WO2017131551A1 - Аэростатно-плавательный ветродвигатель - Google Patents

Аэростатно-плавательный ветродвигатель Download PDF

Info

Publication number
WO2017131551A1
WO2017131551A1 PCT/RU2016/000741 RU2016000741W WO2017131551A1 WO 2017131551 A1 WO2017131551 A1 WO 2017131551A1 RU 2016000741 W RU2016000741 W RU 2016000741W WO 2017131551 A1 WO2017131551 A1 WO 2017131551A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
module
cable
aerostat
nacelle
Prior art date
Application number
PCT/RU2016/000741
Other languages
English (en)
French (fr)
Inventor
Александр Владимирович ГУБАНОВ
Олег Александрович ГУБАНОВ
Original Assignee
Александр Владимирович ГУБАНОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Владимирович ГУБАНОВ filed Critical Александр Владимирович ГУБАНОВ
Publication of WO2017131551A1 publication Critical patent/WO2017131551A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present energy device relates to wind turbines, the radial-blade rotor of which has an axis of rotation that coincides with the direction of the wind.
  • the slow-moving nature of the rotation of such rotors (20-45 rpm) requires the use of boosting gears with a gear ratio of 20-52 as part of the nacelles, which is achieved by using planetary multipliers (www.termored.ru/vestas v90.htm.
  • the efficiency of such wind systems can at least 1.5 times the efficiency of wind energy conversion, which is realized by rotors on the rotation axes perpendicular to the direction of air flow.
  • the longitudinal and transverse stability of the air-altitude wind generator (patent RU 2535427 C1, 12.24.2013) is provided by programmed control of the length of the cables connecting the aeronautical part of the device with ground winches.
  • the structure of a high-altitude sailing wind turbine (patent RU 2467201 C2, 20.102010) includes a mooring unit with a rotating platform, which allows the cable controls located on it to deploy simultaneously with the aeronautical part of the installation when the wind direction changes, thereby avoiding twisting and overlapping of cable ties.
  • the essence of the technical solution consists in applying a mechanism with an increased efficiency of converting kinetic wind energy into mechanical energy, which is a radial-blade rotor on the axis of rotation, which coincides with the direction of the air flow.
  • a mechanism with an increased efficiency of converting kinetic wind energy into mechanical energy which is a radial-blade rotor on the axis of rotation, which coincides with the direction of the air flow.
  • the aforementioned rotor with an aerostat module rotates from the outside of the windward end and the possibility of optimizing the design of the last component of the installation in the direction of improving it aerodynamic quality, for which gas-filled cylinders of the module are stacked and fixed transversely on the arc of the arched bridge truss, so that the horizontal projection of the module in The ore has a delta-visible contour oriented to the wind.
  • the profile of the end cylinders was changed to arched and supplemented with a keel, an element was introduced to maintain the longitudinal stability of the aeronautical part of the device due to the presence of a horizontal-plane stabilizer above the stern of the aerostat module.
  • the aim of the invention is the sustainable obtaining of greater wind power in high-speed atmosphere, to the height of which the power unit of the device is delivered using a balloon module.
  • a radial-blade rotor that is mounted on the axis of rotation, coinciding with the direction of the wind and protruding towards the air flow from at least one nacelle, which includes, in addition to the said axis of rotation, a planetary multiplier and generator.
  • a rotor along with the indicated elements of the nacelle, form a power unit, one or more of which is raised to a height of wind speeds from 20-25 m / s using an aerostat module containing gas-filled cylindrical cylinders interconnected so that the module has a horizontal delta -show contour oriented by the longitudinal axis of symmetry to the wind.
  • the same module is stacked and fixed transversely on an arc of an arched bridge truss, in the area of which there is at least one gondola, and on the windward side - a rotor.
  • the end cylinders of the module have an arched profile with vertical walls, rigid bottoms, each equipped with a keel, the height of which increases in the leeward direction.
  • a vertical bracket is installed on the top of the farm; a horizontal-plane stabilizer at its end rises above the stern of the aerostat module.
  • FIG. 1 shows a general view of a balloon-swimming wind turbine
  • FIG. 2 view of the wind turbine from above
  • FIG. 3 aeronautical part of the same device, view from the side of the wind;
  • the wind turbine consists of an aeronautical part and a mooring unit connected by ropes 1 and a cable-cable 2.
  • the aeronautical part includes an aerostat module of gas-filled cylindrical cylinders 3 and end cylinders of arched profile 4, each with keel 5.
  • the cylinders are laid across and fixed on the arc of an arched bridge farm 6, in the area of which at least one gondola 7 with a planetary multiplier and a generator integrated in it is placed, on its axis of rotation, which coincides with the direction of the wind, On the far side of the farm, it is mounted with a radial-vane rotor 8.
  • the mooring unit of the device is a concrete ground curbstone 11 with a freely rotating axis 12 and a platform 13 on which two coaxial winches 14, a cable bay 15 diametrically located to them, are installed leeward.
  • Balloon-wind turbine works as follows. After installation and fastening in the open area of the mooring unit, assembly of the aeronautical part of the device, the cylinders are filled with helium until positive buoyancy is achieved and are balanced in the horizontal plane, the said node and part of the device are connected by cables and cable, which are then slowly etched from winches and cable gland to until under the influence of aerostatic lifting force the module with the power unit reaches the lifting height, where the average annual wind speeds are at least 2 0-25 m / s. At the same time, the aeronautical part of the wind turbine rotates in an air flow along a circular path around the mooring unit and is fixed so that its longitudinal axis of symmetry coincides with the direction of the wind.
  • the aerostat module When the direction of the air flow changes, its pressure acts on the windward side surfaces of the aerostat module, which, together with the supporting and power devices suspended on it, moves to the same place where the wind began to blow.
  • the impact of the wind pressure is amplified and the reorientation of the entire aeronautical structure to the wind is accelerated due to the presence of vertical walls and keel in the end gas-filled elements.
  • the stern of the aerostat module is to describe an arc of a greater length than the bow in space to turn the installation on a changing wind. This is facilitated by the increasing height of each keel towards the stern of the end cylinders, as well as the lateral surface of the vertical support arm of the horizontal plane stabilizer.
  • the reorientation movement is transmitted to the mooring unit through a cable to the winches, from them it enters the freely rotating platform and cable bay.
  • the circular movement of the aeronautical part of the device and the corresponding rotation of the platform of the mooring unit is completed at the moment when the longitudinal axis of symmetry of the aerostat module coincides with the direction of the wind and does not resume without new dynamic changes in the atmosphere.
  • the synchronous nature of the movement of the considered elements of the wind turbine eliminates twisting and overlap of cables and cable cable.
  • the necessary conditions for the good characteristics of a high-altitude wind turbine are the spatial stability of the balloon-swimming system, the invariably optimal position of the rotor axis of rotation in the at least one power unit used. Placing gas-filled cylinders in an arc pointing upward, the presence of aerodynamic surfaces in the module, especially at the end cylinders, creates additional lifting forces and contributes to the spatial stability of the aeronautical part of the installation as a whole and to a solid coincidence of the orientation of the rotor axis of rotation with the wind direction in particular.
  • the horizontal-plane stabilizer does not allow the stern of the aerostat module to rise up, which would have taken place without it the result of the pressure of the wind on the radial-blade rotor.
  • the transverse stability of the device is a delta-shaped contour of the module in horizontal projection, it is also insured from the ground due to the programmed control of the winches and regulation of the length of the cables with their help. The same cables extinguish the reactive moment that occurs as a result of the operation of the radial blade rotor.
  • the wind turbine When used in vast areas of the world exposed to dust storms even with wind speeds ranging from 8-10 m / s, the wind turbine is raised beyond the surface level of 70-150 meters with a high concentration of airborne abrasive particles of the soil, which produce intensive wear of wind energy equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к области ветроэнергетики. Аэростатно-плавательный ветродвигатель содержит тросы, трос-кабель, поворотную платформу, аэростатный модуль положительной плавучести из взаимосвязанных торцами на ветер газонаполненных цилиндрических баллонов уложенных и закрепленных в сборе поперек на дуге арочной мостовой фермы, гондолу, находящуюся в площади фермы, с планетарным мультипликатором и генератором, при этом на гондоле расположен ветряной ротор с осью вращения совпадающей с направлением воздушного потока, аэростатный модуль имеет в горизонтальной проекции дельта-видный контур, сориентированный продольной осью на ветер, концевые баллоны имеют арочный профиль с вертикальными стенками, жестким днищем, оснащенным килем, высота которого увеличивается в подветренную сторону; на вершине фермы установлен вертикальный кронштейн с горизонтально-плоскостным стабилизатором на его конце. Изобретение направлено на повышение ветроэнергетической мощности в скоростных слоях атмосферы.

Description

АЭРОСТАТНО-ПЛАВАТЕЛЬНЫЙ ВЕТРОДВИГАТЕЛЬ
Применяется для генерации энергии ветра в электроэнергию средних и больших мощностей, достигаемых в высотных скоростных слоях атмосферы.
Настоящее энергетическое устройство относится к ветряным двигателям, радиально-лопастной ротор которых имеет ось вращения, совпадающую с направлением ветра.
В ветроэнергетике промышленных мощностей существует проблема высокой долевой стоимости подъема силовых блоков на уровень скоростных ветров с помощью наземных сооружений: тяжелых мачт, башен и колонн на массивных бетонных фундаментах. При строительстве ветрогенератора серии Enercon Е- 126 мощностью 7,58 МВт, генерируемой на высоте 198 метров, понадобилось создать несущую башню весом 2,8 тыс. тонн на фундаменте почти той же массы. При этом сам силовой блок почти на три порядка легче, а именно, 712 тонн (http://5thelement.ru). В результате является актуальным разработка технических решений, основанных на применении иных средств размещения силовых блоков на максимально доступную высоту, в том числе при помощи аэростатных модулей из оболочек, наполненных газом легче воздуха, прежде всего безопасным гелием.
Последние достижения в технологиях и материалах воздухоплавания сделали возможным осуществление дозаправки газонаполняемых оболочек гелием не чаще одного раза в несколько лет, что повышает практические перспективы использования аэростатов в ветроэнергетических целях.
Исследования с применением радиально-лопастного ротора горизонтально- осевого вращения внутри аэростата в виде газонаполненного полого кольца (www.altaerosenergies.com) выявили, что начиная с высоты в 250-300 метров ветер достигает скоростных значений 20-25 м/с, далее начинается резкий и линейно стабильный прирост скорости ветра по мере дальнейшего подъема силового блока. Максимально достигнутая высота аэростатического подъема канадской турбины Altaeros составила 600 метров.
Известен второй вариант надземной ветрогенераторной системы (RU 2457358 С1 , 27.072012), содержащей два раздвинутых газонаполненных оболочковых баллона, находящихся на одном уровне. Оси баллонов параллельны и совпадают с направлением воздушного потока, а в канале между ними установлены поперек ветра горизонтально-осевые роторы с лопастями Савониуса. Как и прочие роторы, чья ось вращения перпендикулярна направлению ветра (например, патенты RU 2537664 С1, 04.02.2014; RU 2572469 С1, 23.12.2014) устройство имеет низкий 0,25-0,30 КПД преобразования кинетической энергии атмосферных потоков в механическую энергию. К недостаткам данных систем относится работа со знакопеременными нагрузками на лопасти роторов, в следствии этого происходит сильная вибрация аэродинамических элементов, что передается на ось вращения и подшипниковые опоры. Роторы в таких устройствах, работая с частотой вращения 120-300 об/мин, являются скоростными, что требует их тщательной динамической балансировки. В числе установок с наветренными радиально-лопастными роторами, чьи оси вращения совпадают с направлением ветра, известны устройства, на несущих мачтах которых установлены гондолы (патенты US 2010/0135794 А1, 03.06.2010; RU 2458246 С1, 31.03.2011), содержащие упомянутую ось вращения, подшипниковые опоры оси, электрогенератор. Тихоходный характер вращения таких роторов (20-45 об/мин) требует использования в составе гондол повышающих редукторов с передаточным отношением 20-52, что достигается применением планетарных мультипликаторов (www.termored.ru/vestas v90.htm . КПД таких ветровых систем может по меньшей мере в 1,5 раза превышать эффективность преобразования энергии ветра, что реализуется роторами на осях вращения, перпендикулярных направлению воздушного потока.
Продольно-поперечная устойчивость аэровысотного ветрогенератора (патент RU 2535427 С1, 24.12.2013) обеспечивается программным управлением длиной тросов, связывающих воздухоплавательную часть устройства с наземными лебедками. В состав высотной парусной ВЭУ (патент RU 2467201 С2, 20.102010) входит причальный узел с поворачивающейся платформой, что позволяет, расположенным на ней, органам управления тросами разворачиваться синхронно с воздухоплавательной частью установки при изменениях направленности ветра, тем самым избегая скручивания и перехлеста тросовых связей.
Сущность технического решения состоит в применении механизма с увеличенным КПД преобразования кинетической энергии ветра в механическую, каковым является радиально-лопастной ротор на оси вращения, совпадающей с направлением воздушного потока. При этом реализуется необходимость совместимости по меньшей мере одного силового блока в виде гондолы, внутри которой размещены планетарный мультипликатор и генератор, а на её оси с внешней стороны наветренного торца вращается упомянутый ротор, с аэростатным модулем и возможность оптимизации конструкции последнего компонента установки в направлении улучшения его аэродинамического качества, для чего газонаполненные баллоны модуля уложены и закреплены поперек на дуге арочной мостовой фермы, так что горизонтальная проекция модуля в сборе имеет дельта-видный контур, сориентированный на ветер. Профиль концевых баллонов изменен на арочный и дополнен килем, введен элемент поддержания продольной устойчивости воздухоплавательной части устройства за счет наличия горизонтально-плоскостного стабилизатора над кормой аэростатного модуля.
Целью изобретения является устойчивое получение большей ветроэнергетической мощности в скоростных слоях атмосферы, на высоту которых силовой блок устройства доставлен при помощи аэростатного модуля.
Поставленная цель достигается использованием радиально-лопастного ротора, что насажен на ось вращения, совпадающую с направлением ветра и выступающую навстречу воздушному потоку из по меньшей мере одной гондолы, включающей в себя кроме упомянутой оси вращения планетарный мультипликатор и генератор. Такой ротор наряду с обозначенными элементами гондолы образуют силовой блок, в одном или более числе поднятый на высоту скоростных от 20-25 м/с ветров с помощью аэростатного модуля, содержащего газонаполненные цилиндрические баллоны, взаимосвязанные в сборе так, что модуль в горизонтальном плане имеет дельта-видный контур, сориентированный продольной осью симметрии на ветер. Тот же модуль уложен и закреплен поперек на дуге арочной мостовой фермы, в площади которой находится по меньшей мере одна гондола, а с наветренной стороны— ротор. Концевые баллоны модуля имеют арочный профиль с вертикальными стенками, жесткими днищами, каждый оснащен килем, высота которого увеличивается в подветренную сторону. На вершине фермы установлен вертикальный кронштейн, горизонтально- плоскостной стабилизатор на его конце возвышается над кормой аэростатного модуля.
На фиг. 1 показан общий вид аэростатно-плавательного ветродвигателя; на фиг. 2 — вид на ветродвигатель сверху; на фиг. 3— воздухоплавательная часть того же устройства, вид со стороны ветра;
Ветродвигатель состоит из воздухоплавательной части и причального узла, соединенных тросами 1 и трос-кабелем 2. В свою очередь воздухоплавательная часть включает в себя аэростатный модуль из газонаполненных цилиндрических баллонов 3 и концевых баллонов арочного профиля 4, каждый с килем 5. Баллоны уложены поперек и закреплены на дуге арочной мостовой фермы 6, в площади которой размещена по меньшей мере одна гондола 7 с встроенными в неё планетарным мультипликатором и генератором, на её ось вращения, совпадающую с направлением ветра, с наветренной стороны фермы насажен радиально-лопастной ротором 8 Над кормой аэростатного модуля с опорой на ферму возвышается вертикальный кронштейн 9, заканчивающийся горизонталь- плоскостным стабилизатором 10. Причальный узел устройства представляет из себя бетонную наземную тумбу 11 со свободно вращающимися осью 12 и платформой 13, на которой подветренно установлены две соосные лебедки 14, диаметрально расположенная к ним кабельная бухта 15.
Аэростатно-плавательный ветродвигатель работает следующим образом. После монтажа и крепления на открытой местности причального узла, сборки воздухоплавательной части устройства баллоны заполняются гелием до достижения положительной плавучести и совместно балансируются в горизонтальной плоскости, упомянутые узел и часть устройства соединяются тросами и трос-кабелем, которые затем медленно стравливаются с лебедок и кабельной бухты до тех пор пока под воздействием аэростатической подъемной силы модуль с силовым блоком не достигнет высоты подъема, где среднегодовые скорости ветра составляют не менее 20-25 м/с. В это же время, воздухоплавательная часть ветродвигателя разворачивается воздушным потоком по круговой траектории вокруг причального узла и фиксируется так, что её продольная ось симметрии совпадает с направлением ветра. Начиная с высоты, где скорость ветра для этого достаточна возникает малая и по мере подъема возрастающая аэродинамическая подъемная сила. Скоростной напор ветра вращает ротор, механическая энергия поступает в планетарный мультипликатор и затем в генератор, где преобразуется в электрическую энергию, направляемую по трос-кабелю через контроллер, аккумуляторную батарею и инвертор к потребителям.
При изменении направленности воздушного потока его напор воздействует на наветренные боковые поверхности аэростатного модуля, который стремится совместно с подвешенными на нем опорными и силовыми устройствами переместиться туда же, куда стал дуть ветер. Воздействие ветряного напора усиливается и переориентация на ветер всей воздухоплавательной конструкции ускоряется благодаря наличия у концевых газонаполненных элементов вертикальных стенок и киля. Корме аэростатного модуля предстоит для разворота установки на переменившийся ветер описать в пространстве дугу большей длины, чем носовой части. Этому способствует увеличивающаяся высота каждого киля по направлению к корме концевых баллонов, а также боковая поверхность вертикального опорного кронштейна горизонтально-плоскостного стабилизатора. Движение переориентации передается на причальный узел через троса к лебедкам, от них поступает на свободно поворачивающуюся платформу и кабельную бухту. Круговое перемещение воздухоплавательной части устройства и соответствующее вращение платформы причального узла завершается в том момент, когда продольная ось симметрии аэростатного модуля совпадет с направлением ветра и не возобновляется без новых динамических изменений в атмосфере. Синхронный характер движения рассмотренных элементов ветродвигателя исключает скручивание и перехлест тросов и трос-кабеля.
Для проведения ремонта и технического обслуживания установки, включая дозаправку баллонов гелием, при штормовых предупреждениях об ожидаемом превышении скоростью ветра критического порога в 45-50 м/с троса и трос- кабель наматываются соответственно на лебедки и кабельную бухту, воздухоплавательная часть устройства снижается к земле, где становится легко доступной, или временно размещается на безопасной высоте допустимых ветров.
Получения большей ветроэнергетической мощности при улучшенном КПД генерации недостаточно, если устройство работает не ровно, с низким качеством производимой электроэнергии. Необходимыми условиями хороших характеристик высотного ветродвигателя являются пространственная устойчивость аэростатно-плавательной системы, неизменно оптимальное положение роторной оси вращения в используемом по меньшей мере одном силовом блоке. Размещение газонаполненных баллонов по дуге, обращенной вершиной вверх, наличие в модуле аэродинамических поверхностей прежде всего у концевых баллонов создает дополнительные подъемные силы и способствует пространственной устойчивости воздухоплавательной части установки в целом и твердому совпадению ориентации оси вращения ротора с направленностью ветра в частности. Горизонтально-плоскостной стабилизатор не дает корме аэростатного модуля приподниматься вверх, что без него имело бы место в результате напора ветра на радиально-лопастной ротор. Поперечной устойчивости устройства служит дельта-видный контур модуля в горизонтальной проекции, она же подстраховывается с земли за счет программного управления лебедками и регулирования с их помощью длиной тросов. Теми же тросами гасится реактивный момент, имеющий место в следствии работы радиально- лопастного ротора.
Применение настоящей аэростатно-плавательной системы особо актуально в климатических зонах, прежде всего континентальных, где среднегодовые скорости ветров на уровне приземного слоя атмосферы высотой до 100 метров слабы и не достаточны для генерации энергии воздушных потоков с достижением ветродвигателями бытовых и промышленно значимых мощностей, а подъем силовых блоков до скоростных ветров (от 300 и более метров) на башенных опорах является делом исключительным по сложности и объему затрат на строительство и даже невозможным на легких грунтах.
Ветродвигатель при его использовании на огромных пространствах регионов мира, подверженных пыльным бурям уже при скорости ветра начиная от 8-10 м/с, поднят за пределы приземного уровня в 70-150 метров с высокой концентрацией взвешенных в воздухе абразивных частиц грунта, производящих интенсивный износ ветроэнергетического оборудования.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Аэростатно-плавательный ветродвигатель, содержащий аэростатный модуль положительной плавучести из взаимосвязанных торцами на ветер газонаполненных цилиндрических баллонов, гондолу с планетарным мультипликатором и генератором, осью вращения, совпадающей с направлением воздушного потока, и на ней ветряной ротор, тросовые и трос-кабельные связи с наземным причальным узлом, на поворачивающейся платформе которого закреплены две лебедки и трос-кабельная бухта, отличающийся тем, что аэростатный модуль имеет в горизонтальной проекции дельта-видный контур, сориентированный продольной осью симметрии на ветер, газонаполненные баллоны в сборе уложены и закреплены поперек на дуге арочной мостовой фермы, проходящей через центр масс воздухоплавательной части ветродвигателя; в площади фермы находится по меньшей мере одна гондола, а на её оси вращения с наветренной стороны данной опорной конструкции — ротор упомянутого типа, концевые баллоны имеют арочный профиль с вертикальными стенками, жестким днищем, оснащенным килем, высота которого увеличивается в подветренную сторону; на вершине фермы установлен вертикальный кронштейн, горизонтально-плоскостной стабилизатор на его конце возвышается над кормой аэростатного модуля.
PCT/RU2016/000741 2016-01-26 2016-11-01 Аэростатно-плавательный ветродвигатель WO2017131551A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016102233 2016-01-26
RU2016102233/06A RU2602650C1 (ru) 2016-01-26 2016-01-26 Аэростатно-плавательный ветродвигатель

Publications (1)

Publication Number Publication Date
WO2017131551A1 true WO2017131551A1 (ru) 2017-08-03

Family

ID=57760124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000741 WO2017131551A1 (ru) 2016-01-26 2016-11-01 Аэростатно-плавательный ветродвигатель

Country Status (2)

Country Link
RU (1) RU2602650C1 (ru)
WO (1) WO2017131551A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639419C1 (ru) * 2017-01-10 2017-12-21 Александр Владимирович Губанов Аэростатно-привязная ветротурбина
RU2729306C1 (ru) * 2020-02-14 2020-08-05 Александр Владимирович Губанов Аэроэнергостат катамаранный

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1509560A1 (ru) * 1987-09-02 1989-09-23 Ч.-К.А. Будрёвич Ветродвигатель
US5435259A (en) * 1988-10-13 1995-07-25 Labrador; Gaudencio A. Rein-deer kite and its control systems
RU103577U1 (ru) * 2010-09-30 2011-04-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" Ветровая энергоустановка
RU2464447C2 (ru) * 2010-11-02 2012-10-20 Региональный некоммерческий фонд поддержки и развития петербургской науки, культуры и спорта Высотная парусная ветроэнергетическая установка с боковым дополнительным канатом и аэростатом

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU8970A1 (ru) * 1927-08-11 1929-04-30 Б.Б. Кажинский Высотна ветросилова электроустановка
CN201650587U (zh) * 2010-05-04 2010-11-24 李世展 圈式水浮旋风力机
KR101214277B1 (ko) * 2011-07-01 2012-12-20 우정택 지상 발전기를 구비하는 공중풍력 발전장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1509560A1 (ru) * 1987-09-02 1989-09-23 Ч.-К.А. Будрёвич Ветродвигатель
US5435259A (en) * 1988-10-13 1995-07-25 Labrador; Gaudencio A. Rein-deer kite and its control systems
RU103577U1 (ru) * 2010-09-30 2011-04-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" Ветровая энергоустановка
RU2464447C2 (ru) * 2010-11-02 2012-10-20 Региональный некоммерческий фонд поддержки и развития петербургской науки, культуры и спорта Высотная парусная ветроэнергетическая установка с боковым дополнительным канатом и аэростатом

Also Published As

Publication number Publication date
RU2602650C1 (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
US7129596B2 (en) Hovering wind turbine
EP1483501B1 (en) Method of extracting energy from wind turbines with a plurality of rotors
RU2576103C1 (ru) Аэростатно-плавательный ветрогенератор
Tong Fundamentals of wind energy
US4302684A (en) Free wing turbine
RU2703863C1 (ru) Аэроэнергостат
CN102177335A (zh) 空浮稳定的风力涡轮机系统
CN103291551B (zh) 一种整体偏航式海上漂浮风电场
EP3184813B1 (en) Offshore floating infrastructure for exploiting wind energy
WO2014036810A1 (en) A tethered airborne wind power generator system
RU2662101C1 (ru) Аэростат ветроэнергетический
RU2602650C1 (ru) Аэростатно-плавательный ветродвигатель
RU2537664C1 (ru) Аэростатный ветрогенератор
EP3715623A1 (en) Power device for increasing low flow rate
RU2594827C1 (ru) Аэростатное крыло ветроэнергетического назначения
RU2572469C1 (ru) Аэроплавательный виндротор
RU2638237C1 (ru) Наземно-генераторный ветродвигатель
RU2482328C1 (ru) Поливиндроторный энергоблок
RU2612492C1 (ru) Наземно - генераторный воздухоплавательный ветродвигатель
CN101089387A (zh) 大型垂直轴风力发电设备
RU2671667C1 (ru) Аэроэнергостат наземно-генераторный
RU2656521C1 (ru) Аэровысотная ветроэнергетическая установка со сдвоенным виндротором
KR20100118622A (ko) 풍력 발전 장치
RU2729306C1 (ru) Аэроэнергостат катамаранный
CN102472252A (zh) 高空风力发电系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888333

Country of ref document: EP

Kind code of ref document: A1