WO2017133412A1 - 基于mib的参数指示方法、基站及终端 - Google Patents

基于mib的参数指示方法、基站及终端 Download PDF

Info

Publication number
WO2017133412A1
WO2017133412A1 PCT/CN2017/070867 CN2017070867W WO2017133412A1 WO 2017133412 A1 WO2017133412 A1 WO 2017133412A1 CN 2017070867 W CN2017070867 W CN 2017070867W WO 2017133412 A1 WO2017133412 A1 WO 2017133412A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
iot
phich
bandwidth
mib
Prior art date
Application number
PCT/CN2017/070867
Other languages
English (en)
French (fr)
Inventor
杜婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133412A1 publication Critical patent/WO2017133412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to the field of Narrow Band-Internet Of Things (NB-IOT), and particularly relates to a parameter indication method, a base station and a terminal based on a Master Information Block (MIB).
  • NB-IOT Narrow Band-Internet Of Things
  • MIB Master Information Block
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • NB-IOT has four capabilities: First, wide coverage, in the same frequency band, NB-IOT is 20dB more than the current network, and the coverage area is expanded by 100 times. Second, it has the ability to support massive connections, NB-IOT one sector. It can support 100,000 connections; the third is lower power consumption, the standby time of NB-IOT terminal modules can be as long as 10 years; the fourth is lower module cost. It can be seen that NB-IOT focuses on the Low Power Wide Area (LPWA) IoT market and is an emerging technology that can be widely applied on a global scale. In addition, the NB-IOT uses the license band. The NB-IOT can support three different modes of operation. It can be deployed in a separate carrier, guard band or in-band mode to coexist with the existing network. among them:
  • GSM Global System for Mobile Communication
  • a guard band operation that utilizes resource blocks that are not used by the guard-band in the Long Term Evolution (LTE) carrier frequency.
  • NB-IOT synchronization signals For the design of NB-IOT synchronization signals, some companies propose whether to operate the mode (eg, one Some or all of the independent carriers/guard bands/in-bands need to be instructed to require FFS, and the Frequency Division Duplexing/Time Division Duplexing (FDD/TDD) mode indicates that FFS is required.
  • FDD/TDD Frequency Division Duplexing/Time Division Duplexing
  • This proposal was adopted by 3GPP. Based on the NB-IOT design principle, it is necessary to indicate the operation mode for the low-cost, low-power, and low-rate considerations. To simplify the complexity of the terminal (UE, User Equipment), how to indicate the operation mode is to be solved. problem.
  • the embodiments of the present invention provide a MIB-based parameter indication method, a base station, and a terminal, to at least solve the problem of how to indicate an operation mode.
  • an MIB-based parameter indication method which is applied to a base station side, and includes:
  • the bits occupied by the PHICH configuration field indicate information supported by the NB-IOT, including multiple operating modes, FDD/TDD modes.
  • the multiple operating modes supported by the NB-IOT include: a separate carrier, a guard band, and an inband;
  • the bits occupied by the PHICH configuration field indicate various operating modes supported by the NB-IOT, including:
  • Any three bit combination modes are selected from the four bit combination modes, and the independent carrier, the guard band, and the band are respectively indicated.
  • the method further includes:
  • the method further includes:
  • the bandwidth field and the remaining bits can be used to broadcast the bandwidth information of the NB-IOT. If the NB-IOT has only one type of bandwidth information, the bandwidth information is not broadcast in the MIB.
  • an MIB-based parameter indication method which is applied to a terminal side, and includes:
  • the PHICH persistent parameter is determined to be a first default value, and the PHICH resource parameter is a second default value;
  • the operation mode field is further read, and the operation mode supported by the NB-IOT is determined according to the bit information of the operation mode field, where the operation mode field is a bit occupied by the PHICH configuration field. Indicates the multiple operating modes supported by NB-IOT.
  • the method further includes:
  • the frame type field is further read, and whether the current FDD mode or the TDD mode is determined according to the bit information of the frame type field.
  • the method further includes:
  • the MIB bandwidth field is read, and when the MIB bandwidth field has a parameter for indicating the NB-IOT bandwidth value, it is determined that the current system is the NB-IOT system.
  • a base station including:
  • a pre-processing unit configured to delete a PHICH configuration field in the MIB, configure a PHICH persistent parameter in the PHICH configuration field as a first default value, and configure a PHICH resource parameter in the PHICH configuration field as a second default value ;
  • a configuration unit configured to indicate a NB-IOT by using a bit occupied by the PHICH configuration field Supported information, including multiple operating modes, FDD/TDD mode indications.
  • the multiple operating modes supported by the NB-IOT include: a separate carrier, a guard band, and an inband;
  • the configuration unit is further configured to determine, by using any 2-bit bit occupied by the PHICH configuration field, a four-bit combination manner, and select any three bit combination manners from the four bit combination manners, respectively indicating the Independent carrier, guard band, in-band.
  • the configuration unit is further configured to determine, by using one bit of the bit occupied by the PHICH configuration field, two bit combination manners; and using the two bit combination manners, respectively, indicating an FDD mode and a TDD mode.
  • the pre-processing unit is further configured to: add a parameter for indicating a value of the NB-IOT bandwidth in the original bandwidth field; or delete the bandwidth field used to indicate the LTE in the original bandwidth field, so as not to broadcast The original LTE bandwidth information; wherein the LTE bandwidth field is deleted and the vacant bits can be used to broadcast the bandwidth information of the NB-IOT. If the NB-IOT has only one type of bandwidth information, the bandwidth information is not broadcast in the MIB.
  • a terminal including:
  • Determining a unit when setting the current system to be an NB-IOT system, determining that the PHICH persistent parameter is the first default value, and the PHICH resource parameter is the second default value;
  • a reading unit configured to read the NB-IOT indication field, further read an operation mode field, and determine an operation mode supported by the NB-IOT according to bit information of the operation mode field, wherein the operation mode field is The bits occupied by the PHICH configuration field indicate the various operating modes supported by the NB-IOT.
  • the reading unit is further configured to: when reading the NB-IOT indication field, further read the frame type field, and determine whether the current FDD mode or the TDD mode is determined according to the bit information of the frame type field.
  • the terminal further includes:
  • a determining unit configured to when the MIB bandwidth field has a value for indicating a NB-IOT bandwidth value When the parameter is determined, it is determined that the current system is the NB-IOT system.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing any of the MIB-based parameter indication methods described above.
  • the PHICH configuration field in the MIB is deleted, the PHICH persistent parameter in the PHICH configuration field is configured as a first default value, and the PHICH resource parameter in the PHICH configuration field is configured as a first Two default values; the bits occupied by the PHICH configuration field indicate information supported by the NB-IOT, including multiple operating modes, FDD/TDD modes. It can be seen that the technical solution of the embodiment of the present invention implements indications for multiple operating modes supported by the NB-IOT through bits in the MIB.
  • FIG. 1 is a schematic flowchart of a MIB-based parameter indication method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a MIB-based parameter indication method according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal according to Embodiment 4 of the present invention.
  • the embodiment of the present invention indicates required information on a Management Information Base (MIB). Based on this, the MIB is first explained:
  • Each MIB consists of 14 bits of information bits and 10 bits of idle bits, repeated every 40 ms, and transmitted on a Broadcast Control Channel (BCCH, Broadcast Control Channel).
  • the MIB information is configured by the downlink system bandwidth (3 bits for the UE to learn the received bandwidth) and the Physical Hybrid ARQ Indicator Channel (PHICH).
  • the channel (PDCCH (Physical Downlink Control Channel)) and the system frame number (occupied 8 bits, and the remaining 2 bits of the system frame number are collected by a 40 MB period of a physical broadcast channel (PBCH)).
  • PBCH physical broadcast channel
  • the high-level parameter of the protocol 36.331 MIB is MasterInformationBlock, and its value is shown in Table 1 below, and does not indicate the parameters of the three operating modes:
  • phich-Duration is represented by 1 bit; phich-Resource is represented by 2 bits.
  • the field may be canceled, and the spare bit is used for other purposes, such as to indicate three operating modes and/or FDD/ TDD mode.
  • the MIB-based parameter indication method in this example is applied to a base station side. As shown in FIG. 1 , the MIB-based parameter indication method includes the following steps:
  • Step 101 Delete the PHICH configuration field in the MIB, configure the PHICH persistent parameter in the PHICH configuration field to a first default value, and configure the PHICH resource parameter in the PHICH configuration field to a second default value.
  • the PHICH configuration field refers to the phich-Config field; the PHICH persistent parameter in the PHICH configuration field refers to phich-Duration; the PHICH resource parameter in the PHICH configuration field refers to phich-Resource.
  • the UE when the UE is indeterminate that the current system is an NB-IOT system before reading the PBCH, a parameter for indicating the NB-IOT bandwidth value is added in the original bandwidth field; when the UE determines the current before reading the PBCH, When the system is an NB-IOT system, the bandwidth field used to indicate LTE in the original bandwidth field is deleted, so that the bandwidth information of the original LTE is not broadcasted; wherein the bandwidth field of the LTE is deleted and the vacant bits can be used for the broadcast NB. -IOT bandwidth information. If the NB-IOT has only one type of bandwidth information, the bandwidth information is not broadcast in the MIB.
  • the dl-Bandwidth field has a total of 8 bits, and the LTE system currently occupies 6 bits.
  • RB Resource Block
  • n1 may be placed in the last bit, that is, after n100, the dl-Bandwidth field shall contain a field of n1 value. If you are reading Before the PBCH is known to be the NB-IOT system, this field can be deleted.
  • the default is 1 RB.
  • the radio frequency (RF, Radio Freqency) bandwidth of the NB-IOT is only 1 RB.
  • the phich-Config field consists of two parameters, where phich-Duration takes the value ⁇ normal, extended ⁇ and phich-Resource takes the value ⁇ oneSixth, half, one, two ⁇ .
  • the phich-Config field can be broadcast on the MIB from the 36.211 analysis of the physical layer protocol of the previous versions of R12 and R12.
  • the physical meaning of the phich-Duration field is given in Table 3 below:
  • the PHICH occupies one OFDM (Orthogonal Frequency Division Multiplexing) symbol of the subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the PHICH occupies 2 OFDM symbols in the case of a Multicast/Multicast Single Frequency Network (MBSFN) subframe, and in the case of a Non-MBSFN subframe, in subframes 1 and 6 in the TDD mode. It only occupies 2 OFDM symbols, and other cases occupy 3 OFDM symbols. It is usually configured to use only the first OFDM symbol to transmit the PHICH, so that even if the PCFICH decoding fails, the PHICH decoding is not affected.
  • MMSFN Multicast/Multicast Single Frequency Network
  • the gain of frequency domain diversity is lower than that of a cell with a larger system bandwidth (such as 20 MHz).
  • the gain of time diversity can be improved, thereby improving the performance of the PHICH.
  • the PHICH duration is configured to be extended, which can improve the time diversity gain, thereby improving the performance of the PHICH.
  • MIB MIB
  • N g ⁇ ⁇ 1/6, 1/2, 1, 2 ⁇ is provided by the upper management;
  • the range is from 0 to
  • Equation (2) After Ng ⁇ ⁇ 1 / 6,1 / 2,1,2 ⁇ into Equation (2), which was found to take the value of N g whether four values, Both are:
  • the value of this field has no meaning, so consider deleting this field in the MIB (if the NB-IOT system is configured with the PHICH duration value, normal is equal to 1, and extended is equal to 2, or NB -
  • the default PHICH duration value of the IOT system is a certain value, and the default value is the corresponding value). It is used for other purposes, such as three operating modes and/or FDD/TDD modes of the NB-IOT.
  • Step 102 The information occupied by the PHICH configuration field is used to indicate information supported by the NB-IOT, including multiple operating modes and FDD/TDD modes.
  • the multiple operating modes supported by the NB-IOT include: an independent carrier, a guard band, and an inband; and the bits occupied by the PHICH configuration field indicate multiple operating modes supported by the NB-IOT, including:
  • Any three bit combination modes are selected from the four bit combination modes, and the independent carrier, the guard band, and the band are respectively indicated.
  • the method further includes:
  • the FDD mode and the TDD mode are respectively indicated by the two bit combination modes.
  • Table 4 below uses the vacant fields for NB-IOT operation mode indication and FDD/TDD mode usage.
  • the following example only lists one representation mode (two operation modes are indicated by 2bit), and the FDD/TDD mode is indicated by 1bit, but not Limited to this.
  • Table 4 is for the UE to determine the parameter configuration of the current system as the NB-IOT system before reading the PBCH.
  • the parameter configuration of the UE to determine the current system as the NB-IOT system before reading the PBCH is shown in Table 5:
  • FIG. 2 is a schematic flowchart of a MIB-based parameter indication method according to Embodiment 2 of the present invention.
  • the MIB-based parameter indication method in this example is applied to a terminal side.
  • the MIB-based parameter indication method includes the following. step:
  • Step 201 When the current system is an NB-IOT system, determine that the PHICH persistent parameter is the first default value, and the PHICH resource parameter is the second default value.
  • the UE reads the MIB bandwidth field, and when the MIB bandwidth field has a parameter for indicating the NB-IOT bandwidth value, it is determined that the current system is the NB-IOT system.
  • the UE reads the MIB information on the PBCH, reads the dl-Bandwidth field, and reads this field as ⁇ 00000010 ⁇ , that is, the 1st bit is 1.
  • the UE determines that the system is an NB-IOT system. Further, it is determined that the physical layer parameter PHICH duration is extended (if the system defaults to this value), the PHICH group value
  • dl-Bandwidth defaults to 1 RB, that is, n1, and this field can be deleted. And determine that the physical layer parameter PHICH duration is extended, (If the system defaults to this value).
  • Step 202 When the NB-IOT indication field is read, the operation mode field is further read, and the operation mode supported by the NB-IOT is determined according to the bit information of the operation mode field, where the operation mode field is the PHICH configuration field.
  • the occupied bits indicate the various operating modes supported by NB-IOT.
  • the frame type field is further read, and whether the current FDD mode or the TDD mode is determined according to the bit information of the frame type field.
  • the UE reads the NBIOT-indication field, and then reads the Frame type field, where 0 is the FDD mode and 1 is the TDD mode (also interchangeable).
  • the UE reads the Operation-mod field (assuming it is represented by 2 bits), 00 is In-band mode, 01 is guard-band mode, 10 is standalone mode, and 11 is reserved (representation is interchangeable).
  • the UE continues to read the remaining fields, learns the system frame number, and completes the acquisition of the MIB information.
  • the MIB-based parameter indication method of the embodiment of the present invention is described below in conjunction with a specific scenario.
  • Scene 1 FDD, NB-IOT system, in-band mode
  • the wearable device eg, heart rate monitor
  • the PBCH is read after synchronization (the cell that is not known to be searched before the PBCH is the NB-IOT system). See Table 4 for parameter information.
  • the UE reads the MIB information on the PBCH, reads the dl-Bandwidth field, and reads this field as ⁇ 00000010 ⁇ , that is, the seventh bit is 1.
  • the UE reads the NBIOT-indication field, and then reads the value of the Frame type field to 0, and learns that the system is in the FDD mode (0 is the FDD mode, and 1 is the TDD mode (the representation mode is also applicable) exchange)).
  • the UE reads the Operation-mod field value as 00, and knows that the system is in-band mode (assuming 2 bits here), 00 is In-band mode, 01 is guard-band mode, 10 is standalone mode, and 11 is Reserved (representation is interchangeable).
  • the UE continues to read the remaining fields, obtains the system frame number, and completes the acquisition of the MIB information.
  • Scenario 2 TDD, NB-IOT system, guard-band mode
  • the traffic light is activated, and the PBCH is read after synchronization (the searched cell is the NB-IOT system before reading the PBCH). See Table 5 for parameter information.
  • the cell belongs to the NB-IOT system. And the default physical layer parameter PHICH duration is extended.
  • the UE reads the NBIOT-indication field, and then reads the value of the Frame type field to 1, and learns that the system is in the TDD mode (0 is the FDD mode, and 1 is the TDD mode (the representation mode is also interchangeable)).
  • the UE reads the Operation-mod field value as 01, and knows that the system is in guard-band mode (assuming 2 bits here), 00 is In-band mode, 01 is guard-band mode, 10 is standalone mode, and 11 is Reserved (representation is interchangeable).
  • the UE continues to read the remaining fields, obtains the system frame number, and completes the acquisition of the MIB information.
  • FIG. 3 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention. As shown in FIG. 3, the base station includes:
  • the pre-processing unit 31 is configured to delete the PHICH configuration field in the MIB, configure the PHICH persistent parameter in the PHICH configuration field as a first default value, and configure the PHICH resource parameter in the PHICH configuration field as a second default. value;
  • the configuration unit 32 is configured to indicate, by using the bits occupied by the PHICH configuration field, information supported by the NB-IOT, including multiple operating modes, FDD/TDD mode indications.
  • the multiple operating modes supported by the NB-IOT include: a separate carrier, a guard band, and an inband;
  • the configuration unit 32 is further configured to utilize any 2 occupied by the PHICH configuration field.
  • the bit bits are determined by four bit combinations; any three bit combinations are selected from the four bit combinations, and the independent carriers, guard bands, and bands are respectively indicated.
  • the configuration unit 32 is further configured to determine a combination of two bits by using a 1-bit bit occupied by the PHICH configuration field; and use the two bit combination manners to respectively indicate an FDD mode and a TDD mode.
  • the pre-processing unit 31 is further configured to add a parameter for indicating the NB-IOT bandwidth value in the original bandwidth field, or delete the bandwidth field used to indicate the LTE in the original bandwidth field, so as not to broadcast the original LTE.
  • Bandwidth information wherein the bandwidth field of the LTE is deleted and the vacant bits can be used to broadcast the bandwidth information of the NB-IOT. If the NB-IOT has only one type of bandwidth information, the bandwidth information is not broadcast in the MIB.
  • each unit in the base station shown in FIG. 3 can be understood by referring to the related description of the foregoing MIB-based parameter indication method.
  • the functions of the units in the base station shown in FIG. 3 can be implemented by a program running on the processor, or can be realized by a specific logic circuit.
  • the terminal includes:
  • the determining unit 41 when the current system is the NB-IOT system, determines that the PHICH persistent parameter is the first default value, and the PHICH resource parameter is the second default value;
  • the reading unit 42 is configured to further read the operation mode field when the NB-IOT indication field is read, and determine an operation mode supported by the NB-IOT according to the bit information of the operation mode field, where the operation mode field is a utilization mode
  • the bits occupied by the PHICH configuration field indicate the various operating modes supported by the NB-IOT.
  • the reading unit 42 is further configured to further read the frame type field when reading the NB-IOT indication field, and determine whether the current mode is the FDD mode or the TDD mode according to the bit information of the frame type field.
  • the terminal further includes:
  • the determining unit 43 is configured to indicate that the NB-IOT bandwidth is taken when the MIB bandwidth field has When the parameter of the value is determined, it is determined that the current system is the NB-IOT system.
  • the implementation functions of the units in the terminal shown in FIG. 4 can be understood by referring to the related description of the foregoing MIB-based parameter indication method.
  • the functions of the units in the terminal shown in FIG. 4 can be implemented by a program running on the processor, or can be realized by a specific logic circuit.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step 101 The PHICH configuration field in the MIB is deleted, the PHICH persistent parameter in the PHICH configuration field is configured as a first default value, and the PHICH resource parameter in the PHICH configuration field is configured as a second default value.
  • Step 102 The information occupied by the PHICH configuration field is used to indicate information supported by the NB-IOT, including multiple operating modes and FDD/TDD modes.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Step 201 When the current system is an NB-IOT system, determine that the PHICH persistent parameter is the first default value, and the PHICH resource parameter is the second default value;
  • Step 202 When the NB-IOT indication field is read, the operation mode field is further read, and the operation mode supported by the NB-IOT is determined according to the bit information of the operation mode field, where the operation mode field is the PHICH configuration field.
  • the occupied bits indicate the various operating modes supported by NB-IOT.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the MIB-based parameter indication method, the base station, and the terminal provided by the embodiment of the present invention have the following beneficial effects: deleting the PHICH configuration field in the MIB, and configuring the PHICH persistent parameter in the PHICH configuration field as the first a default value, and configuring the PHICH resource parameter in the PHICH configuration field as a second default value; using the bits occupied by the PHICH configuration field to indicate information supported by the NB-IOT, including multiple operating modes, FDD/TDD modes . It can be seen that the technical solution of the embodiment of the present invention implements indications for multiple operating modes supported by the NB-IOT through bits in the MIB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基于MIB的参数指示方法、基站及终端,包括:将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。

Description

基于MIB的参数指示方法、基站及终端 技术领域
本发明实施例涉及窄带物联网(NB-IOT,Narrow Band-Internet Of Things)领域,尤其涉及一种基于主系统信息块(MIB,Master Information Block)的参数指示方法、基站及终端。
背景技术
对于电信运营商而言,车联网、智慧医疗、智能家居等物联网应用将产生海量连接,远远超过人与人之间的通信需求。第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)宣布了NB-IOT标准立项。
NB-IOT具备四大能力:一是广覆盖,在同样的频段下,NB-IOT比目前的网络增益20dB,覆盖面积扩大100倍;二是具备支撑海量连接的能力,NB-IOT一个扇区能够支持10万个连接;三是更低功耗,NB-IOT终端模块的待机时间可长达10年;四是更低的模块成本。可见,NB-IOT聚焦于低功耗广覆盖(LPWA,Low Power Wide Area)物联网市场,是一种可在全球范围内广泛应用的新兴技术。此外,NB-IOT使用授权(License)频段,NB-IOT能支持3种不同的运营模式,可采取独立载波、保护带或带内三种部署方式,与现有网络共存。其中:
1、独立载波(stand-alone operation),利用目前的被GSM/增强型数据速率GSM演进技术无线接入网络(GERAN,GSM/EDGE Radio Access Network)系统使用的作为一个或多个全球移动通信系统(GSM,Global System for Mobile Communication)载波的替代载波。
2、保护带(guard band operation),利用在长期演进(LTE,Long Term Evolution)载频中guard-band未使用的资源块。
3、带内(In-band operation),利用常规LTE载波中的资源块。
对于NB-IOT同步信号的设计,一些公司提出是否运营模式(如,一 部分或者全部独立载波/保护带/带内)需要被指示需要FFS,频分双工/时分双工(FDD/TDD,Frequency Division Duplexing/Time Division Duplexing)模式指示需FFS,此提案被3GPP采纳。基于NB-IOT设计原则为低成本、低功耗、低速率的考虑,对运营模式进行指示很有必要,以简化终端(UE,User Equipment)复杂性,如何对运营模式进行指示是有待解决的问题。
发明内容
本发明实施例提供了一种基于MIB的参数指示方法、基站及终端,以至少解决如何对运营模式进行指示的问题。
根据本发明的一个实施例,提供了一种基于MIB的参数指示方法,应用于基站侧,包括:
将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。
可选地,所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;
利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式,包括:
利用所述PHICH配置字段占用的任意2位比特,确定四种比特组合方式;
从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
可选地,所述方法还包括:
利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;
利用所述两种比特组合方式,分别指示频分双工FDD模式、时分双 工TDD模式。
可选地,所述方法还包括:
在原带宽字段中增加用于指示NB-IOT带宽取值的参数;或将所述原带宽字段中用于指示长期演进LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
根据本发明的另一实施例,提供了一种基于MIB的参数指示方法,应用于终端侧,包括:
当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
可选地,所述方法还包括:
读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
可选地,所述方法还包括:
读取MIB带宽字段,当MIB带宽字段具有用于指示NB-IOT带宽取值的参数时,判定当前系统为所述NB-IOT系统。
根据本发明的另一实施例,还提供了一种基站,包括:
预处理单元,设置为将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
配置单元,设置为利用所述PHICH配置字段占用的比特指示NB-IOT 支持的信息,包括多种运营模式、FDD/TDD模式指示。
可选地,所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;
所述配置单元,还设置为利用所述PHICH配置字段占用的任意2位比特,确定四种比特组合方式;从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
可选地,所述配置单元,还设置为利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;利用所述两种比特组合方式,分别指示FDD模式、TDD模式。
可选地,所述预处理单元,还设置为在原带宽字段中增加用于指示NB-IOT带宽取值的参数;或将所述原带宽字段中用于指示LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
根据本发明的另一实施例,还提供了一种终端,包括:
确定单元,设置当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
读取单元,设置为读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
可选地,所述读取单元,还设置为读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
可选地,所述终端还包括:
判定单元,设置为当MIB带宽字段具有用于指示NB-IOT带宽取值的 参数时,判定当前系统为所述NB-IOT系统。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行上述任一种基于MIB的参数指示方法的程序代码。
本发明实施例的技术方案中,将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。可见,本发明实施例的技术方案通过MIB中的比特位实现了对NB-IOT支持的多种运营模式进行指示。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例一的基于MIB的参数指示方法的流程示意图;
图2为本发明实施例二的基于MIB的参数指示方法的流程示意图;
图3为本发明实施例三的基站的结构组成示意图;
图4为本发明实施例四的终端的结构组成示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明实施例在管理信息库(MIB,Management Information Base)上指示所需信息。基于此,首先对MIB进行说明:
每个MIB由14比特信息位和10比特空闲比特组成,每隔40ms重复一次,在广播控制信道(BCCH,Broadcast Control Channel)上传输。MIB信息由下行链路系统带宽(占位3bit,使UE可以获知接收带宽)、物理混合自动重传指示信道(PHICH,Physical Hybrid ARQ Indicator Channel)配置信息(占位3bit,使UE获得物理下行控制信道(PDCCH,Physical Downlink Control Channel))、以及系统帧号(占位8bit,系统帧号其余2bit由物理广播信道(PBCH,Physical Broadcast Channel)的40ms周期搜集而来)组成。在3GPP R12中,协议36.331MIB的高层参数为MasterInformationBlock,其取值如下表1所示,并没有指示三种运营模式的参数:
MasterInformationBlock
Figure PCTCN2017070867-appb-000001
表1(R12MasterInformationBlock参数配置)
PHICH-Config information element
Figure PCTCN2017070867-appb-000002
表2(R12PHICH-Config information element字段参数配置)
这里,phich-Duration由1bit表示;phich-Resource由2bit表示。
本发明实施例中,经过对表1中phich-Config字段的各参数意义进行分析,可将此字段取消,空余出的bit另作他用,如用来指示三种运营模式和/或FDD/TDD模式。
图1为本发明实施例一的基于MIB的参数指示方法,本示例中的基于MIB的参数指示方法应用于基站侧,如图1所示,所述基于MIB的参数指示方法包括以下步骤:
步骤101:将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值。
参照表1,PHICH配置字段是指phich-Config字段;PHICH配置字段中的PHICH持续参数是指phich-Duration;PHICH配置字段中的PHICH资源参数是指phich-Resource。
本发明实施例中,当UE在读取PBCH之前不确定当前系统为NB-IOT系统时,在原带宽字段中增加用于指示NB-IOT带宽取值的参数;当UE在读取PBCH之前确定当前系统为NB-IOT系统时,将所述原带宽字段中用于指示LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
具体地,dl-Bandwidth字段一共8bit,目前LTE系统占用了6个bit。NB-IOT中存在1个资源块(RB,Resource Block),即dl-Bandwidth为n1的情况。若UE在读取PBCH之前不知此系统为NB-IOT系统,可以将n1放在末位,即n100之后,dl-Bandwidth字段应包含n1值的字段。若在读 取PBCH之前知此系统为NB-IOT系统,则可删除此字段,默认为1个RB,因NB-IOT的射频(RF,Radio Freqency)带宽只有1个RB。
参见表2,phich-Config字段由两个参数组成,其中phich-Duration取值为{normal,extended},phich-Resource取值为{oneSixth,half,one,two}。
可以从R12及R12以前版本物理层协议的36.211分析,在MIB上广播phich-Config字段,phich-Duration字段物理意义由下表3给出:
Figure PCTCN2017070867-appb-000003
表3(PHICH duration in MBSFN and non-MBSFN subframes)
从表3看出,当phich-Duration取值为Normal时,PHICH会占用子帧的1个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号,当phich-Duration取值为Extended时,PHICH在多播/组播单频网络(MBSFN,Multimedia Broadcast multicast service Single Frequency Network)子帧情况下占用2个OFDM符号,在Non-MBSFN子帧情况下,TDD模式下的子帧1和6中只占用2个OFDM符号,其他情况占用3个OFDM符号。通常会配置只使用第一个OFDM symbol来发送PHICH,这样即使PCFICH解码失败了,也不影响PHICH的解码。但在某些场景下,比如系统带宽较小的小区(如1.4MHz,总共只有6个RB),其频域分集的增益要比系统带宽较大的小区(如20MHz)的小区要低。通过使用extended PHICH duration,能提高时间分集的增益,从而提高PHICH的性能。
从以上分析可知,对于系统带宽较小的小区,PHICH duration配置成extended,能提高时间分集增益,从而提高PHICH的性能,那么对于 NB-IOT而言,将PHICH duration配置成extended更为合适,因此在MIB中此值默认为extended,可不使用1bit来指示,以空余出此字段另作他用。
对于phich-Resource字段,由以下公式(1)可知:
Figure PCTCN2017070867-appb-000004
其中,Ng∈{1/6,1/2,1,2}由高层提供;
Figure PCTCN2017070867-appb-000005
的范围为从0到
Figure PCTCN2017070867-appb-000006
而对于NB-IOT而言,下行带宽只有1个RB,即
Figure PCTCN2017070867-appb-000007
那么以上公式(1)可以变为公式(2):
Figure PCTCN2017070867-appb-000008
将Ng∈{1/6,1/2,1,2}代入公式(2)后,发现Ng无论取这4个值的哪个值,
Figure PCTCN2017070867-appb-000009
都为:
Figure PCTCN2017070867-appb-000010
那么,对于NB-IOT而言,这个字段的值没有意义,因此考虑在MIB中删除此字段(若NB-IOT系统配置了PHICH duration值,normal则知等于1,extended则知等于2,或者NB-IOT系统默认PHICH duration值为某个值,则默认为相应的值),空余出来另作他用,如,指示NB-IOT的三种运营模式和/或FDD/TDD模式等。
步骤102:利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。
本发明实施例中,所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式,包括:
利用所述PHICH配置字段占用的任意2位比特,确定四种比特组合方式;
从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
所述方法还包括:
利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;
利用所述两种比特组合方式,分别指示FDD模式、TDD模式。
下表4以空余出的字段做NB-IOT运营模式指示和FDD/TDD模式用途,下例仅列举一种表示方式(用2bit表示三种运营模式),FDD/TDD模式由1bit指示,但不局限于此。
MasterInformationBlock
Figure PCTCN2017070867-appb-000011
Operation-Config information element
Figure PCTCN2017070867-appb-000012
表4(NB-IOT MasterInformationBlock参数配置1)
表4是针对UE在读取PBCH之前不确定当前系统为NB-IOT系统的参数配置。UE在读取PBCH之前确定当前系统为NB-IOT系统的参数配置见表5:
MasterInformationBlock
Figure PCTCN2017070867-appb-000013
Operation-Config information element
Figure PCTCN2017070867-appb-000014
表5(NB-IOT MasterInformationBlock参数配置2)
图2为本发明实施例二的基于MIB的参数指示方法的流程示意图,本示例中的基于MIB的参数指示方法应用于终端侧,如图2所示,所述基于MIB的参数指示方法包括以下步骤:
步骤201:当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值。
本发明实施例中,UE读取MIB带宽字段,当MIB带宽字段具有用于指示NB-IOT带宽取值的参数时,判定当前系统为所述NB-IOT系统。
具体地,参照表4,UE读取PBCH上的MIB信息,读取dl-Bandwidth字段,读取此字段为{00000010},即第7位上为1。UE判断此系统为 NB-IOT系统。进而判断物理层参数PHICH duration为extended(若系统默认此值),PHICH组值
Figure PCTCN2017070867-appb-000015
具体地,参照表5,dl-Bandwidth默认为1个RB即n1,此字段可以删除。并判断物理层参数PHICH duration为extended,
Figure PCTCN2017070867-appb-000016
(若系统默认此值)。
步骤202:读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
本发明实施例中,读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
具体地,参照表4和表5,UE读取NBIOT-indication字段,进而读取Frame type字段,0为FDD模式,1为TDD模式(也可互换)。UE读取Operation-mod字段(假设此处以2bit表示),00为In-band模式、01为guard-band模式、10为standalone模式、11为预留(表示方式可互换)。UE继续读取余下字段,获知系统帧号,完成MIB信息的获取。
下面结合具体场景对本发明实施例的基于MIB的参数指示方法在进行描述。
场景一:FDD、NB-IOT系统、in-band模式
可穿戴设备(如,心脏速率监视器)开机,同步后开始读取PBCH(在读取PBCH之前不知搜索到的小区为NB-IOT系统)。参数信息参看表4,
1、UE读取PBCH上的MIB信息,读取dl-Bandwidth字段,读取此字段为{00000010},即第7位上为1。UE判断此系统为NB-IOT系统。进而判断物理层参数PHICH duration为extended(若系统默认此值),
Figure PCTCN2017070867-appb-000017
=2。
2、UE读取NBIOT-indication字段,进而读取Frame type字段值为0,获知此系统为FDD模式(0为FDD模式,1为TDD模式(表示方式也可 互换))。
3、UE读取Operation-mod字段值为00,获知此系统为in-band模式(假设此处以2bit表示),00为In-band模式,01为guard-band模式,10为standalone模式,11为预留(表示方式可互换)。
4、UE继续读取余下字段,获知系统帧号,完成MIB信息的获取。
场景二:TDD、NB-IOT系统、guard-band模式
交通灯启动,同步后开始读取PBCH(在读取PBCH之前获知搜索到的小区为NB-IOT系统)。参数信息参看表5,
1、UE完成小区同步后获知此小区属于NB-IOT系统。并默认物理层参数PHICH duration为extended,
Figure PCTCN2017070867-appb-000018
2、UE读取NBIOT-indication字段,进而读取Frame type字段值为1,获知此系统为TDD模式(0为FDD模式,1为TDD模式(表示方式也可互换))。
3、UE读取Operation-mod字段值为01,获知此系统为guard-band模式(假设此处以2bit表示),00为In-band模式,01为guard-band模式,10为standalone模式,11为预留(表示方式可互换)。
4、UE继续读取余下字段,获知系统帧号,完成MIB信息的获取。
图3为本发明实施例三的基站的结构组成示意图,如图3所示,所述基站包括:
预处理单元31,设置为将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
配置单元32,设置为利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式指示。
所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;
所述配置单元32,还设置为利用所述PHICH配置字段占用的任意2 位比特,确定四种比特组合方式;从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
所述配置单元32,还设置为利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;利用所述两种比特组合方式,分别指示FDD模式、TDD模式。
所述预处理单元31,还设置为在原带宽字段中增加用于指示NB-IOT带宽取值的参数;或将所述原带宽字段中用于指示LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
本领域技术人员应当理解,图3所示的基站中的各单元的实现功能可参照前述基于MIB的参数指示方法的相关描述而理解。图3所示的基站中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图4为本发明实施例四的终端的结构组成示意图,如图4所示,所述终端包括:
确定单元41,设置为当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
读取单元42,设置为读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
所述读取单元42,还设置为读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
所述终端还包括:
判定单元43,设置为当MIB带宽字段具有用于指示NB-IOT带宽取 值的参数时,判定当前系统为所述NB-IOT系统。
本领域技术人员应当理解,图4所示的终端中的各单元的实现功能可参照前述基于MIB的参数指示方法的相关描述而理解。图4所示的终端中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤101:将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
步骤102:利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
步骤201:当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
步骤202:读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种基于MIB的参数指示方法、基站及终端,具有以下有益效果:将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式。可见,本发明实施例的技术方案通过MIB中的比特位实现了对NB-IOT支持的多种运营模式进行指示。

Claims (15)

  1. 一种基于主系统信息块MIB的参数指示方法,所述方法包括:
    将MIB中物理混合自动重传指示信道PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
    利用所述PHICH配置字段占用的比特指示窄带物联网NB-IOT支持的信息,包括多种运营模式、频分双工FDD/时分双工TDD模式。
  2. 根据权利要求1所述的基于MIB的参数指示方法,其中,所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;
    利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式,包括:
    利用所述PHICH配置字段占用的任意2位比特,确定四种比特组合方式;
    从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
  3. 根据权利要求2所述的基于MIB的参数指示方法,其中,所述方法还包括:
    利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;
    利用所述两种比特组合方式,分别指示FDD模式、TDD模式。
  4. 根据权利要求1至3任一项所述的基于MIB的参数指示方法,其中,所述方法还包括:
    在原带宽字段中增加用于指示NB-IOT带宽取值的参数;或将所述原带宽字段中用于指示长期演进LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
  5. 一种基于MIB的参数指示方法,所述方法包括:
    当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
    读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
  6. 根据权利要求5所述的基于MIB的参数指示方法,其中,所述方法还包括:
    读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
  7. 根据权利要求5或6所述的基于MIB的参数指示方法,其中,所述方法还包括:
    读取MIB带宽字段,当MIB带宽字段具有用于指示NB-IOT带宽取值的参数时,判定当前系统为所述NB-IOT系统。
  8. 一种基站,所述基站包括:
    预处理单元,设置为将MIB中PHICH配置字段删除,将所述PHICH配置字段中的PHICH持续参数配置为第一默认值,以及将所述PHICH配置字段中的PHICH资源参数配置为第二默认值;
    配置单元,设置为利用所述PHICH配置字段占用的比特指示NB-IOT支持的信息,包括多种运营模式、FDD/TDD模式指示。
  9. 根据权利要求8所述的基站,其中,所述NB-IOT支持的多种运营模式包括:独立载波、保护带、带内;
    所述配置单元,还设置为利用所述PHICH配置字段占用的任意2位比特,确定四种比特组合方式;从所述四种比特组合方式中选择出任意三种比特组合方式,分别指示所述独立载波、保护带、带内。
  10. 根据权利要求9所述的基站,其中,所述配置单元,还设置为利用所述PHICH配置字段占用的1位比特,确定两种比特组合方式;利用所述两种比特组合方式,分别指示FDD模式、TDD模式。
  11. 根据权利要求8至10任一项所述的基站,其中,所述预处理单元,还设置为在原带宽字段中增加用于指示NB-IOT带宽取值的参数;或将所述原带宽字段中用于指示LTE的带宽字段删除,从而不广播原LTE的带宽信息;其中,删除LTE的带宽字段而空余出的比特能够用于广播NB-IOT的带宽信息,若NB-IOT只有一种带宽信息,则MIB中不广播该带宽信息。
  12. 一种终端,所述终端包括:
    确定单元,设置为当前系统为NB-IOT系统时,确定PHICH持续参数为第一默认值,以及PHICH资源参数为第二默认值;
    读取单元,设置为读取到NB-IOT指示字段时,进一步读取运营模式字段,根据运营模式字段的比特信息确定NB-IOT支持的运营模式,其中,所述运营模式字段是利用所述PHICH配置字段占用的比特指示NB-IOT支持的多种运营模式。
  13. 根据权利要求12所述的终端,其中,所述读取单元,还设置为读取到NB-IOT指示字段时,进一步读取帧类型字段,根据帧类型字段的比特信息确定当前为FDD模式还是TDD模式。
  14. 根据权利要求12或13所述的终端,其中,所述终端还包括:
    判定单元,设置为当MIB带宽字段具有用于指示NB-IOT带宽取值的参数时,判定当前系统为所述NB-IOT系统。
  15. 一种存储介质,设置为存储用于执行如权利要求1至7中任一项所述的基于主系统信息块MIB的参数指示方法的计算机程序。
PCT/CN2017/070867 2016-02-03 2017-01-11 基于mib的参数指示方法、基站及终端 WO2017133412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610078451.6 2016-02-03
CN201610078451.6A CN107040352A (zh) 2016-02-03 2016-02-03 基于mib的参数指示方法、基站及终端

Publications (1)

Publication Number Publication Date
WO2017133412A1 true WO2017133412A1 (zh) 2017-08-10

Family

ID=59499286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070867 WO2017133412A1 (zh) 2016-02-03 2017-01-11 基于mib的参数指示方法、基站及终端

Country Status (2)

Country Link
CN (1) CN107040352A (zh)
WO (1) WO2017133412A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108901037A (zh) * 2018-07-05 2018-11-27 比科奇通讯技术(北京)有限公司 一种基站和终端之间的上下行传输的方法
CN110034943A (zh) * 2018-01-12 2019-07-19 大唐移动通信设备有限公司 一种删除管理信息库mib的方法和装置
CN113395730A (zh) * 2020-03-12 2021-09-14 中国移动通信有限公司研究院 一种物联网终端网络参数上报方法、装置和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802788B (zh) 2017-11-17 2022-02-25 中兴通讯股份有限公司 一种信号的生成与发送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540915A (zh) * 2009-04-30 2009-09-23 中兴通讯股份有限公司 一种移动多媒体广播数据的传输方法、前端系统及终端
CN101577858A (zh) * 2008-05-09 2009-11-11 中兴通讯股份有限公司 多播/广播mbsfn帧中无线子帧属性的指示方法和装置
CN101835098A (zh) * 2010-03-26 2010-09-15 清华大学 一种面向密集用户区域的无线网络重构式通信方法
US20150249957A2 (en) * 2012-06-04 2015-09-03 Via Telecom, Inc. Deep sleep in 1x m2m devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404797B (zh) * 2010-09-07 2015-08-19 中国移动通信集团公司 Lte系统中cfi信息的传输和获取方法、及发送和接收装置
US9166718B2 (en) * 2012-05-11 2015-10-20 Intel Corporation Downlink control indication for a stand-alone new carrier type (NCT)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577858A (zh) * 2008-05-09 2009-11-11 中兴通讯股份有限公司 多播/广播mbsfn帧中无线子帧属性的指示方法和装置
CN101540915A (zh) * 2009-04-30 2009-09-23 中兴通讯股份有限公司 一种移动多媒体广播数据的传输方法、前端系统及终端
CN101835098A (zh) * 2010-03-26 2010-09-15 清华大学 一种面向密集用户区域的无线网络重构式通信方法
US20150249957A2 (en) * 2012-06-04 2015-09-03 Via Telecom, Inc. Deep sleep in 1x m2m devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034943A (zh) * 2018-01-12 2019-07-19 大唐移动通信设备有限公司 一种删除管理信息库mib的方法和装置
CN110034943B (zh) * 2018-01-12 2020-12-04 大唐移动通信设备有限公司 一种删除管理信息库mib的方法和装置
CN108901037A (zh) * 2018-07-05 2018-11-27 比科奇通讯技术(北京)有限公司 一种基站和终端之间的上下行传输的方法
CN108901037B (zh) * 2018-07-05 2021-09-28 比科奇微电子(杭州)有限公司 一种基站和终端之间的上下行传输的方法
CN113395730A (zh) * 2020-03-12 2021-09-14 中国移动通信有限公司研究院 一种物联网终端网络参数上报方法、装置和存储介质
CN113395730B (zh) * 2020-03-12 2023-05-09 中国移动通信有限公司研究院 一种物联网终端网络参数上报方法、装置和存储介质

Also Published As

Publication number Publication date
CN107040352A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
US11683809B2 (en) Detecting method, transmitting method and apparatus for common control channel
JP6869905B2 (ja) ブロードキャストチャネルの繰り返し
US9374757B2 (en) Method and apparatus for one cell operation with fast small cell switching in wireless communication system
WO2016146073A1 (zh) 一种支持多用户叠加的ue、基站中的方法和设备
WO2015109866A1 (zh) 信息传输的方法、用户设备及基站
US20140286297A1 (en) Method and apparatus for transmitting downlink control information
CN110521163B (zh) 低时延系统中的物理下行链路控制信道结构
US10652848B2 (en) Method for transmitting common control information, method for receiving common control information, base station, terminal and storage medium
EP3641255B1 (en) User terminal and wireless communication method
WO2021148052A1 (zh) Pdcch的监控方法、装置、用户设备及存储介质
WO2017133412A1 (zh) 基于mib的参数指示方法、基站及终端
CN109391424B (zh) 一种数据发送方法、设备及系统
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输系统
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
CN109661846A (zh) 通信方法、终端设备和网络设备
CN103546259A (zh) 传输信号的发送、接收方法及终端、基站
WO2018082551A1 (zh) 控制信道的资源配置方法、基站和终端设备
WO2020073991A1 (zh) 数据传输方法和通信装置
WO2017133268A1 (zh) 基于mib的参数指示方法、基站及终端
US20220304011A1 (en) Control Signaling for Physical Control Channel Reliability Enhancement
US11032042B2 (en) Candidate control channel resource determining method and apparatus
EP3675395A1 (en) Method and apparatus for initial connection of wireless communication system
EP3734871B1 (en) Time-domain resource determination method and apparatus, and computer storage medium
WO2014121473A1 (zh) 一种传输广播消息的方法和装置
WO2022183765A1 (zh) 信息传输方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746732

Country of ref document: EP

Kind code of ref document: A1