WO2017131366A1 - 발광 소자 및 그 제조방법 - Google Patents

발광 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2017131366A1
WO2017131366A1 PCT/KR2017/000379 KR2017000379W WO2017131366A1 WO 2017131366 A1 WO2017131366 A1 WO 2017131366A1 KR 2017000379 W KR2017000379 W KR 2017000379W WO 2017131366 A1 WO2017131366 A1 WO 2017131366A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
electrode
active layer
manufacturing
Prior art date
Application number
PCT/KR2017/000379
Other languages
English (en)
French (fr)
Inventor
김도환
강문성
박상식
공석환
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160134181A external-priority patent/KR101876436B1/ko
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to US16/072,682 priority Critical patent/US10411216B2/en
Publication of WO2017131366A1 publication Critical patent/WO2017131366A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a light emitting device and a manufacturing method.
  • the transparent electrode material is embedded in the elastomeric material to impart elasticity to the electrode which minimizes the deterioration of electrical properties during tensile deformation, or disperse the light emitting material in the stretchable elastic polymer material. It gives elasticity.
  • the conventional stretchable light emitting device has a low light emitting elongation range of around 100%, requires a high driving voltage, and has a problem in that electrical properties and light emission intensity are lowered at the same time as elongation. Therefore, application of a higher voltage is required to obtain the same emission intensity as the non-stretchable element.
  • Korean Unexamined Patent Publication No. 10-2012-0017779 (name of the invention: a flexible organic light emitting device and a method of manufacturing the same) is a polymer anode layer formed on a flexible substrate, an electroluminescent layer formed on the polymer anode layer, formed on the electroluminescent layer Disclosed is a method of manufacturing a flexible organic light emitting device by performing an electric field annealing on a FOLED device including an electron injection layer and a cathode layer formed on the electron injection layer.
  • Some embodiments of the present invention aim to provide a flexible and stretchable light emitting device and a method of manufacturing the same.
  • the light emitting device includes an active layer comprising a luminescent material, an ionic material, and a polymer matrix, the active layer is compressible and stretchable, and The emission intensity is maintained or increased in accordance with the elongation rate.
  • the method of manufacturing a light emitting device comprises the steps of forming a first electrode; Forming an active layer in which the luminescent material, the ionic material, and the polymer matrix are mixed on the first electrode; And forming a second electrode on top of the active layer.
  • the active layer is compressible and stretchable, and is formed to maintain or increase the light emission intensity according to the compressive and elongation rates.
  • the light emitting device manufactured according to the embodiment of the present invention is flexible and has flexibility, and is applicable to a flexible electronic device such as a flexible light source.
  • the light emitting device manufactured according to an embodiment of the present invention is applicable as a tactile, pressure sensor that detects external stimuli such as pressure and stress directly related to the deformation of the device and shows them as a visual signal.
  • the light emitting device manufactured according to the embodiment of the present invention can be driven at a low voltage, and due to the excellent processability of the polymer material, a very thin and light emitting device can be manufactured.
  • FIG. 1 is a view schematically showing a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a polymer matrix and an ionic material contemplated in one embodiment of the present invention.
  • FIG 3 is a view for explaining a light emitting principle of a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a photograph and a driving condition graph of an emission state of a light emitting device manufactured according to an exemplary embodiment of the present invention.
  • FIG. 6 is a photograph photographing the change in the light emission intensity according to the elongation rate of the light emitting device manufactured according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a change in light emission intensity according to the pressure applied to the light emitting device manufactured according to an embodiment of the present invention and the elongation rate of the light emitting device.
  • FIG. 1 is a view schematically showing a light emitting device according to an embodiment of the present invention.
  • the first electrode 110 and the second electrode 120 are conductive materials and apply a voltage to the active layer 200.
  • at least one of the first electrode 110 and the second electrode 120 may be formed of a light transmissive material.
  • the first electrode 110 and the second electrode 120 may include a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), or a combination thereof.
  • the first electrode 110 and the second electrode 120 is a carbon electrode including graphene, carbon nanotubes (CNT), etc., a metal nanowire film in the form of a mesh, a metal grid, and indium It may be formed of a metal oxide electrode such as indium tin oxide (ITO).
  • the material forming the first electrode 110 and the second electrode 120 is one example and is not limited thereto.
  • first electrode 110 and the second electrode 120 is elastic and elastic, for example, may be formed by a method such as embedding (embedding), buckling (buckling), but is not limited thereto. no.
  • the active layer 200 formed between the first electrode 110 and the second electrode 120 emits light directly, and has physical and mechanical properties.
  • the active layer 200 may include a light emitting material, an ionic material, and a polymer matrix.
  • an elastomer such as a thermoplastic / thermosetting elastomer may be used.
  • the thermoplastic elastomer may include, for example, any one of a thermoplastic polyurethane, a stadie-butadiene copolymer (styrene-butadiene rubber (SBR), and an ethylene-propylene rubber (EPR), but is not limited thereto. It doesn't happen.
  • the thermosetting elastomer may include, for example, one of thermosetting polyurethane and polydimethylsiloxane (PDMS), but is not limited thereto.
  • the light emitting material may be an ionic or neutral transition metal complex, a light emitting organic semiconductor, a quantum dot material, or the like.
  • An example of the transition metal compound may include ruthenium (Ru) and iridium (Ir).
  • the luminescent material is tris (2,2'-bipyridine) ruthenium (II) hexafluorophosphate [Ru (bpy) 3 (PF 6 ) 2 ], tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) bis (hexafluorophosphate) [Ru (dp-phen) 3 (PF 6 ) 2 ], bis (2-phenylpyridine) (2,2'-dipyridine) -iridium (III) hexafluorophosphate [Ir (ppy) 2 (bpy ) PF 6 ], bis (2-phenylpyridine) (4,4'-di-tert-butyl-2,2'-dip
  • the light emitting organic semiconductor may include a conjugated organic semiconductor capable of emitting light such as a light emitting monomolecule and a light emitting polymer.
  • luminescent organic semiconductors include rubrene, anthracene, decycloxyphenyl substituted poly (1,4-phenylene vinylene [Super yellow], poly (2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene) [MEH -PPV], poly (2-methoxy-5- (3 ', 7'-dimethyloctyloxy) -1,4-phenylenevinylene) [MEMO-PPV], poly (9,9-dioctylfluorene-alt-benzothiadiazole [F8BT] It may be to include one, but is not limited thereto.
  • the quantum dot material And at least one of inorganic compounds of the "Group 13-15", “Group 12-16", and “Group 14-16” elements.
  • the quantum dot material may include any one of CdSe, CdS, ZnSe, InP, PbS, and PbSe, but is not limited thereto.
  • FIG. 2 is a diagram illustrating an example of a polymer matrix and an ionic material contemplated in one embodiment of the present invention.
  • X represents halogen
  • M represents an alkali metal element
  • R represents aliphatic, aromatic hydrocarbons and functional groups. May be any one of
  • the polymer matrix may be a thermoplastic polyurethane.
  • the thermoplastic polyurethane is composed of a segmented block copolymer composed of a hard segment of a rigid molecular structure and a soft segment of a flexible molecular structure.
  • the ratio of the hard segment and the soft segment may be variously controlled.
  • Hard segments have a glass transition temperature (Tg) higher than room temperature. Accordingly, physical crosslinking points are formed between the hard segments exhibiting glassy properties due to crystal formation, hydrogen bonding, or van der Waals force bonding.
  • Soft segments on the other hand, have a glass transition temperature lower than room temperature. Thus, important properties (ie, high draw ratio, high modulus, and high elastic recovery rate, etc.) to be exhibited are given to elastic bodies exhibiting rubbery properties. Therefore, the light emitting device 10 according to the embodiment of the present invention has elasticity and flexibility.
  • the ionic material includes a cation or an anion, and the ionic material may be a solid electrolyte or a liquid electrolyte.
  • the liquid electrolyte does not include a solvent
  • the liquid electrolyte may be a material composed of only cations and anions present as a liquid at room temperature.
  • the solid electrolyte may be a polymer electrolyte including an ion conductive polymer and an alkali salt, or may be a solid salt itself.
  • the polymer material of the solid electrolyte includes, but is not limited to, any one of Polyethylene oxide [PEO], Poly acrylonitrile [PAN], Poly vinylidene fluoride [PVDF], and Poly methyl methacrylate [PMMA].
  • Segments included in the polymer matrix may partition a region in the active layer 200 and may sequester cations or anions included in the ionic material.
  • the segments may cause structural changes as well as the orientation of the segments when subjected to an external force.
  • a potential difference is applied to the first electrode 110 and the second electrode 120
  • cations and anions included in the ionic liquid of the active layer 200 move to the periphery of the electrode.
  • a DC voltage or an AC voltage may be applied to the first electrode 110 and the second electrode 120.
  • the cations included in the ionic liquid in the active layer 200 are transferred to the first electrode 110.
  • the negative ions move to the second electrode 120.
  • the species of the reduced state by obtaining electrons from the electrode increases.
  • the cations included in the ionic liquid move to the first electrode 110 to maintain electrical neutrality.
  • the species in the oxidized state increases by giving electrons to the electrode.
  • the negative ions contained in the ionic liquid move to the second electrode 120 to maintain electrical neutrality.
  • FIG 3 is a view for explaining a light emitting principle of a light emitting device according to an embodiment of the present invention.
  • the ionic transition metal complex may be tris (2,2'-bipyridine) ruthenium (II) Hexafluorophosphate, Ru (bpy) 3 (PF 6 ) 2 ) have.
  • the active layer 200 may include a cationic, anionic and ionic ruthenium (Ru + 2).
  • a positive voltage may be applied to the first electrode 110 and a negative voltage may be applied to the second electrode 120.
  • the Ru 2 + ions present in the vicinity of the first electrode 110 is obtained for E-going reduction reaction that Ru 1 +, Ru 2 + ions present in the vicinity of the second electrode 120 is an electron the lost Ru 3 + oxidation reaction takes place is. Thereafter, after Ru 1 + ions and Ru 3 + ions are coupled and excited, the light is returned to the stabilized state.
  • a negative voltage may be applied to the first electrode 110, a positive voltage may be applied to the second electrode 120, and a negative voltage or a positive voltage is crossed and applied. Can be.
  • an oxidation reaction may occur at the first electrode 110 and a reduction reaction may occur at the second electrode 120. That is, the oxidation / reduction reaction occurring at the first electrode 110 or the second electrode 120 may vary depending on the application of the voltage, and is not limited to any one reaction.
  • the light emitting device 10 has a feature that the intensity of light emission is increased when a pressure is applied from the outside or a tensile force is applied to the active layer 200. Specifically, as the external pressure or tensile force is applied, the shapes of the segments partitioning the inside of the active layer 200 are changed, and the ions that are isolated inside the segments are released to the outside. Accordingly, it is more ions existing in the vicinity of the first electrode 110 and second electrode 120, is increased the oxidation / reduction of the reaction rate of the Ru 2 + ions increases the intensity of light emission.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention in detail.
  • the method of manufacturing the light emitting device 10 may include forming a first electrode (S110); Forming an active layer on an upper surface of the first electrode (S120); And forming a second electrode on the top surface of the active layer (S130).
  • the order of forming the first electrode of FIG. 4 (S110), forming the active layer (S120), and forming the second electrode (S130) is limited to the order shown in FIG. 4. It doesn't work.
  • the first electrode may be first formed on the substrate to facilitate handling.
  • the substrate is generally used for a semiconductor device, glass, quartz (quartz), silicon (Si), germanium (Ge) and the like can be used.
  • the first electrode 110, the active layer 200, and the second electrode 120 may be disposed in contact with each other in order, and the substrate may be removed.
  • the active layer 200 is formed between the first electrode 110 and the second electrode 120, the arrangement order of the first electrode 110 and the second electrode 120 is not limited.
  • the first electrode 110 may be formed on the first substrate.
  • a conductive material is formed on the first substrate.
  • a method of forming a conductive material on the first substrate may include thermal evaporation, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), low pressure CVD (LPCVD). ), Physical vapor deposition (PVD), sputtering, or atomic layer deposition (ALD) can be formed by any one of the deposition method.
  • the conductive material may be formed by electrospinning methods such as spray coating or vacuum filtering, depending on the transfer or conditions.
  • the first electrode 110 is formed by patterning the conductive material using a photolithography or e-beam lithography process.
  • the active layer 200 may be disposed on the first electrode 110.
  • the active layer 200 may be formed by a molding method, an etching process, spin coating, or the like by photo curing or thermal curing.
  • a mixed solution in which a thermoplastic polyurethane, an ionic liquid, and a transition metal compound are mixed can be prepared.
  • the mixed solution is injected into a mold having a concavo-convex structure and cured to generate the active layer 200, and then the active layer 200 is separated from the mold.
  • the second electrode 120 is formed on the upper surface of the active layer (S130), similarly to forming the first electrode (S110), first, a conductive material is formed on the second substrate and then patterned to form the second electrode 120. To form. Next, the second electrode 120 is disposed such that the surfaces of the active layer 200 and the second electrode 120 contact each other, and then the second substrate is removed. The second electrode 120 may be formed on the active layer 200 without the second substrate.
  • the reason why the first electrode 110 and the second electrode 120 are formed on the first substrate and the second substrate is merely for handling, and in some cases, the first electrode 110 and the first electrode without the substrate may be used. It is possible to form the two electrodes 120.
  • the first substrate and the second substrate may be formed of a light transmissive material.
  • the light transmissive material may include any one of glass, ceramic, silicon, rubber, and plastic, but is not limited thereto.
  • FIG. 5 is a photograph and a driving condition graph of a light emitting state of a light emitting device manufactured according to an embodiment of the present invention
  • FIG. The picture taken. 7 is a graph showing a change in light emission intensity according to the pressure applied to the light emitting device manufactured according to the embodiment of the present invention and the elongation rate of the light emitting device.
  • the light emitting device 10 manufactured according to the embodiment of the present invention described above has a high drawing ratio, a high elastic modulus, a high elastic recovery rate, and the like.
  • the light emitting device having flexibility and flexibility according to an embodiment of the present invention is driven when a voltage is applied, and may be alternating current or direct current driving at a low voltage.
  • the light emitting device 10 when the external pressure or tensile force is applied, the shape of the segments partitioning the inside of the active layer 200 is changed inside the segment. Isolated ions are released out of the segment. As a result, more ions are present around the first electrode 110 and the second electrode 120, and the redox reaction rate of the transition metal complex is increased to increase the intensity of light emission.
  • the light emitting state can be confirmed.
  • a light emitting layer is inserted between a gold (Au) electrode and an indium tin oxide (ITO) electrode, and an alternating voltage ( ⁇ 3 V) of 60 Hz is applied to the light emitting device P10. It was shown to be driven.
  • ⁇ 3 V indium tin oxide
  • FIG. 5 (b) as the driving voltage increases under the 2.5 to 3.0 ⁇ V It can be seen that the luminance of the light emitting device P10 is increased.
  • the configuration and driving conditions of the light emitting device P10 are not limited thereto.
  • the normalized light intensity (that is, the light emission intensity) ) Is increased.
  • the tensile force is applied to the light emitting device, as shown in FIG. 7B, as the strain of the active layer of the light emitting device increases (eg, as the elongation percentage increases), the normalized light intensity increases.
  • the strain refers to a value expressed as a ratio of an increased or decreased length with respect to the original length when an object is subjected to tension or compression.
  • the tactile sensor As such, by using the feature of increasing the light emission intensity in accordance with the increase in the external force of the light emitting device 10 manufactured according to an embodiment of the present invention, it can be applied to the tactile sensor, pressure and stress sensor.
  • An example is a sensor that visualizes the change in pressure resulting from joint motion in the form of light brightness.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

발광 소자 및 그 제조 방법이 제공되며, 발광 소자는 발광성 물질, 이온성 물질, 및 고분자 매트릭스를 포함하는 활성층을 포함하되, 활성층은 압축 및 신장이 가능하며, 활성층에 대한 압력 및 상기 활성층의 신장률 중 적어도 하나에 따라 발광 세기가 변화하도록 형성된 것이다.

Description

발광 소자 및 그 제조방법
본 발명은 발광 소자 및 제조방법에 관한 것이다.
기존의 광원은 구성 소재의 단단하며 유연하지 못하다는 물리적 및 기계적 특성에 의해 유연한 소자로서의 적용에 한계가 있었다. 최근에는 유연한 전자 소자를 제공하기 위하여 변형할 수 있는(deformable), 신축성 있는(stretchable) 광원이 각광 받고 있다.
현재 발광 소자에 신축성을 부여하기 위한 연구가 진행되고 있다. 종래의 신축성을 지닌 발광 소자의 경우 투명 전극 물질을 탄성 고분자 물질에 임베딩(embedding)함으로써 인장 변형 시 전기적 특성의 저하가 최소화된 전극에 탄성을 부여하거나, 발광물질을 신축성을 지닌 탄성 고분자 물질에 분산시켜 신축성을 부여하고 있다.
그러나, 종래의 신축 가능한 발광 소자는, 발광 가능한 신장률이 100% 전후의 낮은 범위를 가지며, 높은 구동 전압을 요구하고, 신장과 동시에 전기적 특성 및 발광 세기가 낮아지는 문제점이 있다. 따라서, 비신축 소자와 동일한 발광 세기를 얻기 위해 더 높은 전압의 인가가 요구된다.
이와 관련하여, 한국 공개 특허공보 제10-2012-0017779호(발명의 명칭: 유연성 유기발광 소자 및 그 제조방법)는 유연성 기판 위에 형성된 폴리머 애노드층, 폴리머 애노드층 위에 형성된 전계 발광층, 전계 발광층 위에 형성된 전자 주입층 및 전자주입층 위에 형성된 캐소드층을 포함하는 FOLED 소자에 전기장 어닐링을 실시하여 유연성 유기발광 소자를 제조하는 방법에 대해 개시하고 있다.
본 발명의 일부 실시예는 유연하고 신축 가능한 발광 소자 및 그 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명의 일부 실시예는 저전압에서 구동 가능한 발광 소자를 제공하는 것을 목적으로 한다.
다만, 본 실시 예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면에 따른 발광 소자는 발광성 물질, 이온성 물질, 및 고분자 매트릭스를 포함하는 활성층을 포함하되, 활성층은 압축 및 신장 가능하며, 압축 및 신장률에 따라 발광 세기가 유지 또는 증가하는 것이다.
또한, 본 발명의 다른 측면에 따른 발광 소자의 제조 방법은 제 1 전극을 형성하는 단계; 제 1 전극의 상부에, 발광성 물질, 이온성 물질, 및 고분자 매트릭스가 혼합된 활성층을 형성하는 단계; 및 활성층의 상부에 제 2 전극을 형성하는 단계를 포함한다. 이때, 활성층은 압축 및 신장 가능하며, 압축 및 신장률에 따라 발광 세기가 유지 또는 증가하도록 형성된다.
본 발명의 일 실시예에 따라 제조된 발광 소자는 유연하고 신축성을 지니며, 플렉서블 광원과 같은 유연한 전자 소자에 적용가능 하다.
또한, 본 발명의 일 실시예에 따라 제조된 발광 소자는 소자의 변형과 직접 관련된 압력 및 응력 등의 외부자극을 감지하여 시각적 신호로 보여주는 촉각, 압력 센서로서 적용가능 하다.
또한, 본 발명의 일 실시예에 따라 제조된 발광 소자는 저전압에서 구동 가능하며, 고분자 소재의 우수한 가공성으로 인해 매우 얇고, 가벼운 발광 소자를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에서 고려되는 고분자 매트릭스 및 이온성 물질의 일례를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 발광 소자의 발광 원리를 개략적으로 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 발광 소자의 제조 방법을 설명하기 위한 순서도이다.
도 5는 본 발명의 일 실시예에 따라 제조된 발광 소자의 발광 상태를 촬영한 사진 및 구동 조건 그래프이다.
도 6은 본 발명의 일 실시예에 따라 제조된 발광 소자의 신장률에 따른 발광 세기 변화를 촬영한 사진이다.
도 7은 본 발명의 일 실시예에 따라 제조된 발광 소자에 가해지는 압력 및 발광 소자의 신장률에 따른 발광 세기 변화를 나타내는 그래프이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 도면을 참고하여 본 발명의 일 실시예에 따른 발광 소자 및 제조 방법을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 발광 소자(10)는 제 1 전극(110), 제 2 전극(120), 및 제 1 전극(110)과 제 2 전극(120) 사이에 형성된 활성층(200)을 포함한다.
제 1 전극(110) 및 제 2 전극(120)은 전도성 물질로서, 활성층(200)에 전압을 인가한다. 또한, 제 1 전극(110) 및 제 2 전극(120) 중 적어도 어느 하나는 빛 투과성 물질로 형성될 수 있다. 제 1 전극(110) 및 제 2 전극(120)은 알루미늄(Al), 금(Au), 백금(Pt), 니켈(Ni) 등의 금속 혹은 이들의 조합으로 이루어진 것을 포함할 수 있다. 또한, 1 전극(110) 및 제 2 전극(120)은 그래핀(graphene), 탄소나노튜브(carbon nano tube, CNT) 등을 포함한 탄소전극, 매쉬 형태의 금속 나노와이어 필름, 금속 그리드, 및 인듐 주석 산화물(indium tin oxide, ITO)과 같은 금속 산화물 전극으로 형성될 수 있다. 이러한 1 전극(110) 및 제 2 전극(120)을 형성하는 물질은 하나의 일례로서 이에 제한되는 것은 아니다.
또한, 제 1 전극(110) 및 제 2 전극(120)은 신축성 및 탄성을 지니는 것으로, 일례로, 임베딩(embedding), 버클링(buckling) 등과 같은 방법에 의해 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.
제 1 전극(110) 및 제 2 전극(120) 사이에 형성된 활성층(200)은 직접적으로 발광하며, 이때 물리적 특성 및 기계적 특성을 갖는다. 이때 활성층(200)은 발광성 물질, 이온성 물질, 및 고분자 매트릭스(matrix)를 포함할 수 있다.
고분자 매트릭스는 열가소성/열경화성 탄성중합체 등의 탄성체가 사용될 수 있다. 열가소성 탄성중합체는 일례로 열가소성 폴리우레탄, 스타디엔-부타디엔 공중합체 (styrene-butadiene rubber, SBR), 에틸렌-프로필렌 공중합체 (elthylene-propylene rubber, EPR) 중 어느 하나를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다. 열경화성 탄성중합체는 일례로 열경화성 폴리우레탄, 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 중 어느 하나를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다.
발광성 물질은 이온성 또는 중성 전이금속 착화합물(ionic or neutral transition metal complex), 발광성 유기 반도체, 양자점 물질 등이 사용될 수 있다. 전이금속 화합물의 일례로 루테늄(ruthenium, Ru), 이리듐(iridium, Ir)을 포함하는 것일 수 있다. 예를 들어, 발광성 물질은, tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate [Ru(bpy)3(PF6)2], tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) bis(hexafluorophosphate) [Ru(dp-phen)3(PF6)2], bis(2-phenylpyridine)(2,2'-dipyridine)-iridium(III) hexafluorophosphate [Ir(ppy)2(bpy)PF6], bis(2-phenylpyridine)(4,4'-di-tert-butyl-2,2'-dipyridyl)-iridium(III) hexafluorophosphate [Ir(dtbbpy)(ppy)2PF6], 4,4'-di-tert-butyl-2,2'-dipyridyl-bis[2-(2',4'-difluorophenyl)pyridine]-iridium(III) hexafluorophosphate [Ir(ppy-F2)2(dtb-bpy)PF6] 중 어느 하나를 포함하는 것일 수 있으며, 이에 제한 되는 것은 아니다.
또한, 발광성 유기 반도체는 발광성 단분자, 발광성 고분자 등의 발광이 가능한 공액형 유기 반도체를 포함하는 것일 수 있다. 예를 들어, 발광성 유기 반도체는, rubrene, anthracene, decycloxyphenyl substituted poly(1,4-phenylene vinylene [Super yellow], poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) [MEH-PPV], poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene) [MEMO-PPV], poly(9,9-dioctylfluorene-alt-benzothiadiazole [F8BT] 중 어느 하나를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다.
또한, 양자점 물질은 "13-15 족", "12-16 족" 및 "14-16 족" 원소의 무기 화합물 중 적어도 하나를 포함하는 것일 수 있다. 예를 들어, 양자점 물질은 CdSe, CdS, ZnSe, InP, PbS, PbSe 중 어느 하나를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다.
도 2는 본 발명의 일 실시예에서 고려되는 고분자 매트릭스 및 이온성 물질의 일례를 도시한 도면이다.
도 2에 도시된 "X"는 할로겐(halogen)을 나타내고, "M"은 알칼리 금속 원소를 나타내며, "R"과 "R'"은 지방족(aliphatic), 방향족(aromatic) 탄화수소 및 작용기(functional group) 중 어느 하나일 수 있다.
도 2의 (a)에 도시된 바와 같이, 고분자 매트릭스는 열가소성 폴리우레탄일 수 있다. 이때, 열가소성 폴리우레탄은 경직한 분자 구조의 하드 세그먼트(hard segment)와 유연한 분자 구조의 소프트 세그먼트(soft segment)로 이루어진 세그먼티드 블록 공중합체(segmented block copolymer)로 구성된다. 이때, 하드 세그먼트와 소프트 세그먼트의 비율은 다양하게 제어될 수 있다.
하드 세그먼트는 상온보다 높은 유리전이온도(glass transition temperature, Tg)를 가진다. 따라서, 유리질(glassy) 성질을 나타내는 하드 세그먼트간에 결정형성, 수소 결합 또는 반데르발스 힘 결합 등으로 인하여 물리적인 가교점이 형성된다. 반면, 소프트 세그먼트는 상온보다 낮은 유리전이온도를 가진다. 따라서, 러버리(rubbery)한 성질을 나타내는 탄성체가 나타내야 할 중요한 성질들( 즉, 높은 연신비, 높은 탄성률, 및 높은 탄성 회복률 등)이 부여된다. 따라서, 본 발명의 일 실시예에 따른 발광 소자(10)는 신축성 및 유연성을 가진다.
도 2의 (b)에 도시된 바와 같이, 이온성 물질은 양이온 또는 음이온을 포함하며,이온성 물질은 고체 전해질 또는 액체 전해질일 수 있다.
액체 전해질은 용매를 포함하지 않음에도 불구하고, 상온에서 액체로 존재하는 양이온과 음이온으로만 구성된 물질일 수 있다.
고체 전해질은 이온전도가 가능한 고분자와 알칼리염을 포함한 고분자 전해질이거나, 고체 염 자체 일 수 있다. 고체 전해질의 고분자 물질은 Poly ethylene oxide [PEO], Poly acrylonitrile [PAN], Poly vinylidene fluoride [PVDF], Poly methyl methacrylate [PMMA] 중 어느하나를 포함하는 것이며, 이에 제한된 것은 아니다.
상술한 고분자 매트릭스에 포함된 세그먼트들은 활성층(200)의 내부에서 구역을 구획하고, 이온성 물질에 포함되는 양이온 또는 음이온들을 격리할 수 있다. 또한, 세그먼트들은 외력을 받으면 세그먼트의 배향(orientation)뿐만 아니라 구조의 변화를 일으킬 수 있다.
이하, 본 발명의 일 실시예에 따른 발광 소자(10)의 발광 원리를 상세히 설명하도록 한다.
제 1 전극(110) 및 제 2 전극(120)에 전위차가 인가되면, 활성층(200)의 이온성 액체에 포함된 양이온 및 음이온들은 전극의 주변으로 이동하게 된다. 예를 들어, 제 1 전극(110) 및 제 2 전극(120)에는 직류 전압 또는 교류 전압이 인가될 수 있다. 이때, 제 1 전극(110)에 양의 전압이 인가되고, 제 2 전극(120)에 음의 전압을 인가하면, 활성층(200) 내부의 이온성 액체에 포함된 양이온은 제 1 전극(110)으로 이동하고, 음이온은 제 2 전극(120)으로 이동하게 된다. 구체적으로, 제 1 전극(110)의 주변에서는 전극으로부터 전자를 얻어 환원된 상태의 화학종이 증가한다. 따라서, 이온성 액체에 포함된 양이온은 전기적 중성을 유지하기 위해서, 제 1 전극(110)으로 이동하게 된다. 반면, 제 2 전극(120)의 주변에서는 전극에 전자를 주고 산화된 상태의 화학종이 증가하게 된다. 따라서, 이온성 액체에 포함된 음이온은 전기적 중성을 유지하기 위해서, 제 2 전극(120)으로 이동하게 된다.
도 3은 본 발명의 일 실시예에 따른 발광 소자의 발광 원리를 개략적으로 설명하기 위한 도면이다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에서, 이온성 전이 금속 착화합물은 tris(2,2'-bipyridine)ruthenium(II) Hexafluorophosphate, Ru(bpy)3(PF6)2)일 수 있다. 따라서, 활성층(200)은 양이온, 음이온 및 루테늄 이온(Ru2 +)을 포함할 수 있다. 제 1 전극(110) 및 제 2 전극(120)에 직류 전압 또는 교류 전압이 인가되면, 제 1 전극(110) 및 제 2 전극(120)에서 산화 또는 환원 반응이 일어날 수 있다.
예를 들어, 제 1 전극(110)에 양의 전압이 인가되고 제 2 전극(120)에 음의 전압이 인가될 수 있다. 이에 따라, 제 1 전극(110)의 주변에 존재하는 Ru2 + 이온은 전자를 얻어 Ru1 +가 되는 환원 반응이 일어나고, 제 2 전극(120)의 주변에 존재하는 Ru2 + 이온은 전자를 잃어 Ru3 +가 되는 산화 반응이 일어난다. 이후, Ru1 + 이온과 Ru3 + 이온이 결합하면서 여기된 후, 다시 안정화 상태로 돌아가게 되면서 발광을 한다. 한편, 교류 전압이 인가될 경우, 제 1 전극(110)에 음의 전압이 인가되고, 제 2 전극(120)에 양의 전압이 인가될 수 있으며, 음의 전압 또는 양의 전압이 교차되어 인가될 수 있다. 이때, 제 1 전극(110)에서 산화 반응이 일어나고 제 2 전극(120)에서 환원 반응이 일어날 수 있다. 즉, 제 1 전극(110) 또는 제 2 전극(120)에서 일어나는 산화/환원 반응은 전압의 인가에 따라서 달라질 수 있으며, 어느 하나의 반응에 제한되어 일어나는 것이 아니다.
본 발명의 일 실시예에 따른 발광 소자(10)는 외부에서 압력이 인가되거나, 활성층(200)에 인장력이 가해지면, 발광의 세기가 증가되는 특징을 가진다. 구체적으로, 외부의 압력 또는 인장력이 가해짐에 따라, 활성층(200) 내부를 구획하고 있는 세그먼트들의 형상이 바뀌면서 세그먼트 내부에 격리되어 있던 이온들이 외부로 방출되게 된다. 이에 따라 제 1 전극(110) 및 제 2 전극(120)의 주변에 더 많은 이온들이 존재하게 되고, Ru2 + 이온의 산화/환원 반응의 속도가 증가 되어 발광의 세기가 증가하게 된다.
도 4는 본 발명의 일 실시예에 따른 발광 소자의 제조 방법을 상세히 설명하기 위한 순서도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 발광 소자(10)의 제조 방법은, 제 1 전극을 형성하는 단계(S110); 제 1 전극의 상부면에 활성층을 형성하는 단계(S120); 및 활성층의 상부면에 제 2 전극을 형성하는 단계(S130)를 포함한다.
그러나, 상술한 도 4의 제 1 전극을 형성하는 단계(S110), 활성층을 형성하는 단계(S120) 및 제 2 전극을 형성하는 단계(S130)를 수행하는 순서는 도 4에 도시된 순서에 제한되지 않는다.
또한, 제 1 전극을 형성하는 단계(S110) 및 제 2 전극을 형성하는 단계(S130)는 핸들링을 용이하게 하기 위하여, 먼저 제 1 전극이 기판 상에 형성될 수 있다. 이때, 기판은 일반적으로 반도체 소자용으로 사용되는 기판으로서, 유리(glass), 석영(quartz), 실리콘(Si), 게르마늄(Ge) 등을 사용할 수 있다. 이후, 제 1 전극(110), 활성층(200) 및 제 2 전극(120)이 순서대로 접하도록 배치시키고, 기판이 제거될 수 있다. 이때, 제 1 전극(110)과 제 2 전극(120)의 사이에 활성층(200)이 형성되는 것이라면, 제 1 전극(110) 및 제 2 전극(120)의 배치 순서는 제한되지 않는다.
제 1 전극을 형성하는 단계(S110)에서, 제 1 기판 상에 제 1 전극(110)이 형성될 수 있다. 먼저, 제 1 기판 상에 전도성 물질을 형성한다. 이때, 제 1 기판 상에 전도성 물질을 형성하는 방법은 열증착법(thermal evaporation), 화학기상증착법(chemical vapor deposition, CVD), 플라즈마 CVD(plasma enhanced CVD; PECVD), 저압 CVD(low pressure CVD; LPCVD), 물리기상증착법(physical vapor deposition; PVD), 스퍼터링(sputtering), 또는 원자층 증착법(atomic layer deposition; ALD) 중 어느 하나의 증착 방법에 의하여 형성될 수 있다. 또는, 전도성 물질은 전사 혹은 조건에 따라 스프레이 코팅이나 베큠 필터레이션(vacuum filteration)등의 전기 방사 방법에 의하여 형성될 수도 있다. 다음으로, 전도성 물질을 포토리소그래피(photolithography) 또는 이온빔리소그래피(e-beam lithography) 공정을 이용하여 패터닝함으로써, 제 1 전극(110)을 형성한다.
활성층을 형성하는 단계(S120)에서, 제 1 전극(110)의 상부에 활성층(200)이 배치될 수 있다. 이때, 활성층(200)은 광 경화 또는 열 경화에 의한 몰딩법, 식각공정, 및 스핀코팅 등에 의해 형성될 수 있다. 먼저, 열가소성 폴리 우레탄, 이온성 액체, 및 전이 금속 화합물을 혼합시킨 혼합 용액이 준비될 수 있다. 다음으로, 혼합 용액을 요철 구조의 몰드(mold)에 주입하고 경화시켜 활성층(200)을 생성한 후, 활성층(200)을 몰드로부터 분리시킨다.
활성층의 상부면에 제 2 전극을 형성하는 단계(S130)에서는, 제 1 전극을 형성하는 단계(S110)와 마찬가지로, 먼저 제 2 기판 상에 전도성 물질을 형성한 후 패터닝하여 제 2 전극(120)을 형성한다. 다음으로, 활성층(200)과 제 2 전극(120)의 면이 접하도록 제 2 전극(120)을 배치한 후, 제 2 기판을 제거한다. 제 2 전극(120)은 제 2 기판 없이 활성층(200)의 상부에 형성될 수도 있다.
이상에서 제 1 전극(110) 및 제 2 전극(120)을 제 1 기판 및 제 2 기판에 형성하는 이유는 핸들링을 위한 것일 뿐, 경우에 따라 기판을 사용하지 않고 제 1 전극(110) 및 제 2 전극(120)을 형성하는 것이 가능하다. 또한, 제 1 기판 또는 제 2 기판이 제거되지 않을 경우, 제 1 기판 및 제 2 기판은 광 투과성 물질로 형성될 수 있다. 이때, 광 투과성 물질은 유리, 세라믹, 실리콘, 고무, 및 플라스틱 중 어느 하나를 포함하는 것일 수 있으나 이에 제한되는 것은 아니다.
도 5는 본 발명의 일 실시예에 따라 제조된 발광 소자의 발광 상태를 촬영한 사진 및 구동 조건 그래프이며, 도 6은 본 발명의 일 실시예에 따라 제조된 발광 소자의 신장률에 따른 발광 세기 변화를 촬영한 사진이다. 그리고 도 7은 본 발명의 일 실시예에 따라 제조된 발광 소자에 가해지는 압력 및 발광 소자의 신장률에 따른 발광 세기 변화를 나타내는 그래프이다.
상술한 본 발명의 일 실시예에 따라 제조된 발광 소자(10)는 높은 연신비(drawing ratio), 높은 탄성률, 및 높은 탄성 회복률 등을 갖는다.
도 5에 도시한 바와 같이, 본 발명의 일 실시예에 따른 신축성 및 유연성을 갖는 발광 소자는 전압을 인가할 경우 구동되되, 저전압에서 교류 또는 직류 구동이 가능하다.
좀 더 구체적으로 설명하자면, 본 발명의 일 실시예에 의해 제조된 발광 소자(10)는, 외부의 압력 또는 인장력이 가해지면, 활성층(200) 내부를 구획하고 있는 세그먼트들의 형상이 바뀌면서 세그먼트 내부에 격리되어 있던 이온들이 세그먼트 외부로 방출되게 된다. 이에 따라 제 1 전극(110) 및 제 2 전극(120)의 주변에 더 많은 이온들이 존재하게 되고, 전이 금속 착화합물의 산화 환원반응 속도가 증가 되어 발광의 세기가 증가하게 된다.
도 5의 (a)를 참조하면, 본 발명의 일 실시예에 의해 제조된 발광 소자(P10)에 전압을 인가할 경우 발광하는 상태를 확인할 수 있다. 도 5의 (a)의 발광 소자(10)는 금(Au)과 인듐주석산화물(ITO) 전극 사이에 발광층을 삽입한 것이며, 발광 소자(P10)에 60Hz의 교류전압(±3 V)을 인가하여 구동 시킨 것을 나타내었다. 또한, 도 5의 (b)를 참조하면, 2.5 내지 3.0 ±V 조건에서 구동 전압이 증가할수록 발광소자(P10)의 휘도가 증가된 것을 알 수 있다. 이러한 발광 소자(P10)의 구성 및 구동 조건은 이에 한정되지 않는다.
도 6을 참조하면, 도 6의 (a), (b) 및 (c)의 순서로 발광 소자에 가해지는 인장력이 증가될수록 발광 소자의 발광 세기 또한 증가하는 것을 알 수 있다.
또한, 발광 소자(즉, 활성층)에 대해 외부에서 압력이 인가될 경우, 도 7의 (a)에서와 같이 압력(Pressure)의 세기가 커질수록 정규화 빛 세기(Normalized light intensity)(즉, 발광 세기)가 증가되는 특징이 있다. 그리고, 발광 소자에 인장력이 가해질 경우,도 7의 (b)에서와 같이 발광 소자의 활성층에 대한 변형률(strain)이 증가할수록(예: 신장률(elongation percentage)이 증가할수록) 정규화 빛 세기가 증가되는 특징이 있다. 참고로, 변형률은 어느 물체가 인장 또는 압축을 받을 때 원래의 길이에 대하여 늘어나거나 줄어든 길이를 비율로 표시한 값을 의미한다.
이와 같은, 본 발명의 일 실시예에 따라 제조된 발광 소자(10)의 외력의 증가에 따라 발광 세기의 증가하는 특징을 이용하여, 촉각 센서, 압력 및 응력 센서로의 응용이 가능하다. 일례로 관절 운동에 따른 가해지는 압력의 변화를 빛 밝기 정도의 형태로 시각화하는 센서를 들 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 발광 소자에 있어서,
    발광성 물질, 이온성 물질, 및 고분자 매트릭스를 포함하는 활성층을 포함하되,
    상기 활성층은 압축 및 신장 가능하며,
    상기 활성층에 대한 압력 및 상기 활성층의 신장률 중 적어도 하나가 커짐에 따라 발광 세기가 변화하도록 형성된 것인, 발광 소자.
  2. 제 1 항에 있어서,
    상기 활성층은 상기 압력 및 신장률 중 적어도 하나가 커짐에 따라 발광 세기가 증가 혹은 유지되는 것인, 발광 소자.
  3. 제 1 항에 있어서,
    상기 활성층에 전압을 인가하는 제 1 전극 및 제 2 전극을 더 포함하는, 발광 소자.
  4. 제 3 항에 있어서,
    상기 제 1 전극 또는 제 2 전극은 광 투과성 물질로 형성된 것인, 발광 소자.
  5. 제 1 항에 있어서,
    상기 발광성 물질은 전이금속 착화합물, 발광성 유기반도체, 및 양자점 물질 중 어느 하나를 포함하는 것인, 발광 소자.
  6. 제 5 항에 있어서,
    상기 전이 금속 착화합물은 루테늄(ruthenium, Ru) 또는 이리듐(iridium, Ir) 을 포함하는 것인, 발광 소자.
  7. 제 5 항에 있어서,
    상기 발광성 유기반도체는 발광이 가능한 공액형 유기 반도체를 포함하는 것인, 발광 소자.
  8. 제 5 항에 있어서,
    상기 양자점 물질은 13-15 족, 12-16 족 및 14-16 족 원소의 무기 화합물 중 어느 하나를 포함하는 것인, 발광 소자.
  9. 제 1 항에 있어서,
    상기 고분자 매트릭스는 열가소성 탄소중합체 및 열경화성 탄성중합체 중 어느 하나를 포함하는 것인, 발광 소자.
  10. 제 1 항에 있어서,
    상기 이온성 물질은 액체 전해질 및 고체 전해질 중 어느 하나를 포함하는 것인, 발광 소자.
  11. 발광 소자의 제조 방법에 있어서,
    제 1 전극을 형성하는 단계;
    상기 제 1 전극의 상부에, 발광성 물질, 이온성 물질, 및 고분자 매트릭스가 혼합된 활성층을 형성하는 단계; 및
    상기 활성층의 상부에 제 2 전극을 형성하는 단계를 포함하되,
    상기 활성층은 압축 및 신장 가능하며, 상기 활성층에 대한 압력 및 상기 활성층의 신장률 중 적어도 하나가 커짐에 따라 발광 세기가 증가 또는 유지하도록 형성된 것인, 발광 소자의 제조 방법.
  12. 제 11 항에 있어서,
    상기 제 1 전극을 형성하는 단계는
    기판 상에 전도성 물질을 형성하고, 상기 전도성 물질을 패터닝하여 형성하되,
    상기 전도성 물질은 광 투과성 물질인 것인, 발광 소자의 제조 방법.
  13. 제 11 항에 있어서,
    상기 발광성 물질은 전이금속 착화합물, 발광성 유기반도체, 및 양자점 물질 중 어느 하나를 포함하는 것인, 발광 소자의 제조 방법.
  14. 제 13 항에 있어서,
    상기 전이 금속 착화합물은 루테늄(ruthenium, Ru) 또는 이리듐(iridium, Ir)을 포함하는 것인, 발광 소자의 제조 방법.
  15. 제13 항에 있어서,
    상기 발광성 유기반도체는 발광이 가능한 공액형 유기 반도체를 포함하는 것인, 발광 소자의 제조 방법.
  16. 제 13 항에 있어서,
    상기 양자점 물질은 12-16 족, 13-15족 및 14-16족 원소의 무기 화합물 중 어느 하나를 포함하는 것인, 발광 소자의 제조 방법.
  17. 제 11 항에 있어서,
    상기 제 2 전극을 형성하는 단계는
    기판 상에 전도성 물질을 형성하고, 상기 전도성 물질을 패터닝하여 형성하되,
    상기 전도성 물질은 광 투과성 물질인 것인, 발광 소자의 제조 방법.
  18. 제 11 항에 있어서,
    상기 고분자 매트릭스는 열가소성 탄소중합체 및 열경화성 탄성중합체 중 어느 하나를 포함하는 것인, 발광 소자의 제조 방법.
  19. 제 11 항에 있어서,
    상기 이온성 물질은 액체 전해질 및 고체 전해질 중 어느 하나를 포함하는 것인, 발광 소자의 제조 방법.
  20. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 발광 소자를 포함하는 센서.
PCT/KR2017/000379 2016-01-25 2017-01-11 발광 소자 및 그 제조방법 WO2017131366A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/072,682 US10411216B2 (en) 2016-01-25 2017-01-11 Light emitting device and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160008700 2016-01-25
KR10-2016-0008700 2016-01-25
KR1020160134181A KR101876436B1 (ko) 2016-01-25 2016-10-17 발광 소자 및 제조방법
KR10-2016-0134181 2016-10-17

Publications (1)

Publication Number Publication Date
WO2017131366A1 true WO2017131366A1 (ko) 2017-08-03

Family

ID=59398396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000379 WO2017131366A1 (ko) 2016-01-25 2017-01-11 발광 소자 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2017131366A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030127973A1 (en) * 2002-01-10 2003-07-10 Weaver Michael Stuart OLEDs having increased external electroluminescence quantum efficiencies
US20040016886A1 (en) * 2002-07-25 2004-01-29 General Electric Company Flexible imager and digital imaging method
US20060105149A1 (en) * 2004-11-15 2006-05-18 Donahue Kevin G Pressure-sensitive light-extracting paper
US20120200532A1 (en) * 2011-02-03 2012-08-09 Microsoft Corporation Touch-pressure sensing in a display panel
US20150129843A1 (en) * 2013-10-12 2015-05-14 Shenzhen China Star Optoelectronics Technology Co., Ltd Organic light-emitting diode device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030127973A1 (en) * 2002-01-10 2003-07-10 Weaver Michael Stuart OLEDs having increased external electroluminescence quantum efficiencies
US20040016886A1 (en) * 2002-07-25 2004-01-29 General Electric Company Flexible imager and digital imaging method
US20060105149A1 (en) * 2004-11-15 2006-05-18 Donahue Kevin G Pressure-sensitive light-extracting paper
US20120200532A1 (en) * 2011-02-03 2012-08-09 Microsoft Corporation Touch-pressure sensing in a display panel
US20150129843A1 (en) * 2013-10-12 2015-05-14 Shenzhen China Star Optoelectronics Technology Co., Ltd Organic light-emitting diode device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20230144888A1 (en) Method For Manufacturing Light-Emitting Device
Shin et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode
Yin et al. Structures and materials in stretchable electroluminescent devices
WO2019127884A1 (zh) 弹性显示面板的制作方法、弹性显示面板及弹性显示器
WO2014208896A1 (en) Vertical organic light-emitting transistor and organic led illumination apparatus having the same
WO2012033322A2 (ko) 유기전자소자용 기판 및 이를 포함하는 유기전자소자
WO2012005526A2 (ko) 봉지 구조를 포함하는 유기 발광 소자
Liu et al. Novel patterning method for silver nanowire electrodes for thermal-evaporated organic light emitting diodes
US20160057835A1 (en) Flexible and/or stretchable electronic device and method of manufacturing thereof
CN207068930U (zh) Oled显示基板和oled显示装置
Kim et al. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes
WO2009125918A2 (en) Lighting display apparatus and the method for manufacturing the same
WO2014196821A1 (ko) 하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법
WO2012002723A2 (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
CN1921142A (zh) 有机发光显示装置及其制造方法
CN104681743B (zh) 有机发光二极管的制备方法
US10411216B2 (en) Light emitting device and manufacturing method therefor
Gahlmann et al. Bifacial color-tunable electroluminescent devices
WO2016047936A4 (ko) 플렉서블 기판 및 그 제조방법
WO2017131366A1 (ko) 발광 소자 및 그 제조방법
Kim et al. Embedded reverse-offset printing of silver nanowires and its application to double-stacked transparent electrodes with microscale patterns
CN110729410B (zh) 一种有机发光二极管、显示面板及制作方法
KR102135503B1 (ko) 저차원 전자구조의 물질로 구성되는 전극을 사용하는 유기 트랜지스터 소자와 유기 발광 트랜지스터 소자 및 그 제조방법
KR102027115B1 (ko) 유기광전소자 및 이의 제조방법
WO2015182832A1 (ko) 미세구조 제조방법 및 그에 의해 제조된 미세구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 16072682

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744488

Country of ref document: EP

Kind code of ref document: A1