WO2017133546A1 - 一种光伏储能空调装置及控制方法 - Google Patents

一种光伏储能空调装置及控制方法 Download PDF

Info

Publication number
WO2017133546A1
WO2017133546A1 PCT/CN2017/072236 CN2017072236W WO2017133546A1 WO 2017133546 A1 WO2017133546 A1 WO 2017133546A1 CN 2017072236 W CN2017072236 W CN 2017072236W WO 2017133546 A1 WO2017133546 A1 WO 2017133546A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
energy storage
photovoltaic
air conditioning
power generation
Prior art date
Application number
PCT/CN2017/072236
Other languages
English (en)
French (fr)
Inventor
黄猛
徐冬媛
唐文强
刘霞
南树功
任鹏
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to CA3013515A priority Critical patent/CA3013515C/en
Priority to US16/074,966 priority patent/US10784711B2/en
Priority to EP17746866.7A priority patent/EP3413431A4/en
Priority to AU2017215605A priority patent/AU2017215605B2/en
Publication of WO2017133546A1 publication Critical patent/WO2017133546A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a photovoltaic energy storage air conditioner and a control method thereof.
  • photovoltaic energy storage air conditioning systems propose to increase the energy storage unit in the photovoltaic air conditioning system to form a photovoltaic energy storage air conditioning system architecture to ensure energy supply and normal operation.
  • the specific deployment mode of energy in the PV air conditioning system and the operation state of the PV energy storage air conditioning system according to the energy supply change are still unclear.
  • one technical problem to be solved by the present invention is to provide a photovoltaic energy storage air conditioner and a control method thereof.
  • a photovoltaic energy storage air conditioner comprising: a photovoltaic power generation device, an energy storage device, an air conditioning unit, and an energy dispatch management device; wherein the photovoltaic power generation device, the energy storage device, and a public power grid are respectively connected to the air conditioning unit, and configured to The photovoltaic power generation device and the public power grid are respectively connected to the energy storage device for charging; the photovoltaic power generation device is further configured to supply power to the public power grid, and the energy dispatch management device includes: Detection module for detecting empty Adjusting an operating state, a power supply and an operating state of the photovoltaic power generation device and the energy storage device; and a scheduling module, configured to: according to the air conditioning operating state, the power supply and working state, and a set power priority Power is used to control power and/or charging.
  • the photovoltaic power generation device includes: a photovoltaic array, an inverter, a switching device, and an electric energy meter; the photovoltaic array sequentially connects the switching device and the inverter; The inverter is connected to the public power grid; the switching device is connected to the air conditioning unit; the electric energy meter is disposed on a connection between the photovoltaic array and the switching device; the detecting module and the The power meter is connected to obtain the generated power of the photovoltaic array; the scheduling module is connected to the switching device and the inverter, and the photovoltaic array is controlled to supply power to the air conditioning unit and/or the public power grid.
  • the energy storage device includes: an energy storage battery pack and a battery energy management module; the battery energy management module is connected to the energy storage battery pack; the detection module and the The scheduling module is respectively connected to the battery energy management module, the detecting module acquires the power of the energy storage battery pack through the battery energy management module, and the scheduling module controls the energy storage battery by the battery energy management module The working status of the group.
  • the energy storage device further includes: a direct current converter; and the energy storage battery pack is connected to the public power grid through the direct current converter.
  • the public power grid is connected to the air conditioning unit via a switching device; the scheduling module is connected to the switching device.
  • the air conditioning unit includes: a controller; and the controller is connected to the detecting unit for acquiring an air conditioning operating state.
  • the power distribution source selected by the scheduling module according to the highest to lowest order of the power supply priority is the photovoltaic power generation device, the energy storage device, and the public power grid;
  • the devices that supply power in descending order of the power priority are, in order, the air conditioning unit, the energy storage device, and the public power grid.
  • the scheduling module determines that the power generation amount of the photovoltaic power generation device is the same as the power consumption required for the operation of the air conditioning unit, controlling the power supply for the air conditioning unit is only Photovoltaic power generation device; when the scheduling module judges When the air conditioning unit is not running and the power of the energy storage device is insufficient, the photovoltaic power generation device is controlled to charge the energy storage device; and when the scheduling module determines that the air conditioning unit is not operating and the energy storage device When the power is sufficient or not working, the photovoltaic power generation device is controlled to be connected to the public power grid for power supply.
  • the scheduling module determines that the photovoltaic power generation device is not generating power and the power of the energy storage device is sufficient, controlling the energy storage device to drive the air conditioning unit to operate;
  • the scheduling module determines that the photovoltaic power generation device is not generating power, the air conditioning unit is not running, and the energy storage device is insufficient in power, then controlling the public power grid to charge the energy storage device;
  • the scheduling module determines When the photovoltaic power generation device is not generating power and the power storage device is insufficient in power, controlling the public power grid to drive the air conditioning unit to operate, and controlling the public power grid to charge the energy storage device; and when the scheduling module When it is determined that the power generation amount of the photovoltaic power generation device is greater than the power required for the operation of the air conditioning unit, and the power storage device is insufficient in power, the photovoltaic power generation device is controlled to supply power to the air conditioning unit, and the photovoltaic device is controlled.
  • a power generating device charges the energy storage device.
  • the scheduling module determines that the power generation amount of the photovoltaic power generation device is greater than the power required for the operation of the air conditioning unit, and the power storage device is sufficient or not working, Controlling the photovoltaic power generation device to supply power to the air conditioning unit, and controlling the photovoltaic power generation device to supply power to the public power grid; and when the scheduling module determines that the photovoltaic power generation device generates less power than the air conditioning unit When the required amount of electricity and the amount of power of the energy storage device are insufficient, controlling the photovoltaic power generation device to supply power to the air conditioning unit together with the public power grid, and controlling the public power grid to charge the energy storage device; And when the scheduling module determines that the power generation amount of the photovoltaic power generation device is less than the power required for the operation of the air conditioning unit, and the power of the energy storage device is sufficient, controlling the photovoltaic power generation device and the energy storage device The power supply to the air conditioning unit is jointly provided.
  • the scheduling module determines that the power generation amount of the photovoltaic power generation device is less than the power required for the operation of the air conditioning unit, and the energy storage device does not work, then controlling the And the photovoltaic power generation device and the public power grid jointly supply power to the air conditioning unit; and when the scheduling module determines that the photovoltaic power generation device is not generating power, and the energy storage device is not working, controlling the public power grid to the Air conditioning unit power supply.
  • a control method for a photovoltaic energy storage air conditioner comprises: detecting an operating state of an air conditioner, a power supply amount and a working state of the photovoltaic power generation device and the energy storage device; and according to the air conditioning operating state, the power supply state and the working state, and the set power supply Powering and/or charging is controlled by priority and power priority; wherein the photovoltaic power generation device, the energy storage device and the public power grid are respectively connected to the air conditioning unit for power supply; the photovoltaic power generation device, the The public power grid is respectively connected to the energy storage device for charging; the photovoltaic power generation device is further configured to supply power to the public power grid.
  • controlling the power supply and/or charging according to the air conditioning operating state, the power supply state and the working state, and the set power priority and the power priority include: according to the power priority
  • the power supply selected from the highest to the lowest in sequence is the photovoltaic power generation device, the energy storage device, and the public power grid; wherein, the devices that are powered according to the power priority in descending order are sequentially The air conditioning unit, the energy storage device, and the public power grid.
  • controlling the power supply and/or charging according to the air conditioning operating state, the power supply amount and the operating state, and the set power priority and the power priority include: when determining the photovoltaic power generation device The power generation amount is the same as the power required for the operation of the air conditioning unit, and the power source for controlling the power supply to the air conditioning unit is only the photovoltaic power generation device; when it is determined that the air conditioning unit is not operating and the energy storage device is insufficient Controlling, by the photovoltaic power generation device, the energy storage device; and when determining that the air conditioning unit is not operating and the power storage device is sufficient or not working, controlling the photovoltaic power generation device to The public power grid is connected to the grid.
  • controlling the power supply and/or charging according to the air conditioning operating state, the power supply amount and the operating state, and the set power priority and the power priority include: when determining the photovoltaic power generation device When the power is not generated and the power of the energy storage device is sufficient, the energy storage device is controlled to drive the air conditioning unit to operate; when it is determined that the photovoltaic power generation device is not generating power, the air conditioning unit is not running, and the energy storage device is powered When insufficient, controlling the public power grid to charge the energy storage device; and when determining that the photovoltaic power generation device is not generating power and the power storage device is insufficient in power, controlling the public power grid to drive the air conditioning unit to operate And controlling the public grid to charge the energy storage device.
  • controlling the power supply and/or charging according to the air conditioning operating state, the power supply amount and the operating state, and the set power priority and the power priority include: when determining the photovoltaic power generation device Controlling the photovoltaic power generation device to supply power to the air conditioning unit and controlling the photovoltaic power generation device to the storage device when the power generation amount is greater than the power required for the operation of the air conditioning unit and the power storage device is insufficient.
  • the device can be charged; when it is determined that the power generation amount of the photovoltaic power generation device is greater than the power required for the operation of the air conditioning unit, and the power storage device is sufficient or not working, the photovoltaic power generation device is controlled to be the air conditioner.
  • controlling the power supply and/or charging according to the air conditioning operating state, the power supply amount and the operating state, and the set power priority and the power priority include: when determining the photovoltaic power generation device Controlling the photovoltaic power generation device and the energy storage device to supply power to the air conditioning unit together when the power generation amount is less than the power required for the operation of the air conditioning unit, and the power storage device is sufficient; Controlling that the photovoltaic power generation device and the public power grid jointly supply power to the air conditioning unit when the power generation amount of the photovoltaic power generation device is less than the power required for the operation of the air conditioning unit, and the energy storage device is not working; When the photovoltaic power generation device does not generate electricity and the energy storage device is not working, the public power grid is controlled to supply power to the air conditioning unit.
  • the photovoltaic energy storage air conditioner and the control method of the invention integrate the photovoltaic power generation device, the energy storage device and the municipal public power grid into the air conditioner to form a photovoltaic energy storage air conditioner, which can be changed according to the actual power generation, storage and power consumption conditions. Run in different working modes, realize multi-work mode real-time operation, reduce the impact of weather changes, battery storage capacity, grid operation status on normal operation, improve stability and reliability, and not waste photovoltaic power generation, battery life is affected by The effect of charge and discharge becomes smaller.
  • FIG. 1 is a schematic diagram of control and power supply line connection of an embodiment of a photovoltaic energy storage air conditioner according to the present invention
  • FIG. 2 is a schematic diagram showing the connection of control and power supply lines of another embodiment of a photovoltaic energy storage air conditioner according to the present invention.
  • Figure 3 is a schematic diagram of the power supply directly generated by the photovoltaic power generation unit directly driving the operation of the air conditioning unit when the electric energy generated by the photovoltaic power generation device satisfies the operation of the air conditioning unit;
  • Figure 4 is a schematic diagram of the power supply for charging the energy storage device by the photovoltaic power generation system when the air conditioning unit is not operating and the energy storage device is insufficient;
  • Figure 5 is a schematic diagram of the power supply of all the electricity generated by the photovoltaic power generation device when the air conditioning unit is not operating, the energy storage device is sufficient or not working;
  • FIG. 6 is a schematic diagram of a power supply in which a photovoltaic power generation device does not generate electricity, and the energy storage device has sufficient power; and at this time, the energy storage device supplies power to the air conditioning unit;
  • FIG. 7 is a schematic diagram of power supply for charging an energy storage device by a public power grid when the photovoltaic power generation device does not generate electricity, the air conditioning unit does not operate, and the energy storage device has insufficient power;
  • FIG. 8 is a schematic diagram of power supply when the photovoltaic power generation device does not generate electricity and the energy storage device is insufficient in power, the public power grid supplies power to the air conditioning unit, drives the air conditioner to operate, and simultaneously charges the energy storage device;
  • FIG. 9 is a schematic diagram of power supply when the power generation unit of the photovoltaic power generation unit is operated and the energy storage device is insufficient after the operation, and the power generation of the photovoltaic power generation device is preferentially charged to the energy storage device;
  • FIG. 10 is a schematic diagram of power supply when the surplus electric power is supplied to the public grid when the electric power supply unit of the photovoltaic power generation unit is operated and the surplus energy storage device is sufficient or not working;
  • Figure 11 shows that when the photovoltaic power generation unit generates insufficient power for the air conditioning unit to operate, the energy storage device is electrically When the quantity is also insufficient, the insufficient part is provided by the public power grid, and the power supply diagram for supplying power to the energy storage device is provided;
  • FIG. 12 is a schematic diagram of a power supply in which an insufficient portion is powered by an energy storage device when the photovoltaic power generation device generates insufficient power for the air conditioning unit to operate and the energy storage device has sufficient power;
  • FIG. 13 is a schematic diagram of power supply when the energy storage device is not working and the photovoltaic power generation device is insufficient for power supply to operate the air conditioning unit;
  • FIG. 14 is a schematic diagram of power supply directly supplied to the air conditioning unit by the public power grid when the energy storage device is not working and the photovoltaic power generation device does not generate electricity;
  • Figure 15 is a flow chart showing an embodiment of a method of controlling a photovoltaic energy storage air conditioner according to the present invention.
  • the present invention provides a photovoltaic energy storage air conditioner, comprising: a photovoltaic power generation device 11, an energy storage device 12, an air conditioning unit 10, and an energy dispatch management device 15.
  • the photovoltaic power generation device 11, the energy storage device 12, and the public power grid 13 are respectively connected to the air conditioning unit 10 for power supply.
  • the photovoltaic power generation device 11 and the public power grid 13 are respectively connected to the energy storage device 12 for charging.
  • the photovoltaic power generation unit 12 is also used to supply power to the public power grid 13 in parallel.
  • the energy dispatch management device 15 includes a detection module 151 and a scheduling module 152.
  • the detecting module 151 detects an air conditioning operating state, a power supply amount and an operating state of the photovoltaic power generating device and the energy storage device.
  • the dispatching module 152 controls the power supply or charging according to the air conditioning operating state, the power supply state and the operating state, and the set power priority and the power priority, or the power supply and the charging are simultaneously performed.
  • the photovoltaic power generation device 11, the energy storage device 12 and the public power grid 13 serve as three power supply sources of the air conditioning unit 10, and the dispatching module 152 according to the air conditioning operating state, the power supply and working state of each power supply, and the power supply priority and power priority. To determine one or several power supply combinations of the three power supply sources, as the actual power supply to the air conditioning unit 10, and determine that one or all of the photovoltaic power generation device 11 and the public power grid 13 charge the energy storage device 12, and determine the power supply. And the timing of charging.
  • the public power grid 13 of the present invention may be a municipal power grid or the like.
  • the photovoltaic power generation device 11, the energy storage device 12, the air conditioning unit 10 and the municipal power grid can perform multi-energy configuration flow in real time, determine the power supply priority, preferentially use photovoltaic energy, and secondly store energy, and finally municipal energy. Determine the priority of power consumption, air conditioning priority to meet air conditioning, followed by energy storage, and finally meet the municipal power generation.
  • the photovoltaic energy storage air conditioner in the above embodiment can realize the off-grid operation under the condition of municipal power failure, and the energy storage device 12 automatically renews the real-time energy surplus during operation due to the configuration of the photovoltaic power generation and the energy storage.
  • the flow is charged, and the photovoltaic power generation device 11 can generate electricity, the energy storage device 12 can be charged and discharged, and the air conditioning power state can be tracked in real time, and the dynamic switching time of the power supply energy can be less than 10 ms.
  • the photovoltaic power generation device includes a photovoltaic array 111, an inverter 114, a switching device 113, and an electric energy meter 112.
  • the photovoltaic array 111 is sequentially connected to the switching device 113, the inverter 114, the inverter 114 is connected to the public power grid 13, and the switching device 113 is connected to the air conditioning unit 10.
  • An electric energy meter 112 is disposed on a line between the photovoltaic array 111 and the switching device 113.
  • the detecting module 151 is connected to the electric energy table 112 to obtain the generated electric quantity of the photovoltaic array 111.
  • the dispatching module 152 is connected to the switching device 113 and the inverter 114, and controls the photovoltaic array 111 to supply power to the air conditioning unit 10 or the public power grid 13, and can also supply power to the air conditioning unit 10 and the public power grid 13.
  • the switching device 113 may not be provided, and the electrical energy of the photovoltaic array 111 is sent to the air conditioning unit through the inverter 114, and the electric energy of the photovoltaic array 111 is transmitted to the public power grid 13 by the circuit inside the air conditioning unit, thereby realizing On-grid power supply.
  • the electrical energy of the photovoltaic array 111 can be accessed by the inverter 114 into the public grid 13, and the inverter 114 can convert the direct current output by the photovoltaic array 111 to 220 or 380 volts of alternating current.
  • the power generated by the photovoltaic array 111 can be detected by the electric energy meter 112 or the metering module.
  • the air conditioner will generate electricity demand according to the load situation.
  • the DC/AC module and the energy dispatch management system will give priority to the use of photovoltaic power.
  • the direct current output from the photovoltaic array 111 can be connected to the DC bus between the inverter 101 and the inverter 102, or can be converted into an alternating current into the inverter 101 or the inverter 102 by the inverter 114.
  • Photovoltaic power generation is one of the power supply parties. If it can meet the air conditioning electricity demand, all of it will be powered by photovoltaics. If it cannot meet the air conditioning electricity demand, it will use other energy sources to dispatch electric energy for air conditioning.
  • the energy storage device includes: an energy storage battery pack 121 and a battery energy management module 122, and the battery energy management module 122 is connected to the energy storage battery pack 121.
  • the detection module 151 and the scheduling module 152 are respectively connected to the battery energy management module 122.
  • the detection module 121 acquires information such as the amount of energy of the energy storage battery pack 121 through the battery energy management module, and the scheduling module 152 controls the energy storage battery pack 121 through the battery energy management module 122.
  • the working state for example, charging, discharging, stopping work, and the like.
  • the energy storage device performs power generation detection by the battery energy management module 122, and controls the charging and discharging action and depth of the energy storage device.
  • the operating states of the photovoltaic power generation device and the energy storage device are detectable by the energy dispatch management device 15.
  • the photovoltaic power generation device is a one-way power supply. As long as the lighting conditions meet the power generation requirements, the photovoltaic power generation device will generate electricity externally. When the photovoltaic conditions do not meet the power generation requirements, the power generation is stopped, and the operating state of the photovoltaic power generation device is excited by the light conditions.
  • the energy storage device is controlled or not operated by the battery energy management module, and the working state of the energy storage device is divided into charging and discharging.
  • the energy storage device may further include a DC converter 123, and the energy storage battery pack 121 is connected to the public power grid 13 via a DC converter 123.
  • the energy storage battery pack 121 can be a lithium battery pack, and needs to be powered by DC.
  • the photovoltaic array 111 generates direct current to directly charge the energy storage battery pack 121, and can also supply power to the energy storage battery pack 121 through a DC converter, a rectifying device, or the like.
  • the public power grid 13 generates a low voltage direct current through the DC converter 123 to supply power to the energy storage battery pack 121.
  • the public network 13 is connected to the air conditioning unit 10 via a switching device 14, and the dispatch module 152 is connected to the switching device 14.
  • the dispatching module 152 can control the public power grid 13 to supply power to the air conditioning unit by controlling the opening and closing of the switching device 14.
  • a switching device may also be provided on the power supply connection between the plurality of power sources and the air conditioning unit to control the plurality of power sources to supply power to the air conditioning unit.
  • the air conditioning unit includes: a controller 103.
  • the controller 103 acquires an air conditioner operating state.
  • the controller 103 of the air conditioning unit itself can detect the operating state of the air conditioning unit, including a full set of states such as electrical parameters and cooling load parameters.
  • the energy dispatch management module 15 also detects the air conditioner operating state in real time, mainly the power demand state.
  • the photovoltaic power generation device, the energy storage device, and the municipal public power grid are connected to the air conditioner to form a photovoltaic energy storage air conditioner, and the power supply priority is determined by formulating a multi-energy linkage operation strategy, and the priority is used preferentially.
  • the photovoltaic energy storage air conditioner in the above embodiment adjusts the photovoltaic energy storage air conditioner to work in different modes according to different conditions of photovoltaic power generation, energy storage, and air conditioning power, thereby realizing the adaptability of the photovoltaic energy storage air conditioner.
  • Multi-mode operation can maintain the air conditioning operating state even in the extreme emergency situations where the PV array is insufficiently powered and encounters power outages. Even the off-grid operation of the PV energy storage air conditioner can be realized, and the system operation efficiency is maximized.
  • the power supply sources selected by the scheduling module 152 in descending order of the power supply priority are, in order, the photovoltaic power generation device 11, the energy storage device 12, and the public power grid 13.
  • the devices that supply power in descending order of power priority are, in order, the air conditioning unit, the energy storage device 12, and the public power grid.
  • the scheduling module 152 can switch the most suitable working mode in the current energy state according to the actual priority of the photovoltaic power generation, the energy storage and the air conditioning, according to the power supply priority, and has 12 working modes. As shown in Figures 3 to 14, the most efficient use of energy and the stable and reliable operation of the photovoltaic energy storage air conditioning unit are guaranteed.
  • the scheduling module 152 determines that the amount of power generated by the photovoltaic power generation device 11 is the same as the amount of power required for the operation of the air conditioning unit 10, the power source that controls the power supply to the air conditioning unit 10 is only the photovoltaic power generation device 11. This is the working mode 1. As shown in FIG. 3, when the electric energy generated by the photovoltaic power generation device 11 just satisfies the multi-line operation, the photovoltaic power generation device 11 generates power and directly supplies the air conditioning unit 10 with electricity.
  • the dispatching module 152 determines that the air conditioning unit 10 is not operating and the power of the energy storage device 12 is insufficient, then the photovoltaic power generating device 11 is controlled to charge the energy storage device 12. This is the working mode 2, as shown in FIG. 4, when the air conditioning unit 10 is not operating and the energy storage device 12 is insufficient in power, the photovoltaic power generation device 11 system charges the energy storage device.
  • the dispatching module 152 determines that the air conditioning unit 10 is not operating and the power of the energy storage device 12 is sufficient or not working, then the photovoltaic power generation device 11 is controlled to be connected to the public power grid 13 for power supply.
  • the scheduling module 152 determines that the photovoltaic power generation device 11 is not generating power and the power of the energy storage device 12 is sufficient, then the energy storage device 12 is controlled to drive the air conditioning unit 10 to operate.
  • the scheduling module 152 determines that the photovoltaic power generation device 11 is not generating power, the air conditioning unit 10 is not operating, and the energy storage device 12 is insufficient in power, then the public power grid 13 is controlled to charge the energy storage device 12.
  • the control public network 13 drives the air conditioning unit 10 to operate, and controls the public power grid 10 to charge the energy storage device 12.
  • the scheduling module 152 determines that the amount of power generated by the photovoltaic power generation device 11 is greater than the amount of power required for the operation of the air conditioning unit 10, and the amount of power stored in the energy storage device 12 is insufficient, the photovoltaic power generation device 11 is controlled to supply power to the air conditioning unit 10, and the photovoltaic power generation device 11 is controlled. Charge the energy storage device.
  • the scheduling module 152 determines that the power generation amount of the photovoltaic power generation device 11 is greater than the power required for the operation of the air conditioning unit 10, and the power storage device 12 has sufficient or no power, the photovoltaic power generation device 11 is controlled to supply power to the air conditioning unit 10, and the photovoltaic device is controlled.
  • the power generating device 11 supplies power to the public power grid 13 in parallel. This is the working mode 8: as shown in FIG. 10, when the electric power supply unit 10 of the photovoltaic power generation device 11 is still running, and the energy storage device 12 is sufficient or not working, the excess power is connected to the public at this time. powered by.
  • the scheduling module 152 determines that the amount of power generated by the photovoltaic power generation device 11 is less than the amount of power required for the operation of the air conditioning unit 10, and the amount of power of the energy storage device 12 is insufficient, then the photovoltaic power generation device 11 and the public power grid 13 are controlled to supply power to the air conditioning unit 10, and The public grid 13 is controlled to charge the energy storage device 12.
  • This is the working mode nine: as shown in FIG. 11, when the photovoltaic power generation device 11 generates insufficient power for the air conditioning unit 10 to operate, and the energy storage device 12 is insufficient, the insufficient portion is provided by the public power grid 13, and the energy storage device 12 is powered. .
  • the scheduling module 152 determines that the amount of power generated by the photovoltaic power generation device 11 is less than the amount of power required for the operation of the air conditioning unit 10, and the amount of power of the energy storage device 12 is sufficient, the photovoltaic power generation device 11 and the energy storage device 12 are controlled to supply power to the air conditioning unit.
  • the scheduling module 152 determines that the amount of power generated by the photovoltaic power generation device 11 is less than the amount of power required for the operation of the air conditioning unit 10, and the energy storage device 12 does not operate, the photovoltaic power generation device 11 and the public power grid 13 are controlled to supply power to the air conditioning unit 10.
  • the scheduling module 152 determines that the photovoltaic power generation device 11 is not generating power and the energy storage device 12 is not operating, then the public power grid 13 is controlled to supply power to the air conditioning unit 10. This is the working mode 12: when the energy storage device 12 is not working and the photovoltaic power generation device 11 does not generate electricity, the public power grid 13 directly supplies power to multiple connections.
  • the photovoltaic energy storage air conditioner of the invention operates in the mode one, is a pure photovoltaic air conditioner mode, realizes self-use, and the supply and demand are equal; when the mode 2 is operated, the air conditioner itself stores electric energy, reduces the loss generated by the inverter, and stores the electric energy as a system. Alternate energy, increase reliability; when operating in mode 3, when the air-conditioning device itself cannot incorporate more energy and has a margin, the photovoltaic power generation device is connected to the grid to achieve no waste of power generation and maximize photoelectric utilization.
  • the air conditioning unit When operating in mode 4, the air conditioning unit directly uses the system's own energy storage, no need to access the power on the Internet, the air conditioning device has a certain self-sufficiency; when operating in mode 5, the public power grid charges the battery to ensure that the standby energy of the air conditioning device is sufficient at all times. The ability to make an emergency.
  • the photovoltaic energy storage air conditioner of the present invention When the photovoltaic energy storage air conditioner of the present invention is operated in mode 6, the photovoltaic array cannot meet the negative The load capacity, the air conditioning unit can also be affected by normal operation; when operating in mode 7, in addition to meeting its own power demand, the excess power directly backups the energy, avoiding the power conversion loss caused by the grid connection; operating in mode eight, air conditioning The device can meet the needs of its own, and can also contribute to the external system and improve the system efficiency.
  • the mode When the mode is running at 9:00, the air conditioner can be supplemented with energy storage for maintenance.
  • the mode When the mode is ten, the photoelectricity is insufficient, and the air conditioner can also achieve self-sufficiency.
  • a small amount of photovoltaic power generation equipment can also make full use of power generation, and also ensure the normal operation of the air conditioning device; when operating in mode 12, the photovoltaic power generation device and the energy storage module are trapped and do not affect the use of the air conditioning device.
  • the photovoltaic energy storage air conditioner of the invention can be operated in the above 12 modes, and multiple power sources alternately or simultaneously work to achieve optimal use of electricity under different power usage conditions, thereby ensuring maximum utilization of clean photovoltaic energy. It also ensures the normal operation of the air conditioning unit.
  • the 12 working modes can be switched in real time, ensuring the most efficient use of energy and the stable and reliable operation of the PV energy storage air conditioning system.
  • FIG. 15 is a flow chart showing an embodiment of a method of controlling a photovoltaic energy storage air conditioner according to the present invention, as shown in FIG.
  • Step 301 Detecting an air conditioning operating state, a power supply amount and an operating state of the photovoltaic power generation device and the energy storage device.
  • Step 302 Control power supply and/or charging according to the air conditioning operating state, the power supply state and the working state, and the set power priority and power priority.
  • the power supply selected according to the order of priority of the power supply priority is a photovoltaic power generation device, an energy storage device and a public power grid; wherein, the devices that are powered according to the priority of the power priority are air conditioning units and storage. Can be installed and and the public grid.
  • the power supply for controlling the power supply unit is only the photovoltaic power generation device; when determining that the air conditioning unit is not operating and the power storage device is powered When it is insufficient, the photovoltaic power generation device is controlled to charge the energy storage device; when it is judged that the air conditioning unit is not running and the energy storage device is sufficient or not working, the photovoltaic power generation device is controlled to be connected to the public power grid.
  • the energy storage device When it is judged that the photovoltaic power generation device is not generating electricity and the energy storage device is sufficiently charged, the energy storage device is controlled to drive the air conditioning unit to operate; when it is judged that the photovoltaic power generation device is not generating electricity, the air conditioning unit is not shipped
  • the public power grid When the power storage device is low in power, the public power grid is controlled to charge the energy storage device; when it is judged that the photovoltaic power generation device is not generating electricity and the energy storage device is insufficient in power, the public power grid is controlled to drive the air conditioning unit to operate, and the public power grid is controlled to be stored. Can charge the device.
  • the photovoltaic power generation device When it is judged that the power generation amount of the photovoltaic power generation device is greater than the power required for the operation of the air conditioning unit, and the power capacity of the energy storage device is insufficient, the photovoltaic power generation device is controlled to supply power to the air conditioning unit, and the photovoltaic power generation device is controlled to charge the energy storage device; When the power generation capacity of the power generation device is greater than the power required for the operation of the air conditioning unit, and the power storage device is sufficient or not working, the photovoltaic power generation device is controlled to supply power to the air conditioning unit, and the photovoltaic power generation device is controlled to be connected to the public power grid; When the power generation amount of the photovoltaic power generation device is less than the power required for the operation of the air conditioning unit, and the power capacity of the energy storage device is insufficient, the photovoltaic power generation device and the public power grid are controlled to supply power to the air conditioning unit, and the public power grid is controlled to charge the energy storage device.
  • the photovoltaic power generation device and the energy storage device are jointly controlled to supply power to the air conditioning unit; when it is determined that the power generation amount of the photovoltaic power generation device is less than When the power required by the air conditioning unit is running and the energy storage device is not working, the photovoltaic power generation device and the public power grid are jointly controlled to supply power to the air conditioning unit; when it is judged that the photovoltaic power generation device is not generating power and the energy storage device is not working, the public power grid is controlled. Supply power to the air conditioning unit.
  • the photovoltaic energy storage air conditioner and the control method provided in the above embodiments operate in different working modes according to actual power generation, storage, and power consumption conditions, realizing multi-operation mode real-time operation, reducing weather changes, and battery storage.
  • the influence of electricity and grid operation status on normal operation improves stability and reliability, and the amount of photovoltaic power generation is not wasted.
  • the battery life is less affected by charge and discharge, and the system benefits are maximized.
  • the methods and systems of the present invention may be implemented in a number of ways.
  • the methods and systems of the present invention can be implemented in software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above-described sequence of steps for the method is for illustrative purposes only, and the steps of the method of the present invention are not limited to the order specifically described above unless otherwise specifically stated.
  • the invention may also be embodied as a program recorded in a recording medium, the program comprising machine readable instructions for implementing the method according to the invention.
  • the invention also covers a recording medium storing a program for performing the method according to the invention.

Abstract

本发明公开了一种光伏储能空调装置及控制方法,其中的空调装置包括:光伏发电装置、储能装置、空调机组和能量调度管理装置;能量调度管理装置包括:检测模块,用于检测空调运行状态、光伏发电装置和储能装置的供电电量和工作状态;调度模块,用于根据空调运行状态、供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电。本发明的光伏储能空调装置及控制方法,根据实际发电、储电与用电情况的变化而运行在不同的工作模式下,实现多工作模式实时运行,减小天气变化、蓄电池储电量、电网运行状态对正常运行的影响,提高稳定性与可靠性,并且光伏发电用量不浪费,蓄电池寿命受充放电的影响变小,实现利益最大化。

Description

一种光伏储能空调装置及控制方法
本申请要求于2016年02月03日提交中国专利局、申请号为201610076622.1、发明名称为“一种光伏储能空调装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调技术领域,尤其涉及一种光伏储能空调装置及控制方法。
背景技术
能源短缺是目前面临的比较严重的问题,解决此问题之一是使用太阳能发电。现有较为成熟的光伏空调系统主要是光伏电能和市政电能的配合使用,当系统受到一些客观因素(如天黑、停电、天气变化等)影响时,可能导致光伏空调系统不能正常的运行。目前,有一些光伏储能空调系统的概念提出,在光伏空调系统中增加储能单元,形成光伏储能空调系统架构,来保证供能及正常运行。但光伏空调系统中的能源的具体调配方式,以及光伏储能空调系统根据能量供应变化而形成运行状态尚不明确,光伏空调系统中的能源的联动运行及控制策略尚不明确,使得光伏空调系统中的能量供应不稳定,不能实现并、离网双用。因此,需要一种新的光伏储能空调系统,能够在各种能量变化情况下都能稳定可靠运行,实现光伏储能空调系统可并、离网双用。
发明内容
有鉴于此,本发明要解决的一个技术问题是提供一种光伏储能空调装置及控制方法。
一种光伏储能空调装置,包括:光伏发电装置、储能装置、空调机组和能量调度管理装置;所述光伏发电装置、所述储能装置和公共电网分别与所述空调机组连接,用于供电;所述光伏发电装置、所述公共电网分别与所述储能装置连接,用于充电;所述光伏发电装置还用于向所述公共电网并网供电;所述能量调度管理装置包括:检测模块,用于检测空 调运行状态、所述光伏发电装置和所述储能装置的供电电量和工作状态;调度模块,用于根据所述空调运行状态、所述供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电。
根据本发明的一个实施例,进一步的,所述光伏发电装置包括:光伏阵列、逆变器、切换装置和电能表;所述光伏阵列依次连接所述切换装置、所述逆变器;所述逆变器和所述公共电网连接;所述切换装置与所述空调机组连接;在所述光伏阵列和所述切换装置之间的连线上设置有所述电能表;所述检测模块与所述电能表连接,获取所述光伏阵列的发电电量;所述调度模块与所述切换装置和所述逆变器连接,控制所述光伏阵列为所述空调机组和/或所述公共电网供电。
根据本发明的一个实施例,进一步的,所述储能装置包括:储能电池组和电池能量管理模块;所述电池能量管理模块与所述储能电池组连接;所述检测模块和所述调度模块分别与所述电池能量管理模块连接,所述检测模块通过所述电池能量管理模块获取所述储能电池组的电量,所述调度模块通过所述电池能量管理模块控制所述储能电池组的工作状态。
根据本发明的一个实施例,进一步的,所述储能装置还包括:直流变换器;所述储能电池组通过所述直流变换器与所述公共电网连接。
根据本发明的一个实施例,进一步的,所述公共电网通过开关装置与所述空调机组连接;所述调度模块与所述开关装置连接。
根据本发明的一个实施例,进一步的,所述空调机组包括:控制器;所述控制器与所述检测单元连接,用于获取空调运行状态。
根据本发明的一个实施例,进一步的,所述调度模块依照所述供电优先级的由高到低顺序选择的供电电源依次为所述光伏发电装置、所述储能装置和所述公共电网;其中,依照所述用电优先级的由高到低顺序进行供电的设备依次为所述空调机组、所述储能装置和和所述公共电网。
根据本发明的一个实施例,进一步的,当所述调度模块判断所述光伏发电装置的发电量与所述空调机组运行所需的电量相同,则控制为所述空调机组供电的电源仅为所述光伏发电装置;当所述调度模块判断所 述空调机组未运行并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述储能装置充电;以及当所述调度模块判断所述空调机组未运行并且所述储能装置的电量充足或不工作时,则控制所述光伏发电装置向所述公共电网并网供电。
根据本发明的一个实施例,进一步的,当所述调度模块判断所述光伏发电装置未发电并且所述储能装置的电量充足时,则控制所述储能装置驱动所述空调机组运行;当所述调度模块判断所述光伏发电装置未发电、所述空调机组未运行并且所述储能装置电量不足时,则控制所述公共电网为所述储能装置充电;当所述调度模块判断所述光伏发电装置未发电并且所述储能装置的电量不足时,则控制所述公共电网驱动所述空调机组运行,并控制所述公共电网为所述储能装置充电;以及当所述调度模块判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置为所述储能装置充电。
根据本发明的一个实施例,进一步的,当所述调度模块判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置电量的充足或不工作时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置向所述公共电网并网供电;当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电,并且控制所述公共电网为所述储能装置充电;以及当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量充足时,则控制所述光伏发电装置与所述储能装置共同向所述空调机组供电。
根据本发明的一个实施例,进一步的,当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置不工作时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电;以及当所述调度模块判断所述光伏发电装置未发电、并且所述储能装置不工作时,则控制所述公共电网向所述空调机组供电。
一种光伏储能空调装置的控制方法,包括:检测空调运行状态、光伏发电装置和储能装置的供电电量和工作状态;根据所述空调运行状态、供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电;其中,所述光伏发电装置、所述储能装置和公共电网分别与所述空调机组连接,用于供电;所述光伏发电装置、所述公共电网分别与所述储能装置连接,用于充电;所述光伏发电装置还用于向所述公共电网并网供电。
根据本发明的一个实施例,进一步的,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:依照所述供电优先级的由高到低顺序选择的供电电源依次为所述光伏发电装置、所述储能装置和所述公共电网;其中,依照所述用电优先级的由高到低顺序进行供电的设备依次为所述空调机组、所述储能装置和和所述公共电网。
根据本发明的一个实施例,进一步的,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:当判断所述光伏发电装置的发电量与所述空调机组运行所需的电量相同,则控制为所述空调机组供电的电源仅为所述光伏发电装置;当判断所述空调机组未运行并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述储能装置充电;以及当判断所述空调机组未运行并且所述储能装置的电量充足或不工作时,则控制所述光伏发电装置向所述公共电网并网供电。
根据本发明的一个实施例,进一步的,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:当判断所述光伏发电装置未发电并且所述储能装置的电量充足时,则控制所述储能装置驱动所述空调机组运行;当判断所述光伏发电装置未发电、所述空调机组未运行并且所述储能装置电量不足时,则控制所述公共电网为所述储能装置充电;以及当判断所述光伏发电装置未发电并且所述储能装置的电量不足时,则控制所述公共电网驱动所述空调机组运行,并控制所述公共电网为所述储能装置充电。
根据本发明的一个实施例,进一步的,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:当判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置为所述储能装置充电;当判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置电量的充足或不工作时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置向所述公共电网并网供电;以及当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电,并且控制所述公共电网为所述储能装置充电。
根据本发明的一个实施例,进一步的,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量充足时,则控制所述光伏发电装置与所述储能装置共同向所述空调机组供电;当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置不工作时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电;以及当判断所述光伏发电装置未发电、并且所述储能装置不工作时,则控制所述公共电网向所述空调机组供电。
本发明的光伏储能空调装置及控制方法,将光伏发电装置、储能装置、市政的公共电网接入到空调形成光伏储能空调装置,能够根据实际发电、储电与用电情况的变化而运行在不同的工作模式下,实现多工作模式实时运行,减小天气变化、蓄电池储电量、电网运行状态对正常运行的影响,提高稳定性与可靠性,并且光伏发电用量不浪费,蓄电池寿命受充放电的影响变小。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为根据本发明的光伏储能空调装置的一个实施例的控制、供电线路连接示意图;
图2为根据本发明的光伏储能空调装置的另一个实施例的控制、供电线路连接示意图;
图3为在光伏发电装置所发的电能刚好满足空调机组运行,由光伏发电装置发电直接驱动空调机组运行的供电示意图;
图4为在空调机组不运行、储能装置电量不足时,光伏发电装置系统给储能装置充电的供电示意图;
图5为在空调机组不运行、储能装置电量充足或者不工作时,光伏发电装置所发的电全部并网的供电示意图;
图6为在光伏发电装置不发电、储能装置的电量充足,此时由储能装置给空调机组供电的供电示意图;
图7为当光伏发电装置不发电、空调机组不运行、储能装置电量不足时,由公共电网给储能装置充电的供电示意图;
图8为在当光伏发电装置不发电、储能装置电量不足时,由公共电网给空调机组供电,驱动空调运行,同时给储能装置充电的供电示意图;
图9为在当光伏发电装置所发的电供空调机组运行后还盈余、储能装置电量不足时,此时光伏发电装置发电优先给储能装置充电的供电示意图;
图10为在当光伏发电装置所发的电供空调机组运行后还盈余、储能装置电量充足或者不工作时,此时多余的电量向公共并网供电的供电示意图;
图11为在当光伏发电装置发电不足以供空调机组运行、储能装置电 量也不足时,不足部分由公共电网提供,同时给储能装置供电的供电示意图;
图12为在当光伏发电装置发电不足以供空调机组运行、储能装置电量充足时,不足部分由储能装置供电的供电示意图;
图13为在当储能装置不工作、光伏发电装置发电不足以供空调机组运行时,不足部分由公共电网补充供电的供电示意图;
图14为在当储能装置不工作、光伏发电装置不发电时,公共电网直接给空调机组供电的供电示意图;
图15为根据本发明的光伏储能空调装置的控制方法的一个实施例的流程示意图。
具体实施方式
下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实施例。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。下面结合各个图和实施例对本发明的技术方案进行多方面的描述。
如图1所示,本发明提供一种光伏储能空调装置,包括:光伏发电装置11、储能装置12、空调机组10和能量调度管理装置15。光伏发电装置11、储能装置12和公共电网13分别与空调机组10连接,用于供电。光伏发电装置11、公共电网13分别与储能装置12连接,用于充电。光伏发电装置12还用于向公共电网13并网供电。
能量调度管理装置15包括:检测模块151和调度模块152。检测模块151检测空调运行状态、光伏发电装置和储能装置的供电电量和工作状态。调度模块152根据空调运行状态、供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电或者充电,或者供电和充电同时进行。
光伏发电装置11、储能装置12和公共电网13作为空调机组10的三个供电电源,调度模块152根据空调运行状态、各个供电电源的供电电量和工作状态,以及供电优先级和用电优先级来确定三个供电电源中的一个或几个电源组合,作为实际向空调机组10的供电电源,并确定光伏发电装置11、公共电网13中的一个或全部为储能装置12充电,并确定供电和充电的时机。本发明的公共电网13可以为市政电网等。
光伏发电装置11、储能装置12、空调机组10和市政电网四者之间可以实时的进行多元能量配置流动,确定供电优先级,优先使用光伏电能,其次是储能电能,最后的市政电能。确定用电优先级,空调运行时优先满足空调,其次满足储能,最后满足向市政发电。
由于配置有光伏发电和储能两种供电形式,上述实施例中的光伏储能空调装置可实现在市政掉电情况下的离网运行,储能装置12利用运行过程中能量的盈余实时自动续流充电,并可以对光伏发电装置11发电、储能装置12充放电、空调用电状态进行实时跟踪,供电能量的动态切换时间可以小于10ms。
光伏发电装置可以有多种,例如,如图2所示,光伏发电装置包括:光伏阵列111、逆变器114、切换装置113和电能表112。光伏阵列111依次连接切换装置113、逆变器114,逆变器114和公共电网13连接,切换装置113与空调机组10连接。在光伏阵列111和切换装置113之间的连线上设置有电能表112。
检测模块151与电能表112连接,获取光伏阵列111的发电电量。调度模块152与切换装置113和逆变器114连接,控制光伏阵列111为空调机组10或公共电网13供电,也可以同时为空调机组10和公共电网13供电。在一个实施例中,也可以不设置切换装置113,光伏阵列111的电能通过逆变器114发送到空调机组,由空调机组内部的电路实现将光伏阵列111的电能发送给公共电网13,从而实现并网供电。
光伏阵列111的电能可以通过逆变器114接入到公共电网13中,逆变器114可以将光伏阵列111输出的直流电转换为220或380伏的交流电。光伏阵列111所发电能是通过电能表112或者计量模块进行检测, 空调作为用电需求方,会根据负荷情况产生用电需求,通过DC/AC模块和能量调度管理系统,优先使用光伏电能。
光伏阵列111输出的直流电可以接入到换流器101和换流器102之间的直流总线上,也可以通过逆变器114转换为交流电接入换流器101或换流器102。光伏发电为供电方之一,若能满足空调用电需求,则全部由光伏供电,若不能满足空调用电需求,则从其它能源测调度电能供空调使用。
储能装置包括:储能电池组121和电池能量管理模块122,电池能量管理模块122与储能电池组121连接。检测模块151和调度模块152分别与电池能量管理模块122连接,检测模块121通过电池能量管理模块获取储能电池组121的电量等信息,调度模块152通过电池能量管理模块122控制储能电池组121的工作状态,例如,充电、放电、停止工作等。储能装置通过电池能量管理模块122进行电量检测,并控制储能装置的充放电动作和深度。
光伏发电装置和储能装置的运行状态通过能量调度管理装置15可检测。光伏发电装置为单向供电能源,只要光照条件满足发电要求,光伏发电装置就会对外发电,当光伏条件不满足发电要求时停止发电,光伏发电装置运行状态受光照条件激发。储能装置通过电池能量管理模块控制工作或不工作,储能装置的工作状态分为充电、放电两种。
储能装置还可以包括:直流变换器123,储能电池组121通过直流变换器123与公共电网13连接。例如,储能电池组121可以为锂电池组,需要进行直流供电,光伏阵列111产生直流电可以直接对储能电池组121充电,也可以通过直流变换器、整流装置等对储能电池组121供电。公共电网13通过直流变换器123,生成低电压的直流电对储能电池组121供电。
公共电网13通过开关装置14与空调机组10连接,调度模块152与开关装置14连接。调度模块152通过控制开关装置14的开闭能够控制公共电网13对空调机组进行供电。在多个电源与空调机组之间的供电连线上也可以设置开关装置,控制多个电源对空调机组进行供电。
空调机组包括:控制器103。控制器103获取空调运行状态。空调机组本身的控制器103可以检测空调机组的运行状态,包含电参数和冷负荷参数等全套状态。能量调度管理模块15也会实时检测空调运行状态,主要是用电需求状态。
上述实施例中的光伏储能空调装置,将光伏发电装置、储能装置、市政的公共电网接入到空调形成光伏储能空调装置,通过制定多能源联动运行策略,确定供电优先级,优先使用光伏电能,其次是储能电能,最后的市政电能;确定用电优先级,空调运行时优先满足空调,其次满足储能,最后满足向市政发电。
上述实施例中的光伏储能空调装置,调整光伏储能空调装置随光伏发电、储能蓄电、空调用电的不同情况而使工作在不同的模式下,实现光伏储能空调装置的适应性多模式运行,即使在光伏阵列供电不足和遭遇电网停电的极端突发状况下也能维持空调运行状态,甚至可实现光伏储能空调装置的离网运行,系统运行效益最大化。
调度模块152依照供电优先级的由高到低顺序选择的供电电源依次为光伏发电装置11、储能装置12和公共电网13。依照用电优先级的由高到低顺序进行供电的设备依次为空调机组、储能装置12和和公共电网。
在一个实施例中,调度模块152可根据实光伏发电、储能蓄电和空调用电的实际情况,按照供电优先级实时切换运行在当前能量状态下的最适合工作模式,共有12种工作模式,如图3至14所示,保证了能源的最有效利用和光伏储能空调装置的稳定可靠运行。
当调度模块152判断光伏发电装置11的发电量与空调机组10运行所需的电量相同,则控制为空调机组10供电的电源仅为光伏发电装置11。此为工作模式1,如图3所示,当光伏发电装置11所发的电能刚好满足多联机运行时,由光伏发电装置11发电直接供给空调机组10用电。
当调度模块152判断空调机组10未运行并且储能装置12的电量不足时,则控制光伏发电装置11为储能装置12充电。此为工作模式二,如图4所示,当空调机组10不运行、储能装置12电量不足时,光伏发电装置11系统给储能装置充电。
当调度模块152判断空调机组10未运行并且储能装置12的电量充足或不工作时,则控制光伏发电装置11向公共电网13并网供电。此为工作模式三,如图5所示:当空调机组10不运行、储能装置12电量充足或者不工作时,光伏发电装置11所发的电全部并网。
当调度模块152判断光伏发电装置11未发电并且储能装置12的电量充足时,则控制储能装置12驱动空调机组10运行。此为工作模式四:如图6所示,当光伏发电装置11不发电、储能装置12的电量充足,此时由储能装置12给空调机组10供电,驱动机组运行。
当调度模块152判断光伏发电装置11未发电、空调机组10未运行并且储能装置12电量不足时,则控制公共电网13为储能装置12充电。此为工作模式五:如图7所示,当光伏发电装置11不发电、空调机组10不运行、储能装置12电量不足时,由公共电网13给储能装置12充电。
当调度模块152判断光伏发电装置11未发电并且储能装置12的电量不足时,则控制公共电网13驱动空调机组10运行,并控制公共电网10为储能装置12充电。此为工作模式六:如图8所示,当光伏发电装置11不发电、储能装置12电量不足时,由公共电网13驱动空调机组10运行,同时给储能装置12充电。
当调度模块152判断光伏发电装置11的发电量大于空调机组10运行所需的电量、并且储能装置12的电量不足时,则控制光伏发电装置11为空调机组10供电,并控制光伏发电装置11为储能装置充电。此为工作模式七:如图9所示,当光伏发电装置11所发的电供空调机组10运行后还盈余、储能装置12电量不足时,此时光伏发电优先给储能装置12充电。
当调度模块152判断光伏发电装置11的发电量大于空调机组10运行所需的电量、并且储能装置12电量的充足或不工作时,则控制光伏发电装置11为空调机组10供电,并控制光伏发电装置11向公共电网13并网供电。此为工作模式八:如图10所示,当光伏发电装置11所发的电供空调机组10运行后还盈余、储能装置12电量充足或者不工作时,此时多余的电量向公共并网供电。
当调度模块152判断光伏发电装置11的发电量小于空调机组10运行所需的电量、并且储能装置12的电量不足时,则控制光伏发电装置11与公共电网13共同向空调机组10供电,并且控制公共电网13为储能装置12充电。此为工作模式九:如图11所示,当光伏发电装置11发电不足以供空调机组10运行、储能装置12电量也不足时,不足部分由公共电网13提供,同时给储能装置12供电。
当调度模块152判断光伏发电装置11的发电量小于空调机组10运行所需的电量、并且储能装置12的电量充足时,则控制光伏发电装置11与储能装置12共同向空调机组供电。此为工作模式十:如图12所示,当光伏发电装置11发电不足以供空调机组10运行、储能装置电量12充足时,不足部分由储能装置12供电。
当调度模块152判断光伏发电装置11的发电量小于空调机组10运行所需的电量、并且储能装置12不工作时,则控制光伏发电装置11与公共电网13共同向空调机组10供电。此为工作模式十一:如图13所示,当储能装置12不工作、光伏发电装置11发电不足以供空调机组10运行时,不足部分由公共电网13补充供电。
当调度模块152判断光伏发电装置11未发电、并且储能装置12不工作时,则控制公共电网13向空调机组10供电。此为工作模式十二:当储能装置12不工作、光伏发电装置11不发电时,公共电网13直接给多联机供电。
本发明的光伏储能空调装置运行在模式一时,为纯光伏空调模式,实现自发自用,供需相等;运行在模式二时,空调装置自身存储电能,减少逆变上网产生的损耗,存储电能作为系统备用能源,增加可靠性;运行在模式三时,空调装置自身无法纳入更多能量而又有裕量时,光伏发电装置并网,实现发电不浪费、光电利用最大化。运行在模式四时,空调机组直接利用系统自身储能,无需上网取电,空调装置具有一定的自给能力;运行在模式五时,公共电网给蓄电池充电,保证空调装置备用能源时刻充足,提升应对突发状况的能力。
本发明的光伏储能空调装置运行在模式六时,光伏阵列无法满足负 载需求,空调装置也能不受影响正常运行;运行在模式七时,除了满足自身用电需求,多余电量直接备用能源,避免了因并网产生的电能转换损耗;运行在模式八时,空调装置满足自身需求外还能对外出力,提高系统效益;运行在模式九时,维持工作还且能对空调装置进行补充储能备用;运行在模式十时,光电不足,空调装置也能实现自给自足;运行在模式十一时,少量的光伏发电装置发电也能充分利用,同时也保证空调装置正常运行;运行在模式十二时,光伏发电装置和储能模块陷入瘫痪也不影响空调装置使用。
本发明的光伏储能空调装置可以在以上12种模式下运行,多电源之间交替或同时工作,实现在不同发用电情况下择优取用电,既保证了清洁光伏能源的利用最大化,又能使空调装置的正常运行得到保障。12种工作模式可以实时切换,保证了能源的最有效利用和光伏储能空调系统的稳定可靠运行。
图15为根据本发明的光伏储能空调装置的控制方法的一个实施例的流程示意图,如图15所示:
步骤301,检测空调运行状态、光伏发电装置和储能装置的供电电量和工作状态。
步骤302,根据空调运行状态、供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电。
依照供电优先级的由高到低顺序选择的供电电源依次为光伏发电装置、储能装置和公共电网;其中,依照用电优先级的由高到低顺序进行供电的设备依次为空调机组、储能装置和和公共电网。
在一个实施例中,当判断光伏发电装置的发电量与空调机组运行所需的电量相同,则控制为空调机组供电的电源仅为光伏发电装置;当判断空调机组未运行并且储能装置的电量不足时,则控制光伏发电装置为储能装置充电;当判断空调机组未运行并且储能装置的电量充足或不工作时,则控制光伏发电装置向公共电网并网供电。
当判断光伏发电装置未发电并且储能装置的电量充足时,则控制储能装置驱动空调机组运行;当判断光伏发电装置未发电、空调机组未运 行并且储能装置电量不足时,则控制公共电网为储能装置充电;当判断光伏发电装置未发电并且储能装置的电量不足时,则控制公共电网驱动空调机组运行,并控制公共电网为储能装置充电。
当判断光伏发电装置的发电量大于空调机组运行所需的电量、并且储能装置的电量不足时,则控制光伏发电装置为空调机组供电,并控制光伏发电装置为储能装置充电;当判断光伏发电装置的发电量大于空调机组运行所需的电量、并且储能装置电量的充足或不工作时,则控制光伏发电装置为空调机组供电,并控制光伏发电装置向公共电网并网供电;当判断光伏发电装置的发电量小于空调机组运行所需的电量、并且储能装置的电量不足时,则控制光伏发电装置与公共电网共同向空调机组供电,并且控制公共电网为储能装置充电。
当判断光伏发电装置的发电量小于空调机组运行所需的电量、并且储能装置的电量充足时,则控制光伏发电装置与储能装置共同向空调机组供电;当判断光伏发电装置的发电量小于空调机组运行所需的电量、并且储能装置不工作时,则控制光伏发电装置与公共电网共同向空调机组供电;当判断光伏发电装置未发电、并且储能装置不工作时,则控制公共电网向空调机组供电。
上述实施例中提供的光伏储能空调装置及控制方法,根据实际发电、储电与用电情况的变化而运行在不同的工作模式下,实现多工作模式实时运行,减小天气变化、蓄电池储电量、电网运行状态对正常运行的影响,提高稳定性与可靠性,并且光伏发电用量不浪费,蓄电池寿命受充放电的影响变小,实现系统利益最大化。
可能以许多方式来实现本发明的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本发明的方法和系统。用于方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (17)

  1. 一种光伏储能空调装置,其特征在于,包括:
    光伏发电装置、储能装置、空调机组和能量调度管理装置;
    所述光伏发电装置、所述储能装置和公共电网分别与所述空调机组连接,用于供电;所述光伏发电装置、所述公共电网分别与所述储能装置连接,用于充电;所述光伏发电装置还用于向所述公共电网并网供电;
    所述能量调度管理装置包括:
    检测模块,用于检测空调运行状态、所述光伏发电装置和所述储能装置的供电电量和工作状态;
    调度模块,用于根据所述空调运行状态、所述供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电。
  2. 如权利要求1所述的光伏储能空调装置,其特征在于:
    所述光伏发电装置包括:光伏阵列、逆变器、切换装置和电能表;所述光伏阵列依次连接所述切换装置、所述逆变器;所述逆变器和所述公共电网连接;所述切换装置与所述空调机组连接;在所述光伏阵列和所述切换装置之间的连线上设置有所述电能表;
    所述检测模块与所述电能表连接,获取所述光伏阵列的发电电量;所述调度模块与所述切换装置和所述逆变器连接,控制所述光伏阵列为所述空调机组和/或所述公共电网供电。
  3. 如权利要求1所述的光伏储能空调装置,其特征在于:
    所述储能装置包括:储能电池组和电池能量管理模块;
    所述电池能量管理模块与所述储能电池组连接;所述检测模块和所述调度模块分别与所述电池能量管理模块连接,所述检测模块通过所述电池能量管理模块获取所述储能电池组的电量,所述调度模块通过所述电池能量管理模块控制所述储能电池组的工作状态。
  4. 如权利要求3所述的光伏储能空调装置,其特征在于:
    所述储能装置还包括:直流变换器;
    所述储能电池组通过所述直流变换器与所述公共电网连接。
  5. 如权利要求1所述的光伏储能空调装置,其特征在于:
    所述公共电网通过开关装置与所述空调机组连接;所述调度模块与所述开关装置连接。
  6. 如权利要求1所述的光伏储能空调装置,其特征在于:
    所述空调机组包括:控制器;
    所述控制器与所述检测单元连接,用于获取空调运行状态。
  7. 如权利要求1所述的光伏储能空调装置,其特征在于:
    所述调度模块依照所述供电优先级的由高到低顺序选择的供电电源依次为所述光伏发电装置、所述储能装置和所述公共电网;
    其中,依照所述用电优先级的由高到低顺序进行供电的设备依次为所述空调机组、所述储能装置和和所述公共电网。
  8. 如权利要求7所述的光伏储能空调装置,其特征在于:
    当所述调度模块判断所述光伏发电装置的发电量与所述空调机组运行所需的电量相同,则控制为所述空调机组供电的电源仅为所述光伏发电装置;
    当所述调度模块判断所述空调机组未运行并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述储能装置充电;以及
    当所述调度模块判断所述空调机组未运行并且所述储能装置的电量充足或不工作时,则控制所述光伏发电装置向所述公共电网并网供电。
  9. 如权利要求7所述的光伏储能空调装置,其特征在于:
    当所述调度模块判断所述光伏发电装置未发电并且所述储能装置的电量充足时,则控制所述储能装置驱动所述空调机组运行;
    当所述调度模块判断所述光伏发电装置未发电、所述空调机组未运行并且所述储能装置电量不足时,则控制所述公共电网为所述储能装置充电;
    当所述调度模块判断所述光伏发电装置未发电并且所述储能装置的电量不足时,则控制所述公共电网驱动所述空调机组运行,并控制所述公共电网为所述储能装置充电;以及
    当所述调度模块判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置为所述储能装置充电。
  10. 如权利要求7所述的光伏储能空调装置,其特征在于:
    当所述调度模块判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置电量的充足或不工作时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置向所述公共电网并网供电;
    当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电,并且控制所述公共电网为所述储能装置充电;以及
    当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量充足时,则控制所述光伏发电装置与所述储能装置共同向所述空调机组供电。
  11. 如权利要求7所述的光伏储能空调装置,其特征在于:
    当所述调度模块判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置不工作时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电;以及
    当所述调度模块判断所述光伏发电装置未发电、并且所述储能装置 不工作时,则控制所述公共电网向所述空调机组供电。
  12. 一种光伏储能空调装置的控制方法,其特征在于,包括:
    检测空调运行状态、光伏发电装置和储能装置的供电电量和工作状态;
    根据所述空调运行状态、供电电量和工作状态,以及设定的供电优先级和用电优先级控制供电和/或充电;
    其中,所述光伏发电装置、所述储能装置和公共电网分别与所述空调机组连接,用于供电;所述光伏发电装置、所述公共电网分别与所述储能装置连接,用于充电;所述光伏发电装置还用于向所述公共电网并网供电。
  13. 如权利要求12所述的控制方法,其特征在于,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:
    依照所述供电优先级的由高到低顺序选择的供电电源依次为所述光伏发电装置、所述储能装置和所述公共电网;
    其中,依照所述用电优先级的由高到低顺序进行供电的设备依次为所述空调机组、所述储能装置和和所述公共电网。
  14. 如权利要求13所述的控制方法,其特征在于,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:
    当判断所述光伏发电装置的发电量与所述空调机组运行所需的电量相同,则控制为所述空调机组供电的电源仅为所述光伏发电装置;
    当判断所述空调机组未运行并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述储能装置充电;以及
    当判断所述空调机组未运行并且所述储能装置的电量充足或不工作时,则控制所述光伏发电装置向所述公共电网并网供电。
  15. 如权利要求13所述的控制方法,其特征在于,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:
    当判断所述光伏发电装置未发电并且所述储能装置的电量充足时,则控制所述储能装置驱动所述空调机组运行;
    当判断所述光伏发电装置未发电、所述空调机组未运行并且所述储能装置电量不足时,则控制所述公共电网为所述储能装置充电;以及
    当判断所述光伏发电装置未发电并且所述储能装置的电量不足时,则控制所述公共电网驱动所述空调机组运行,并控制所述公共电网为所述储能装置充电。
  16. 如权利要求13所述的控制方法,其特征在于,根据所述空调运行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:
    当判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置为所述储能装置充电;
    当判断所述光伏发电装置的发电量大于所述空调机组运行所需的电量、并且所述储能装置电量的充足或不工作时,则控制所述光伏发电装置为所述空调机组供电,并控制所述光伏发电装置向所述公共电网并网供电;以及
    当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量不足时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电,并且控制所述公共电网为所述储能装置充电。
  17. 如权利要求13所述的控制方法,其特征在于,根据所述空调运 行状态、供电电量和工作状态以及设定的供电优先级和用电优先级控制供电和/或充电包括:
    当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置的电量充足时,则控制所述光伏发电装置与所述储能装置共同向所述空调机组供电;
    当判断所述光伏发电装置的发电量小于所述空调机组运行所需的电量、并且所述储能装置不工作时,则控制所述光伏发电装置与所述公共电网共同向所述空调机组供电;以及
    当判断所述光伏发电装置未发电、并且所述储能装置不工作时,则控制所述公共电网向所述空调机组供电。
PCT/CN2017/072236 2016-02-03 2017-01-23 一种光伏储能空调装置及控制方法 WO2017133546A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3013515A CA3013515C (en) 2016-02-03 2017-01-23 Photovoltaic energy storage air conditioner and control method thereof
US16/074,966 US10784711B2 (en) 2016-02-03 2017-01-23 Photovoltaic energy storage air conditioner and control method thereof
EP17746866.7A EP3413431A4 (en) 2016-02-03 2017-01-23 AIR CONDITIONING DEVICE WITH PHOTOVOLTAIC ENERGY STORAGE, AND CONTROL METHOD
AU2017215605A AU2017215605B2 (en) 2016-02-03 2017-01-23 Photovoltaic energy storage air conditioner, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610076622.1 2016-02-03
CN201610076622.1A CN107040034A (zh) 2016-02-03 2016-02-03 一种光伏储能空调装置及控制方法

Publications (1)

Publication Number Publication Date
WO2017133546A1 true WO2017133546A1 (zh) 2017-08-10

Family

ID=59499391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072236 WO2017133546A1 (zh) 2016-02-03 2017-01-23 一种光伏储能空调装置及控制方法

Country Status (6)

Country Link
US (1) US10784711B2 (zh)
EP (1) EP3413431A4 (zh)
CN (1) CN107040034A (zh)
AU (1) AU2017215605B2 (zh)
CA (1) CA3013515C (zh)
WO (1) WO2017133546A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520073A (zh) * 2018-11-21 2019-03-26 珠海格力电器股份有限公司 新能源空调器及其运行控制方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686595B2 (en) * 2017-05-01 2023-06-27 Ara Petrosyan Assembly, system, and method for distributing, monitoring, and controlling electrical power
US11346572B2 (en) * 2017-06-23 2022-05-31 Johnson Controls Tyco IP Holdings LLP Building equipment with predictive control
CN108616150A (zh) * 2018-03-30 2018-10-02 珠海银隆电器有限公司 一种光伏储能系统智能供电、储电方法
CN110571904A (zh) * 2018-06-05 2019-12-13 汉能移动能源控股集团有限公司 车载空调的供电方法、装置和车载式光伏空调系统
CN110858726B (zh) * 2018-08-22 2022-04-26 西安西电高压开关有限责任公司 远端采集模块箱及其供能方法
CN109462250B (zh) * 2018-09-12 2022-05-24 国网浙江省电力有限公司嘉兴供电公司 一种光电火电及储能电容的联合调度方法
CN109301864A (zh) * 2018-09-30 2019-02-01 珠海格力电器股份有限公司 一种对光伏空调的电量进行分配的方法及装置
US11960261B2 (en) 2019-07-12 2024-04-16 Johnson Controls Tyco IP Holdings LLP HVAC system with sustainability and emissions controls
US11761660B2 (en) 2019-01-30 2023-09-19 Johnson Controls Tyco IP Holdings LLP Building control system with feedback and feedforward total energy flow compensation
CN110323740B (zh) * 2019-06-24 2020-08-21 中国农业大学 计及光伏出力和空调负荷动态相关性的经济调峰方法
EP3996240B1 (en) * 2019-07-03 2024-02-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power system
US11274842B2 (en) 2019-07-12 2022-03-15 Johnson Controls Tyco IP Holdings LLP Systems and methods for optimizing ventilation, filtration, and conditioning schemes for buildings
US11714393B2 (en) 2019-07-12 2023-08-01 Johnson Controls Tyco IP Holdings LLP Building control system with load curtailment optimization
CN110594901A (zh) * 2019-09-05 2019-12-20 珠海格力电器股份有限公司 光伏空调系统以及应用此系统的方法
FR3103646B1 (fr) * 2019-11-27 2022-05-06 Lancey Energy Storage Micro-réseau résilient d'appareils de chauffage de type radiateur électrique
CN111678223A (zh) * 2020-05-15 2020-09-18 深圳市瑞能创新科技有限公司 具有制水装置的储能空调系统及其控制方法
CN111981643B (zh) * 2020-08-03 2022-02-11 珠海格力电器股份有限公司 一种能量调控系统、方法及装置
CN112117818A (zh) * 2020-08-10 2020-12-22 珠海格力电器股份有限公司 一种车载光伏系统及其控制方法、装置和存储介质
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调系统及其控制方法
CN112271800A (zh) * 2020-10-16 2021-01-26 珠海格力电器股份有限公司 一种无充电回路的供电电路及电源管理系统
CN112653190A (zh) * 2020-10-27 2021-04-13 珠海格力电器股份有限公司 一种光伏空调的功率控制方法、装置、系统及光伏空调
CN112484185A (zh) * 2020-11-20 2021-03-12 珠海格力电器股份有限公司 应用于养殖场的光伏空调控制方法、装置及光伏空调
CN112467794A (zh) * 2020-11-25 2021-03-09 珠海格力电器股份有限公司 光伏空调供电系统及其供电方法
CN113746090B (zh) * 2021-09-01 2023-09-26 广东电网有限责任公司 一种分布式资源电力需求预测系统及方法
CN113809774A (zh) * 2021-09-22 2021-12-17 中冶赛迪工程技术股份有限公司 一种光伏发电与电网互补的直流冶炼炉供电系统及方法
CN114264046A (zh) * 2021-12-20 2022-04-01 珠海格力电器股份有限公司 空调的控制方法及空调
CN114256982A (zh) * 2021-12-24 2022-03-29 珠海格力电器股份有限公司 光储充一体的空调系统及其控制方法、存储介质
CN114374212A (zh) * 2021-12-28 2022-04-19 珠海格力电器股份有限公司 光伏空调及其电能分配方法
CN116961119A (zh) * 2022-04-13 2023-10-27 青岛海尔空调器有限总公司 一种光伏发电控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122681A1 (ja) * 2010-03-30 2011-10-06 三洋電機株式会社 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
CN103208837A (zh) * 2013-03-26 2013-07-17 武汉喻科电气有限公司 太阳能空调及该空调的供电方法
CN104728968A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 光伏空调系统及其控制方法
CN105071521A (zh) * 2015-08-19 2015-11-18 青岛海尔空调器有限总公司 空调器的供电控制方法与空调器
CN105186549A (zh) * 2015-10-27 2015-12-23 中广核太阳能开发有限公司 一种基于直流微电网的v2g系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872379B2 (en) * 2007-11-30 2014-10-28 Johnson Controls Technology Company Efficient usage, storage, and sharing of energy in buildings, vehicles, and equipment
US7830038B2 (en) * 2007-12-17 2010-11-09 Shay-Ping Thomas Wang Single chip solution for solar-based systems
US8138630B2 (en) * 2009-09-22 2012-03-20 Ebay Inc. Solar powered system with grid backup
JP5479182B2 (ja) * 2009-09-30 2014-04-23 三洋電機株式会社 発電システムおよび充放電制御装置
CN102480167A (zh) * 2010-11-30 2012-05-30 珠海格力节能环保制冷技术研究中心有限公司 空调器及其供电系统
US9228750B2 (en) * 2011-01-24 2016-01-05 Rocky Research HVAC/R system with multiple power sources and time-based selection logic
US8463449B2 (en) * 2011-01-28 2013-06-11 Dean Sanders Systems, apparatus, and methods of a solar energy grid integrated system with energy storage appliance
US9207735B2 (en) * 2011-08-02 2015-12-08 Gram Power, Inc. Power management device and system
KR101851931B1 (ko) * 2011-12-12 2018-04-26 삼성전자주식회사 전력 소비 제어 장치 및 방법
JP2013183577A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 電力制御システム、電力制御装置、及び電力制御方法
CN103001289A (zh) * 2012-11-23 2013-03-27 博科能源系统(深圳)有限公司 太阳能储能发电系统
CN103280840A (zh) * 2013-06-17 2013-09-04 上海电力学院 一种分布式光伏储能系统及其工作方法
US9455577B2 (en) * 2013-07-25 2016-09-27 Globalfoundries Inc. Managing devices within micro-grids
CN203797842U (zh) * 2013-12-24 2014-08-27 珠海格力电器股份有限公司 光伏空调系统
WO2015125715A1 (ja) * 2014-02-24 2015-08-27 シャープ株式会社 電力システム、充放電制御装置及び充放電制御方法
CN103986226B (zh) * 2014-06-06 2016-08-17 珠海格力电器股份有限公司 空调及其供电系统和供电方法
CN104092278B (zh) 2014-07-11 2017-05-17 安徽启光能源科技研究院有限公司 应用于光伏储能系统的能量管理方法
US10243369B2 (en) * 2014-10-01 2019-03-26 Embertec Pty Ltd Power allocation system
CN104284494A (zh) * 2014-10-18 2015-01-14 深圳市新环能科技有限公司 光伏led直流供电控制系统
US20160118846A1 (en) * 2014-10-28 2016-04-28 Bin-Juine Huang Isolated-Type Hybrid Solar Photovoltaic System and Switching Control Method
US10139846B2 (en) * 2014-11-16 2018-11-27 Marvin Motsenbocker DC power grid and equipment
CN104501333B (zh) * 2014-12-10 2017-06-06 广东美的制冷设备有限公司 离网式光伏空调系统及其供电控制方法
US9559521B1 (en) * 2015-12-09 2017-01-31 King Electric Vehicles Inc. Renewable energy system with integrated home power
CN205489759U (zh) * 2016-02-03 2016-08-17 珠海格力电器股份有限公司 一种光伏储能空调装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122681A1 (ja) * 2010-03-30 2011-10-06 三洋電機株式会社 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
CN103208837A (zh) * 2013-03-26 2013-07-17 武汉喻科电气有限公司 太阳能空调及该空调的供电方法
CN104728968A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 光伏空调系统及其控制方法
CN105071521A (zh) * 2015-08-19 2015-11-18 青岛海尔空调器有限总公司 空调器的供电控制方法与空调器
CN105186549A (zh) * 2015-10-27 2015-12-23 中广核太阳能开发有限公司 一种基于直流微电网的v2g系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413431A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520073A (zh) * 2018-11-21 2019-03-26 珠海格力电器股份有限公司 新能源空调器及其运行控制方法

Also Published As

Publication number Publication date
AU2017215605A1 (en) 2018-08-23
EP3413431A1 (en) 2018-12-12
CA3013515C (en) 2022-01-04
US10784711B2 (en) 2020-09-22
EP3413431A4 (en) 2019-09-25
AU2017215605B2 (en) 2020-10-01
CN107040034A (zh) 2017-08-11
US20190052120A1 (en) 2019-02-14
CA3013515A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2017133546A1 (zh) 一种光伏储能空调装置及控制方法
CN205489759U (zh) 一种光伏储能空调装置
CN201813203U (zh) 智能供电逆变装置
WO2010066105A1 (zh) 通信基站用混合直流供电电源控制系统
TWI524630B (zh) Hybrid system for regenerative energy supply and energy storage device and control method thereof
US8410750B2 (en) Method for solar power energy management with intelligent selection of operating modes
CN201629692U (zh) 太阳能、自来水水能、风能互补集中供电的家用节能供电系统
CN106712082B (zh) 一种基于多智能体的分布式发电系统
WO2023015786A1 (zh) 一种能量转换管理系统及方法
KR101270977B1 (ko) 클러스터링 하이브리드 가로등 시스템
KR102222560B1 (ko) 에너지 저장 시스템
KR101167971B1 (ko) 복합형 태양발전 컨트롤러의 제어방법
CN111313535B (zh) 一种直驱空调器
CN113541133B (zh) 一种混合微电网精细化调度方法
CN215071777U (zh) 智慧路灯
CN112865669A (zh) 基于光伏发电、电池储能与电网的直流供电方法及系统
JP3688744B2 (ja) 太陽光発電装置
CN112865106A (zh) 一种考虑荷电状态的交直流混合微电网功率调度方法
CN202651815U (zh) 多重备援太阳能供电系统
CN109861200A (zh) 离网黑启动的光储直流电网系统及其运行方法
WO2020161766A1 (ja) 直流給電システム
CN105071434A (zh) 太阳能电池电动汽车充电并离网储节能系统
CN110445172A (zh) 一种双回路户用型光伏储能系统及其供电方法
CN102192464A (zh) 一种自来水水能、太阳能互补的楼宇公用照明系统
CN215817555U (zh) 一种用于基站的光伏、市电、蓄电池协同供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3013515

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017215605

Country of ref document: AU

Date of ref document: 20170123

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017746866

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017746866

Country of ref document: EP

Effective date: 20180903