WO2017132854A1 - Water filter cartridges and methods of filtering water using the same - Google Patents

Water filter cartridges and methods of filtering water using the same Download PDF

Info

Publication number
WO2017132854A1
WO2017132854A1 PCT/CN2016/073265 CN2016073265W WO2017132854A1 WO 2017132854 A1 WO2017132854 A1 WO 2017132854A1 CN 2016073265 W CN2016073265 W CN 2016073265W WO 2017132854 A1 WO2017132854 A1 WO 2017132854A1
Authority
WO
WIPO (PCT)
Prior art keywords
size
adsorbent materials
water
adsorbent
layer
Prior art date
Application number
PCT/CN2016/073265
Other languages
French (fr)
Inventor
Minling Liu
Kai Huang
Changquan QIU
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to PCT/CN2016/073265 priority Critical patent/WO2017132854A1/en
Priority to CN201680084253.9A priority patent/CN108883346A/en
Publication of WO2017132854A1 publication Critical patent/WO2017132854A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/14Treatment of water in water supply networks, e.g. to prevent bacterial growth

Definitions

  • the present disclosure relates to water filter cartridges and methods of filtering water using the same.
  • Heavy metals such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and/or industrial pollution.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
  • WHO World Health Organization
  • reverse osmosis One current approach for removing heavy metals from water (e.g., drinking water) is reverse osmosis, which uses a semipermeable membrane to remove particles from the water.
  • a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water.
  • UF purifier Another current approach for removing heavy metals from water is to use an ultra-filtration (UF) purifier, which can use a semipermeable membrane in conjunction with a pressure or concentration gradient to separate particles from the water.
  • UF purifier can have a lower energy consumption than reverse osmosis, and may produce less waste water than reverse osmosis, a UF purifier may not be able to operate efficiently enough to remove heavy metals from water to very low concentration levels. For instance, a UF purifier may not be able to remove heavy metals from the water to the concentration levels recommended by the WHO. Further, a UF purifier may need to have a large size to ensure that all water that passes through the UF purifier is indeed filtered (e.g., to prevent water from being able to pass through the UF purifier without being filtered) .
  • FIG. 1 illustrates an example water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • FIGS 2A-2C illustrate graphs of heavy metal concentration levels in water filtered by a water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • one or more embodiments include a first number of adsorbent materials wherein each of the first number of adsorbent materials is a first type of adsorbent material and has a first size, a second number of adsorbent materials wherein each of the second number of adsorbent materials is the first type of adsorbent material and has a second size that is different than the first size, a third number of adsorbent materials wherein each of the third number of adsorbent materials has a third size and is a second type of adsorbent material that is different than the first type of adsorbent material, and a fourth number of adsorbent materials wherein each of the fourth number of adsorbent materials is the second type of adsorbent material and has a fourth size that is different than the third size.
  • Water filter cartridges in accordance with the present disclosure can be less costly, use less energy, and/or produce less waste water than previous water filtering approaches, such as reverse osmosis and UF purifiers. Further, water filter cartridges in accordance with the present disclosure can operate more efficiently and/or effectively than previous water filtering approaches. For example, water filter cartridges in accordance with the present disclosure can remove heavy metals from water to very low concentration levels, such as, for instance, concentration levels as low as or lower than those recommend by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) .
  • concentration levels as low as or lower than those recommend by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) .
  • water filter cartridges in accordance with the present disclosure can be smaller than those used in previous water filtering approaches, while still ensuring that all water that passes through the cartridge is indeed filtered (e.g., while still preventing water from being able to pass through the cartridge without being filtered) .
  • a” or “a number of” something can refer to one or more such things.
  • a number of adsorbent materials can refer to one or more adsorbent materials.
  • FIG. 1 illustrates an example water filter cartridge 100 in accordance with one or more embodiments of the present disclosure.
  • Water filter cartridge 100 can be used to filter water.
  • Filtering water as used herein, can refer to and/or include the removal of, and/or the process of removing, heavy metals from the water.
  • water filter cartridge 100 can be used to remove heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water, as will be further described herein.
  • Water filter cartridge 100 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example.
  • water filter cartridge 100 can be used to filter the tap and/or drinking water of a residence.
  • embodiments of the present disclosure are not limited to a particular type of use or application for water filter cartridge 100.
  • Water filter cartridge 100 can include a number (e.g., plurality) of layers in series.
  • water filter cartridge 100 includes layers 102-1, 102-2, 102-3, 102-4, 102-5, and 102-6 in series, with layer 102-1 the first layer in the series, layer 102-2 the second layer in the series adjacent (e.g., below) layer 102-1, layer 102-3 the third layer in the series adjacent (e.g., below) layer 102-2, etc., with layer 102-6 the last layer in the series adjacent (e.g., below) layer 102-5.
  • layers 102-1, 102-2, 102-3, 102-4, 102-5, and 102-6 in series, with layer 102-1 the first layer in the series, layer 102-2 the second layer in the series adjacent (e.g., below) layer 102-1, layer 102-3 the third layer in the series adjacent (e.g., below) layer 102-2, etc., with layer 102-6 the last layer in the series adjacent (e.g., below) layer 102-5.
  • six layers
  • Each respective layer can include a number (e.g., plurality) of adsorbent materials.
  • layer 102-1 includes a number of adsorbent materials 110
  • layer 102-2 includes a number of adsorbent materials 112
  • layer 102-3 includes a number of adsorbent materials 114
  • layer 102-4 includes a number of adsorbent materials 116
  • layer 102-5 includes a number of adsorbent materials 118
  • layer 102-6 includes a number of adsorbent materials 120.
  • the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 in the series can have the same size.
  • the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 can be the same type of adsorbent material. That is, each of the adsorbent materials 110 in layer 102-1 can have the same size and be the same type of adsorbent material, each of the adsorbent materials 112 in layer 102-2 can have the same size and be the same type of adsorbent material, each of the adsorbent materials 114 in layer 103 can have the same size and be the same type of adsorbent material, etc.
  • each of the adsorbent materials 110 in layer 102-1 can be a first type of adsorbent material and have a first size.
  • each of the adsorbent materials 112 in layer 102-2 can be the first type of adsorbent material and have a second size that is different than the first size. That is, each adsorbent material 112 can be the same type of adsorbent material as adsorbent materials 110, and can have a different size than adsorbent materials 110. For instance, in the example illustrated in Figure 1, adsorbent materials 112 are larger than adsorbent materials 110. That is, in the example illustrated in Figure 1, the second size is larger than the first size.
  • each of the adsorbent materials 114 in layer 102-3 can have a third size, and can be a second type of adsorbent material that is different than the first type of adsorbent material. That is, each adsorbent material 114 can be a different type of adsorbent material than adsorbent materials 110 and 112. Further, in the example illustrated in Figure 1, each adsorbent material 114 has the same size as adsorbent materials 110. That is, in the example illustrated in Figure 1, the third size is the same size as the first size. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the third size may be different than the first size) .
  • each of the adsorbent materials 116 in layer 102-4 can be the second type of adsorbent material, and can have a fourth size that is different than the third size. That is, each adsorbent material 116 can be the same type of adsorbent material as adsorbent materials 114, and can have a different size than adsorbent materials 114. For instance, in the example illustrated in Figure 1, adsorbent materials 116 are larger than adsorbent materials 114. That is, in the example illustrated in Figure 1, the fourth size is larger than the third size. Further, in the example illustrated in Figure 1, each adsorbent material 116 has the same size as adsorbent materials 112. That is, in the example illustrated in Figure 1, the fourth size is the same as the second size. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the fourth size may be different than the second size) .
  • each of the adsorbent materials 118 in layer 102-5 can have a fifth size, and can be a third type of adsorbent material that is different than the first and second types of adsorbent materials. That is, each adsorbent material 118 can be a different type of adsorbent material than adsorbent materials 110, 112, 114, and 116. Further, in the example illustrated in Figure 1, each adsorbent material 118 has the same size as adsorbent materials 110 and 114. That is, in the example illustrated in Figure 1, the fifth size is the same size as the first and third sizes. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the fifth size may be different than the first and/or third sizes) .
  • each of the adsorbent materials 120 in layer 102-6 can be the third type of adsorbent material, and can have a sixth size that is different than the fifth size. That is, each adsorbent material 120 can be the same type of adsorbent material as adsorbent materials 118, and can have a different size than adsorbent materials 118. For instance, in the example illustrated in Figure 1, adsorbent materials 120 are larger than adsorbent materials 118. That is, in the example illustrated in Figure 1, the sixth size is larger than the fifth size. Further, in the example illustrated in Figure 1, each adsorbent material 120 has the same size as adsorbent materials 112 and 116.
  • the sixth size is the same as the second and fourth sizes.
  • embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the sixth size may be different than the second and/or fourth sizes) .
  • the first, third, and fifth sizes can each be a mesh size in the range of 80 to 100, inclusive.
  • the second, fourth, and sixth sizes e.g., the size of adsorbent materials 112, 116, and 120
  • Such sizes can ensure that all water that passes through water filter cartridge 100 is indeed filtered (e.g., that water is not able to pass through water filter cartridge 100 without being filtered) , without providing too much resistance to the flow of the water through the cartridge.
  • each of the adsorbent materials 110, 112, 114, 116, 118, and 120 of each respective layer 102-1, 102-2, ..., 102-6 can all be the same shape.
  • the adsorbent materials of each respective layer are all a circular shape.
  • the adsorbent materials of different layers can be different shapes.
  • each of the adsorbent materials 110, 114, and 118 could be a first shape
  • each of the adsorbent materials 112, 116, and 120 could be a second shape that is different than the first shape.
  • water can be input into (e.g., enter) water filter cartridge 100 at the top, and flow through each successive layer 102-1, 102-2, ..., 102-6. As the water flows through each successive layer, heavy metals can be removed from the water, as will be further described herein.
  • the filtered water (e.g., with the heavy metals removed) can then be output from (e.g., exit) water filter cartridge 100 at the bottom after flowing through the last layer.
  • water can be input into water filter cartridge 100 at the top and flow through layer 102-1.
  • the water can then flow through layer 102-2 after flowing through layer 102-1, through layer 102-3 after flowing through layer 102-2, through layer 102-4 after flowing through layer 102-3, through layer 102-5 after flowing through layer 102-4, and through layer 102-6 after flowing through layer 102-5.
  • the water may be filtered, and can be output from water filter cartridge 100.
  • heavy metals e.g., heavy metal ions
  • adsorbent materials 110 can adsorb heavy metals found in the water as the water flows through layer 102-1
  • adsorbent materials 112 can adsorb heavy metals in the water as the water flows through layer 102-2
  • adsorbent materials 114 can adsorb heavy metals in the water as the water flows through layer 102-3, etc.
  • the heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, water filter cartridge 100 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • the type (or types) of heavy metals removed from the water by the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 of water filter cartridge 100 can depend on the type of the adsorbent materials in that layer.
  • different types of adsorbent materials may adsorb different types of heavy metals.
  • some types of adsorbent materials may be able to adsorb one (e.g., a single) type of heavy metal, and some types of adsorbent materials may be able to adsorb two or more different types of heavy metals.
  • the type of adsorbent material in each respective layer can be selected based on the type (or types) of heavy metals to be removed from the water.
  • Types of adsorbent materials that can be used in layers 102-1, 102-2, ..., 102-6 can include, for example, aluminum oxide based materials, titanium based materials, iron oxide materials, and/or carbon based materials, among other types of adsorbent materials.
  • aluminum oxide can remove As and Pb
  • titanium oxide can remove As, Pb, Cd, and Hg
  • zirconia can remove As and Pb
  • iron oxide can remove As, Cd, and Pb
  • modified active carbon can remove Pb.
  • adsorbent material can be used in layers 102-1 and 102-2, the same type of adsorbent material can be used in layers 102-3 and 102-4, and the same type of adsorbent material can be used in layers 102-5 and 102-6, as previously described herein.
  • a first type of adsorbent material that adsorbs a first type of heavy metal can be selected for adsorbent materials 110 and 112
  • a second type of adsorbent material that adsorbs a second type of heavy metal can be selected for adsorbent materials 114 and 116
  • a third type of adsorbent material that adsorbs a third type of heavy metal can be selected for adsorbent materials 118 and 120.
  • the first type of heavy metal can be removed from the water by adsorbent materials 110 and 112.
  • the second type of heavy metal can then be removed from the water by adsorbent materials 114 and 116 as the water flows through layers 102-3 and 102-4, and the third type of heavy metal can be removed from the water by adsorbent materials 118 and 120 as the water flows through layers 102-5 and 102-6.
  • a first type of adsorbent material that adsorbs two types of heavy metals can be selected for adsorbent materials 110 and 112
  • a second type of adsorbent material that adsorbs two types of heavy metals can be selected for adsorbent materials 114 and 116
  • a third type of adsorbent material that adsorbs two types of heavy metals can be selected for adsorbent materials 118 and 120.
  • adsorbent materials 110 and 112 can remove their respective two types of heavy metals from the water.
  • Adsorbent materials 114 and 116 can then remove their respective two types of heavy metals from the water as the water flows through layers 102-3 and 102-4, and adsorbent materials 118 and 120 can remove their respective two types of heavy metals from the water as the water flows through layers 102-5 and 102-6.
  • the two types of heavy metals adsorbed by the first type of adsorbent material e.g., by adsorbent materials 110 and 112
  • the two types of heavy metals adsorbed by the second type of adsorbent material e.g., by adsorbent materials 114 and 116
  • the two types of heavy metals adsorbed by the third type of adsorbent material e.g., by adsorbent materials 118 and 120
  • Water filtered by water filter cartridge 100 can have heavy metal concentration levels as low as or lower than those recommend by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) .
  • the filtered water can have concentration levels of less than 1 ppb for a number of different heavy metal types, as will be further described herein (e.g., in connection with Figures 2A-2C) .
  • water filter cartridge 100 illustrated in Figure 1 includes six layers 102-1, 102-2, ..., 102-6, embodiments of the present disclosure are not limited to this particular example.
  • water filter cartridge 100 may include at least four layers of adsorbent materials in series, with the adsorbent materials in each respective layer in the series being the same type and size, as previously described herein.
  • the adsorbent materials in the first and last layers in the series can have a different size than each of the adsorbent materials in the respective layer in the series to which the first and last layers are each adjacent.
  • the adsorbent materials in the first layer in the series e.g., adsorbent materials 110 in layer 102-1 in the example illustrated in Figure 1
  • the adsorbent materials in the second layer in the series e.g., adsorbent materials 112 in layer 102-2 in the example illustrated in Figure 1
  • the adsorbent materials in the last layer in the series e.g., adsorbent materials 120 in layer 102-6 in the example illustrated in Figure 1 can have a larger size than the adsorbent materials in the second to last layer in the series (e.g., adsorbent materials 118 in layer 102-5 in the example illustrated in Figure 1) .
  • the adsorbent materials in the first and last layers in the series can be the same type of adsorbent material as each of the adsorbent materials in the respective layer in the series to which the first and last layers are each adjacent.
  • the adsorbent materials in the first and second layers in the series can be the same type of adsorbent materials
  • the adsorbent materials in the last and second to last layers in the series can be the same type of adsorbent materials.
  • the adsorbent materials in each respective remaining layer in the series can have a different size than each of the adsorbent materials in both layers in the series to which that respective layer is each adjacent.
  • the adsorbent materials in the second layer in the series can have a larger size than the adsorbent materials in the first layer in the series (e.g., adsorbent materials 110 in layer 102-1 in the example illustrated in Figure 1) and a larger size than the adsorbent materials in the third layer in the series (e.g., adsorbent materials 114 in layer 102-3 in the example illustrated in Figure 1)
  • the adsorbent materials in the third layer in the series can have a smaller size than the adsorbent materials in the second layer in the series and a smaller size than the adsorbent materials in the fourth layer in the series (e.g., adsorbent materials 116 in layer 102-4 in the example illustrated in Figure 1)
  • the adsorbent materials in the fourth layer in the series can have a larger size than the adsorbent materials in the third layer in the series and a
  • the adsorbent materials in each respective remaining layer in the series can be the same type of adsorbent material as each of the adsorbent materials in one of the layers in the series to which that respective layer is adjacent, and can be a different type of adsorbent material than each of the adsorbent materials in the other layer in the series to which than respective layer is adjacent.
  • the adsorbent materials in the second layer in the series can be the same type of adsorbent material as the adsorbent materials in the first layer in the series and a different type of adsorbent material than the adsorbent materials in the third layer in the series
  • the adsorbent materials in the third layer in the series can be a different type of adsorbent material than the adsorbent materials in the second layer in the series and the same type of adsorbent material as the adsorbent materials in the fourth layer in the series
  • the adsorbent materials in the fourth layer in the series can be the same type of adsorbent material as the adsorbent materials in the third layer in the series and a different type of adsorbent material than the adsorbent materials in the fifth layer in the series, etc., such that each consecutive pair of small size and large size layers have the same type of adsorbent material.
  • water filter cartridge 100 may include eight layers of adsorbent materials in series.
  • the adsorbent materials in the first and second layers in the series can be a type of adsorbent material that can remove (e.g., adsorb) two different types (e.g., a first type and a second type) of heavy metals from the water as it flows through the first and second layers.
  • the adsorbent materials in the first and second layers can remove As and Pb from the water.
  • the adsorbent materials in the third and fourth layers in the series can be a type of adsorbent material that can remove two different types (e.g., the second type and a third type) of heavy metals from the water as it flows through the third and fourth layers.
  • the adsorbent materials in the third and fourth layers can remove Pb and Cd from the water.
  • the adsorbent materials in the fifth and sixth layers in the series can be a type of adsorbent material that can remove one type (e.g., the third type) of heavy metal from the water as it flows through the fifth and sixth layers.
  • the adsorbent materials in the fifth and sixth layers can remove Cd from the water.
  • the adsorbent materials in the seventh and eighth layers in the series can be a type of adsorbent material than can remove two different types (e.g., the first and second types) of heavy metals from the water as it flows through the seventh and eighth layers.
  • the adsorbent materials in the seventh and eighth layers can remove As and Pb from the water.
  • previous water filter cartridges may only include a single type of adsorbent material of a single size. That is, previous water filter cartridges may only include a single layer of adsorbent materials.
  • Such previous water filter cartridges may not be as efficient or effective in filtering water as water filter cartridges of the present disclosure.
  • such previous water filter cartridges may not be able to remove as many different types of heavy metals from the water as water filter cartridges of the present disclosure, and/or may not be able to remove the heavy metals from the water to very low concentration levels, such as, for instance, concentration levels as low as or lower than those recommend by the WHO.
  • such previous water filter cartridges may not be able to ensure that all water that passes through the cartridge is indeed filtered (e.g., that not water is able to pass through the cartridge without being filtered) .
  • Figures 2A-2C illustrate graphs of heavy metal concentration levels in water filtered by a water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • Figure 2A illustrates a graph 230 of arsenic (As) concentration levels in different amounts (e.g., uptakes) of water filtered by a water filter cartridge in accordance with the present disclosure
  • Figure 2B illustrates a graph 240 of lead (Pb) concentration levels in different amounts water filtered by a water filter cartridge in accordance with the present disclosure
  • Figure 2C illustrates a graph 250 of cadmium (Cd) concentration levels in different amounts of water filtered by a water filter cartridge in accordance with the present disclosure.
  • the water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1.
  • water filtered by a water filter cartridge in accordance with the present disclosure can have concentration levels of less than one part per billion (ppb) for a number of different heavy metal types.
  • the concentration of As in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 liters (L) .
  • the concentration of Pb in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 L.
  • the concentration of Cd in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Water filter cartridges (100) and methods of filtering water using the same are described herein. The cartridge (100) includes a first number of adsorbent materials (110) wherein each of the first number of adsorbent materials (110) is a first type of adsorbent material and has a first size, a second number of adsorbent materials (112) wherein each of the second number of adsorbent materials (112) is the first type of adsorbent material and has a second size that is different than the first size, a third number of adsorbent materials (114) wherein each of the third number of adsorbent materials (114) has a third size and is a second type of adsorbent material that is different than the first type of adsorbent material, and a fourth number of adsorbent materials (116) wherein each of the fourth number of adsorbent materials (116) is the second type of adsorbent material and has a fourth size that is different than the third size.

Description

WATER FILTER CARTRIDGES AND METHODS OF FILTERING WATER USING THE SAME Technical Field
The present disclosure relates to water filter cartridges and methods of filtering water using the same.
Background
Heavy metals, such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and/or industrial pollution. In order to prevent health problems, such toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
One current approach for removing heavy metals from water (e.g., drinking water) is reverse osmosis, which uses a semipermeable membrane to remove particles from the water. However, a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water.
Another current approach for removing heavy metals from water is to use an ultra-filtration (UF) purifier, which can use a semipermeable membrane in conjunction with a pressure or concentration gradient to separate particles from the water. Although a UF purifier can have a lower energy consumption than reverse osmosis, and may produce less waste water than reverse osmosis, a UF purifier may not be able to operate efficiently enough to remove heavy metals from water to very low concentration levels. For instance, a UF purifier may not be able to remove heavy metals from the water to the concentration levels recommended by the WHO. Further, a UF purifier may need to have a large size to ensure that all water that passes through the UF purifier is indeed filtered (e.g., to prevent water from being able to pass through the UF purifier without being filtered) .
Brief Description of the Drawings
Figure 1 illustrates an example water filter cartridge in accordance with one or more embodiments of the present disclosure.
Figures 2A-2C illustrate graphs of heavy metal concentration levels in water filtered by a water filter cartridge in accordance with one or more embodiments of the present disclosure.
Detailed Description
Water filter cartridges and methods of filtering water using the same are described herein. For example, one or more embodiments include a first number of adsorbent materials wherein each of the first number of adsorbent materials is a first type of adsorbent material and has a first size, a second number of adsorbent materials wherein each of the second number of adsorbent materials is the first type of adsorbent material and has a second size that is different than the first size, a third number of adsorbent materials wherein each of the third number of adsorbent materials has a third size and is a second type of adsorbent material that is different than the first type of adsorbent material, and a fourth number of adsorbent materials wherein each of the fourth number of adsorbent materials is the second type of adsorbent material and has a fourth size that is different than the third size.
Water filter cartridges in accordance with the present disclosure can be less costly, use less energy, and/or produce less waste water than previous water filtering approaches, such as reverse osmosis and UF purifiers. Further, water filter cartridges in accordance with the present disclosure can operate more efficiently and/or effectively than previous water filtering approaches. For example, water filter cartridges in accordance with the present disclosure can remove heavy metals from water to very low concentration levels, such as, for instance, concentration levels as low as or lower than those recommend by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) .  Further, water filter cartridges in accordance with the present disclosure can be smaller than those used in previous water filtering approaches, while still ensuring that all water that passes through the cartridge is indeed filtered (e.g., while still preventing water from being able to pass through the cartridge without being filtered) .
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that mechanical, electrical, and/or process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits.
As used herein, “a” or “a number of” something can refer to one or more such things. For example, “a number of adsorbent materials” can refer to one or more adsorbent materials.
Figure 1 illustrates an example water filter cartridge 100 in accordance with one or more embodiments of the present disclosure. Water filter cartridge 100 can be used to filter water. Filtering water, as used herein, can refer to and/or include the removal of, and/or the  process of removing, heavy metals from the water. For example, water filter cartridge 100 can be used to remove heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water, as will be further described herein.
Water filter cartridge 100 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example. For instance, water filter cartridge 100 can be used to filter the tap and/or drinking water of a residence. However, embodiments of the present disclosure are not limited to a particular type of use or application for water filter cartridge 100.
Water filter cartridge 100 can include a number (e.g., plurality) of layers in series. For example, in the embodiment illustrated in Figure 1, water filter cartridge 100 includes layers 102-1, 102-2, 102-3, 102-4, 102-5, and 102-6 in series, with layer 102-1 the first layer in the series, layer 102-2 the second layer in the series adjacent (e.g., below) layer 102-1, layer 102-3 the third layer in the series adjacent (e.g., below) layer 102-2, etc., with layer 102-6 the last layer in the series adjacent (e.g., below) layer 102-5. Although six layers are included in the embodiment illustrated in Figure 1, embodiments of the present disclosure are not so limited, as will be further described herein.
Each respective layer can include a number (e.g., plurality) of adsorbent materials. For example, in the embodiment illustrated in Figure 1, layer 102-1 includes a number of adsorbent materials 110, layer 102-2 includes a number of adsorbent materials 112, layer 102-3 includes a number of adsorbent materials 114, layer 102-4 includes a number of adsorbent materials 116, layer 102-5 includes a number of adsorbent materials 118, and layer 102-6 includes a number of adsorbent materials 120.
As shown in Figure 1, the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 in the series can have the same size. Further, the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 can be the same type of adsorbent material. That is, each  of the adsorbent materials 110 in layer 102-1 can have the same size and be the same type of adsorbent material, each of the adsorbent materials 112 in layer 102-2 can have the same size and be the same type of adsorbent material, each of the adsorbent materials 114 in layer 103 can have the same size and be the same type of adsorbent material, etc.
As an example, each of the adsorbent materials 110 in layer 102-1 can be a first type of adsorbent material and have a first size. Further, each of the adsorbent materials 112 in layer 102-2 can be the first type of adsorbent material and have a second size that is different than the first size. That is, each adsorbent material 112 can be the same type of adsorbent material as adsorbent materials 110, and can have a different size than adsorbent materials 110. For instance, in the example illustrated in Figure 1, adsorbent materials 112 are larger than adsorbent materials 110. That is, in the example illustrated in Figure 1, the second size is larger than the first size.
Further, each of the adsorbent materials 114 in layer 102-3 can have a third size, and can be a second type of adsorbent material that is different than the first type of adsorbent material. That is, each adsorbent material 114 can be a different type of adsorbent material than  adsorbent materials  110 and 112. Further, in the example illustrated in Figure 1, each adsorbent material 114 has the same size as adsorbent materials 110. That is, in the example illustrated in Figure 1, the third size is the same size as the first size. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the third size may be different than the first size) .
Further, each of the adsorbent materials 116 in layer 102-4 can be the second type of adsorbent material, and can have a fourth size that is different than the third size. That is, each adsorbent material 116 can be the same type of adsorbent material as adsorbent materials 114, and can have a different size than adsorbent materials 114. For instance, in the example illustrated in Figure 1, adsorbent materials 116 are larger than  adsorbent materials 114. That is, in the example illustrated in Figure 1, the fourth size is larger than the third size. Further, in the example illustrated in Figure 1, each adsorbent material 116 has the same size as adsorbent materials 112. That is, in the example illustrated in Figure 1, the fourth size is the same as the second size. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the fourth size may be different than the second size) .
Further, each of the adsorbent materials 118 in layer 102-5 can have a fifth size, and can be a third type of adsorbent material that is different than the first and second types of adsorbent materials. That is, each adsorbent material 118 can be a different type of adsorbent material than  adsorbent materials  110, 112, 114, and 116. Further, in the example illustrated in Figure 1, each adsorbent material 118 has the same size as  adsorbent materials  110 and 114. That is, in the example illustrated in Figure 1, the fifth size is the same size as the first and third sizes. However, embodiments of the present disclosure are not limited to such an example (e.g., in some embodiments, the fifth size may be different than the first and/or third sizes) .
Further, each of the adsorbent materials 120 in layer 102-6 can be the third type of adsorbent material, and can have a sixth size that is different than the fifth size. That is, each adsorbent material 120 can be the same type of adsorbent material as adsorbent materials 118, and can have a different size than adsorbent materials 118. For instance, in the example illustrated in Figure 1, adsorbent materials 120 are larger than adsorbent materials 118. That is, in the example illustrated in Figure 1, the sixth size is larger than the fifth size. Further, in the example illustrated in Figure 1, each adsorbent material 120 has the same size as  adsorbent materials  112 and 116. That is, in the example illustrated in Figure 1, the sixth size is the same as the second and fourth sizes. However, embodiments of the present disclosure are not limited to such  an example (e.g., in some embodiments, the sixth size may be different than the second and/or fourth sizes) .
In some embodiments, the first, third, and fifth sizes (e.g., the size of  adsorbent materials  110, 114, and 118) can each be a mesh size in the range of 80 to 100, inclusive. Further, the second, fourth, and sixth sizes (e.g., the size of  adsorbent materials  112, 116, and 120) can each be a mesh size in the range of 20 to 30, inclusive. Such sizes can ensure that all water that passes through water filter cartridge 100 is indeed filtered (e.g., that water is not able to pass through water filter cartridge 100 without being filtered) , without providing too much resistance to the flow of the water through the cartridge.
In some embodiments, each of the  adsorbent materials  110, 112, 114, 116, 118, and 120 of each respective layer 102-1, 102-2, ..., 102-6 can all be the same shape. For example, in the embodiment illustrated in Figure 1, the adsorbent materials of each respective layer are all a circular shape. However, in some embodiments, the adsorbent materials of different layers can be different shapes. For example, in some embodiments, each of the  adsorbent materials  110, 114, and 118 could be a first shape, and each of the  adsorbent materials  112, 116, and 120 could be a second shape that is different than the first shape.
During the filtering process, water can be input into (e.g., enter) water filter cartridge 100 at the top, and flow through each successive layer 102-1, 102-2, ..., 102-6. As the water flows through each successive layer, heavy metals can be removed from the water, as will be further described herein. The filtered water (e.g., with the heavy metals removed) can then be output from (e.g., exit) water filter cartridge 100 at the bottom after flowing through the last layer.
For example, in the embodiment illustrated in Figure 1, water can be input into water filter cartridge 100 at the top and flow through layer 102-1. The water can then flow through layer 102-2 after flowing through layer 102-1, through layer 102-3 after flowing through layer 102-2, through layer 102-4 after flowing through layer 102-3, through layer 102-5  after flowing through layer 102-4, and through layer 102-6 after flowing through layer 102-5. After flowing through layer 102-6, the water may be filtered, and can be output from water filter cartridge 100.
As water flows through each successive layer 102-1, 102-2, ..., 102-6 of water filter cartridge 100, heavy metals (e.g., heavy metal ions) can be removed from the water (e.g., adsorbed) by the adsorbent materials in that layer. For example, adsorbent materials 110 can adsorb heavy metals found in the water as the water flows through layer 102-1, then adsorbent materials 112 can adsorb heavy metals in the water as the water flows through layer 102-2, then adsorbent materials 114 can adsorb heavy metals in the water as the water flows through layer 102-3, etc.
The heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, water filter cartridge 100 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
The type (or types) of heavy metals removed from the water by the adsorbent materials in each respective layer 102-1, 102-2, ..., 102-6 of water filter cartridge 100 can depend on the type of the adsorbent materials in that layer. For example, different types of adsorbent materials may adsorb different types of heavy metals. For instance, some types of adsorbent materials may be able to adsorb one (e.g., a single) type of heavy metal, and some types of adsorbent materials may be able to adsorb two or more different types of heavy metals.
As such, the type of adsorbent material in each respective layer can be selected based on the type (or types) of heavy metals to be removed from the water. Types of adsorbent materials that can be used in layers 102-1, 102-2, ..., 102-6 can include, for example, aluminum oxide based materials, titanium based materials, iron oxide materials, and/or carbon based materials, among other types of adsorbent materials. For instance, aluminum oxide can remove As and Pb, titanium oxide can  remove As, Pb, Cd, and Hg, zirconia can remove As and Pb, iron oxide can remove As, Cd, and Pb, and modified active carbon can remove Pb. Further, the same type of adsorbent material can be used in layers 102-1 and 102-2, the same type of adsorbent material can be used in layers 102-3 and 102-4, and the same type of adsorbent material can be used in layers 102-5 and 102-6, as previously described herein.
As an example, a first type of adsorbent material that adsorbs a first type of heavy metal can be selected for  adsorbent materials  110 and 112, a second type of adsorbent material that adsorbs a second type of heavy metal can be selected for  adsorbent materials  114 and 116, and a third type of adsorbent material that adsorbs a third type of heavy metal can be selected for  adsorbent materials  118 and 120. In such an example, as water flows through layers 102-1 and 102-2, the first type of heavy metal can be removed from the water by  adsorbent materials  110 and 112. The second type of heavy metal can then be removed from the water by  adsorbent materials  114 and 116 as the water flows through layers 102-3 and 102-4, and the third type of heavy metal can be removed from the water by  adsorbent materials  118 and 120 as the water flows through layers 102-5 and 102-6.
As an additional example, a first type of adsorbent material that adsorbs two types of heavy metals can be selected for  adsorbent materials  110 and 112, a second type of adsorbent material that adsorbs two types of heavy metals can be selected for  adsorbent materials  114 and 116, and a third type of adsorbent material that adsorbs two types of heavy metals can be selected for  adsorbent materials  118 and 120. In such an example, as water flows through layers 102-1 and 102-2,  adsorbent materials  110 and 112 can remove their respective two types of heavy metals from the water.  Adsorbent materials  114 and 116 can then remove their respective two types of heavy metals from the water as the water flows through layers 102-3 and 102-4, and  adsorbent materials  118 and 120 can remove their respective two types of heavy metals from the water as the water flows through layers 102-5 and 102-6. The two  types of heavy metals adsorbed by the first type of adsorbent material (e.g., by adsorbent materials 110 and 112) , the two types of heavy metals adsorbed by the second type of adsorbent material (e.g., by adsorbent materials 114 and 116) , and the two types of heavy metals adsorbed by the third type of adsorbent material (e.g., by adsorbent materials 118 and 120) could all be the same two types of heavy metals, could all be different two types of heavy metals, or some could be the same and some could be different.
Water filtered by water filter cartridge 100 (e.g., water that has flowed through layers 102-1, 102-2, ..., 102-6) can have heavy metal concentration levels as low as or lower than those recommend by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) . For instance, the filtered water can have concentration levels of less than 1 ppb for a number of different heavy metal types, as will be further described herein (e.g., in connection with Figures 2A-2C) .
Although the example water filter cartridge 100 illustrated in Figure 1 includes six layers 102-1, 102-2, ..., 102-6, embodiments of the present disclosure are not limited to this particular example. For example, water filter cartridge 100 may include at least four layers of adsorbent materials in series, with the adsorbent materials in each respective layer in the series being the same type and size, as previously described herein.
The adsorbent materials in the first and last layers in the series can have a different size than each of the adsorbent materials in the respective layer in the series to which the first and last layers are each adjacent. For example, the adsorbent materials in the first layer in the series (e.g., adsorbent materials 110 in layer 102-1 in the example illustrated in Figure 1) can have a smaller size than the adsorbent materials in the second layer in the series (e.g., adsorbent materials 112 in layer 102-2 in the example illustrated in Figure 1) , and the adsorbent materials in the last layer in the series (e.g., adsorbent materials 120 in layer 102-6 in the example illustrated in Figure 1) can have a larger size  than the adsorbent materials in the second to last layer in the series (e.g., adsorbent materials 118 in layer 102-5 in the example illustrated in Figure 1) .
Further, the adsorbent materials in the first and last layers in the series can be the same type of adsorbent material as each of the adsorbent materials in the respective layer in the series to which the first and last layers are each adjacent. For example, the adsorbent materials in the first and second layers in the series can be the same type of adsorbent materials, and the adsorbent materials in the last and second to last layers in the series can be the same type of adsorbent materials.
Continuing in the example, the adsorbent materials in each respective remaining layer in the series (e.g., each respective layer between the first and last layers in the series) can have a different size than each of the adsorbent materials in both layers in the series to which that respective layer is each adjacent. For example, the adsorbent materials in the second layer in the series (e.g., adsorbent materials 112 in layer 102-2 in the example illustrated in Figure 1) can have a larger size than the adsorbent materials in the first layer in the series (e.g., adsorbent materials 110 in layer 102-1 in the example illustrated in Figure 1) and a larger size than the adsorbent materials in the third layer in the series (e.g., adsorbent materials 114 in layer 102-3 in the example illustrated in Figure 1) , the adsorbent materials in the third layer in the series can have a smaller size than the adsorbent materials in the second layer in the series and a smaller size than the adsorbent materials in the fourth layer in the series (e.g., adsorbent materials 116 in layer 102-4 in the example illustrated in Figure 1) , the adsorbent materials in the fourth layer in the series can have a larger size than the adsorbent materials in the third layer in the series and a larger size than the adsorbent materials in the fifth layer in the series (e.g., adsorbent materials 118 in layer 102-5 in the example illustrated in Figure 1) , etc., such that the adsorbent materials in each respective layer in the series alternate between small and large sizes.
Further, the adsorbent materials in each respective remaining layer in the series can be the same type of adsorbent material as each of the adsorbent materials in one of the layers in the series to which that respective layer is adjacent, and can be a different type of adsorbent material than each of the adsorbent materials in the other layer in the series to which than respective layer is adjacent. For example, the adsorbent materials in the second layer in the series can be the same type of adsorbent material as the adsorbent materials in the first layer in the series and a different type of adsorbent material than the adsorbent materials in the third layer in the series, the adsorbent materials in the third layer in the series can be a different type of adsorbent material than the adsorbent materials in the second layer in the series and the same type of adsorbent material as the adsorbent materials in the fourth layer in the series, the adsorbent materials in the fourth layer in the series can be the same type of adsorbent material as the adsorbent materials in the third layer in the series and a different type of adsorbent material than the adsorbent materials in the fifth layer in the series, etc., such that each consecutive pair of small size and large size layers have the same type of adsorbent material.
As an example, water filter cartridge 100 may include eight layers of adsorbent materials in series. The adsorbent materials in the first and second layers in the series can be a type of adsorbent material that can remove (e.g., adsorb) two different types (e.g., a first type and a second type) of heavy metals from the water as it flows through the first and second layers. For instance, the adsorbent materials in the first and second layers can remove As and Pb from the water. Further, the adsorbent materials in the third and fourth layers in the series can be a type of adsorbent material that can remove two different types (e.g., the second type and a third type) of heavy metals from the water as it flows through the third and fourth layers. For instance, the adsorbent materials in the third and fourth layers can remove Pb and Cd from the water. Further, the adsorbent materials in the fifth and sixth layers in the series  can be a type of adsorbent material that can remove one type (e.g., the third type) of heavy metal from the water as it flows through the fifth and sixth layers. For instance the adsorbent materials in the fifth and sixth layers can remove Cd from the water. Further, the adsorbent materials in the seventh and eighth layers in the series can be a type of adsorbent material than can remove two different types (e.g., the first and second types) of heavy metals from the water as it flows through the seventh and eighth layers. For instance, the adsorbent materials in the seventh and eighth layers can remove As and Pb from the water.
In contrast to water filter cartridges of the present disclosure (e.g., water filter cartridge 100) , previous water filter cartridges may only include a single type of adsorbent material of a single size. That is, previous water filter cartridges may only include a single layer of adsorbent materials.
Such previous water filter cartridges may not be as efficient or effective in filtering water as water filter cartridges of the present disclosure. For example, such previous water filter cartridges may not be able to remove as many different types of heavy metals from the water as water filter cartridges of the present disclosure, and/or may not be able to remove the heavy metals from the water to very low concentration levels, such as, for instance, concentration levels as low as or lower than those recommend by the WHO. Further, such previous water filter cartridges may not be able to ensure that all water that passes through the cartridge is indeed filtered (e.g., that not water is able to pass through the cartridge without being filtered) .
Figures 2A-2C illustrate graphs of heavy metal concentration levels in water filtered by a water filter cartridge in accordance with one or more embodiments of the present disclosure. For example, Figure 2A illustrates a graph 230 of arsenic (As) concentration levels in different amounts (e.g., uptakes) of water filtered by a water filter cartridge in accordance with the present disclosure, Figure 2B illustrates a graph 240 of lead (Pb) concentration levels in different amounts water filtered by a  water filter cartridge in accordance with the present disclosure, and Figure 2C illustrates a graph 250 of cadmium (Cd) concentration levels in different amounts of water filtered by a water filter cartridge in accordance with the present disclosure. The water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1.
As shown in Figures 2A-2C, water filtered by a water filter cartridge in accordance with the present disclosure can have concentration levels of less than one part per billion (ppb) for a number of different heavy metal types. For example, as shown in Figure 2A, the concentration of As in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 liters (L) . Further, as shown in Figure 2B, the concentration of Pb in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 L. Further, as shown in Figures 2C, the concentration of Cd in water filtered by a water cartridge in accordance with the present disclosure can be (e.g., remain) less than one ppb for an uptake of at least 6500 L.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are  used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (10)

  1. A water filter cartridge, comprising:
    a first number of adsorbent materials, wherein each of the first number of adsorbent materials is a first type of adsorbent material and has a first size;
    a second number of adsorbent materials, wherein each of the second number of adsorbent materials is the first type of adsorbent material and has a second size that is different than the first size;
    a third number of adsorbent materials, wherein each of the third number of adsorbent materials has a third size and is a second type of adsorbent material that is different than the first type of adsorbent material; and
    a fourth number of adsorbent materials, wherein each of the fourth number of adsorbent materials is the second type of adsorbent material and has a fourth size that is different than the third size.
  2. The water filter cartridge of claim 1, wherein the water filter cartridge further includes:
    a fifth number of adsorbent materials, wherein each of the fifth number of adsorbent materials has a fifth size and is a third type of adsorbent material that is different than the first and second types of adsorbent materials; and
    a sixth number of adsorbent materials, wherein each of the sixth number of adsorbent materials is the third type of adsorbent material and has a sixth size that is different than the fifth size.
  3. The water filter cartridge of claim 1, wherein:
    the second size is larger than the first size; and
    the fourth size is larger than the third size.
  4. The water filter cartridge of claim 1, wherein:
    the first size and the third size are a same size; and
    the second size and the fourth size are a same size that is larger than the first size and the third size.
  5. The water filter cartridge of claim 1, wherein:
    the first size and the third size are different sizes; and
    the second size and the fourth size are different sizes that are each larger than the first size and the third size.
  6. The water filter cartridge of claim 1, wherein:
    the first size and the third size are each a mesh size in the range of 80 to 100, inclusive; and
    the second size and the fourth size are each a mesh size in the range of 20 to 30, inclusive.
  7. The water filter cartridge of claim 1, wherein each of the first, second, third, and fourth number of adsorbent materials are a same shape.
  8. The water filter cartridge of claim 1, wherein at least two of the first, second, third, and fourth number of adsorbent materials are different shapes.
  9. The water filter cartridge of claim 1, wherein at least one of the first and second types of adsorbent materials is an aluminum oxide based material.
  10. The water filter cartridge of claim 1, wherein at least one of the first and second types of adsorbent materials is a titanium based material.
PCT/CN2016/073265 2016-02-03 2016-02-03 Water filter cartridges and methods of filtering water using the same WO2017132854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/073265 WO2017132854A1 (en) 2016-02-03 2016-02-03 Water filter cartridges and methods of filtering water using the same
CN201680084253.9A CN108883346A (en) 2016-02-03 2016-02-03 Water filter filter core and the method for crossing drainage using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073265 WO2017132854A1 (en) 2016-02-03 2016-02-03 Water filter cartridges and methods of filtering water using the same

Publications (1)

Publication Number Publication Date
WO2017132854A1 true WO2017132854A1 (en) 2017-08-10

Family

ID=59499245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073265 WO2017132854A1 (en) 2016-02-03 2016-02-03 Water filter cartridges and methods of filtering water using the same

Country Status (2)

Country Link
CN (1) CN108883346A (en)
WO (1) WO2017132854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221099A1 (en) * 2021-04-14 2022-10-20 Aquaguidance Technologies, Ltd. Sorbent mixtures to remove heavy metals from water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205932A (en) * 1991-08-22 1993-04-27 Nu-Water Systems, Inc. Point-of-use water purification appliance
US20070007201A1 (en) * 2005-07-11 2007-01-11 Honeywell International, Inc. Process reactor with layered packed bed
CN201959605U (en) * 2011-01-24 2011-09-07 南京水杯子分质供水工程有限公司 Multi-functional water purifier filter core
CN202762152U (en) * 2012-08-28 2013-03-06 胜利油田兴通建设工程有限责任公司 Multi-medium oilfield produced water filter
CN105008283A (en) * 2013-11-29 2015-10-28 住友电气工业株式会社 Water treatment device and water treatment method using same
CN204734994U (en) * 2015-06-26 2015-11-04 谢萍 Multiple -layer filtering separates abluent contaminated water filtration apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033752A1 (en) * 1997-12-29 1999-07-08 Povl Kaas A method and a system for purifying water
AU2005233108B2 (en) * 2004-04-13 2011-03-10 Donaldson Company, Inc. Filter cartridge for liquid filtration
CN102452690B (en) * 2010-10-20 2014-09-24 杜也兵 Water processor with pedal device
CN102527109A (en) * 2011-12-14 2012-07-04 盖君阳 Novel energy-saving water treatment filter device
KR20140147623A (en) * 2013-06-20 2014-12-30 임효종 Clean water system and the movement method of salted water and washing water
CN103464102A (en) * 2013-09-23 2013-12-25 北京师范大学 Porous composite adsorbing agent for removing stream substrate sludge contamination and preparation process of agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205932A (en) * 1991-08-22 1993-04-27 Nu-Water Systems, Inc. Point-of-use water purification appliance
US20070007201A1 (en) * 2005-07-11 2007-01-11 Honeywell International, Inc. Process reactor with layered packed bed
CN201959605U (en) * 2011-01-24 2011-09-07 南京水杯子分质供水工程有限公司 Multi-functional water purifier filter core
CN202762152U (en) * 2012-08-28 2013-03-06 胜利油田兴通建设工程有限责任公司 Multi-medium oilfield produced water filter
CN105008283A (en) * 2013-11-29 2015-10-28 住友电气工业株式会社 Water treatment device and water treatment method using same
CN204734994U (en) * 2015-06-26 2015-11-04 谢萍 Multiple -layer filtering separates abluent contaminated water filtration apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221099A1 (en) * 2021-04-14 2022-10-20 Aquaguidance Technologies, Ltd. Sorbent mixtures to remove heavy metals from water

Also Published As

Publication number Publication date
CN108883346A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
Wimalawansa Purification of contaminated water with reverse osmosis: effective solution of providing clean water for human needs in developing countries
Gherasim et al. Investigation of cobalt (II) retention from aqueous solutions by a polyamide nanofiltration membrane
Rodrigues Pires da Silva et al. Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater
EP3371109A1 (en) Methods and systems for treating wastewater via forward osmosis
WO2017132854A1 (en) Water filter cartridges and methods of filtering water using the same
AU2019211004B2 (en) Device for purifying drinking water
Rad et al. Using reverse osmosis membrane for chromium removal from aqueous solution
US8486265B2 (en) Stackable modular ultra pure water machine
CN205856206U (en) A kind of preparation facilities of high purity water
WO2018126475A1 (en) Water purifiers and methods of purifying water using the same
WO2019015676A1 (en) Water purification system
Akbari et al. Determination of nanofiltration efficency in arsenic removal from drinking water
CN105000696A (en) High-efficiency energy-saving internal and external double-circulation type water purifier
KR102301795B1 (en) Household water purifier comprising carbon electrode filter
Azman et al. Forward Osmosis as a Contemporary Treatment Solution for Mitigating Radionuclide Pollution in Water Bodies
Wright et al. Justification, design, and analysis of a village-scale photovoltaic-powered electrodialysis reversal system for rural India
AU2015257406B2 (en) Apparatus, systems, and methods for removing total dissolved solids from a fluid
WO2018129693A1 (en) Water filter cartridge and method of processing the same
CN204097214U (en) Water purification machine
CN208394955U (en) A kind of modified filter core and water purifier
Srinivasan et al. Reverse osmosis units in groundwater based public water supply system in rural eastern Karnataka, India: an analysis
Moore et al. Arsenic removal using oxidative media and nanofiltration
Monnot et al. Activated carbon selection for the adsorption of marine DOC and analysis of DOC fractionation
AU2010253562A1 (en) A method for treating wastewater containing heavy metals
Kullab et al. Removal of toxic compounds from water by membrane distillation (case study on arsenic)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888679

Country of ref document: EP

Kind code of ref document: A1