站包括:终端跟据自身属于的终端集合选择对应的随机接入信号,并将该随机接入信号发送至基站。
可选地,在
Figure PCTCN2017072854-appb-000005
中仅支持1个随机接入信号发送的情况下,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:终端跟据自身属于的终端集合选择对应的随机接入序列,并根据该随机接入序列生成随机接入信号。
可选地,终端集合包括第一终端集合和第二终端集合。
可选地,第一终端集合和第二终端集合满足以下条件至少之一:第一终端集合包括的终端为支持多个子载波同时传输的终端,且第二终端集合包括的终端为仅支持单个子载波传输的终端;第一终端集合包括的终端为采用多个子载波传输上行数据的终端,且第二终端集合包括的终端为采用单个子载波传输上行数据的终端;第一终端集合包括的终端为采用多个子载波传输Msg3消息的终端,且第二终端集合包括的终端为采用单个子载波传输Msg3消息的终端。
可选地,终端属于同一等级。
可选地,等级包括以下至少之一:覆盖增强等级;物理信道重复发送等级;物理信道上承载的消息或信令的重复发送等级。
可选地,属于不同的等级的终端对应的Setm,k资源通过不同的信令指示。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:由基站配置或者默认配置C个等级,其中,C为正整数。
可选地,C个等级由小到大排列,C个等级中的前C1个等级用于划分至第一等级集合,C个等级中剩余的等级用于划分至第二等级集合,其中,C1为小于等于C的正整数,第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据。
可选地,第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据包括:第一等级集合对应的终端用于采用单个子载波发送Msg3消息或上行数据;第二等级集合对应的终端用于采用多个子载波同时发送Msg3消息或上行数据。
可选地,第一等级集合对应的终端发送Msg3消息采用的子载波间隔或子信道带宽与终端发送随机接入信号采用的随机接入信道资源的子载波间隔或子信道带宽相同。
根据本发明的另一方面,提供了一种随机接入信道的配置装置,包括:发送模块,设置为通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
可选地,Setm,k在频域上包括F个子载波或者子信道,Setm,k在时域上包括N个时间段,Setm,k中包括至少一个时频资源子集合
Figure PCTCN2017072854-appb-000006
其中,
Figure PCTCN2017072854-appb-000007
在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,F和N均为大于等于1的整数,1≤f≤F,1≤n≤N。
可选地,发送模块包括:选择单元,设置为按照预设规则选择随机接入序列;生成单元,设置为根据随机接入序列生成随机接入信号;发送单元,设置为将随机接入信号在Setm,k中的至少一个
Figure PCTCN2017072854-appb-000008
中进行发送。
根据本发明的另一方面,提供了一种随机接入信道的配置系统,包括:基站;终端,通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质中存储有执行指令,该执行指令用于执行上述方法实施例中的步骤之一或其组合。
本发明实施例,终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引,解决了MTC UE为了降低成本导致用户接入质量较差的问题,进而将随机接入信道的 资源配置为M个时频资源集合,终端通过该随机接入信道发送随机接入信号至基站,从而有效提高了用户接入质量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的随机接入信道的配置方法的流程图;
图2是根据本发明实施例的一种Setm的示意图;
图3是根据本发明实施例的一种Setm的示意图;
图4是根据本发明实施例的一种Tperiod的示意图;
图5是根据本发明实施例的一种Setm的示意图;
图6是根据本发明实施例的一种Setm,k的结构示意图;
图7是根据本发明实施例的一种Set1,1和Set1,2的结构示意图;
图8是根据本发明实施例的一种随机接入信号表达式的示意图;
图9是根据本发明实施例的一种Setm,k的示意图;
图10是根据本发明实施例的一种Setm,k的示意图;
图11是根据本发明实施例的一种Setm,k的结构示意图;
图12是根据本发明实施例的一种Setm,k的结构示意图;
图13是根据本发明实施例的一种Setm,k的结构示意图;
图14是根据本发明实施例的一种Set1,1的结构示意图;
图15是根据本发明实施例的一种Set1,1的结构示意图;
图16是根据本发明实施例的一种Set1,1的结构示意图;
图17是根据本发明实施例的一种Set1,1的结构示意图;
图18是根据本发明实施例的一种Set1,1的结构示意图;
图19是根据本发明实施例的一种Set1,1的结构示意图;
图20是根据本发明实施例的一种Set1,1的结构示意图;
图21是根据本发明实施例的一种Set1,1的结构示意图;
图22是根据本发明实施例的一种Set1,1的结构示意图;
图23是是根据本发明实施例的随机接入信道的配置装置的示意图;
图24是根据本发明实施例的随机接入信道的配置系统的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种随机接入信道的配置方法,图1是根据本发明实施例的随机接入信道的配置方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
本发明实施例,终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引,解决了MTC UE为了降低成本导致用户接入质量较差的问题,进而将随机接入信道的资源配置为M个时频资源集合,终端通过该随机接入信道发送随机接入信号至基站,从而有效提高了用户接入质量。
可选地,Setm,k在时域上包括N个时间段,索引为n的时间段的长度为Tn,其中,N为大于等于1的正整数,1≤n≤N,Tn包括以下至少之一:一个或多个帧,一个或多个子帧,一个或多个时域符号长度,一个或多个时域采样间隔。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据以下至少一种参数确定Setm,k的时域起始位置StartingSetm,k:Set1,k的时域起始位置StartingSet1,k;Setm,k的时域资源长度Tm;相邻两个Setm,k的时域间隔TInterval;Setm,k的配置周 期Tperiod;Setm,k的时域起始位置的偏移量Offsetm,其中,Offsetm表示StartingSetm,k在Tperiod内的偏移量。
可选地,根据以下公式确定StartingSetm,k
StartingSetm,k=StartingSet1,k+(Tm+TInterval)×(m-1)+Offsetm
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据以下至少一种参数确定Setm,k对应的配置周期Tperiod的起始位置StartingPeriodm,k:Set1,k对应的配置周期Tperiod的起始位置StartingPeriod1,k;Tperiod
可选地,根据以下公式确定StartingPeriodm,k
StartingPeriodm,k=StartingPeriod1,k+(TPeriod)×(m-1)。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:根据Setm,k的时域起始位置的偏移量Offsetm和StartingPeriodm,k确定Setm,k在对应的配置周期Tperiod内的时域起始位置StartingSetm,k,其中,Offsetm表示StartingSetm,k在Tperiod内的偏移量。
可选地,StartingPeriodm,k满足以下条件:StartingPeriodm,k的大小为Setm,k时域长度的整数倍;或StartingPeriodm,k的大小为Setm,k时域长度的2b倍,其中b为大于等于0的整数。
可选地,随机接入信道的资源在频域上包括多个Setm,k,多个Setm,k在频域上占用连续的频域资源。
可选地,随机接入信道的资源在频域上包括多个Setm,k,多个Setm,k在频域上对称分布。
可选地,在时频资源集合Setm,k的数量为2个的情况下,2个Setm,k在频域上占用频域资源的两端。
可选地,Setm,k的长度包括以下至少之一:1ms,2ms,3ms,4ms,6ms,8ms。
可选地,Setm,k在频域上包括F个子载波或者子信道,Setm,k在时域上包括N个时间段,Setm,k中包括至少一个时频资源子集合
Figure PCTCN2017072854-appb-000009
其中,
Figure PCTCN2017072854-appb-000010
在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,F和N均为大于等于1的整数,1≤f≤F,1≤n≤N。
可选地,终端通过随机接入信道发送随机接入信号至基站包括:终端按照预设规则选择随机接入序列;终端根据随机接入序列生成随机接入信号;终端将随机接入信号在Setm,k中的 至少一个
Figure PCTCN2017072854-appb-000011
中进行发送。
可选地,随机接入序列为Zadoff-Chu序列集合中的一个序列。
可选地,随机接入序列的长度L为质数。
可选地,L包括以下至少之一:11、13、17、19、23、41、47、53。
可选地,在Setm,k为1ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=11;在Setm,k为2ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=19;在Setm,k为2ms的情况下,Setm,k在时域上包括2个时间段,Zadoff-Chu序列的长度L=11或L=13;在Setm,k为3ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=41;在Setm,k为4ms的情况下,Setm,k在时域上包括1个时间段,Zadoff-Chu序列的长度L=53或L=57;在Setm,k为4ms的情况下,Setm,k在时域上包括2个时间段,Zadoff-Chu序列的长度L=23;在Setm,k为4ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=11;在Setm,k为6ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=17;在Setm,k为8ms的情况下,Setm,k在时域上包括4个时间段,Zadoff-Chu序列的长度L=23。
可选地,在
Figure PCTCN2017072854-appb-000012
中仅支持1个随机接入信号发送的情况下,终端通过随机接入信道发送随机接入信号至基站包括:终端跟据自身属于的终端集合选择对应的随机接入信号,并将该随机接入信号发送至基站。
可选地,在
Figure PCTCN2017072854-appb-000013
中仅支持1个随机接入信号发送的情况下,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:终端跟据自身属于的终端集合选择对应的随机接入序列,并根据该随机接入序列生成随机接入信号。
可选地,终端集合包括第一终端集合和第二终端集合。
可选地,第一终端集合和第二终端集合满足以下条件至少之一:第一终端集合包括的终端为支持多个子载波同时传输的终端,且第二终端集合包括的终端为仅支持单个子载波传输的终端;第一终端集合包括的终端为采用多个子载波传输上行数据的终端,且第二终端集合包括的终端为采用单个子载波传输上行数据的终端;第一终端集合包括的终端为采用多个子载波传输Msg3消息的终端,且第二终端集合包括的终端为采用单个子载波传输Msg3消息的终端。
可选地,终端属于同一等级。
可选地,等级包括以下至少之一:覆盖增强等级;物理信道重复发送等级;物理信道上承载的消息或信令的重复发送等级。
可选地,属于不同的等级的终端对应的Setm,k资源通过不同的信令指示。
可选地,在终端通过随机接入信道发送随机接入信号至基站之前,该方法还包括:由基站配置或者默认配置C个等级,其中,C为正整数。
可选地,C个等级由小到大排列,C个等级中的前C1个等级用于划分至第一等级集合,C个等级中剩余的等级用于划分至第二等级集合,其中,C1为小于等于C的正整数,第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据。
可选地,第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据包括:第一等级集合对应的终端用于采用单个子载波发送Msg3消息或上行数据;第二等级集合对应的终端用于采用多个子载波同时发送Msg3消息或上行数据。
可选地,第一等级集合对应的终端发送Msg3消息采用的子载波间隔或子信道带宽与终端发送随机接入信号采用的随机接入信道资源的子载波间隔或子信道带宽相同。
下面,通过以下的实施例来说明本发明的随机接入信道的配置方法。
实施例一
终端1通过随机接入信道发送随机接入信号。其中,终端1选择的随机接入信道资源取包括多个时频资源集合Setm,k,m为Setm,k在时域的索引,k为Setm,k在频域的索引。该实施例中K=1,即频域上仅配置一个Setm,k,则可将Setm,k记作Setm。在该实施例中,Setm在频域上包括2个子载波,时域长度为Tm=8ms。
在该实施例中,可以根据以下公式确定时频资源集合Setm的时域起始位置StartingSetm
StartingSetm=StartingSet1+(Tm+TInterval)×(m-1)+Offsetm
其中,StartingSet1为Setm(m=1)的时域起始位置,Setm的时域资源长度为Tm,TInterval为相邻两个Setm的时域间隔,Offsetm为Setm的时域起始位置的偏移量。
可选地,上述公式中用到的参数可由基站通过系统消息发送给终端,或者采用预定义的方式配置。
需要说明的是,除本实施例外,所述Tm还可以配置为4ms、6ms、12ms、16ms、24ms、32ms等。
实施例二
终端1通过随机接入信道发送随机接入信号。其中,终端1选择的随机接入信道资源包 括多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。在该实施例中,K=1,即频域上仅配置一个Setm,k,即可以将Setm,k记作Setm。在该实施例中,Setm在频域上包括2个子载波,在时域长度为Tm=8ms。
在该实施例中,可以根据以下方法确定时频资源集合Setm的时域起始位置StartingSetm
步骤1、根据下式确定Setm对应的配置周期的起始位置StartingPeriodm
StartingPeriodm=StartingPeriod1+(TPeriod)×(m-1)
其中,StartingPeriod1为Setm(m=1)对应的配置周期的起始位置,Tperiod为Setm的配置周期。
步骤2、通过Offsetm确定Setm在上述配置周期Tperiod内的具体位置(Setm的时域起始位置StartingSetm),其中,Offsetm用来指示Setm的时域起始位置在Setm的配置周期Tperiod内的偏移量。
可选地,上述步骤1和步骤2中采用的参数可由基站通过系统消息发送给终端,或者采用预定义方式配置。
在本实施例中,例如,Tperiod=32ms,则Setm在上述配置周期Tperiod内有4个位置可以选择,例如,通过2bit来指示这4个位置:“00”对应第1个位置,“01”对应第2个位置,“10”对应第3个位置,“11”对应第4个位置。本实施例中该2bit配置为“10”,则Setm在上述配置周期Tperiod内的第3个8ms,具体如图2所示。
需要说明的是,除本实施例外,所述Tm还可以配置为4ms、6ms、12ms、16ms、24ms、32ms等。
实施例三
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源包括多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。在本实施例中,K=2,即频域上仅配置2个Setm,k,可选地,这两个Setm,k分别位于频域资源的两侧,具体如图3所示。
在该实施例中,Setm,k时域长度为Tm=4ms,且Setm,1和Setm,2在时域上具有相同的时域起始位置StartingSetm,则终端可根据下述步骤确定时域起始位置StartingSetm
步骤1、根据下式确定Setm,1和Setm,2对应的配置周期的起始位置StartingPeriodm
StartingPeriodm=StartingPeriod1+(TPeriod)×(m-1)
其中,StartingPeriod1为Set1,1和Set1,2对应的配置周期的起始位置,Tperiod为Setm,k的配置周期。
步骤2、通过Offsetm确定Setm,k在上述配置周期Tperiod内的具体位置(时域起始位置StartingSetm),其中Offsetm用来指示Setm,k的时域起始位置在Setm,k的配置周期Tperiod内的偏移量。
可选地,上述步骤1和步骤2中用到的参数可由基站通过系统消息发送给终端,或者采用预定义的方式配置。
根据该实施例中,例如,Tperiod=16ms,则Setm,k在上述配置周期Tperiod内有4个位置可以选择,例如,通过2bit来指示这4个位置:“00”对应第1个位置,“01”对应第2个位置,“10”对应第3个位置,“11”对应第4个位置。在本实施例中,该2bit配置为“10”,则Setm,k在上述配置周期Tperiod内的第3个4ms,如图4所示。
需要说明的是,除本实施例外,所述Tm还可以配置为4ms、6ms、12ms、16ms、24ms、32ms等。
实施例四
终端1通过随机接入信道发送随机接入信号。其中,终端1选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度4ms,k为Setm,k在频域的索引。在本实施例中K=2,即频域上只配置2个Setm,k,所述两个Setm,k分别位于频域资源的两侧,如图5所示。
在该实施例中,系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000014
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000015
个Ts,即66.7us。
在该实施例中,Setm,k的结构如图6所示,其中包括2个
Figure PCTCN2017072854-appb-000016
和一个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000017
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000018
中f表示频域子载波索引,n表示时域占用的时间段索引。在该实施例中,Set1,1和Set1,2的结构如图7所示。
终端1选择Set1,1和Set1,2中的
Figure PCTCN2017072854-appb-000019
Figure PCTCN2017072854-appb-000020
作为发送随机接入信号的随机接入资 源。
Figure PCTCN2017072854-appb-000021
Figure PCTCN2017072854-appb-000022
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000023
Figure PCTCN2017072854-appb-000024
发送的随机接入信号表达式相同。所述表达式可由循环前缀(CP)和时域信号(Sequence)两部分组成,如图8所示。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=5。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列,其中,ZC序列集合可由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS即为循环移位的大小,由基站配置。
Figure PCTCN2017072854-appb-000025
yu(k)为ZC序列的根序列,按照以下公式生成:
Figure PCTCN2017072854-appb-000026
其中,u是根序列的索引,1≤u≤Nzc-1且u为整数;NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。
在本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号。
如果终端1是需要覆盖增强的终端,则上述在
Figure PCTCN2017072854-appb-000027
Figure PCTCN2017072854-appb-000028
发送的随机接入信号需要重复多次发送。则终端1可以Set2,1和Set2,2中重用Set1,1和Set1,2中随机接入信号的发送方案。如果重复发送的次数仍然不够,则还可以继续在后续的Setm,k中采用同样的随机接入信号发送方案。
需要说明的是,除本实施例外,Lcp还可以配置为4,Lgt还可以配置为6。
需要说明的是,除本实施例外,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=3, Lgt=2;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=2,Lgt=4;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=4,Lgt=0;或者,Setm,k时域长度还可以配置为2ms,Ls=13,NZC=13,Lcp=2,Lgt=0。
实施例五
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms,k为Setm,k在频域的索引,本实施例中K=2,即频域上只配置2个Setm,k,所述两个Setm,k分别位于频域资源的两侧,如图9所示。
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000029
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000030
个Ts,即66.7us。
在该实施例中,Setm,k的结构如图10所示,其中包括4个
Figure PCTCN2017072854-appb-000031
和一个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000032
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000033
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1和Set1,2的结构如图11所示。
终端1选择Set1,1和Set1,2中的
Figure PCTCN2017072854-appb-000034
Figure PCTCN2017072854-appb-000035
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000036
Figure PCTCN2017072854-appb-000037
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000038
Figure PCTCN2017072854-appb-000039
发送的随机接入信号表达式相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=6。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列,其中,ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000040
yu(k)为ZC序列的根序列,按照以下公式生成:
Figure PCTCN2017072854-appb-000041
其中,u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。
本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号。
如果终端是需要覆盖增强的终端,则上述在
Figure PCTCN2017072854-appb-000042
Figure PCTCN2017072854-appb-000043
发送的随机接入信号需要重复多次发送。终端可以采用在Set2,1和Set2,2中重用Set1,1和Set1,2发送随机接入信号的方案。如果重复发送的次数仍然不够,则还可以继续在后续的Setm,k中采用同样的随机接入信号发送方案。
需要说明的是,除本实施例外,Lcp还可以配置为4,Lgt还可以配置为12;或者,Lcp还可以配置为5,Lgt还可以配置为8。
需要说明的是,除本实施例外,Setm,k时域长度还可以配置为6ms,Ls=17,NZC=17,Lcp=4,Lgt=6;或者,Setm,k时域长度还可以配置为4ms,Ls=11,NZC=11,Lcp=4,Lgt=0。
实施例六
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度2ms;k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k如图12所示。
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000044
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000045
个Ts,即66.7us。
在该实施例中,Setm,k的结构如图13所示,其中包括1个
Figure PCTCN2017072854-appb-000046
和一个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000047
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000048
中f表示频 域子载波索引,n表示时域占用的时间段索引。在本实施例中,Set1,1的结构如图14所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000049
作为发送随机接入信号的随机接入资源。随机接入信号的表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=19,CP占用的时域符号数量为Lcp,本实施例中Lcp=4。GT占用的时域符号数量为Lgt,本实施例中Lgt=7。
终端1从一个长度为Ls=19的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列,其中,ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000050
yu(k)为ZC序列的根序列,按照以下公式生成:
Figure PCTCN2017072854-appb-000051
其中,u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=19。
终端1选择的随机接入序列yu,v(k)在Ls=19个时域符号中发送,构成的信号即为时域信号(Sequence)。
本实施例中,CP占用的时域符号数量为Lcp=4,即CP的4个符号中发送的是时域信号(Sequence)最后4个符号中的信号;
本实施例中,Lcp还可以配置为5,Lgt还可以配置为6;或者,Lcp还可以配置为6,Lgt还可以配置为5;或者,Lcp还可以配置为7,Lgt还可以配置为4。
本实施例中,Setm,k时域长度还可以配置为3ms,Ls=41,NZC=41,Lcp=4,Lgt=0;或者,Setm,k时域长度还可以配置为3ms,Ls=37,NZC=37,Lcp=4,Lgt=4;或者,Setm,k时域长度还可以配置为4ms,Ls=53,NZC=53,Lcp=4,Lgt=3;或者,Setm,k时域长度还可以配置为4ms,Ls=47,NZC=47,Lcp=7,Lgt=6;或者,Setm,k时域长度还可以配置为4ms,Ls=47,NZC =47,Lcp=6,Lgt=7。
实施例七
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度4ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000052
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000053
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000054
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000055
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000056
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图15所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000057
Figure PCTCN2017072854-appb-000058
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000059
Figure PCTCN2017072854-appb-000060
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000061
Figure PCTCN2017072854-appb-000062
发送的随机接入信号表达式相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=5。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列;其中ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS即为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000063
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000064
0≤k≤NZC-1生成。其中u是根序列的索引,1≤u≤Nzc-1且u为整数;NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。
本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号;
如果终端1是需要覆盖增强的终端,则上述在
Figure PCTCN2017072854-appb-000065
Figure PCTCN2017072854-appb-000066
发送的随机接入信号需要重复多次发送,进而可以继续在后续的Setm,k中采用同样的随机接入信号发送方案。
需要说明的是,在本实施例中,Lcp还可以配置为4,Lgt还可以配置为6。
需要说明的是,在本实施例中,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=3,Lgt=2;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=2,Lgt=4;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=4,Lgt=0;或者,Setm,k时域长度还可以配置为2ms,Ls=13,NZC=13,Lcp=2,Lgt=0。
实施例八
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000067
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000068
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000069
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000070
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000071
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图16所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000072
Figure PCTCN2017072854-appb-000073
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000074
Figure PCTCN2017072854-appb-000075
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000076
Figure PCTCN2017072854-appb-000077
发送的随机接入信号表达式相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=6。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列;其中ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS即为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000078
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000079
0≤k≤NZC-1生成。其中u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。
本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;
需要说明的是,在本实施例中,Lcp还可以配置为4,Lgt还可以配置为12;或者,Lcp还可以配置为5,Lgt还可以配置为8。
需要说明的是,在本实施例中,Setm,k时域长度还可以配置为6ms,Ls=17,NZC=17,Lcp=4,Lgt=6;或者,Setm,k时域长度还可以配置为4ms,Ls=11,NZC=11,Lcp=4,Lgt=0。
实施例九
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms;k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000080
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000081
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000082
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000083
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000084
中f表示频域子载波索引,n表示时域占用 的时间段索引。本实施例中,Set1,1的结构如图17所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000085
Figure PCTCN2017072854-appb-000086
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000087
Figure PCTCN2017072854-appb-000088
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000089
Figure PCTCN2017072854-appb-000090
发送的随机接入信号表达式相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
本实施例中
Figure PCTCN2017072854-appb-000091
中仅支持1个随机接入信号发送,基站预先定义两条随机接入信号,分别对应两个终端集合,所述终端集合包括:第一终端集合和第二终端集合。第一终端集合和第二终端集合满足以下条件至少之一:第一终端集合包括的终端为支持多个子载波同时传输的终端,且第二终端集合包括的终端为仅支持单个子载波传输的终端;第一终端集合包括的终端为采用多个子载波传输上行数据的终端,且第二终端集合包括的终端为采用单个子载波传输上行数据的终端;第一终端集合包括的终端为采用多个子载波传输Msg3消息的终端,且第二终端集合包括的终端为采用单个子载波传输Msg3消息的终端。
终端1跟据自身属于的终端集合选择对应的随机接入信号,并将该随机接入信号发送至所述基站。
实施例十
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000092
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000093
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000094
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000095
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000096
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图18所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000097
Figure PCTCN2017072854-appb-000098
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000099
Figure PCTCN2017072854-appb-000100
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000101
Figure PCTCN2017072854-appb-000102
发送的随机接入信号表达式相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成,如下图所示。
本实施例中
Figure PCTCN2017072854-appb-000103
中仅支持1个随机接入信号发送,基站预先定义两条随机接入信号,分别对应两个终端集合,所述终端集合包括:第一终端子集合,包括采用多个子载波传输Msg3消息的终端;第二终端子集合,包括采用单个子载波传输Msg3消息的终端。
终端1可跟据自身属于的终端集合选择对应的随机接入信号,并将该随机接入信号发送至所述基站。
基站检测到终端发送的随机接入信令,就会发送随机接入响应消息(Random Access Response,简称为RAR,又叫做消息2,Message2,简称Msg2)给终端1。终端1接收到RAR消息,获得上行定时同步信息和上行资源。但此时并不能确定RAR消息是发送给终端自己而不是发送给其他的终端的,因为存在着不同的终端在相同的时间-频率资源上发送相同的随机接入信令的可能性(这种情况叫做随机接入冲突),为此终端需要在RAR中分配的上行资源上发送消息3(Message3,简称Msg3)来解决随机接入冲突。在初始随机接入过程中,Msg3中会携带一个终端的特定的ID,用于区分不同的终端。
本实施例中,Msg3可以支持单个子载波或者多个子载波的发送。基站根据检测到随机接入信号确定终端1的Msg3消息的发送类型,进而为终端1配置相应的Msg3消息资源。
终端1在基站配置的Msg3消息资源上发送Msg3消息,基站在接收到终端发送的Msg3后,通过发送消息4(Message4,简称Msg4)最终解决这样的随机接入冲突。其中,Msg4中会携带终端在Msg3中发送的特定的ID。终端接收到基站发送的Msg4消息,并且其中携带的ID与自己在Msg3中上报给基站的特定ID相符,那么终端就认为自己赢得了此次的随机接入冲突,随机接入成功;否则,终端认为此次接入失败,并重新进行随机接入过程。
实施例十一
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度4ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000104
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000105
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000106
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000107
的频域占 用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000108
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图19所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000109
Figure PCTCN2017072854-appb-000110
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000111
Figure PCTCN2017072854-appb-000112
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000113
Figure PCTCN2017072854-appb-000114
发送的随机接入信号表达式不同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=5。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列,其中,ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000115
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000116
0≤k≤NZC-1生成。其中,u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000117
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),并且将zu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000118
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
需要说明的是,如果终端1是需要覆盖增强的终端,则上述在
Figure PCTCN2017072854-appb-000119
Figure PCTCN2017072854-appb-000120
发送的随机接入信号需要重复多次发送,进而可以继续在后续的Setm,k中采用同样的随机接入信号发送方案。
需要说明的是,在本实施例中,Lcp还可以配置为4,Lgt还可以配置为6。
需要说明的是,在本实施例中,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=3,Lgt=2;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=2,Lgt=4;或者,Setm,k时域长度还可以配置为2ms,Ls=11,NZC=11,Lcp=4,Lgt=0;或者,Setm,k时域长度还可以配置为2ms,Ls=13,NZC=13,Lcp=2,Lgt=0。
实施例十二
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度4ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000121
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000122
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000123
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000124
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000125
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图20所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000126
Figure PCTCN2017072854-appb-000127
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000128
Figure PCTCN2017072854-appb-000129
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000130
Figure PCTCN2017072854-appb-000131
发送的随机接入信号表达式不同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=5。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列;其中ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000132
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000133
0≤k≤NZC-1生成。其中u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000134
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),进一步将zu,v(k)进行倒序排列获得序列tu,v(k),并且将tu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=5,即CP的5个符号中发送的是时域信号(Sequence)最后5个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000135
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
需要说明的是,如果终端1是需要覆盖增强的终端,则上述在
Figure PCTCN2017072854-appb-000136
Figure PCTCN2017072854-appb-000137
发送的随机接入信号需要重复多次发送,进而可以继续在后续的Setm,k中采用同样的随机接入信号发送方案。
实施例十三
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000138
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000139
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000140
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000141
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000142
中f表示频域子载波索引,n表示时域占用 的时间段索引。本实施例中,Set1,1的结构如图21所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000143
Figure PCTCN2017072854-appb-000144
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000145
Figure PCTCN2017072854-appb-000146
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000147
Figure PCTCN2017072854-appb-000148
发送的随机接入信号表达式不全部相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=6。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列;其中ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000149
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000150
0≤k≤NZC-1生成。其中,u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000151
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),并且将zu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000152
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000153
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),并且将zu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000154
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
实施例十四
终端通过随机接入信道发送随机接入信号。其中,终端选择的随机接入信道资源取自于多个时频资源集合Setm,k,其中,m为Setm,k在时域的索引,Setm,k时域长度8ms,k为Setm,k在频域的索引,本实施例中K=1,即频域上只配置1个Setm,k
系统配置的时域采样频率为1.92MHz,则时域采样间隔
Figure PCTCN2017072854-appb-000155
随机接入信道的子载波间隔Δf为15KHz,时域符号长度Tsymbol等于
Figure PCTCN2017072854-appb-000156
个Ts,即66.7us。
Setm,k中包括4个
Figure PCTCN2017072854-appb-000157
和一个2个GT(guard time,保护时间)。
Figure PCTCN2017072854-appb-000158
的频域占用一个子载波,时域长度为一个时间段。
Figure PCTCN2017072854-appb-000159
中f表示频域子载波索引,n表示时域占用的时间段索引。本实施例中,Set1,1的结构如图22所示。
终端1选择Set1,1中的
Figure PCTCN2017072854-appb-000160
Figure PCTCN2017072854-appb-000161
作为发送随机接入信号的随机接入资源。
Figure PCTCN2017072854-appb-000162
Figure PCTCN2017072854-appb-000163
在频域上间隔150kHz,分别位于180kHz带宽的两侧。终端1在
Figure PCTCN2017072854-appb-000164
Figure PCTCN2017072854-appb-000165
发送的随机接入信号表达式不全部相同。所述表达式由循环前缀(CP)和时域信号(Sequence)两部分组成。
其中,时域信号(Sequence)占用的时域符号数量为Ls,本实施例中Ls=23,CP占用的时域符号数量为Lcp,本实施例中Lcp=6。GT占用的时域符号数量为Lgt,本实施例中Lgt=4。
终端1从一个长度为Ls=23的Zadoff-Chu序列集合(简称ZC序列集合)中随机选择一条序列yu,v(k)作为随机接入序列;其中ZC序列集合由不同的[u,v]对应的yu,v(k)组成。
其中,yu,v(k)为yu(k)的第v个循环移位序列,按照以下公式生成:
yu,v(k)=yu((k+Cv)modNZC)
其中,NCS为循环移位的大小,由基站配置;
Figure PCTCN2017072854-appb-000166
yu(k)为ZC序列的根序列,按照公式
Figure PCTCN2017072854-appb-000167
0≤k≤NZC-1生成。其中u是根序列的索引,1≤u≤Nzc-1且u为整数,NZC是ZC序列的长度,本实施例中NZC=Ls=23。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000168
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),进一步将zu,v(k)进行倒序排列获得序列tu,v(k),并且将tu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000169
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000170
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
终端1选择的随机接入序列yu,v(k)经过共轭操作,获得序列zu,v(k),进一步将zu,v(k)进行倒序排列获得序列tu,v(k),并且将tu,v(k)在Ls=23个时域符号中发送,构成的信号即为时域信号(Sequence)。本实施例中,CP占用的时域符号数量为Lcp=6,即CP的6个符号中发送的是时域信号(Sequence)最后6个符号中的信号;则终端1在
Figure PCTCN2017072854-appb-000171
中发送的随机接入信号表达式即为[CP;Sequence]组成的表达式。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机, 服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种随机接入信道的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”、“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图23是根据本发明实施例的随机接入信道的配置装置的示意图,如图23所示,该装置包括:发送模块230。
发送模块230,设置为通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
本发明实施例,发送模块230通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引,解决了MTC UE为了降低成本导致用户接入质量较差的问题,进而将随机接入信道的资源配置为M个时频资源集合,终端通过该随机接入信道发送随机接入信号至基站,从而有效提高了用户接入质量。
可选地,Setm,k在频域上包括F个子载波或者子信道,Setm,k在时域上包括N个时间段,Setm k中包括至少一个时频资源子集合
Figure PCTCN2017072854-appb-000172
其中,
Figure PCTCN2017072854-appb-000173
在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,F和N均为大于等于1的整数,1≤f≤F,1≤n≤N。
可选地,发送模块包括:选择单元,设置为按照预设规则选择随机接入序列;生成单元,设置为根据随机接入序列生成随机接入信号;发送单元,设置为将随机接入信号在Setm,k中的至少一个
Figure PCTCN2017072854-appb-000174
中进行发送。
在本实施例中还提供了一种随机接入信道的配置系统,该系统用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。
图24是根据本发明实施例的随机接入信道的配置系统的示意图,如图24所示,该系统包括:
基站240;
终端242,通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域 上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
本发明实施例,终端242通过随机接入信道发送随机接入信号至基站240,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引,解决了MTC UE为了降低成本导致用户接入质量较差的问题,进而将随机接入信道的资源配置为M个时频资源集合,终端通过该随机接入信道发送随机接入信号至基站,从而有效提高了用户接入质量。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S102,终端通过随机接入信道发送随机接入信号至基站,其中,随机接入信道的资源包括至少一个时频资源集合Setm,k,Setm,k在频域上包括至少一个子载波或子信道,Setm,k在时域上包括至少一个时间段,其中,m为Setm,k在时域的索引,k为Setm,k在频域的索引。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种随机接入信道的配置方法及装置具有以下有益效果: 解决了MTC UE为了降低成本导致用户接入质量较差的问题,进而将随机接入信道的资源配置为M个时频资源集合,终端通过该随机接入信道发送随机接入信号至基站,从而有效提高了用户接入质量。

Claims (33)

  1. 一种随机接入信道的配置方法,包括:
    终端通过随机接入信道发送随机接入信号至基站,
    其中,所述随机接入信道的资源包括至少一个时频资源集合Setm,k,所述Setm,k在频域上包括至少一个子载波或子信道,所述Setm,k在时域上包括至少一个时间段,其中,m为所述Setm,k在时域的索引,k为所述Setm,k在频域的索引。
  2. 根据权利要求1所述的方法,其中,所述Setm,k在时域上包括N个时间段,索引为n的时间段的长度为Tn,其中,N为大于等于1的正整数,1≤n≤N,所述Tn包括以下至少之一:
    一个或多个帧,一个或多个子帧,一个或多个时域符号长度,一个或多个时域采样间隔。
  3. 根据权利要求1所述的方法,其中,在终端通过随机接入信道发送随机接入信号至基站之前,所述方法还包括:
    根据以下至少一种参数确定所述Setm,k的时域起始位置StartingSetm,k
    Set1,k的时域起始位置StartingSet1,k
    所述Setm,k的时域资源长度Tm
    相邻两个Setm,k的时域间隔TInterval
    所述Setm,k的配置周期Tperiod
    所述Setm,k的时域起始位置的偏移量Offsetm,其中,所述
    Figure PCTCN2017072854-appb-100001
    表示所述StartingSetm,k在所述Tperiod内的偏移量。
  4. 根据权利要求3所述的方法,其中,根据以下公式确定所述StartingSetm,k
    StartingSetm,k=StartingSet1,k+(Tm+TInterval)×(m-1)+Offsetm
  5. 根据权利要求1所述的方法,其中,在终端通过随机接入信道发送随机接入信号至基站之前,所述方法还包括:
    根据以下至少一种参数确定所述Setm,k对应的配置周期Tperiod的起始位置StartingPeriodm,k
    Set1,k对应的配置周期Tperiod的起始位置StartingPeriod1,k
    所述Tperiod
  6. 根据权利要求5所述的方法,其中,根据以下公式确定所述StartingPeriodm,k
    StartingPeriodm,k=StartingPeriod1,k+(TPeriod)×(m-1)。
  7. 根据权利要求5或者6所述的方法,其中,在终端通过随机接入信道发送随机接入信号至基站之前,所述方法还包括:
    根据所述Setm,k的时域起始位置的偏移量Offsetm和所述StartingPeriodm,k确定所述Setm,k在对应的配置周期Tperiod内的时域起始位置StartingSetm,k,其中,所述Offsetm表示所述StartingSetm,k在所述Tperiod内的偏移量。
  8. 根据权利要求5-7中任一项所述的方法,其中,所述StartingPeriodm,k满足以下条件:
    所述StartingPeriodm,k的大小为所述Setm,k时域长度的整数倍;或
    所述StartingPeriodm,k的大小为所述Setm,k时域长度的2b倍,其中b为大于等于0的整数。
  9. 根据权利要求1所述的方法,其中,所述随机接入信道的资源在频域上包括多个Setm,k,所述多个Setm,k在频域上占用连续的频域资源。
  10. 根据权利要求1所述的方法,其中,所述随机接入信道的资源在频域上包括多个Setm,k,所述多个Setm,k在频域上对称分布。
  11. 根据权利要求1所述的方法,其中,在所述时频资源集合Setm,k的数量为2个的情况下,所述2个Setm,k在频域上占用频域资源的两端。
  12. 根据权利要求1所述的方法,其中,所述Setm,k的长度包括以下至少之一:
    1ms,2ms,3ms,4ms,6ms,8ms。
  13. 根据权利要求1-12中任一项所述的方法,其中,所述Setm,k在频域上包括F个子载波或者子信道,所述Setm,k在时域上包括N个时间段,所述Setm,k中包括至少一个时频资源子集合
    Figure PCTCN2017072854-appb-100002
    其中,所述在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,所述F和所述N均为大于等于1的整数,1≤f≤F,1≤n≤N。
  14. 根据权利要求13所述的方法,其中,终端通过随机接入信道发送随机接入信号至基站包括:
    所述终端按照预设规则选择随机接入序列;
    所述终端根据所述随机接入序列生成所述随机接入信号;
    所述终端将所述随机接入信号在所述Setm,k中的至少一个所述
    Figure PCTCN2017072854-appb-100004
    中进行发送。
  15. 根据权利要求14所述的方法,其中,所述随机接入序列为Zadoff-Chu序列集合中的一个序列。
  16. 根据权利要求15所述的方法,其中,所述随机接入序列的长度L为质数。
  17. 根据权利要求16所述的方法,其中,所述L包括以下至少之一:11、13、17、19、23、41、47、53。
  18. 根据权利要求15所述的方法,其中,
    在所述Setm,k为1ms的情况下,所述Setm,k在时域上包括1个所述时间段,所述Zadoff-Chu序列的长度L=11;
    在所述Setm,k为2ms的情况下,所述Setm,k在时域上包括1个所述时间段,所述Zadoff-Chu序列的长度L=19;
    在所述Setm,k为2ms的情况下,所述Setm,k在时域上包括2个所述时间段,所述Zadoff-Chu序列的长度L=11或L=13;
    在所述Setm,k为3ms的情况下,所述Setm,k在时域上包括1个所述时间段,所述Zadoff-Chu序列的长度L=41;
    在所述Setm,k为4ms的情况下,所述Setm,k在时域上包括1个所述时间段,所述Zadoff-Chu序列的长度L=53或L=57;
    在所述Setm,k为4ms的情况下,所述Setm,k在时域上包括2个所述时间段,所述Zadoff-Chu序列的长度L=23;
    在所述Setm,k为4ms的情况下,所述Setm,k在时域上包括4个所述时间段,所述Zadoff-Chu序列的长度L=11;
    在所述Setm,k为6ms的情况下,所述Setm,k在时域上包括4个所述时间段,所述Zadoff-Chu序列的长度L=17;
    在所述Setm,k为8ms的情况下,所述Setm,k在时域上包括4个所述时间段,所述 Zadoff-Chu序列的长度L=23。
  19. 根据权利要求14所述的方法,其中,在所述
    Figure PCTCN2017072854-appb-100005
    中仅支持1个随机接入信号发送的情况下,终端通过随机接入信道发送随机接入信号至基站包括:
    所述终端跟据自身属于的终端集合选择对应的随机接入信号,并将该随机接入信号发送至所述基站。
  20. 根据权利要求13所述的方法,其中,在所述
    Figure PCTCN2017072854-appb-100006
    中仅支持1个随机接入信号发送的情况下,在终端通过随机接入信道发送随机接入信号至基站之前,所述方法还包括:
    所述终端跟据自身属于的终端集合选择对应的随机接入序列,并根据该随机接入序列生成所述随机接入信号。
  21. 根据权利要求19或者20所述的方法,其中,所述终端集合包括第一终端集合和第二终端集合。
  22. 根据权利要求21所述的方法,其中,所述第一终端集合和所述第二终端集合满足以下条件至少之一:
    所述第一终端集合包括的终端为支持多个子载波同时传输的终端,且所述第二终端集合包括的终端为仅支持单个子载波传输的终端;
    所述第一终端集合包括的终端为采用多个子载波传输上行数据的终端,且所述第二终端集合包括的终端为采用单个子载波传输上行数据的终端;
    所述第一终端集合包括的终端为采用多个子载波传输Msg3消息的终端,且所述第二终端集合包括的终端为采用单个子载波传输Msg3消息的终端。
  23. 根据权利要求1所述的方法,其中,所述终端属于同一等级。
  24. 根据权利要求23所述的方法,其中,所述等级包括以下至少之一:
    覆盖增强等级;
    物理信道重复发送等级;
    物理信道上承载的消息或信令的重复发送等级。
  25. 根据权利要求23所述的方法,其中,属于不同的所述等级的终端对应的Setm,k资源通过不同的信令指示。
  26. 根据权利要求23所述的方法,其中,在终端通过随机接入信道发送随机接入信号至基站之前,所述方法还包括:
    由基站配置或者默认配置C个所述等级,其中,所述C为正整数。
  27. 根据权利要求26所述的方法,其中,C个所述等级由小到大排列,C个所述等级中的前C1个等级用于划分至第一等级集合,C个所述等级中剩余的等级用于划分至第二等级集合,其中,所述C1为小于等于所述C的正整数,所述第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或所述第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据。
  28. 根据权利要求27所述的方法,其中,所述第一等级集合对应的终端用于按照第一规则发送Msg3消息或上行数据,和/或所述第二等级集合对应的终端用于按照第二规则发送Msg3消息或上行数据包括:
    所述第一等级集合对应的终端用于采用单个子载波发送所述Msg3消息或所述上行数据;
    所述第二等级集合对应的终端用于采用多个子载波同时发送所述Msg3消息或所述上行数据。
  29. 根据权利要求28所述的方法,其中,所述第一等级集合对应的终端发送所述Msg3消息采用的子载波间隔或子信道带宽与所述终端发送所述随机接入信号采用的随机接入信道资源的子载波间隔或子信道带宽相同。
  30. 一种随机接入信道的配置装置,包括:
    发送模块,设置为通过随机接入信道发送随机接入信号至基站,
    其中,所述随机接入信道的资源包括至少一个时频资源集合Setm,k,所述Setm,k在频域上包括至少一个子载波或子信道,所述Setm,k在时域上包括至少一个时间段,其中,m为所述Setm,k在时域的索引,k为所述Setm,k在频域的索引。
  31. 根据权利要求30所述的装置,其中,所述Setm,k在频域上包括F个子载波或者子信道,所述Setm,k在时域上包括N个时间段,所述Setm,k中包括至少一个时频资源子集合
    Figure PCTCN2017072854-appb-100007
    其中,所述
    Figure PCTCN2017072854-appb-100008
    在频域上对应索引为f的子载波或者子信道,在时域上对应索引为n的时间段,所述F和所述N均为大于等于1的整数,1≤f≤F,1≤n≤N。
  32. 根据权利要求31所述的装置,其中,所述发送模块包括:
    选择单元,设置为按照预设规则选择随机接入序列;
    生成单元,设置为根据所述随机接入序列生成所述随机接入信号;
    发送单元,设置为将所述随机接入信号在所述Setm,k中的至少一个所述
    Figure PCTCN2017072854-appb-100009
    中进行发送。
  33. 一种随机接入信道的配置系统,包括:
    基站;
    终端,通过随机接入信道发送随机接入信号至所述基站,
    其中,所述随机接入信道的资源包括至少一个时频资源集合Setm,k,所述Setm,k在频域上包括至少一个子载波或子信道,所述Setm,k在时域上包括至少一个时间段,其中,m为所述Setm,k在时域的索引,k为所述Setm,k在频域的索引。
PCT/CN2017/072854 2016-02-05 2017-02-03 随机接入信道的配置方法及装置 WO2017133674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610082169.5 2016-02-05
CN201610082169.5A CN107046729A (zh) 2016-02-05 2016-02-05 随机接入信道的配置方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017133674A1 true WO2017133674A1 (zh) 2017-08-10

Family

ID=59500329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072854 WO2017133674A1 (zh) 2016-02-05 2017-02-03 随机接入信道的配置方法及装置

Country Status (2)

Country Link
CN (1) CN107046729A (zh)
WO (1) WO2017133674A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113143B (zh) * 2017-04-28 2020-12-25 华为技术有限公司 一种参数配置方法和装置
CN110247743B (zh) * 2018-03-08 2021-11-19 中国移动通信有限公司研究院 一种随机接入方法及装置、设备、存储介质
CN110474757B (zh) 2018-05-10 2022-08-12 中兴通讯股份有限公司 信号的发送方法及装置、存储介质、电子装置
CN109275157B (zh) * 2018-11-28 2021-08-17 中国联合网络通信集团有限公司 一种基站的nprach的配置参数优化方法和装置
CN115336370A (zh) * 2020-04-09 2022-11-11 华为技术有限公司 传输随机接入信号的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426272A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 导频资源分配方法、系统和设备
CN101714891A (zh) * 2008-10-06 2010-05-26 大唐移动通信设备有限公司 一种实现mbms传输的方法和装置
CN101742682A (zh) * 2008-11-12 2010-06-16 中兴通讯股份有限公司 一种lte系统中的随机接入方法
CN104349476A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 随机接入信道资源配置方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426272A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 导频资源分配方法、系统和设备
CN101714891A (zh) * 2008-10-06 2010-05-26 大唐移动通信设备有限公司 一种实现mbms传输的方法和装置
CN101742682A (zh) * 2008-11-12 2010-06-16 中兴通讯股份有限公司 一种lte系统中的随机接入方法
CN104349476A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 随机接入信道资源配置方法和系统

Also Published As

Publication number Publication date
CN107046729A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2017133674A1 (zh) 随机接入信道的配置方法及装置
EP3777409B1 (en) Method for grant free uplink transmission, user equipment and base station device
JP7209667B2 (ja) リソース設定のための方法及び装置、並びに基地局
TW201914348A (zh) 一種ra-rnti確定方法及裝置
WO2014048177A1 (zh) 物理随机接入信道的资源确定方法及装置
CN107852266A (zh) 支持多种传输时间间隔的随机接入方法、装置以及通信系统
WO2016112543A1 (zh) 一种传输消息的方法和装置
US11330541B2 (en) System information sending method and apparatus
RU2713411C1 (ru) Способ и устройство для передачи пилот-сигнала
CN106961709B (zh) 一种接入信号的生成方法及装置
US20230217504A1 (en) Method for grant free uplink transmission, user equipment and base station device
JP7174859B2 (ja) ランダムアクセス方法、装置、及びシステム
JP2020502838A (ja) 信号伝送方法及び装置
CN110971362B (zh) 一种发现参考信号发送方法及装置
US11122595B2 (en) Information sending method and apparatus, terminal and storage medium
CN107197532B (zh) 接入处理方法及装置
US20200281024A1 (en) Communication method and apparatus
WO2017157152A1 (zh) 接入处理方法及装置
JP6958590B2 (ja) 複数種類の伝送時間間隔をサポートするランダムアクセス方法、装置及び通信システム
JP7077407B2 (ja) 基準信号のためのコードシーケンスの拡散
CN113079582A (zh) 随机接入方法及装置
US11974322B2 (en) Method and device for sending information, and method and device for receiving information
WO2013097254A1 (zh) 正交频分多址接入方法、装置和系统
CN116456487A (zh) Prach重复传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746994

Country of ref document: EP

Kind code of ref document: A1