WO2017133141A1 - 一种wifi天线 - Google Patents

一种wifi天线 Download PDF

Info

Publication number
WO2017133141A1
WO2017133141A1 PCT/CN2016/083350 CN2016083350W WO2017133141A1 WO 2017133141 A1 WO2017133141 A1 WO 2017133141A1 CN 2016083350 W CN2016083350 W CN 2016083350W WO 2017133141 A1 WO2017133141 A1 WO 2017133141A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground plane
radiation patch
wifi antenna
antenna
width
Prior art date
Application number
PCT/CN2016/083350
Other languages
English (en)
French (fr)
Inventor
徐捷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133141A1 publication Critical patent/WO2017133141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • This document relates to, but is not limited to, the field of communication technologies, and in particular to a wireless-Fidelity WIFI antenna.
  • WLAN Wireless Local Area Networks
  • CPE Customer Premise Equipment
  • MID Mobile Internet Devices
  • the antenna as an important component for realizing its WLAN access function directly affects the transmission and reception performance of the terminal product, that is, the speed and stability of the Internet; at the same time, the miniaturization of the antenna for each type of terminal product And compactness is also extremely demanding.
  • WIFI antennas There are many types of WIFI antennas, in which the microstrip antenna is attached with a thin metal layer on one side of the substrate as a ground plate, and the other side is etched to form a metal patch of a certain shape by microstrip line or coaxial probe. Feed the patch.
  • the WIFI antenna has a large number of cables and complicated wiring. In order to reduce the mutual coupling between the cable and the antenna unit, the distance between the unit arm and the feeding cable needs to be increased, which results in a larger antenna. Can not meet its miniaturization needs.
  • Embodiments of the present invention are expected to provide a WIFI antenna that can meet the miniaturization requirements of an antenna.
  • An embodiment of the present invention provides a wireless network WIFI antenna, including: a radiation patch and a ground plane, and a shorting bar and a coaxial feeder connected to connect the radiation patch and the ground plane;
  • the radiation patch is fixed by a shorting bar and a coaxial feed line;
  • the shorting bar is arranged to be shorted to ground, and the coaxial feeder is arranged for signal transmission.
  • the ground plane includes a first ground plane and a second ground plane in the same plane, and a third ground plane perpendicular to the plane;
  • the first ground plane and the second ground plane are L-shaped perpendicular to each other, and the third ground plane is perpendicularly connected to the second ground plane;
  • the first ground plane, the second ground plane, and the third ground plane together form an antenna ground as a reflective surface.
  • the radiation patch is slotted at the junction with the shorting bar.
  • the slot formed on the radiation patch is a first rectangular slot, and the depth is more than 50% to 90% of the width of the radiation patch;
  • the shorting bar and the coaxial feed line are respectively disposed on opposite sides of the radiation patch, and the parallel direction of the side is a first direction, and the vertical direction of the side is a second direction; The depth direction of the first rectangular groove and the width direction of the radiation patch are both the second direction.
  • the ground plane is slotted at an end corner of the first ground plane; wherein the end corner refers to a corner of the first ground plane end and is on the same side of the coaxial feed line.
  • the slot formed on the grounding surface is a second rectangular slot, and the depth is not more than a position where the coaxial feeder is connected to the ground plane, and the width is more than 20% to 30% of the width of the first ground plane;
  • the shorting bar and the coaxial feed line are respectively disposed on opposite sides of the radiation patch, and the parallel direction of the side is a first direction, and the vertical direction of the side is a second direction; the second The depth direction of the rectangular groove is a first direction, and the width direction of the second rectangular groove and the width direction of the first ground surface are both the second direction.
  • the shorting bar has a width of between 0.5 and 1 mm.
  • the sum of the length and the width of the radiation patch is equivalent to a quarter of the operating wavelength.
  • the resonant frequency of the WIFI antenna is achieved by adjusting an area of the radiation patch and/or a distance between the radiation patch and the ground plane.
  • the output impedance of the WIFI antenna is 50 ohms, by adjusting the feeding point and/or short The position of the road strip is realized.
  • a WIFI antenna provided by an embodiment of the present invention includes a radiating patch and a ground plane, and a shorting bar and a coaxial feeding line disposed to connect the two; and the distributed capacitor is increased by loading a shorting bar between the radiating patch and the ground plane
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 4 is a physical diagram of an antenna according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an antenna physical test S11 according to an embodiment of the present invention.
  • 10-radiation patch 20-ground plane; 21-first ground plane; 22-second ground plane; 23-third ground plane; 30-short strip; 40-coaxial feed line; 50-first rectangular slot; 60-second rectangular slot.
  • An embodiment of the present invention provides a WIFI antenna, as shown in FIG. 1, comprising: a radiation patch 10 and a ground plane 20, and a shorting bar 30 and a coaxial feeder 40 disposed to connect the radiation patch 10 and the ground plane 20;
  • the radiating patch 10 is fixed by a shorting bar 30 and a coaxial feed line 40; wherein the shorting bar 30 is arranged to be shorted to ground, and the coaxial feed line 40 is arranged for signal transmission.
  • the radiation patch 10, the grounding surface 20, and the shorting bar 30 described herein all adopt a metal foil; the medium filled between the radiation patch 10 and the grounding surface 20 is air.
  • the WIFI antenna provided by the embodiment of the present invention includes a radiation patch 10 and a ground plane 20, and a shorting bar 30 and a coaxial feeder 40 disposed to connect the two; the radiation patch 10 and the ground plane 20 are passed through Loading the shorting bar 30 between them increases the distributed capacitance and reduces the distributed inductance.
  • the operating frequency of the antenna is reduced, thereby expanding the antenna bandwidth, and on the other hand, reducing the antenna size to achieve miniaturization of the antenna.
  • the ground plane 20 includes a first ground plane 21 and a second ground plane 22 in the same plane, and is perpendicular to the plane (ie, the first ground plane 21 or a third grounding surface 23 of the plane where the second ground plane 22 is located; the first ground plane 21 and the second ground plane 22 are perpendicular to each other in an L shape, and the third ground plane 23 and the second ground
  • the ground 22 is vertically connected; wherein the first ground plane 21, the second ground plane 22 and the third ground plane 23 together form an antenna ground as a reflecting surface.
  • first ground plane 21 and the second ground plane 22 are located in the same plane, which are parallel to the radiation patch 10, and the third ground plane 23 is perpendicular to the plane. In this way, the third ground plane 23 can provide a fixed support for the entire antenna.
  • the radiation patch 10 is slotted at the junction with the shorting bar 30.
  • the radiation patch 10 is a front surface of the antenna.
  • the antenna has a dual frequency function. Specifically, slotting the surface of the radiation patch 10 not only can change the current path, but also increase the effective length of the antenna, thereby reducing the size of the antenna, and reducing the operating frequency of the antenna without significantly changing the working mode of the antenna.
  • the low frequency radiating element and the high frequency radiating element realize the dual frequency function. It should be noted that, by providing the shorting bar 30 and simultaneously slotting the surface of the radiation patch 10, the volume of the antenna can be minimized, thereby further miniaturizing the antenna.
  • the slot formed in the radiation patch 10 is a first rectangular slot 50.
  • the rectangular groove is opened for the convenience of processing, and the consistency of the processing precision is easy to be ensured, but the groove to be opened may be other shapes, which is not limited in the present invention.
  • the depth of the first rectangular groove 50 is more than 50% to 90% of the width of the radiation patch 10, and the size thereof is specifically determined by simulation optimization.
  • the shorting bar 30 and the coaxial feed line 40 are respectively disposed on opposite sides of the radiation patch 10, and the parallel direction of the side is the first direction, and the vertical direction of the side is the second.
  • the direction of the depth of the first rectangular groove 50 and the width direction of the radiation patch 10 are both the second direction.
  • the ground plane 20 is slotted at an end corner of the first ground plane 21; wherein the end corner refers to the end of the first ground plane 21 (ie, the end of the second ground plane 22 is not connected) And a corner on the same side as the coaxial feeder 40.
  • the ground plane 20 is the back surface of the antenna.
  • the slot formed on the grounding surface 20 is a second rectangular slot 60.
  • the rectangular groove is opened here for the convenience of the processing, and the consistency of the processing precision is easy to be ensured, but the groove to be opened may be other shapes, which is not limited in the embodiment of the present invention.
  • the depth of the second rectangular slot 60 does not exceed the position where the coaxial feed line 40 is connected to the ground plane 20, and the width is more than 20% to 30% of the width of the first ground plane 20.
  • the shorting bar 30 and the coaxial feed line 40 are respectively disposed on opposite sides of the radiation patch 10, and the parallel direction of the side is the first direction, and the vertical direction of the side is the second.
  • the direction of the second rectangular groove 60 is the first direction, and the width direction of the second rectangular groove 60 and the width direction of the first ground surface 21 are both the second direction.
  • the surface current of the radiating patch 10 can be made effective by reducing the width of the shorting bar 30.
  • the length is increased to reduce the size of the antenna, but if the shorting bar 30 is too narrow, the bandwidth of the antenna is too small, so a compromise is needed, taking into account the needs of both.
  • the width of the shorting bar 30 is set between 0.5 and 1 mm.
  • the WIFI antenna provided by the embodiment of the present invention is a quarter-wave antenna, thereby determining that the sum of the length and the width of the radiation patch 10 is equivalent to a quarter operating wavelength.
  • the sum of the length and the width of the radiation patch 10 corresponds to a quarter of the operating wavelength comprising: the sum of the length and the width of the radiation patch 10 being within a predetermined range centered at a quarter of the operating wavelength.
  • the resonant frequency of the WIFI antenna can be achieved by adjusting the area of the radiation patch 10 and/or the distance between the radiation patch 10 and the ground plane 20. Wherein, the length of the radiation patch 10 increases, the resonant frequency of the antenna decreases, the input impedance decreases; the length of the radiation patch 10 decreases, and the resonant frequency of the antenna increases. The input impedance increases.
  • the output impedance of the WIFI antenna can be realized by adjusting the position of the feeding point and/or the shorting bar to finally reach 50 ohms; wherein the position of the feeding point refers to the coaxial feeding line 40 and the grounding surface 20
  • the connection point, the position of the shorting bar 30 refers to the connection point of the shorting bar 30 and the ground plane 20.
  • the structure of the WIFI antenna in this embodiment is as shown in FIG. 1, and includes a radiation patch 10 and a ground plane 20, and a shorting bar 30 and a coaxial feeder 40 connecting the two.
  • the ground plane 20 includes a first ground plane 21 and a second ground plane 22 in the same plane, and a third ground plane 23 perpendicular to the plane; the first ground plane 21 and the second ground plane 22
  • the L-shapes are perpendicular to each other, and the third ground plane 23 is perpendicularly connected to the second ground plane 22; wherein the first ground plane 21, the second ground plane 22, and the third ground plane 23 are common
  • the antenna is formed as a reflecting surface.
  • the shorting bar 30 is arranged to be shorted to ground.
  • the width of the shorting bar 30 is preferably 0.5 to 1 mm.
  • the shorting bar width of the antenna can be selected to be 0.6 mm, and if the mechanical fastness of the entire antenna structure is considered, it can be appropriately widened to 1 mm.
  • the coaxial feed line 40 is arranged to transmit a signal.
  • the impedance of the antenna can be adjusted by changing the position of the feed point, that is, the connection point of the coaxial feed line 40 and the ground plane 20.
  • the radiation patch 10 is a front surface of the antenna, and the first rectangular slot 50 is opened at a position where the radiation patch 10 is connected to the shorting bar 30, which can reduce the antenna size and form a low frequency radiating unit and a high frequency radiating unit, thereby realizing the double Frequency function.
  • the depth of the first rectangular groove 50 is 50% to 90% of the width of the radiation patch 10 (including the end point value), which can be determined by simulation optimization.
  • the first rectangular slot 50 can divide the radiation patch 10 into two radiating units, which are controlled in the 2.4 GHz and 5 GHz frequency bands, respectively.
  • the size is 8.5 mm by the simulation software, and the length of the two radiating elements is 11 mm and 10 mm, and the size of the radiating patch 10 can be one quarter. Adjust the working wavelength around. Furthermore, by adjusting the size of the two radiating elements, the resonant frequency of the antenna can also be adjusted; wherein the length of the radiating patch 10 As the degree increases, the antenna resonance frequency decreases, the input impedance decreases; the length of the radiation patch 10 decreases, the antenna resonance frequency increases, and the input impedance increases.
  • the ground plane 20 is the back surface of the antenna, and the second rectangular slot 60 is opened at the end corner of the ground plane 20.
  • the antenna can be miniaturized, and the Q value of the antenna is reduced, and the antenna bandwidth is increased.
  • the depth of the second rectangular slot 60 does not exceed the position where the coaxial feed line 40 is connected to the ground plane 20, and the width is 20% to 30% of the width of the first ground plane 21 (including the end value).
  • Figure 2 shows the S11 simulation curve of the antenna. It can be seen that the return loss in both the 2.35 to 2.55 GHz and 4.8 to 6.0 GHz bands is less than -10 dB, which fully satisfies the antenna WIFI operating frequency.
  • Figure 3 shows the gain simulation curve of the antenna. It can be seen that the gain in the 4.8 to 6.0 GHz band is 5.4 to 7.6 dB.
  • the physical map of the antenna provided in this embodiment refers to FIG. 4, and the physical test S11 curve of the antenna is shown in FIG. 5.
  • the antenna structure provided by the embodiment can be installed at any position, has a small volume, has good integration and portability, and the working frequency band covers the WIFI 2.45 GHz and 5 GHz frequency bands.
  • the above technical solution increases the distributed capacitance and reduces the distributed inductance.
  • the operating frequency of the antenna is reduced, thereby expanding the antenna bandwidth, and on the other hand, reducing the antenna size to achieve miniaturization of the antenna.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

一种WIFI天线,包括:辐射贴片和接地面、以及设置为连接辐射贴片和接地面的短路条和同轴馈线;所述辐射贴片通过短路条和同轴馈线固定;其中,所述短路条设置为对地短接,所述同轴馈线设置为信号传输。

Description

一种WIFI天线 技术领域
本文涉及但不限于通信技术领域,尤其涉及一种无线网(Wireless-Fidelity)WIFI天线。
背景技术
天线作为辐射和接收电磁波的系统部件,其性能的优劣对于整个通信系统具有重要的影响。随着无线技术的发展,WLAN(Wireless Local Area Networks,无线局域网)通信技术受到了广大消费者的青睐。无论是手机、微型计算机、个人电脑的无线网卡,还是各种各样的远程感应设备,都对天线提出了新的指标要求,小型化、低剖面、宽频带、易于系统集成等已成为天线设计的主要考虑因素。近来热门的CPE(Customer Premise Equipment,用户端设备)类产品、MID(Mobile Internet Devices,移动互联网设备)类产品以及Pad类产品,对于“随时随地通过WLAN上网”功能的要求更高。
在上述的每一类终端产品中,天线作为实现其WLAN上网功能的重要部件,直接影响着终端产品的收发性能,即上网的速度及稳定性;同时,每一类终端产品对于天线的小型化和紧凑性也具有极高的要求。
WIFI天线的类型众多,其中微带天线是在衬底的一侧附上金属薄层作为接地板,另一侧利用光刻腐蚀制成一定形状的金属贴片,通过微带线或同轴探针对贴片进行馈电。但是,相关技术中WIFI天线的电缆繁多且走线复杂,为了减少线缆跟天线单元之间的互耦,需加大单元臂跟馈电线缆的间距,这样则会导致天线的体积较大,无法满足其小型化需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例期望提供一种WIFI天线,其可满足天线的小型化需求。
本发明实施例提供一种无线网WIFI天线,包括:辐射贴片和接地面、以及设置为连接辐射贴片和接地面的短路条和同轴馈线;
所述辐射贴片通过短路条和同轴馈线固定;
其中,所述短路条设置为对地短接,所述同轴馈线设置为信号传输。
可选的,所述接地面包括位于同一平面内的第一接地面和第二接地面,以及垂直于该平面的第三接地面;
所述第一接地面和所述第二接地面呈L型相互垂直,所述第三接地面与所述第二接地面垂直相连;
其中,所述第一接地面、所述第二接地面和所述第三接地面共同组成天线地,作为反射面。
可选的,所述辐射贴片在与短路条的连接处开槽。
可选的,所述辐射贴片上开的槽为第一矩形槽,深度为辐射贴片宽度的50%以上至90%以下;
其中,所述短路条和所述同轴馈线分别设置在所述辐射贴片相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第一矩形槽的深度方向和所述辐射贴片的宽度方向均为第二方向。
可选的,所述接地面在第一接地面的端部拐角处开槽;其中,所述端部拐角处是指第一接地面末端且与同轴馈线同侧的拐角。
可选的,所述接地面上开的槽为第二矩形槽,深度不超过同轴馈线与接地面相连的位置,宽度为第一接地面宽度的20%以上至30%以下;其中,所述短路条和所述同轴馈线分别设置在所述辐射贴片相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第二矩形槽的深度方向为第一方向,所述第二矩形槽的宽度方向和所述第一接地面的宽度方向均为第二方向。
可选的,所述短路条的宽度在0.5~1mm之间。
可选的,所述辐射贴片的长度和宽度之和相当于四分之一工作波长。
可选的,所述WIFI天线的谐振频率通过调节辐射贴片的面积和/或辐射贴片与接地面之间的距离实现。
可选的,所述WIFI天线的输出阻抗为50欧姆,通过调节馈电点和/或短 路条的位置实现。
本发明实施例提供的WIFI天线,包括辐射贴片和接地面,以及设置为连接二者的短路条和同轴馈线;其通过在辐射贴片和接地面之间加载短路条,增大分布电容,减小分布电感,一方面可以降低天线的工作频率,从而扩展天线带宽,另一方面还可减小天线尺寸,以实现天线的小型化。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的天线结构示意图;
图2为本发明实施例提供的天线S11仿真曲线;
图3为本发明实施例提供的天线增益仿真曲线;
图4为本发明实施例提供的天线实物图;
图5为本发明实施例提供的天线实物测试S11曲线。
附图标记:
10-辐射贴片;20-接地面;21-第一接地面;22-第二接地面;23-第三接地面;30-短路条;40-同轴馈线;50-第一矩形槽;60-第二矩形槽。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明的实施例提供一种WIFI天线,如图1所示,包括:辐射贴片10和接地面20,以及设置为连接辐射贴片10和接地面20的短路条30和同轴馈线40;所述辐射贴片10通过短路条30和同轴馈线40固定;其中,所述短路条30设置为对地短接,所述同轴馈线40设置为信号传输。
需要说明的是,这里所述的辐射贴片10、接地面20、以及短路条30均采用金属薄片;所述辐射贴片10与所述接地面20之间填充的介质为空气。
本发明实施例提供的WIFI天线,包括辐射贴片10和接地面20,以及设置为连接二者的短路条30和同轴馈线40;其通过在辐射贴片10和接地面20 之间加载短路条30,增大了分布电容,减小了分布电感,一方面降低了天线的工作频率,从而扩展了天线带宽,另一方面减小了天线尺寸,以实现天线的小型化。
在本发明的实施例中,参考图1所示,所述接地面20包括位于同一平面内的第一接地面21和第二接地面22,以及垂直于该平面(即第一接地面21或第二接地面22所在的平面)的第三接地面23;所述第一接地面21和所述第二接地面22呈L型相互垂直,所述第三接地面23与所述第二接地面22垂直相连;其中,所述第一接地面21、所述第二接地面22和所述第三接地面23共同组成天线地,作为反射面。
这里需要说明的是,所述第一接地面21和所述第二接地面22位于同一平面内,其与所述辐射贴片10相互平行,而所述第三接地面23垂直于该平面。这样一来,所述第三接地面23便可对整个天线起到固定支撑作用。
可选的,所述辐射贴片10在与短路条30的连接处开槽。
所述辐射贴片10为天线的正面,通过在辐射贴片10的表面开槽,有利于实现天线的小型化,同时还可使天线具有双频功能。具体的,在辐射贴片10的表面开槽,不仅能够改变电流路径,增加天线的有效长度,从而减小天线的尺寸,还能在不显著改变天线工作模式的同时降低天线的工作频率,形成低频辐射单元和高频辐射单元,从而实现双频功能。需要说明的是,这里通过设置短路条30并同时在辐射贴片10的表面开槽,能够最大程度的减小天线的体积,从而进一步实现天线的小型化。
可选的,所述辐射贴片10上开的槽为第一矩形槽50。需要说明的是,这里开矩形槽是为了加工方便,且易于保证加工精度的一致性,但并不排除所开的槽可以为其它形状,本发明对此不做限定。
在此基础上,如果开槽尺寸过小,其对辐射贴片10的电流路径影响较小;如果开槽尺寸过大,则天线调谐困难。因此,所述第一矩形槽50的深度为辐射贴片10宽度的50%以上至90%以下,具体通过仿真优化确定其尺寸。其中,所述短路条30和所述同轴馈线40分别设置在所述辐射贴片10相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第一矩形槽50的深度方向和所述辐射贴片10的宽度方向均为第二方向。
可选的,所述接地面20在第一接地面21的端部拐角处开槽;其中,所述端部拐角处是指第一接地面21末端(即未连接第二接地面22的一端)且与同轴馈线40同侧的拐角。所述接地面20为天线的背面,通过在接地面20的表面开槽,有利于实现天线的小型化,同时还可增加天线带宽。具体的,在接地面20的端部拐角处开槽,不仅可引导辐射贴片10中的电流发生弯曲,增加辐射贴片10表面电流有效长度,从而实现小型化功能,同时还能改变电流路径,降低天线Q值,从而增加天线带宽。
可选的,所述接地面20上开的槽为第二矩形槽60。需要说明的是,这里开矩形槽是为了加工方便,且易于保证加工精度的一致性,但并不排除所开的槽可以为其它形状,本发明实施例对此不做限定。
在此基础上,如果开槽尺寸过小,其对辐射贴片10的电流路径影响较小;如果开槽尺寸过大,则天线调谐困难。因此,可选的,所述第二矩形槽60的深度不超过同轴馈线40与接地面20相连的位置,宽度为第一接地面20宽度的20%以上至30%以下。其中,所述短路条30和所述同轴馈线40分别设置在所述辐射贴片10相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第二矩形槽60的深度方向为第一方向,所述第二矩形槽60的宽度方向和所述第一接地面21的宽度方向均为第二方向。
考虑到短路条30的宽度对天线的谐振频率有所影响(谐振频率随着短路条30宽度的增大而增大),通过减小短路条30的宽度可使辐射贴片10的表面电流有效长度有所增加,从而减小天线尺寸,但短路条30过窄则会导致天线的带宽过小,因此需要折衷考虑,兼顾两者的需求。基于此,可选的,所述短路条30的宽度设置在0.5~1mm之间。
可选的,本发明实施例提供的WIFI天线为四分之一波长天线,由此确定辐射贴片10的长度和宽度之和相当于四分之一工作波长。
其中,辐射贴片10的长度和宽度之和相当于四分之一工作波长包括:辐射贴片10的长度和宽度之和在以四分之一工作波长为中心的预设范围内。
所述WIFI天线的谐振频率可通过调节辐射贴片10的面积和/或辐射贴片10与接地面20之间的距离实现。其中,辐射贴片10的长度增加,天线的谐振频率降低,输入阻抗减小;辐射贴片10的长度减小,天线的谐振频率升高, 输入阻抗增大。
所述WIFI天线的输出阻抗可通过调节馈电点和/或短路条的位置实现,以最终达到50欧姆为宜;其中,所述馈电点的位置是指同轴馈线40与接地面20的连接点,所述短路条30的位置是指短路条30与接地面20的连接点。
下面通过具体的实施例对本发明的技术方案进行详细说明。
本实施例中WIFI天线的结构如图1所示,包括辐射贴片10和接地面20,以及连接二者的短路条30和同轴馈线40。其中,在辐射贴片10与接地面20之间不存在除空气以外的其它介质;所述辐射贴片10的长度和宽度之和约四分之一工作波长;所述天线的阻抗为50欧姆。
所述接地面20包括位于同一平面内的第一接地面21和第二接地面22,以及垂直于该平面的第三接地面23;所述第一接地面21和所述第二接地面22呈L型相互垂直,所述第三接地面23与所述第二接地面22垂直相连;其中,所述第一接地面21、所述第二接地面22和所述第三接地面23共同组成天线地,作为反射面。
所述短路条30设置为对地短接。其中,短路条30的宽度以0.5~1mm为宜。本实施例中天线的短路条宽度可选0.6mm,如果考虑整个天线结构的机械牢度,也可适当增宽至1mm。
所述同轴馈线40设置为传输信号。这里,通过改变馈电点的位置,即同轴馈线40与接地面20的连接点,可以调节天线的阻抗。
所述辐射贴片10为天线的正面,在辐射贴片10连接短路条30的位置处开第一矩形槽50,可减小天线尺寸,并形成低频辐射单元和高频辐射单元,从而实现双频功能。其中,所述第一矩形槽50的深度为辐射贴片10宽度的50%~90%(包括端点值),其可通过仿真优化确定其尺寸。具体的,第一矩形槽50可将辐射贴片10分为两个辐射单元,这两个辐射单元分别控制在2.4GHz和5GHz频段。由于这两个辐射单元共用同一宽度,经仿真软件优化其尺寸,取宽度为8.5mm,两个辐射单元的长度分布为11mm和10mm时最佳,辐射贴片10的尺寸可在四分之一个工作波长左右调整。此外,通过调节这两个辐射单元的尺寸,还可调整天线的谐振频率;其中,辐射贴片10的长 度增加,天线谐振频率降低,输入阻抗减小;辐射贴片10的长度减小,天线谐振频率升高,输入阻抗增大。
所述接地面20为天线的背面,在接地面20的端部拐角处开第二矩形槽60,可实现天线的小型化,同时降低天线Q值,增加天线带宽。其中,所述第二矩形槽60的深度不超过同轴馈线40与接地面20相连的位置,宽度为第一接地面21宽度的20%~30%(包括端点值)。
基于上述结构,对本实施例提供的天线进行了以下测试。图2所示为该天线的S11仿真曲线,由此可知,在2.35~2.55GHz与4.8~6.0GHz两个频段回波损耗均小于-10dB,完全满足天线WIFI工作频率。图3所示为该天线的增益仿真曲线,由此可知,在4.8~6.0GHz频段增益在5.4~7.6dB。本实施例提供的天线实物图参考图4,该天线的实物测试S11曲线参见图5。
综上所述,本实施例提供的天线结构可在任意位置进行安装,体积较小,具有良好的集成性和便携性,且工作频段覆盖了WIFI 2.45GHz和5GHz频段。
以上所述,仅为本发明的优选实施例而已,并非设置为限定本发明的保护范围。
工业实用性
上述技术方案增大了分布电容,减小了分布电感,一方面降低了天线的工作频率,从而扩展了天线带宽,另一方面减小了天线尺寸,以实现天线的小型化。

Claims (10)

  1. 一种无线网WIFI天线,包括:辐射贴片和接地面、以及设置为连接辐射贴片和接地面的短路条和同轴馈线;
    所述辐射贴片通过短路条和同轴馈线固定;
    其中,所述短路条设置为对地短接,所述同轴馈线设置为信号传输。
  2. 根据权利要求1所述的WIFI天线,其中,所述接地面包括位于同一平面内的第一接地面和第二接地面,以及垂直于该平面的第三接地面;
    所述第一接地面和所述第二接地面呈L型相互垂直,所述第三接地面与所述第二接地面垂直相连;
    其中,所述第一接地面、所述第二接地面和所述第三接地面共同组成天线地,作为反射面。
  3. 根据权利要求2所述的WIFI天线,其中,所述辐射贴片在与短路条的连接处开槽。
  4. 根据权利要求3所述的WIFI天线,其中,所述辐射贴片上开的槽为第一矩形槽,深度为辐射贴片宽度的50%以上至90%以下;
    其中,所述短路条和所述同轴馈线分别设置在所述辐射贴片相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第一矩形槽的深度方向和所述辐射贴片的宽度方向均为第二方向。
  5. 根据权利要求2所述的WIFI天线,其中,所述接地面在第一接地面的端部拐角处开槽;其中,所述端部拐角处是指第一接地面末端且与同轴馈线同侧的拐角。
  6. 根据权利要求5所述的WIFI天线,其中,所述接地面上开的槽为第二矩形槽,深度不超过同轴馈线与接地面相连的位置,宽度为第一接地面宽度的20%以上至30%以下;其中,所述短路条和所述同轴馈线分别设置在所述辐射贴片相对的两侧边,且该侧边的平行方向为第一方向、该侧边的垂直方向为第二方向;所述第二矩形槽的深度方向为第一方向,所述第二矩形槽的宽度方向和所述第一接地面的宽度方向均为第二方向。
  7. 根据权利要求1所述的WIFI天线,其特征在于,所述短路条的宽度在0.5~1mm之间。
  8. 根据权利要求1所述的WIFI天线,其中,所述辐射贴片的长度和宽度之和相当于四分之一工作波长。
  9. 根据权利要求1至6任一项所述的WIFI天线,其中,所述WIFI天线的谐振频率通过调节辐射贴片的面积和/或辐射贴片与接地面之间的距离实现。
  10. 根据权利要求1至6任一项所述的WIFI天线,其中,所述WIFI天线的输出阻抗为50欧姆,通过调节馈电点和/或短路条的位置实现。
PCT/CN2016/083350 2016-02-03 2016-05-25 一种wifi天线 WO2017133141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620110589.5U CN205790377U (zh) 2016-02-03 2016-02-03 一种wifi天线
CN201620110589.5 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017133141A1 true WO2017133141A1 (zh) 2017-08-10

Family

ID=57413829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083350 WO2017133141A1 (zh) 2016-02-03 2016-05-25 一种wifi天线

Country Status (2)

Country Link
CN (1) CN205790377U (zh)
WO (1) WO2017133141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206326A (zh) * 2018-02-28 2018-06-26 深圳市国质信网络通讯有限公司 一种插件式wifi双频天线及机顶盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708519Y (zh) * 2003-10-15 2005-07-06 富士康(昆山)电脑接插件有限公司 平板天线
JP2005191781A (ja) * 2003-12-25 2005-07-14 Japan Radio Co Ltd 2周波共用パッチアンテナ
JP2005197776A (ja) * 2003-12-26 2005-07-21 Furukawa Electric Co Ltd:The 多周波共用アンテナ及び2周波共用アンテナ
CN202474198U (zh) * 2012-03-28 2012-10-03 广东盛路通信科技股份有限公司 超薄高效wlan双极化微带天线
CN204809386U (zh) * 2015-07-28 2015-11-25 湖南智龙物联网技术有限公司 一种工作于wlan双频带的半圆形加槽倒f型定向天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708519Y (zh) * 2003-10-15 2005-07-06 富士康(昆山)电脑接插件有限公司 平板天线
JP2005191781A (ja) * 2003-12-25 2005-07-14 Japan Radio Co Ltd 2周波共用パッチアンテナ
JP2005197776A (ja) * 2003-12-26 2005-07-21 Furukawa Electric Co Ltd:The 多周波共用アンテナ及び2周波共用アンテナ
CN202474198U (zh) * 2012-03-28 2012-10-03 广东盛路通信科技股份有限公司 超薄高效wlan双极化微带天线
CN204809386U (zh) * 2015-07-28 2015-11-25 湖南智龙物联网技术有限公司 一种工作于wlan双频带的半圆形加槽倒f型定向天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206326A (zh) * 2018-02-28 2018-06-26 深圳市国质信网络通讯有限公司 一种插件式wifi双频天线及机顶盒
CN108206326B (zh) * 2018-02-28 2023-11-21 深圳市国质信网络通讯有限公司 一种插件式wifi双频天线及机顶盒

Also Published As

Publication number Publication date
CN205790377U (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2022142659A1 (zh) 天线装置及电子设备
US6304220B1 (en) Antenna with stacked resonant structures and a multi-frequency radiocommunications system including it
JP6374971B2 (ja) アンテナユニット及び端末
US10547100B2 (en) Antenna structure and wireless communication device using same
US10566681B2 (en) Antenna structure and wireless communication device using same
US20100079350A1 (en) Wwan printed circuit antenna with three monopole antennas disposed on a same plane
TWI521788B (zh) 天線組合及無線通訊裝置
US10498010B2 (en) Antenna structure and wireless communication device using same
EP2979322B1 (en) Planar antenna apparatus and method
TWI476989B (zh) 多頻天線
KR20120035459A (ko) 다중 대역 mimo안테나
WO2017197975A1 (zh) 一种天线和终端设备
TW200826365A (en) Multi-band antenna
CN106654555B (zh) 一种小型非对称高隔离度uwb-mimo天线
TW201524001A (zh) 多頻天線結構
TWI569513B (zh) 天線模組
TWI724635B (zh) 天線結構及電子裝置
US11522295B2 (en) Antenna structure
US20110227801A1 (en) High isolation multi-band antenna set incorporated with wireless fidelity antennas and worldwide interoperability for microwave access antennas
US9059500B2 (en) Capacitive loop antenna and electronic device
WO2017133141A1 (zh) 一种wifi天线
EP2728668A1 (en) Antenna
CN108054519B (zh) 一种宽带定向毫米波天线
CN108063312B (zh) 一种移动终端宽带mimo双天线
US11283181B2 (en) Antenna module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888962

Country of ref document: EP

Kind code of ref document: A1